

ECS Southwest, LLP

Geotechnical Engineering Report

Stone Road Improvements

WA Allen Boulevard to Bennett Road Wylie, Texas

ECS Project Number 19:8613

March 16, 2022

"Setting the Standard for Service"

TX Registered Engineering Firm F-8461

March 16, 2022

Mr. Tim Porter, P.E., CFM **Director of Public Works** City of Wylie 949 Hensley Lane, Suite 300 Wylie, Texas 75098

ECS Project No. 19:8613

Reference: Geotechnical Engineering Report **Stone Road Improvements** From WA Allen Boulevard to Bennett Road Wylie, Texas

Dear Mr. Porter:

ECS Southwest, LLP (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our agreed to scope of work. This report presents our understanding of the geotechnical aspects of the project along with the results of the field exploration and laboratory testing conducted, and our recommendations.

It has been our pleasure to be of service to you for the project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions assumed for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Southwest, LLP

Chehung Tsmi

Che-Hung (Chris) Tsai, Ph.D., P.E. Geotechnical Senior Project Manager ctsai@ecslimited.com

Michael Batuna, P.E. **Principal Engineer** mbatuna@ecslimited.com

The electronic seal on this document was authorized by Michael P. Batuna No. 92147, on March 16, 2022

TABLE OF CONTENTS

EXECUTIVE SUMMARY1	
1.0 INTRODUCTION	
2.0 PROJECT INFORMATION	
2.1 Project Location/current site use3	
2.2 Proposed Construction	
3.0 FIELD EXPLORATION	
3.1 Subsurface characterization4	
3.3 Groundwater Observations5	
3.4 Laboratory testing6	
4.0 DESIGN RECOMMENDATIONS	
4.1 Potential Vertical Movements7	
4.2 Soluble Sulfate7	
4.3 Pavement Section7	
4.3.1 Pavement Materials10	
4.3.2 Pavement Maintenance10	
5.0 SITE CONSTRUCTION RECOMMENDATIONS	
5.1 Subgrade Preparation12	
5.1.1 Proofrolling12	
5.2 Earthwork Operations	
5.3 Material Specifications13	
6.0 CLOSING	

APPENDICES

Appendix A – Figures

- Site Location Diagram
- Boring Location Diagram
- Generalized Subsurface Soil Profile
- Regional Geology
- General Recommendations for Quality Assurance (QA) Testing

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure
- Boring Logs

Appendix C – Laboratory Testing

- Laboratory Testing Summary
- Lime/pH Series Summary

Appendix D – WinPAS Pavement Design Outputs

EXECUTIVE SUMMARY

The following summarizes the main findings of the exploration, particularly those that may have a cost impact on the planned roadway improvements. Further, our pavement and subgrade improvement recommendations are summarized. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- Based on our interpretation of the borings drilled for this study, the existing pavements generally consist of 2 to 4 inches of asphalt concrete (AC). Sand and gravel fill (3 to 10 inches) was encountered below the asphalt concrete in all the borings. Below the pavement and gravel fill, soil fill, lean clay and fat clay were encountered in the borings.
- Groundwater seepage was not observed in borings during drilling and at the completion of drilling operations.
- Design values for the proposed pavement, subgrade preparation and stabilization, as well as materials specifications are provided in the report. Based on the anticipated traffic, the pavement section for the planned reconstruction may consist of 9 inches of Asphalt Concrete (AC) pavement and 8 inches of Portland Cement Concrete (PCC) for a 25-year design life. For a 40 year design life, the proposed pavement may consist of 9 inches of Portland Cement Concrete (PCC). The AC and PCC pavements can be supported on lime stabilized subgrade, flexible base with geogrid, or cement treated Reclaimed Asphalt Pavement (RAP) base.
- The potential vertical movement (PVM) of the site is estimated to be about 3 to 5 inches under a dry soil condition. These potential movements reflect moisture changes in the soil that can occur over the life of the structure and after construction is complete.
- It is recommended that ECS conduct a geotechnical review of the project plans (prior to issuance for construction) to check to see that ECS' geotechnical recommendations have been properly interpreted and implemented.
- To prevent misinterpretation of ECS recommendations, ECS should be retained to perform quality control testing and documentation during construction of the earthwork and foundations for the project.

1.0 INTRODUCTION

The purpose of this study was to provide geotechnical information for the design and reconstruction of the street pavements in Wylie, Texas. The recommendations developed for this report are based on project information provided by the client. This report contains the results of our subsurface explorations and geotechnical laboratory testing programs, site characterization, engineering analyses, and recommendations for the design and construction of the planned pavement improvements.

Our services were performed in general accordance with ECS Proposal No. 19:11708-GP, dated November 22, 2021. The project was authorized by client on January 3, 2022. The terms of this agreement will be according to the Contract for Professional Engineering Services between the City of Wylie and ECS Southwest, LLP.

This report contains the procedures and results of our subsurface exploration with soil borings and laboratory testing programs, review of existing site conditions, engineering analyses, and recommendations for the design and construction of the project.

The report includes the following items.

- A brief review and description of our field and laboratory test procedures and the results of testing conducted.
- A review of site conditions.
- A review of area and site geologic conditions.
- A review of subsurface soil stratigraphy with pertinent available physical properties.
- A final copy of our soil test borings.
- Recommendations for pavement design.
- Recommendations for site preparation and construction of compacted fills, including an evaluation of on-site soils for use as compacted fills.

2.0 PROJECT INFORMATION

2.1 PROJECT LOCATION/CURRENT SITE USE

The proposed project consists of the pavement improvements of the Stone Road which include a 2-lane undivided roadway from WA Allen Boulevard to Bennett Road in Wylie, Texas. The project location is depicted in the attached Site Location Diagram in Appendix A and below.

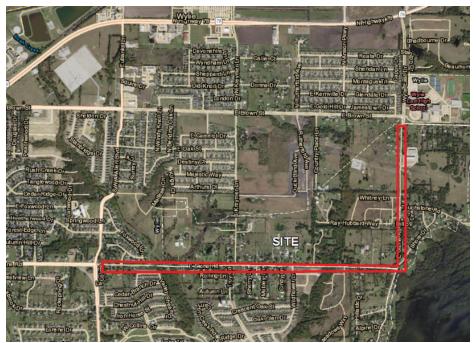


Figure 2.1.1 Site Location Diagram

2.2 PROPOSED CONSTRUCTION

The following information was provided by the City of Wylie and explains our understanding of the planned development of the street section.

Table 2.2.1 A Summary of Design mormation			
SUBJECT	DESIGN INFORMATION / ASSUMPTIONS		
Street Classification	A local residential street and will be upgraded to future roadway as a Secondary Thoroughfare with 4-lane divided concrete with 100-feet right-of-way.		
Existing Street Pavement	21 feet wide Asphalt Concrete (AC) pavement with drainage ditches.		
Type of the Proposed Streets	Asphalt Concrete (AC) or Portland Cement Concrete (PCC) pavement.		
Design Life	25 years (AC and PCC) and 40 years (PCC)		
Growth Factor	1.5 %		
Total Linear Foot	About 11,500 feet.		

If ECS' understanding of the project is not correct, please contact ECS so that we may review these changes and revise our recommendations, as appropriate.

3.0 FIELD EXPLORATION

Our scope of work included drilling a total of 23 soil borings to a depth of 10 feet below the existing grades. These borings were located with a handheld GPS unit and their approximate locations are shown on the Boring Location Diagram in Appendix A.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil and rock strata. Please refer to the boring logs in Appendix B. Based on a review of available published geological maps, the project area is located within the Ozan formation (Ko). The location of the site on the geologic map are depicted in the attached Regional Geology in Appendix A.

<u>Ozan formation (Ko)</u>: The Ozan formation typically consists of relatively uniform, massive, calcareous shale (commonly referred to as marl). Because marl weathers easily, this rock typically cannot be seen in creek beds or outcrops, and soil is found instead. Upper portions of the "limy" shale can weather into softer, clayey shale.

Through chemical and mechanical weathering, this formation produces highly plastic clay soils. Soil above the marl is typically tan and gray, having a blocky structure. Shallower soils typically have a dark brown to black appearance. These clays can be calcareous with silt and sand content increasing incrementally toward the surface. Glauconitic, phosphate pellets, and hematite and pyrite nodules may appear within the soil matrix.

Based on the soil boings, the existing pavements generally consist of 2 to 4 inches of asphalt concrete (AC) underlain by the sand and gravel fill. A summary of the thickness of the existing pavement section with gravel and sand fill encountered in the borings is shown in the following table.

Boring Location	Asphalt Concrete (in.)	Sand and Gravel Fill (in.)
B-01	3	7
B-02	3	5
B-03	3	5
B-04	2	6
B-05	3	6
B-06	2	5
B-07	3	7
B-08	2	5
B-09	4	5
B-10	3	6
B-11	4	4
B-12	3	7
B-13	3	8
B-14	4	6

 Table 3.1.1 Existing Pavement Section at Boring locations

B-15	3	8
B-16	4	8
B-17	4	7
B-18	4	6
B-19	4	4
B-20	2	10
B-21	2	8
B-22	3	4
B-23	3	3

A summary of subsurface stratigraphy encountered in the borings is shown in Table 3.1.2 below.

Approximate Depth to Bottom of Strata (feet)	Stratat	Stratum No. Material Description		Consistency
2 to 8	464 to 510	I	FILL, LEAN and FAT CLAYS, brown, light brown, dark brown	Firm to Hard
6 to 10 ²	456 to 509	II	FAT CLAY (CH), dark brown, brown, light brown	Stiff to Hard
10 ²	476 to 496 III brown, light browni		LEAN CLAY (CL), light brown, brown, light brownish yellow, brownish yellow	Very Stiff to Hard

 Table 3.1.2 Subsurface Stratigraphy

Note:

¹Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on dfwmaps.com. Elevation ranges are approximate +/- several feet.

²Boring termination depths

Please refer to the attached boring logs and laboratory data summary for a more detailed description of the subsurface conditions encountered as the stratification descriptions above are generalized for presentation purposes. A graphical presentation of the subsurface conditions is shown on the Generalized Subsurface Soil Profile included in Appendix A.

3.3 GROUNDWATER OBSERVATIONS

Groundwater level observations were made in the borings during drilling operations. In auger drilling operations, water is not introduced into the borehole and the groundwater level can often be determined by observing water flowing into the excavation. Furthermore, visual observation of soil samples retrieved can often be used in evaluating the groundwater conditions.

Groundwater seepage was not observed in borings during drilling and at the completion of drilling operations.

The highest groundwater observations are normally encountered in the late winter and early spring. Fluctuation in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff and other factors not immediately apparent at the

time of this investigation. The groundwater conditions at this site are expected to be significantly influenced by surface water runoff and rainfall.

3.4 LABORATORY TESTING

The laboratory testing consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests were performed on representative soil samples. The soil samples were tested for moisture content, Atterberg limits, soluble sulfate, lime/pH series, and percent passing No. 200 sieve.

Each sample was visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures) and including USCS classification symbols. After classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual.

The soil samples will be retained in our laboratory for a period of 60 days, after which, they will be discarded unless other instructions are received as to their disposition.

4.0 DESIGN RECOMMENDATIONS

The following recommendations have been developed on the basis of the previously described project characteristics and subsurface conditions. If there are any changes to the project characteristics or if different subsurface conditions are encountered during construction, ECS should be consulted so that the recommendations of this report can be reviewed.

4.1 POTENTIAL VERTICAL MOVEMENTS

The soils encountered at this site are moderate to highly expansive. These soils are susceptible to shrink swell tendencies, occurring seasonally, throughout the life of the pavement with the changes in moisture content. Based on test method TEX-124-E in the Texas Department of Transportation (TxDOT) Manual of Testing Procedures, and our experience with similar soils, we estimate potential vertical soil movements (PVM) under a dry soil moisture condition will be about 3 to 5 inches. The actual movements could be greater if poor drainage, ponded water, and/or other unusual sources of moisture are allowed to saturate the soils beneath the pavement after construction.

In order to minimize the impact of moisture changes within the subgrade soils and reduce potential for movements, the exposed subgrade during construction should be kept moist by adding moisture and covering the subgrade. Positive drainage should be conducted during all phases of construction. Regular pavement maintenance should be performed by routinely sealing all cracks and joints in the pavement. Subgrade treatment should be considered to reduce future movement potential. In addition, root barriers to about 5 feet below the existing grade along the edge of the pavement may be considered to reduce root penetration below the pavement that may affect long term pavement performance.

4.2 SOLUBLE SULFATE

Soluble sulfate tests were performed on selected samples to evaluate the potential for sulfate induced heave. The laboratory test results indicated that soluble sulfate concentrations were generally less than 3,000 ppm in the subgrade soils except for one sample with 3,066 ppm from Boring B-23. This sulfate level is considered to have a moderate to high risk for sulfate induced heave upon lime stabilization.

In general, soil with soluble sulfate concentrations of 3,000 ppm or less, are not considered to require special treatment considerations when lime stabilized in accordance with TxDOT "Guidelines for Modification and Stabilization of Soils and Base for Use in Pavement Structures" (2005). We recommend that sulfate contents be confirmed by additional laboratory tests during the construction phase after final grading.

Double lime stabilization should be used on the subgrade with high sulfate contents (3,000 to 8,000 ppm). As an alternative, flexible base material may be used in lieu of lime stabilized subgrade.

4.3 PAVEMENT SECTION

The proposed street section is classified as a local residential street and will be upgraded to future roadway as a Secondary Thoroughfare with 4-lane divided concrete with 100-feet right-of-way, according to the Thoroughfare Plan by the City of Wylie, dated December 2018.

A Preliminary Engineering Report, prepared by Brinkley & Barfield Consulting Engineer for Collin County, "E. Stone Road Improvements Study" – From W.A. Allen Boulevard to Bennett Road, dated November 2021, was provided by the City of Wylie for the use of this geotechnical study. The proposed road will have a long-term growth factor of 1.5 percent. Traffic volumes were observed at four locations for 48 hours along the corridor on August 24 to 26, 2021. Combined two-way traffic on the east-west segment between WA Allen Boulevard and Beaver Creek Road, average daily traffic ranged from 2,127 to 5,167 vpd. Combined two-way traffic on the north-south segment between Bennet Road and Shore Drive, average daily traffic ranged from 2,172 to 2,791 vpd. The highest average daily traffic (ADT) of 5,167 vpd was used in the traffic study.

Based on the information obtain from the preliminary engineering report for the Stone Road Improvements provided by the City of Wylie and our past experience, we use the design parameters summarized on the following Table 4.3.1 for the pavement design analysis with 25-year design life (AC/PCC pavements) and 40-year design life (PCC pavement).

Design Parameters	Design Values		
Pavement Type	Flexible (AC)	Rigid (PCC)	
Average Daily Traffic (ADT)	5,1	.67	
Growth Factor (%)	1.	.5	
Percent Heavy Trucks (%) (assumed)	5.	.0	
ESAL Truck Factor (assumed)	1.	7	
Total ESALs (25-Year Design Life) - AC/PCC	2,411	1,300	
Total ESALs (40-Year Design Life) - PCC	4,352	2,720	
Subgrade Soil Type	Clay Soils		
Unified Soil Classification System (USCS)	CH or CL		
Reliability (percentage)	90		
Overall Standard Deviation	0.45 0.39		
Initial Pavement Serviceability	4.2 4.5		
Terminal Pavement Serviceability	2.5		
Concrete Modulus of Rupture (psi) -28 Days	620		
Concrete Modulus of Elasticity (psi) -28 days	4,000,000		
Drainage Coefficient	1.0		
Load Transfer Coefficient – Rigid	3.0		
Layer Coefficient of Asphalt Surface Course	0.44		
Layer Coefficient of Asphalt Base Course	0.4	41	

Table 4.3.1: Design Parameters for Stone Road Improvements

Layer Coefficient (Asphalt Pavement)	0.12 (Lime Stabilized Subgrade) 0.14 (Flexible Base with Geogrid)
	0.15 (Cement Treated RAP)
Modulus of Subgrade Reaction (psi/in) – k (PCC Pavement)	200 (Lime Stabilized Subgrade) 240 (Flexible Base with Geogrid)
	240 (Cement Treated Base/RAP)

Pavement sections provided in this report were designed in general accordance with the AASHTO Guide for Design of Pavement Structures (1993). Based on our analysis and the calculations with the design parameters on the Table 4.3.2, the pavement reconstruction may be designed as asphalt concrete pavement section supported on either lime stabilized subgrade, flexible base with geogrid (Tensar BX1100 or similar), or cement treated Reclaimed Asphalt Pavement (RAP) subgrade. The proposed asphalt concrete pavement sections are summarized in the following table.

Design Life (year)	Asphalt Surface Course (inches)	Asphalt Base Course (inches)	Cement Treated RAP (inches)	Flexible Base with Geogrid (inches)	Lime Stabilized Subgrade (inches)
25	2	7	N/A	N/A	8
25	2	7	N/A	8	N/A
25	2	7	8	N/A	N/A

Table 4.3.2: Asphalt Concrete (AC) Pavement Section

Table 4.3.3: Portland Cement Concrete (PCC) Pavement Section
--

Design Life (year)	Concrete Pavement Thickness (inches)	Cement Treated RAP (inches)	Flexible Base with Geogrid (inches)	Lime Stabilized Subgrade (inches)
25	8	N/A	N/A	8
25	8	N/A	8	N/A
25	8	8	N/A	N/A
40	9	N/A	N/A	8
40	9	N/A	8	N/A
40	9	8	N/A	N/A

We recommend the existing HMAC and fill material (consisted of sand and gravel) be removed from below the footprint of the proposed new pavement area before using lime to stabilize the clay fill and native soil if lime stabilized subgrade will be used for the project.

For the design and construction of pavement, the subgrade should be prepared in accordance with the recommendations in the "Earthwork Operations" section of this report. An important consideration with the design and construction of pavements is surface and subsurface drainage. Where standing water develops, either on the pavement surface or within the base course layer, softening of the subgrade and other problems related to the deterioration of the pavement can be expected. Furthermore, good drainage should reduce the possibility of the subgrade materials becoming saturated during the normal service period of the pavement.

Please note, the recommended pavement sections provided above are considered the minimum necessary to provide satisfactory performance based on the provided traffic loading. In some cases, jurisdictional minimum standards for pavement section construction may exceed those provided above.

4.3.1 Pavement Materials

We recommend that pavement be specified, constructed and tested to meet the following *requirements*:

- 1. Hot Mix Asphaltic Concrete: Item 340 of the TxDOT Standard Specifications, Type B Base Course (binder), Type D Surface Course.
- 2. Portland Cement Concrete: A minimum compressive strength of 4,000 psi at 28 days.
- 3. Reinforcing Steel: #4 bars at 18" centers both ways.
- 4. Concrete Pavement Joints:
 - a. Transverse Joints shall be sawed on 15' centers. Use 18" #8 or #10 dowels (smooth bars) at 12" spacing per TxDOT concrete Pavement Details Contraction Design (CPCD-14)
 - b. Longitudinal Joints shall be sawed based on the following:
 25' Width Saw Joint 3" from the center; 27' & 31' Width Saw Joint along the center
 - c. Expansion Joints to be constructed a maximum of 500' to 700' apart on straight paving, and on all radii, PC, PT and CR or otherwise specified. Use at least 18" (#10) dowels for paving 8" thick or greater.
- 5. Lime Stabilized Subgrade: 8% Lime by dry weight of soil (about 48 lbs/sy for 8 inches)
- 6. Flexible Base Subgrade (TxDOT Item 247)
- 7. Cement Treated Subgrade (Public Works Construction Standards, NCTCOG, 4th Edition, Item 301.1 and 301.3) or TxDOT Item 275 (Cement Treatment Road Mixed)

4.3.2 Pavement Maintenance

Routine maintenance, such as sealing and repair of cracks, is necessary to achieve the long-term life of a pavement system. We recommend a preventive maintenance program be developed and followed for all pavement systems so the design life can be realized. Choosing to defer maintenance usually results in accelerated deterioration leading to higher future maintenance costs, and/or repair.

The life and serviceability of the pavement system is dependent upon a well-planned pavement maintenance program. Pavement maintenance guidelines are provided in the following tables. We also recommend a Pavement Information Management System to be instituted and a strict maintenance schedule to be implemented.

Year	Program				
7	Joint Seal and Crack Seal				
14	Joint Seal and Crack Seal Patch and Slab Replacement				
20	Diamond Grind ½ inch and Reseal Joints or Cracks				
27	Joint Seal and Crack Seal				
35	Joint Seal and Crack Seal Patch and Slab Replacement				
40	Overlay with 3-inch AC Pavement Maintenance to Follow AC Pavement Recommendations in Table 4.3.2.2				

Table 4.3.2.1: General Rigid (PCC) Pavement Maintenance Program

Table 4.3.2.2: Flexible (AC) Pavement Maintenance Program

Year	Program
7	Crack Seal and 2-inch Stone Matrix Asphalt (SMA) Overlay
10	Crack Seal
15	2 inches Mill and 2-inch SMA Inlay
18	Crack Seal
22	Crack Seal and 2-inch SMA Inlay
25	Crack Seal or Reconstruct the Asphalt section Layer

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 SUBGRADE PREPARATION

In a dry and undisturbed state, the upper 1-foot of the majority of the soil at the site will provide good subgrade support for fill placement and construction operations. However, these soils contain fines which are considered moderately erodible and are moisture and disturbance sensitive. Therefore, good site drainage should be maintained during earthwork operations, which would help maintain the integrity of the soil.

We recommend that an attempt be made to enhance the natural drainage without interrupting its pattern. All erosion and sedimentation should be controlled in accordance with sound engineering practice and current jurisdictional requirements.

The site should be stripped. After stripping, cutting to the proposed grade, and prior to the placement of any structural fill, the exposed subgrade should be examined by the Geotechnical Engineer or authorized representative. The exposed subgrade should be thoroughly proofrolled with previously approved construction equipment having a minimum axle load of 20 tons (e.g. fully loaded tandem-axle dump truck). The areas subject to proofrolling should be traversed by the equipment in two perpendicular (orthogonal) directions with overlapping passes of the vehicle under the observation of the Geotechnical Engineer or authorized representative. This procedure is intended to assist in identifying any localized yielding materials.

In the event that unstable or "pumping" subgrade is identified by the proofrolling, those areas should be marked for repair prior to the placement of any subsequent structural fill or other construction materials. Methods of repair of unstable subgrade, such as undercutting or moisture conditioning or chemical stabilization, should be discussed with the Geotechnical Engineer to determine the appropriate procedure with regard to the existing conditions causing the instability.

5.1.1 Proofrolling

Prior to fill placement or other construction on subgrades, the subgrades should be evaluated by an ECS field technician. The exposed subgrade outside moisture conditioned soil zone should be thoroughly proofrolled with construction equipment having a minimum axle load of 10 tons [e.g. fully loaded tandem-axle dump truck]. Proofrolling should be traversed in two perpendicular directions with overlapping passes of the vehicle under the observation of an ECS technician. This procedure is intended to assist in identifying any localized yielding materials.

Where proofrolling identifies areas that are unstable or "pumping" subgrade those areas should be repaired prior to the placement of any subsequent Structural Fill or other construction materials. Methods of stabilization include undercutting, moisture conditioning, or chemical stabilization. The situation should be discussed with ECS to determine the appropriate procedure. Test pits may be excavated to explore the shallow subsurface materials to help in determining the cause of the observed unstable materials, and to assist in the evaluation of appropriate remedial actions to stabilize the subgrade.

5.2 EARTHWORK OPERATIONS

Prior to placement of any new fill, all subgrades should be scarified to a minimum depth of 6 inches, compacted to at least 95% of Maximum Dry Density as obtained by the Standard Proctor Method (ASTM D-698) and moisture conditioned at +3% or above the optimum value. All fills should be benched into the existing soils.

Soil moisture levels should be preserved (by various methods that can include covering with plastic, watering, etc.) until new fill, or pavements are placed. All fill soils should be placed in 8 inch loose lifts for mass grading operations and 4 inches for trench type excavations where walk behind or "jumping jack" compaction equipment is used.

Upon completion of the filling operations, care should be taken to maintain the soil moisture content prior to construction of floor slabs and pavements. Soil moisture levels can be preserved by various methods that can include covering with plastic, watering, etc. If the soil becomes desiccated, the affected material should be removed and replaced, or these materials should be scarified, moisture conditioned and recompacted.

Utility cuts should not be left open for extended periods of time and should be properly backfilled. Backfilling should be accomplished with properly compacted on-site soils, rather than granular materials. A utility trench cut-off is recommended to help prevent water from migrating through the utility trench backfill to beneath the proposed structure.

Field density and moisture tests should be performed on each lift as necessary to verify that adequate compaction is achieved. As a guide, one test per 2,500 square feet per lift is recommended in the paving areas (two tests minimum per lift). Utility trench backfill should be tested at a rate of one test per lift per each 150 linear feet of trench (two tests minimum per lift). Certain jurisdictional requirements may require testing in addition to that noted previously. Therefore, these specifications should be reviewed and the more stringent specifications should be followed.

5.3 MATERIAL SPECIFICATIONS

This section is intended to outline the material requirements of those recommendations.

Lime stabilized subgrade: Lime stabilized on site clay should be used below the pavement. Lime application rate of 8% hydrated lime (about 48 lbs/sy for 8 inches) by dry weight of clay (TxDOT Item 260) can be used for budgeting purposes. The actual amount of lime required should be confirmed by additional laboratory tests (lime series) during the construction phase.

The lime stabilized clay should be thoroughly mixed and appropriately mellowed for at least 48 hours (TxDOT Item 260) and tested for gradation and lime solubility (pH) prior to final placement and compaction. Once appropriately mixed and mellowed, this material may then be placed and compacted at workable moisture contents within of at least +3 percent of optimum moisture content and compacted to at least 95% of the Maximum Dry Density as obtain using the Standard Proctor Method (ASTM D-698).

Please refer to the "General Recommendations for Quality Assurance (QA) Testing" table provided in the Appendix A of this report for specific requirements.

<u>Flexible base material:</u> The material may be used beneath pavements. Flexible base should meet the requirements of TxDOT Item 247, Type D, Grade 1-2, or NCTCOG Item 301.5. Recycled concrete meeting the gradation requirements of flexible base is also acceptable for use. The flexible base and recycled concrete should be compacted to at least 95% of maximum dry density at or above the optimum moisture content as obtained using the Standard Proctor Method (ASTM D-698).

Please refer to the "General Recommendations for Quality Assurance (QA) Testing" table provided in the Appendix A of this report for specific requirements.

<u>Cement Treated Reclaimed Asphalt Pavement (RAP)</u>: The existing asphalt pavement sections may be considered for the project. The existing pavement sections should be milled/crushed down or pulverized to fragments by using a pulverizing/mixing rototiller or similar equipment. Asphalt concrete, gravelly fill materials, and subgrade soils should be mixed together. The particle size distribution of the pulverized material should be such that 100 percent passing the 1-3/4-in. sieve, 85 percent passing the 3/4-in. sieve, and at least 60 percent passing the No. 4 sieve.

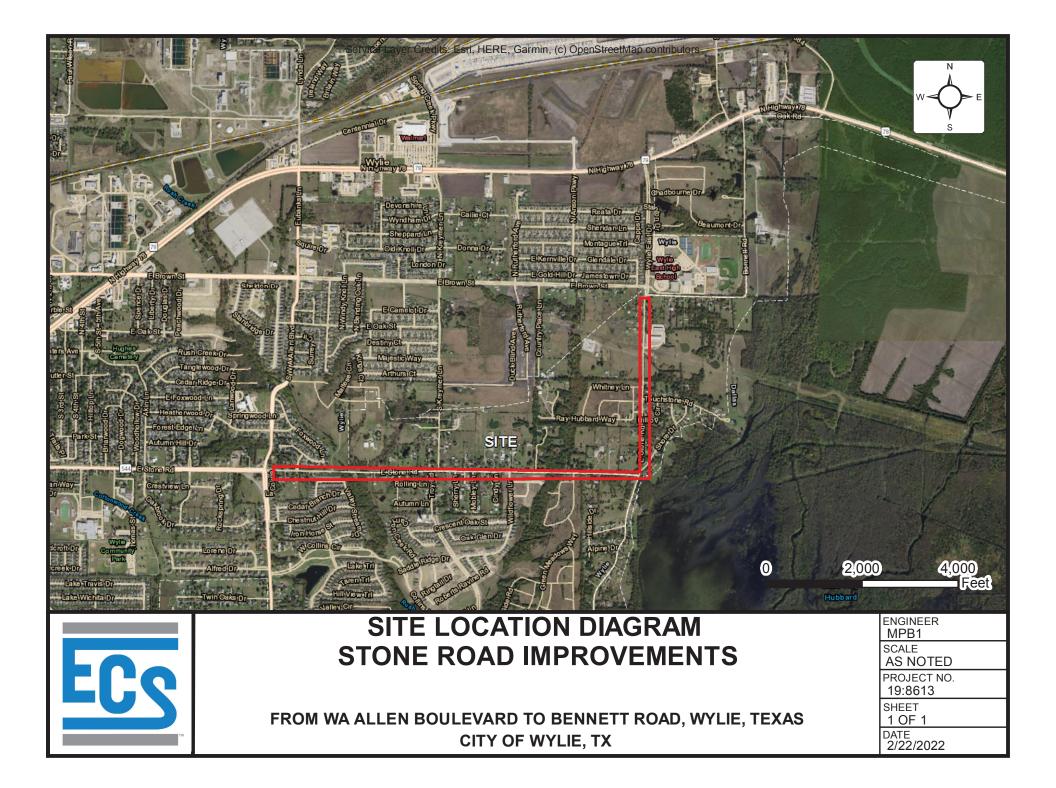
The resulting mix should be cement stabilized (TxDOT Item 275) to the minimum depth of 8 inches and compacted to at least 95 percent of its maximum standard Proctor dry density (ASTM D 698) at a moisture content above the optimum moisture. We recommend 3 to 5 percent cement (TxDOT Item 275), by dry weight, for the treatment. The cement should be thoroughly mixed and blended with the pulverized mixture. The resulting mix should have a minimum unconfined compressive strength of 240 psi, as determined by TxDOT method Tex-120-E.

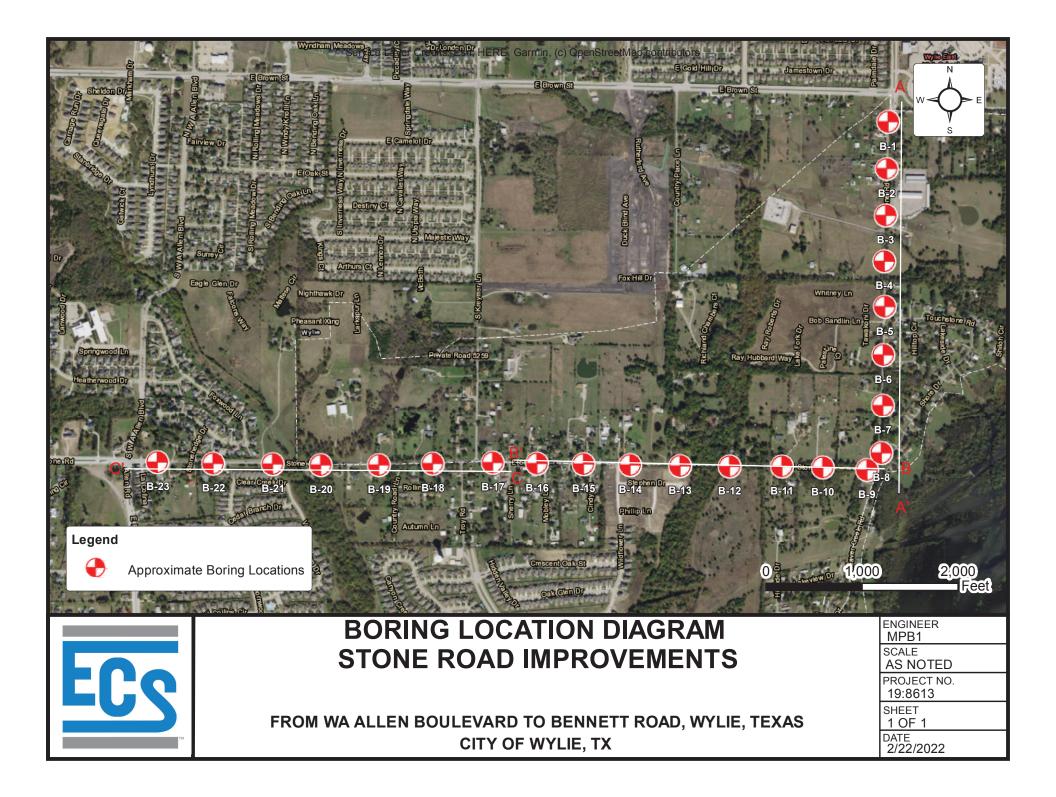
6.0 CLOSING

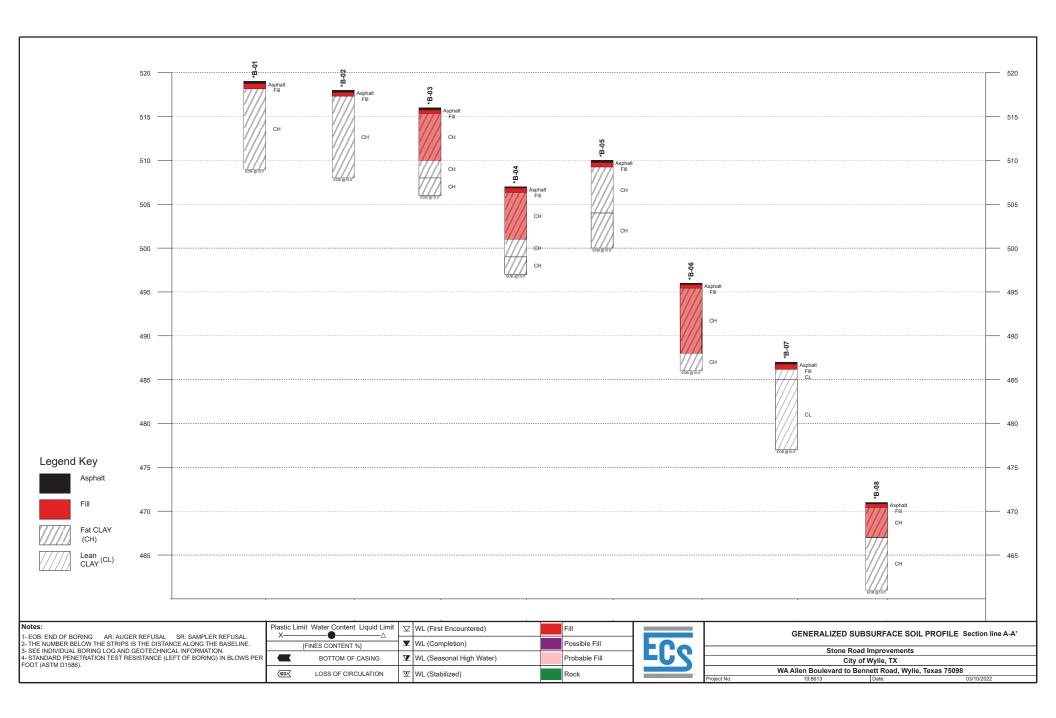
ECS has prepared this report to guide the geotechnical-related design and construction aspects of the project. We performed these services in accordance with the standard of care expected of professionals in the industry performing similar services on projects of like size and complexity at this time in the region. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

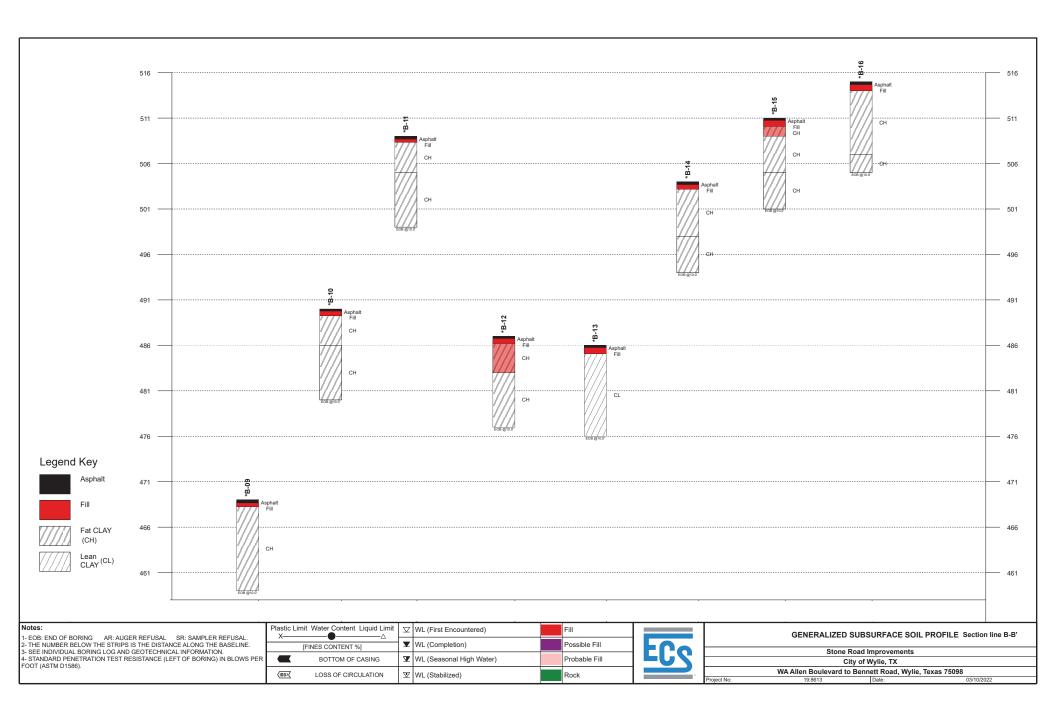
The description of the proposed project is based on information provided to ECS by Client. If any of this information is inaccurate or changes, either because of our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted so we can review our recommendations and provide additional or alternate recommendations that reflect the proposed construction.

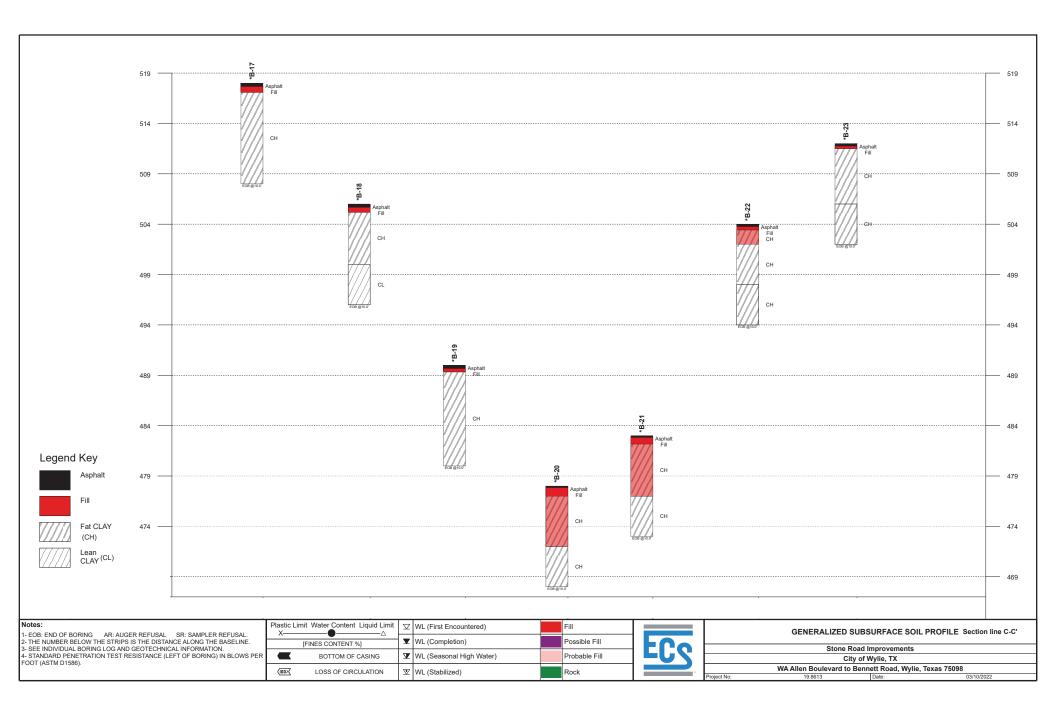
All construction activities should be conducted in accordance with the most recent City's Design Standards, as well as the latest edition of North Central Texas Council of Governments (NCTCOG) Standard Specifications for Public Works Construction and TxDOT specifications.

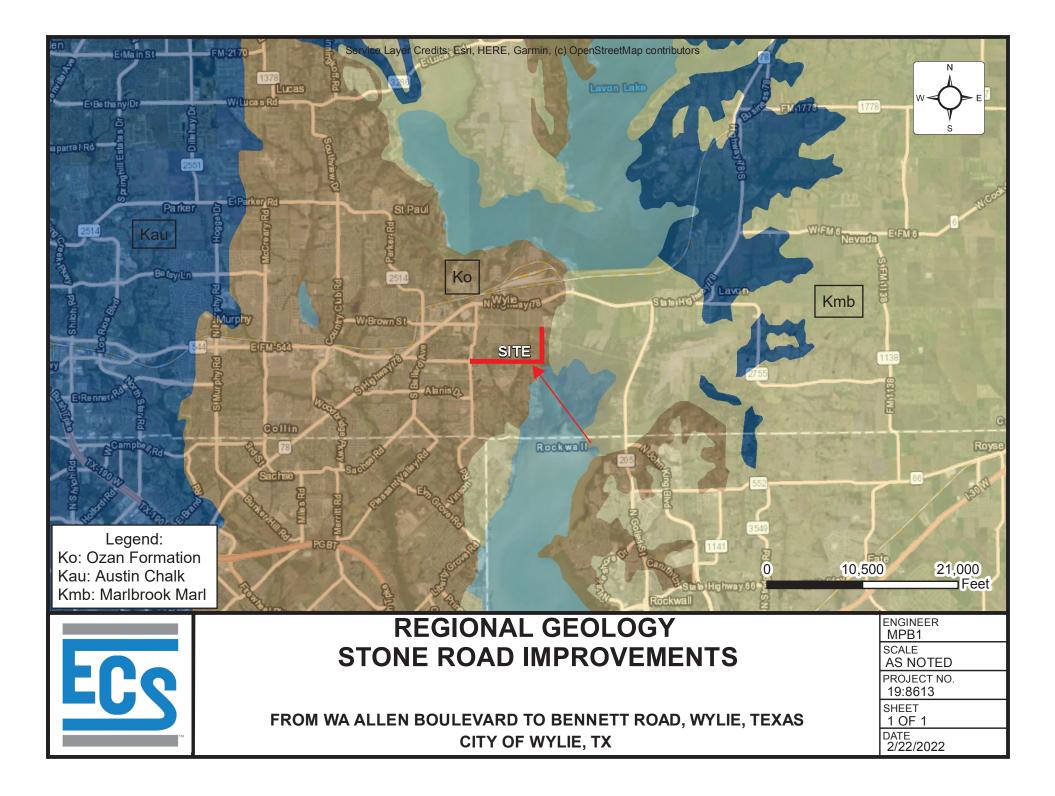

We recommend that ECS review the project plans and specifications so we can confirm that those plans/specifications are in accordance with the recommendations of this geotechnical report.


Field observations, and quality assurance testing during earthwork and foundation installation are an extension of, and integral to, the geotechnical design. We recommend that ECS be retained to apply our expertise throughout the geotechnical phases of construction, and to provide consultation and recommendation should issues arise.


ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.


APPENDIX A – Figures


Site Location Diagram Boring Location Diagram Generalized Subsurface Soil Profile (From West to East) Regional Geology General Recommendations for Quality Assurance (QA) Testing



Item	Parameter	Test Method ASTM unless noted otherwise	Test Frequency or Observations	Requirements
	Standard Proctor Curve	D698	1 per soil type	
General Earth Fill	Atterberg Limits	D4318	1 per soil type	
Below Paving &	-200 Mesh Sieve	D1140	1 per soil type	
Structures	In Situ Density/Moisture Nuclear Gauge	D2922 D3017	1 per each 200 ft. of lane direction per 6 inch lift (2 tests minimum per lift per section)	Density <u>></u> 95% Moisture: Pl < 20 (-2 to +5) Pl > 20 (0 to +5)
	Standard Proctor Curve	D698	1 per soil type	Lean Sandy Clay (CL) or Clayey Sand (SC)
	Atterberg Limits	D4318	1 per soil type	LL ≤ 35 6 ≤ PI ≤ 15
Select Fill	-200 Mesh Sieve (P 200)	D1140	1 per soil type	P200 <u><</u> 50
	In Situ Density/Moisture Nuclear Gauge	D2922 D3017	1 per each 200 ft. of lane direction per 6 inch lift (2 tests minimum per lift per section)	Density <u>></u> 95% Moisture: (-2 to +5)
	Standard Proctor Curve	D698	1 per soil type	
	Atterberg Limits	D4318	1 per soil type	PI <u><</u> 15
Stabilized Subgrade	In Situ D2922 Density/Moisture D3017		1 per each 200 ft. of lane direction (2 tests minimum)	Density <u>></u> 95% Moisture: +3%
	Gradation	D422	1 per 2 Density/Moisture tests	100% Passing 1-3/4" Sieve 60 % passing #4 Sieve
	Depth Check	Survey, drive probe or hand auger	1 per 2 Density/Moisture tests	Min. Specified

*Performed by the Construction Materials Engineering and Testing Company hired by owner.

Item	Parameter	Test Method ASTM unless noted otherwise	Test Frequency or Observations	Requirements
	Standard Proctor Curve	D698	1 per soil type	
Trench Backfill	Atterberg Limits	D4318	1 per soil type	
Below Streets &	-200 Mesh Sieve	D1140	1 per soil type	
Structures	Density/Moisture D2922		1 per each 250 ft. of lane direction per 12 inch lift (2 tests minimum per lift per section)	Density <u>></u> 95% Moisture: -1 to +4
	Standard Proctor Curve	D698	1 per soil type	
	Atterberg Limits	D4318	1 per soil type	LL <u><</u> 35 6 <u><</u> PI <u><</u> 15
	-200 Mesh Sieve (P 200)	D1140	1 per soil type	P200 <u><</u> 50
Wall Backfill	In Situ Density/Moisture Nuclear Gauge	D2922 D3017	1 per each 200 ft. of lane direction per 8 inch lift 6 inch lifts if hand-operated tampers are used (2 tests minimum per lift per section)	Density <u>></u> 95% Moisture: (-1 to +4)
	Modified Proctor Curve	D1557	1 per material type	Type A, Grade 1 or better
	Atterberg Limits	D4318	1 per material type	LL <u><</u> 40 PI <u><</u> 12
Crushed Limestone Flexible Base (TxDOT Item 247)	Sieve Analysis	D422	1 per material type	0-10 % Passing 1-3/4 inch 45-75 % Passing No. 4 60-85 % Passing No. 40
	Wet Ball Mill	TxDOT	1 per material type	Max. 45
	In Situ Density/Moisture Nuclear Gauge	D2922 D3017	1 per each 200 ft. of lane direction (Streets/Roads)	Density <u>></u> 95% (Modified) Moisture: -2 to +4%

Notes: 1. Table 1 is a guide for sampling and testing. Each of these items may not apply to the specified project.

2. Material changes, suspect areas, or other field conditions may require the engineer to increase testing and sampling frequencies.

3. Minimum of two tests per lift.

4. The moisture content ranges specified are to be considered as maximum allowable ranges. The contractor may have to maintain a more narrow range (within the maximum allowable) in order to consistently achieve the specified density for some soils or under some conditions.

APPENDIX B – Field Operations

Reference Notes for Boring Logs Subsurface Exploration Procedure Boring Logs

REFERENCE NOTES FOR BORING LOGS

									-
MATERIAL ¹	,2		DRILLING SAMPLING SYMBOLS & ABBRE						Т
	ASPI	Т	SS	Split Spoor	n Sampler		PM	Pressuremeter	٢e
			ST	Shelby Tub	•	r	RD RC	Rock Bit Drilling	
	CON	CRETE	WS	· ·				Rock Core, NX,	
			BS	Bulk Samp		0	REC	Rock Sample R	
	GRA	VEL	PA	Power Aug	RQD	Rock Quality De	s		
			HSA Hollow Stem Auger						
	TOPS	SOIL			F	PARTICLE S	IZE IDE	NTIFICATION	
	VOID		DESIGNA	TION	PARTIC	CLE SIZES			
			Boulder		12 i	nches (300 n) mm) or larger		
	BRIC	к	Cobbles				`	5 mm to 300 mm)	
			Gravel:	Coarse			`	m to 75 mm)	
O	AGGREGATE BASE COURSE		Condi	Fine) mm (No. 4 sieve to ¾ inch		
2.7.4	GW	WELL-GRADED GRAVEL	Sand:	Coarse			`	b. 10 to No. 4 siev	
• .•		gravel-sand mixtures, little or no fines		Medium Fine			``	lo. 40 to No. 10 si No. 200 to No. 40	
\$°.0	GP	POORLY-GRADED GRAVEL	Silt & Cl	ay ("Fines")				No. 200 to No. 40 a No. 200 sieve)	
<u>ে ০ ন</u> চার্গস্ম		gravel-sand mixtures, little or no fines			-0.0			1 4 1 10. 200 SIEVE	
SP.D	GM	SILTY GRAVEL gravel-sand-silt mixtures		COHESIVE	E SILTS &	CLAYS			
A B	GC	CLAYEY GRAVEL	UNCO	NFINED				RELATIVE AMOUNT ⁷	
6794		gravel-sand-clay mixtures	COMP	RESSIVE	SPT⁵	CONSISTEN	CY ⁷	AMOUNT	L
	SW	WELL-GRADED SAND		GTH, QP⁴	(BPF)	(COHESIV		Trace	
	0.0	gravelly sand, little or no fines		0.25	<2 2 - 4	Very Sof Soft	t	With	
	SP	POORLY-GRADED SAND gravelly sand, little or no fines		- <0.50 - <1.00	2 - 4 5 - 8	Firm		Adjective	
	SM	SILTY SAND		· <2.00	9 - 15	Stiff		(ex: "Silty")	
		sand-silt mixtures		- <4.00	16 - 30	Very Stif	f		
/ / /	SC	CLAYEY SAND		- 8.00	31 - 50	Hard			-
<u>/:////</u>		sand-clay mixtures	>8	8.00	>50	Very Har	d	WA	т
	ML	SILT							1
		non-plastic to medium plasticity	GRAVE	LS, SANDS	& NON-C	OHESIVE SI	LTS	₩ WL (Firs	t
	МН	ELASTIC SILT high plasticity		SPT⁵		DENSITY		WL (Cor	n
$\overline{111}$	CL	LEAN CLAY		<5	,	Very Loose			11
		low to medium plasticity	5	5 - 10		Loose		WL (Sea	s
	СН	FAT CLAY	1	1 - 30	M	edium Dense			
	_	high plasticity	3	1 - 50		Dense		WL (Stal	JÍ
222	OL	ORGANIC SILT or CLAY non-plastic to low plasticity		>50		Very Dense			
	ОН	ORGANIC SILT or CLAY							
222	011	high plasticity				FILL	AND R	оск	
36 56	РТ	PEAT			1				
2 36 3		highly organic soils		and the second second					

ABBREVIATIONS

	PM	Pressuremeter Test							
	RD	Rock Bit Drilling							
	RC	Rock Core, NX, BX, AX							
3	REC	Rock Sample Recovery %							
e)	RQD	Rock Quality Designation %							
RTICLE SIZE IDENTIFICATION									

	(PDE)								
NFINED	SPT⁵	CONSISTENCY ⁷		RELATIVE AMOUNT ⁷	GRAINED (%) ⁸	GRAINED (%) ⁸			
COHESIVE SILTS & CLAYS					COARSE	FINE			
lay ("Fines") <0.074 mm (smaller th				an a No. 200 sieve)					
Fine	0.07	74 mm to 0.425 mm	ı (İ	No. 200 to No. 40) sieve)				
Medium 0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)									
Coarse 2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)									
Fine	4.75	5 mm to 19 mm (No	a sieve to ¾ inch)	sieve to ¾ inch)					
Coarse	³⁄₄ ir	nch to 3 inches (19	mr	m to 75 mm)					

COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
<u><</u> 5	<u><</u> 5
10 - 20	10 - 25
25 - 45	30 - 45
	GRAINED (%) ⁸ ≤5 10 - 20

WATER LEVEL	S6
-------------	----

7	WL (First Encountered)
	WL (Completion)

- WL (Seasonal High Water)
- WL (Stabilized)

FILL AND ROCK									
FILL	POSSIBLE FILL	PROBABLE FILL	ROCK						
			Rook						

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler

required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-17.

SUBSURFACE EXPLORATION PROCEDURES

The field exploration was planned with the objective of characterizing the project site in general geotechnical and geological terms and to evaluate subsequent field and laboratory data to assist in the determination of geotechnical recommendations.

The subsurface conditions were explored by drilling and sampling 23 borings to a depth of approximately 10 feet below the existing site grades. A truck-mounted drill rig with continuous flight augers was utilized to drill the borings. The boring locations were determined by and identified in the field by ECS personnel using the supplied diagram. The approximate as-drilled boring locations are shown on the Boring Location Diagram in Appendix A. The ground surface elevations noted on the boring logs were obtained from NCTCOG (www.dfwmaps.com), which provided elevation contours in 2-foot intervals.

Representative soil samples were obtained by means of Shelby tube sampling procedures in accordance with ASTM Specification D-1587. In the Shelby tube sampling procedure, a thin walled, steel, seamless tube with sharp cutting edges is pushed hydraulically into the soil, and a relatively undisturbed sample is obtained.

Field logs of the soils encountered in the borings were maintained by the drilling crew. After recovery, each sample was removed from the sampler and visually classified. Representative portions of each soil sample were then wrapped in plastic and transported to our laboratory for further visual examination and laboratory testing. After completion of the drilling operations, the boreholes were backfilled with auger cuttings and patched on the surface.

CLIENT							PROJECT NC).:		BORING I	NO.:	SHEET:		
City of N PROJEC							19:8613 DRILLER/CO			5- 01		1 of 1		ECO
Stone R			nents				StrataBore, L			n.				
SITE LO												1.000		Ving
WA Alle	n Boul	evard t	o Benn	ett Roa	ad, Wylie, Texas 75098							LOSS	OF CIRCULATION	<u>)1007</u>
NORTH					ASTING:	STATION:					LEVATION:	BOT	TOM OF CASING	
705809	5.9			25	82679.1				519	9.00				
	ER		Î	<u> </u>					S	Ê		Plastic Lin X	nit Water Content Li	quid Limit —∧
(FT)	UME	SAMPLE TYPE	ST. (JI) X					EVEL	N (F	.9/9	STAI	NDARD PENETRATION B	LOWS/FT
DЕРТН (FT)	E N	IPLE	E DI	VER	DESCRIPTION O	F MATERIAL			ERLI	ATIO	BLOWS/6"		UALITY DESIGNATION &	RECOVERY
DE	SAMPLE NUMBER	SAN	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	BL	RC		
	S/		/S										IBRATED PENETROMETE	R TON/SF
_					Asphalt [3"]				_	-		[FINES C	ONTENT] %	
	S-1	ST	14	14	FILL, sand and gravel,	brown [7'	"]			-			○ _{2.25}	
-		51	14	14	(CH) FAT CLAY, brown a	and dark l	brown,			-			○ _{2.75}	
_	S-2	ST	24	24	moist, very stiff to har	d				-				
										-			⊖ _{3.5}	0
5-	S-3	ST	24	24						514			0.0	0
-	00	51	27	27									\circ	
-	~ ^	CT	24	24						-			⊖ _{3.5}	0
-	S-4	ST	24	24						-				
										-				⊖ _{4.25}
	S-5	ST	24	24						-				
10-					END OF BORIN	IG AT 10.0	FT			509-				
-										-				
										_				
										-				
-										-				
15-										504 -				
										504				
-										-				
										-				
										-				
										-				
20-										499 -				
										_				
										-				
-										-				
-										-				
										40.4				
25-										494 –				
-										-				
										-				
_										-				
										-				
30-										489-				
										-				
	т.	HE STR			NES REPRESENT THE APPROXII	MATE BOUN		WEEN	SOII	TYPES IN	I-SITLI THE TR			
	VL (Firs				Dry								DE GIADUAL	
				-~/			RING STARTED:	Fe	010	2022	CAVE IN	UEPIH:		
	VL (Cor	-	-		Dry		RING MPLETED:	Fe	b 10	2022	HAMME	R TYPE:	Auto	
	VL (Sea			Vater)	N/A		JIPMENT:	LC)GGF	ED BY:				
V 🗵	VL (Sta	bilized)		N/A	Truc	k	Sti	rataE	Bore		METHOD: (CFA	
					GEC	DTECHNI	ICAL BOREI	HOLE	ELC)G				

CLIENT							BORING	NO.:					
							19:8613	TDACT	B-02				
PROJEC Stone R			nonte				DRILLER/CON StrataBore, LL		OR:				
SITE LO			ients				Stratabore, EL	C					
			o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CI	RCULATION SIDE	
NORTH					ASTING:	STATION:	SURFACE ELEVATION:			ELEVATION:	BOTTOM OF CASING		
705760	5.1			25	82663.0			!	518.00		<u> </u>		
(F-	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	(NI)				MATER LEVIELS	ELEVATION (FT)	-9	Plastic Limit Water Content Liquid Limit X∆		
DЕРТН (FT)	NU	LE T	DIS	RECOVERY (IN)	DESCRIPTION C	F MATERIAL		- H		BLOWS/6"	-	PENETRATION BLOWS/FT DESIGNATION & RECOVERY	
DEP	MPLI	AMF	MPLI	ECO				/ATF	EVA	BLC	RQD		
	SAI	0)	SAI	~				>	·			D PENETROMETER TON/SF	
					Asphalt [3"]				_		[FINES CONTEN	T] %	
_	S-1	ST	16	16	FILL, sand and gravel,	brown [5'	'I // //		-	-		⊖ _{3.50}	
-	51	51	10	10	(CH) FAT CLAY, brown				-	-		⊖ _{3.50}	
	S-2	ST	24	24	moist, very stiff to har				-	-		0.00	
_		-							-	-		0 _{3.75}	
5-	6.2	ст	24	24					513-	-		3.75	
-c	S-3	ST	24	24					513-	-			
-									-	-		O _{4.00}	
	S-4	ST	24	24					-	-			
									-	-		⊖ _{4.25}	
	S-5	ST	24	24				A	-	-			
10-					END OF BORIN	IG AT 10.0	FT		508-	_			
_									-	-			
_									-	-			
									-	-			
-									_	-			
45									502	_			
15-									503-	-			
-									-	-			
-									-	-			
-									-	-			
									-	-			
20-									498-	-			
									-	-			
									-	-			
-										_			
-										-			
-									100	-			
25-									493-	-			
									-	-			
									-	-			
_									-	-			
									-	-			
30-									488-	-			
									_	-			
	т.	IE CTD			NES REPRESENT THE APPROXI							GRADUAL	
	VL (Firs				Dry								
				cuj			RING STARTED:	Feb	10 2022	CAVE IN	DEPTH:		
	vL (Cor	-	-		Dry	BOR		Feb	10 2022	HAMME	R TYPE: Auto		
V V	VL (Sea	sonal	High V	Vater)	N/A		/IPLETED: JIPMENT:		GED BY:				
V 🗹	VL (Sta	bilized)		N/A					DRILLING	6 METHOD: CFA		
	WL (Stabilized) N/A Truck StrataBore DRILLING METHOD: CFA GEOTECHNICAL BOREHOLE LOG												

CLIENT City of \		×					PROJECT 19:8613	NO.:	BORING NO.: B-03			SHEET: 1 of 1		
PROJEC							DRILLER/	CONTRA						EUQ
Stone R	oad Im	proven	nents				StrataBo	re, LLC				_		
SITE LO WA Alle			o Benn	ett Roa	ad, Wylie, Texas 75098							LOS	S OF CIRCULATION	<u>>100</u> %
NORTH 705712					ASTING: 82653.8	STATION:		SURFACE ELEVATION: 516.00			LEVATION:	BO	TTOM OF CASING	
	BER	ш	(IN)	7					WATER LEVELS	ELEVATION (FT)		Plastic Li X—	imit Water Content	Liquid Limit ───△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DESCRIPTION OF MATERIAL					BLOWS/6"	STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY RQD REC CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %		& RECOVERY
-	6.4	CT	10	10	Asphalt [3"] FILL, sand and gravel,	brown [5	יין			-			0 _{2.75}	
	S-1	ST	16	16	FILL, LEAN/FAT CLAYS,	brown ar							0 _{2.75}	
	S-2	ST	24	24	brown, moist, very sti	Π						O _{3.25}		5
5	S-3	ST	24	24	(CH) FAT CLAY, brown	and dark	brown,			511			O _{3.00}	
	S-4	ST	24	24	moist, very stiff									O _{4.25}
 10-	S-5	ST	24	24	moist, hard					 506 —				
-										-				
-										-				
15-										501-				
-										-				
20-										496 -				
										-				
										-				
25-										491 -				
										-				
30-										486-				
														:
									I SOIL	TYPES. IN			AY BE GRADUA	L
	VL (Firs VL (Coi			ea)	Dry			ED: F	eb 10	2022	CAVE IN	DEPTH:		
	VL (Sea	_	-	Vater)	N/A	COI	RING MPLETED:			2022	HAMME	R TYPE:	Auto	
	VL (Sta				N/A	EQU Truc	JIPMENT: :k		OGG tratal	ED BY: Bore	DRILLING	6 METHOD:	CFA	
					GEC	DTECHN	ICAL BOF							

CLIENT							PROJECT NC	.:	BORING NO .:		NO.:	SHEET:	
							19:8613B-04DRILLER/CONTRACTOR:			1 of 1	-ECc		
PROJEC Stone R			nonte				StrataBore, L			К:			
SITE LO		-	ients				Stratabore, L						
			o Benn	ett Roa	ad, Wylie, Texas 75098							LOSS OF CIRCULATION	v XIOO X
NORTH	ING:			EA	STING:	STATION:	SURFACE ELEVATION:			LEVATION:	BOTTOM OF CASING		
705664	7.6			25	82638.7				507	7.00			
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL					ELEVATION (FT)	BLOW5/6"	Plastic Limit Water Conte X STANDARD PENETRATI ROCK QUALITY DESIGNATIC RQD RQD CALIBRATED PENETROI [FINES CONTENT] %	ON BLOWS/FT
-				Asphalt [2"]					-				
	S-1	ST	16	16	FILL, sand and gravel, I	brown and	I			-		O _{2.75}	
-	S-2	ST	24	24	vellowish brown [6"] FILL, FAT/LEAN CLAYS, brown, moist, very stif							O _{3.25}	
5-	S-3	ST	24	24	brown, moist, very sti	1				502-		O ₃	.25
-	S-4	ST	24	24	(CH) FAT CLAY, dark bro	(CH) FAT CLAY, dark brown, moist, hard							0 _{4.25}
-	S-5	ST	24	24	(CH) FAT CLAY, light bro	own, mois	t, very						○ _{3.75}
10-					END OF BORIN	O AT 40 0				497 -			
-					END OF BORIN	G AT 10.01				-			
-										-			
_										-			
-										-			
-										400			
15-										492 -			
-										-			
										-			
20-										487 -			
										-			
_										-			
-										-			
_										-			
25-										482			
-										-			
-										-			
-										-			
-										-			
30-										477 -			
										+// -			
					NES REPRESENT THE APPROXIN	MATE BOUND	ARY LINES BET	NEEN	SOIL	TYPES. IN	I-SITU THE TR	ANSITION MAY BE GRADU	JAL
	VL (Firs			ed)	Dry	BORI	NG STARTED:	Fe	b 10	2022	CAVE IN	DEPTH:	
V	VL (Cor	npleti	on)		Dry	BORI		Fe	b 10	2022	HAMMEI	R TYPE: Auto	
V V	VL (Sea	sonal	High V	Vater)	N/A		PLETED:						
V V	VL (Sta	bilized)		N/A		PMENT:			ED BY: Bore	DRILLING	6 METHOD: CFA	
	Image: WL (Stabilized) N/A Truck StrataBore GEOTECHNICAL BOREHOLE LOG												

CLIENT							BORING NO.: SHEET:					
City of \							19:8613		B-05		1 of 1	ECo
PROJEC							DRILLER/CONT		OR:			
Stone R		-	nents				StrataBore, LLC					
1			o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CIRCULATION	
NORTH						STATION:	SURFACE ELEVATION:			LEVATION:		
705616	8.1			25	82642.0				10.00		BOTTOM OF CASING	
	SAMPLE NUMBER	д	(NI	Î					(L		Plastic Limit V X	/ater Content Liquid Limit ∆
DЕРТН (FT)	MUN	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDAR	D PENETRATION BLOWS/FT
PTH	LE D	APLE	Е	DVE	DESCRIPTION O	= MATERIAL		ER I	ATIC	NO	ROCK QUALIT	Y DESIGNATION & RECOVERY
DE	AMP	SAN	AMP	REO				MAI	ELEV	BI	REC	
	Ś		Ś								CALIBRAT [FINES CONTE	ED PENETROMETER TON/SF
-					Asphalt [3"]							
_	S-1	ST	15	15	FILL, sand and gravel, o	ark brow	n [6"]					⊖ _{3.50}
-		0.	10		(CH) FAT CLAY, dark bro							⊖ _{3.50}
	S-2	ST	24	24	stiff							
	-	0.							-			\sim
-									_			⊖ _{3.50}
5-	S-3	ST	24	24					505			
-					(CH) FAT CLAY, brown a	nd light h			- -			O _{4.50}
_	S-4	ST	24	24	moist, hard	inu iigint t						
												O _{4.50}
-	6.5	ст	24	24					-			⁰ 4.50
-	S-5	ST	24	24								
10-					END OF BORIN	G AT 10.0	FT		500			
-									-			
									-			
-												
-									-			
_												
15-									495-			
-												
-									-			
-									-			
20-									490-			
									-			
-												
-												
25 –									485-			
-												
-												
-									-			
-												
30-									480-			
	TH VL (Firs				NES REPRESENT THE APPROXIN							E GRADUAL
				cuj	Dry		ING STARTED:	Feb 1	0 2022	CAVE IN	DEPTH:	
	VL (Cor	-	-		Dry	BOR		Feb 1	0 2022	HAMME	R TYPE: Auto	D
V V	VL (Sea	sonal	High V	Vater)	N/A		IPLETED: IPMENT:	1060	GED BY:			
V 🗵	VL (Sta	bilized)		N/A	Truck		Strata		DRILLING	6 METHOD: CFA	
					GEO		CAL BOREH					

CLIENT		~					PROJECT 19:8613	NO.:		BORING I B-06	NO.:	SHEET: 1 of 1		
City of N							DRILLER/	CONTRA				1 01 1		ECQ
Stone R			nents				StrataBo							
SITE LO								-, -						
			o Benn	ett Roa	ad, Wylie, Texas 75098							LOS	S OF CIRCULATION	<u>>100/</u> >
NORTH 705567					ASTING: 82631.5	STATION:				IRFACE E 6.00	LEVATION:	BO	TTOM OF CASING	
	BER	ш	(ZI)	Î					S	(L		Plastic Li X—	mit Water Conten	t Liquid Limit ────△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	PF MATERIA	L		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK (ANDARD PENETRATIC QUALITY DESIGNATION QD EC LIBRATED PENETROM CONTENT] %	I & RECOVERY
-	6.4		47	47	Asphalt [2"] FILL, sand and gravel,	brown [E	ייו					[11165		⊖ _{4.50}
	S-1	ST	17	17	FILL, LEAN/FAT CLAYS,	light bro	wn and			-			O _{3.00}	
	S-2	ST	24	24	dark brown, moist, ve	ry stiff to	hard			-			O _{3.00}	
5-	S-3	ST	24	24						491-) _{3.75}
	S-4	ST	24	24									0 _{2.75}	
- - 10-	S-5	ST	24	24	(CH) FAT CLAY, light bro moist, very stiff					486-			2.70	
-					END OF BORIN	IG AT 10.0) FT			-				
15-										481 – - -				
-										-				
20-										476 - -				
										-				
25-										471 – - - -				
-										-				
30-										466				
v	TI VL (Firs				NES REPRESENT THE APPROXII Dry								AY BE GRADU	AL
	VL (Coi			,	Dry		RING START			2022	CAVE IN			
V V	VL (Sea	asonal	High V	Vater)	N/A	со	MPLETED: JIPMENT:			2022 ED BY:	HAMME	K TYPE:	Auto	
⊻ v	VL (Sta	bilized)		N/A	True		St	rata	Bore	DRILLING	6 METHOD:	CFA	

CLIENT City of V		×				PROJECT NO.: 19:8613		BORING I B-07	NO.:	SHEET: 1 of 1
PROJEC						DRILLER/CONTR				EUS
Stone R		-	nents			StrataBore, LLC				
SITE LO			o Benn	ett Roa	ad, Wylie, Texas 75098					LOSS OF CIRCULATION
NORTH 705514					ASTING: STATION: 82613.0			URFACE E 87.00	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S₽		SP							CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %
-	S-1	ST	14	14	Asphalt [3"] FILL, sand and gravel, brown, br yellow [7"]	ownish				○ _{3.00} ○ _{3.00}
-	S-2	ST	24	24	(CL) LEAN CLAY, light brownish y moist, very stiff	rellow,		-		
5-	S-3	ST	24	24	(CL) LEAN CLAY, brown and light moist, very stiff to hard	brown,		482		O _{3.50}
-	S-4	ST	24	24						O _{4.25}
	S-5	ST	24	24						O _{4.50}
10-					END OF BORING AT 10.0	FT	4	477 -		
-										
 								472		
-								-		
-								-		
20-								467 -		
-								-		
25-								462-		
								-		
30-								457 -		
	Tł VL (Firs				NES REPRESENT THE APPROXIMATE BOUN					
	VL (Cor			~~/	Dry BOR	ING		0 2022	CAVE IN	
	VL (Sea	_	-	Vater)	N/A CON	IPLETED:		0 2022	HAMME	R TYPE: Auto
V V	VL (Sta	bilized)		N/A Truck		Strata		DRILLING	6 METHOD: CFA
					GEOTECHNI	CAL BOREHO	LEL	.OG		

CLIENT City of \		x					PROJEC 19:861	CT NO.: 3		BORING I B-08	NO.:	SHEET: 1 of 1		
PROJEC								R/CONTRA				1011		EUQ
Stone R		-	nents				Strata	ore, LLC				1		~
SITE LO WA Alle			o Benn	ett Roa	ad, Wylie, Texas 75098							LOSS OF	CIRCULATION)IOD
NORTH 705464					STING: 82601.5	STATION:				JRFACE E 1.00	LEVATION:	BOTTON	1 OF CASING	
_	BER	ЭE	(IN)	ź					ILS	(L1		Plastic Limit V X	Water Content	Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	IF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK QUALI	RD PENETRATION TY DESIGNATION (TED PENETROMET ENT] %	& RECOVERY
-	S-1	ST	17	17	Asphalt [2"] FILL, sand and gravel,	brown [5'	']) 2.25	
	S-2	ST	24	24	FILL, FAT/LEAN CLAYS, light brown, moist, ve		vn and			-			⊖ _{3.00}	
	<u> </u>		24	24	(CH) FAT CLAY, brown	and light I	prown,			466			⊖ _{3.00}	
5-	S-3	ST	24	24	moist, very stiff					400 -			⊖ _{3.00}	
	S-4	ST	24	24						-			O _{3.00}	
- - 10-	S-5	ST	24	24						461			0.00	
- 10					END OF BORIN	IG AT 10.0	FT			401				
15-										456				
										-				
										-				
20-										451-				
25-										446				
										-				
-														
 30-										441-				
														:
	Tł VL (Firs				NES REPRESENT THE APPROXI								BE GRADUAI	
	VL (Coi			-~/	Dry	BOF	ING STAR) 2022	CAVE IN			
	VL (Sea		-	Vater)	N/A	CON	/PLETED:) 2022	HAMME	R TYPE: Aut	:0	
V 🗹	VL (Sta	bilized)		N/A	Truc		s	trata		DRILLING	G METHOD: CFA	1	
					GEO	TECHNI	CAL BC	DREHOL	.E L	OG				

CLIENT							PROJECT NO.:		BORING	NO.:	SHEET:		
City of V PROJEC							19:8613 DRILLER/CONTR		B-09		1 of 1	Ľ	CQ
Stone R			nents				StrataBore, LLC	ACTO	ν π .				
SITE LO							0						
WA Alle	n Boul	evard t	o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS	OF CIRCULATION	<u>) 1007</u>)
NORTH						STATION:				LEVATION:	BOT	TOM OF CASING	
7054468	8.9			25	82459.5			46	59.00				
	BER	ш	(Z					S	Ê		Plastic Li X—	mit Water Content Liquic	l Limit
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STA	NDARD PENETRATION BLOW	S/FT
DЕРТН (FT)	LE N	1PLE	LE D	DVEF	DESCRIPTION OF	MATERIAL		ERL	ATIO	MO		UALITY DESIGNATION & RECO	VERY
DE	AMP	SAN	AMP	RECO				WAT	ELEV	BL	R R		
	S/		S/									IBRATED PENETROMETER TO CONTENT] %	N/SF
					Asphalt [4"]						[FINES		
-	S-1	ST	15	15	FILL, sand and gravel, b	rown [5"]						⊖ _{3.50}	
_					(CH) FAT CLAY, dark bro		ght 🛛	4	-			⊖ _{3.50}	
_	S-2	ST	24	24	brown, moist, very stiff	2		4	-				
_								4	-			O _{3.25}	
5-	S-3	ST	24	24				4	464 -			0.20	
-								4	-			⊖ _{3.50}	
-	S-4	ST	24	24				1	-			○ 3.50	
-	5-4	31	24	24				1	-			0	
-		_						1	-			⊖ _{3.50}	
-	S-5	ST	24	24									
10-					END OF BORING	G AT 10.0 F	=T		459-				
-									-				
-									-				
									_				
-													
15-									454 -				
-									-				
-									-				
-									-				
-									-				
-									-				
20-									449				
-									_				
_									_				
									-				
-									-				
25-									444 -				
- 20													
-									-				
									-				
-													
-									-				
30-									439-				
	LLLL TH	HE STRA	l Atifica	i Tion Li	L NES REPRESENT THE APPROXIM	1ATE BOUND	ARY LINES BETWEE	N SOIL	L TYPES. IN	I-SITU THE TR	i Ansition M	AY BE GRADUAL	
V V	VL (Firs				Dry				0 2022	CAVE IN			
	VL (Cor				Dry						////		
	VL (Sea	-	-	N/ator)		BORI COM	NG PLETED:	Feb 10	0 2022	HAMME	R TYPE:	Auto	
				valei)				LOGG	ED BY:		METHOD:	CEA	
<u>×</u> v	VL (Sta	bilized)		N/A	Truck		Strata				UN	
					GEO	TECHNIC	CAL BOREHO	LE L	ÜĞ				

CLIENT							PROJECT NO.	:		NG NO.:	SHEET:	
							19:8613		B-10		1 of 1	-ECe
PROJEC Stone R			nents				DRILLER/CON StrataBore, LL		IOR:			
SITE LO	CATIO	٧:					Stratabore, EE				LOSS OF CIRCULATIO	N XIDD
		evard t	o Benn		ad, Wylie, Texas 75098	CTATION						
NORTH 705449					ASTING: 81997.8	STATION:			490.00	CE ELEVATION:	BOTTOM OF CASING	s 🗾
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			VVAIEK LEVELS EI FVATION (FT)	BLOWS/6"	Plastic Limit Water Conto X	
DE	SAMP	SAN	SAMP	RECO					FI FV	BL	REC	
	0,		0,						_		CALIBRATED PENETRO	METER TON/SF
					Asphalt [3"] FILL, sand and gravel,	brown [6"	·····///			_		O _{4.50}
	S-1	ST	15	15	(CH) FAT CLAY, dark br					-		0 _{4.50}
	S-2	ST	24	24						-		
	S-3	ST	24	24	(CH) FAT CLAY, light br	own and b	rown,		48	5_		⊖ _{4.50}
-	3-3	31	24	24	moist, hard				40	-		⊖ _{4.50}
	S-4	ST	24	24						-		
	6.5	CT	24	24						-		⊖ _{4.50}
10-	S-5	ST	24	24		IC AT 40.0			48	0-		
-					END OF BORIN	NG AT 10.0				-		
										-		
										_		
									47			
15-									47	5-		
										-		
										-		
20-									47			
										-		
25-									46	5_		
									40			
										-		
										-		
30-									46	U		
	тı	ЧЕ СТР					ARV LINES DET	/EENI C				
∠ v	VL (Firs				NES REPRESENT THE APPROXI Dry		ING STARTED:		10 2022			JAL
	VL (Coi				Dry	BOR						
V V	VL (Sea	isonal	High V	Water)	N/A	CON	IPLETED:				R TYPE: Auto	
V 🗹	VL (Sta	bilized)		N/A	EQU Truck	IPMENT:		GGED B taBore		g method: CFA	
					GEC	DTECHNI	CAL BOREH					

CLIENT							PROJECT NO.:		BORING I	NO.:	SHEET:		
City of V PROJEC							19:8613 DRILLER/CONTE		B-11		1 of 1		ECQ
Stone R			aanta				StrataBore, LLC	ACTO	JK:				
SITE LO		-	ients				Stratabore, LLC						~
WA Alle	n Boul		o Benn		ad, Wylie, Texas 75098						LOSS OF CI	RCULATION	<u>>100</u> 2
NORTH 705450					ASTING: 81576.3	STATION:			URFACE E 09.00	LEVATION:	BOTTOM	DF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK QUALITY	PENETRATION DESIGNATION 8 DESIGNATION 8	BLOWS/FT & RECOVERY
	S-1	ST	16	16	Asphalt [4"] FILL, sand and gravel,	brown [4"	'I						O _{4.50}
-	S-2	ST	24	24	(CH) FAT CLAY, dark br								⊖ _{4.50}
-					(CH) FAT CLAY, light br	own, mois	st, hard	4	504 -				O _{4.50}
5-	S-3	ST	24	24					504 -				⊖ _{4.50}
	S-4	ST	24	24									O _{4.50}
10-	S-5	ST	24	24	END OF BORIN	NG AT 10.0	FT	4	- 499-				
-						10 AT 10.0	F1						
-									-				
15-									494 -				
									-				
									-				
20-									489				
-									-				
									-				
25-									484 –				
-													
-									-				
30-									479-				
	TH VL (Firs				NES REPRESENT THE APPROXI Dry		DARY LINES BETWEE		L TYPES. IN 0 2022	CAVE IN		GRADUAI	<u></u>
	VL (Cor			,	Dry	BOR				_			
V V	VL (Sea	isonal	High V	Vater)	N/A	CON	IPMENT:		0 2022 GED BY:	HAMME)	
V V	VL (Sta	bilized)		N/A	Truc	k	Strata	Bore	DRILLING	G METHOD: CFA		
					GEC	JIECHINI	CAL BOREHO	LE L	UG				

CLIENT							PROJECT NO	.:		ORING	NO.:	SHEET:	
City of N PROJEC							19:8613 DRILLER/COI			-12		1 of 1	-ECe
Stone R			nents				StrataBore, L		.106				
SITE LO	CATIO	N:					Stratabore, E					LOSS OF CIRCULA	
		evard t	o Benn		ad, Wylie, Texas 75098	CTATION			CLU				
NORTH 705450					ASTING: 81026.9	STATION:			501 487		LEVATION:	BOTTOM OF CAS	ing
			_			1						Plastic Limit Water Co	ontent Liquid Limit
F	MBEI	γPE	I. (IN	(IN)					ELS	(FT)	-	X•	Δ
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENET ROCK QUALITY DESIGN	
DEPT	4PLE	AMP	APLE	COV					ATEF	EVAT	BLO	RQD	
	SAN	Ś	SAN	RE					3			CALIBRATED PENE	TROMETER TON/SF
					Asphalt [3"]							[FINES CONTENT] %	
	C 1	ст	1.1	14	FILL, sand and gravel,	brown [7"	1		_	_			O _{4.50}
	S-1	ST	14	14	FILL, FAT/LEAN CLAYS,					-			O _{4.50}
	S-2	ST	24	24						-			
										-			O _{4.50}
5-	S-3	ST	24	24	(CH) FAT CLAY, light br	own and b	rown,			482-			- 4.50
-	55	51	24	24	moist, hard					-102			0
-	6.4	CT.	24	24						-			⊖ _{4.50}
-	S-4	ST	24	24						-			0
-							Ĩ			-			O _{4.50}
	S-5	ST	24	24				$ \rangle$					
10-					END OF BORIN	NG AT 10.0	FT			477 -			
										_			
-										_			
										_			
15-										472 -			
-										-			
										-			
-										-			
-										-			
20-										467 -			
- 20										- 104			
-										-			
-										-			
-										-			
										-			
25-										462 -			
										-			
										_			
-										_			
_										-			
30-										457 -			
	TI	HE STR4	L Atifica	I TION I I	NES REPRESENT THE APPROXI	MATE BOUNF	DARY LINES BFT	VEENIS	011 -	TYPES. IN	-SITU THF TR	L ANSITION MAY BF GRA	DUAL
∠ v	VL (Firs				Dry		NG STARTED:			2022	CAVE IN		
	VL (Coi			,	, Dry			reb	,	2022			
						BOR	NG IPLETED:	Feb	09	2022	HAMME	R TYPE: Auto	
				Water)			IPMENT:	LO	GGE	D BY:			
⊻ V	VL (Sta	bilized)		N/A	Truck	I.	Stra	ataB	ore	DRILLING	6 METHOD: CFA	
					GEO	DTECHNI	CAL BOREH	IOLE	LC)G			

CLIENT							PROJECT NO.:		BORING	NO.:	SHEET:	
							19:8613	DACT	B-13		1 of 1	ECe
PROJEC Stone R			nonte				DRILLER/CONT StrataBore, LLC		UR:			
SITE LO			ients				Stratabore, LLC					
			o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CIRC	
NORTH					ASTING:	STATION:				ELEVATION:	BOTTOM OF	
7054510	0.2			25	80515.1			4	86.00			
	ER		2	=				S	Ē		Plastic Limit Wat	er Content Liquid Limit
(FT)	JMB	SAMPLE TYPE	ST. (X (IV				NEL	N (F	/9"	STANDARD F	PENETRATION BLOWS/FT
DЕРТН (FT)	E NI	PLE	E DI	VER	DESCRIPTION C	OF MATERIAL		LE	ATIO	BLOWS/6"		ESIGNATION & RECOVERY
DEI	SAMPLE NUMBER	SAM	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	BL(RQD REC	
	SA		SA									PENETROMETER TON/SF
					Asphalt [3"]						[FINES CONTENT]	%
	S-1	ST	13	13	FILL, sand and gravel,	brown [8"	1 /77	7				⊖ _{4.25}
-		51	15	10	(CL) LEAN CLAY, light b		brown,	Ά	-			O _{3.75}
	S-2	ST	24	24	moist, very stiff to har	ď		Ά				
-					-			Ά	-			O _{3.75}
5-	S-3	ST	24	24				Ά	481-			5.75
		51	27	24				Ά				\bigcirc
-	C A	ст	24	24				Ά	-			O _{4.00}
	S-4	ST	24	24				Ά	-			
								Ά	-			⊖ _{4.25}
	S-5	ST	24	24				Ά	-			
10-					END OF BORIN	NG AT 10.0	FT	4	476			
-									-			
-									-			
									-			
									-			
15-									471-			
-												
-									-			
-									-			
									-			
-									_			
20-									466 -			
-									_			
									-			
									-			
25-									461-			
- 20									-			
									-			
									-			
									_			
30-									456			
\mid								-				
	LLLL Tł	HE STRA	l Atifica	i Tion Li	NES REPRESENT THE APPROXI	MATE BOUN	 DARY LINES BETWE	EN SO	IL TYPES. IN	N-SITU THE TR	I ANSITION MAY BE (GRADUAL
V W	VL (Firs				Dry		ING STARTED:		9 2022	CAVE IN		
	VL (Cor				Dry				,, , , , , , , , , , , , , , , , , , , ,			
		_	-			BOR	ING 1PLETED:	Feb 0	9 2022	HAMME	R TYPE: Auto	
	VL (Sea			vater)			IPMENT:	LOG	GED BY:			
V 12	VL (Sta	bilized)		N/A	Truc	k	Strat	aBore		6 METHOD: CFA	
					GEO	DTECHNI	CAL BOREHO	DLE I	LOG			

CLIENT							PROJECT NO.:		BORING I	NO.:	SHEET:	
							19:8613		3-14		1 of 1	-tCe
PROJEC Stone R			nonte				DRILLER/CONTR. StrataBore, LLC	ACIO	K:			
SITE LO		-	ients									
			o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CIRC	
NORTH	IING:			EA	ASTING: STA	ATION:		SL	JRFACE E	LEVATION:	BOTTOM OF	
705451	9.9		r	25	79996.2			50	4.00		borrowror	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF M	IATERIAL		WATER LEVELS	ELEVATION (FT)	BLOW5/6"	X	r Content Liquid Limit ●
-					Asphalt [4"]				-			
-	S-1	ST	14	14	FILL, sand and gravel, bro							O _{3.00}
					(CH) FAT CLAY, dark brown moist, very stiff	n and bro	wn,					⊖ _{3.50}
-	S-2	ST	24	24								
		6T	24	24								⊖ _{3.75}
5-	S-3	ST	24	24					499-			
-					(CH) FAT CLAY, light brown	n and bro	wn,					2.75
-	S-4	ST	24	24	moist, very stiff			1				
		_							-			O _{3.00}
	S-5	ST	24	24								
10-					END OF BORING A	AT 10.0 FT			494 –			
-												
									-			
-									-			
									_			
15-									489-			
-												
									-			
-									-			
20-									484 -			
- 20									04			
-									-			
-												
-									-			
25-									479-			
-												
_									-			
									-			
30 -									474			
								-				
	т.	IE CTD			NES REPRESENT THE APPROXIMAT		AV LINES RETINE		TYPES IN	_SITI I THE 78		
∠ v	VL (Firs				Dry							
	VL (Cor			-~/				-eo 09	2022	CAVE IN	UEPIH:	
		-	-		Dry	BORING COMPL		eb 09	2022	HAMMEI	R TYPE: Auto	
	VL (Sea			vater)				OGG	ED BY:			
⊻ V	VL (Sta	bilized)		N/A	Truck	9	Strata	Bore	DRILLING	6 METHOD: CFA	
					GEOTE	CHNICA	AL BOREHO	LEL	OG			

CLIENT City of V		x				PROJECT N 19:8613	0.:		BORING I 3-15	NO.:	SHEET: 1 of 1
PROJEC						DRILLER/CO	ONTRA				
Stone R		-	nents			StrataBore,	LLC				
SITE LO			o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CIRCULATION
NORTH 705453					ASTING: STATION: 79510.3				JRFACE E 1.00	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
-			10	10	Asphalt [3"] FILL, sand and gravel, brown [8"]	/					⊖ _{3.50}
-	S-1	ST	13	13	FILL, LEAN/FAT CLAYS, brown, mo						0 _{2.75}
	S-2	ST	24	24	\ <u>stiff</u> (CH) FAT CLAY, dark brown, moist stiff	, very					⊖ _{2.50}
5	S-3	ST	24	24	(CH) FAT CLAY, light brown and d	ark			506 -		O _{3.75}
-	S-4 S-5	ST	24	24	brown, moist, very stiff to hard				-		O _{4.50}
10-	5-5	ST	24	24	END OF BORING AT 10.0 F	T			501-		
15									496		
20-									491		
 25									486 -		
									481-		
									-		
	Tł	HE STRA	L ATIFICA	I TION LI	 NES REPRESENT THE APPROXIMATE BOUND	ARY LINES BE	TWEEN	L I SOIL	TYPES. IN	I-SITU THE TR	ANSITION MAY BE GRADUAL
V V	VL (Firs				Davi	NG STARTED			2022	CAVE IN	
• •	VL (Cor	npleti	on)		Dry BORI		F	eb 09	2022	HAMMEI	R TYPE: Auto
	VL (Sea			Vater)	N/A	PLETED: PMENT:			ED BY:		
<u>▼</u> ∨	VL (Sta	bilized)		N/A Truck GEOTECHNIC		S	tratal	Bore	DRILLING	6 METHOD: CFA

CLIENT City of V		×				PROJECT NO.: 19:8613		BORING I B-16	NO.:	SHEET: 1 of 1
PROJEC						DRILLER/CONTRA				
Stone R	oad Im	proven	nents			StrataBore, LLC				
SITE LO			o Benn	ett Roa	ad, Wylie, Texas 75098					LOSS OF CIRCULATION
NORTH 7054534	ING:			EA	ASTING: STATION: 79024.9			JRFACE E 15.00	LEVATION:	BOTTOM OF CASING
	3ER	ш	(N	,			S	F		Plastic Limit Water Content Liquid Limit X∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY RQD REC CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %
-					Asphalt [4"]			-		O _{2.25}
-	S-1	ST	12	12	FILL, sand and gravel, brown [8" (CH) FAT CLAY, dark brown, mois			-		○2.25 ○ _{3.50}
-	S-2	ST	24	24	stiff					
5-	S-3	ST	24	24				510-		O _{2.75}
								-		O _{3.25}
-	S-4	ST	24	24						O _{4.25}
	S-5	ST	24	24	(CH) FAT CLAY, brown, moist, har	a				
10-					END OF BORING AT 10.0	FT		- 505 -		
-								-		
								-		
								-		
15-								500		
								-		
-										
-								-		
20-								495-		
-										
25-								490-		
20-								490		
-								-		
-										
								-		
30-								485-		
	т	HE STR			NES REPRESENT THE APPROXIMATE BOUND	ARY LINES RETWIEEN		TYPES IN		
V V	VL (Firs				Data			9 2022	CAVE IN	
	VL (Cor				Dry BORI	NG				
V V	VL (Sea	isonal	High V	Vater)	N/A COM	IPLETED:		9 2022	HAMME	R TYPE: Auto
V V	VL (Sta	bilized)		N/A EQU			ED BY: Bore	DRILLING	g method: CFA
						CAL BOREHOL				

CLIENT							PROJECT NO.:		BORING I	NO.:	SHEET:	
City of PROJEC							19:8613 DRILLER/CONTRA		3-17		1 of 1	- ECe
Stone R			nents				StrataBore, LLC	4010	η.			
SITE LO												
WA Alle	en Boul	evard t	o Benn	ett Roa	ad, Wylie, Texas 75098						LOSS OF CIRCULATIO	
NORTH 705454					ASTING: S 78566.0	STATION:			JRFACE E 8.00	LEVATION:	BOTTOM OF CASIN	G D
	ER		(N)	-				S	í.		Plastic Limit Water Con	tent Liquid Limit
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF	MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRA ROCK QUALITY DESIGNA' RQD RQD REC CALIBRATED PENETR	FION & RECOVERY
	-				Asphalt [4"]				-		[FINES CONTENT] %	
-	S-1	ST	13	13	FILL, sand and gravel, bi (CH) FAT CLAY, dark brow				-		02.75	⊖ _{4.25}
-	S-2	ST	24	24	moist, very stiff to hard				-		2.75	
5-	S-3	ST	24	24					 513		O _{2.75}	5
-	3-5	31	24	24	-				-		O _{2.50}	
-	S-4	ST	24	24					-			
-	S-5	ST	24	24	-				-		O _{2.50}	
10-	-				END OF BORING	G AT 10.0 F	т		508-			
	-								-			
-	-								-			
-	-											
15-	-								503-			
-	-								-			
-	-								-			
20-	-								498-			
	-								-			
-	-								-			
-	-											
25-	-								493 -			
-	-								-			
-									-			
30-									488-			
												: :
\ \\	TH VL (Firs				NES REPRESENT THE APPROXIM				TYPES. IN	CAVE IN		UAL
	vL (Cor				Dry	BORIN	IG					
	VL (Sea			Water)	N/A		PLETED:		ED BY:	HAMME		
1 🖭 V					N/A	1-201					5 METHOD: CFA	

CLIENT							PROJECT	NO.:		BORING	NO.:	SHEET:	
							19:8613			3-18		1 of 1	-ECc
PROJEC Stone R			nonte				DRILLER/ StrataBo		4010	K:			
SITE LO		-	ients				Stratabo	e, LLC					
			o Benn	ett Roa	ad, Wylie, Texas 75098							LOSS OF CIRC	
NORTH	IING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF	
7054534	4.4			25	77937.4				50	6.00			
	R		î							_		Plastic Limit Wate	r Content Liquid Limit
ET)	MBI	-YPE	5T. (I	U.					VELS	l (FT	9,		ENETRATION BLOWS/FT
DЕРТН (FT)	E NU	LE 1	E DIS	VERY	DESCRIPTION C	F MATERIAL			R LE	10 I	BLOWS/6"		SIGNATION & RECOVERY
DEP	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	BLC	RQD	
	SAI	0)	SAI	~					>			CALIBRATED P	ENETROMETER TON/SF
					Asphalt [4"]					-		[FINES CONTENT]	<u>6</u> : : :
_	6.4	ст		1.4	FILL, sand and gravel,	dark brow	/n [6"]			-			⊖ _{3.50}
	S-1	ST	14	14	(CH) FAT CLAY, brown			-{///		-			O _{4.00}
-	S-2	ST	24	24	moist, very stiff to har	•	,			-			4.00
-										-			O _{3.50}
5-	6.2	ст	24	24						501-			3.50
5-	S-3	ST	24	24						501-			~
-					(CL) LEAN CLAY, light b	rown and				-			O _{4.25}
-	S-4	ST	24	24	brownish yellow, mois	st, very sti	ff to hard		1				
									1	-			⊖ _{3.75}
_	S-5	ST	24	24					1	-			
10-					END OF BORIN	IG AT 10 0	FT			496-			
-						10 AT 10.0	F I						
-										-			
-										-			
-										-			
										-			
15-										491-			
-										_			
_										_			
_										_			
-													
20-										486 -			
										-			
-										-			
-										-			
										-			
-													
25-										481 -			
_													
										-			
										_			
-										-			
20										470			
30-										476-			
	Tł	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXI	MATE BOUN	DARY LINES	BETWEEN	I SOIL	TYPES. IN	I-SITU THE TR	RANSITION MAY BE G	RADUAL
V V	VL (Firs	st Enco	ounter	ed)	Dry	BOF	ING START	ED: F	eb 09	2022	CAVE IN	DEPTH:	
V V	VL (Cor	npleti	on)		Dry	BOF	ING						
Image: Complete the second sec						F	eb 09	2022	HAMME	R TYPE: Auto			
				valet)			JIPMENT:			ED BY:		6 METHOD: CFA	
<u>×</u>	VL (Sta	pilized)		N/A	Truc			tratal			S WETHOD. CFA	
1					GEC	JIECHN	CAL BOI	ĸĿHOl	.E L(UG			

CLIENT							PROJECT NO	D.:		BORING I	NO.:	SHEET:	
							19:8613			8-19		1 of 1	-tCe
PROJEC							DRILLER/CC		CIO	K:			
Stone R			nents				StrataBore,						·····
			o Benn	nett Roa	ad, Wylie, Texas 75098							LOSS OF CIRCU	
NORTH					ASTING:	STATION:			SU	IRFACE E	LEVATION:		
705452	2.3			25	77377.1				49	0.00		BOTTOM OF (
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X	r Content Liquid Limit ●
EPTH	LE N	MPLE	LE C	OVE	DESCRIPTION C	F MATERIAL			LER	/ATI0	POW	ROCK QUALITY DES	SIGNATION & RECOVERY
ā	AMF	SAN	AMF	REC					WA	ELEV	B	REC	
	S		S									CALIBRATED PI [FINES CONTENT] 9	ENETROMETER TON/SF
-					Asphalt [4"]					-			
-	S-1	ST	16	16	FILL, sand and gravel,					-			O _{4.50}
					(CH) FAT CLAY, brown	and light l	prown,			-			O _{4.50}
_	S-2	ST	24	24	moist, hard					_			
_										-			O _{4.50}
5-	S-3	ST	24	24				[[]]		485-			
-		_								-			O _{4.50}
-	сл	ст	24	24						-			^{4.50}
-	S-4	ST	24	24			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[[]]		-			
-							, ,	[[]]		-			O _{4.50}
	S-5	ST	24	24			, ,	[[]]		-			
10-					END OF BORIN	IG AT 10.0	FT			480 –			
										_			
										-			
										-			
-										-			
-										475			
15-										475-			
-										-			
										_			
-										-			
										-			
20-										470-			
										-			
-										-			
-										-			
-										-			
-										-			
25-										465 -			
_										-			
										-			
-										-			
-										-			
-										400			
30-										460-			
													<u> </u>
	Tł	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXI	MATE BOUN	DARY LINES BET	WEEN	SOIL	TYPES. IN	I-SITU THE TR	RANSITION MAY BE G	RADUAL
	VL (Firs	st Enco	ounter	ed)	Dry	BOF	ING STARTED	Fe	eb 09	2022	CAVE IN	DEPTH:	
V V		npleti	on)		Dry								
						Fe	eb 09	2022	HAMME	R TYPE: Auto			
				water)			IPMENT:	L	DGGI	ED BY:			
V 🗹	VL (Sta	bilized)		N/A	Truc	k	St	rataE	Bore		6 METHOD: CFA	
					GEO	TECHNI	CAL BORE	HOL	E LC	DG			

CLIENT							PROJECT NO).:		BORING I	NO.:	SHEET:	
City of V							19:8613			3-20		1 of 1	-ECc
PROJEC							DRILLER/CO			K:			
Stone R			nents				StrataBore, I						~
			o Benn	ett Roa	ad, Wylie, Texas 75098							LOSS OF CIRCULA	
NORTH					ASTING:	STATION:			SU	IRFACE E	LEVATION:		
7054522	2.6			25	76774.3				478	8.00		BOTTOM OF CA	
	R		î							_		Plastic Limit Water C	ontent Liquid Limit
(LI	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)		STANDARD PENE	
I) HI	NN	LE T	DIS	/ERY	DESCRIPTION C	F MATERIAL			LE 2	VOL	BLOWS/6"	ROCK QUALITY DESIG	
DЕРТН (FT)	APLE	AMF	APLE	l Ó					ATE	EVA.	BLO	RQD	
	SAN	Ś	SAN	RE					3			CALIBRATED PENE	TROMETER TON/SE
												[FINES CONTENT] %	
					Asphalt [2"]	L	/			_			O _{4.50}
-	S-1	ST	12	12	FILL, sand and gravel,		//			-			0 _{4.50}
-					FILL, LEAN/FAT CLAYS, brown, moist, hard	light brow	vn anu			-			4.50
	S-2	ST	24	24	brown, moist, naru		1			-			
-					-		/			-			O _{4.50}
5-	S-3	ST	24	24			/			473-			
										-		O _{2.00}	
-	S-4	ST	24	24	(CH) FAT CLAY, dark br	own, mois	st, stiff			-		2.00	
	54	51	27	27						-			
-												O _{1.50}	
	S-5	ST	24	24									
10-					END OF BORIN	IG AT 10.0	FT			468 –			
										_			
-										-			
-										-			
-										-			
										-			
15-										463 -			
										-			
										-			
-										-			
										-			
-										-			
20-										458			
										-			
_										_			
-										-			
										-			
_]			
25-										453			
										_			
-										-			
										-			
-										-			
										440			
30-										448-			
													· · ·
	Tł	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXI	MATE BOUNI	DARY LINES BET	WEEN	SOIL	TYPES. IN	I-SITU THE TR	ANSITION MAY BE GRA	ADUAL
V V	VL (Firs	st Encc	ounter	ed)	Dry	BOR	ING STARTED:	Fe	b 09	2022	CAVE IN	DEPTH:	
V V	VL (Cor	npleti	on)		Dry	BOR							
	VL (Sea	-	-	Vater)			ING IPLETED:	Fe	b 09	2022	HAMME	R TYPE: Auto	
	VL (Sta				N/A		IPMENT:			ED BY:	DRILLING	6 METHOD: CFA	
	v L (Std	JIIIZEU	1						rataB				
1					GEC	JI ECHINI	LAL BUKE	TUL	= L(טע			

CLIENT							PROJECT N	10.:		BORING I	NO.:	SHEET:	
City of N PROJEC							19:8613 DRILLER/C			8-21		1 of 1	- ECe
Stone R			nents				StrataBore			N.			
SITE LO	CATION	N:						,				LOSS OF CIRCULATION	DN XIO
NORTH		evard t	o Benn		ad, Wylie, Texas 75098 ASTING:	STATION:			SU	IRFACE E	LEVATION:		
705452					76274.8					3.00		BOTTOM OF CASIN	IG
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Con X	
-					Asphalt [2"]		/			-			0
-	S-1	ST	14	14	FILL, sand and gravel,								⊖ _{4.50}
-	S-2	ST	24	24	FILL, LEAN/FAT CLAYS, brown, moist, hard	light brow	n and						O _{4.50}
	S-3	ST	24	24						 478-			⊖ _{4.50}
					(CH) FAT CLAY, dark br	own, moist	:, hard			-			O _{4.50}
-	S-4	ST	24	24						-			O _{4.50}
10-	S-5	ST	24	24						473-			
-					END OF BORIN	IG AT 10.0 F	T						
-										-			
										-			
-										-			
15-										468-			
										-			
-										-			
										-			
										-			
20-										463 -			
										-			
-										-			
-										-			
-										-			
25-										458 -			
										-00			
-										-			
-										-			
-										-			
-										450			
30-										453-			
					NES REPRESENT THE APPROXI								UAL
	VL (Firs			ea)	Dry		NG STARTED): F o	eb 09	2022	CAVE IN	DEPTH:	
▼ WL (Completion) Dry BORING							F	eb 09	2022	HAMME	R TYPE: Auto		
Y WL (Seasonal High Water) N/A COMPLETED: EQUIPMENT: EQUIPMENT:							L	OGG	ED BY:		6 METHOD: CFA		
	VL (Sta	bilized)		N/A GEO	Truck			trataE			SMETHOD. GA	

CLIENT City of V		v					PROJECT NC 19:8613	D.:		ORING N - 22	10.:	SHEET: 1 of 1		
PROJEC	-						DRILLER/CO	NTRAG				1011		EUQ
Stone R			nents				StrataBore, I							
SITE LO WA Alle			o Benn	ett Roa	ıd, Wylie, Texas 75098							LC	DSS OF CIRCULATION	<u>>100%</u>
NORTH 705453					STING: 75652.5	STATION:			1	RFACE E 1.00	LEVATION:	E	BOTTOM OF CASING	
	BER	ЪЕ	(IN)	î					ILS	(L1			Limit Water Content	Liquid Limit ───△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION K QUALITY DESIGNATION RQD REC CALIBRATED PENETROME ES CONTENT] %	& RECOVERY
-	S-1	ST	19	19	Asphalt [3"] FILL, sand and gravel, b		/			-			⊖ _{2.50}	
	S-2	ST	24	24	FILL, LEAN/FAT CLAYS, brown, moist, very stif	f				-			O _{3.00}	
	S-3	ST	24	24	(CH) FAT CLAY, dark bro stiff	own, moi	st, very			499-			○ _{2.50}	
					(CH) FAT CLAY, light bro	own and l	brown,			-			⊖ _{2.25}	
	S-4	ST	24	24	moist, very stiff		1			-			0 _{2.25}	
 10-	S-5	ST	24	24	END OF BORIN	G AT 10 0	FT			494 –				
										-				
-										-				
15-										489				
-										-				
20-										484				
										-				
 25										479-				
										-				
										-				
30-										474				
	TI VL (Firs				NES REPRESENT THE APPROXIN		IDARY LINES BET			TYPES. IN	-SITU THE TR		MAY BE GRADUA	L
	VL (Coi			,	Dry			rei	0.02	2022				
	VL (Sea			Vater)	N/A		RING MPLETED:	Fel	b 09	2022	HAMME	R TYPE:	Auto	
	-		-				JIPMENT:				DRILLING	6 METHOD): CFA	
	WL (Stabilized) N/A Truck GEOTECHNICAL BORE								Truck StrataBore DRILLING METHOD: CFA					

CLIENT							PROJECT N	10.:		BORING	NO.:	SHEET:	
City of N PROJEC							19:8613 DRILLER/C			3-23		1 of 1	ECe
Stone R			nents				StrataBore		ACTO	η.			
SITE LO							0110102010	,					
		evard t	o Benn		ad, Wylie, Texas 75098							LOSS OF CIRCULATION	
NORTH					ASTING:	STATION:					LEVATION:	BOTTOM OF CASING	
705454	9.5			25	75075.3				51	2.00			
	BER	ш	Ê	Î					S	F		Plastic Limit Water Conte X	nt Liquid Limit ────△
(FT)	UME	ТҮР	IST. (ر (II					evei	L) N	\$/6"	STANDARD PENETRAT	ON BLOWS/FT
DЕРТН (FT)	LE N	SAMPLE TYPE	LED	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK QUALITY DESIGNATIO	ON & RECOVERY
B	SAMPLE NUMBER	SAN	SAMPLE DIST. (IN)	REC					IAW	ELEV	BI		
	S		S									CALIBRATED PENETRON [FINES CONTENT] %	METER TON/SF
-					Asphalt [3"]		/			_			
-	S-1	ST	18	18	FILL, sand and gravel,					-		0 _{0.75}	
-					FILL, LEAN/FAT CLAYS, brown, moist, firm to		d light			-		0 _{1.25}	
-	S-2	ST	24	24		SUII							
										-		0 _{1.25}	
5-	S-3	ST	24	24						507 -			
					(CH) FAT CLAY, dark br	own. mois	t. stiff			-		O _{2.00}	
-	S-4	ST	24	24		- ,	-,			_			
-										-		O _{1.75}	
	S-5	ST	24	24						_			
10-					END OF BORIN	IG AT 10.0	FT			502-			
_							••			_			
										-			
										-			
15-										497 -			
-										-			
-										-			
-										-			
-										-			
-										-			
20-										492-			
-										-			
-													
-										-			
-										_			
25 -										487 –			
_													
										_			
										-			
										_			
30-										482-			
	VL (Firs				NES REPRESENT THE APPROXI								JAL
				euj	Dry	BOR	ING STARTEI): F	eb 09	2022	CAVE IN	DEPTH:	
	VL (Cor	-	-		Dry	BOR		F	eb 09	2022	HAMMEI	R TYPE: Auto	
▼ WL (Seasonal High Water) N/A COMPLETE					IPLETED: IPMENT:			ED BY:					
⊻ v	VL (Sta	bilized)		N/A	Truc			tratal		DRILLING	METHOD: CFA	
					GEO		CAL BOR						

APPENDIX C – Laboratory Testing

Laboratory Testing Summary Lime/pH Series Results

ECS Southwest, LLP Carrollton, Texas Laboratory Testing Summary

Project Name: Stone Road Improvements (Wylie, TX)

Project Engineer: CT

Project Number: 19:8613

Principal Engineer: MPB

Summary By: CT

Date: 3/2/2022

				Soil	Atte	rberg Limi	ts ³	Percent	Dry Unit		One-E	Dimensional	Swell ⁶	Soluble
mber Sample Numbe		Depth (feet)	MC ¹ (%)	Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Weight ⁵ (pcf)	Compressive Strength (tsf)	Final Moisture (%)	Surcharge (psf)	Swell (%)	Soluble Sulfate ⁷ (ppm)
	<u>^</u>	0.4	00.0	011	70	05	45	00.0						. 0. 000
S-2 S-4		2-4 6-8	29.8 26.9	СН	70	25	45	98.3						< 3,000
S-1		1-2	10.1											< 3,000
S-3	-3	4-6	25.7	CH	74	25	49							
S-1	.1	1-2	10.0											< 3,000
S-3	-3	4-6	23.4	CH	42	18	24	89.5						. 0,000
S-1	1	1-2	20.4											< 3,000
S-3		4-6	13.7	СН	54	21	33							< 3,000
	Ŭ	+ 0	10.1	011	04		00							
S-1		1-2	15.2											< 3,000
S-4	-4	6-8	22.5	CH	66	24	42							
S-1	.1	1-2	7.9											< 3,000
S-4		6-8	5.4	FILL	31	16	15							- 0,000
S-1 S-4		1-2 6-8	17.7 17.9	CL CL	45 49	19 20	26 29							< 3,000
5-4	-4	6-8	17.9	UL	49	20	29							
S-1	-1	1-2	11.7		-						-			< 3,000
S-3		4-6	30.2	CH	73	25	48							-
		1.0												
S-1 S-3		1-2 4-6	17.4 29.1	СН	69	24	45	95.0						< 3,000
5-3	-3	4-0	29.1	СП	09	24	40	90.0						
S-1		1-2	17.6											< 3,000
S-3	-3	4-6	16.3	CH	54	21	33				-			-
5-3	-0	4-0	10.3	СП	54		33							

Notes:

1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 422, 5. ASTM D 2937, 6. ASTM D4546, 7 TEX 145E, 8 ASTM D 2166

Definitions:

MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, NP: Non Plastic

Carrollton, Texas Laboratory Testing Summary

Project Name: Stone Road Improvements (Wylie, TX)

•

Date: 3/2/2022

Project Number: 19:8613

Project Engineer: CT

Principal Engineer: MPB

Summary By: CT

			4		Atte	erberg Limi	ts ³	Percent	Dry Unit	_	One-[Dimensional	Swell ⁶	
Boring Number	Sample Number	Depth (feet)	MC ¹ (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Weight ⁵ (pcf)	Compressive Strength (tsf)	Final Moisture (%)	Surcharge (psf)	Swell (%)	Soluble Sulfate ⁷ (ppm)
	0.4	4.0	40.5											. 0.000
B-11	S-1 S-4	1-2 6-8	19.5 16.6	СН	58	22	36							< 3,000
	0-4	0-0	10.0	011	50	22								
B-12	S-1	1-2	22.3											< 3,000
	S-4	6-8	20.0	CH	58	22	36							
B-13	S-1 S-4	1-2 6-8	17.1 18.1	CL	41	18	23	98.7						< 3,000
	5-4	0-0	10.1	UL	41	10	23	90.7						
B-14	S-1	1-2	40.6											< 3,000
	S-3	4-6	24.8	СН	64	23	41	96.2						
B-15	S-2	2-4	26.5											< 3,000
	S-4	6-8	23.1	CH	59	22	37							
B-16	S-1	1-2	26.1											< 3,000
D 10	S-3	4-6	25.6	СН	67	24	43	98.7						10,000
				-	-									
B-17	S-1	1-2	18.6											< 3,000
	S-4	6-8	18.2	CH	68	24	44	85.7						
B-18	S-1	1-2	19.1											< 3,000
D-10	S-3	4-6	20.7											< 3,000
	S-5	8-10	22.1	CL	47	19	28							
				-										
B-19	S-1	1-2	15.0						-					< 3,000
	S-4	6-8	19.5	CH	52	21	31							
B-20	S-1	1-2	18.9											< 3,000
D-20	S-3	4-6	8.6	FILL	27	14	13	42.6						< 3,000
	0.0	- 0	0.0				10	72.0						

Notes:

1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 422, 5. ASTM D 2937, 6. ASTM D4546, 7 TEX 145E

Definitions:

MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, NP: Non Plastic

Carrollton, Texas Laboratory Testing Summary

Date: 3/2/2022

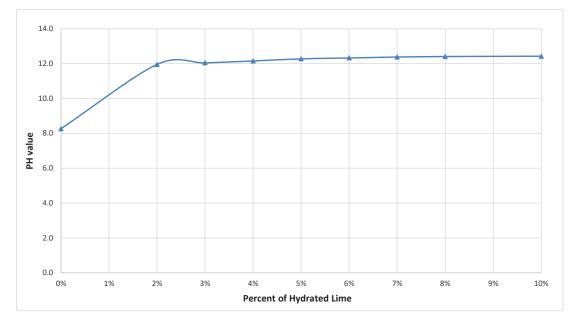
Project Number: 19:8613

Project Name: Stone Road Improvements (Wylie, TX)

Project Engine	er: CT				Principa			3					ary By: CT
Boring Number	Sample Number	Depth (feet)	MC ¹ (%)	Soil Type ²	Atte	PL	PI	Percent Passing No. 200 Sieve ⁴	Dry Unit Weight ⁵ (pcf)	Compressive Strength (tsf)	One-E Final Moisture (%)	Dimensional Surcharge (psf)	Soluble Sulfate ⁷ (ppm)
B-21	S-1 S-3	1-2 4-6	14.0 11.6	FILL	54	21	33	79.9					 < 3,000
B-22	S-1 S-3	1-2 4-6	19.9 23.2	СН	62	23	39						 < 3,000
B-23	S-1 S-3	1-2 4-6	19.7 28.6	FILL	58	22	36	55.1					3066

Notes:

1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 422, 5. ASTM D 2937, 6. ASTM D4546, 7 TEX 145E MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, NP: Non Plastic Definitions:



ECS Southwest, LLP Dallas, TX

Project No: 19:8613 Project : Stone Road Improvements (Wylie, TX) Source : B - 1 at 1' - 2' Sample Information: Fat Clay, dark brown (CH) Date : 02/17/22 Tested By : KM

Lime pH Series Test

% of Hydrated Lime	Corrected pH	Remarks
0%	8.3	
2%	12.0	
3%	12.0	
4%	12.2	
5%	12.3	
6%	12.3	
7%	12.4	
8%	12.4	
10%	12.4	

APPENDIX D – Winpas Pavement Design Outputs

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Rigid Design Inputs

E

Agency: City of Wylie Company: ECS Contractor: Project Description: Stone Road Improvements Location: From WA Allen Blvd. to Bennett Road

Rigid Pavement Design/Evaluation

PCC Thickness	7.89	inches	Load Transfer, J	3.00
Design ESALs	2,411,295		Mod. Subgrade Reaction, k	200 psi/in
Reliability	90.00	percent	Drainage Coefficient, Cd	1.00
Overall Deviation	0.39		Initial Serviceability	4.50
Modulus of Rupture	620	psi	Terminal Serviceability	2.50
Modulus of Elasticity	4,000,000	psi	-	

Resilient Modulus of the Subgrade	0.0 psi
Resilient Modulus of the Subbase	0.0 psi
Subbase Thickness	0.00 inches
Depth to Rigid Foundation	0.00 feet
Loss of Support Value (0,1,2,3)	0.0
Modulus of Subgrade Reaction	200.00 psi/in

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Rigid Design Inputs

E

Agency: City of Wylie Company: ECS Contractor: Project Description: Stone Road Improvements Location: From WA Allen Blvd. to Bennett Road

Rigid Pavement Design/Evaluation

PCC Thickness	7.78	inches	Load Transfer, J	3.00
Design ESALs	2,411,295		Mod. Subgrade Reaction, k	240 psi/in
Reliability	90.00	percent	Drainage Coefficient, Cd	1.00
Overall Deviation	0.39		Initial Serviceability	4.50
Modulus of Rupture	620	psi	Terminal Serviceability	2.50
Modulus of Elasticity	4,000,000	psi	-	

Resilient Modulus of the Subgrade Resilient Modulus of the Subbase Subbase Thickness Depth to Rigid Foundation Loss of Support Value (0,1,2,3)	0.0 0.00	psi psi inches feet	
Modulus of Subgrade Reaction	240.00	psi/in	

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

	4.62 1,295 90.00 percent 0.45	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
--	---	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	7.00	2.87
Bitum. Treated Agg. Base	0.12	1.00	8.00	0.96
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
		•	ΣSN	4.71

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

	4.62 1,295 90.00 percent 0.45	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
--	---	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	7.00	2.87
Bitum. Treated Agg. Base	0.14	1.00	8.00	1.12
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
		•	ΣSN	4.87

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

	4.62 1,295 90.00 percent 0.45	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
--	---	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	7.00	2.87
Bitum. Treated Agg. Base	0.15	1.00	8.00	1.20
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	•	•	ΣSN	4.95

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Rigid Design Inputs

Г

Agency: City of Wylie Company: ECS Contractor: Project Description: Stone Road Improvements Location: From WA Allen Blvd. to Bennett Road

Rigid Pavement Design/Evaluation

PCC Thickness	8.72 i	inches	Load Transfer, J	3.00
Design ESALs	4,352,719		Mod. Subgrade Reaction, k	200 psi/in
Reliability	90.00	percent	Drainage Coefficient, Cd	1.00
Overall Deviation	0.39		Initial Serviceability	4.50
Modulus of Rupture	620	psi	Terminal Serviceability	2.50
Modulus of Elasticity	4,000,000	psi	-	

Resilient Modulus of the Subgrade	0.0 psi
Resilient Modulus of the Subbase	0.0 psi
Subbase Thickness	0.00 inches
Depth to Rigid Foundation	0.00 feet
Loss of Support Value (0,1,2,3)	0.0
Modulus of Subgrade Reaction	200.00 psi/in

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Rigid Design Inputs

Agency: City of Wylie Company: ECS Contractor: Project Description: Stone Road Improvements Location: From WA Allen Blvd. to Bennett Road

Rigid Pavement Design/Evaluation

PCC Thickness	8.62	inches	Load Transfer, J	3.00
Design ESALs	4,352,719		Mod. Subgrade Reaction, k	240 psi/in
Reliability	90.00	percent	Drainage Coefficient, Cd	1.00
Overall Deviation	0.39		Initial Serviceability	4.50
Modulus of Rupture	620	psi	Terminal Serviceability	2.50
Modulus of Elasticity	4,000,000	psi	-	

Resilient Modulus of the Subgrade	0.0 psi
Resilient Modulus of the Subbase	0.0 psi
Subbase Thickness	0.00 inches
Depth to Rigid Foundation	0.00 feet
Loss of Support Value (0,1,2,3)	0.0
Modulus of Subgrade Reaction	240.00 psi/in

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

Structural Number5.0Design ESALs4,352,71Reliability90.0Overall Deviation0.4	9 0 percent	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
---	----------------	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	8.00	3.28
Bitum. Treated Agg. Base	0.12	1.00	8.00	0.96
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
		•	ΣSN	5.12

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

Structural Number5.0Design ESALs4,352,77Reliability90.0Overall Deviation0.4	9 0 percent	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
---	-----------------------	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	8.00	3.28
Bitum. Treated Agg. Base	0.14	1.00	8.00	1.12
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	•	•	ΣSN	5.28

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Agency: City of Wylie Company: ECS Contractor: roject Description: Stone Road Improvements Location: From WA Allen to Bennett Road

Flexible Pavement Design/Evaluation

Structural Number5.0Design ESALs4,352,71Reliability90.0Overall Deviation0.4	9 0 percent	Soil Resilient Modulus Initial Serviceability Terminal Serviceability	5,000.00 psi 4.20 2.50
---	----------------	---	-------------------------------------

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.44	1.00	2.00	0.88
Asphalt Treated Agg. Base	0.41	1.00	8.00	3.28
Bitum. Treated Agg. Base	0.15	1.00	8.00	1.20
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
			ΣSN	5.36