State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 1027 W. St. Paul Avenue Milwaukee, WI 53233

December 3, 2024

Heather Boehm, Clerk Whitewater Waterworks 308 N Frement St Whitewater, WI, 53190 Tony Evers, Governor Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

PWSID#: 26500562 Region: Southeast County: Walworth

Subject: WI-DNR Sanitary Survey Report and Notice of Noncompliance

Dear Ms. Boehm:

The purpose of a Sanitary Survey is to evaluate the system's source, facilities, equipment, operation, maintenance, and management as they relate to providing safe drinking water. The sanitary survey is also an opportunity to update the department's records, provide technical assistance, and identify potential risks that may adversely impact drinking water quality. This Sanitary Survey Report also serves as a Notice of Noncompliance.

On November 14, 2024, Christopher Durgin as well as Serene Tomaszewski conducted a sanitary survey of your water system, Whitewater Waterworks. During the sanitary survey Water Utility Superintendent, Jim Bergner and Operator in Charge, Josh Hyndman, were also present. At the completion of the survey, Mr. Hyndman and Mr. Bergner were briefed on the preliminary findings. This report outlines the final findings, discusses problems that need to be addressed, and timelines for corrective action where appropriate.

Required action

A response to this report and a plan for corrective action must be received by the department by January 3, 2025. The response shall include a notification that all deficiencies have been corrected, that you agree to correct the deficiencies identified in this letter by the due dates, or with proposed alternative dates for correcting these deficiencies. A corrective action plan and schedule is included below for your consideration. Depending on the type of corrective action you employ, you may need to obtain prior approval and submit additional plans to the department.

Significant Deficiencies

During the course of the sanitary survey, no significant deficiencies were identified. Significant deficiencies indicate noncompliance with one or more Wisconsin Administrative Codes and/or represent an immediate health risk to consumers. As such, the deficiencies listed below should be corrected as soon as possible. All codes cited are from s. NR, Wis. Adm. Code.

Deficiencies

During the course of the sanitary survey, **one (1)** deficiency was identified. Deficiencies are problems in drinking water systems that have the potential to cause serious health risks or represent long-term health risks to consumers. These deficiencies indicate noncompliance with one or more Wisconsin Administrative Codes. Corrective action should be completed for these deficiencies as soon as practical. A more detailed explanation is provided later in the report. All codes cited are from s. NR, Wis. Adm. Code.

Deficiency	Brief Description of Deficiency Required Corrective Action	Code Violation(s)	Compliance Due Date
1.	Confirm or install 24 mesh screen on the reservoir's vents	811.64(8)(d)	1/3/2025

Recommendations

During the sanitary survey, **ten (10)** recommendations were identified. Recommendations are problems in the water system that hinder your public water system from consistently providing safe drinking water to consumers.

Reco	mmendations
1	Consider adding orthophosphate for corrosion control
2	Clean glass for viewing chemical room
3	Investigate the potential of eliminating or replacing the Fremont reservoir
4	Check all anti-siphon devices to ensure functionality
5	Continue to monitor screens covering chemical vents, air vents and overflows
6	Conduct emergency "table-top" exercises to practice emergency situations
7	Replace undersized mains (4 inch) with more adequately sized mains to allow for greater fire flow
8	Confirm that your system is taking adequate measures to protect against cybersecurity threats

Non-Conforming Features

During the course of the sanitary survey, no new Non-conforming features were discovered. "Non-conforming features" (NCF) are areas that met code requirements at the time of your public water system's construction but would not be allowed in the current code. Though you are not required to correct these non-conforming features at this time, they will need to be corrected when a public health risk exists (water-borne illness, water quality complaints, positive bacteria sampling, cross connections and potential for contamination can all be considered when determining public health risk) or it falls within a reviewable project in the future (new water main construction or pipe relay in the area reviewed under chs. NR 811 or DSPS 382, Wis. Adm. Code) per s. NR 811.01, Wis. Adm. Code. This list may not be inclusive of all existing non-conforming features of your water system. When conducting significant upgrades on your facility or pieces of equipment, it is recommended that you contact your DNR representative to aid you in identifying such features. All codes cited are from s. NR, Wis. Adm. Code.

Discussion and Schedule for Corrective actions

The discussion section of the paper provides a more in-depth explanation of the deficiency or recommendation, the risk it poses to your system, and how completing the corrective action benefits you and your customers. If pictures were taken during the survey they will be located in either the discussion or at the end of this report in the appendix.

Deficiencies

- S. NR 811.64(8)(d), Wis. Adm. Code requires "Vents installed on ground level structures shall terminate in a U-bend or mushroom cap constructed with the opening 24 to 36 inches above the roof or sod and covered with 24-mesh corrosion resistant screen installed within the pipe or cap at a location least susceptible to vandalism."
 - By 1/3/2025 please fix the vents on the reservoir so that there are no gaps or separations. Note: During the time of the survey, it was believed that there may be other screens within the vents. Confirmation of this would be enough to correct this deficiency.

Figure 1: inadequate screening for reservoir vent

Recommendations:

- 1. Currently, Whitewater Waterworks is one of the only water systems in southeast Wisconsin with a population over 10,000 that does not provide any kind of phosphate or silicate product for corrosion inhibition. While Whitewater does not appear to have a corrosion control issue at this time, the potential for one in the future is of concern to the department. As such, it is recommended by the department that the Whitewater Waterworks begin looking into the feasibility and possibility of adding an orthophosphate, blended phosphate, or silicate product. Such a change will require plan review approval.
- 2. During the time of the survey, it was noticed that the windows for the chemical rooms were fogged to the point of being almost completely opaque. Cleaning or replacement of these windows would allow the viewing of the chemical room in an emergency situation and make it easier for operators to notice if there was an issue within the chemical room.

- 3. Repair or remove the Fremont Reservoir. The Fremont reservoir is starting to show significant signs of aging. If this reservoir is still in time by the next survey is conducted, a more extensive evaluation of the work that would need to be done to maintain its safe operational capacity may be needed.
- 4. Over time, anti-siphon devices on peristaltic chemical pumps can corrode, scale, clog, or embrittle. If negative pressure forms and the device were to fail, there is the potential for a large quantity of chemical to be pulled into the system creating an extremely dangerous, and preventable, situation for your customers.
- 5. Vermin entering the water system are one of the most common reasons for unsafe bacteria samples. Screens are the last line of defense for preventing them from entering your water supply. As such, the department recommends that you continue to ensure that all screens are checked regularly for recent or potential failures.
- 6. With the exception of an actual emergency, the only way to know if everyone understands the emergency procedures that have been developed is to conduct exercises of who does what in an emergency situation. More information can be found at (<u>https://www.epa.gov/waterresiliencetraining</u>) or by contacting your DNR representative. By completing such exercises, you can approach the future with more confidence that you and your peers can handle whatever man or nature sends your way.
- 7. Several areas of the Whitewater distribution system contain undersized 4 inch mains. The department recommends replacing these with larger sizes when appropriate. Larger sized mains can be beneficial to fire flows in emergency situations.
- 8. Cyber-attacks have been striking critical infrastructure across the United States with increased frequency, including attacks to public water systems. The department recommends the City/Village/District evaluate the existing cybersecurity practices and make improvements to reduce vulnerability to cyber-attacks.
 - Consider using the following resources to determine if improvements can be made to the City/Village/District's existing system. A copy of the EPA assessment tool was provided to the operator and discussed in detail during the inspection. The <u>EPA Water Cybersecurity Assessment Tool (WCAT)</u> and Risk Mitigation Plan can be used to assess your existing cybersecurity practices and provides a risk mitigation plan.
 - The U.S. EPA offers <u>cybersecurity technical assistance for water utilities</u> to help water systems improve their cybersecurity practices.
 - Additional information and resources on water system cybersecurity can be found at the <u>U.S. EPA</u> <u>Cybersecurity Webpage</u>.

Water Quality Monitoring and Reporting

Your system has a excellent general record of compliance with monitoring and reporting requirements. We appreciate your continued efforts in complying with the Safe Drinking Water Act requirements.

All monitoring location are required to have a unique Site ID, address, and sampled contaminates assigned to them. If a sampling site needs to be changed, this change must be approved before the site can be officially used for sampling.

Required Reports, Records, and Utility Programs

- Annual Monitoring Schedule: The Utility has excellent record of reporting according to the schedule. (0 M/R violations in the last 10 years)
- Monthly pumpage reports (EMOR): The Utility has excellent record of submitting monthly reports. (0 missed in the last 10 years)
- Wellhead Protection: The Utility has implemented this program in accordance with NR 811.12(6).
- Well Pump Maintenance: The Utility has implemented this program in accordance with NR 810.13(1).
- Valve/hydrant exercising/maintenance/flushing: The Utility has implemented this program in accordance with NR 810.13(2).
- Meter testing/Calibration: The Utility has tested and/or calibrating master meters on wellhouses, high lift pumping stations, booster pumping stations, and metering stations in accordance with NR 810.13(2)(e).
- Emergency Power Exercising: The Utility has continued to exercise emergency power in accordance with NR 810.13(1)(d).
- Extended Well Agreement: N/A
- Monitoring Assessments: A monitoring assessment application must be completed every three years to maintain monitoring waivers and reduced monitoring for applicable SDWA contaminants

Operator Certification

Chapter NR 114 specifies the requirements for how operators must be certified. The Utility must employ at least one person who is fully certified for all classifications/aspects of the water system. The water system must also designate the operator in charge (OIC). All operators must attend continuing education classes and submit evidence of attendance when renewing their certificates. The OIC must be accessible at all times (24/7) and any changes to OIC must be reported to the department no later than 30 days after the changes have been made per NR 114.31. As a reminder, all certified waterworks operators must complete at least 18 hours of approved training every three years to retain their certification.

As a reminder, all certified waterworks operators must complete at least 18 hours of approved training every three years to retain their certification.

Water System Security

We recommend that you conduct a daily security check of your entire drinking water system to insure doors are locked and windows secured and free of any potential vandalism. It is recommended that any areas with ground level storage have motion activated security cameras to alert the system of potential threats.

Capacity Development Evaluation

This sanitary survey serves as an evaluation of the capabilities of your water system. Your system appears to have adequate technical, managerial, and financial capacity to provide safe drinking water at the time of this inspection. The ability to plan for, achieve, and maintain compliance with applicable drinking water standards appears to be adequate.

- Citing information from the Utility and the PSC, the Utility appears to have an average net operating income (NOI) of 500,000 per year.
- Citing information from the Utility and the PSC, the Utility appears to have 90 days of operating cash on hand.

Water System Analysis

From a preliminary source capacity analysis, storage capacity analysis, and distribution system analysis from data provided by the Utility, it appears that the Utility meets the standards for source capacity, storage capacity, total capacity, and distribution system.

Water Loss Evaluation

Per PSC 185.85, the Whitewater Municipal Water utility is a Class AB Utility (more than 10,000 connections) is higher than 10%, the recommended limit set by the DNR, but is in compliance with the PSC water loss limits set by PSC 185.85. The latest water loss data is as follows:

- Non-Revenue Water Loss is 10%
- Total Water Loss is 7%.

PSC may require a public utility to conduct a leak detection survey of its distribution system if, for three consecutive years, the public utility's percentage of water loss exceeds 15%.

The department recommends that the Utility continue to find and correct sources of water loss.

System Summary

The Whitewater water system is owned and operated by the City of Whitewater and serves a population of approximately 14,000 people. The water system consists of:

- 1 pressure zone(s)
- 1 interconnected college with significant private infrastructure and transient population
- 4 pressure sand filtration systems for treatment of iron
- Hypochlorination chemical addition for disinfection
- Fluoride chemical addition for dental benefits
- 5 wells and 5 wellhouses

Well #	Pumping Capacity (GPM)	Depth (feet)	Constructed	Last inspection
5	900	657	1944	5
6	1350	1019	09/08/1961	6
7	1200	898	05/26/1965	7
8	1000	800	12/16/1976	8
9	1000	950	02/06/1996	9

Storage	Size (Million	Last Painted	Last Inspection	Inspection Type
	gallons)			
Cravath Street Tower	0.5	2020	2020	Drain Down
Indian Mound	0.750	2022	2022	New construction
Parkway				
Fremont Reservoir	0.005	N/A	2018	Drain Down

The next sanitary survey of your system is scheduled to take place in 2027. You will be contacted prior to the survey to schedule a date that is convenient for you.

I would like to thank Mr. Bergner, Mr. Hyndman and the City of Whitewater for their cooperation and experienced insight during the DNR inspection of the facilities on the date of my visit. If you have any questions, please contact me at (414) 389-7356, or by e-mail at <u>Christopher.Durgin@wisconsin.gov</u>.

Sincerely,

Christopher Durgin

Christopher Durgin Water Supply Engineer - DNR 1027 W. St. Paul Avenue Milwaukee, WI 53233

cc: Bureau of Drinking Water & Groundwater – DG/5
Jesse Jensen, DNR Drinking Water & Groundwater Field Supervisor
Water Utility Superintendent, Jim Bergner
Operator in Charge, Josh Hyndman

Sanitary Survey - System Inventory Report - WHITEWATER WATERWORKS (26500562) MC

Water System Summary Information

PWS ID	PWS Name	County	Address	PWS Type	Popn (Non- Trans/ Trans)	Svc Connects	ERP Complete Date	ERP Last Updated	Emerg Phone
26500562	WHITEWATER WATERWORKS	Walworth	308 N FREMONT STREET WHITEWATER, WI 53190	MC	14000	0			(262) 949- 5436

Certified Operators

Operator Name	License #	License Expire Date	Email Address	Phone #	Fax #	Address	Subclasses	OIC Role
Antonio Aranda	39140	12/1/2025	taranda@whitewater- wi.gov	(262)458- 2808		W6671 BLUFF RD WHITEWATER, WI 53190	DT - DISTRIBUTION GRADE T, GT - GROUNDWATER GRADE T, IT - IRON REMOVAL GRADE T	N
Ross A Babcock	37441	11/1/2026	rossbabcock@hotmail.com	(262)458- 2808		5445 N HENKE RD MILTON, WI 53563	D1 - DISTRIBUTION GRADE 1, G1 - GROUNDWATER GRADE 1, I1 - IRON REMOVAL GRADE 1	Ν
Jim A Bergner	33201	5/1/2025	jimabergner@gmail.com	(920)650- 4845		W9623 WALWORTH WOODS RD DELAVAN, WI 53115	D1 - DISTRIBUTION GRADE 1, G1 - GROUNDWATER GRADE 1, I1 - IRON REMOVAL GRADE 1	Ν
Josh W Hyndman	34590	5/1/2027	hyndman20@hotmail.com	(608)437- 3084		412 BRETTS WAY ORFORDVILLE, WI 53576	D1 - DISTRIBUTION GRADE 1, G1 - GROUNDWATER GRADE 1	Y
Jason R Kelley	37965	11/1/2027	jkelley@whitewater-wi.gov			3457 HEMMING WAY DR. JANESVILLE, WI 53545	D1 - DISTRIBUTION GRADE 1, G1 - GROUNDWATER GRADE 1, I1 - IRON REMOVAL GRADE 1	N
Blaine A Walenton	38785	12/1/2027	Bwalenton@whitewater- wi.gov	(262)473- 0560		414 S PLEASANT ST WHITEWATER, WI 53190	D1 - DISTRIBUTION GRADE 1, G1 - GROUNDWATER GRADE 1, I1 - IRON REMOVAL GRADE 1	N

Affiliations

Sanitary Survey - Pre-Survey Report - WHITEWATER WATERWORKS (26500562) MC

Name	Affiliation	Primary?	Address	Email	Phone
Christopher Durgin	DNR_REP	Y	1027 W ST PAUL AVE MILWAUKEE WI 53233	Christopher.Durgin@wisconsin.gov	414-389-7356 (Business)
Josh Hyndman	EMERGENCY	Y	312 WHITEWATER ST WHITEWATER WI 53190	jhyndman@whitewater-wi.gov	920-817-4012 (Cellular) 262-215-8723 (Cellular) 262-215-8723 (Emergency)
Josh Hyndman	MANAGER	Y	312 WHITEWATER ST WHITEWATER WI 53190	jhyndman@whitewater-wi.gov	920-817-4012 (Cellular) 262-215-8723 (Cellular) 262-215-8723 (Emergency)
Whitewater Water Utility Attn: Josh Hyndman	OWNER	Y	312 WHITEWATER ST PO BOX 178 WHITEWATER WI 53190	JHYNDMAN@WHITEWATER- WI.GOV	262-473-0560 (Business) 920-817-4012 (Cellular)
Heather Boehm	PLAN_CON	Y	312 WHITEWATER ST WHITEWATER WI 53190	cityclerk@whitewater-wi.gov	262-473-0102 (Business)
Ross Babcock	SAMPLER	Y	312 WHITEWATER ST WHITEWATER WI 53190	RBABCOCK@WHITEWATER- WI.GOV	262-473-0560 (Business) 920-542-8842 (Cellular)
Jim Bergner	EMERGENCY	Ν	312 WHITEWATER ST PO BOX 178 WHITEWATER WI 53190	JBERGNER@WHITEWATER- WI.GOV	920-650-4845 (Cellular) 262-473-0560 (Business)

Entry Points and Sources

Source ID	Source Name	WUWN	Status	Available Desc	Туре	Water Source	Depth (ft)	Cased (ft)	Grouted (ft)
5	WELL 5	BH192	Active	Permanent	ENTRY PT/SOURCE	Groundwater	657	557	160
6	WELL 6	BH193	Temporarily Out of Service	Permanent	ENTRY PT/SOURCE	Groundwater	1019	225.2	225.2
7	WELL 7	BH194	Active	Permanent	ENTRY PT/SOURCE	Groundwater	898	562	175
8	WELL 8	BH195	Active	Permanent	ENTRY PT/SOURCE	Groundwater	800	35	350
9	WELL 9	LJ862	Active	Permanent	ENTRY PT/SOURCE	Groundwater	950	270	270

Entry Points and Sources - Additional Information

Source ID	Well Constr Date	Aquifer	Casing Height (in)	Casing Size (in)	Cap Seal Type	Variance?	Variance Reason	Abn Approval Agreemt Date	Original Constr Yr	Prev WUWN
5	1/1/1944									
6	1/1/1961									
7	11/10/1965									
8	10/1/1977									
9	7/24/1996									

Entry Points and Sources - Pump Information

Source ID	Pump Type	Pump Make	Pump HP	Capacity (gpm)	Discharge Type	Pump Last Pulled Date	Aux Power?
5	SUBMERSIBLE			900			Y
6	VERTICAL_TURBINE			1350			Y
7	SUBMERSIBLE			1000			
8	VERTICAL_TURBINE			1000			Y
9	VERTICAL_TURBINE			1000			Y

Storage

ID	Status	Desc	Sub Type	Volume (gal)	Firm Pump Cap (gpm)	Overflow to Ground (in)	MSL Overflow Elevation (ft)	Aux Power?	Manufacturer	Model	Chem Inject Capable?	Active Date
C3	Active	Wood Street TOWER	ELEVATED TANK	500000				Unknown				1/1/1960
C4	Active	FREMONT RESERVOIR	GROUND STORAGE	50000				Unknown				1/1/1960
C5	Active	Indian Mound Parkway	ELEVATED TANK	750000			979.05	Unknown			Y	1/1/1960

Storage - Additional Information

ID	Interior Last Painted	Exterior Last Painted	Interior Last Inspected	Inspect Type	Last Complete Draindown
C3					
C4					
C5			12/01/2022	Complete Drain Down	12/1/2022

Booster Stations

ID	Component Description	Component Sub Type	Status	Firm Pump Capacity (gpm)	Aux Power?	Storage?	Chemical Addition?	Active Date
C1	NONE	ABOVE GROUND	Active	1000	Yes			1/1/1960

System Interconnects

	Component	Component Sub		Capacity		Chemical Injection	Active
ID	Description	Туре	Status	(gal)	Metered?	Capable?	Date

Treatment

ID	Treatment	Objective	Begin Date	Pump Model	Capacity (gpm)	Stroke %	Speed %	Solution Tank Cap (gal)	Dilution Ratio
5	344 - Filtration, Pressure Sand	F - Iron Removal	11/8/1999						
5	380 - Fluoridation	Z - Other	1/1/2002						
5	421 - Hypochlorination, Post	D - Disinfection	11/8/1999						
7	344 - Filtration, Pressure Sand	F - Iron Removal	11/8/1999						
7	380 - Fluoridation	Z - Other	1/10/2002						
7	421 - Hypochlorination, Post	D - Disinfection	11/8/1999						
8	344 - Filtration, Pressure Sand	F - Iron Removal	11/8/1999						
8	380 - Fluoridation	Z - Other	1/1/2002						
8	421 - Hypochlorination, Post	D - Disinfection	11/8/1999						
9	344 - Filtration, Pressure Sand	F - Iron Removal	11/8/1999						
9	380 - Fluoridation	Z - Other	1/1/2002						
9	421 - Hypochlorination, Post	D - Disinfection	11/8/1999						

System Evaluation Summary

Inspector/Reviewer	Date	Report Date	Туре	Agency	Response Due	Response Rec'd
DURGIN, CHRISTOPHER	11/14/2024		SURVEY	DNR		
DURGIN, CHRISTOPHER	12/29/2021	2/3/2022	SURVEY	DNR	3/11/2022	3/1/2022

Bacteriological Sampling History

Year	Distribution - Absent	Distribution - Present	Confirmed - Present	Triggered - Present	Missed Samples	Raw Water - Absent	Raw Water - Present	Fecal Positive?
2024	164				30	18		Ν
2023	181					20		Ν
2022	180					20		Ν
2021	179	1				20		N
2020	181					20		N
2019	182					20		Ν

Chemical Sampling History

Year	Sample Group Code	Source ID	Samples Taken	Missed Samples	MCL Violations
2024	DBP		2		
2024	FLUORIDE		11		
2024	NITRATE	5	1		
2024	NITRATE	7	1		
2024	NITRATE	8	1		
2024	NITRATE	9	1		
2024	VOC	7	1		
2023	DBP		2		
2023	FLUORIDE		12		
2023	IOC	5	1		
2023	IOC	6	1		
2023	IOC	7	1		
2023	IOC	8	1		
2023	IOC	9	1		
2023	PBCU		30		
2023	PFOA/PFOS	5	1		
2023	PFOA/PFOS	6	1		
2023	PFOA/PFOS	7	1		
2023	PFOA/PFOS	8	1		
2023	PFOA/PFOS	9	1		
2023	RAD	5	1		
2023	RAD	8	1		
2023	SOC	5	1		
2023	SOC	6	1		
2023	SOC	7	1		
2023	SOC	8	1		
2023	SOC	9	1		
2023	VOC	5	1		
2023	VOC	6	1		
2023	VOC	7	1		
2023	VOC	8	1		
2023	VOC	9	1		
2022	DBP		2		
2022	FLUORIDE		12		
2022	NITRATE	5	1		

12/3/24, 3:42 PM

Year	Sample Group Code	Source ID	Samples Taken	Missed Samples	MCL Violations
2022	NITRATE	6	1		
2022	NITRATE	7	1		
2022	NITRATE	8	1		
2022	NITRATE	9	1		
2022	VOC	7	1		
2021	DBP		2		
2021	FLUORIDE		12		
2021	NITRATE	5	1		
2021	NITRATE	6	1		
2021	NITRATE	7	1		
2021	NITRATE	8	1		
2021	NITRATE	9	1		
2021	VOC	7	1		
2020	DBP		2		
2020	FLUORIDE		12		
2020	IOC	5	1		
2020	IOC	6	1		
2020	IOC	7	1		
2020	IOC	8	1		
2020	IOC	9	1		
2020	PBCU		30		
2020	PBCU_RULE	5	1		
2020	PBCU_RULE	6	1		
2020	PBCU_RULE	7	1		
2020	PBCU_RULE	8	1		
2020	PBCU_RULE	9	1		
2020	PBCU_RULE		10		
2020	RAD	5	1		
2020	RAD	6	1		
2020	RAD	7	1		
2020	RAD	8	1		
2020	RAD	9	1		
2020	SOC	8	1		
2020	SOC	9	1		
2020	VOC	5	2		
2020	VOC	6	1		

12/3/24, 3:42 PM

Sanitary Survey - Pre-Survey Report - WHITEWATER WATERWORKS (26500562) MC

Year	Sample Group Code	Source ID	Samples Taken	Missed Samples	MCL Violations
2020	VOC	7	1		
2020	VOC	8	2		
2020	VOC	9	2		
2019	DBP		2		
2019	FLUORIDE		12		
2019	NITRATE	5	1		
2019	NITRATE	6	1		
2019	NITRATE	7	1		
2019	NITRATE	8	1		
2019	NITRATE	9	1		
2019	VOC	5	4		
2019	VOC	7	4		
2019	VOC	8	4		
2019	VOC	9	4		

Sample Group	Last Sampled
ARSENIC	2017
BACTI	2024
DBP	2024
FLUORIDE	2024
GROSS_ALPHA	2001
HAA5	2009
IOC	2023
NITRATE	2024
PBCU	2023
PBCU_RULE	2020
PFOA/PFOS	2023
RAD	2023
SOC	2023
ттнм	2009
VOC	2024

Bacti MCL Violations

Source ID	Violat	ion Code	Violati	on Start	Date	Violation	Violation End Date			
Chemical MCL Violations										
Source ID Contaminant Contam Description MCL Units Violation Start Violation End Continuing Operation?										

Deficiencies / Corrective Actions From Last Survey

Severity	Description	Code Citation	Observations	Location	Required Action	Due Date	Date Completed
Deficiency	Overflows of elevated storages are not provided with a sufficient 4 mesh non corrodible screen and/or ground level overflows are not provided with a sufficient 24 mesh noncorrodible screen.	811.64(4)			Replace or otherwise confirm the existence of adequate 24mesh screen on the Fermont reservoir	01/03/2025	

Sanitary Defects / Corrective Actions Since Last Survey