Director's Report

Project Name: 9101 Highland

Description: Revised preliminary site plan approval recommendation

Date on Agenda this packet pertains to: January 16, 2025

 \Box Public Hearing

⊠Revised Plans

□Initial Submittal

 $\Box \mbox{Special Land Use}$

□Other:

□Rezoning

⊠ Preliminary Approval

□Final Approval

Contact	Consultants &	Approval	Denial	Approved w/Conditions	Other	Comments
	Departments					
Sean O'Neil	Community				\boxtimes	Based on
	Development					comments from
	Director					staff & consultants
Mike	DLZ	\boxtimes				See letter dated
Leuffgen						01/05/2025
Matteo	Carlisle			\boxtimes		See letter dated
Passalacqua	Wortman					01/06/2025
	Associates,					
	Inc					
Jason	WLT Fire			\boxtimes		See letter dated
Hanifen	Marshal					12/30/24

January 7, 2025

Sean O' Neil, Director Community Development Department Charter Township of White Lake 7525 Highland Road White Lake, Michigan 48383

RE: 9101 Highland Road-Proposed Commercial Development- Preliminary Site Plan Review – 3rd Review

Ref: DLZ No. 2445-7696-06

Design Professional: Stonefield Engineering & Design

Dear Mr. O' Neil,

Our office has performed a Preliminary Site Plan review for the above-mentioned revised plan dated December 20, 2024. The plans were reviewed for feasibility based on general conformance with the Township Engineering Design Standards.

General Site Information

This 4.5 acre site is located south of M-59, east of Fisk Road, and west of Sunny Beach Boulevard.

Site Improvement Information:

- Construction of two (2) commercial retail/restaurant buildings. Building containing Suites 1-3 is proposed at 7,094 square feet and building containing Suites 4-6 is proposed at 7,865 square feet.
- Associated paved and curbed parking areas, including a total of six (6) ADA parking spaces.
- One (1) entrance off M-59/Highland Road.
- Water and sanitary sewer service.
- Storm water management facilities.

The following items should be noted with respect to Planning Commission review:

We note that comments from our November 6, 2024 review are in *italics*. Responses to those comments are in **bold**. New comments are in standard font.

- a) Cover sheet C-1- Provide ALTA/NSPS Land Title Survey with next submittal. Comment addressed at the preliminary level and remains. The survey has now been provided. Please provide surveyor seal and signature on this sheet on the Final Site Plan/Final Engineering Plan.
- b) Any work within the existing two (2) watermain easements that run parallel to M-59 shall require permission from the Township. Comment remains as a notation.
- c) ADA parking spaces will need to meet ADA standards in terms of slopes and dimensions; further details will be required at the time of Final Site Plan/Final Engineering Plan submittal/review. Comment remains.
- d) Sheet C-3-The existing sidewalk along M-59 appears to be in disrepair. In addition, the sidewalk does not meet the requirements of the current Township Zoning Ordinance Sections 5.20 and 5.21 in terms of required clear zones. We defer to the Township as to whether a new sidewalk meeting the Zoning Ordinance shall be required. Comment partially addressed and remains. A new 8' wide asphalt pathway is now proposed. The proposed pathway location continues to not meet the required clear zone dimensions. We continue to defer to the Township regarding the inadequacy of the required clear zone dimensions. We continue to defer to the proposed pathway is now shown in a proposed sidewalk easement. The sidewalk easement exhibit(s) will be required to be reviewed by our office prior to execution and recording of the easement. The proposed pathway now appears to conform with the required clear zone dimensions as outlined in Township Zoning Ordinance 5.20. We consider the portion of the above comment referencing the sidewalk easement remains.
- e) Sheet C-3-There is a recorded temporary construction easement shown. Please indicate if this easement has been vacated. If the easement has not been vacated, it shall be required to be vacated prior to FSP/FEP approval. Comment remains. Design engineer states that they will coordinate vacation of the easement with the Township prior to FSP/FEP submittal.
- f) There is a recorded 20' wide easement for ingress and egress that runs semi parallel to Highland Road; this will be required to be vacated prior to FSP/FEP approval. Comment remains. Design engineer states that they will coordinate vacation of the easement with the Township prior to FSP/FEP submittal.
- g) Sheet C-4- What is the grading intent for the northeastern greenspace area of the site? We note that there is an existing storm sewer end section which connects to the existing 12" diameter storm sewer that crosses M-59. It is assumed that this end section is to collect the drainage at the low point of approximately 966' and route the drainage to the north under M-59; however, the existing CB to the north (#70140) shows a higher invert elevation than the existing ES elevation to the south. Please clarify. We also note that the site post- development runoff to this end section shall be < or = to the current runoff (Q) to this area. Comment addressed at preliminary level and remains. The existing pipe shall be removed, and the area regraded such that the depression shall be filled. Per the design engineer, calculations are intended to be provided on the FSP/FEP to demonstrate post development runoff.</p>
- **h)** Preliminary grading of the site has been proposed and demonstrates general drainage patterns mainly within the confines of the proposed impervious areas; please provide on the revised

preliminary site plan general proposed grading for all greenspace areas. A more detailed grading review will be provided at the time of Final Engineering Plan submittal/review. **Comment remains.**

- i) Sheet C-5-Retention basin slope scales to 1:4, which would require a fence around basin. Is the intent to fence in the basin? Comment partially addressed and remains. A fence is now shown around the basin. A 10' wide basin access gate is now shown as well as 10 LF of mountable curbing at the parking space across from the gate. The parking space across from the basin access gate shall be designated as an 'Authorized Vehicles Only' space and /or striped so as to allow maintenance vehicle parking and access to the retention basin. Comment addressed. The parking space adjacent to the basin access gate is now shown as striped/cross hatched.
- j) Sheet C-5- Provide/show retention basin spillway and pathway of overland flow. In addition, 1' of freeboard is required for the basin. Comment addressed at the PSP level and remains. A spillway and a general pathway of the overland flow are now shown. 1' of freeboard for basin is now shown. It will be required to be shown/demonstrated on the Final Engineering Plan that an overflow event from the retention basin shall not impact adjacent properties.
- k) Sheet C-5- Based on basin capacity and storage elevation for a 2-100 year back to back storm event, there would be surcharging in upstream piping with what appears to be storage of stormwater above some of the upstream storm sewer rim elevations. It will be required to be demonstrated on the Final Engineering Plan that the HGL will be contained within or at 1' below storm rim elevations. Comment addressed at the PSP level and remains. The basin has been reconfigured and the top of storage of basin has been lowered to match the proposed CB grate/rim elevations. We continue to note that the second half of our above comment regarding HGL will be required to be addressed on the FSP/FEP.
- **I)** We note that this property falls within a wellhead protection area. We defer to Township DPS regarding special requirements. **Comment remains as a notation.**
- m) Sheet C-5- Provide SCS Soil Types. In addition, provide water table information to substantiate that water levels shall return to preexisting conditions at least one time per year. Comment addressed at PSP level and remains. SCS soil types are now shown. Design engineer notes that a geotechnical report will be provided prior to FSP/FEP submittal to confirm the water table level. Comment addressed. A geotechnical report prepared by g2 Consulting Group and dated September 24, 2024 has been provided.
- n) Sheet C-6- Specify size of the proposed grease interceptor for the westernmost building. A minimum capacity of 1000 gallons is required. Comment outstanding. Although a detail for the GB-75 grease trap has now been provided on plan, it appears that the capacities (liquid-125 gal, grease-118 gal, and solids-31 gal) fall significantly short of the 1000 gallon minimum volume requirement. Comment addressed. The capacity of the grease interceptor, as well as a schematic(showing acceptable volume) of the proposed grease trap for the westernmost building has now been provided; the interceptor size of 1,500 gallons is acceptable.
- o) We defer to the Township Fire Department regarding hydrant coverage. Comment remains as a notation.

- p) Sheet C-8- There is an existing tree that is shown to remain in the area of the proposed retention basin. Tree will likely be required to be removed, or basin location revised so as to avoid tree In basin.
 Comment partially addressed. Existing tree within the basin shall be removed per the design engineer; however, please cross out this tree on Sheet C-2.
- q) Sheet C-3-Proposed pedestrian access sidewalk from M-59 path to the eastern building-Show crosswalk hatching/striping across internal traffic circulation lane. This item can be addressed on the FSP/FEP.

Recommendation

The majority of our above comments have been addressed. Any remaining comments can be addressed on the Final Site Plan/ Final Engineering Plan. We recommend approval of the Preliminary Site Plan.

Please feel free to contact our office should you have any questions.

Sincerely,

DLZ Michigan

M fear

Michael Leuffgen, P.E. Department Manager

Victoria Loemker, P.E. Senior Engineer

Cc: Andrew Littman, Community Development, via email Hannah Kennedy-Galley, Community Development, via email Matteo Passalacqua, Carlisle Wortman, via email Aaron Potter, DPS Director, White Lake Township, via email Jason Hanifen, Fire Marshall, White Lake Township, via email

X:\Projects\2024\2445\769606 WLT 9101 Highland Road\PSP- Review.03\Review.03-REVISED.docx

117 NORTH FIRST STREET SUITE 70 ANN ARBOR, MI 48104 734.662.2200 734.662.1935 FAX

то:	White Lake Township Planning Commission
FROM:	Matteo Passalacqua, Associate Planner
DATE:	January 6, 2025
RE:	9101 Highland Road Special Land Use / PSP Revisions

At the December 5th Planning Commission meeting, the Planning Commission reviewed the preliminary site plan and special land use application for 9101 Highland Road. The commission was generally agreeable to use of the property for retail however cited concerns regarding site noise, traffic, and potential nuisance to neighboring residential areas. After reviewing consultant materials, hearing from the applicant, and receiving feedback from the community, the following motions regarding the proposed development passed/failed:

MOTION by Commissioner, seconded by Commissioner Meagher, to approve the special land use for 9101 Highland, identified as parcel number 12-23-227-003, accepting all the concessions made by the applicant concerning lighting, sidewalk, hours of operations, idling trucks, and the sewer stub and all comments from staff and consultants, including the two outdoor seating areas and the drive through and pick up windows. The motion failed with a voice vote: (5 no votes).

MOTION by Commissioner Carlock, seconded by Commissioner Seward, to approve the special land use for 9101 Highland, identified as parcel number 12-23-227-003, accepting all the concessions made by the applicant concerning lighting, sidewalk, hours of operations, idling trucks, and the sewer stub and all comments from staff and consultants, including the two outdoor seating areas and one drive-thru. The motion carried with a roll call vote: (8 yes votes).

MOTION by Commissioner Meagher, seconded by Commissioner Seeley to recommend the Township Board approve the preliminary site plan for 9101 Highland, identified as parcel number 12-23-227-003 subject to the specifications outlined in the special land use approval. The motion failed with a roll call vote: (5 no votes).

Via the motions, the Planning Commission conditionally approved the special land use but denied the preliminary site plan. This allowed the applicant to revise the site plan to better meet the criteria of the special land use and modify site layout and specifications to address the community and commission concerns.

117 NORTH FIRST STREET SUITE 70 ANN ARBOR, MI 48104 734.662.2200 734.662.1935 FAX

January 6, 2025

Preliminary Site Plan / Special Land Use Review for

White Lake Charter Township, Michigan

Applicant:	Affinity 10 Investment, LLC
Project Name:	9101 Highland Road
Plan Date:	July 24, 2024
First Revision Date:	October 17, 2024
Second Revision Date:	December 20,2024
Location:	South side of Highland Road (M-59), West of Sunny Beach Boulevard. Parcel ID: 12-23-227-003
Action Requested:	Preliminary site plan and special land use review

PROJECT NARRATIVE

The applicant is requesting to construct two (2) multi-tenant retail and restaurant buildings on a 4.5-acre parcel along Highland Road (M-59). The site was recently rezoned from R1-C, Single Family Residential to RB, Restricted Business. The special land use and preliminary site plan were reviewed by the Planning Commission during the December 5th, 2024, regular meeting. Several nearby residents voiced concerns regarding the proposal citing apprehensions about traffic generated from the dual drive thrus and general noise production. The applicant was amenable to working with the Township on hours of operation for tenants as well as site lighting being turned off within an hour of tenants closing for business.

The Planning Commission voiced concerns with traffic generated by the drive thrus as well as site layout and circulation. After discussion, the following motions were made:

MOTION by Commissioner, seconded by Commissioner Meagher, to approve the special land use for 9101 Highland, identified as parcel number 12-23-227-003, accepting all the concessions made by the applicant concerning lighting, sidewalk, hours of operations, idling trucks, and the sewer stub and all comments from staff and consultants, including the two outdoor seating areas and the drive through and pick up windows. The motion failed with a voice vote: (5 no votes).

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

MOTION by Commissioner Carlock, seconded by Commissioner Seward, to approve the special land use for 9101 Highland, identified as parcel number 12-23-227-003, accepting all the concessions made by the applicant concerning lighting, sidewalk, hours of operations, idling trucks, and the sewer stub and all comments from staff and consultants, including the two outdoor seating areas and one drive-thru. The motion carried with a roll call vote: (8 yes votes).

MOTION by Commissioner Meagher, seconded by Commissioner Seeley to recommend the Township Board approve the preliminary site plan for 9101 Highland, identified as parcel number 12-23-227-003 subject to the specifications outlined in the special land use approval. The motion failed with a roll call vote: (5 no votes).

Via the motions, the Planning Commission conditionally approved the special land use but denied the preliminary site plan. Per these actions, the applicant was given an opportunity to revise the site plan to better meet the criteria of the special land use and modify site layout and specifications to address the community and commission concerns.

Both structures will retain outdoor patios, however the drive-thru pickup window on the east building has been removed. The east building has been modified to accommodate up to four (4) tenants instead of the originally proposed three (3). Restaurants with drive-thru's and outdoor dining areas are a special land use and subject to the standards set forth in Sections 4.17, 4.18 and 6.10 of the zoning ordinance.

The site currently contains one principal building and one accessory structure as well as a parking lot and fenced-in side yard. The principal structure is the Calvary Lutheran Church of White Lake. The current plan calls for the razing of all existing structures and improvements to accommodate the new use and proposed buildings. All existing utilities as well as some periphery trees are to remain and be protected during construction.

The proposed retail buildings have been modified in size. The west building has been reduced from seven thousand two hundred twenty-seven (7,227) sqft to seven thousand ninety-four (7,094) sqft. The east building has been increased from six-thousand four-hundred eighteen (6,418) sqft to seven thousand eight hundred sixty five (7,865) sqft. The west building would continue to offer three (3) suites, one with drive thru facilities. The east building offers four (4) suites with no drive-thru amenities.

Sheet C-3 indicates the applicant is requesting a waiver for site access. We note later in this review that the Planning Commission may waive this requirement per certain criteria.

Preliminary site plans are reviewed by the Planning Commission with recommendations then provided to the Township Board for approval, approval with conditions or denial. Final site plan review and approval is conducted solely by the Planning Commission. The Planning Commission is the review and approval authority for special land uses.

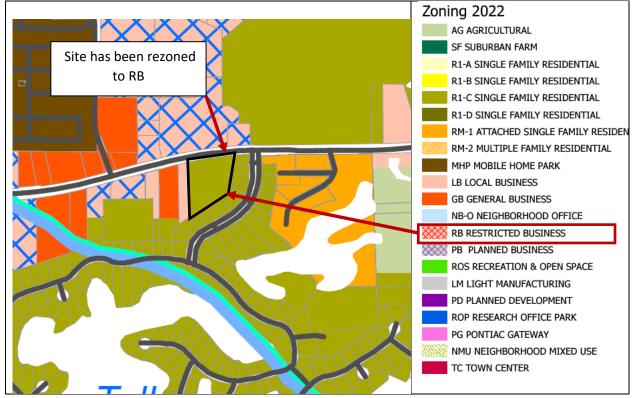
Items to be Address: None.

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

SITE DESCRIPTION

Lot Area:	4.5 gross acres
Frontage:	Approx. 458 feet along Highland Road (M-59).
Address:	9101 Highland Road
Current Use:	Institutional (Place of Worship)

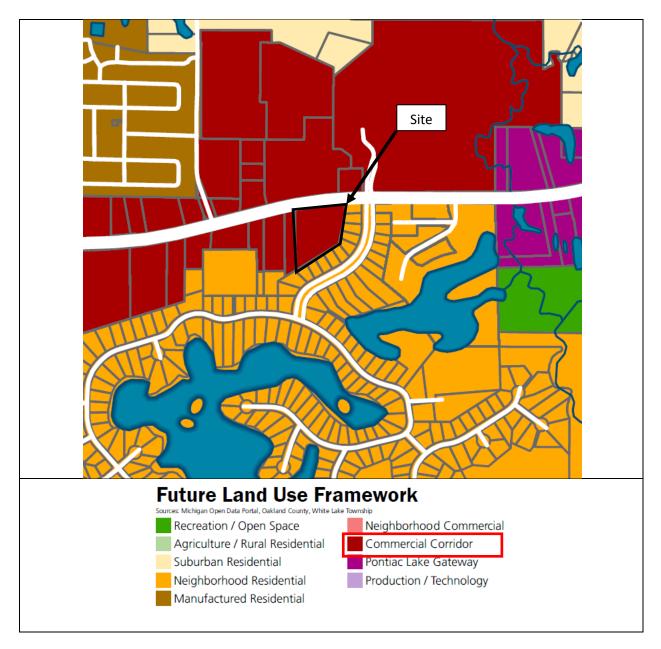
Aerial image of the site


Source: NearMap June 8, 2024

	North	East	South	West
Surrounding Zoning	PD, Planned Business	R1-C, Single Family Residential	R1-C, Single Family Residential	LB, Local Business
Surrounding Land Uses	Big Box Retail	Single Family Homes	Single Family Homes	Child Daycare
Future Land-Use Map	Commercial Corridor	Neighborhood Residential	Neighborhood Residential	Commercial Corridor

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

Current Zoning	RB, Restricted Business
	The intent of the Restricted Business District is to provide a uniform set of regulations that will provide for and encourage retail and office development in accordance with the unique character of White Lake Township, with emphasis on preservation and enhancement of landscaping and natural areas. The Restricted Business District should contain diverse types of retail and office business, but it is not intended that the district become an intensive, high-volume commercial strip.


Current Zoning Map

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

Future Land Use	Commercial Corridor
	Commercial Corridor: Provides regional goods and services to residents and non-
	residents. Includes large box stores and drive thrus.

Future Land Use Map

Item to be Addressed: None

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

NATURAL RESOURCES

Topography:	Sheet C-4 show existing site topography as well as the proposed grading. With the exception of a natural depression along Highland Road (M-59) on the east side of the site, the lot is predominantly flat. Minor grading will be required to support proposed structures and site improvements with more extensive excavation required for the proposed detention pond south of the development.
	We defer to Township Engineering for any concerns with the proposed grading plans as well as any issues cited regarding stormwater management and natural environment protection.
Wetlands:	Per the Department of Environment, Great Lakes and Energy (EGLE), no wetlands are present onsite.
Woodland:	The site is relatively clear of mature tree clusters. Individual mature trees are located along the periphery. It appears that approximately sixteen (16) of these trees are slated to be preserved and protected during construction.
Soils:	Oshtemo, Boyer, Urban Land and Spinks soils are all present onsite and suitable for development.
Water:	No waterbodies are present onsite.
General Notes:	None.

Items to be Addressed: Any cited concerns from Township Engineering.

AREA, WIDTH, HEIGHT, SETBACKS

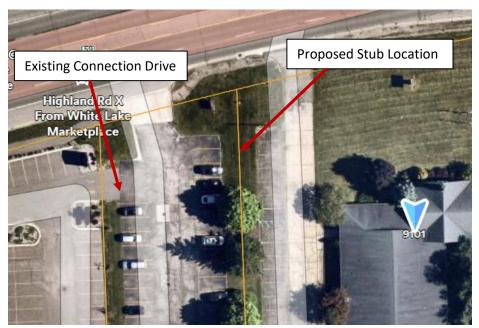
Proposed building envelopes and setback standards are shown on Sheet C-3 as well as district bulk and lot regulations. Standard bulk and lot regulations for the RB zoning district are set forth in Section 3.1.14.

RB Restricted Business District Developmental Standards

RB, Restricted Business	Required:	Proposed:	Complies
Building Setbacks			
Front (Sec. 4.17.A)	60 foot minimum	103.8 feet	Yes
Side	15 feet on one side / 30 foot total of two sides	81 feet to the west / 56 feet to the east / 137 feet combined	Yes
Rear	20 feet	154.6 feet	Yes
Wetland	25 feet	N/A	N/A

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

Building Height			
	35 feet or 2 stories (whichever is less)	20 feet / 1 story	Yes
Lot Standards			
Minimum Lot Area	1 acre	4.5 gross and net acres	Yes
Minimum Lot Width	120 feet	458.4 feet	Yes
Maximum Lot Coverage	TBD	6.75%	TBD
Depth to Width	4 to 1	Approx. 1 to 1	Yes


Items to be Addressed: None.

ACCESS & CIRCULATION

Vehicle Access & Circulation

Section 6.4 outlines site access requirements. However, the site's sole access is from Highland Road (M-59) which is under jurisdiction of the Michigan Department of Transportation (MDOT).

Sheet C-3 shows a proposed stub access drive at the west end of the property. A note indicates the drive is a proposed twenty-four (24) foot access drive and easement to be stubbed at the property line. The aerial image below shows the neighboring site to the west does not currently have a stub to the subject property. The neighboring property does share an internal drive with the adjacent property to the west. The applicant indicates the stub road will be connected to the neighboring site when that site is redeveloped. Concrete parking blocks are shown to detour vehicles from entering the temporary stub.

Source: NearMap June 8, 2024

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

Page 7 of the traffic impact study (TIS) dated April 22nd, 2024 indicates the site's proposed driveway distance from existing driveways and/or intersections. The only distance requirement that is met relates to the Ross Drive entrance way to the shopping center opposite Highland Road (M-59). We defer to Engineering on their assessment of this deficiency but note the applicant has incorporated a dedicated left hand turn egress lane and deceleration lane to the site plan per MDOT requirements.

The west building drive thru remains in the same configuration as the original site plan. Circulation issues may present with traffic entering the site so close to the drive thru exit assuming traffic leaving the drive thru will be attempting to exit the site as well.

The east building has expanded in square footage but has not altered the width and location of the eastern drive aisle.

Sheet C-10 provides circulation for fire trucks. We defer to Township Public Safety on concerns with emergency vehicle maneuverability.

Non-Motorized Access and Circulation

Sections 5.20 and 5.21 provide requirements for site sidewalks and pathways. A sidewalk is present across the Highland Road (M-59) frontage of the site. The applicant is proposing to demolish the sidewalk and install an eight (8) foot wide asphalt pathway mostly within the ROW. Pathways along the corridor are required to be eight (8) feet wide with two (2) foot clear zones on each side and at least six (6) feet from the curb of the adjacent road. Dimensions on Sheet C-3 indicate the pathway will be no closer than eight (8) feet to Highland Road (M-59) which is complaint.

An easement will be provided for the portion of the pathway that occupies the applicant's property. Pedestrian access from the proposed pathway to the site is provided via a walkway in front of the east and west building however only the west building has a crosswalk. We recommend a crosswalk be added to the east pedestrian access to provide safe crossing of the drive aisle.

Public Transit

Public Transit access is available via the SMART Bus Highland Road Route 759. The line runs east/west between Oakland University and Bogie Lake Road along Highland Road (M-59). The accessible Westbound stop is located at the Highland Road (M-59) and Sunny Beach Boulevard intersection. The accessible eastbound stop is located along Highland Road (M-59) at the White Lake Marketplace development. The route operates from approximately 6:00am until 11:00pm on weekdays and 9:00am until 6:00pm on Saturdays.

White Lake Township is also served by the Western Oakland Transportation Authority which provides schedule transportation for Township residents with specific needs.

Items to be Addressed: 1.) Any concerns cited by Public Safety 2.) Any concerns cited by Engineering. 3.) MDOT will need to approve the pathway along Highland Road (M-59). 4.) The east building pedestrian connection should contain a crosswalk so pedestrians can cross the drive aisle safety. 5.) An easement will be required to grant the Township access rights to the portions of the safety path that are outside of the ROW.

PARKING & LOADING

Section 5.11 outlines requirements for off-street parking. Sheet C-3 provides parking locations and calculations for the various retail and restaurant functions anticipated for the site. Parking is placed predominantly around the periphery of the two buildings with a limited number of spaces located between the structures. Parking lot and drive aisles will be constructed of asphalt. Concrete is proposed for limited portions of the drive thru and dumpster pads.

Only the west building offers drive thru facilities which wrap around the entire building. The stacking lane has two bailout drives. A loading zone is located behind the west building at the end of the central drive aisle. One loading zone is provided and meets the dimensional requirements of the ordinance. Refuse and Delivery truck circulation is provided on Sheet C-11. Two pedestrian crosswalks are shown with dashed markings to allow delivery personnel to access the rear of each building.

The site plan indicates there will be seven (7) total tenants between both buildings. Of the seven (7), two (2) are identified as retail totaling two thousand three hundred eighty seven (2,387) sqft. The remaining five (5) are identified as restaurants (one with drive thru amenities). Total restaurant square footage is twelve thousand five hundred seventy two (12,572). Based on these uses, one hundred forty six (146) parking spaces are required. One hundred twenty (120) parking spaces are proposed, which is within the 75% parking reduction allowance. Mobile order pickup spaces have been reduced from seven (7) to two (2) and now are only present across from the west building patio.

All spaces and dimensions for stacking lanes meet ordinance requirements.

Included in the provided parking are six (6) handicap accessible spaces. Count and dimension requirements for accessible spaces, as well as van accessibility space requirements, have been met.

We note that the site plan does not show dual white striped parking space paint however details on Sheet C-12 specify dual striped paint.

Items to be Addressed: None.

ESSENTIAL SERVICES & UTILITIES

Sheet C-5 and 6 provide information on existing and proposed utilities. Stormwater management is proposed to be directed into a ground infiltration detention pond. Gas, water, sewer and electric services are proposed underground. We defer to Township Engineering for any concerns with utility layouts and calculations.

We note underground electric routes along the eastern property line conflict with proposed landscaping. Over time, large tree roots can cause problems for underground utilities.

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

Fire lane locations are required for preliminary site plan review and should be shown on Sheet C-3 as well as proposed fire department building hookups and/or water sources to confirm corresponding locations. We defer to Township Public Safety for any utility capacity or locations concerns.

Items to be Addressed: 1.) Any cited concerns of Township Engineering. 2.) Any cited concerns of Township Public Safety.

LANDSCAPING & SCREENING

Landscape and screening information is required at final site plan review. The applicant has provided a detailed landscape plan on Sheet C-8. Per this information, we will provide a full review of the landscape plan. Any deficiencies noted should be addressed at final site plan review.

Landscaping originally proposed to line the east building drive thru has been relocated predominately along the southern end of the east building and rear parking area.

Section 5.19.B outlines general provisions for site landscaping. We note that no trees are to be planted closer than four (4) feet from any property line. While distance dimensions were not provided, it appears several trees along the southern and eastern property line may encroach this setback requirement.

Section 5.19.D provides requirements for screening along property lines as it relates to adjacent districts. Those standards are reviewed below:

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 <u>Greenbelts</u>

Property Line	Required	Provided	Complaint
North (ROW)	Depth: 20 feet	Depth: 25.4 feet	Yes
	14 large deciduous or evergreen trees	14 large deciduous trees	
	AND	AND	
	110 shrubs	110 shrubs	
East & South (R1-C)	Depth: 20 feet	Depth: 30 feet	Yes
	56 large deciduous or evergreen trees	56 large deciduous trees (49 new / 7 existing)	
	AND	AND	
	223 shrubs	223 shrubs	
	5 foot visual barrier	8 foot obscuring fence	
West (LB)	None	N/A	N/A

We note that several areas along the perimeter of the site show existing tree canopies and cite that they will remain. An aerial of the site is provided below for reference.

Source: NearMap June 8, 2024

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 Interior Landscaping

Interior landscaping areas are required to equal at least fifteen (15) percent of the total lot area. One (1) large deciduous, small ornamental deciduous, or evergreen tree and five (5) shrubs shall be planted for every three hundred (300) square feet of required interior landscaping area.

Standard	Required	Provided	Complaint
Lot Area	29,335 sqft (15%)	110,896 sqft (56%)	Yes
Deciduous Trees	97 trees	97 trees (81 new / 16 existing)	Yes
Shrubs	489 shrubs	489 shrubs	Yes

Parking Lot Landscaping

Any off-street parking areas containing ten (10) or more parking spaces shall have parking lot landscaping as prescribed in the table provided in Section 5.19.G. Additional standards require:

- 1. One (1) large deciduous tree or small deciduous ornamental tree and three (3) shrubs for every one hundred (100) square feet of required parking lot landscaping area.
- 2. Parking lot landscaping areas shall be curbed with 6-inch concrete curbing. Planting islands containing trees shall not be less than fifty (50) square feet in area and not have any dimension across the island of less than five (5) feet.

Commercial Use	Required	Provided	Complaint
Lot Area	2,340 sqft	7,199 sqft	Yes
Deciduous or	23 trees	23 trees	Yes
Ornamental Trees			
Shrubs	70 shrubs	70 shrubs	Yes
Curbs	6 inch concrete	2'	Yes
Lot Islands	50 sqft area minimum	4 Islands	Yes
	and at least 5 feet wide		

Minimum Plant Size

All tree and plant material meet size requirements.

Trash Receptacles

Trash enclosures are to be contracted of similar materials as the principal structure on the site. Brickform concrete or stained, decorative CMU block may be permitted where the principal building is not masonry, however, plain CMU block is not allowed. Details on Sheet C-13 indicate enclosure walls are constructed of split face block CMU but do not indicate a staining or decorative treatment. Sheet A-302 provides enclosure details that reference enclosure walls as CMU and gates materials as stained wooded with a metal frame. The applicant should remove the trash enclosure detail from Sheet C-13 and clarify the CMU enclosure wall decorative feature on Sheet A-302 for final site plan.

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 Mechanical Equipment Screening

Sheet A-400 provides an elevation showing the rooftop mechanical equipment and the parapet dimensions which provide screening. Other onsite mechanical equipment is screened via landscaping.

Fencing

Sheet C-3 shows a six (6) foot high vinyl fence around the detention basin. Per landscaping buffer requirements between specific zones, an eight (8) foot obscuring fence is proposed along the eastern and southern lot lines where the property abuts residential districts. Specification of screening materials are required for final site plan.

Items to be Addressed: 1.) Dimensions between trees and property lines should be included on Sheet C-8 and conform to the four (4) foot setback requirement. 2.) The applicant should remove the trash enclosure detail from Sheet C-13 and clarify the CMU enclosure wall decorative feature on Sheet A-302 for final site plan. 3.) Specification of screening materials proposed for the eight (8) foot property line fence are required for final site plan.

LIGHTING & NOISE

Lighting Requirements

The applicant has provided site lighting information on Sheets C-7 and 14. Lighting standards are provided in Section 5.18.G and required at final site plan review however this review will note any deficiencies with the proposed lighting plan.

Given the site will have multiple tenants, Sheet C-7 should have a note stating that there shall be no flashing, oscillating, moving or intermittent type of lighting or illumination on the site.

All site lighting is provided via LED fixtures mounted to twenty (20) foot poles. Footcandle requirements at the property lines and fixture height requirements are met. No building wall pack lighting is proposed at this time. Section 5.18.G.viii outlines footcandle maximums for specific areas of the site. The site plan offers footcandle measurements for the overall site and property lines as well as driveway, parking, walkways, and loading areas. All areas are below or at maximum footcandle allowances.

Noise Requirements

Noise standards are provided in Section 5.18.A and required at final site plan review.

Items to be Addressed: Sheet C-7 should have a note stating that there shall be no flashing, oscillating, moving or intermittent type of lighting or illumination on the site

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

SIGNAGE

Sheet C-3 provides the basic location of a proposed monument sign at the development's entrance. Basic dimension parameters are provided in the "Signage Requirements" table. We note the sign should complement both the design and construction materials of the principal structures on-site. Signs are approved administratively but complete sign information outlined in Section 5.9 is required at final site plan review.

Items to be Addressed: None.

ARCHITECTURE & LAYOUT

Sheets A100 through A301 provide general floorplans and elevations of the buildings. As stated earlier, the east building has been modified to accommodate four (4) tenants instead of the originally proposed three (3). The east building also no longer provides drive thru facilities. We do note that sheets are not stamped and sealed by a licensed architect.

Elevations of all building sides is required at preliminary site plan. Architectural information required at final site plan review includes the types of facing materials to be used on structures. Interior layouts are open to allow flexibility for potential user interior design but will be required to meet building codes during the permitting process.

Section 6.8.E provides architectural requirements for developments along the Highland Road (M-59) corridor. Proposed exterior materials for the buildings are fiber cement planes, metal coping, EFIS, brick veneer, prefinished aluminum and metal awnings. We recommend color renderings showing exterior construction materials in place for final site plan review. Window coverage along front facades must be at least 30%. These calculations should be added to the final site plan.

Exterior construction material boards will be required for Planning Commission review during final site plan as well as samples of furniture, fixtures or equipment to be located on the proposed patios.

Items to be Addressed: 1.) Window coverage calculations should be added to exterior elevations facing Highland Road (M-59). 2.) Architectural drawings should be stamped and sealed by the professional that prepared them.

SPECIAL LAND USE

Restaurants with drive-thru's and outdoor dining areas are a special land use and subject to the standards set forth in Sections 4.17, 4.18 and 6.10 of the zoning ordinance. Special land uses are reviewed and approved/denied by the Planning Commission.

General and special use requirements are provided in Section 6.10. Use standards specific to drive-in or drive-thru window services are outlined in Section 4.17. Use standards for eating establishments with

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 outdoor dining are provided in Section 4.18. The following information is a review of each requirement for this use as prescribed in the Zoning Ordinance.

Section 4.17 / Drive-In or Drive-Thru Window Services

A. A front yard setback of at least sixty (60) feet shall be required.

CWA Comment: Standard met.

B. Entrance and exit drives shall be at least one hundred (100) feet from any street intersection and two hundred (200) feet from any residential district.

CWA Comment: Standard met.

C. An outdoor lighting plan shall specify the type of fixtures to be used, light intensity, and method of shielding the fixtures so that light does not project onto adjoining properties or on any public or private street or right-of-way. Dropped fixtures shall not be allowed. The site plan shall include a photometric plan and catalog details for all proposed fixtures. Outdoor lights must meet the performance standards of Section 5.18.

CWA Comment: Standard met.

D. An obscuring fence, screen wall, or land form buffer shall be provided in accordance with the provisions of Section 5.19 on all sides abutting a residential district.

CWA Comment: Standard met.

E. Adequate off-street waiting space shall be provided to prevent drive-through customers from waiting on a public or private street. A minimum of four (4) spaces per drive-up window, including order windows or per ATM machine, shall be required. The Planning Commission may increase this requirement up to seven (7) spaces per window based on the circumstances of individual uses and sites.

CWA Comment: Standard met.

Section 4.18 / Eating Establishments with Entertainment and/or Outdoor Dining

These requirements are intended to regulate restaurants with large outdoor eating areas and possible entertainment that the applicant has stated no outdoor entertainment is to occur onsite for restaurant patrons. For this reason, we have only applied the standards applicable to casual outdoor eating within the patio areas specified for each building.

i. The establishment may operate only during the following hours: Monday thru Thursday 8 am—12 midnight, Friday 8 am—2 am, Saturday 10 am—2 am, Sunday 10 am—10 pm.

CWA Comment: The applicant has provided a list of anticipated tenants for the site as well as their possible hours of operation. Some operating times are beyond the window permitted for outdoor dining however we do not anticipate the patrons of these potential

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

tenants utilizing outdoor patios to a disruptive degree. The outdoor patio areas are modest in size and not meant for large amounts of customers.

ii. The use of exterior loudspeakers is prohibited where the site abuts a residential district or use. The noise level at the lot line shall not exceed 70 dB.

CWA Comment: No noise or speaker systems were included in the site plan. The applicant should be aware of this requirement when considering tenant types. The west building is the only building with drive thru facilities.

Section 6.10 / General SLU Standards

i. The proposed special land use shall be of such location, size and character that it will be in harmony with the appropriate and orderly development of the surrounding neighborhood and/or vicinity and applicable regulations of the zoning district in which it is to be located.

CWA Comment: The proposed use of the site is conducive with that found along the corridor and other major thoroughfares.

ii. The proposed use shall be of a nature that will make vehicular and pedestrian traffic no more hazardous than is normal for the district involved, taking into consideration vehicular turning movements in relation to routes of traffic flow, proximity and relation to intersections, adequacy of sight distances, location and access of off-street parking and provisions for pedestrian traffic, with particular attention to minimizing child-vehicle interfacing.

CWA Comment: Site access approval will be required from MDOT however the applicant has implemented a deceleration lane, dedicated left turn lanes, new roadside pathway and internal pedestrian paths to improve vehicle and pedestrian circulation.

iii. The proposed use shall be designed as to the location, size, intensity, site layout and periods of operation of any such proposed use to eliminate any possible nuisance emanating therefrom which might be noxious to the occupants of any other nearby permitted uses, whether by reason of dust, noise, fumes, vibration, smoke or lights.

CWA Comment: Per comments provided in the Special Land Use 4.18 requirements portion of this review, areas for outdoor dining are modest in size and the applicant should ensure tenants are aware of noise requirements. The applicant has eliminated the drive thru for the east building in response to nuisance concerns cited by the Planning Commission and community.

iv. The proposed use shall be such that the proposed location and height of buildings or structures and location, nature and height of walls, fences and landscaping will not interfere with or discourage the appropriate development and use of adjacent land and buildings or unreasonably affect their value.

CWA Comment: Standard met.

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

v. The proposed use shall relate harmoniously with the physical and economic aspects of adjacent land uses as regards prevailing shopping habits, convenience of access by prospective patrons, continuity of development, and need for particular services and facilities in specific areas of the Township.

CWA Comment: The proposed food service and retail uses are conducive to major thoroughfares and are similar or complementary to other commercial uses in the area.

vi. The standards of density and required open spaces for the proposed special land use shall be at least equal to those required by this Ordinance in the Zoning District in which the proposed special land use is to be located.

CWA Comment: Standard met.

vii. The public services and facilities affected by a proposed special land use or activity shall be capable of accommodating increased service and facility loads caused by the land use or activity.

CWA Comment: We defer to Township Engineering and Township Public Safety relating to public facilities and service concerns.

viii. Protection of the natural environment and conservation of natural resources and energy.

CWA Comment: No items of concern.

ix. The proposed use is necessary for the public convenience at the proposed location.

CWA Comment: The proposed use of the site is conducive with that found along the corridor and other major thoroughfares and will provide services to Township residents.

x. The proposed use is so designed, located, planned and to be operated that the public health, safety and welfare will be protected.

CWA Comment: No items of concern.

xi. The proposed use shall not cause substantial injury to the value of other property in the neighborhood in which it is to be located and will not be detrimental to existing and/or other permitted land uses in the zoning district.

CWA Comment: The proposed use is more intense than the current institutional use but not uncommon to major thoroughfares and/or proximity to residential uses. Appropriate landscaping and screening requirements have been met to ensure a buffer between the development and adjacent residential uses. Drive thru facilities have been reduced from two (2) to one (1) to accommodate concerns of the community.

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 Community Impact Statement

Section 3.1.14 and 6.6 of the zoning ordinance outline the need for a Community Impact Statement (CIS) for special land uses, planned developments and the like. Given the proposed use is an increase in intensity from the current use as well as the adjacency to residential districts, the applicant has provided a CIS for the proposed development.

The original CIS is dated November 12th, 2024 and was prepared by Stonefield Engineering and Design, LLC. The revised CIS provides updated information, however, is still dated November 12th, 2024. This should be amended to reflect the new date of the report. Chipotle is no longer listed as a potential tenant. The west building drive thru is proposed for Starbucks.

General

The CIS provides relevant information about the development regarding site layout, uses, and general hours of operation for tenants. Information provided is consistent with typical multi-tenant retail centers. As noted in the statement and this review, the use and zoning are consistent with the 2024 Master Plan. Surrounding uses are provided and are not uncommon when adjacent to retail along large thoroughfares (M-59).

Community Facilities and Services

The applicant states the site is anticipated to have a low to medium impact on police and fire services. No establishments are proposed to sell alcohol and fire department inspections are required to ensure the site is compliant with life safety standards. The fire department has provided preliminary approval of the site plan. No concerns are cited with the estimated demand on water and sewer systems.

Deliveries for tenants are expected to be once to twice per week. With the potential of up to seven(7) tenants, this could generate seven (7) to fourteen (14) deliveries per week. Single axle box trucks are anticipated to provide the majority of deliveries to the site. Given the loading zone is located in the rear of the development, we suggest a possible condition that trucks not be allowed to idle while loading, unloading or staging.

Economics

The site is anticipated to generate approximately fifty (50) to sixty (60) temporary jobs (construction) and approximately fifty (50) permanent service jobs. It is estimated that the proposed development will contribute roughly \$70,000 per year to White Lake Township and local schools from annual property taxes.

Environment

The site is relatively free of major natural features such as clustered woodlands or bodies of water. The primary source of pollution to the site would be particulate matter during construction and personal vehicle operation once built. No major hazardous materials are expected to be kept onsite. The CIS does acknowledge that some tenants will likely be food service business that will

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

generate kitchen odors from cooking operations. It should be discussed as to whether any mitigation is available to reduce the impact of odors generated from tenant activities.

Noise

The CIS still notes that drive thru facilities in the east building will be pickup window only thus eliminating noise from order kiosks that utilize loudspeakers to communicate with drivers. These facilities have been removed from the east building on the revised site plan. This section should be updated to reflect the change as well as clarify if the drive thru for west building will be a traditional drive thru or pickup window. This is a positive step to help reduce noise pollution. The stipulation that no order kiosk or loudspeaker system shall be constructed for the east building should be added to the site plan to avoid future tenants requesting installation of such equipment.

Traffic

Traffic information does indicate that levels of service are anticipated to remain relatively the same after the site is operating. The traffic impact study does indicate that vehicles attempting to make a left turn out of the site may find the maneuver difficult during peak PM hours.

Mapping

The overhead image provided in the CIS highlights the character of uses along the corridor. Retail uses are prevalent to the west of the site with varying densities of residential throughout the area.

Items to be Addressed: 1.) Condition that trucks not be allowed to idle during loading, unloading, or staging while onsite. 2.) Mitigation techniques to reduce the impact of kitchen odors should be implemented. 3.) No order kiosk or loudspeaker system shall be constructed for the east building should be added to the site plan to avoid future tenants requesting installation of such equipment. 4.) Date of revised CIS should be updated. 5.) The CIS noise section should be updated to reflect the revised site plan indicating no drive thru facilities will be offered on the east building. The drive thru facilities for the west building should be identified as either a traditional drive thru or pickup window.

SUMMARY

The revised preliminary site plan is substantially complete. We recommend a public hearing be noticed and the application be placed on the Planning Commission's agenda.

Should the Planning Commission approve the preliminary site plan, special land use, and CIS, we recommend conditions listed below:

Potential Conditions of Approval

- 1. Any cited concerns from Township Engineering are addressed.
- 2. Any cited concerns from Township Public Safety are addressed.
- 3. MDOT will need to approve the pathway along Highland Road (M-59)

Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025

- 4. The east building pedestrian connection should contain a crosswalk so pedestrians can cross the drive aisle safety.
- 5. An easement will be required to grant the Township access rights to the portions of the safety path that are outside of the ROW.
- 6. Trucks not be allowed to idle during loading, unloading, or staging while onsite.
- 7. Mitigation techniques to reduce the impact of kitchen odors should be implemented.
- 8. No order kiosk or loudspeaker system shall be constructed for the east building should be added to the site plan to avoid future tenants requesting installation of such equipment.
- 9. Date of revised CIS should be updated.
- 10. The CIS noise section should be updated to reflect the revised site plan indicating no drive thru facilities will be offered on the east building. The drive thru facilities for the west building should be identified as either a traditional drive thru or pickup window.

Waivers / Modifications / Determinations

Below is a list of waivers, modifications or determinations necessary from the Planning Commission for the current proposal to be approved.

1. Planning Commission may grant/deny waiver request for placement of access drive per lot and placement restrictions however site access is under the jurisdiction of MDOT.

Final Site Plan Items (Notations / Not Required for PSP Approval)

The items listed below are not required for preliminary site plan approval but will need to be addressed prior to final site plan consideration.

PLEASE NOTE: Should the Planning Commission grant approval or conditional approval of the preliminary site plan, these items should not be included in the motion.

- 1. Sheet C-7 should have a note stating that there shall be no flashing, oscillating, moving or intermittent type of lighting or illumination on the site
- 2. Dimensions between trees and property lines should be included on Sheet C-8 and conform to the four (4) foot setback requirement.
- 3. The applicant should remove the trash enclosure detail from Sheet C-13 and clarify the CMU enclosure wall decorative feature on Sheet A-302 for final site plan. Exterior construction material boards will be required for Planning Commission review during final site plan as well as samples of furniture, fixtures or equipment to be located on the proposed patios.
- 4. Window coverage calculations should be added to exterior elevations facing Highland Road (M-59).
- 5. Architectural drawings should be stamped and sealed by the professional that prepared them.
- 6. Material specifications for the proposed eight (8) foot obscuring fence should be provided at final site plan review.

9101 Highland Preliminary Site Plan and Special Land Use Review (Revision 2) January 6, 2025 Respectfully,

CARLISLE/WORTMAN ASSOC., INC. Matteo Passalacqua Community Planner

Our full review is included in the Planning Commission's packet. To supplement the review, we have summarized the notable changes to the site plan below:

- Drive-thru facilities have been eliminated for the east building.
- The east building is now proposed to house four tenants instead of three.
- The west building has decreased in size from 7,227 sqft to 7,094 sqft.
- The east building has increased in size from 6,418 sqft to 7,865 sqft.
- The safety path along M59 has been moved away from the road and is in conformance with distance requirements from the curb.
- Parking spaces have increased to 120 from 116.
- Mobile order pickup spaces have been reduced from seven to two.
- Landscaping originally proposed to line the east building drive thru has been relocated predominantly along the southern end of the east building and rear parking area.
- Additional lighting information has been provided and meets ordinance standards.
- Chipotle is no longer listed as a potential tenant.

Thank you for your time.

Respectfully,

CÁRLISLE/WORTMAN ASSOC., INC. Matteo Passalacqua Community Planner

Fire Department Charter Township of White Lake 7420 Highland Road White Lake, MI 48383 Office (248) 698-3993 www.whitelaketwp.com/fire

Site / Construction Plan Review

To: Sean O'Neil, Planning Department Director

Date: 12-30-2024

Project: 9101 Highland Road

Job #: DET-230229

Date on Plans: 12-20-2024

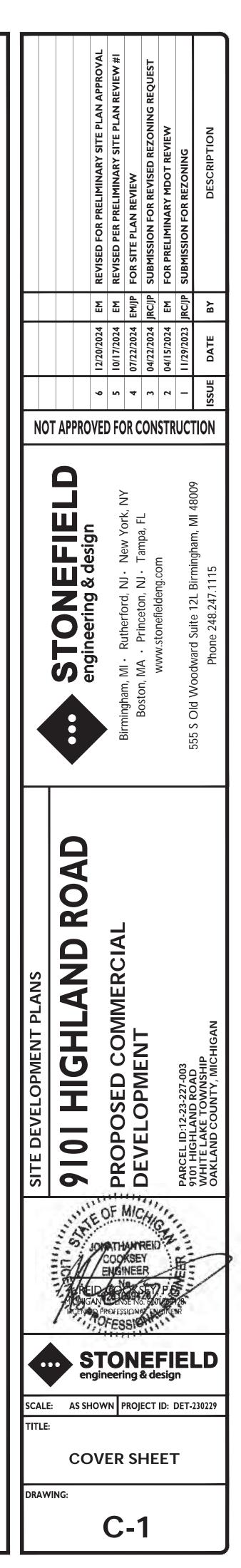
The Fire Department has the following comments with regard to the 3rd review of preliminary site plans for the project known as 9101 Highland Road.

- 1. The access drive and parking lot shall be designed and maintained to support the imposed loads of fire apparatus and shall be surfaced to provide all weather driving capabilities.
- 2. The required turning radius shall accommodate the largest Fire Department apparatus (40') and provide a turn radius profile showing apparatus movement on all future plans. Needs to be shown throughout the entire site. (Movement needs to be shown between the East and West buildings turning to the East and West in the front of the buildings as well as the rear of the buildings)
- 3. The angle of approach/Departure to and from White Lake roads shall not exceed 8 degrees.
- 4. Wall mounted KNOX Box required, location to be determined.
- One additional fire hydrant with bollard protection will be required on the south side of the buildings, centrally located, possibly on the island east of the proposed loading zone.
- 6. Fire lanes must be posted and remain unobstructed at all times.

Jason Hanifen Fire Marshal Charter Township of White Lake (248)698-3993 jhanifen@whitelaketwp.com

Plans are reviewed using the International Fire Code (IFC), 2015 Edition and Referenced NFPA Standards.

PLANS PREPARED BY:

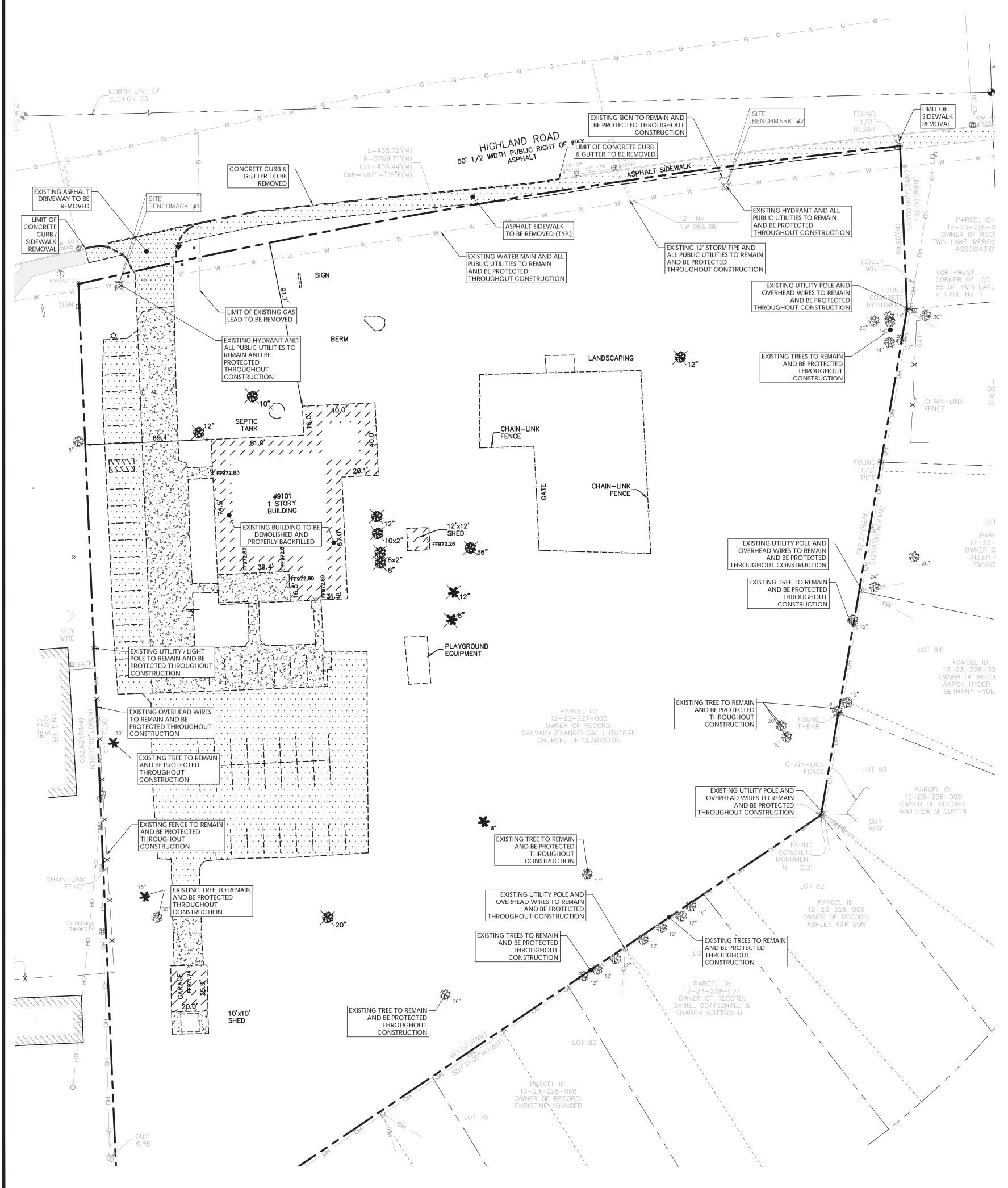


Birmingham, MI· New York, NY · Boston, MA Princeton, NJ · Tampa, FL · Rutherford, NJ www.stonefieldeng.com

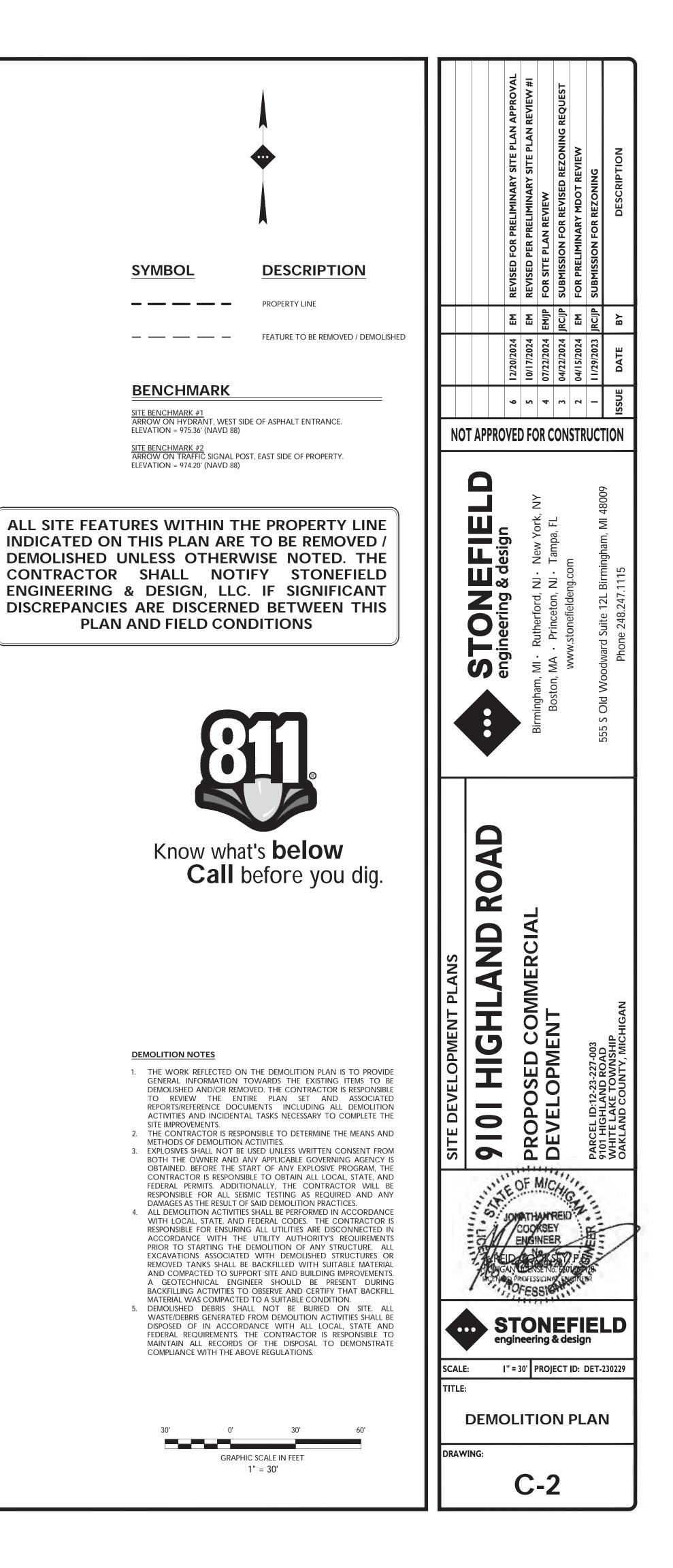
555 S. Old Woodward Avenue, Suite 12L, Birmingham, MI 48009 Phone 248.247.1115

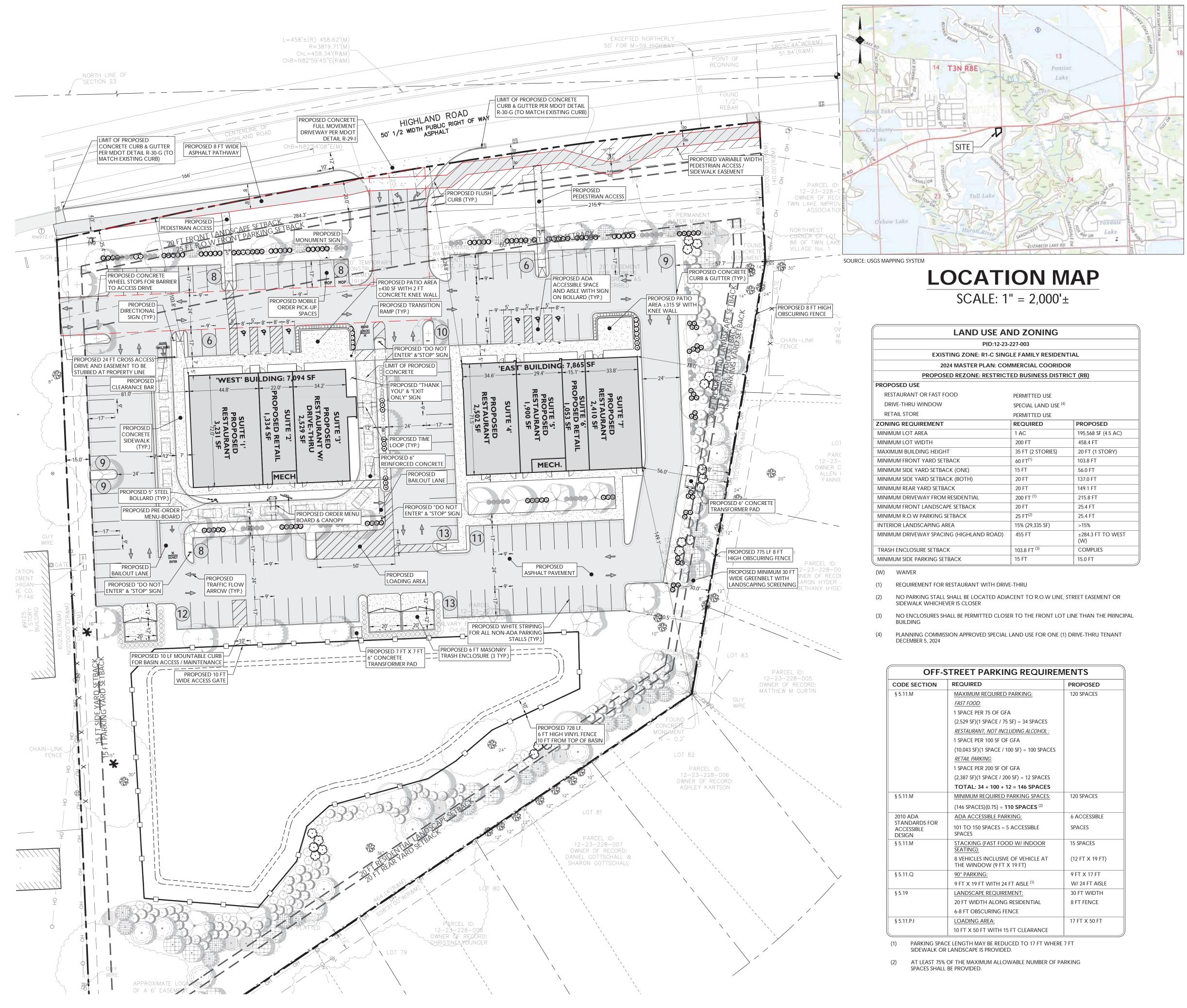
PLAN REFERENCE MATERIALS:

- 1. THIS PLAN SET REFERENCES THE FOLLOWING DOCUMENTS INCLUDING, BUT NOT LIMITED TO: • ALTA/NSPS LAND TITLE SURVEY PREPARED BY
 - KEM-TEC ASSOCIATES DATED 09/28/2023 ARCHITECTURAL PLANS OBTAINED FROM BOWER & ASSOCIATES, INC DATED 12/19/2024
 - AERIAL MAP OBTAINED FROM GOOGLE EARTH PRO 10/10/2022
- LOCATION MAP OBTAINED FROM USGS ONLINE MAPPER 08/07/2023 **TRAFFIC STUDY OBTAINED FROM FLEIS & VANDENBRINK**
- DATED 04/22/2024 2. ALL REFERENCE MATERIAL LISTED ABOVE SHALL BE CONSIDERED A PART OF THIS PLAN SET AND ALL INFORMATION CONTAINED WITHIN THESE MATERIALS SHALL BE UTILIZED IN CONJUNCTION WITH THIS PLAN SET. THE CONTRACTOR IS RESPONSIBLE TO OBTAIN A COPY OF EACH REFERENCE AND REVIEW IT THOROUGHLY PRIOR TO THE START OF CONSTRUCTION

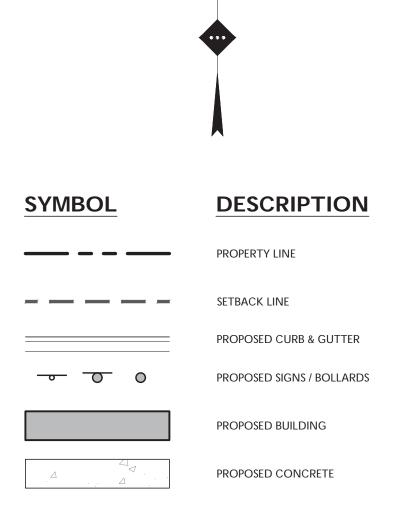

APPLICANT / OWNER

AFFINITY 10 INVESTMENT LLC 44512 SOUTH SHORE STREET WATERFORD, MICHIGAN 48328 248-702-0624 THANNAWA@ENCOREIS.COM


ARCHITECT


BOWERS + ASSOCIATES, INC 2400 SOUTH HURON PARKWAY NN ARBOR, MICHIGAN 48104 734-975-2400 SUSANB@BOWERSARCH.COM

SHEET INDEX					
DRAWING TITLE	SHEET #				
COVER SHEET	C-1				
DEMOLITION PLAN	C-2				
SITE PLAN	C-3				
GRADING PLAN	C-4				
STORMWATER MANAGEMENT PLAN	C-5				
JTILITY PLAN	C-6				
IGHTING PLAN	C-7				
ANDSCAPING PLAN	C-8 & C-9				
FIRE TRUCK TURNING ANALYSIS	C-10				
REFUSE TRUCK TURNING ANALYSIS	C-11				
CONSTRUCTION DETAILS	C-12 TO C-14				
ADDITIONAL SHE	ETS				
DRAWING TITLE	SHEET #				
ALTA / NSPS LAND TITLE SURVEY	1 OF 1				
WHITE LAKE TWP WATERMAIN DETAILS	1 OF 1				
WHITE LAKE TWP STORM SEWER DETAILS	1 OF 1				
WHITE LAKE TWP SANITARY DETAILS	1 OF 1				
DAKLAND COUNTY SOIL EROSION DETAILS	1 OF 1				


'2023/DET-230229-AFFINITY 10 INVESTMENT-9191 HIGHLAND ROAD, WHITE LAKE, MICADD/PLOT/SDP-02-

PID:12-23		
EXISTING ZONE: R1-C SING	LE FAMILY RESIDEN	ΓIAL
2024 MASTER PLAN: COI	MMERCIAL COORIDO	R
PROPOSED REZONE: RESTRIC	ED BUSINESS DISTR	CT (RB)
PROPOSED USE		
RESTAURANT OR FAST FOOD	PERMITTED USE	
DRIVE-THRU WINDOW	SPECIAL LAND USE ⁽⁴⁾	
RETAIL STORE	PERMITTED USE	
ZONING REQUIREMENT	REQUIRED	PROPOSED
MINIMUM LOT AREA	1 AC	195,568 SF (4
MINIMUM LOT WIDTH	200 FT	458.4 FT
Maximum Building Height	35 FT (2 STORIES)	20 FT (1 STC
MINIMUM FRONT YARD SETBACK	60 FT ⁽¹⁾	103.8 FT
MINIMUM SIDE YARD SETBACK (ONE)	15 FT	56.0 FT
MINIMUM SIDE YARD SETBACK (BOTH)	20 FT	137.0 FT
MINIMUM REAR YARD SETBACK	20 FT	149.1 FT
MINIMUM DRIVEWAY FROM RESIDENTIAL	200 FT ⁽¹⁾	215.8 FT
MINIMUM FRONT LANDSCAPE SETBACK	20 FT	25.4 FT
MINIMUM R.O.W PARKING SETBACK	25 FT ⁽²⁾	25.4 FT
INTERIOR LANDSCAPING AREA	15% (29,335 SF)	>15%
MINIMUM DRIVEWAY SPACING (HIGHLAND ROAD)	455 FT	±284.3 FT TC (W)
TRASH ENCLOSURE SETBACK	103.8 FT ⁽³⁾	COMPLIES
MINIMUM SIDE PARKING SETBACK	15 FT	15.0 FT

CODE SECTION	REQUIRED	PROPOSED
§ 5.11.M	MAXIMUM REQUIRED PARKING:	120 SPACES
	FAST FOOD:	
	1 SPACE PER 75 OF GFA	
	(2,529 SF)(1 SPACE / 75 SF) = 34 SPACES	
	RESTAURANT, NOT INCLUDING ALCOHOL :	
	1 SPACE PER 100 SF OF GFA	
	(10,043 SF)(1 SPACE / 100 SF) = 100 SPACES	
	<u>RETAIL PARKING:</u>	
	1 SPACE PER 200 SF OF GFA	
	(2,387 SF)(1 SPACE / 200 SF) = 12 SPACES	
	TOTAL: 34 + 100 + 12 = 146 SPACES	
§ 5.11.M	MINIMUM REQUIRED PARKING SPACES:	120 SPACES
	(146 SPACES)(0.75) = 110 SPACES ⁽²⁾	
2010 ADA	ADA ACCESSIBLE PARKING:	6 ACCESSIBLE
STANDARDS FOR ACCESSIBLE DESIGN	101 TO 150 SPACES = 5 ACCESSIBLE SPACES	SPACES
5.11.M	STACKING (FAST FOOD W/ INDOOR SEATING):	15 SPACES
	8 VEHICLES INCLUSIVE OF VEHICLE AT THE WINDOW (9 FT X 19 FT)	(12 FT X 19 FT
§ 5.11.Q	90° PARKING:	9 FT X 17 FT
	9 FT X 19 FT WITH 24 FT AISLE ⁽¹⁾	W/ 24 FT AISL
§ 5.19	LANDSCAPE REQUIREMENT:	30 FT WIDTH
	20 FT WIDTH ALONG RESIDENTIAL	8 FT FENCE
	6-8 FT OBSCURING FENCE	
§ 5.11.P.I	LOADING AREA:	17 FT X 50 FT
	10 FT X 50 FT WITH 15 FT CLEARANCE	

PROPOSED 8 FT OBSCURING FENCE

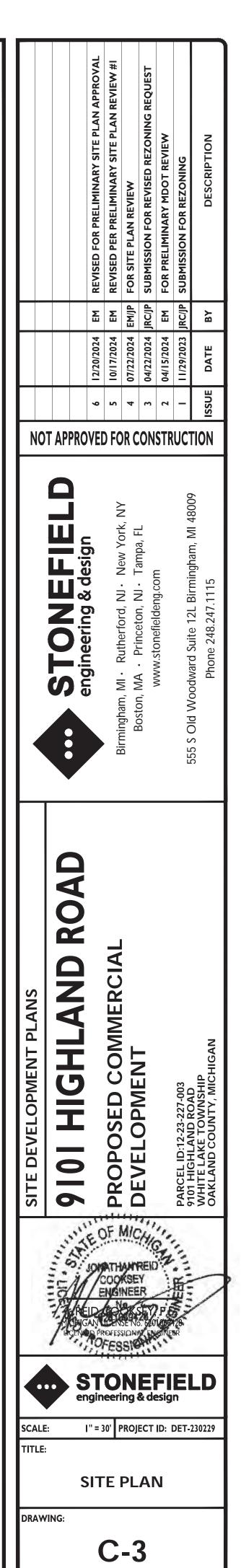
ANTICIPATED TENANTS / HOURS OF OPERATION

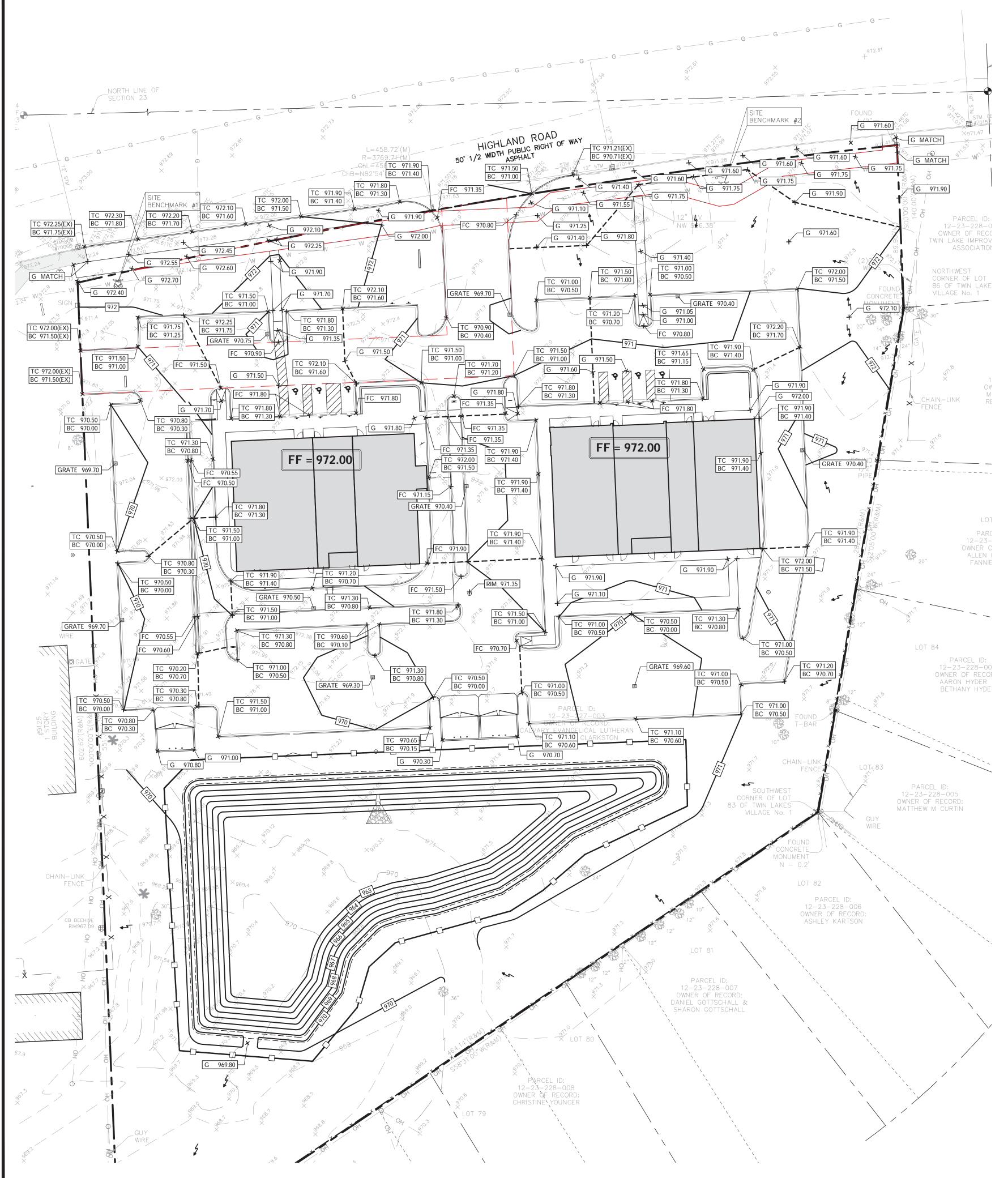
- NOTHING BUNDT THE CAKE: 9:30 AM TO 8PM
- FIVE GUYS: 11 AM TO 10 PM
- STARBUCKS: 5 AM TO 8 PM

_____X _____X _____

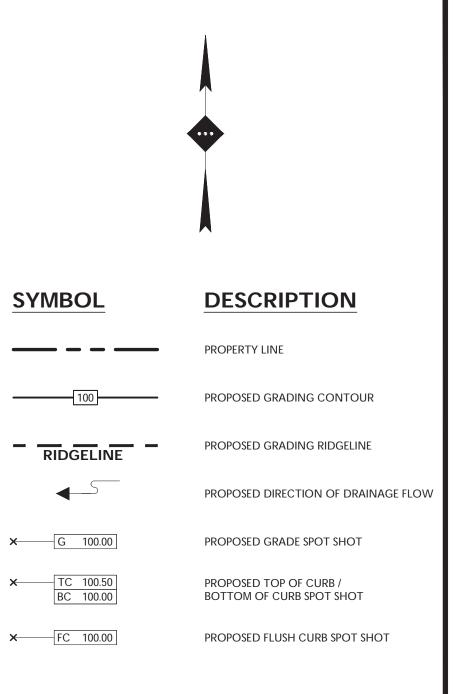
• JERSEY MIKE'S: 10 AM TO 9 PM

SIGNAGE REQUIREMENTS					
CODE SECTION	REQUIRED	PROPOSED			
§5.9.J.I.B	MULTI-TENANT SIGN HEIGHT: 15 FT ⁽²⁾⁽³⁾	<15 FT			
§5.9.J.I	SIGN AREA: 6 SF PER 1 FT OF SETBACK	<150 SF			
§5.9.J.I	MAXIMUM SIGN AREA: 150 SF ⁽¹⁾	<150 SF			
§5.9.J.I.A	SIGN SETBACK: 10 FT	20.0 FT			
§5.9.J.I.A	RESIDENTIAL SETBACK: 100 FT	>200 FT			


MAXIMUM SIGN AREA SHALL NOT INCLUDE DECORATIVE ELEMENTS (1) SUCH AS BASES, COLUMNS OR CAPS

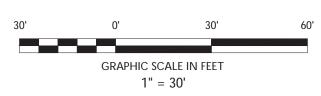

- (2) MINIMUM HEIGHT OF A SIGN BASE SHALL BE 2 FT IN HEIGHT
- (3) EACH INDIVIDUAL TENANT SIGN SHALL NOT EXCEED 4 FT IN HEIGHT

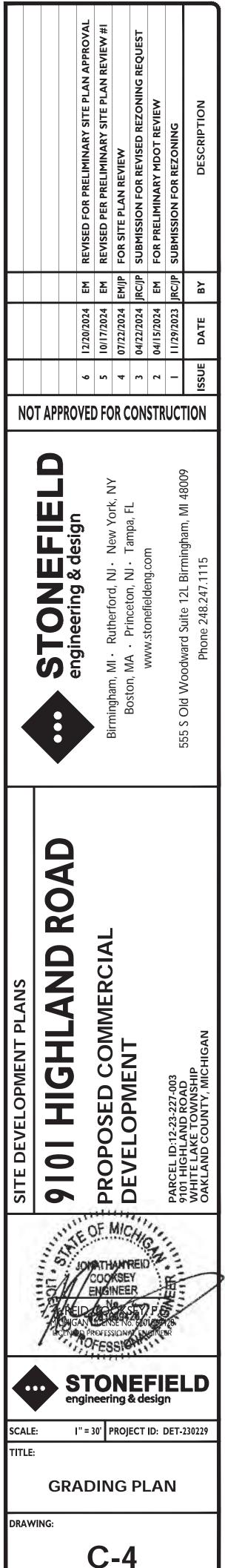
GENERAL NOTES

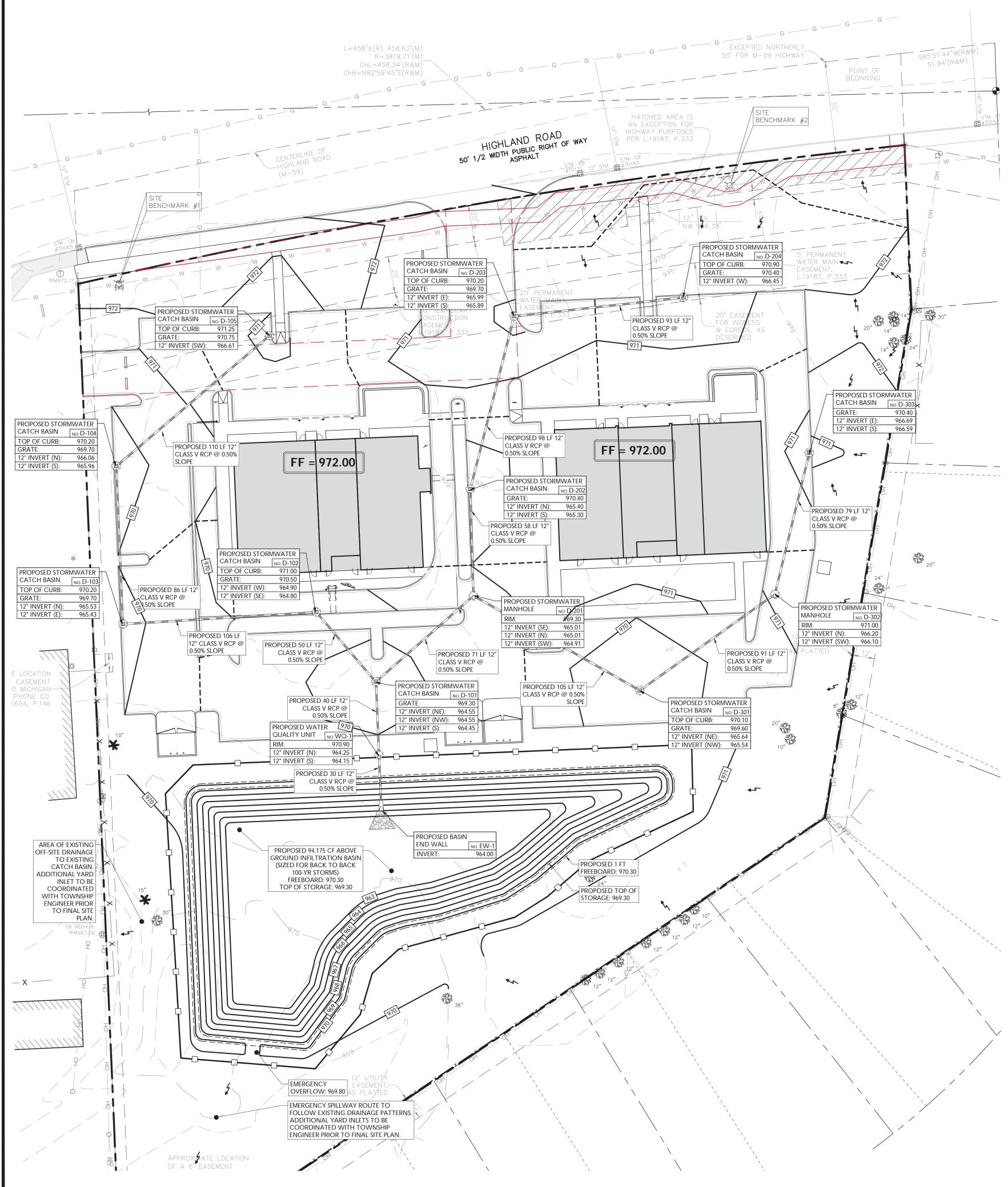

- 1. THE CONTRACTOR SHALL VERIFY AND FAMILIARIZE THEMSELVES WITH THE EXISTING SITE CONDITIONS AND THE PROPOSED SCOPE OF WORK (INCLUDING DIMENSIONS, LAYOUT, ETC.) PRIOR TO INITIATING THE IMPROVEMENTS IDENTIFIED WITHIN THESE DOCUMENTS. SHOULD ANY DISCREPANCY BE FOUND BETWEEN THE EXISTING SITE CONDITIONS AND THE PROPOSED WORK THE CONTRACTOR SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN LLC. PRIOR TO THE START OF CONSTRUCTION.
- 2. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND ENSURE THAT ALL REQUIRED APPROVALS HAVE BEEN OBTAINED PRIOR TO THE START OF CONSTRUCTION. COPIES OF ALL REQUIRED PERMITS AND APPROVALS SHALL BE KEPT ON SITE AT ALL TIMES DURING CONSTRUCTION.
- 3. ALL CONTRACTORS WILL, TO THE FULLEST EXTENT PERMITTED BY LAW, INDEMNIFY AND HOLD HARMLESS STONEFIELD ENGINEERING & DESIGN, LLC. AND IT'S SUB-CONSULTANTS FROM AND AGAINST ANY DAMAGES AND LIABILITIES INCLUDING ATTORNEY'S FEES ARISING OUT OF CLAIMS BY EMPLOYEES OF THE CONTRACTOR IN ADDITION TO CLAIMS CONNECTED TO THE PROJECT AS A RESULT OF NOT CARRYING THE PROPER INSURANCE FOR WORKERS COMPENSATION, LIABILITY INSURANCE, AND LIMITS OF COMMERCIAL GENERAL LIABILITY INSURANCE.
- 4. THE CONTRACTOR SHALL NOT DEVIATE FROM THE PROPOSED IMPROVEMENTS IDENTIFIED WITHIN THIS PLAN SET UNLESS APPROVAL IS PROVIDED IN WRITING BY STONEFIELD ENGINEERING & DESIGN, 5. THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND
- METHODS OF CONSTRUCTION. 6. THE CONTRACTOR SHALL NOT PERFORM ANY WORK OR CAUSE DISTURBANCE ON A PRIVATE PROPERTY NOT CONTROLLED BY THE PERSON OR ENTITY WHO HAS AUTHORIZED THE WORK WITHOUT PRIOR WRITTEN CONSENT FROM THE OWNER OF THE PRIVATE PROPERTY.
- 7. THE CONTRACTOR IS RESPONSIBLE TO RESTORE ANY DAMAGED OR UNDERMINED STRUCTURE OR SITE FEATURE THAT IS IDENTIFIED TO REMAIN ON THE PLAN SET. ALL REPAIRS SHALL USE NEW MATERIALS TO RESTORE THE FEATURE TO ITS EXISTING CONDITION AT THE CONTRACTORS EXPENSE. 8. CONTRACTOR IS RESPONSIBLE TO PROVIDE THE APPROPRIATE SHOP
- DRAWINGS, PRODUCT DATA, AND OTHER REQUIRED SUBMITTALS FOR REVIEW. STONEFIELD ENGINEERING & DESIGN, LLC. WILL REVIEW THE SUBMITTALS IN ACCORDANCE WITH THE DESIGN INTENT AS REFLECTED WITHIN THE PLAN SET. 9. THE CONTRACTOR IS RESPONSIBLE FOR TRAFFIC CONTROL IN
- ACCORDANCE WITH MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION. 10. THE CONTRACTOR IS REQUIRED TO PERFORM ALL WORK IN THE PUBLIC RIGHT-OF-WAY IN ACCORDANCE WITH THE APPROPRIATE GOVERNING AUTHORITY AND SHALL BE RESPONSIBLE FOR THE PROCUREMENT OF STREET OPENING PERMITS.
- 11. THE CONTRACTOR IS REQUIRED TO RETAIN AN OSHA CERTIFIED SAFETY INSPECTOR TO BE PRESENT ON SITE AT ALL TIMES DURING CONSTRUCTION & DEMOLITION ACTIVITIES. 12. SHOULD AN EMPLOYEE OF STONEFIELD ENGINEERING & DESIGN, LLC. BE PRESENT ON SITE AT ANY TIME DURING CONSTRUCTION, IT DOES
- NOT RELIEVE THE CONTRACTOR OF ANY OF THE RESPONSIBILITIES AND REQUIREMENTS LISTED IN THE NOTES WITHIN THIS PLAN SET.

GRAPHIC SCALE IN FEET 1" = 30'

'2023\DET-230229-AFFINITY 10 INVESTMENT-9191 HIGHLAND ROAD, WHITE LAKE, MICADDIPLOT\SDP-04-GRAI




GRADING NOTES


- 1. ALL SOIL AND MATERIAL REMOVED FROM THE SITE SHALL BE DISPOSED OF IN ACCORDANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS. ANY GROUNDWATER DE-WATERING PRACTICES SHALL BE PERFORMED UNDER THE SUPERVISION OF A QUALIFIED PROFESSIONAL. THE CONTRACTOR IS REQUIRED TO OBTAIN ALL NECESSARY PERMITS FOR THE DISCHARGE OF DE-WATERED GROUNDWATER. ALL SOIL IMPORTED TO THE SITE SHALL BE CERTIFIED CLEAN FILL. CONTRACTOR SHALL MAINTAIN RECORDS OF ALL FILL MATERIALS BROUGHT TO THE SITE.
- 2. THE CONTRACTOR IS REQUIRED TO PROVIDE TEMPORARY AND/OR PERMANENT SHORING WHERE REQUIRED DURING EXCAVATION ACTIVITIES, INCLUDING BUT NOT LIMITED TO UTILITY TRENCHES, TO ENSURE THE STRUCTURAL INTEGRITY OF NEARBY STRUCTURES AND STABILITY OF THE SURROUNDING SOILS.
- 3. PROPOSED TOP OF CURB ELEVATIONS ARE GENERALLY 4 INCHES TO 7 INCHES ABOVE EXISTING GRADES UNLESS OTHERWISE NOTED. THE CONTRACTOR WILL SUPPLY ALL STAKEOUT CURB GRADE SHEETS TO STONEFIELD ENGINEERING & DESIGN, LLC. FOR REVIEW AND APPROVAL PRIOR TO POURING CURBS.
- THE CONTRACTOR IS RESPONSIBLE TO SET ALL PROPOSED UTILITY COVERS AND RESET ALL EXISTING UTILITY COVERS WITHIN THE PROJECT LIMITS TO PROPOSED GRADE IN ACCORDANCE WITH ANY APPLICABLE MUNICIPAL, COUNTY, STATE AND/OR UTILITY AUTHORITY REGULATIONS.
 MINIMUM SLOPE REQUIREMENTS TO PREVENT PONDING SHALL BE AS FOLLOWS:
- CURB GUTTER: 0.50%
 CONCRETE SURFACES: 0.50%
- ASPHALT SURFACES: 1.00%
 A MINIMUM SLOPE OF 1.00% SHALL BE PROVIDED AWAY FROM ALL BUILDINGS. THE CONTRACTOR SHALL ENSURE POSITIVE DRAINAGE FROM THE BUILDING IS ACHIEVED AND SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN, LLC. IF THIS CONDITION CANNOT BE MET.
 FOR PROJECTS WHERE BASEMENTS ARE PROPOSED, THE DEVELOPER IS RESPONSIBLE TO DETERMINE THE DEPTH TO GROUNDWATER AT THE LOCATION OF THE PROPOSED STRUCTURE. IF GROUNDWATER IS ENCOUNTERED WITHIN THE BASEMENT AREA, SPECIAL CONSTRUCTION METHODS SHALL BE UTILIZED AND REVIEWED/APPROVED BY THE CONSTRUCTION CODE OFFICIAL. IF
- SUMP PUMPS ARE UTILIZED, ALL DISCHARGES SHALL BE CONNECTED DIRECTLY TO THE PUBLIC STORM SEWER SYSTEM WITH APPROVAL FROM THE GOVERNING STORM SEWER SYSTEM AUTHORITY. ADA NOTES

ADA NOTES

- THE CONTRACTOR SHALL MAINTAIN A MAXIMUM 2.00% SLOPE IN ANY DIRECTION WITHIN THE ADA PARKING SPACES AND ACCESS AISLES.
 THE CONTRACTOR SHALL PROVIDE COMPLIANT SIGNAGE AT ALL
- ADA PARKING AREAS IN ACCORDANCE WITH STATE GUIDELINES.
 THE CONTRACTOR SHALL MAINTAIN A MAXIMUM 5.00% RUNNING SLOPE AND A MAXIMUM OF 2.00% CROSS SLOPE ALONG WALKWAYS WITHIN THE ACCESSIBLE PATH OF TRAVEL (SEE THE SITE PLAN FOR THE LOCATION OF THE ACCESSIBLE PATH). THE CONTRACTOR IS RESPONSIBLE TO ENSURE THE ACCESSIBLE PATH OF TRAVEL IS 36 INCHES WIDE OR GREATER UNLESS INDICATED OTHERWISE WITHIN THE PLAN SET.
- 4. THE CONTRACTOR SHALL MAINTAIN A MAXIMUM 2.00% SLOPE IN ANY DIRECTION AT ALL LANDINGS. LANDINGS INCLUDE, BUT ARE NOT LIMITED TO, THE TOP AND BOTTOM OF AN ACCESSIBLE RAMP, AT ACCESSIBLE BUILDING ENTRANCES, AT AN AREA IN FRONT OF A WALK-UP ATM, AND AT TURNING SPACES ALONG THE ACCESSIBLE PATH OF TRAVEL. THE LANDING AREA SHALL HAVE A MINIMUM CLEAR AREA OF 60 INCHES BY 60 INCHES UNLESS INDICATED OTHERWISE WITHIN THE PLAN SET.
- 5. THE CONTRACTOR SHALL MAINTAIN A MAXIMUM 8.33% RUNNING SLOPE AND A MAXIMUM 2.00% CROSS SLOPE ON ANY CURB RAMPS ALONG THE ACCESSIBLE PATH OF TRAVEL. WHERE PROVIDED, CURB RAMP FLARES SHALL NOT HAVE A SLOPE GREATER THAN 10.00% IF A LANDING AREA IS PROVIDED AT THE TOP OF THE RAMP. FOR ALTERATIONS, A CURB RAMP FLARES SHALL NOT HAVE A SLOPE GREATER THAN 8.33% IF A LANDING AREA IS NOT PROVIDED AT THE TOP OF THE RAMP. CURBS RAMPS SHALL NOT RISE MORE THAN 6 INCHES IN ELEVATION WITHOUT A HANDRAIL. THE CLEAR WIDTH
- OF A CURB RAMP SHALL BE NO LESS THAN 36 INCHES WIDE.
 6. ACCESSIBLE RAMPS WITH A RISE GREATER THAN 6 INCHES SHALL CONTAIN COMPLIANT HANDRAILS ON BOTH SIDES OF THE RAMP AND SHALL NOT RISE MORE THAN 30" IN ELEVATION WITHOUT A LANDING AREA IN BETWEEN RAMP RUNS. LANDING AREAS SHALL ALSO BE PROVIDED AT THE TOP AND BOTTOM OF THE RAMP.
 7. A SLIP RESISTANT SURFACE SHALL BE CONSTRUCTED ALONG THE
- ACCESSIBLE PATH AND WITHIN ADA PARKING AREAS.
 8. THE CONTRACTOR SHALL ENSURE A MAXIMUM OF ¼ INCHES VERTICAL CHANGE IN LEVEL ALONG THE ACCESSIBLE PATH. WHERE A CHANGE IN LEVEL BETWEEN ¼ INCHES AND ½ INCHES EXISTS, CONTRACTOR SHALL ENSURE THAT THE TOP ¼ INCH CHANGE IN LEVEL IS BEVELED WITH A SLOPE NOT STEEPER THAN 1 UNIT VERTICAL AND 2 UNITS HORIZONTAL (2:1 SLOPE).
 9. THE CONTRACTOR SHALL ENSURE THAT ANY OPENINCS (CARS OPENINCS) (CAR
- 9. THE CONTRACTOR SHALL ENSURE THAT ANY OPENINGS (GAPS OR HORIZONTAL SEPARATION) ALONG THE ACCESSIBLE PATH SHALL NOT ALLOW PASSAGE OF A SPHERE GREATER THAN ½ INCH.

WHITE LAKE DETENTION VOLUME REQUIREMENT			
V = (33,000)(C)(A)			
C (VALUE)	0.590		
A (AREA)	195,568 SF (4.49 AC)		
V =	87,413 CF		

SOIL CHARACTERISTICS CHART					
TYPE OF SOIL	OSHTEMO-BOYER LOAMY SANDS (13B)	URBAN LAND-SPINKS COMPLEX			
PERCENT OF SITE COVERAGE	68.3%	31.7%			
HYDROLOGIC SOIL GROUP	A	А			
DEPTH TO RESTRICTIVE LAYER	> 80 INCHES	> 80 INCHES			
SOIL PERMEABILITY	1.98 TO 5.95 IN / HR	1.98 TO 5.95 IN / HR			
DEPTH TO WATER TABLE	> 80 INCHES	> 80 INCHES			

STORMWATER MANAGEMENT CALCULATIONS (Based on Oakland County Stormwater Management Regulations (11-21-2021 ordinance)

Designer: JRC

C-Value*

0.95

00.11

Date:

0.590

87,412.97 CF

Weighted Value

81,924

20,572

13,314

115,810

Composite C Value, C:

Design Storm Period, P:

Time of Concentration, T_C:

Detention Volume Required, V:

Water Quality Intensity, Iwq:

Project: 9101 Highland Road White Lake Twp, MI

Landcover Building / Pavement Basin Area		Area (AC)	Area (SF) 86,236 20,572	
		1.98 0.47		
ubtotals		4.49	195,568	

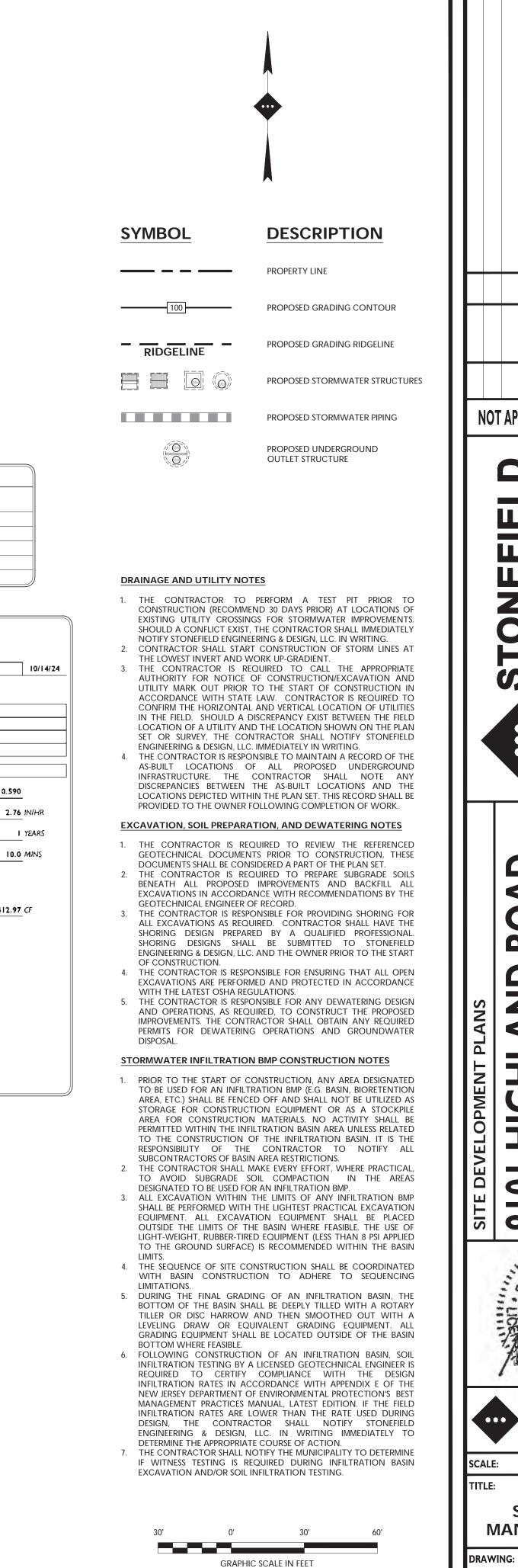
$\| f_{WQ} = 30.20P^{0.22} / (9.17+T)^{-0.6}$

T_C, Time of Concentration: Commercial/Industrial - Assume 15 min Sites < 5 acres - Assume 10 min

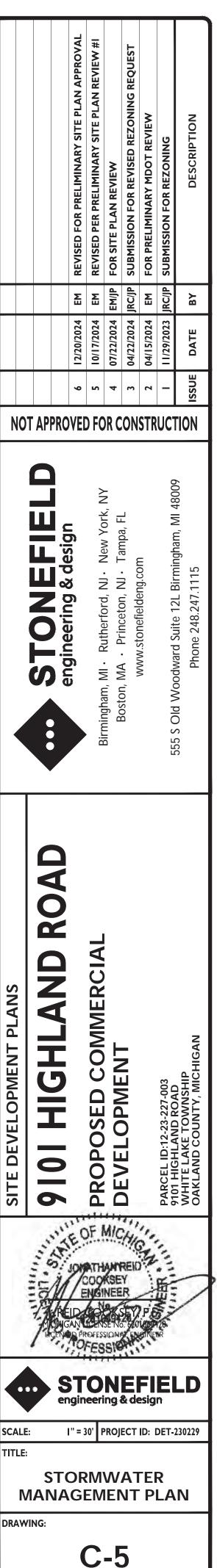
Detention Volume Requirement (White Lake)

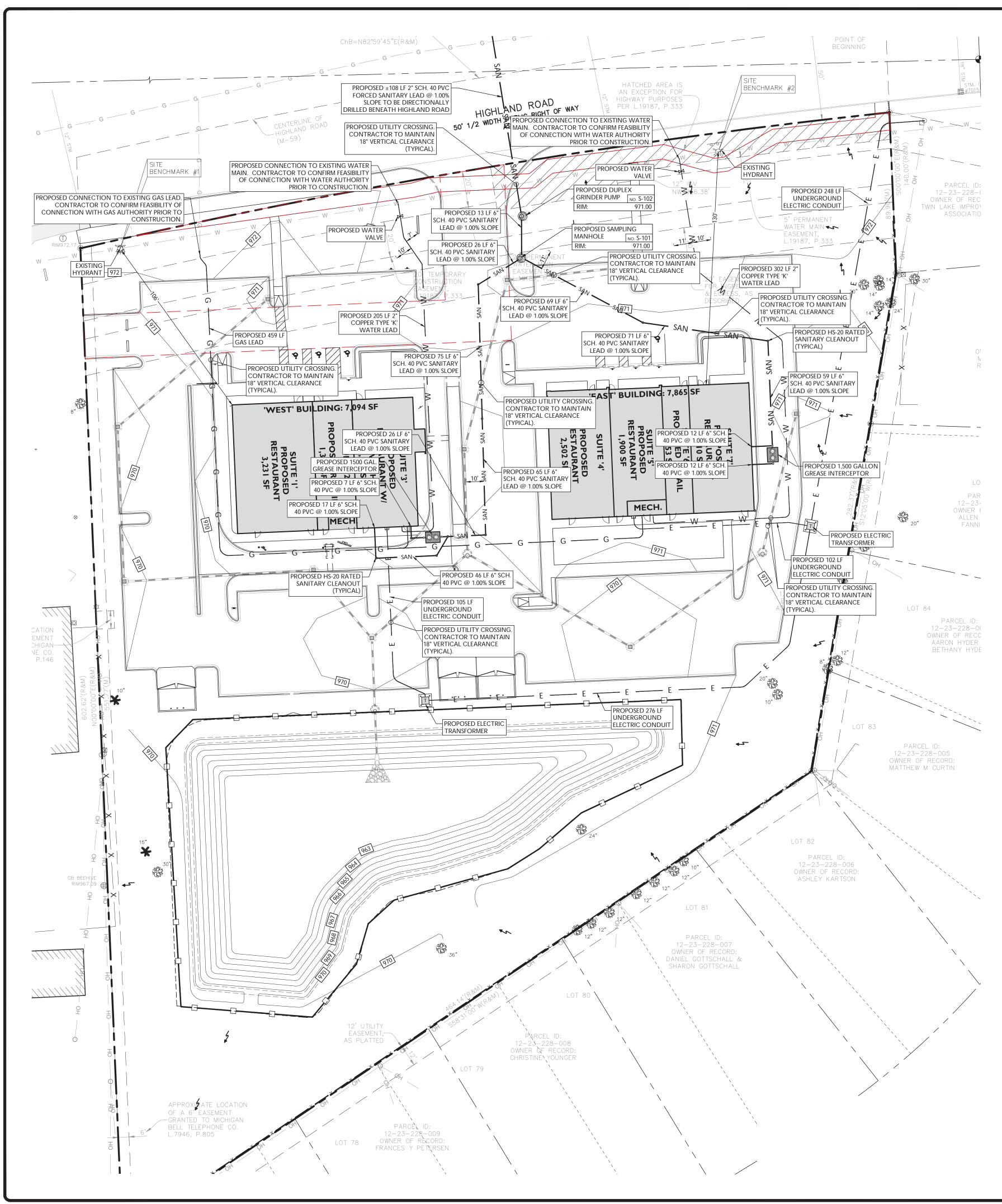
V= 33,000 x C x A

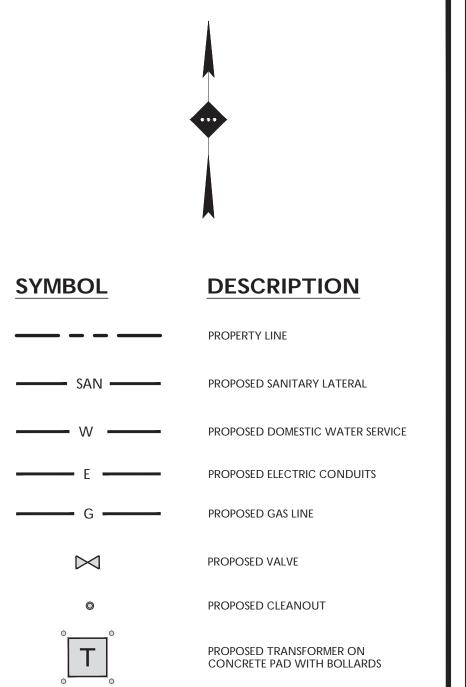
Proposed Basin Volume


Elevation Surface Area (SF) Total Volume (CF)

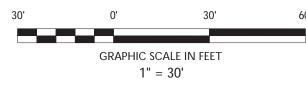
	rotai volume (Cr)	Surface Area (SF)	Elevation
	0	9315	963.00
	10,101	10,887	964.00
	21,853	12.617	965.00
	35,397	14.470	966.00
	50,857	16.451	967.00
	68,334	18,502	968.00
	87,887	20,605	969.00
Top of Storage Elevation	94, 75	21.317	969.30
Freeboard	116,581	23,495	970.30

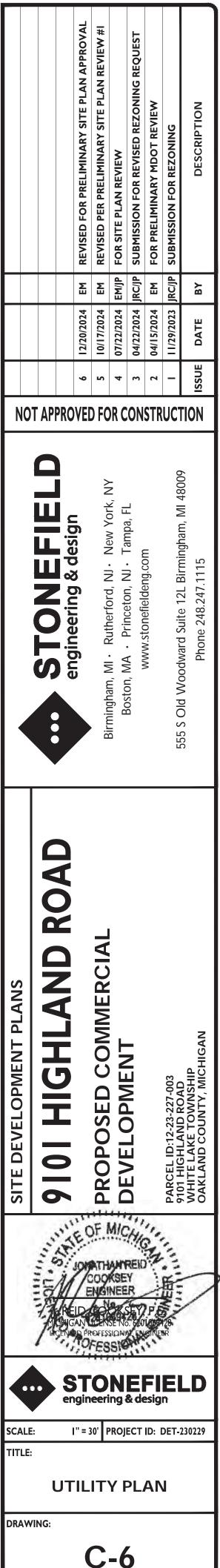

DEWATERING CALCULATIONS


Discarded (cfs)	Elevation (feet)	Storage (cubic-feet)	(cfs)	Time hours)
0.00	963.00	0	0.00	0.00
0.00	963.00	0	0.00	2.50
0.00	963.00	0	0.00	5.00
0.02	963.04	12	0.03	7.50
0.21	963.43	924	0.47	10.00
1.28	967.60	55,657	4.88	12.50
1.37	967.99	62,686	1.30	15.00
1.33	967.82	59,565	0.83	17.50
1.26	967.52	54,215	0.57	20.00
1.18	967.16	48,056	0.51	22.50
1.08	965.71	40,776	0.00	25.00
0.95	965.12	31,645	0.00	27.50
0.83	965.55	23,622	0.00	30.00
0.73	965.01	16,593	0.00	32.50
0.62	964.51	10,535	0.00	35.00
0.52	964.04	5,426	0.00	37.50
0.29	963.59	1,754	0.00	40 00
0.07	963.16	131	0.00	42.50
0.00	963.00	0	0.00	45.00
0.00	963.00	D	0.00	47.50
0.00	963.00	0	0.00	50.00
0.00	963.00	0	0.00	52 50
0.00	963.00	0	0.00	55.00
0.00	963.00	0	0.00	57 50
0.00	963.00	0	0.00	60.00
0.00	963.00	0	0.00	62 50
0.00	963.00	0	0.00	65.00
0.00	963.00	0	0.00	67.50
0.00	963.00	0	0.00	70.00
0.00	963.00	0	0.00	72.50
0.00	963.00	0	0.00	75.00
0.00	963.00	0	0.00	77 50
0.00	963.00	0	0.00	80.00


* PER HYDROCAD MODEL, STORMWATER BASIN DEWATERS IN 45 HOURS ASSUMING AN INFILTRATION RATE OF 2.00 IN / HR (INFILTRATION TO BE CONFIRMED WITH GEOTECHNICAL INVESTIGATION PRIOR TO FINAL SITE PLAN.

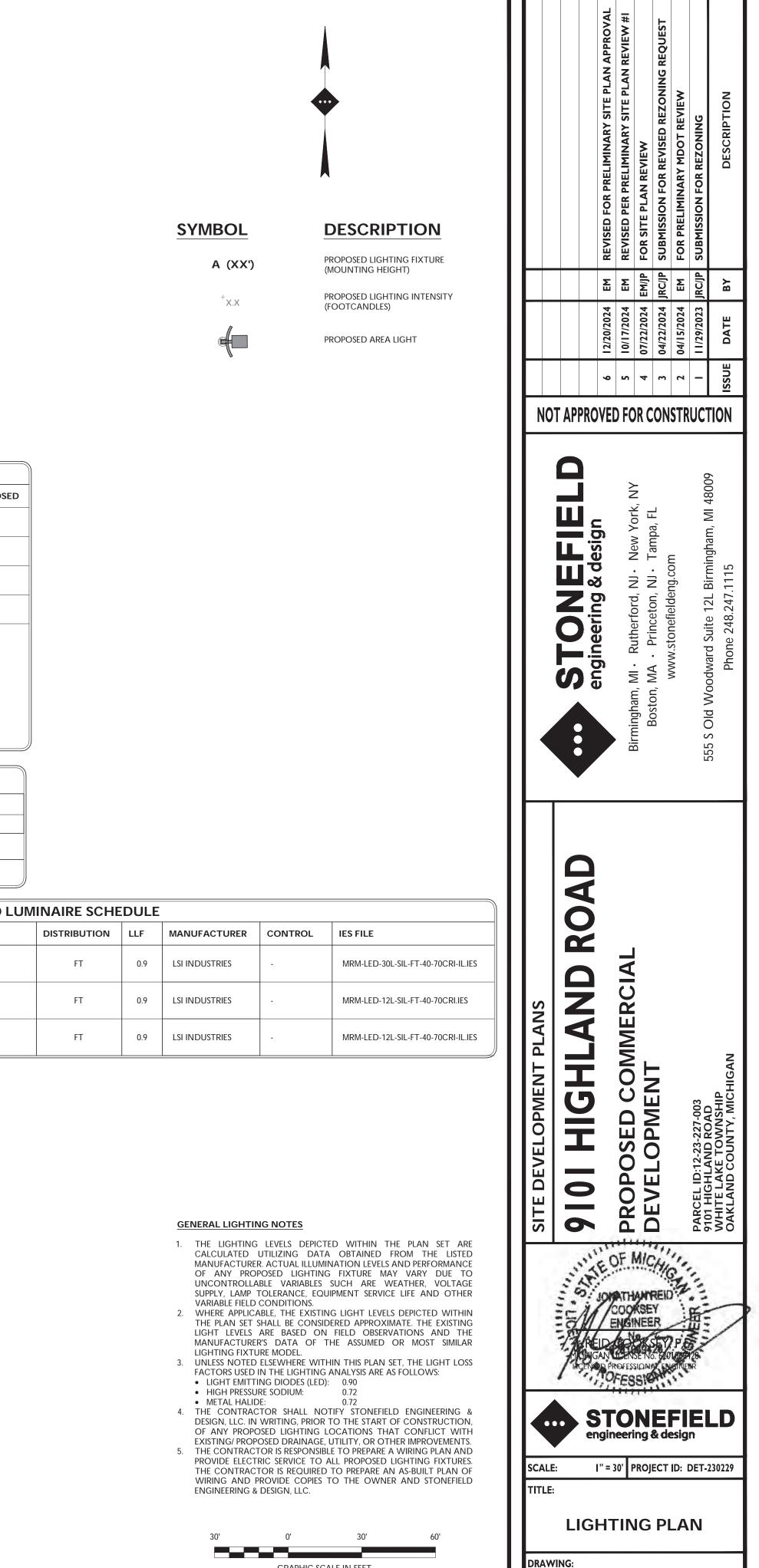
1" = 30'


MANHOLE SCHEDULE

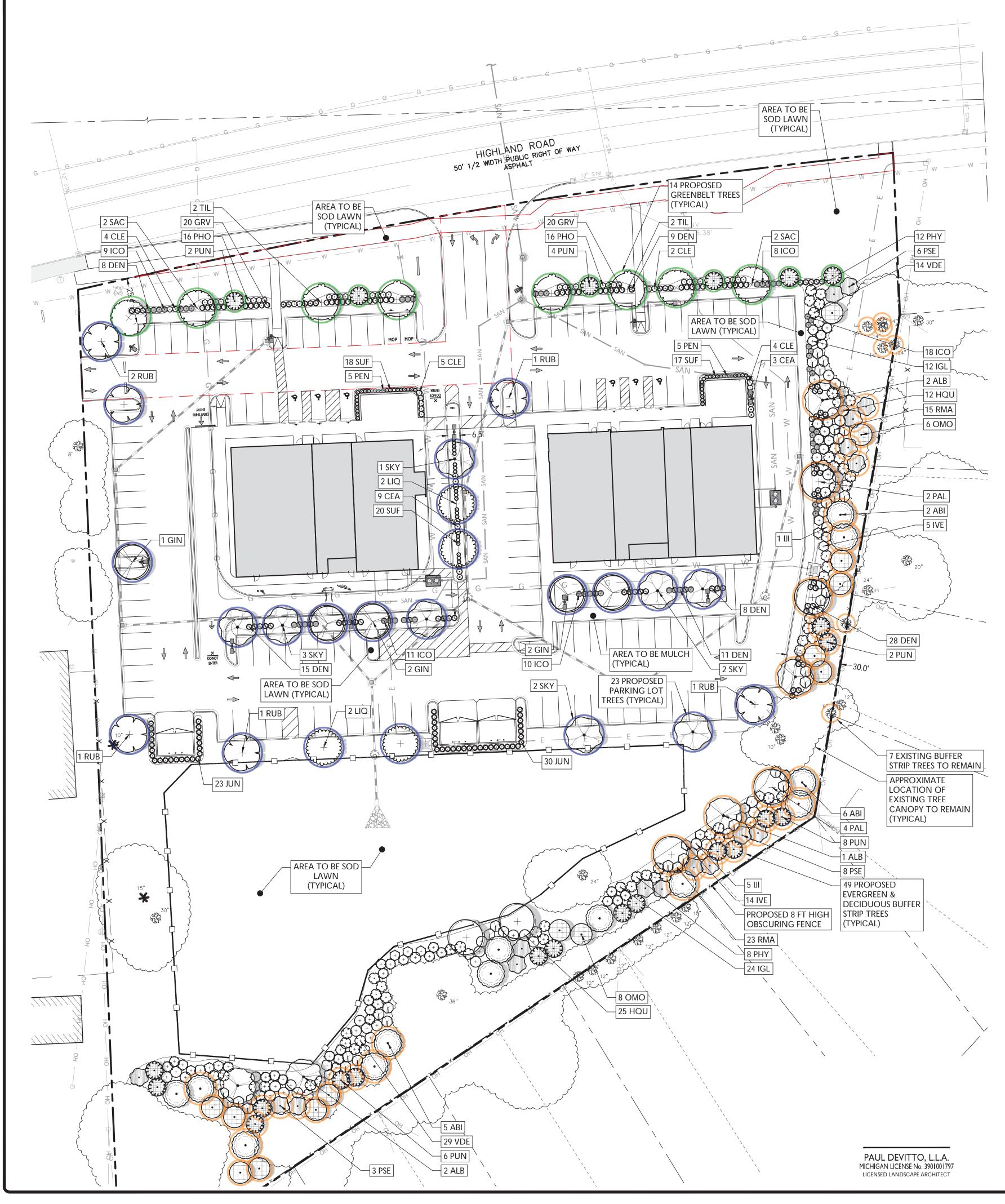

NUM	TYPE	RIM (FT)	SIZE (IN)	DIR	INV ELEV (FT)
70065	CATCH BASIN	971.68	12	N	968.03
70131	CATCH BASIN	970.71	12	E	966.71
70140	CATCH BASIN	970.70	12	w	966.50
		970,70	12	N	966.45
		970,70	12	S	966,55
70157	CATCH BASIN	971.02	18	N	964.12

 THE CONTRACTOR IS REQUIRED TO CALL THE APPROPRIATE AUTHORITY FOR NOTICE OF CONSTRUCTION/EXCAVATION AND UTILITY MARK OUT PRIOR TO THE START OF CONSTRUCTION IN ACCORDANCE WITH STATE LAW. CONTRACTOR IS REQUIRED TO CONFIRM THE HORIZONTAL AND VERTICAL LOCATION OF UTILITIES IN THE FIELD. SHOULD A DISCREPANCY EXIST BETWEEN THE FIELD LOCATION OF A UTILITY AND THE LOCATION SHOWN ON THE PLAN SET OR SURVEY, THE CONTRACTOR SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN, LLC. IMMEDIATELY IN WRITING.
 THE CONTRACTOR IS RESPONSIBLE TO PROTECT AND MAINTAIN IN

DRAINAGE AND UTILITY NOTES


- OPERATION ALL UTILITIES NOT DESIGNATED TO BE REMOVED.
 3. THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING ANY DAMAGE TO ANY EXISTING UTILITY IDENTIFIED TO REMAIN WITHIN THE LIMITS OF THE PROPOSED WORK DURING CONSTRUCTION.
 4. A MINIMUM HORIZONTAL SEPARATION OF 10 FEET IS REQUIRED
- A MINIMUM HORIZOWIAL SEVER SERVICE AND ANY WATER LINES. IF BETWEEN ANY SANITARY SEWER SERVICE AND ANY WATER LINES. IF THIS SEPARATION CANNOT BE PROVIDED, A CONCRETE ENCASEMENT SHALL BE UTILIZED FOR THE SANITARY SEWER SERVICE AS APPROVED BY STONEFIELD ENGINEERING & DESIGN, LLC.
 ALL WATER LINES SHALL BE VERTICALLY SEPARATED ABOVE SANITARY SEWER LINES BY A MINIMUM DISTANCE OF 18 INCHES. IF THIS
- SEPARATION CANNOT BE PROVIDED, A CONCRETE ENCASEMENT SHALL BE UTILIZED FOR THE SANITARY SEWER SERVICE AS APPROVED BY STONEFIELD ENGINEERING & DESIGN, LLC.
 6. THE CONTRACTOR TO PERFORM A TEST PIT PRIOR TO CONSTRUCTION (RECOMMEND 30 DAYS PRIOR) AT LOCATIONS OF EXISTING UTILITY CROSSINGS FOR WATER AND SANITARY SEWER
- CONNECTION IMPROVEMENTS. SHOULD A CONFLICT EXIST, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY STONEFIELD ENGINEERING & DESIGN, LLC. IN WRITING. 7. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING GAS, FLECTRIC AND TELECOMMUNICATION CONNECTIONS WITH THE
- ELECTRIC AND TELECOMMUNICATION CONNECTIONS WITH THE APPROPRIATE GOVERNING AUTHORITY.
 8. CONTRACTOR SHALL START CONSTRUCTION OF ANY GRAVITY SEWER AT THE LOWEST INVERT AND WORK UP-GRADIENT.
- 9. THE CONTRACTOR IS RESPONSIBLE TO MAINTAIN A RECORD SET OF PLANS REFLECTING THE LOCATION OF EXISTING UTILITIES THAT HAVE BEEN CAPPED, ABANDONED, OR RELOCATED BASED ON THE DEMOLITION/REMOVAL ACTIVITIES REQUIRED IN THIS PLAN SET. THIS DOCUMENT SHALL BE PROVIDED TO THE OWNER FOLLOWING COMPLETION OF WORK.
- 10. THE CONTRACTOR IS RESPONSIBLE TO MAINTAIN A RECORD OF THE AS-BUILT LOCATIONS OF ALL PROPOSED UNDERGROUND INFRASTRUCTURE. THE CONTRACTOR SHALL NOTE ANY DISCREPANCIES BETWEEN THE AS-BUILT LOCATIONS AND THE LOCATIONS DEPICTED WITHIN THE PLAN SET. THIS RECORD SHALL BE PROVIDED TO THE OWNER FOLLOWING COMPLETION OF WORK.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
₫ <u>0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 </u>	
b.o	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1	
0.0 0.0 0.0 0.0 0.1 1.7 2.1 1.4 0.8 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.0 0.0 0.1 1.1 16.8 8.0 7.3 5.5 4.4 5.1 7.2 8.4 7.9 8.0 6.5 3.6 1.6 0.8 0.8 1.1 1.2 1.4 1.6 2.0 2.4 2.4 1.8 1.2 1.5 3.2 5.6 6.7 6.6 6.9 6.7 5.2 3.8 3.4 3.1 3.0 2.7 20 1.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	LIGHTING REQUIREMENTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CODE SECTION REQUIRED PROPOSED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	§ 5.18.G.3 MAXIMUM FC AT PROPERTY LINE (NON-RESIDENTIAL) 0.5 FT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 FC § 5.18.G.3 MAXIMUM FC AT PROPERTY LINE (RESIDENTIAL) 0.0 FC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2 FC § 5.18.G.7 MAXIMUM HEIGHT WITHIN 26 FT TO 60 FT OF PROPERTY LINE 20 FT
	20 FT 20 FT 27.0 FT 27.0 FT
0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5 FT
0.0 0.0 0.1 0.1 0.2 0.9 1.7 1.9 1.5 0.9 0.7 0.9 0.4 0.4 0.4 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0	§ 5.18.G.viii FOOT CANDLE LIMITS FOR VARIOUS LAND USES AVERAGE FOR ENTIRE SITE: GENERAL: 0.5 N/A
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DRIVEWAY: 2.0 1.66
	PARKING: 2.0 2.00 WALKS: 1.0 0.79
	PROTECTIVE: 1.0 N/A BUILDING: 5.0 N/A
b.o b.o b.o b.o b.o b.o b.o b.o b.o b.o b.o	LOADING AREAS: 1.0 0.97
b.0 $b.0$ $b.0$ $b.2$ $b.2$ $b.2$ $b.2$ $b.2$ $b.2$ $b.2$ $b.2$ $b.3$ $b.4$ $b.2$ $b.3$ $b.2$ $b.3$ $b.2$ $b.3$ $b.2$ $b.3$ $b.3$ $b.2$ $b.3$ $b.3$ $b.3$ $b.3$ $b.2$ $b.3$	LIGHTING STATISTICS
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \end{array} $	DESCRIPTION AVERAGE MINIMUM MAXIMUM
by by 0.0 0.0 0.1 0.4 1.0 1.7 2.2 3.0 1.2 2.3 2.6 2.9 3.0 2. 2.7 2.0 1.2 0.6 0.3 0.4 0.7 1.3 1.9 2.3 2.4 2.3 2.2 1.9 1.7 1.8 1.9 2.0 1.9 1.8 1.6 1.4 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	OVERALL PARCEL 1.06 FC 0.00 FC 9.0 FC
	OVERALL PARCEL 1.06 FC 0.00 FC 9.0 FC PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC
D D <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<>	PROPERTY LINE 0.01 FC 0.00 FC 0.4 FC
0.0 0	PROPERTY LINE (NON-RESIDENTIAL)0.01 FC0.00 FC0.4 FCPROPERTY LINE (RESIDENTIAL)0.00 FC0.00 FC0.0 FC
b.0	PROPERTY LINE (NON-RESIDENTIAL)0.01 FC0.00 FC0.04 FCPROPERTY LINE PROPERTY LINE0.00 FC0.00 FC0.0 FC
b b b b b b b b b b b b b b b b b b b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT
bo b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT SINGLE WITH HOUSE SIDE SHIELD MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT
30 b0 b0 b0 b0 b0 b0 b1 b2 b4 b1 b2 b4 b1 b2 b2 b2 b1 b2 b2 b2 b1 b2 b2 b1 b2 b2 b2 b2 b1 b1 <th< th=""><td>PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT</td></th<>	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT
bo b	Indice 0.00 FC 0.01 FC PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT MIRADA MEDIUM- MRM OUTDOOR LED AREA LIGHT
b b b b b b b b b b b b b b b b b b b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
b b b b b b b b b b b b b b b b b b b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol LABEL <t< td=""></t<>
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
b b b b b b b b b b b b b b b b b b b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
b b b b b b b b b b b b b b b b b b b	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
0 0	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
ba or	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	INSTR INSTR INSTR INSTR PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC SYMBOL LABEL QUANTITY SECURITY LINH SINGLE WITH HOUSE SIDE SHELD Image: Side Strength of the strengt of the strength of the strength of the stren
	PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC PROPOSED LUMI SYMBOL LABEL QUANTITY SECURITY LIGHTING Image: Symbol A 4 MirAda ME
	INSTR INSTR INSTR INSTR PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC SYMBOL LABEL QUANTITY SECURITY LINH SINGLE WITH HOUSE SIDE SHELD Image: Side Strength of the strengt of the strength of the strength of the stren
	INSTR INSTR INSTR INSTR PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC SYMBOL LABEL QUANTITY SECURITY LINH SINGLE WITH HOUSE SIDE SHELD Image: Side Strength of the strengt of the strength of the strength of the stren
	INSTR INSTR INSTR INSTR PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC SYMBOL LABEL QUANTITY SECURITY LINH SINGLE WITH HOUSE SIDE SHELD Image: Side Strength of the strengt of the strength of the strength of the stren
	INSTR INSTR INSTR INSTR PROPERTY LINE (NON-RESIDENTIAL) 0.01 FC 0.00 FC 0.4 FC PROPERTY LINE (RESIDENTIAL) 0.00 FC 0.00 FC 0.0 FC SYMBOL LABEL QUANTITY SECURITY LINH SINGLE WITH HOUSE SIDE SHELD Image: Side Strength of the strengt of the strength of the strength of the stren


GRAPHIC SCALE IN FEET 1" = 30'

C-7

FT

FT

FT

CODE SECTION	REQUIRED	PROPOSED
	BUFFER STRIP STANDARDS (EAST PROPERTY LINE)	
§ 5.19.C.i.	MINIMUM WIDTH: 20 FT	30.0 FT
TABLE 5.19	5 FT HIGH VISUAL BARRIER REQUIRED	COMPLIES
	1 DECIDUOUS/EVERGREEN TREE & 4 SHRUBS FOR EVERY 15 LF	
	EAST: 836 FT	
	(836 FT) * (1 TREE / 15 LF) = 56 TREES	7 EXISTING TREES 49 PROPOSED TREES
	(836 FT) * (4 SHRUBS / 15 LF) = 223 SHRUBS	223 SHRUBS
	FENCE STANDARDS	
	MINIMUM HEIGHT: 6-8 FT	8 FT
	GREENBELT STANDARDS (HIGHLAND ROAD)	
	MINIMUM WIDTH: 20 FT	25.4 FT
	1 DECIDUOUS/EVERGREEN TREE & 8 SHRUBS FOR EVERY 30 LF	
	HIGHLAND ROAD: 414 FT	
	(414 FT) * (1 TREE / 30 LF) = 14 TREES	14 TREES
	(414 FT) * (8 SHRUBS / 30 LF) = 110 SHRUBS	110 SHRUBS
	REQUIRED SCREENING	
§ 5.19.D.i.	RB ZONE ADJACENT TO R1-C: BUFFER STRIP & FENCE REQUIRED	COMPLIES
TABLE 5.19.D	RB ZONE ADJACENT TO ROW: GREENBELT REQUIRED	COMPLIES
	INTERIOR LOT LANDSCAPING	
§ 5.19.E.	MINIMUM LOT AREA LANDSCAPING: 15%	
	(195,568 SF) * (0.15)= 29,335 SF	110,896 SF (56%)
	1 TREE & 5 SHRUBS PER 300 SF OF REQUIRED LANDSCAPING	
	(29,335 SF) * (1 TREE / 300 SF) = 97 TREES	16 EXISTING TREES 81 PROPOSED TREES
	(29,335 SF) * (5 SHRUBS / 300 SF) = 489 SHRUBS	489 SHRUBS
§ 5.19.G.ii	PARKING LOT LANDSCAPING	
	20 SF OF LANDSCAPING PER PARKING SPACE	
	(117 SPACES) * (20 SF / 1 SPACE) = 2,340 SF	7,199 SF
	1 TREE & 3 SHRUBS PER 100 SF OF REQUIRED LANDSCAPING	
	(2,340 SF) * (1 TREE / 100 SF) = 23 TREES	23 TREES
	(2,340 SF) * (3 SHRUBS / 100 SF) = 70 SHRUBS	70 SHRUBS
	MINIMUM AREA (CONTAINING TREES): 50 SF	50 SF
	MINIMUM WIDTH (CONTAINING TREES): 5 FT	6.5 FT

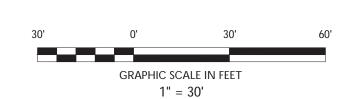
SYMBOL	CODE	QTY	PLANT SCHE BOTANICAL NAME	COMMON NAME	SIZE	CONTAIN
			DECIDUOUS TR	EES		
$\left(\times \right)$	SAC	4	ACER SACCHARUM 'CADDO'	CADDO SUGAR MAPLE	2.5" - 3" CAL	B&B
\bigcirc	GIN	5	GINKGO BILOBA 'AUTUMN GOLD'	AUTUMN GOLD MAIDENHAIR TREE	2.5" - 3" CAL	B&B
	SKY	8	GLEDITSIA TRIACANTHOS INERMIS 'SKYCOLE'	SKYLINE HONEY LOCUST	2.5" - 3" CAL	B&B
	LIQ	4	LIQUIDAMBAR STYRACIFLUA 'MORAINE'	MORAINE SWEET GUM	2.5" - 3" CAL	B&B
\bigcirc	ALB	5	QUERCUS ALBA	WHITE OAK	2.5" - 3" CAL	B&B
(+)	PAL	6	QUERCUS PALUSTRIS	PIN OAK	2.5" - 3" CAL	B&B
$\left(\begin{array}{c} + \\ + \\ \end{array}\right)$	RUB	6	QUERCUS RUBRA	NORTHERN RED OAK	2.5" - 3" CAL	B&B
+	TIL	4	TILIA CORDATA	LITTLELEAF LINDEN	2.5" - 3" CAL	B&B
			EVERGREEN TR	EES		
(\cdot)	ABI	13	ABIES CONCOLOR	WHITE FIR	7` - 8` HT	B&B
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JUN	53	JUNIPERUS SCOPULORUM 'SKYROCKET'	SKYROCKET JUNIPER	7` - 8` HT	B&B
	ОМО	14	PICEA OMORIKA	SERBIAN SPRUCE	7` - 8` HT	B&B
E.	PUN	22	PICEA PUNGENS	COLORADO SPRUCE	7` - 8` HT	B&B
$\bigcirc$	PSE	17	PSEUDOTSUGA MENZIESII	DOUGLAS FIR	7` - 8` HT	B&B
$(\times)$	CEA	21		NEW JERSEY TEA	30" - 36"	POT
 	CLE	15	Clethra Alnifolia 'Ruby Spice'	RUBY SPICE SUMMERSWEET	30" - 36"	POT
	HQU	37	HYDRANGEA QUERCIFOLIA	OAKLEAF HYDRANGEA	30" - 36"	POT
+	IVE	19	ILEX VERTICILLATA	WINTERBERRY	30" - 36"	POT
	IJ	6	ILEX VERTICILLATA 'JIM DANDY'	JIM DANDY WINTERBERRY	30" - 36"	POT
<u> </u>	РНҮ	20	PHYSOCARPUS OPULIFOLIUS	NINEBARK	30" - 36"	POT
	РНО	32	PHYSOCARPUS OPULIFOLIUS 'LITTLE	LITTLE DEVIL DWARF	30" - 36"	POT
	VDE	43	DEVIL' VIBURNUM DENTATUM	NINEBARK VIBURNUM	30" - 36"	POT
Ľ.			EVERGREEN SHR		- •	
$\bigcirc$	SUF	85	BUXUS SEMPERVIRENS 'SUFFRUTICOSA'	SUFFRUTICOSA COMMON 12" -		POT
$\underline{\bigcirc}$	GRV	40	BUXUS X 'GREEN VELVET'	GREEN VELVET BOXWOOD	12" - 15"	POT
+	IGL	36	ILEX GLABRA	INKBERRY HOLLY	30" - 36"	POT
$\odot$	ICO	56	ILEX GLABRA 'COMPACTA'	COMPACT INKBERRY	30" - 36"	POT
$\bigcirc$	RMA	38	RHODODENDRON MAXIMUM	ROSEBAY RHODODENDRON	30" - 36"	POT
Ō	DEN	74	TAXUS X MEDIA 'DENSIFORMIS' GRASSES	DENSE ANGLO-JAPANESE YEW	30" - 36"	РОТ
£3	PEN	10	PENNISETUM ALOPECUROIDES 'LITTLE BUNNY'	LITTLE BUNNY FOUNTAIN GRASS	1 GAL.	РОТ

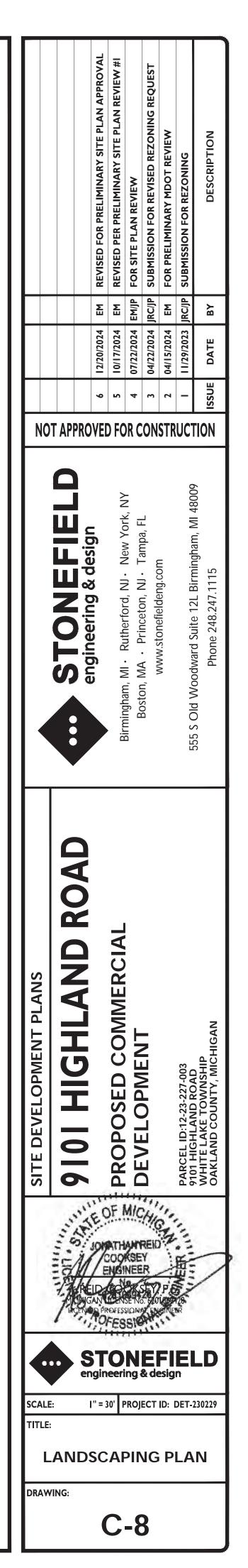
THE PLAN SHALL DICTATE.

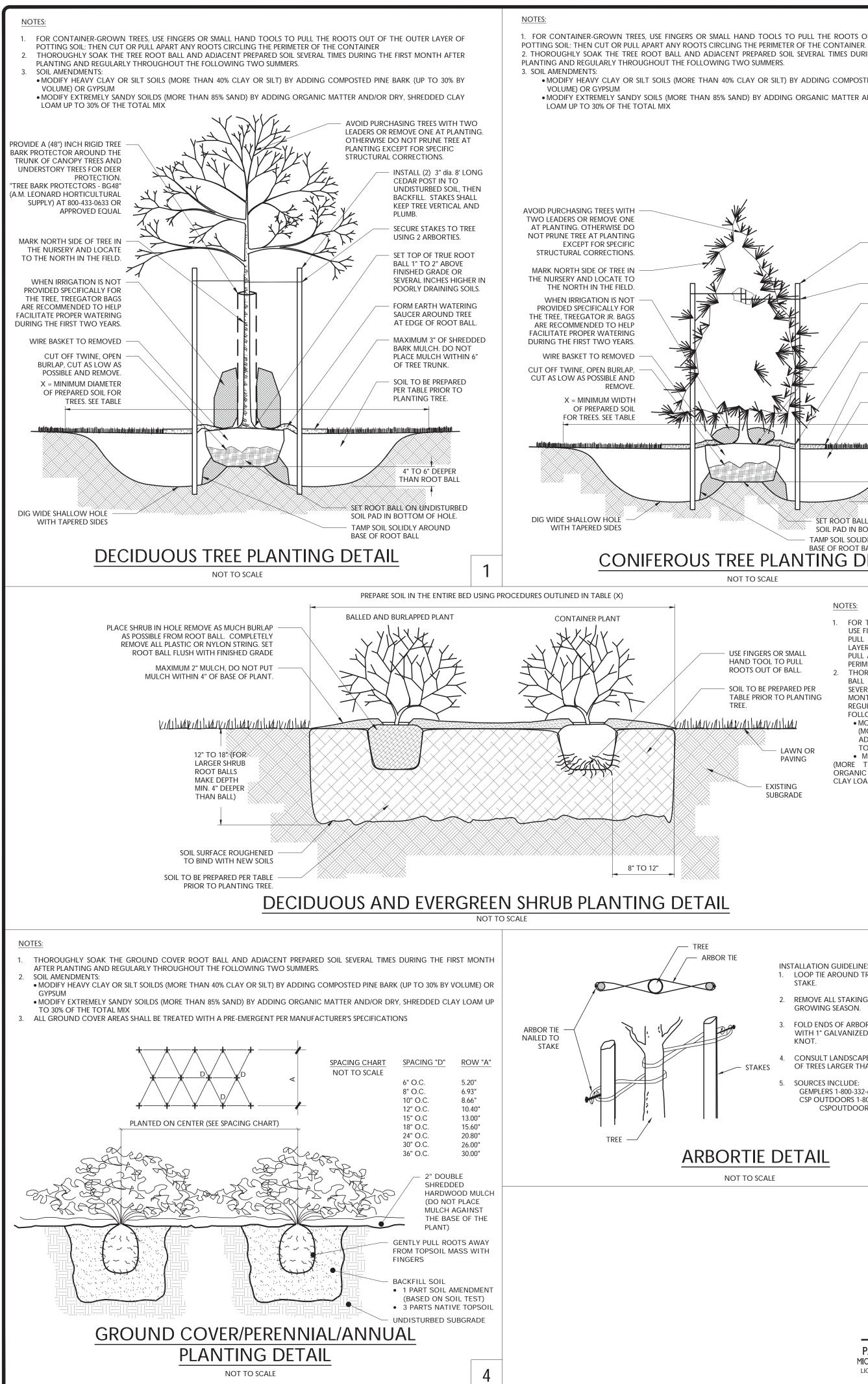
# DESCRIPTION

SYMBOL

PROPOSED GREENBELT TREES PROPOSED BUFFER STRIP TREES


PROPOSED PARKING LOT TREES





SYSTEM SEPARATING PLANTING BEDS FROM LAWN AREA. PRIOR TO CONSTRUCTION, DESIGN IS TO BE SUBMITTED TO THE PROJECT LANDSCAPE DESIGNER FOR REVIEW AND APPROVAL. WHERE POSSIBLE, DRIP IRRIGATION AND OTHER WATER CONSERVATION TECHNIQUES SUCH AS RAIN SENSORS SHALL BE IMPLEMENTED. CONTRACTOR TO VERIFY MAXIMUM ON SITE DYNAMIC WATER PRESSURE AVAILABLE MEASURED IN PSI. PRESSURE REDUCING DEVICES OR BOOSTER PUMPS SHALL BE PROVIDED TO MEET SYSTEM PRESSURE REQUIREMENTS. DESIGN TO SHOW ALL VALVES, PIPING, HEADS, BACKFLOW PREVENTION, METERS, CONTROLLERS, AND SLEEVES WITHIN HARDSCAPE AREAS.

### LANDSCAPING NOTES

- 1. THE CONTRACTOR SHALL RESTORE ALL DISTURBED GRASS AND LANDSCAPED AREAS TO MATCH EXISTING CONDITIONS UNLESS INDICATED OTHERWISE WITHIN THE PLAN SET.
- THE CONTRACTOR SHALL RESTORE ALL DISTURBED LAWN AREAS WITH A MINIMUM 4 INCH LAYER OF TOPSOIL AND SEED. 3. THE CONTRACTOR SHALL RESTORE MULCH AREAS WITH A MINIMUM
- 3 INCH LAYER OF MULCH . 4. THE MAXIMUM SLOPE ALLOWABLE IN LANDSCAPE RESTORATION
- AREAS SHALL BE 3 FEET HORIZONTAL TO 1 FOOT VERTICAL (3:1 SLOPE) UNLESS INDICATED OTHERWISE WITHIN THE PLAN SET. 5. THE CONTRACTOR IS REQUIRED TO LOCATE ALL SPRINKLER HEADS IN AREA OF LANDSCAPING DISTURBANCE PRIOR TO
- CONSTRUCTION. THE CONTRACTOR SHALL RELOCATE SPRINKLER HEADS AND LINES IN ACCORDANCE WITH OWNER'S DIRECTION WITHIN AREAS OF DISTURBANCE. 6. THE CONTRACTOR SHALL ENSURE THAT ALL DISTURBED
- LANDSCAPED AREAS ARE GRADED TO MEET FLUSH AT THE ELEVATION OF WALKWAYS AND TOP OF CURB ELEVATIONS EXCEPT UNLESS INDICATED OTHERWISE WITHIN THE PLAN SET. NO ABRUPT CHANGES IN GRADE ARE PERMITTED IN DISTURBED LANDSCAPING AREAS.







1. FOR CONTAINER-GROWN TREES, USE FINGERS OR SMALL HAND TOOLS TO PULL THE ROOTS OUT OF THE OUTER LAYER OF 2. THOROUGHLY SOAK THE TREE ROOT BALL AND ADJACENT PREPARED SOIL SEVERAL TIMES DURING THE FIRST MONTH AFTER

• MODIFY HEAVY CLAY OR SILT SOILS (MORE THAN 40% CLAY OR SILT) BY ADDING COMPOSTED PINE BARK (UP TO 30% BY • MODIFY EXTREMELY SANDY SOILS (MORE THAN 85% SAND) BY ADDING ORGANIC MATTER AND/OR DRY, SHREDDED CLAY

#### GENERAL LANDSCAPING NOTES

SEED VERIFYING TYPE AND PURITY.

DESIGNER, OR GOVERNING MUNICIPAL OFFICIAL

PROTECTION OF EXISTING VEGETATION NOTES

PLANTS AT ANY TIME AND AT ANY PLACE.

ACTIVITIES HAVE BEEN COMPLETED

WORK SHALL BE PERFORMED AS FOLLOWS:

IF SO REQUESTED

- SPECIFICATIONS, APPROVED OR FINAL DRAWINGS, AND INSTRUCTIONS PROVIDED BY THE PROJECT LANDSCAPE DESIGNER, MUNICIPAL OFFICIALS, OR OWNER/OWNER'S REPRESENTATIVE. ALL WORK COMPLETED AND MATERIALS FURNISHED AND WORK MUST BE CARRIED OUT ONLY DURING WEATHER CONDITIONS FAVORABLE TO LANDSCAPE CONSTRUCTION AND TO THE HEALTH AND WELFARE OF PLANTS. THE SUITABILITY OF SUCH WEATHER CONDITIONS SHALL BE DETERMINED BY THE 4. IF SAMPLES ARE REQUESTED, THE LANDSCAPE CONTRACTOR IS TO SUBMIT CERTIFICATION TAGS FROM TREES, SHRUBS AND LANDSCAPE CONTRACTOR SHALL PROVIDE NOTICE AT LEAST FORTY-EIGHT HOURS (48 HRS.) IN ADVANCE OF THE VARIETIES AND SIZES OF MATERIALS INCLUDED FOR EACH SHIPMENT SHALL BE FURNISHED TO THE PROJECT LANDSCAPE
- BEFORE COMMENCING WORK, ALL EXISTING VEGETATION WHICH COULD BE IMPACTED AS A RESULT OF THE PROPOSED CONSTRUCTION ACTIVITIES MUST BE PROTECTED FROM DAMAGE BY THE INSTALLATION OF TREE PROTECTION FENCING. FENCING SHALL BE LOCATED AT THE DRIP-LINE OR LIMIT OF DISTURBANCE AS DEPICTED WITHIN THE APPROVED OR FINAL PLAN SET, ESTABLISHING THE TREE PROTECTION ZONE. FENCE INSTALLATION SHALL BE IN ACCORDANCE WITH THE
- PROVIDED "TREE PROTECTION FENCE DETAIL." NO WORK MAY BEGIN UNTIL THIS REQUIREMENT IS FULFILLED. THE FENCING SHALL BE INSPECTED REGULARLY BY THE LANDSCAPE CONTRACTOR AND MAINTAINED UNTIL ALL CONSTRUCTION IN ORDER TO AVOID DAMAGE TO ROOTS, BARK OR LOWER BRANCHES, NO VEHICLE, EQUIPMENT, DEBRIS, OR OTHER DETAILS MATERIALS SHALL BE DRIVEN, PARKED OR PLACED WITHIN THE TREE PROTECTION ZONE. ALL ON-SITE CONTRACTORS SHALL USE ANY AND ALL PRECAUTIONARY MEASURES WHEN PERFORMING WORK AROUND TREES, WALKS, PAVEMENTS, UTILITIES,

- AND ANY OTHER FEATURES EITHER EXISTING OR PREVIOUSLY INSTALLED UNDER THIS CONTRACT. 3. IN RARE INSTANCES WHERE EXCAVATING, FILL, OR GRADING IS REQUIRED WITHIN THE DRIP-LINE OF TREES TO REMAIN, THE • TRENCHING: WHEN TRENCHING OCCURS AROUND TREES TO REMAIN, THE TREE ROOTS SHALL NOT BE CUT. BUT THE TRENCH SHALL BE TUNNELED UNDER OR AROUND THE ROOTS BY CAREFUL HAND DIGGING AND WITHOUT INJURY TO
- THE ROOTS. NO ROOTS, LIMBS, OR WOODS ARE TO HAVE ANY PAINT OR MATERIAL APPLIED TO ANY SURFACE. • RAISING GRADES: WHEN THE GRADE AT AN EXISTING TREE IS BELOW THE NEW FINISHED GRADE AND FILL NOT EXCEEDING 6 INCHES (6") IS REQUIRED, CLEAN, WASHED GRAVEL FROM ONE TO TWO INCHES (1" - 2") IN SIZE SHALL BE PLACED DIRECTLY AROUND THE TREE TRUNK. THE GRAVEL SHALL EXTEND OUT FROM THE TRUNK ON ALL SIDES A MINIMUM OF 18 INCHES (18") AND FINISH APPROXIMATELY TWO INCHES (2") ABOVE THE FINISH GRADE AT TREE. INSTALL GRAVEL BEFORE ANY FARTH FILL IS PLACED. NEW FARTH FILL SHALL NOT BE LEFT IN CONTACT WITH THE TRUNK OF ANY TREE REQUIRING FILL. WHERE FILL EXCEEDING 6 INCHES (6") IS REQUIRED, A DRY LAID TREE WELL SHALL BE CONSTRUCTED. IF APPLICABLE, TREE WELL INSTALLATION SHALL BE IN ACCORDANCE WITH THE PROVIDED "TREE WELL DETAIL.

INSTALLED SHALL BE IN STRICT ACCORDANCE WITH THE INTENTION OF THE SPECIFICATIONS, DRAWINGS, AND

3. IT IS THE RESPONSIBILITY OF THE LANDSCAPE CONTRACTOR, BEFORE ORDERING OR PURCHASING MATERIALS, TO PROVIDE

5. UNLESS OTHERWISE AUTHORIZED BY THE PROJECT LANDSCAPE DESIGNER OR GOVERNING MUNICIPAL OFFICIAL, THE

6. THE PROJECT LANDSCAPE DESIGNER OR GOVERNING MUNICIPAL OFFICIAL RESERVES THE RIGHT TO INSPECT AND REJECT

ANTICIPATED DELIVERY DATE OF ANY PLANT MATERIALS TO THE PROJECT SITE. A LEGIBLE COPY OF THE INVOICE. SHOWING

SAMPLES OF THOSE MATERIALS TO THE PROJECT LANDSCAPE DESIGNER OR GOVERNING MUNICIPAL OFFICIAL FOR APPROVAL,

INSTRUCTIONS AND EXECUTED WITH THE STANDARD LEVEL OF CARE FOR THE LANDSCAPE INDUSTRY.

PROJECT LANDSCAPE DESIGNER OR GOVERNING MUNICIPAL OFFICIAL

• LOWERING GRADES: EXISTING TREES LOCATED IN AREAS WHERE THE NEW FINISHED GRADE IS TO BE LOWERED, SHALL HAVE RE-GRADING WORK DONE BY HAND TO THE INDICATED ELEVATION, NO GREATER THAN SIX INCHES (6"). ROOTS SHALL BE CUT CLEANLY THREE INCHES (3") BELOW FINISHED GRADE UNDER THE DIRECTION OF A LICENSED ARBORIST WHERE CUT EXCEEDING 6 INCHES (6") IS REQUIRED, A DRY LAID RETAINING WALL SHALL BE CONSTRUCTED. IF APPLICABLE THE RETAINING WALL INSTALLATION SHALL BE IN ACCORDANCE WITH THE PROVIDED "TREE RETAINING WALL DETAIL."

SOIL PREPARATION AND MULCH NOTES:

- 1. LANDSCAPE CONTRACTOR SHALL OBTAIN A SOIL TEST OF THE IN-SITU TOPSOIL BY A CERTIFIED SOIL LABORATORY PRIOR TO PLANTING. LANDSCAPE CONTRACTOR SHALL ALLOW FOR A TWO WEEK TURNAROUND TIME FROM SUBMITTAL OF SAMPLE TO NOTIFICATION OF RESULTS 2. BASED ON SOIL TEST RESULTS, ADJUST THE RATES OF LIME AND FERTILIZER THAT SHALL BE MIXED INTO THE TOP SIX INCHES
- (6") OF TOPSOIL. THE LIME AND FERTILIZER RATES PROVIDED WITHIN THE "SEED SPECIFICATION" OR "SOD SPECIFICATION" IS APPROXIMATE AND FOR BIDDING PURPOSES ONLY. IF ADDITIONAL AMENDMENTS ARE NECESSARY, ADJUST THE TOPSOIL AS FOLLOWS • MODIFY HEAVY CLAY OR SILT SOILS (MORE THAN 40% CLAY OR SILT) BY ADDING COMPOSTED PINE BARK (UP TO 30% BY
- VOLUME) OR GYPSUM MODIFY EXTREMELY SANDY SOILS (MORE THAN 85%) BY ADDING ORGANIC MATTER AND/OR DRY, SHREDDED CLAY LOAM UP TO 30% OF THE TOTAL MIX. TOPSOIL SHALL BE FERTILE, FRIABLE, NATURAL TOPSOIL OF LOAMING CHARACTER, WITHOUT ADMIXTURE OF SUBSOIL
- MATERIAL OBTAINED FROM A WELL-DRAINED ARABLE SITE, FREE FROM ALL CLAY, LUMPS, COARSE SANDS, STONES, PLANTS, ROOTS, STICKS, AND OTHER FOREIGN MATERIAL GREATER THAN ONE INCH (1") 4. TOPSOIL SHALL HAVE A PH RANGE OF 5.0-7.0 AND SHALL NOT CONTAIN LESS THAN 6% ORGANIC MATTER BY WEIGH
- 5. OBTAIN TOPSOIL ONLY FROM LOCAL SOURCES OR FROM AREAS HAVING SIMILAR SOIL CHARACTERISTICS TO THAT FOUND AT THE PROJECT SITE D. CONTRACTOR SHALL PROVIDE A SIX INCH (6") DEEP LAYER OF TOPSOIL IN ALL PLANTING AREAS. TOPSOIL SHALL BE SPREAD OVER A PREPARED SURFACE IN A UNIFORM LAYER TO ACHIEVE THE DESIRED COMPACTED THICKNESS. THE SPREADING OF
- TOPSOIL SHALL NOT BE CONDUCTED UNDER MUDDY OR FROZEN SOIL CONDITIONS. UNLESS OTHERWISE NOTED IN THE CONTRACT, THE LANDSCAPE CONTRACTOR SHALL BE RESPONSIBLE FOR THE INSTALLATION OF TOPSOIL AND THE ESTABLISHMENT OF FINE-GRADING WITHIN THE DISTURBED AREA OF THE SITE.
- LANDSCAPE CONTRACTOR SHALL VERIFY THAT THE SUB-GRADE ELEVATION MEETS THE FINISHED GRADE ELEVATION ( REQUIRED TOPSOIL), IN ACCORDANCE WITH THE APPROVED OR FINAL GRADING PLAN 9. ALL LAWN AND PLANTING AREAS SHALL BE GRADED TO A SMOOTH, EVEN AND UNIFORM PLANE WITH NO ABRUPT CHANGE OF SURFACE AS DEPICTED WITHIN THE APPROVED OR FINAL CONSTRUCTION SET UNLESS OTHERWISE DIRECTED BY THE
- PROJECT LANDSCAPE DESIGNER OR MUNICIPAL OFFICIAL 10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROPER SURFACE AND SUBSURFACE PLANT BED DRAINAGE PRIOR TO THE INSTALLATION OF PLANTINGS. IF POOR DRAINAGE CONDITIONS EXIST, CORRECTIVE ACTION SHALL BE TAKEN PRIOR TO INSTALLATION. ALL PLANTING AND LAWN AREAS SHALL BE GRADED AND MAINTAINED TO ALLOW A FREE FLOW OF SURFACE W/ATFR
- 11. Double shredded hardwood mulch or approved equal shall be used as a three inch (3") top dressing in all SHRUB PLANTING BEDS AND AROUND ALL TREES PLANTED BY LANDSCAPE CONTRACTOR. GROUND COVER, PERENNIAL, AND ANNUAL PLANTING BEDS SHALL BE MULCHED WITH A TWO INCH (2") TOP DRESSING. SINGLE TREES OR SHRUBS SHALL BE MULCHED TO AVOID CONTACT WITH TRUNK OR PLANT STEM. MULCH SHALL BE OF SUFFICIENT CHARACTER AS NOT TO BE FASILY DISPLACED BY WIND OR WATER RUNOFF
- 12. WHENEVER POSSIBLE, THE SOIL PREPARATION AREA SHALL BE CONNECTED FROM PLANTING TO PLANTING. 13. Soil shall be loosened with a backhoe or other large coarse-tiling equipment unless the soil is frozen or EXCESSIVELY WET. TILING THAT PRODUCES LARGE, COARSE CHUNKS OF SOIL IS PREFERABLE TO TILING THAT RESULTS IN FINE GRAINS UNIFORM IN TEXTURE. AFTER THE AREA IS LOOSENED IT SHALL NOT BE DRIVEN OVER BY ANY VEHICLE
- 14. APPLY PRE-EMERGENT WEED CONTROL TO ALL PLANT BEDS PRIOR TO MULCHING. ENSURE COMPATIBILITY BETWEEN PRODUCT AND PLANT MATERIAL 15. ALL PLANTING SOIL SHALL BE AMENDED WITH THE FOLLOWING

MYCRO® TREE SAVER - A DRY GRANULAR MYCORRHIZAL FUNGI INOCULANT THAT IS MIXED IN THE BACKFILL WHEN PLANTING TREES AND SHRUBS. IT CONTAINS SPORES OF BOTH ECTOMYCORRHIZAL AND VA MYCORRHIZAL FUNGI (VAM), BENEFICIAL RHIZOSPHERE BACTERIA, TERRA-SORB SUPERABSORBENT HYDROGEL TO REDUCE WATER LEACHING, AND SELECTED ORGANIC MICROBIAL NUTRIENTS

- DIRECTIONS FOR USE: USE 3-OZ PER EACH FOOT DIAMETER OF THE ROOT BALL, OR 3-OZ PER INCH CALIPER. MIX INTO THE BACKFILL WHEN TRANSPLANTING TREES AND SHRUBS. MIX PRODUCT IN A RING-SHAPED VOLUME OF SOIL AROUND THE UPPER PORTION OF THE ROOT BALL, EXTENDING FROM THE SOIL SURFACE TO A DEPTH OF ABOUT 8 INCHES, AND EXTENDING OUT FROM THE ROOT BALL ABOUT 8 INCHES INTO THE BACKFILL. APPLY WATER TO SOIL SATURATION.
- MYCOR® TREE SAVER® IS EFFECTIVE FOR ALL TREE AND SHRUB SPECIES EXCEPT RHODODENDRONS, AZALEAS, AND MOUNTAIN LAUREL, WHICH REQUIRE ERICOID MYCORRHIZAE • SOIL PH: THE FUNGI IN THIS PRODUCT WERE CHOSEN BASED ON THEIR ABILITY TO SURVIVE AND COLONIZE PLANT ROOTS
- IN A PH RANGE OF 3 TO 9. • FUNGICIDES: THE USE OF CERTAIN FUNGICIDES CAN HAVE A DETRIMENTAL EFFECT ON THE INOCULATION PROGRAM. SOIL
- APPLICATION OF ANY FUNGICIDE IS NOT RECOMMENDED FOR TWO WEEKS AFTER APPLICATION. OTHER PESTICIDES: HERBICIDES AND INSECTICIDES DO NOT NORMALLY INTERFERE WITH MYCORRHIZAL FUNGAL DEVELOPMENT, BUT MAY INHIBIT THE GROWTH OF SOME TREE AND SHRUB SPECIES IF NOT USED PROPERLY.
- HEALTHY START MACRO TABS 12-8-8
- FERTILIZER TABLETS ARE PLACED IN THE UPPER 4 INCHES OF BACKFILL SOIL WHEN PLANTING TREES AND SHRUBS. • TABLETS ARE FORMULATED FOR LONG-TERM RELEASE BY SLOW BIODEGRADATION, AND LAST UP TO 2 YEARS AFTER PLANTING. TABLETS CONTAIN 12-8-8 NPK FERTILIZER, AS WELL AS A MINIMUM OF SEVEN PERCENT (7%) HUMIC ACID BY WEIGHT, MICROBIAL NUTRIENTS DERIVED FROM SEA KELP, PROTEIN BYPRODUCTS, AND YUCCA SCHIDIGERA, AND A COMPLEMENT OF BENEFICIAL RHIZOSPHERE BACTERIA. THE STANDARD 21 GRAM TABLET IS SPECIFIED HERE, DIRECTIONS FOR USE: FOR PLANTING BALLED & BURLAPPED (B&B) TREES AND SHRUBS, MEASURE THE THICKNESS OF THE TRUNK, AND USE ABOUT 1 TABLET (21-G) PER HALF-INCH. PLACE THE TABLETS DIRECTLY NEXT TO THE ROOT BALL, EVENLY DISTRIBUTED AROUND ITS PERIMETER, AT A DEPTH OF ABOUT 4 INCHES.

IRRIGATION DURING ESTABLISHMENT				
SIZE AT PLANTING	IRRIGATION FOR VITALITY	IRRIGATION FOR SURVIVAL		
< 2" CALIPER	DAILY FOR TWO WEEKS, EVERY OTHER DAY FOR TWO MONTHS, WEEKLY UNTIL ESTABLISHED	TWO TO THREE TIMES WEEKLY FOR TWO TO THREE MONTHS		
2"-4 CALIPER	DAILY FOR ONE MONTH, EVERY OTHER DAY FOR THREE MONTHS, WEEKLY UNTIL ESTABLISHED	TWO TO THREE TIMES WEEKLY FOR THREE TO FOUR MONTHS		
4 >" CALIPER	DAILY FOR SIX WEEKS, EVERY OTHER DAY FOR FIVE MONTHS, WEEKLY UNTIL ESTABLISHED	TWICE WEEKLY FOR FOUR TO FIVE MONTHS		

1. AT EACH IRRIGATION, APPLY TWO TO THREE GALLONS PER INCH TRUNK CALIPER TO THE ROOT BALL SURFACE. APPLY IT IN A MANNER SO ALL WATER SOAKS THE ENTIRE ROOT BALL DO NOT WATER IF ROOT BALL IS WET/SATURATED ON THE IRRIGATION DAY.

2. WHEN IRRIGATING FOR VITALITY, DELETE DAILY IRRIGATION WHEN PLANTING IN WINTER OR WHEN PLANTING IN COOL CLIMATES. ESTABLISHMENT TAKES THREE TO FOUR MONTHS PER INCH TRUNK CALIPER. NEVER APPLY IRRIGATION IF THE SOIL IS SATURATED.

3. WHEN IRRIGATION FOR SURVIVAL TREES TAKE MUCH LONGER TO ESTABLISH THAN REGULARLY IRRIGATED TREES. IRRIGATION MAY BE REQUIRED IN THE NORMAL HOT, DRY PORTIONS OF THE FOLLOWING YEAR.

INSTALL (2) 3" dia. 8' LONG CEDAR POST IN TO UNDISTURBED SOIL. THEN BACKFILL. STAKES SHALL KEEP TREE VERTICAL AND PLUMB SECURE STAKES TO TREE USING 2 ARBORTIES. SET TOP OF TRUE ROOT BALL 1 TO 2" ABOVE FINISHED GRADE OR SEVERAL INCHES HIGHER IN POORLY DRAINING SOILS. FORM FARTH WATERING SAUCER AROUND TREE AT EDGE OF ROOT BALL. MAXIMUM 3" OF SHREDDED BARK MULCH. DO NOT PLACE MULCH WITHIN 6" OF TREE TRUNK. SOIL TO BE PREPARED PER TABLE PRIOR TO PLANTING TREE. 4" TO 6" DEEPER THAN ROOT BALL - SET ROOT BALL ON UNDISTURBED SOIL PAD IN BOTTOM OF HOLE. TAMP SOIL SOLIDLY AROUND BASE OF ROOT BALL CONIFEROUS TREE PLANTING DETAIL NOT TO SCALE NOTES: 1. FOR THE CONTAINER-GROWN SHRUBS, USE FINGERS OR SMALL HAND TOOL TO PULL THE ROOTS OUT OF THE OUTER LAYER OF POTTING SOIL; THEN CUT OR USE FINGERS OR SMAL PULL APART ANY ROOTS CIRCLING THE HAND TOOL TO PULL PERIMETER OF THE CONTAINER. ROOTS OUT OF BALL. THOROUGHLY SOAK THE SHRUB ROOT BALL AND ADJACENT PREPARED SOIL SOIL TO BE PREPARED PER SEVERAL TIMES DURING THE FIRST TABLE PRIOR TO PLANTING MONTH AFTER PLANTING AND REGULARLY THROUGHOUT THE FOLLOWING TWO SUMMERS. • MODIFY HEAVY CLAY OR SILT SOILS (MORE THAN 40% CLAY OR SILT) BY ADDING COMPOSTED PINE BARK (UP TO 30% BY VOLUME) OR GYPSUM LAWN OF MODIFY EXTREMELY SANDY SOILS PAVING (MORE THAN 85% SAND) BY ADDING ORGANIC MATTER AND/OR DRY, SHREDDED CLAY LOAM UP TO 30% OF THE TOTAL SUBGRADE INSTALLATION GUIDELINES: 1. LOOP TIE AROUND TREE AND NAIL TO CEDAR

STAKE

FOLD ENDS OF ARBORTIE BACK. SECURE TO STAKES

CONSULT LANDSCAPE ARCHITECT FOR STAKING OF TREES LARGER THAN 6

- GEMPLERS 1-800-332-6744 or GEMPLERS.COM CSP OUTDOORS 1-800-592-6940 or CSPOUTDOORS.COM
- **ARBORTIE DETAIL**

NOT TO SCALE

REMOVE ALL STAKING AND TIES AT END OF FIRST GROWING SEASON WITH 1" GALVANIZED ROOFING NAIL OR USE A KNOT

SOURCES INCLUDE

PAUL DEVITTO, L.L.A MICHIGAN LICENSE No. 3901001793 LICENSED LANDSCAPE ARCHITECT

#### PLANT QUALITY AND HANDLING NOTES

1. THE LANDSCAPE CONTRACTOR SHALL FURNISH ALL MATERIALS AND PERFORM ALL WORK IN ACCORDANCE WITH THESE 1. ALL PLANT MATERIAL SHALL CONFORM TO THE AMERICAN STANDARD FOR NURSERY STOCK (ANSI Z60.1-2004) OR LATEST REVISION AS PUBLISHED BY THE AMERICAN NURSERY AND LANDSCAPE ASSOCIATION. 2. IN ALL CASES, BOTANICAL NAMES LISTED WITHIN THE APPROVED OR FINAL PLANT LIST SHALL TAKE PRECEDENCE OVER

> COMMON NAMES 3. ALL PLANTS SHALL BE OF SELECTED SPECIMEN QUALITY, EXCEPTIONALLY HEAVY, TIGHTLY KNIT, SO TRAINED OR FAVORED IN THEIR DEVELOPMENT AND APPEARANCE AS TO BE SUPERIOR IN FORM, NUMBER OF BRANCHES, COMPACTNESS AND SYMMETRY. ALL PLANTS SHALL HAVE A NORMAL HABIT OR SOUND, HEALTHY, VIGOROUS PLANTS WITH WELL DEVELOPED ROOT SYSTEM. PLANTS SHALL BE FREE OF DISEASE, INSECT PESTS, EGGS OR LARVAE 4. PLANTS SHALL NOT BE PRUNED BEFORE DELIVERY. TREES WITH ABRASION OF THE BARK, SUNSCALDS, DISFIGURING KNOTS OR FRESH CUTS OF LIMBS OVER ONE AND ONE-FOURTH INCHES (1-1/4") WHICH HAVE NOT COMPLETELY CALLOUSED SHALL BE

> REJECTED 5. ALL PLANTS SHALL BE TYPICAL OF THEIR SPECIES OR VARIETY AND SHALL HAVE A NORMAL HABIT OF GROWTH AND BE LEGIBLY TAGGED WITH THE PROPER NAME AND SIZE

> 6. THE ROOT SYSTEM OF EACH PLANT SHALL BE WELL PROVIDED WITH FIBROUS ROOTS. ALL PARTS SHALL BE SOUND, HEALTHY, VIGOROUS WELL-BRANCHED AND DENSELY FOLIATED WHEN IN LEAF . All plants designated ball and burlap (b&b) must be moved with the root system as solid units with balls of EARTH FIRMLY WRAPPED WITH BURLAP. THE DIAMETER AND DEPTH OF THE BALLS OF EARTH MUST BE SUFFICIENT TO

ENCOMPASS THE FIBROUS ROOT FEEDING SYSTEMS NECESSARY FOR THE HEALTHY DEVELOPMENT OF THE PLANT. NO PLANT SHALL BE ACCEPTED WHEN THE BALL OF EARTH SURROUNDING ITS ROOTS HAS BEEN BADLY CRACKED OR BROKEN PREPARATORY TO OR DURING THE PROCESS OF PLANTING. THE BALLS SHALL REMAIN INTACT DURING ALL OPERATIONS. ALL PLANTS THAT CANNOT BE PLANTED AT ONCE MUST BE HEELED-IN BY SETTING IN THE GROUND AND COVERING THE BALLS WITH SOIL OR MULCH AND THEN WATERING. HEMP BURLAP AND TWINE IS PREFERABLE TO TREATED. IF TREATED BURLAP IS USED, ALL TWINE IS TO BE CUT FROM AROUND THE TRUNK AND ALL BURLAP IS TO BE REMOVED.

8. PLANTS TRANSPORTED TO THE PROJECT IN OPEN VEHICLES SHALL BE COVERED WITH TARPS OR OTHER SUITABLE COVERS SECURELY FASTENED TO THE BODY OF THE VEHICLE TO PREVENT INJURY TO THE PLANTS. CLOSED VEHICLES SHALL BE ADEQUATELY VENTILATED TO PREVENT OVERHEATING OF THE PLANTS. EVIDENCE OF INADEOUATE PROTECTION FOLLOWING DIGGING, CARELESSNESS WHILE IN TRANSIT, OR IMPROPER HANDLING OR STORAGE SHALL BE CAUSE FOR REJECTION OF PLANT MATERIAL. ALL PLANTS SHALL BE KEPT MOIST, FRESH, AND PROTECTED. SUCH PROTECTION SHALL ENCOMPASS THE ENTIRE PERIOD DURING WHICH THE PLANTS ARE IN TRANSIT, BEING HANDLED, OR ARE IN TEMPORARY STORAGE. 9. ALL PLANT MATERIAL SHALL BE INSTALLED IN ACCORDANCE WITH THE CORRESPONDING LANDSCAPE PLAN AND PLANTING

10. LANDSCAPE CONTRACTOR SHALL MAKE BEST EFFORT TO INSTALL PLANTINGS ON THE SAME DAY AS DELIVERY. IF PLANTS ARE NOT PLANTED IMMEDIATELY ON SITE, PROPER CARE SHALL BE TAKEN TO PLACE THE PLANTINGS IN PARTIAL SHADE WHEN POSSIBLE. THE ROOT BALL SHALL BE KEPT MOIST AT ALL TIME AND COVERED WITH MOISTENED MULCH OR AGED WOODCHIPS. PROPER IRRIGATION SHALL BE SUPPLIED SO AS TO NOT ALLOW THE ROOT BALL TO DRY OUT. PLANTINGS HALL BE UNTIED AND PROPER SPACING SHALL BE ALLOTTED FOR AIR CIRCULATION AND TO PREVENT DISEASE, WILTING, AND LEAF LOSS, PLANTS THAT REMAIN UNPLANTED FOR A PERIOD OF TIME GREATER THAN THREE (3) DAYS SHALL BE HEALED IN WITH TOPSOIL OR MULCH AND WATERED AS REQUIRED TO PRESERVE ROOT MOISTURE. 11. NO PLANT MATERIAL SHALL BE PLANTED IN MUDDY OR FROZEN SOIL

12. PLANTS WITH INJURED ROOTS OR BRANCHES SHALL BE PRUNED PRIOR TO PLANTING UTILIZING CLEAN, SHARP TOOLS. ONLY DISEASED OR INJURED PLANTS SHALL BE REMOVED 13. IF ROCK OR OTHER UNDERGROUND OBSTRUCTION IS ENCOUNTERED, THE LANDSCAPE DESIGNER RESERVES THE RIGHT TO

RELOCATE OR ENLARGE PLANTING PITS OR DELETE PLANT MATERIAL FROM THE CONTRACT. 14. IF PLANTS ARE PROPOSED WITHIN SIGHT TRIANGLES, TREES SHALL BE LIMBED AND MAINTAINED TO A HEIGHT OF EIGHT FEET (8') ABOVE GRADE, AND SHRUBS, GROUND COVER, PERENNIALS, AND ANNUALS SHALL BE MAINTAINED TO A HEIGHT NOT TO EXCEED TWO FEET (2') ABOVE GRADE UNLESS OTHERWISE NOTED OR SPECIFIED BY THE GOVERNING MUNICIPALITY OR AGENCY

15. INSTALLATION SHALL OCCUR DURING THE FOLLOWING SEASONS PLANTS (MARCH 15 - DECEMBER 15)

LAWNS (MARCH 15 - JUNE 15 OR SEPTEMBER 1 - DECEMBER 1) 16. THE FOLLOWING TREES ARE SUSCEPTIBLE TO TRANSPLANT SHOCK AND SHALL NOT BE PLANTED DURING THE FALL SEASON (STARTING SEPTEMBER 15)

**OSTRYA VIRGINIANA** 

ABIES CONCOLOR	CORNUS VARIETIES
ACER BUERGERIANUM	CRATAEGUS VARIETIES
ACER FREEMANII	CUPRESSOCYPARIS LEYLANDII
ACER RUBRUM	FAGUS VARIETIES
ACER SACCHARINUM	HALESIA VARIETIES
BETULA VARIETIES	ILEX X FOSTERII
CARPINUS VARIETIES	ILEX NELLIE STEVENS
CEDRUS DEODARA	ILEX OPACA
CELTIS VARIETIES	JUNIPERUS VIRGINIANA
CERCIDIPHYLLUM VARIETIES	KOELREUTERIA PANICULATA
CERCIS CANADENSIS	LIQUIDAMBAR VARIETIES
CORNUS VARIETIES	LIRIODENDRON VARIETIES
CRATAEGUS VARIETIES	MALUS IN LEAF
	NYSSA SYLVATICA

PINUS NIGRA PLATANUS VARIETIES POPULUS VARIETIES PRUNUS VARIETIES PYRUS VARIETIES QUERCUS VARIETIES (NOT Q. PALUSTRIS) SALIX WEEPING VARIETIES SORBUS VARIETIES TAXODIUM VARIETIES TAXUX B REPANDENS TILIA TOMENTOSA VARIETIES UI MUS PARVIFOLIA VARIFTIES ZELKOVA VARIETIES

17. IF A PROPOSED PLANT IS UNATTAINABLE OR ON THE FALL DIGGING HAZARD LIST, AN EQUIVALENT SPECIES OF THE SAME SIZE MAY BE REQUESTED FOR SUBSTITUTION OF THE ORIGINAL PLANT, ALL SUBSTITUTIONS SHALL BE APPROVED BY THE PROJECT LANDSCAPE DESIGNER OR MUNICIPAL OFFICIAL PRIOR TO ORDERING AND INSTALLATION.

18. DURING THE COURSE OF CONSTRUCTION/PLANT INSTALLATION, EXCESS AND WASTE MATERIALS SHALL BE CONTINUOUSLY and promptly removed at the end of each work day. All debris, materials, and tools shall be properly STORED, STOCKPILED OR DISPOSED OF AND ALL PAVED AREAS SHALL BE CLEANED.

19. THE LANDSCAPE CONTRACTOR SHALL DISPOSE OF ALL RUBBISH AND EXCESS SOIL AT HIS EXPENSE TO AN OFF-SITE LOCATION AS APPROVED BY THE LOCAL MUNICIPALITY. 20. A 90-DAY MAINTENANCE PERIOD SHALL BEGIN IMMEDIATELY AFTER ALL PLANTS HAVE BEEN SATISFACTORILY INSTALLED.

21. MAINTENANCE SHALL INCLUDE, BUT NOT BE LIMITED TO, REPLACING MULCH THAT HAS BEEN DISPLACED BY EROSION OR ) Ther Means, repairing and reshaping water rings or saucers, maintaining stakes and guys if originali REQUIRED, WATERING WHEN NEEDED OR DIRECTED, WEEDING, PRUNING, SPRAYING, FERTILIZING, MOWING THE LAWN, AND PERFORMING ANY OTHER WORK REQUIRED TO KEEP THE PLANTS IN A HEALTHY CONDITION

2. MOW ALL GRASS AREAS AT REGULAR INTERVALS TO KEEP THE GRASS HEIGHT FROM EXCEEDING THREE INCHES (3"). MOWING SHALL BE PERFORMED ONLY WHEN GRASS IS DRY. MOWER BLADE SHALL BE SET TO REMOVE NO MORE THAN ONE THIRD (1/3) OF THE GRASS LENGTH. WHEN THE AMOUNT OF GRASS IS HEAVY, IT SHALL BE REMOVED TO PREVENT DESTRUCTION OF THE UNDERLYING TURF. MOW GRASS AREAS IN SUCH A MANNER AS TO PREVENT CLIPPINGS FROM BLOWING ON PAVED AREAS, AND SIDEWALKS. CLEANUP AFTER MOWING SHALL INCLUDE SWEEPING OR BLOWING OF PAVED AREAS AND SIDEWALKS TO CLEAR THEM FROM MOWING DEBRIS

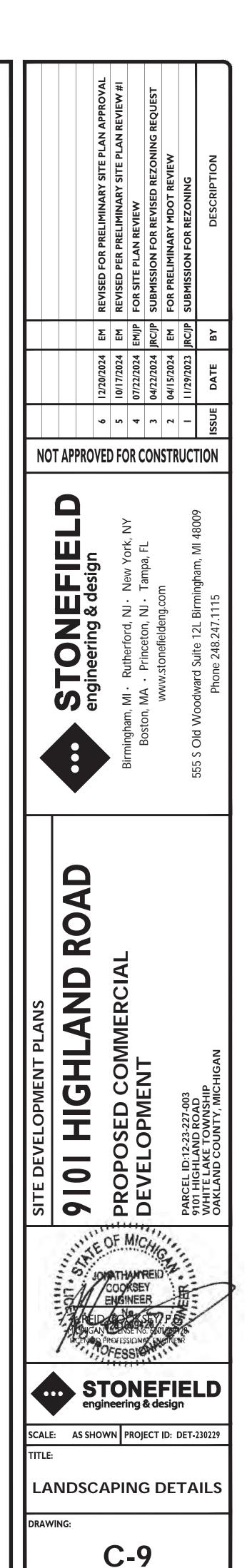
GRASSED AREAS DAMAGED DURING THE PROCESS OF THE WORK SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR, WHO SHALL RESTORE THE DISTURBED AREAS TO A CONDITION SATISFACTORY TO THE PROJECT LANDSCAPE DESIGNER, MUNICIPAL OFFICIAL, OR OWNER/OWNER'S REPRESENTATIVE. THIS MAY INCLUDE FILLING TO GRADE, FERTILIZING, SEEDING, AND MULCHING 24. SHOULD THE OWNER REQUIRE MAINTENANCE BEYOND THE STANDARD 90-DAY MAINTENANCE PERIOD, A SEPARATE

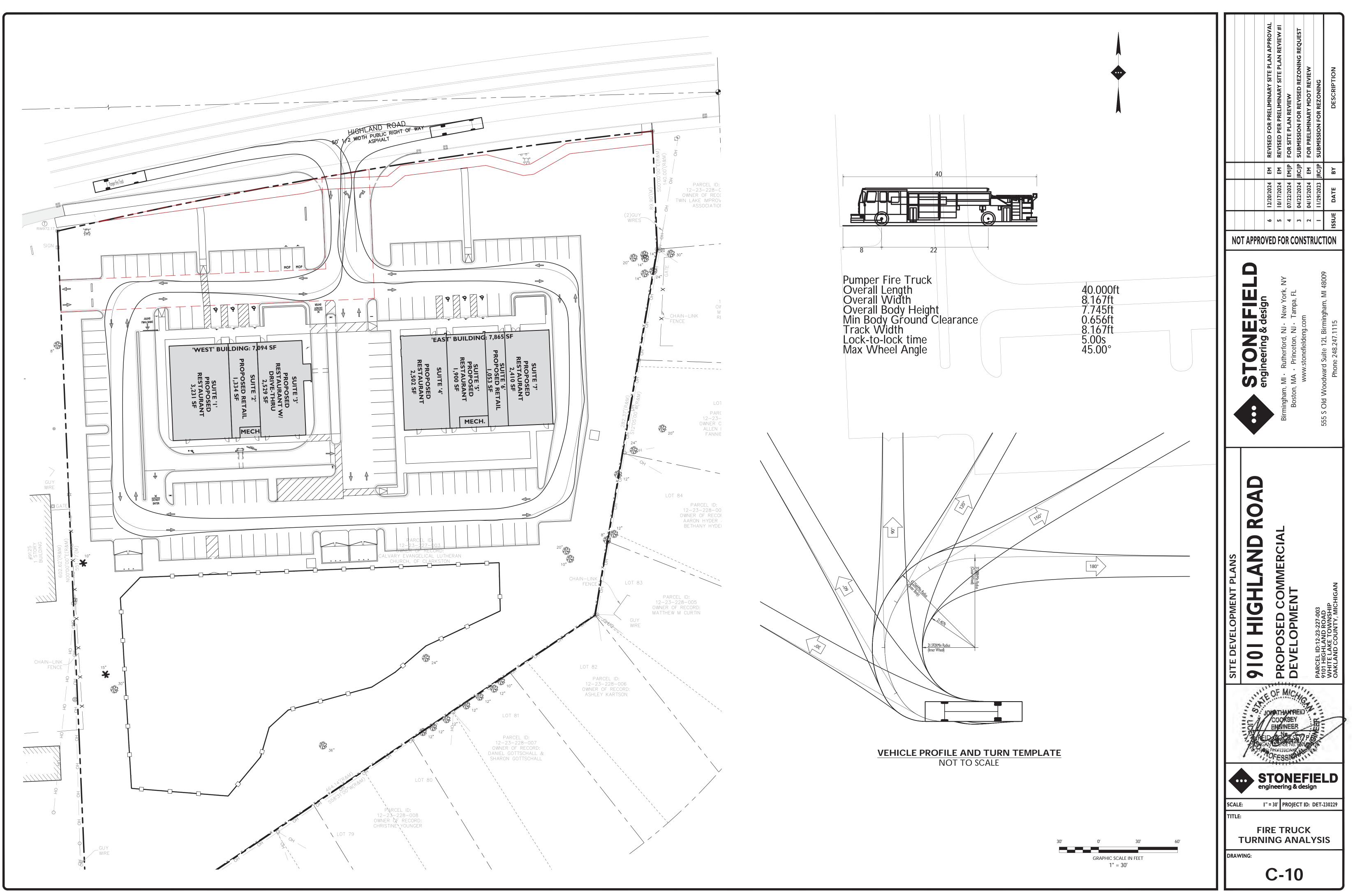
CONTRACT SHALL BE ESTABLISHED. 25 LANDSCAPE CONTRACTOR SHALL WATER NEW PLANTINGS FROM TIME OF INSTALL AND THROUGHOUT REQUIRED 90-DAY MAINTENANCE PERIOD UNTIL PLANTS ARE ESTABLISHED. IF ON-SITE WATER IS NOT AVAILABLE AT THE PROJECT LOCATION,

THE LANDSCAPE CONTRACTOR SHALL FURNISH IT BY MEANS OR A WATERING TRUCK OR OTHER ACCEPTABLE MANNER. 26. THE QUANTITY OF WATER APPLIED AT ONE TIME SHALL BE SUFFICIENT TO PENETRATE THE SOIL TO A MINIMUM OF EIGHT INCHES (8") IN SHRUB BEDS AND SIX INCHES (6") IN TURF AREAS AT A RATE WHICH WILL PREVENT SATURATION OF THE SOIL. 27. IF AN AUTOMATIC IRRIGATION SYSTEM HAS BEEN INSTALLED, IT CAN BE USED FOR WATERING PLANT MATERIAL. HOWEVER, FAILURE OF THE SYSTEM DOES NOT ELIMINATE THE LANDSCAPE CONTRACTOR'S RESPONSIBILITY OF PLANT HEALTH AND ESTABLISHMENT

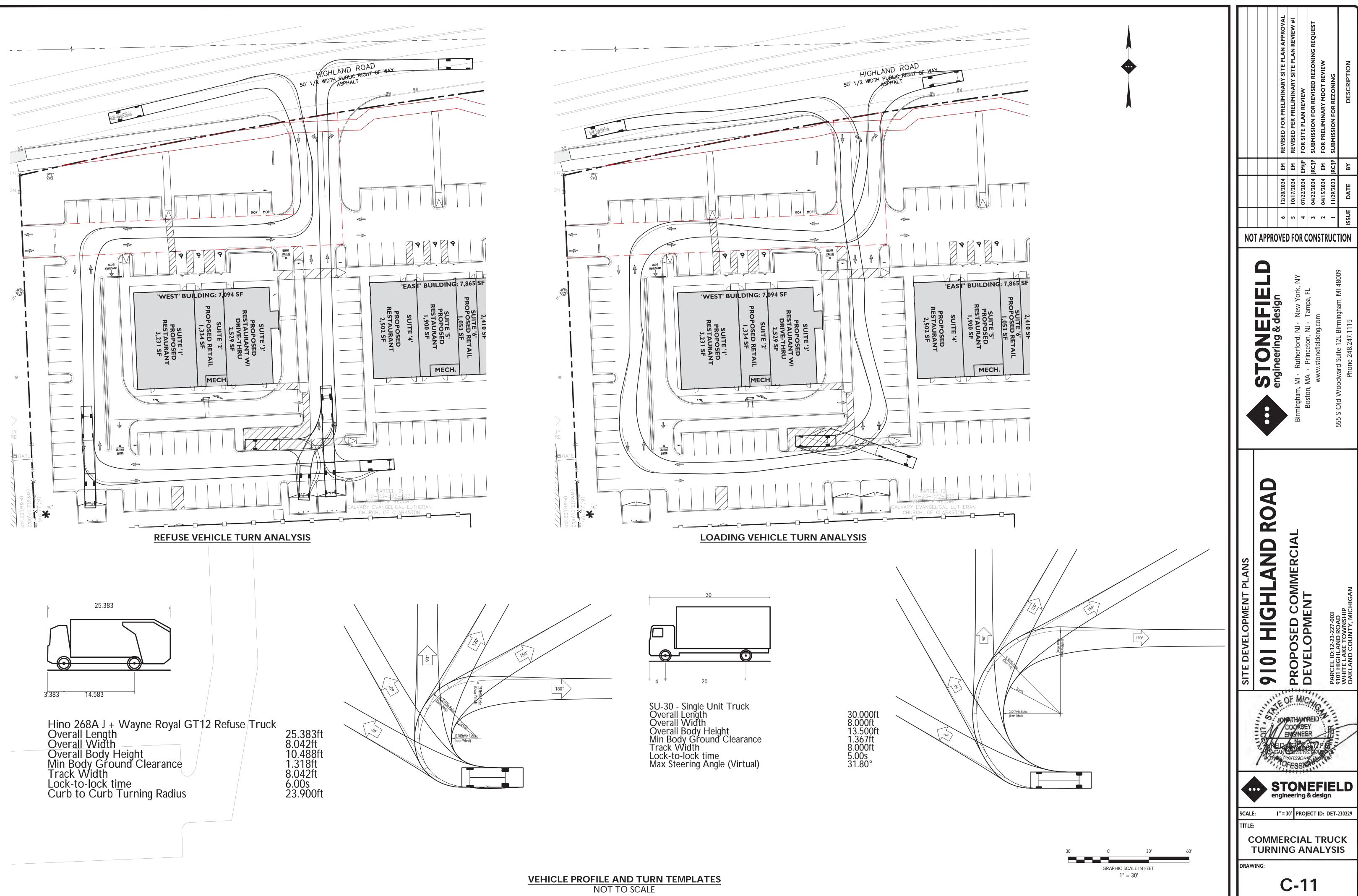
#### PLANT MATERIAL GUARANTEE NOTES

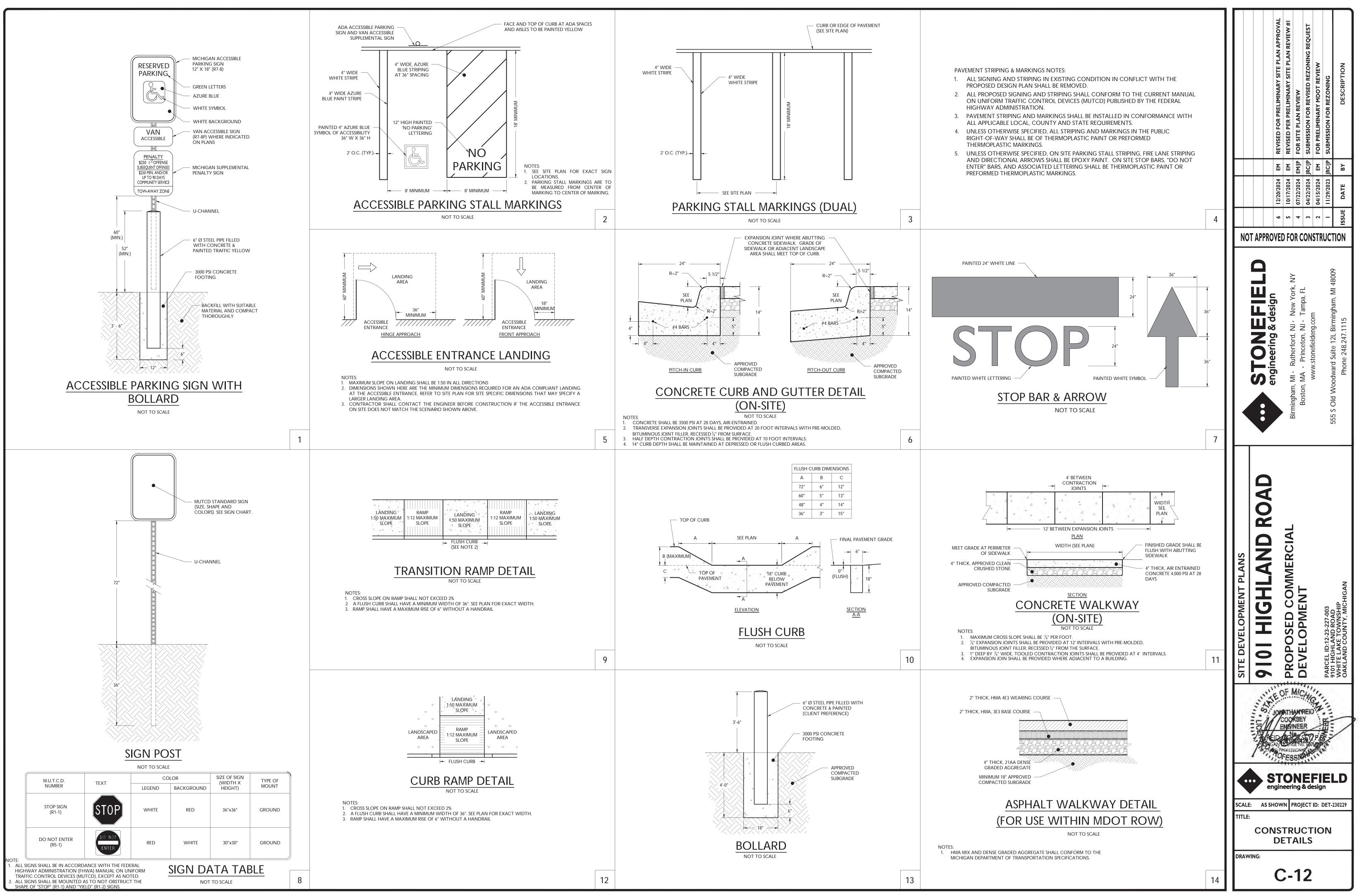
THE LANDSCAPE CONTRACTOR SHALL GUARANTEE ALL PLANT MATERIAL FOR A PERIOD OF ONE YEAR (1 YR.) FROM APPROVAL OF LANDSCAPE INSTALLATION BY THE PROJECT LANDSCAPE DESIGNER, MUNICIPAL OFFICIAL, OR OWNER/OWNER'S REPRESENTATIVE

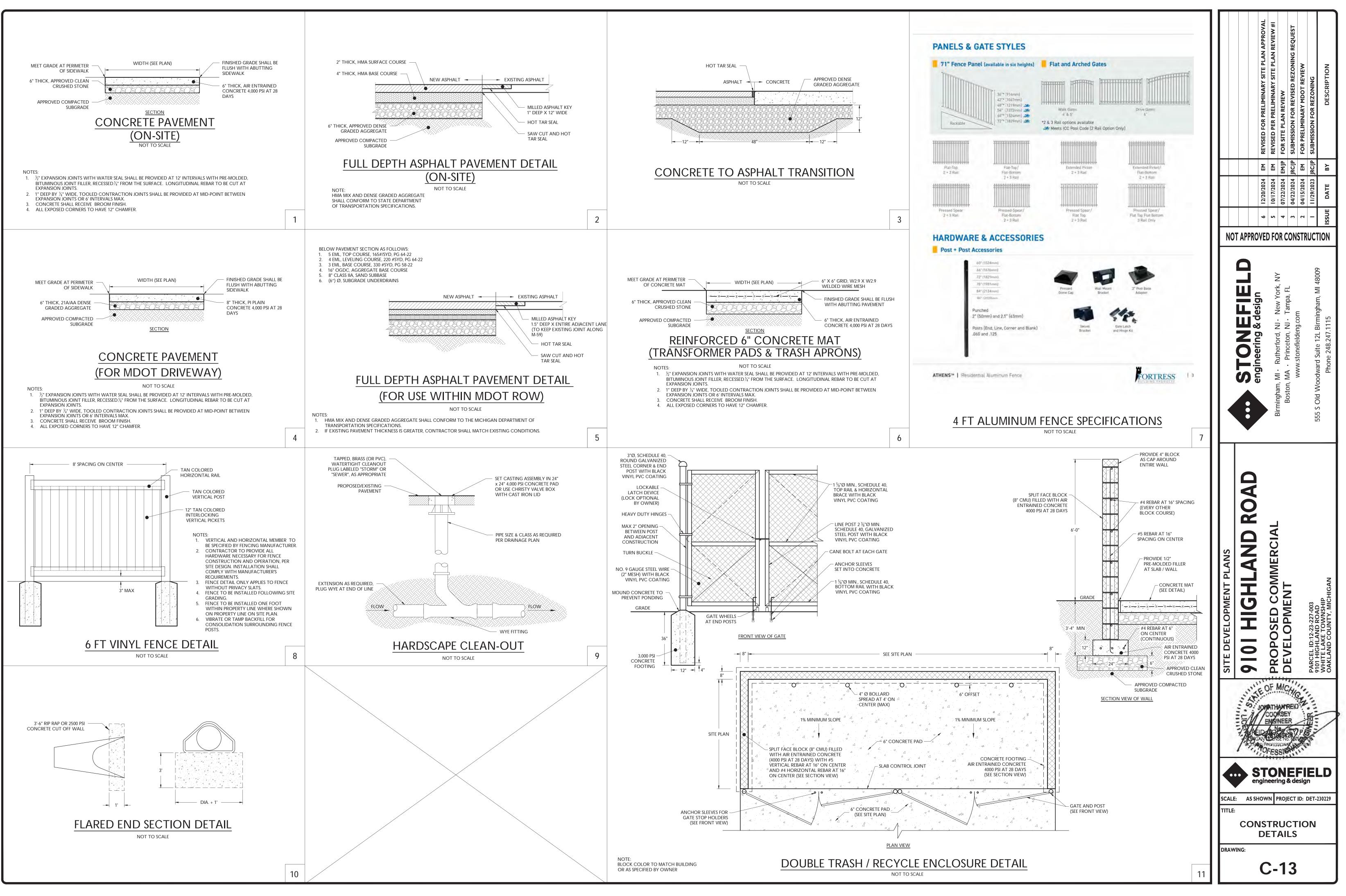

2. THE LANDSCAPE CONTRACTOR SHALL REMOVE AND REPLACE DYING, DEAD, OR DEFECTIVE PLANT MATERIAL AT HIS EXPENSE. THE LANDSCAPE CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR ANY DAMAGES CAUSED BY HIS COMPANY'S OPERATIONS. 3. ALL REPLACEMENT PLANTS SHALL BE OF THE SAME SPECIES AND SIZE AS SPECIFIED ON THE APPROVED OR FINAL PLANT LIST. REPLACEMENTS RESULTING FROM REMOVAL, LOSS, OR DAMAGE DUE TO OCCUPANCY OF THE PROJECT IN ANY PART, vandalism, physical damage by animals, vehicles, etc., and losses due to curtailment of water by local AUTHORITIES SHALL BE APPROVED AND PAID FOR BY THE OWNER. 4. THE CONTRACTOR SHALL INSTRUCT THE OWNER AS TO THE PROPER CARE AND MAINTENANCE OF ALL PLANTINGS.


#### LAWN (SEED OR SOD) NOTES:

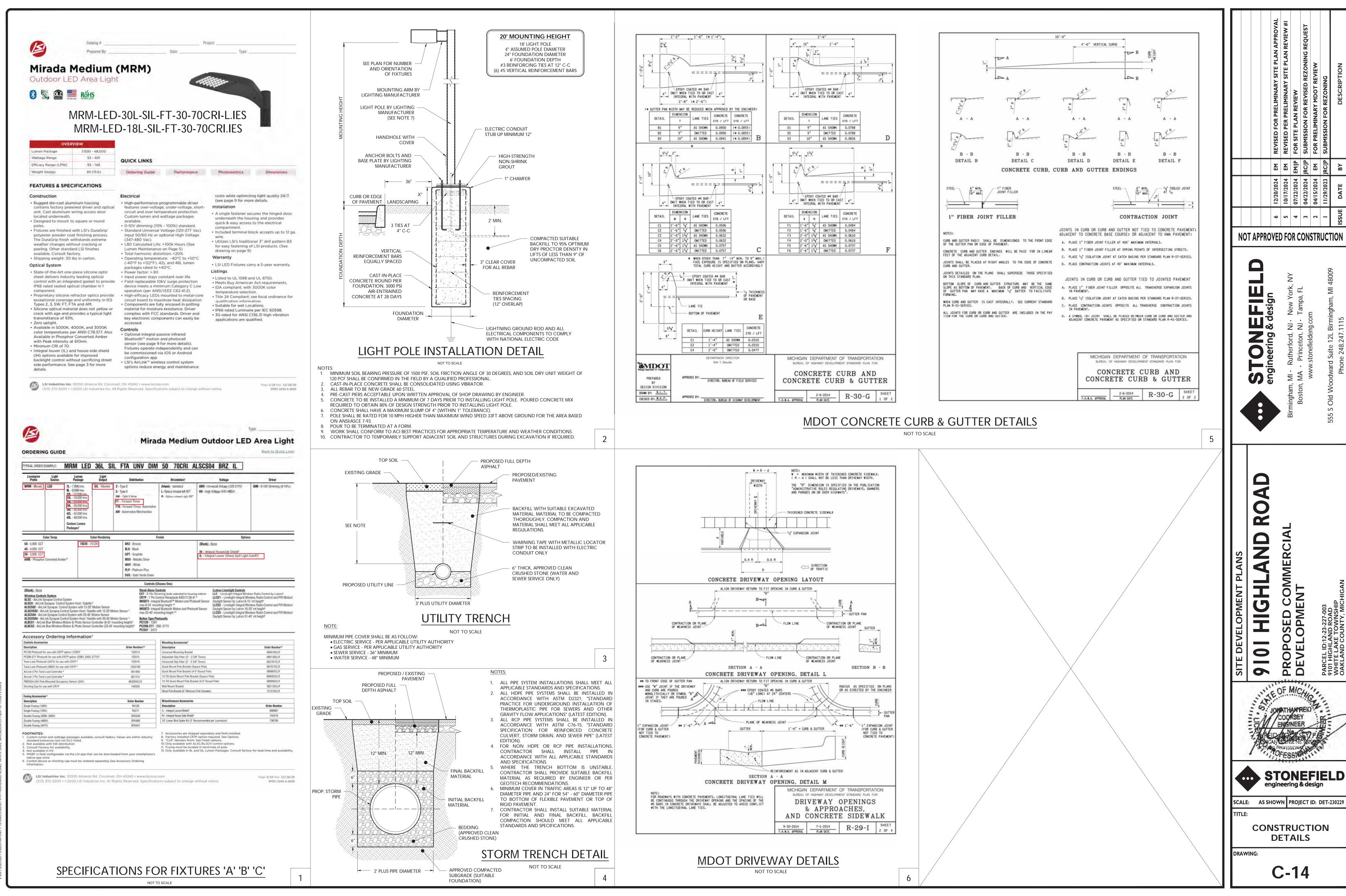
1. SEED MIXTURE SHALL BE FRESH, CLEAN, NEW CROP SEED. SOD SHALL BE STRONGLY ROOTED, UNIFORM IN THICKNESS, AND FREE OF WEEDS, DISEASE, AND PESTS. 2. SEED OR SOD SHALL BE PURCHASED FROM A RECOGNIZED DISTRIBUTOR AND SHALL BE COMPOSED OF THE MIX OR BLEND WITHIN THE PROVIDED "SEED SPECIFICATION" OR "SOD SPECIFICATION."

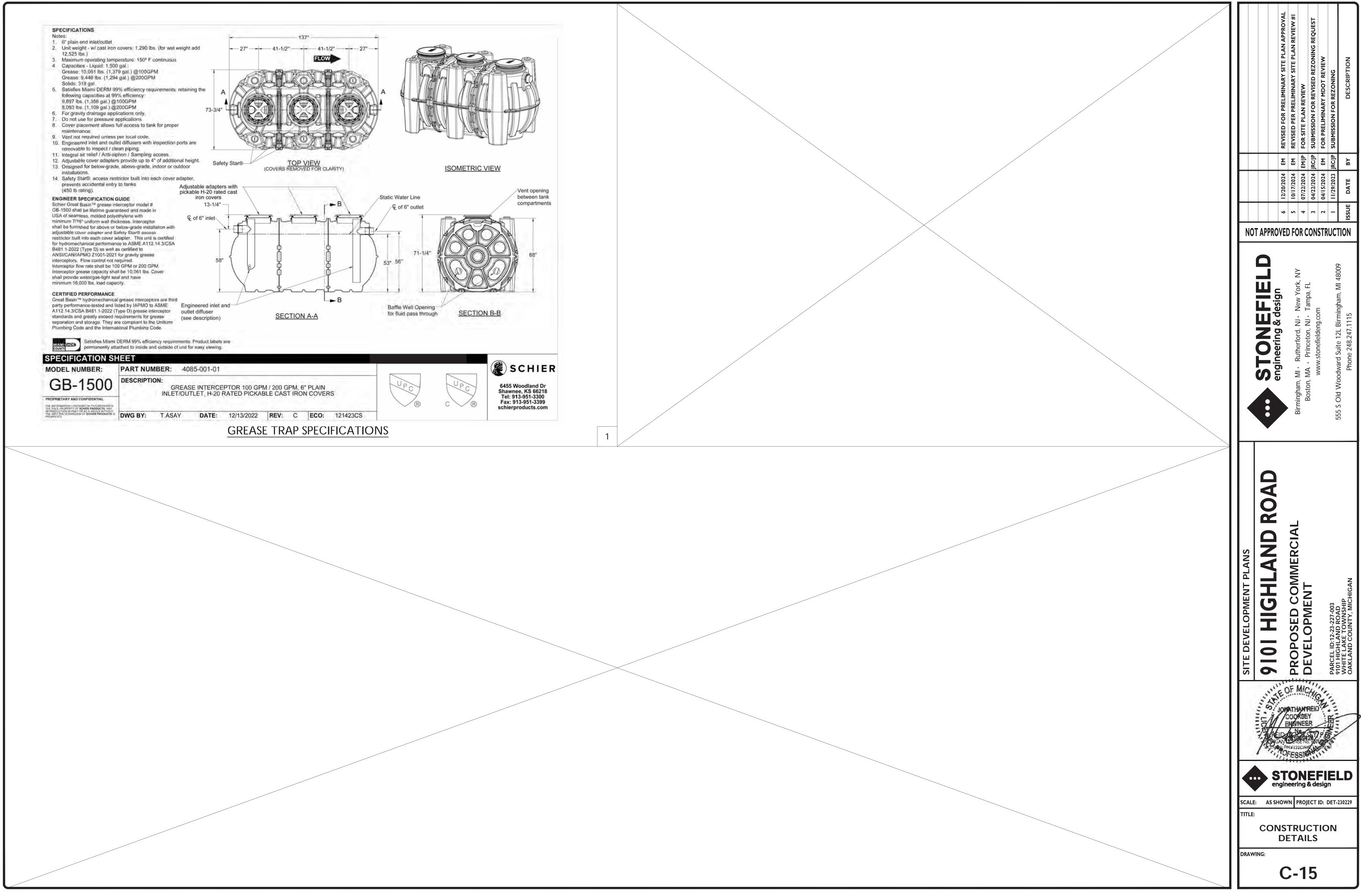

3. REFERENCE LANDSCAPE PLAN FOR AREAS TO BE SEEDED OR LAID WITH SOE 4. SEEDING SHALL NOT BE PERFORMED IN WINDY WEATHER. IF THE SEASON OF THE PROJECT COMPLETION PROHIBITS PERMANENT STABILIZATION, TEMPORARY STABILIZATION SHALL BE PROVIDED IN ACCORDANCE WITH THE "TEMPORARY SEEDING SPECIFICATION.

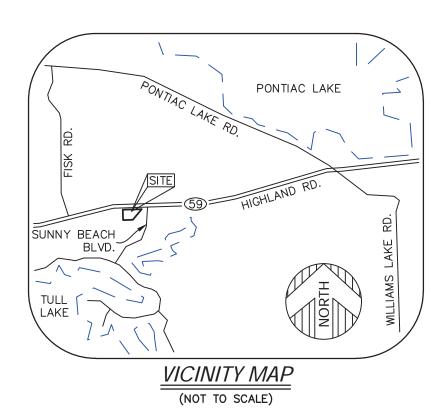

5. PROTECT NEW LAWN AREAS AGAINST TRESPASSING WHILE THE SEED IS GERMINATING. FURNISH AND INSTALL FENCES, SIGNS, BARRIERS OR ANY OTHER NECESSARY TEMPORARY PROTECTIVE DEVICES. DAMAGE RESULTING FROM TRESPASS. EROSION. WASHOUT, SETTLEMENT OR OTHER CAUSES SHALL BE REPAIRED BY THE LANDSCAPE CONTRACTOR AT HIS EXPENSE. REMOVE ALL FENCES, SIGNS, BARRIERS OR OTHER TEMPORARY PROTECTIVE DEVICES ONCE LAWN HAS BEEN ESTABLISHED.







ET/2023\DET-230229-AFFINITY 10 INVESTMENT-9191 HIGHLAND ROAD, WHITE LAKE, MI/CADD\PLOT\SDP-10-11-TRCK.E






r2023\DET-230229-AFFINITY 10 INVESTMENT-9191 HIGHLAND ROAD, WHITE LAKE, MI\CADD\PLOT\SDP-12-15-DETL.D







# PARKING

HANDICAP PARKING = 2 STALLS STANDARD PARKING = 50 STALLS

# PARCEL AREA

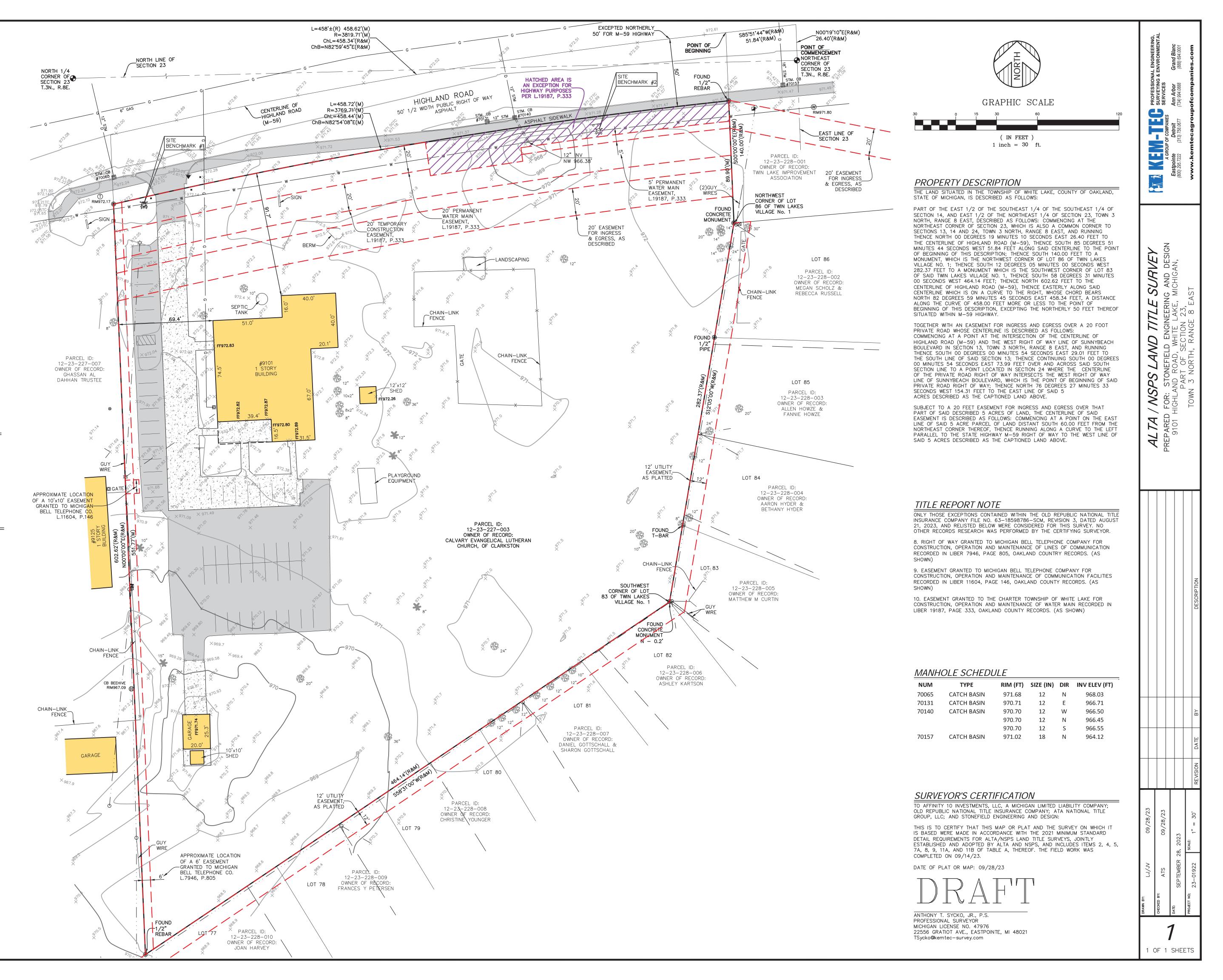
 $195,568\pm$  SQUARE FEET =  $4.49\pm$  ACRES

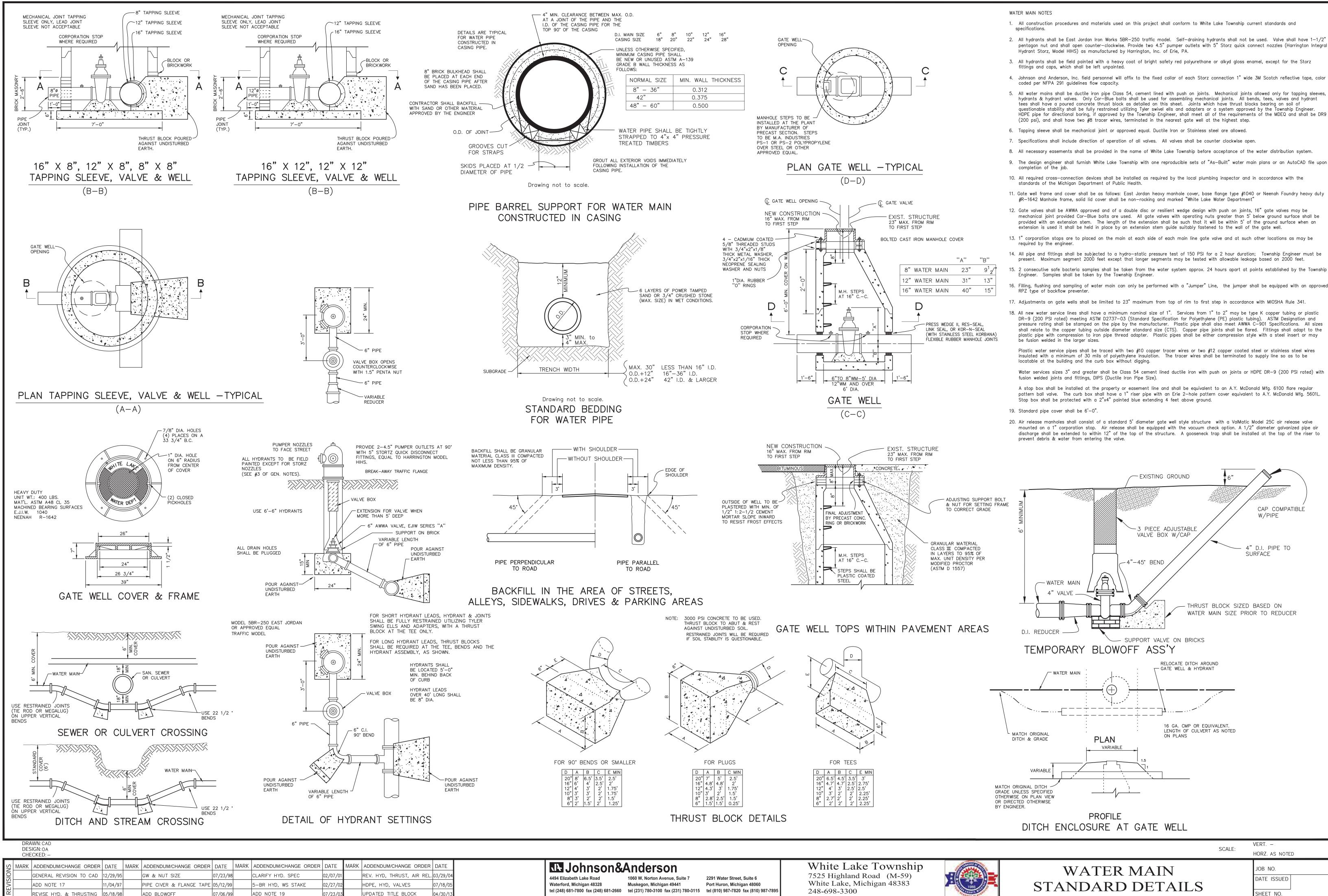
# BASIS OF BEARING

SOUTH 85*51'44" WEST, BEING THE CENTERLINE OF HIGHLAND ROAD (M-59), AS DESCRIBED.

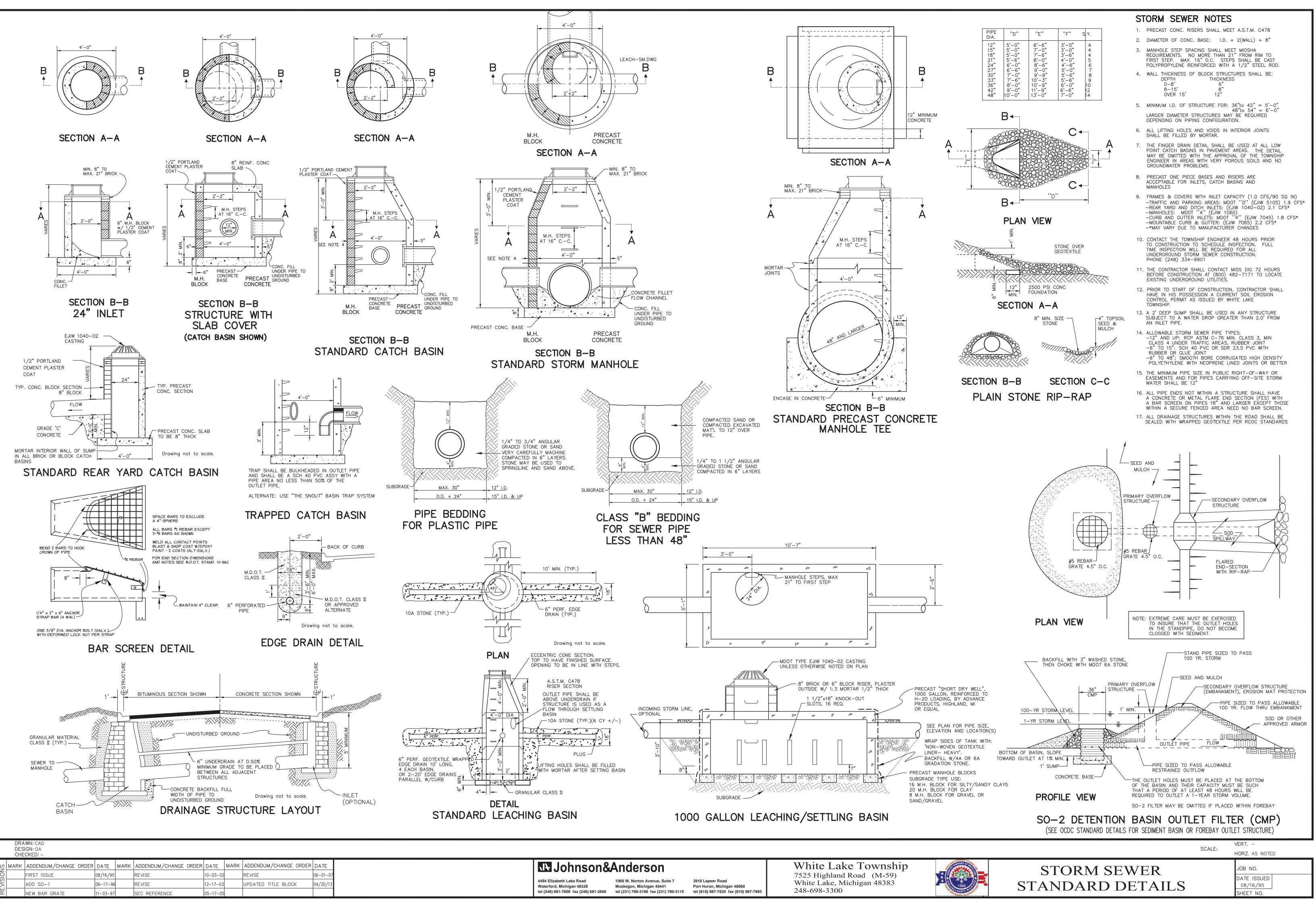
### **BENCHMARK**

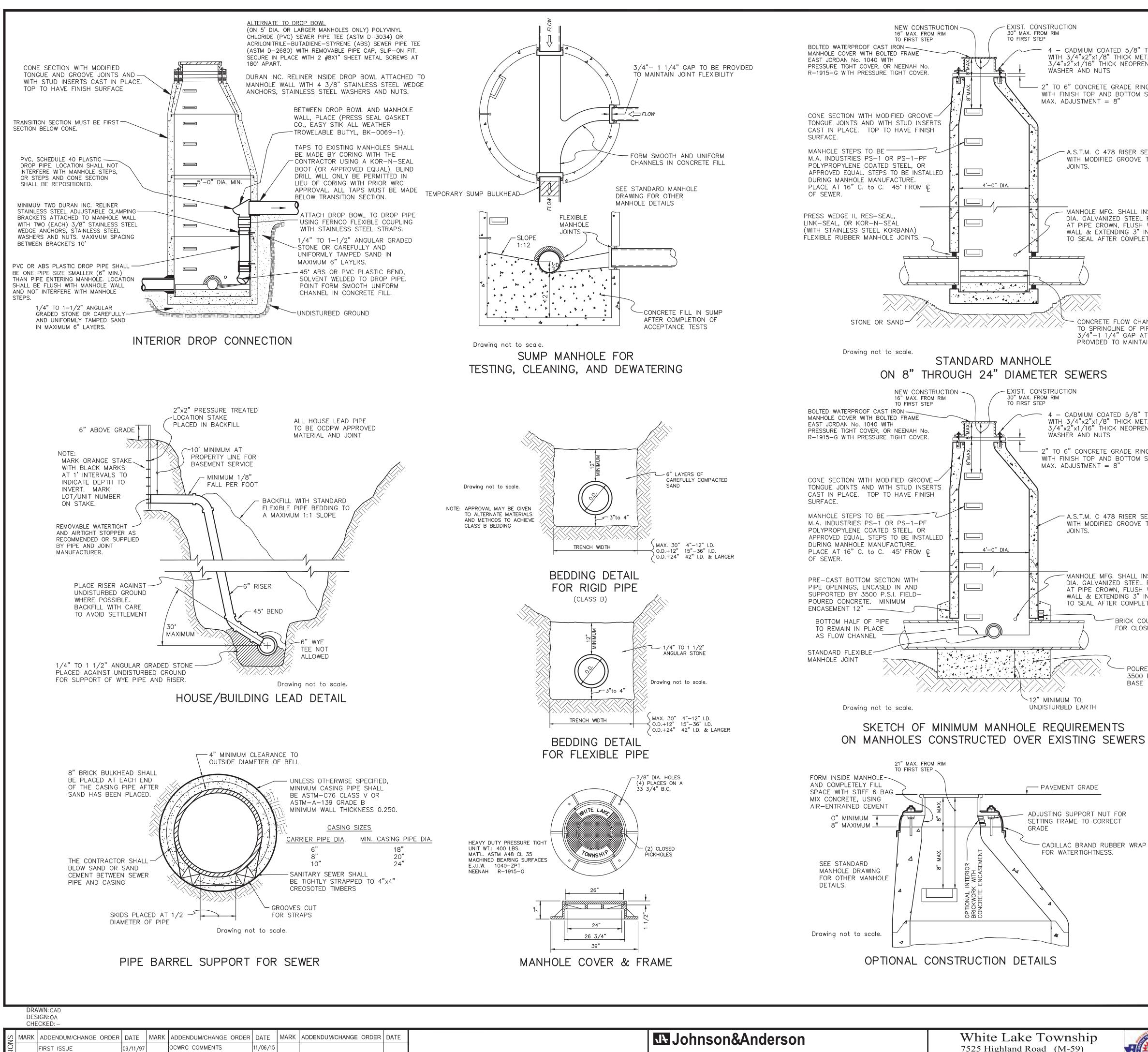
SITE BENCHMARK #1 ARROW ON HYDRANT, WEST SIDE OF ASPHALT ENTRANCE. ELEVATION = 975.36' (NAVD 88)


<u>SITE BENCHMARK #2</u> ARROW ON TRAFFIC SIGNAL POST, EAST SIDE OF PROPERTY. ELEVATION = 974.20' (NAVD 88)


### SURVEYOR'S NOTE

THE UNDERGROUND UTILITIES SHOWN HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND EXISTING DRAWINGS. THE SURVEYOR MAKES NO GUARANTEES THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE. THE SURVEYOR HAS NOT PHYSICALLY LOCATED THE UNDERGROUND UTILITIES OTHER THAN THE STRUCTURE INVENTORY SHOWN HEREON.


## LEGEND


۲	FOUND MONUMENT (AS NOTED)
<b>e</b>	FOUND SECTION CORNER (AS NOTED)
(R&M)	RECORD AND MEASURED DIMENSION
(R)	RECORD DIMENSION
(M)	MEASURED DIMENSION
× ^{0.00}	GROUND ELEVATION
$\boxtimes$	ELECTRIC METER
	ELECTRIC RISER
0	UTILITY POLE
$\bigcirc$	TELEPHONE MANHOLE
	TELEPHONE RISER
	CABLE TV RISER
 ⊗	CLEANOUT
$\oplus$	ROUND CATCH BASIN
	SQUARE CATCH BASIN
∑ €®¥Z	FIRE HYDRANT
Ŵ	WATER GATE MANHOLE
$\bowtie$	WATER VALVE
×	FENCE POST
¥	FLOOD LIGHT
<del></del>	SINGLE POST SIGN
	DOUBLE POST SIGN
Ę,	HANDICAP PARKING
	DECIDUOUS TREE (AS NOTED)
S.	CONIFEROUS TREE (AS NOTED)
	PARCEL BOUNDARY LINE
	PLATTED LOT LINE
	ADJOINER PARCEL LINE
	SECTION LINE
	EASEMENT (AS NOTED)
	BUILDING
	BUILDING OVERHANG
	CONCRETE CURB
	RAISED CONCRETE
	PARKING
	EDGE OF CONCRETE (CONC.)
	EDGE OF ASPHALT (ASPH.)
X	FENCE (AS NOTED)
<u> </u>	OVERHEAD UTILITY LINE
G	GAS LINE
D	STORM LINE
w	WATER LINE
	MINOR CONTOUR LINE
	MAJOR CONTOUR LINE
	BUILDING AREA
	ASPHALT
	CONCRETE





		"A"	"B"
ER	MAIN	23"	9 ¹ 2⁄"
ER	MAIN	31"	13"
ER	MAIN	40"	15"





UPDATED TITLE BLOCK

UPDATED NOTES

04/30/13

02/17/15

4494 Elizabeth Lake Road Waterford, Michigan 48328

1060 W. Norton Avenue, Suite 7 Muskegon, Michigan 49441 tel (248) 681-7800 fax (248) 681-2660 tel (231) 780-3100 fax (231) 780-3115 tel (810) 987-7820 fax (810) 987-789

2291 Water Street, Suite 6 Port Huron, Michigan 48060

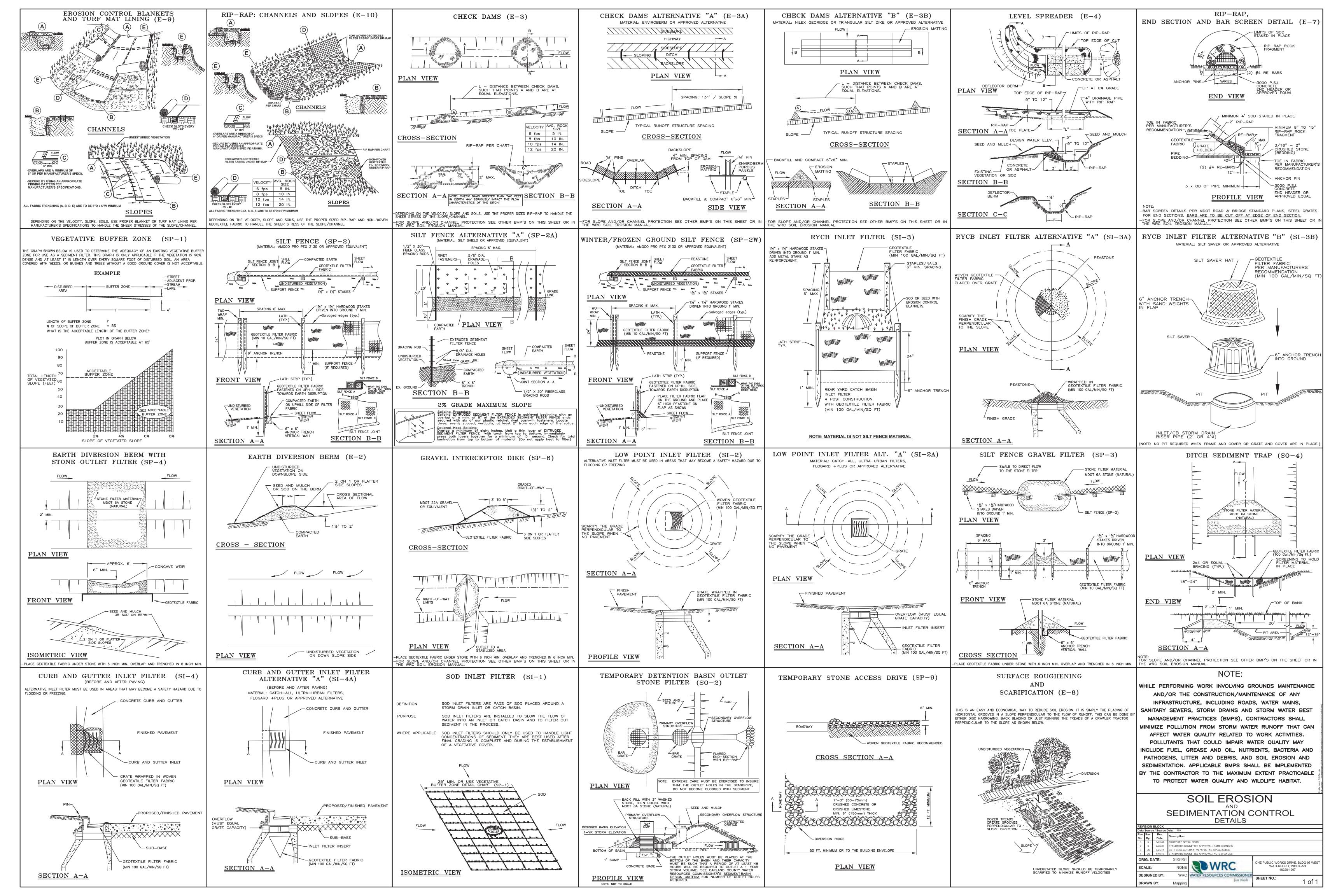
White Lake, Michigan 48383 248-698-3300

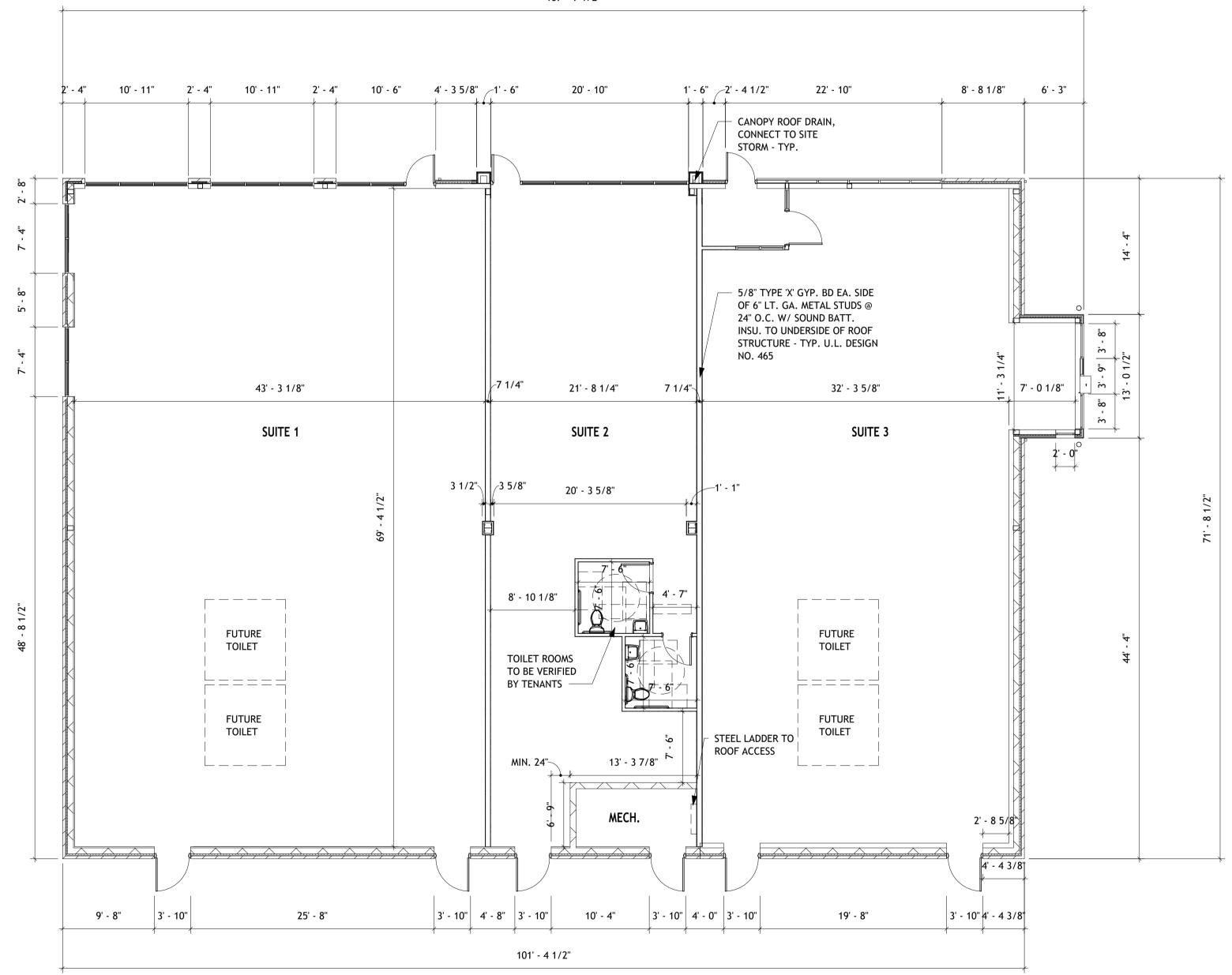
I COATED 5/8" THREADED STUDS ×1/8" THICK METAL WASHER, " THICK NEOPRENE SEALING NUTS		
RETE GRADE RINGS P AND BOTTOM SURFACES. NT = 8"	1.	All spe Oal All ins or
C 478 RISER SECTIONS DDIFIED GROOVE TONGUE	2.	At Cor Ins per \$2: per
E MFG. SHALL INSTALL 1/2" LVANIZED STEEL PIPE & CAP CROWN, FLUSH WITH OUTSIDE EXTENDING 3" INSIDE. CONTRACTOR AFTER COMPLETION OF TESTS.		wit tes Cor pri- the dep gov to tes sch 24
CRETE FLOW CHANNEL UP SPRINGLINE OF PIPE WITH "-1 1/4" GAP AT PIPE ENDS VIDED TO MAINTAIN JOINT FLEXIBILITY.	3.	No exc a 2 mc mil spe Sep the use
RS	4.	Loc all
1 COATED 5/8" THREADED STUDS x1/8" THICK METAL WASHER, " THICK NEOPRENE SEALING NUTS		the in fille tes A of
RETE GRADE RINGS P AND BOTTOM SURFACES. NT = 8"	5.	All AB cor app pip air
C 478 RISER SECTIONS DDIFIED GROOVE TONGUE	6.	All or pip Coi
E MFG. SHALL INSTALL 1/2" LVANIZED STEEL PIPE & CAP CROWN, FLUSH WITH OUTSIDE EXTENDING 3" INSIDE. CONTRACTOR AFTER COMPLETION OF TESTS. BRICK COURSE PERMITTED	7.	All Res pre gas Oal mc pro
FOR CLOSURE OF OPENING	8.	At Res drc inv cor
3500 PSI CONCRETE BASE	9.	Tap
Ή		app

SANITARY SEWER CONSTRUCTION NOTES

construction shall conform to the current standards and pecifications of the local unit of government and the akland County Water Resources Commissioner (OCWRC). sanitary sewer construction shall have full time spection supervised by a professional engineer provided by caused to be provided by the local unit of government.

- all connections to Oakland County Water Resources ommissioner's sewers or extensions, and before start of onstruction, the Contractor must obtain a Sewer nspection Permit issued by the OCWRC. Gravity sewer ermit charges are \$250.00 for each connection plus 25.00 for each manhole constructed. Pressure sewer ermit charges are \$250.00 per 2460 L.F. of force main vith a minimum permit fee of \$250.00. Failure to pass any est segment will result in an additional charge to the contractor for each retest, in accordance with the above rice schedule. The Contractor shall also have posted with he OCWRC a \$5,000.00 surety bond and \$500.00 cash eposit. The Contractor shall notify the local unit of overnment and the OCWRC (248-858-1110) 24 hours prior the beginning of any construction. Final acceptance ests must be witnessed by County personnel and must be cheduled by Municipality or It's consultant in advance with hour notice at 248-858-1110.
- o sewer installation shall have an infiltration or exfiltration xceeding 100 gallons per inch diameter per mile of pipe in 24 hour period, and no single run of sewer between nanholes shall exceed 100 gallons per inch diameter per nile. Air tests in lieu of infiltration tests shall be as pecified in the OCWRC "Acceptance Tests", dated eptember, 1972. Only pipe and pipe joints approved by he Oakland County Water Resources Commissioner may be sed for sanitary sewer construction.
- ocated in the first manhole upstream from the point of connections to an existing OCWRC sewer, or extension hereto, a temporary 12-inch deep sump shall be provided the first manhole above the connection which will be lled in after such successful completion of any acceptance est up to the standard fillet provided for the flow channel. watertight bulkhead shall be provided on the downstream the sump manhole.
- building leads and risers shall be 6-inch S.D.R. 23.5 BS OR PVC pipe with chemically fused joints, or an pproved equal pipe and joint. Sewer pipe wye shall ontain factory installed premium joint material of an pproved type compatible with that of the building lead pe used. Building leads to be furnished with removable tight and water-tight stoppers.
- rigid sewer pipe shall be installed in Class "B" bedding better. All flexible, semi-flexible or composite sewer ipe shall be installed in conformance to the Oakland county Water Resources Commissioner specifications.
- new manholes shall have Oakland County Water esources Commissioner approved flexible, water-tight seals here pipes pass through walls. Manholes shall be of recast sections with modified groove tongue and rubber asket type joints. Precast manhole cone sections shall be Pakland County Water Resources Commissioner approved odified eccentric cone type. All manholes shall be rovided with bolted, water-tight covers.
- all connections to manholes on Oakland County Water esources Commissioner's sewers or extensions thereto rop connections will be required when the difference in vert elevations exceeds 18-inches. Outside drop onnections only will be approved.
- aps to existing manholes shall be made by coring. The Contractor shall place a KOR-N-SEAL boot (or OCWRC approved equal) after coring is completed. Blind drilling will not be permitted in lieu of coring.
- 10. New manholes constructed directly on Oakland County Water Resources Commissioner's sewers shall be provided with covers reading "Oakland County - Sanitary" in raised letters. New manholes built over an existing sanitary sewer shall have monolithic poured bottoms.
- 11. No ground water, storm water, construction water, downspout drainage or weep tile drainage shall be allowed to enter any sanitary sewer installation.
- 12. Prior to excavation, the Contractor shall telephone MISS DIG (647-7344) for the location of underground pipeline and cable facilities, and shall also notify representatives of other utilities located in the vicinity of the work.
- 13. 18" minimum vertical separation and 10' minimum horizontal separation must be maintained between sanitary sewer and water main.
- 14. Manhole frame and cover shall be as follows: East Jordan heavy manhole cover, base flange type #1040 or Neenah Foundry heavy duty #R-1642 manhole frame. Solid lid cover shall be non-rocking and marked "WHITE LAKE TOWNSHIP SEWER DEPARTMENT.'

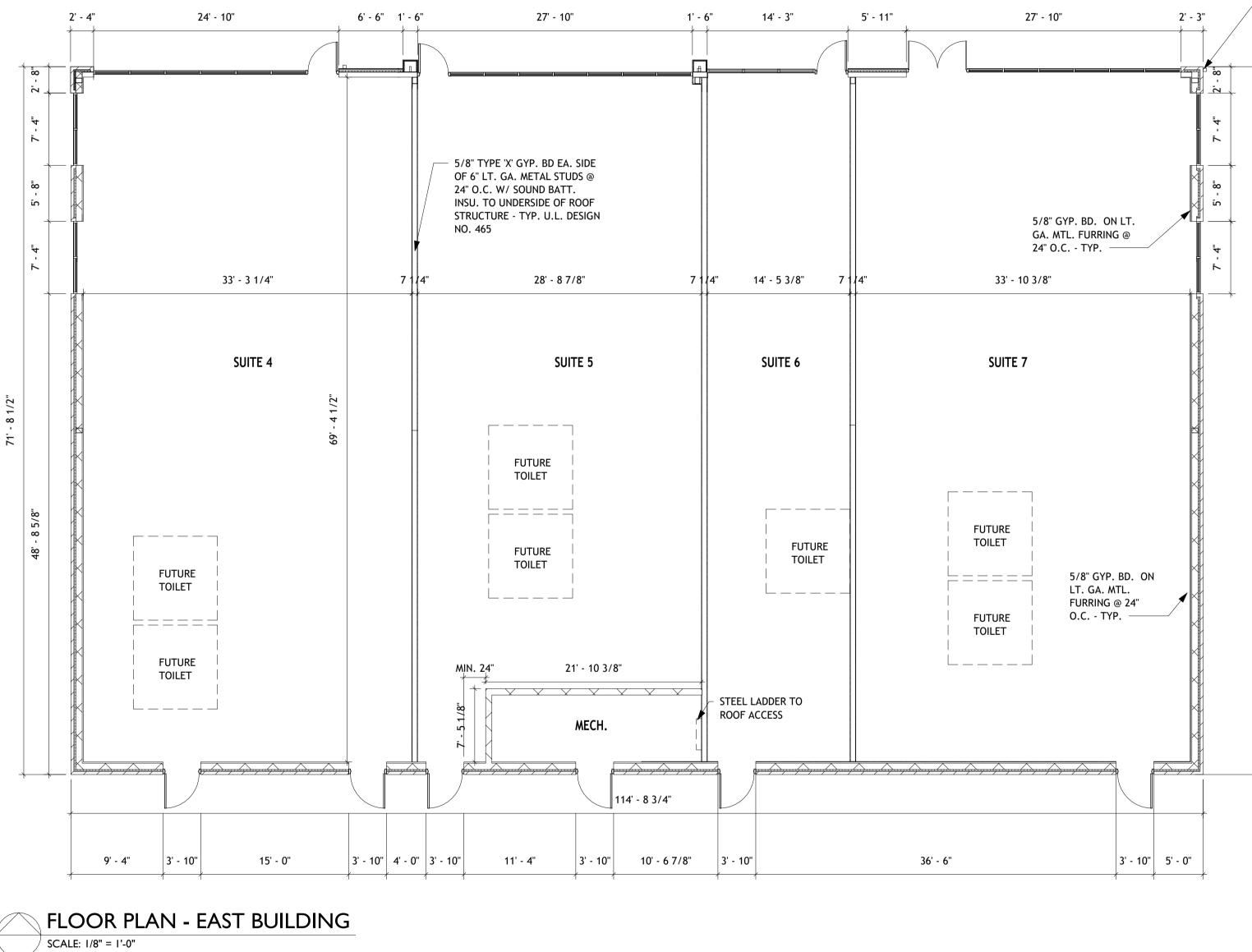




SANITARY SEWER STANDARD DETAILS SCALE:

HORZ. AS NOTED

VERT. –

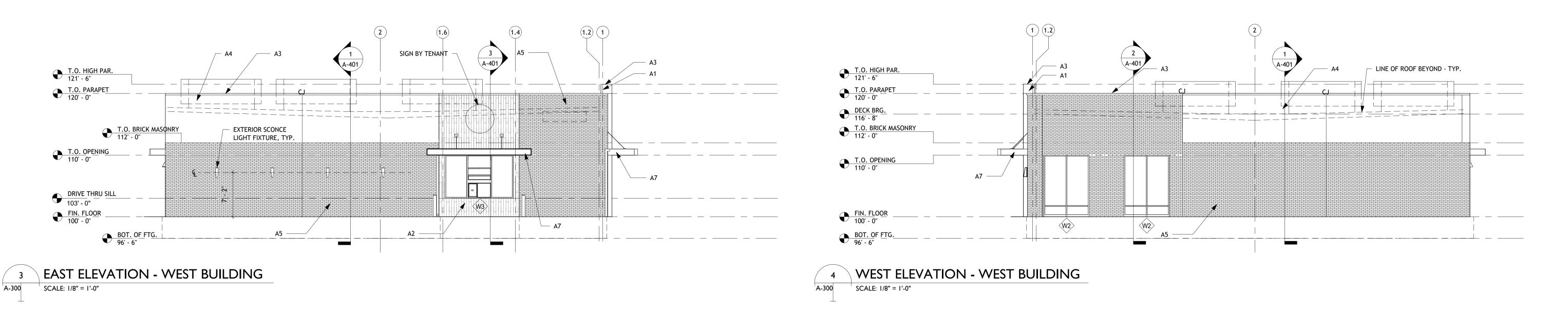
OB NO. DATE ISSUED 09/11/97 SHEFT NO.

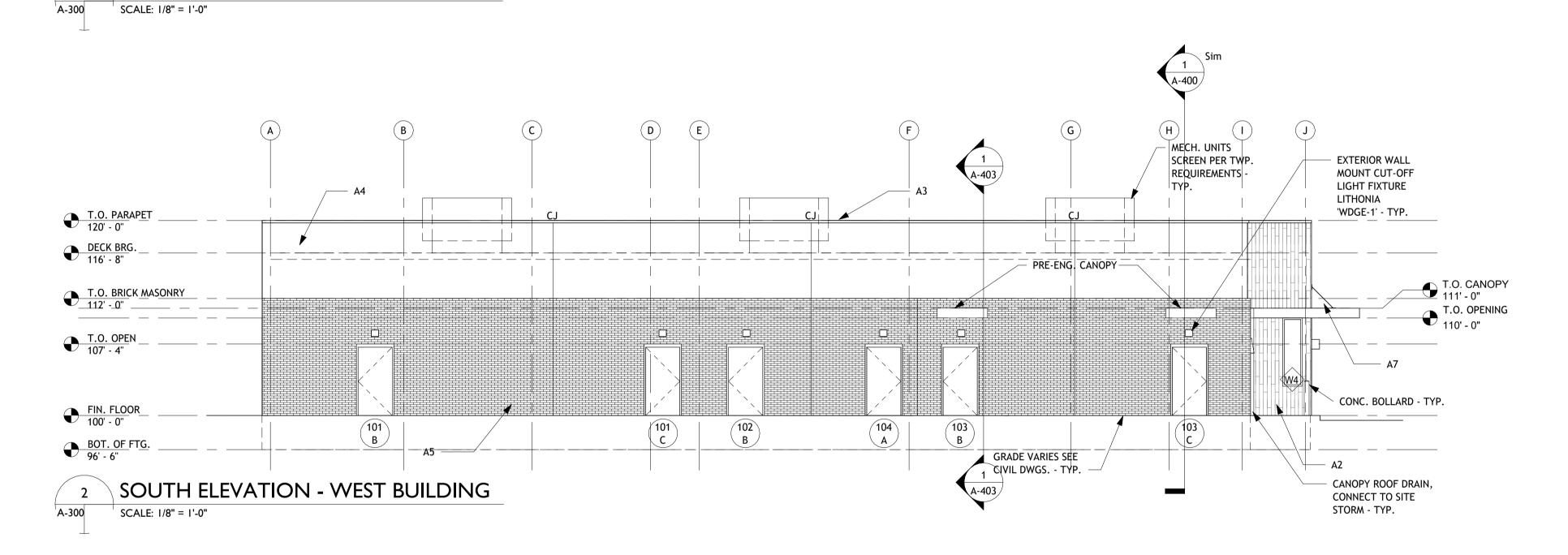


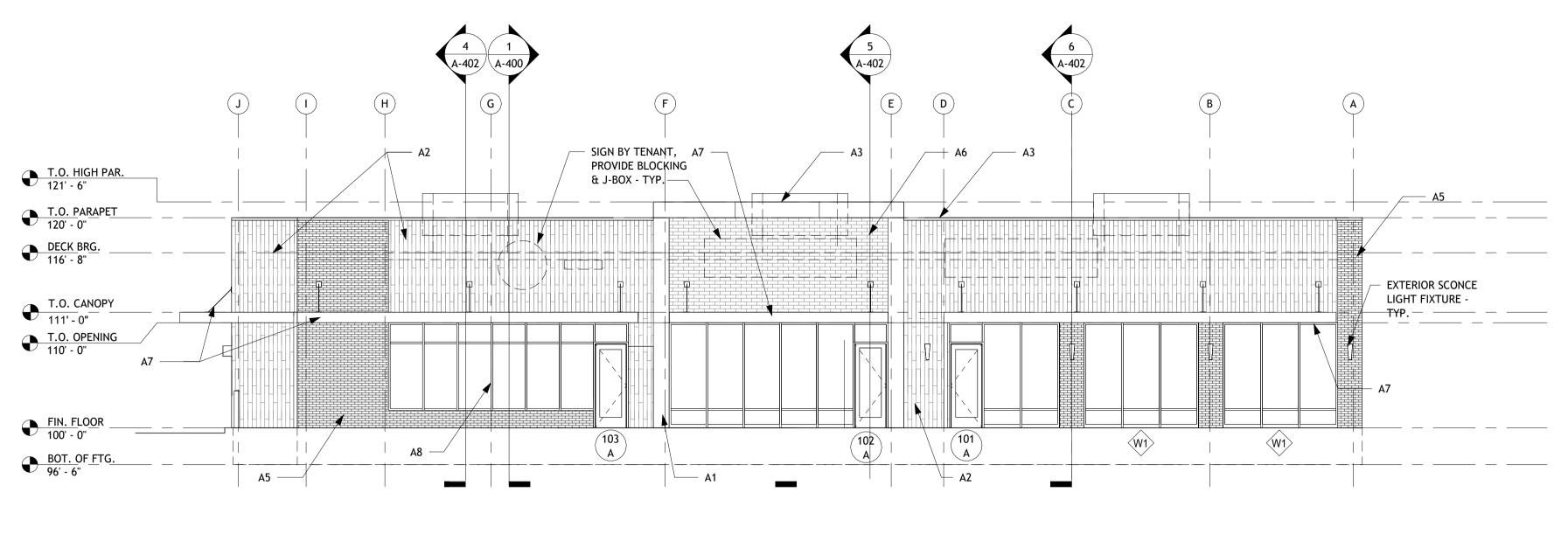




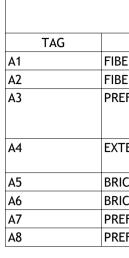

107' - 7 1/2"


BOWERS + ASSOCIATES, INC. 2400 SOUTH HURON PARKWAY ANN ARBOR, MI 48104 P: 734.975.2400 WWW.BOWERSARCH.COM
CONSULTANT + NAME
PROJECT + INFORMATION WHITE LAKE RETAIL 9109 HIGHLAND RD
PROJECT + NUMBER 23-306
ISSUE + DATE         21 FEB 2024         23 APR 2024       REV         13 MAY 2024       REV         12 JULY 2024       REV         17 JULY 2024       REV         24 JULY 2024       REV         21 AUG 2024       REV         17 OCT 2024       SPLAN         14 NOV 2024       BID         19 DEC 2024       SPLAN
SHEET + TITLE FLOOR PLANS - WEST BUILDING
SHEET + NUMBER





BOWERS+ASSOCIATES, INC. 2400 SOUTH HURON PARKWAY ANN ARBOR, MI 48104 P: 734.975.2400 WWW.BOWERSARCH.COM
CONSULTANT + NAME
PROJECT + INFORMATION WHITE LAKE RETAIL 9109 HIGHLAND RD 9109 HIGHLAND RD
PROJECT + NUMBER
ISSUE + DATE           21 FEB 2024           23 APR 2024           23 APR 2024           13 MAY 2024           12 JULY 2024           24 JULY 2024           24 JULY 2024           24 JULY 2024           21 AUG 2024           17 OCT 2024           14 NOV 2024           19 DEC 2024
SHEET + TITLE FLOOR PLAN - EAST BUILDING
SHEET + NUMBER

CANOPY ROOF DRAIN,
 CONNECT TO SITE
 STORM - TYP.


ø

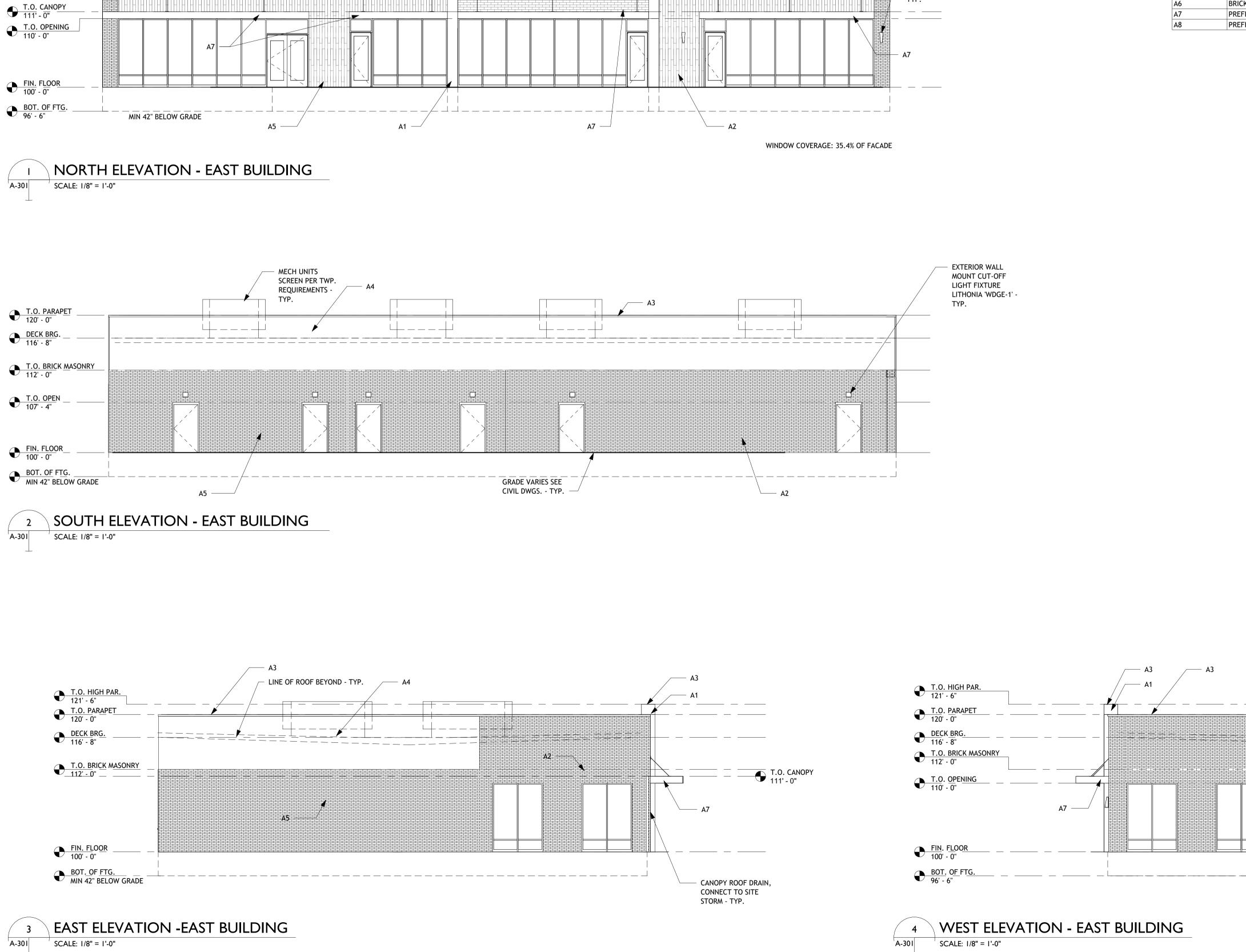






NORTH ELEVATION - WEST BUILDING




WINDOW COVERAGE: 32.9% OF FACADE

EXT	ERIOR FINISHES LEGE	END		
MATERIAL	MANUF/STYLE	COLOR	FINISH / STYLE	FASTENER TYPE
BER CEMENT PANELS	NICHIHA	DARK METAL		
BER CEMENT PANELS	NICHIHA			
EFIN. METAL COPING	PAC-CLAD OR EQUAL TO MATCH	TO MATCH RAL #7021 MATTE BLACK STEEL - MT0028 - FLAT ROCK	ANODIZED	
TERIOR INSULAION FINISH SYSTEM (EIFS)	DRYVIT	COLOR TO MATCH SW 7030 ANEW GRAY	SANDBLAST TEXTURE	
ICK VENEER	BELDEN BRICK			
ICK VENEER	GLEN-GERY	ASPEN WHITE		
EFIN. METAL CANOPY	TBD	TO MATCH RAL #7021	PRE-FINISHED	
EFIN. ALUM	TBD	TO MATCH RAL #7021	PRE-FINISHED	



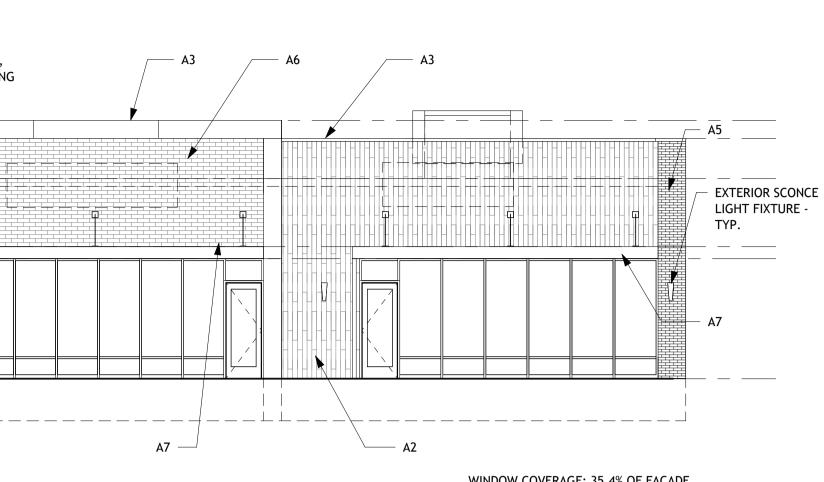
SHEET + NUMBER

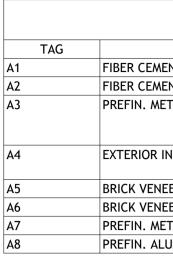
A-300



SIGN BY TENANT,
 PROVIDE BLOCKING
 & J-BOX - TYP.

╔┿╪╎┿╪╢╤┿┥╔┿┿╏┿┿┦


┍╶┥<del>┥┥┥</del>╶┝┿┿╎┝┽┿╎┿┿┽╎┿┿┥╎┿┿┥┝┿╋╎┿┿┽╎┿┿┥┝┿┿╎

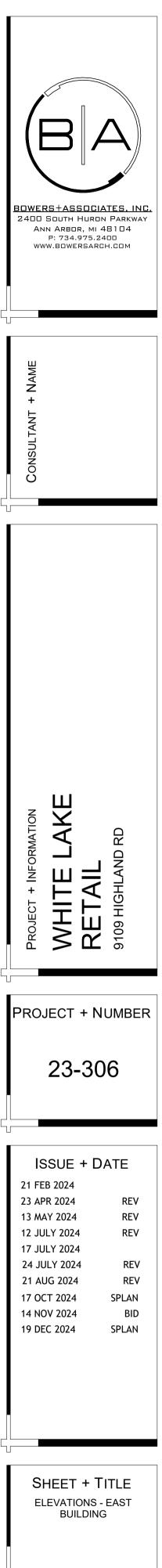

**T.O. HIGH PAR.** 121' - 6"

• T.O. PARAPET 120' - 0"

DECK BRG. 116' - 8"

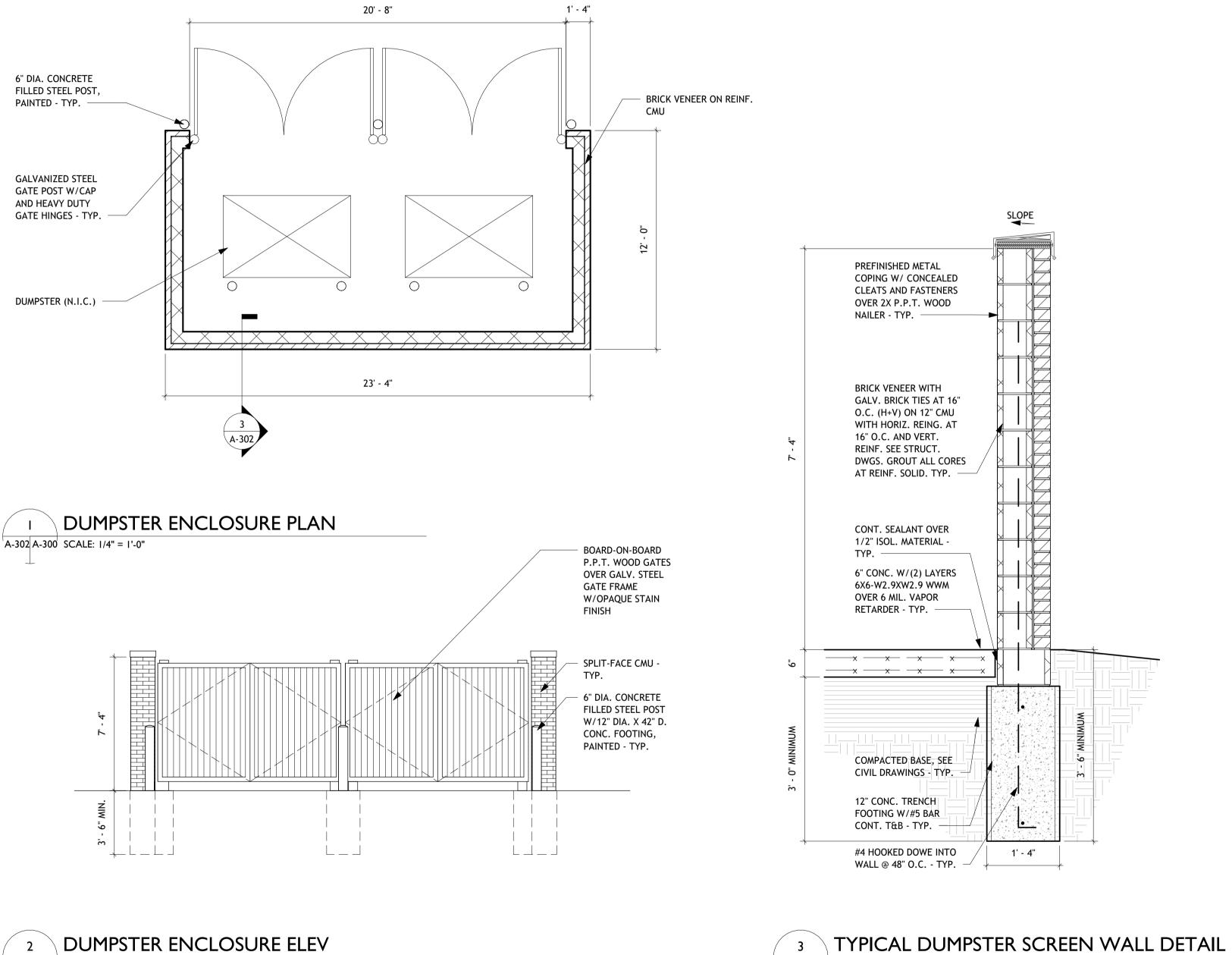
╈╪╎┾╪╕╎┿╪╎╞╪┥╎╤┽╎┝┿╪╎┿╪╎┝



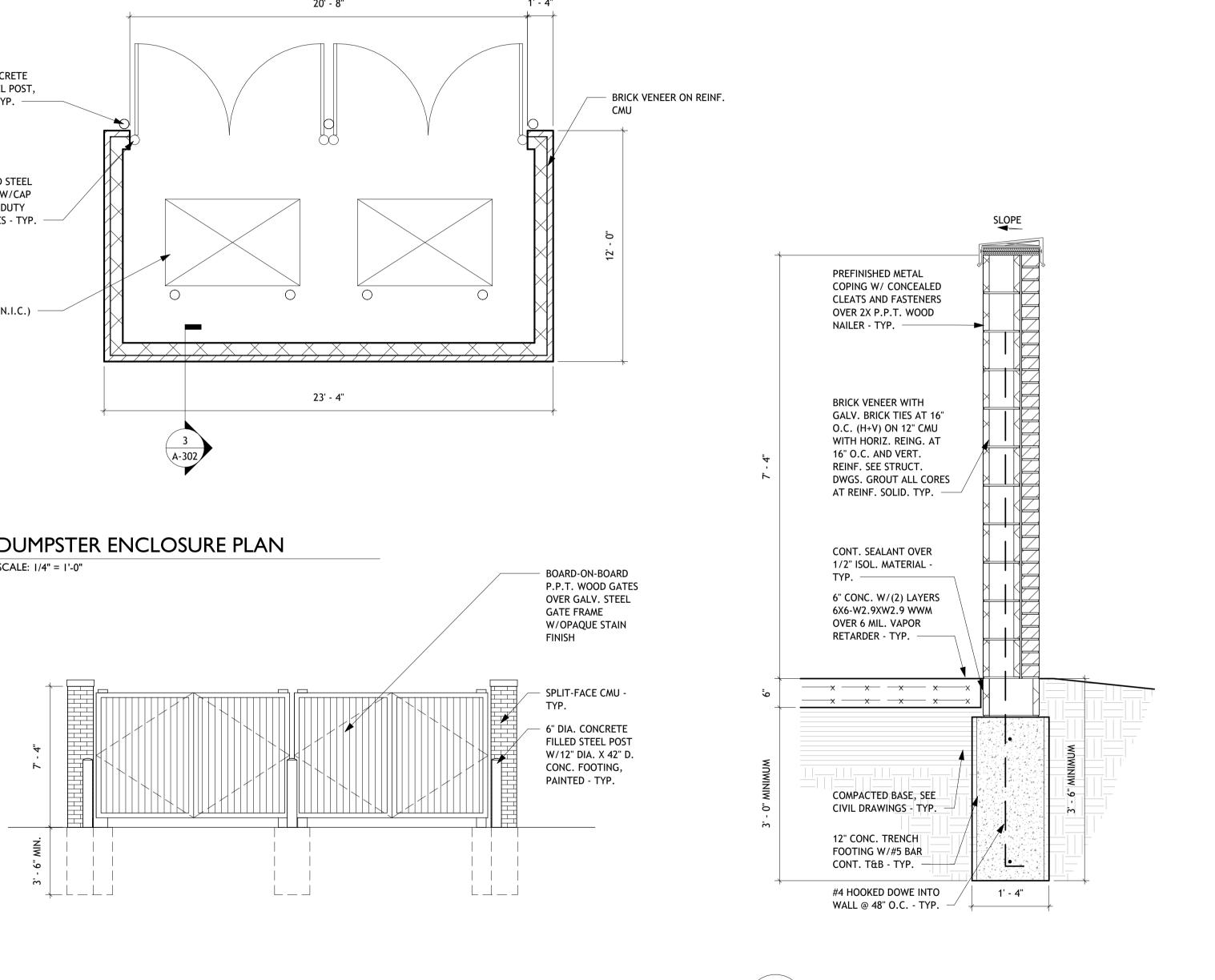



ERIOR FINISHES LEG	END		
1		1	1
MANUF/STYLE	COLOR	FINISH / STYLE	FASTENER TYPE
NICHIHA	DARK METAL		
NICHIHA			
PAC-CLAD OR	TO MATCH RAL #7021	ANODIZED	
EQUAL TO MATCH	MATTE BLACK STEEL -		
	MT0028 - FLAT ROCK		
DRYVIT	COLOR TO MATCH SW	SANDBLAST	
	7030 ANEW GRAY	TEXTURE	
BELDEN BRICK			
GLEN-GERY	ASPEN WHITE		
TBD	TO MATCH RAL #7021	PRE-FINISHED	
TBD	TO MATCH RAL #7021	PRE-FINISHED	
	MANUF/STYLE NICHIHA NICHIHA PAC-CLAD OR EQUAL TO MATCH DRYVIT BELDEN BRICK GLEN-GERY TBD	NICHIHADARK METALNICHIHAPAC-CLAD ORTO MATCH RAL #7021EQUAL TO MATCHMATTE BLACK STEEL - MT0028 - FLAT ROCKDRYVITCOLOR TO MATCH SW 7030 ANEW GRAYBELDEN BRICKGLEN-GERYASPEN WHITETBDTO MATCH RAL #7021	MANUF/STYLECOLORFINISH / STYLENICHIHADARK METALINICHIHADARK METALIPAC-CLAD ORTO MATCH RAL #7021ANODIZEDEQUAL TO MATCHMATTE BLACK STEEL - MT0028 - FLAT ROCKANODIZEDDRYVITCOLOR TO MATCH SW 7030 ANEW GRAYSANDBLAST TEXTUREBELDEN BRICKIIGLEN-GERYASPEN WHITEITBDTO MATCH RAL #7021PRE-FINISHED

4 - - - - - + '


______

A5 ———




SHEET + NUMBER

A-301







3

A-302 A-302 SCALE: 3/4" = 1'-0"



BOWERS+ASSOCIATES, INC. 2400 South Huron Parkway Ann Arbor, mi 48104 P: 734.975.2400 WWW.BOWERSARCH.COM
CONSULTANT + NAME
PROJECT + INFORMATION WHITE LAKE RETAIL 9109 HIGHLAND RD
PROJECT + NUMBER
ISSUE + DATE 3 MAR 2024 29 APR 2024 REV 13 MAY 2024 REV 24 JULY 2024 REV 17 OCT 2024 SPLAN 14 NOV 2024 BID 19 DEC 2024 SPLAN
SHEET + TITLE DUMPSTER ENCLOSURE ELEVATIONS
SHEET + NUMBER A-302



# **CONCEPT RENDERING** White Lake Twp, MICHIGAN





# **COMMUNITY IMPACT STATEMENT**

9101 HIGHLAND ROAD – COMMERCIAL DEVELOPMENT 12-23-227-003 9101 HIGHLAND ROAD (M-59) WHITE LAKE TOWNSHIP OAKLAND COUNTY, MICHIGAN 48386



PREPARED FOR: AFFINITY 10 INVESTMENT LLC 44512 SOUTH SHORE STREET WATERFORD, MI 48328

Prepared by: Stonefield Engineering & Design, LLC 555 S Old Woodward Avenue Suite I 2L Birmingham, Michigan 48009

> REPORT DATE NOVEMBER 12, 2024



## **REPORT CONTENTS**

1.0	GE	NERAL	I
I	I. <b>I S</b> іт	E DESCRIPTION	I
I	1.2 Ho	DURS OF OPERATION	I
I	1.3 M/	ASTER PLAN ANALYSIS	2
2.0	Co	MMUNITY FACILITIES AND SERVICES	2
2	2.1	Estimated Demand on Police & Fire Services	2
2	2.2	ESTIMATED SEWER & WATER DEMAND	2
2	2.3	ESTIMATED TRUCK DELIVERIES	3
3.0	Eco	ONOMICS	3
3	8.1	ANTICIPATED JOBS CREATED	3
3	8.2	ANTICIPATED TAX REVENUE	3
4.0	Ем	VIRONMENT4	1
4	1.1	Existing Natural Features	1
4	1.2	Hazardous Materials	5
4	1.3	AIR POLLUTANTS	5
4	1.4	GROUNDWATER QUALITY & QUANTITY	5
5.0	No	NSE5	5
6.0	Tr/	AFFIC	5
7.0	Αει	RIAL MAP	7





# TRAFFIC IMPACT STUDY ......A



#### **I.0 GENERAL**

#### **I.I SITE DESCRIPTION**

Affinity 10 Investment LLC proposes the construction of two (2) multi-tenant buildings including retail, restaurant, and drive-thru uses. The subject property, Parcel ID: 12-23-227-003, commonly known as 9101 Highland Road (M-59) is located along the south side of Highland Road (M-59) approximately 180 feet from the intersection with Sunny Beach Boulevard. The subject property is located within the White Lake Township Zoning District: RB - Restricted Business and is bounded by Highland Road (M-59) to the north, PD Planned Business Big Box Retail to north across Highland Road, R1-C - Single Family Residential to the east and south, and LB - Local Business, White Lake KinderCare to the west. The total project area is 195,568 SF (4.49 AC).

The existing site is a vacant church consisting of a 1-story building, commercial driveway on Highland Road (M-59), parking facilities, shed, playground and garden. The existing site is to be entirely demolished apart from the protection of 14 existing mature trees and on-site public utility mains. The proposed development includes the construction of two (2) multi-tenant buildings including retail, restaurant, and drive-thru uses and supporting improvements inclusive of parking facilities, landscape, utilities, site lighting, stormwater management facilities and right-of-way streetscape improvements. The West Building totals 7,227 SF including three tenants; Suite #1: 3,283 SF Retail, Suite #2: 1,405 SF Retail, Suite #3: 2,539 SF Restaurant with Drive-Thru (Starbucks). The East Building totals 7,865 SF including four tenants; Suite #4: 2,502 SF Restaurant, Suite #5: 1,900 SF Restaurant (Nothing Bundt the Cake), Suite #6 1,053 SF Retail, Suite #7 2,410 SF Restaurant.

This Community Impact Statement has been prepared per the White Lake Township Zoning Ordinance Section 6.6 requirements to provide a format for applicants to document the anticipated impacts of intensive development projects proposed as Special Land Uses.

#### **I.2 HOURS OF OPERATION**

At this time, prospective tenants and hours of operation are as follows:

- Nothing Bundt the Cake: 9:30 am to 8:00 pm
- Five Guys: 11:00 am to 10:00 pm
- Starbucks: 5:00 am to 8:00 pm
- Jersey Mike's: 10:00 am to 9:00 pm

#### I.3 MASTER PLAN ANALYSIS

Per White Lake Townships "2024 Master Plan" the subject site is designated as "Commercial Corridor". The Commercial Corridor Zones intent is to provide regional goods and services to residents and non-residents. Includes large box stores and drive-thrus.

The proposed development proposes commercial uses including retail, restaurant, and drive-thru which is directly consistent with the Township Master Plan "Commercial Corridor" land use.

Per the Future Land-Use Map, the existing surrounding land uses are designated as follows:

•	North:	Existing Planned Business Big-Box Retail Future Land Use Map: Commercial Corridor
•	East & South:	Existing RI-C Single Family Residential Single Family Homes Future Land Use Map: Neighborhood Residential
•	West:	Existing Local Business Child Daycare Future Land Use Map: Commercial Corridor

#### 2.0 COMMUNITY FACILITIES AND SERVICES

#### 2.1 ESTIMATED DEMAND ON POLICE & FIRE SERVICES

For a commercial development including retail and restaurant uses, a low/moderate demand on police and fire services is expected. Potential increased foot traffic, especially during peak hours, may necessitate occasional police patrols to manage incidents like theft, vandalism, or disturbances. No proposed use is to include the sale of alcohol, which will help keep demand low. Similarly, fire services may be required to conduct safety inspections for code compliance, especially in kitchens and food preparation areas, and respond to potential fire hazards linked to cooking equipment. Overall, the proposed establishments are generally low risk. Approval from the Township of White Lake Fire Marshal shall be obtained prior to construction.

#### 2.2 ESTIMATED SEWER & WATER DEMAND

Department of Public Services (DPS) issued their Site Plan Review on September 25, 2024. The anticipated Residential Equivalent Units (REUs) for the development is about 27 REUs. DPS did not express any concerns at

#### 2.3 ESTIMATED TRUCK DELIVERIES

The anticipated tenants typically receive deliveries one to two times per week, dependent on the customer demand. Delivery trucks are generally mid-sized refrigerated box trucks (around 18-26 feet), which are small enough to navigate the site as well as be supported by the existing roadways.

#### 3.0 ECONOMICS

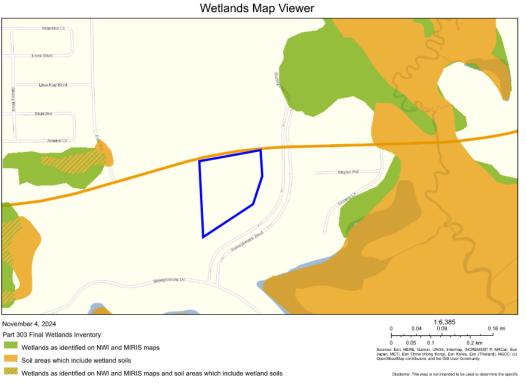
#### 3.1 ANTICIPATED JOBS CREATED

Jobs created during the construction phase based on project size and specifications:

- 56 new temporary jobs during construction phase
- 4-5 additional service-related jobs (landscape, snow removal etc...)

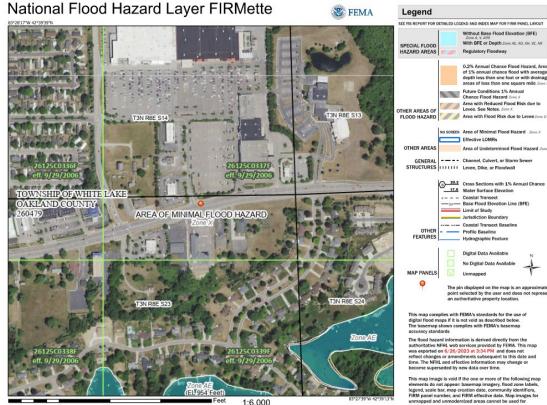
Full-Time Equivalent Job

• While not all tenant spaces have signed leases, it would be expected that a commercial development of this size would generate the equivalent of over 50 new full-time jobs.


#### **3.2** ANTICIPATED TAX REVENUE

The proposed commercial development will generate substantial new revenue for the Township, replacing the current tax-exempt church property with a taxable asset. It is estimated that the proposed development will contribute around \$70,000 per year to White Lake Township and local Schools from annual property taxes. The proposed development will also bring in sales tax on goods or food sales which generate revenue for the state, and the township may benefit indirectly through state-shared revenues. Annual sales tax revenue is estimated to be around \$540,000. While not directly benefiting the township, some of this may flow back through state funding allocations.

#### 4.0 ENVIRONMENT


#### 4.1 EXISTING NATURAL FEATURES

There are no wetlands on-site per EGLE Wetlands Map Viewer.



Per FEMA flood mapping, the site does not lie within a flood plain / floodway. The site lies within Zone X:

#### Area of Minimal Flood Hazard.



250 500 1,000 1,500 2,000 Basemap Imagery Source: USGS National Map 2023

#### 4.2 HAZARDOUS MATERIALS

Hazardous materials in retail and restaurant uses are limited to cleaning supplies, oils, and potentially combustible supplies, all of which require careful handling and storage to prevent spills or accidents. Containment measures include proper labeling, secure storage in designated areas, spill kits on hand for emergencies, and regular training for staff on safe handling procedures.

#### 4.3 AIR POLLUTANTS

Expected air pollutants would be primarily from construction, cooking operations, and vehicle traffic. During construction, dust (particulate matter) is a common pollutant due to site demolition, preparation and excavation. Post-construction, restaurant operations may emit additional particulates, grease, and odors from cooking, particularly if there is grilling or frying involved. Vehicles accessing the development will add to localized air pollution, releasing nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs) that contribute to ground-level ozone and smog. Proper mitigation measures, like dust suppression, high-efficiency exhaust systems, and adequate landscaping, can help minimize these emissions and their impact on surrounding areas.

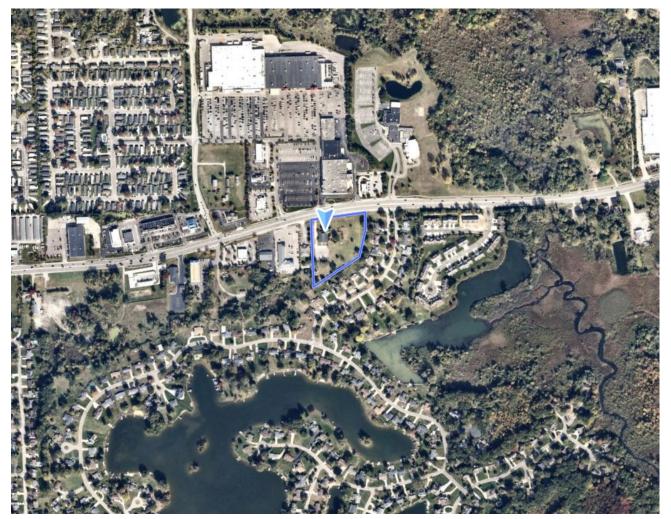
#### 4.4 GROUNDWATER QUALITY & QUANTITY

The proposed development results in an increase in impervious are, therefore stormwater management measures per Oakland County Standards are required. The development includes an aboveground infiltration basin with a mechanical water quality unit will help mitigate potential runoff pollutants, such as oils, grease, and sediments, from entering the groundwater by capturing and treating stormwater before it infiltrates, in line with county standards.

This system should be effective at managing both the volume and quality of stormwater by allowing for infiltration and treating contaminants, reducing the likelihood of groundwater contamination. While overall groundwater recharge may decrease slightly due to paved surfaces, these measures are expected to minimize adverse impacts, helping maintain regional groundwater quality and quantity.

#### 5.0 NOISE

Noise pollution impacts on nearby residential areas are expected to be minimal, especially with the mitigation strategies in place. Since the drive-thru closest to residences is limited to a pick-up window, it will not generate noise from speakers or menu boards, which are typically the primary sources of drive-thru noise. Additionally, the extensive landscaping and 8-foot-high fence will serve as natural and structural sound barriers, helping to further buffer residential areas from vehicle noise, conversations, and general activity associated with the site. These design elements should effectively reduce noise levels, preserving the tranquility of the surrounding neighborhood.


#### 6.0 TRAFFIC

With the addition of the site-generated trips, the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with no additional impacts to LOS. All approaches and movements at the proposed site driveway intersection with Highland Road (M-59) are expected to operate acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exception:

 Highland Road (M-59) & Site Drive: The NB approach is expected to operate at LOS E during the PM peak hour. Review of SimTraffic network simulations indicates that egress vehicles were unable to find adequate gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.

Therefore, the results of the future conditions analysis indicates that the site-generated traffic volumes from the proposed development are expected to have a negligible impact to the delay (LOS) and vehicle queueing observed at the off-site study intersections of Highland Road (M-59) with Fisk Road, JOANN Fabric Drive, and Sunny Beach Boulevard. See **Appendix A** for Traffic Impact Study prepared by Fleis & Vandenbrink.

## 7.0 AERIAL MAP



*Aerial Map obtained from Nearmap November 11, 2024

# APPENDIX A TRAFFIC IMPACT STUDY

# Мемо



	VIA EMAIL: ewilliams@stonefieldeng.com
То:	Stonefield Engineering
From:	Jacob Swanson, PE, PTOE Paul Bonner, EIT Fleis & VandenBrink
Date:	April 22, 2024
Re:	9101 Highland Road (M-59) – Commercial Development White Lake Township, Michigan Traffic Impact Study

#### 1 INTRODUCTION

This memorandum presents the results of the Traffic Impact Study (TIS) for the proposed commercial development in White Lake Township, Michigan. The project site is generally located on the south side of Highland Road (M-59), approximately 1,000-feet east of Fisk Road, as shown on the attached Figure 1. The proposed commercial development includes the construction of retail and restaurant land uses. The project site is currently vacant and was previously occupied by the Calvary Lutheran Church, which will be razed with the construction of the proposed development. Site access is proposed via one (1) full access driveway on Highland Road (M-59). The study section of Highland Road (M-59) is under the jurisdiction of the Michigan Department of Transportation (MDOT). The purpose of this TIS is to evaluate the impact of the proposed development on the adjacent roadway network, as part of the site plan approval and driveway permitting processes.

Scope of work for this study was developed based on Fleis & VandenBrink's (F&V) knowledge of the study area, understanding of the development program, accepted traffic engineering practices, and information published by the Institute of Transportation Engineers (ITE). Study analyses were completed using Synchro/SimTraffic (Version 11) traffic analysis software. Sources of data for this study include F&V subconsultant Quality Counts (QC), MDOT, the Road Commission for Oakland County (RCOC), White Lake Township, the Southeast Michigan Council of Governments (SEMCOG), and ITE.

#### 2 BACKGROUND

#### **EXISTING ROAD NETWORK** 2.1

Lane use and traffic control at the study intersections are shown on the attached Figure 2 and study roadways are further described below. For purposes of this study, all minor streets and driveways were assumed to have an operating speed of 25 miles per hour (mph), unless otherwise noted.

Highland Road (M-59) generally runs in the east / west directions, adjacent to the north side of the project site. The study section of roadway is classified as an Other Principal Arterial, is under the jurisdiction of MDOT, has a posted speed limit of 50-mph, and has an Average Annual Daily Traffic (AADT) volume of approximately 33,400 (MDOT 2022) vehicles per day (vpd). The study section of roadway provides a typical five-lane crosssection, with two (2) lanes of travel in each direction and a center two-way left-turn lane (TWLTL). At the signalized intersection with Fisk Road, Highland Road (M-59) widens to provide an exclusive eastbound rightturn lane. Additionally, Highland Road (M-59) widens to provide an exclusive westbound right-turn lane at the intersection with the JOANN Fabric driveway.

Fisk Road generally runs in the north / south directions, west of the project site, terminating at Highland Road (M-59). The study section of roadway is classified as a Local Road, is under the jurisdiction of RCOC, has an assumed prima facie speed limit of 55-mph, and has an AADT volume of approximately 1,256 vpd (MDOT 2022). The study section of Fisk Road provides typical three-lane cross-section, with one (1) lane of travel in each direction and a center TWLTL.

**Sunny Beach Boulevard** generally runs in the north / south directions, east of the project site. The study section of roadway is classified as a *Local Road*, is under the jurisdiction of RCOC, has an assumed residential prima facie speed limit of 25-mph, and has an AADT volume of approximately 1,840 vpd (MDOT 2012). The study section of Sunny Beach Boulevard services a residential neighborhood to the south of Highland Road (M-59) and services commercial uses to the north of Highland Road (M-59).

#### 2.2 EXISTING TRAFFIC VOLUMES

F&V subconsultant QC collected existing Turning Movement Count (TMC) data on Wednesday, December 13, 2023, during the AM (7:00 AM to 9:00 AM) and PM (4:00 PM to 6:00 PM) peak periods at the following study intersections:

Highland Road (M-59) & Fisk Road
 Highland Road (M-59) & JOANN Fabric Driveway

Additional TMC data was collected on Wednesday, March 13, 2024, at the following study intersection:

• Highland Road (M-59) & Sunny Beach Boulevard

During collection of the turning movement counts, Peak Hour Factors (PHFs), pedestrian and bicycle volumes, and commercial truck percentages were recorded and used in the traffic analysis. The peak hours of each of the study intersections were utilized and the through volumes were carried through the roadway network and balanced upwards at the proposed site driveways. Therefore, traffic volumes used in the analysis and shown on the attached traffic volume figures may not match the raw traffic volumes shown in the data collection.

The weekday AM and PM peak hours for the adjacent roadway network were observed to generally occur between 7:30 AM to 8:30 AM and 4:15 PM to 5:15 PM, respectively. F&V collected an inventory of existing lane use and traffic controls, as shown on the attached **Figure 2**. F&V also obtained the current signal timing permit for the study intersection of Highland Road (M-59) & Fisk Road from MDOT. The existing 2023 peak hour traffic volumes used in the analysis are shown on the attached **Figure 3**. All applicable background data referenced in this memorandum are attached.

#### **3** EXISTING CONDITIONS

Existing peak hour vehicle delays and Levels of Service (LOS) were calculated at the study intersections using Synchro/SimTraffic (Version 11) traffic analysis software. This analysis was based on the existing lane use and traffic control shown on the attached **Figure 2**, the exiting peak hour traffic volumes shown on the attached **Figure 3**, and methodologies presented in the *Highway Capacity Manual*, *6*th Edition (HCM6).

Descriptions of LOS "A" through "F" as defined in the HCM6, are attached. Typically, LOS D is considered acceptable, with LOS A representing minimal delay, and LOS F indicating failing conditions. Additionally, SimTraffic network simulations were reviewed to evaluate network operations and vehicle queues. The results for the exiting conditions analysis are attached and shown in **Table 1**.

				Existing Conditions									
	Intersection	Control	Approach	AM P	eak	PM Peak							
				Delay (s/veh)	LOS	Delay (s/veh)	LOS						
			EBL	14.0	В	53.1	D						
		Signalized	EBT	27.7	С	18.2	В						
				EBR	14.7	В	11.0	В					
	Highland Road (M-59) & Fisk Road		WBL	15.9	С	11.6	В						
1			WBTR	22.7	С	25.3	С						
1			NBL	25.1	С	47.9	D						
	T lok r toda		NBTR	22.3	С	38.0	D						
			SBL	27.3	С	67.0	Е						
			SBTR	24.7	С	47.1	D						
			Overall	25.3	С	28.6	С						



				Existing Conditions						
	Intersection	Control	Approach	AM P	eak	PM Peak				
				Delay (s/veh)	LOS	Delay (s/veh)	LOS			
	Highland Road (M-59)	Otara	EBL	11.1	В	17.2	С			
2	&	Stop (Minor)	WB	Free						
	JOANN Fabric Drive		SB	12.2	В	40.6	Е			
			EBL	10.8	В	17.0	С			
	Highland Road (M-59)	Otara	WBL	9.5	Α	15.8	С			
3	&	Stop (Minor)	NBL	75.9	F	\$	F			
	Sunny Beach Boulevard	(IVIIIIOI)	NBTR	12.1	В	17.6	С			
			SB	50.3	F	\$	F			

Note: \$ Indicates delays exceeding 1,000 seconds / vehicle.

The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better during both the AM and PM peak hours, with the following exceptions:

#### Highland Road (M-59) & Fisk Road

• <u>During the PM peak hour:</u> the southbound left-turn movement currently operates at LOS E.

Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed for this movement; however, the majority of vehicle queues were observed to be processed within each cycle length, leaving minimal residual vehicle queueing. Additionally, any remaining vehicle queues were observed to dissipate and were not present throughout the PM peak hour.

#### Highland Road (M-59) & JOANN Fabric Drive

• During the PM peak hour: the southbound approach currently operates at LOS E.

The southbound approach was designed to prohibit egress left-turns; however, the left-turn traffic from this approach is causing the reported delay. The total volume of southbound egress traffic during the PM peak hour is very low (3 vehicles), which includes two (2) vehicles making an egress left-turn movement. Additionally, although the delay experienced by these vehicles causes the approach to operate at LOS E, review of SimTraffic microsimulations indicates acceptable operations; the 95th percentile queue length reported for this approach was approximately 11-feet (~1 vehicle), which is not significant.

#### Highland Road (M-59) & Sunny Beach Boulevard

• <u>During both the AM and PM peak periods</u>: The northbound left-turn movement and the southbound approach are both currently operate at LOS F.

Review of SimTraffic network simulations indicates generally acceptable operations during the AM peak hour. Occasional periods of vehicle queues were observed along the stop-controlled minor-street approaches; however, these queues were able to find adequate gaps within the through traffic along Highland Road (M-59), without experiencing significant delays or excessive queueing. Review of SimTraffic microsimulations during the PM peak hour indicates that vehicles along Sunny Beach Boulevard experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues along the minor street; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.

#### 4 BACKGROUND CONDITIONS (2025)

Historical population and economic profile data was obtained for White Lake Township from the Southeast Michigan Council of Governments (SEMCOG) database, in order to calculate a background growth rate to project the existing 2023 peak hour traffic volumes to the site buildout year of 2025. Population and employment projections from 2020 to 2050 were reviewed and show average annual growth rates of 0.41% and 0.28%, respectively. Therefore, a conservative background growth rate of **0.5%** per year was applied to the existing peak hour traffic volumes to forecast the background 2025 peak hour traffic volume *without the proposed development*, as shown on the attached **Figure 4**.



In addition to background growth, it is important to account for traffic that will be generated by approved developments within the study area that have yet to be constructed or are currently under construction. At the time of this study, no background developments were identified within the vicinity of the project site.

Background peak hour vehicle delays and LOS *without the proposed development* were calculated at the study intersections based on the existing lane use and traffic control shown on the attached **Figure 2**, the background peak hour traffic volumes shown on the attached **Figure 4**, and methodologies presented in the HCM6. The results of the background conditions analysis are attached and summarized in **Table 2**.

				Exis	ting C	ondition	s	Backg	round	Conditio	ons		Diffe	rence	
	Intersection	Control	Approach	AM Pe	ak	PM Pe	ak	AM Pe	ak	PM Pe	ak	AM Pe	eak	PM P	eak
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.0	В	53.1	D	14.1	В	56.4	Е	0.1	-	3.3	D→E
			EBT	27.7	С	18.2	В	28.1	С	18.3	В	0.4	-	0.1	-
			EBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	-	0.0	-
	Highland Road		WBL	15.9	С	11.6	В	16.0	С	11.8	В	0.1	-	0.2	-
1	(M-59) & Fisk Road	Signal	WBTR	22.7	С	25.3	С	22.9	С	25.6	С	0.2	-	0.3	-
			NBL	25.1	С	47.9	D	25.2	С	48.1	D	0.1	-	0.2	-
			NBTR	22.3	С	38.0	D	23.3	С	38.0	D	0.0	-	0.0	-
			SBL	27.3	С	67.0	Е	27.3	С	67.6	Е	0.0	-	0.6	-
			SBTR	24.7	С	47.1	D	24.7	С	47.4	D	0.0	-	0.3	-
			Overall	25.3	С	28.6	С	25.6	С	29.0	С	0.3	-	0.4	-
	Highland Road	Chara	EBL	11.1	В	17.2	С	11.2	В	17.4	С	0.1	-	0.2	-
2	(M-59) &	Stop	WB	Free			Free					N	I/A		
	JOANN Fabric Dr.	(Minor)	SB	12.5	В	40.6	Е	12.6	В	41.7	Е	0.1	-	1.1	-
	Highland Road		EBL	10.8	В	17.0	С	10.9	В	17.2	С	0.1	-	0.2	-
	(M-59)		WBL	9.5	Α	15.8	С	9.5	Α	16.0	С	0.0	-	0.2	-
3	&	Stop	NBL	75.9	F	\$	F	84.6	F	\$	F	8.7	-	-	-
	Sunny Beach	(Minor)	NBTR	12.1	В	17.6	С	12.2	В	17.8	С	0.1	-	0.2	-
	Boulevard		SB	50.3	F	\$	F	52.7	F	\$	F	2.4	-	-	-

#### Table 2: Background Intersection Operations

Note: \$ Indicates delays exceeding 1,000 seconds / vehicle.

The results of the background conditions analysis indicates that all approaches and movements at the study intersections are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays and the following additional impacts to LOS:

#### Highland Road (M-59) & Fisk Road

• <u>During the PM peak hour</u>: The eastbound left-turn movement is expected to operate at LOS E.

Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed for the eastbound and southbound left-turn movements during the PM peak hour; however, the majority of vehicle queues were observed to be processed within 1-2 cycle length, leaving minimal residual vehicle queueing. Additionally, any remaining vehicle queues were observed to dissipate and were not present throughout the peak hour.

#### 5 SITE TRIP GENERATION

The number of weekday peak hour (AM and PM) and daily vehicle trips that would be generated by the proposed development were calculated using the rates and equations published by the Institute of Transportation Engineers (ITE) in *Trip Generation*, *11th Edition*. For purposes of this study the following land uses were assumed in the analysis: a coffee shop with drive-through, a fast-casual restaurant, a fast-food restaurant with drive-through, and retail space. Additionally, the proposed restaurants will not have breakfast service; however, in order to provide a conservative analysis, the AM peak hour trip generation was included for these land uses. The site trip generation forecast utilized for this study is summarized in **Table 3**.



Land Use	ITE	Amount	Units	Average Daily	AM Pe	eak Hou	ur (vph)	PM Pe	PM Peak Hour (vph)			
	Code	Anount		Traffic (vpd)	In	Out	Total	In	Out	Total		
Strip Retail Plaza (<40k SF)	822	6,184	SF	491	9	6	15	28	27	55		
Pas	98	0	0	0	11	11	22					
		Ne	w Trips	393	9	6	15	17	15	33		
Fast Casual Restaurant	930	2,502	SF	243	9	5	14	17	14	31		
Pas	ss-By ((	)% AM, 43	3% PM)	104	0	0	0	6	6	12		
		Ne	w Trips	139	9	5	14	11	8	19		
Fast Food Restaurant w/ Drive Through	934	2,402	SF	1,123	55	52	107	41	38	79		
Pas	s-By (5	0%AM, 55	5% PM)	590	27	27	54	21	21	42		
		Ne	w Trips	533	28	25	53	20	17	37		
Coffee Shop with Drive-Through	937	2,522	SF	1,346	111	106	217	49	49	98		
Pass	s-By (50	)% AM, 55	5% PM)	707	54	54	108	27	27	54		
		Ne	w Trips	639	57	52	109	22	22	44		
		Tota	l Trips	3,203	184	169	353	135	128	263		
		Total F	ass-By	1,499	81	81	162	65	65	130		
		Total Nev	v Trips	1,704	103	88	191	70	63	133		

#### Table 3: Site Trip Generation Summary

As is typical of commercial developments, a portion of the trips generated by the proposed development are from vehicles already on the adjacent roadway network that will pass the site on their way from an origin to their ultimate destination. Therefore, not all traffic at the site driveway is necessarily new traffic added to the street system. These trips are therefore reduced from the total external trips generated by a study site. This percentage of the trips generated by the development are considered "pass-by", which are already present of the adjacent roadway network. The percentage of pass-by used in this analysis was determined based on the rates published by ITE in the *Trip Generation Manual, 11th Edition*.

#### **6** SITE TRIP DISTRIBUTION

The vehicular trips that would be generated by the proposed development were assigned to the study roadway network based on the proposed stie access plan and driveway configurations, the existing peak hour traffic patterns in the adjacent roadway network, and methodologies published by ITE. The ITE trip distribution methodology assumes that new trips will enter the network and access the development, then leave the development and return to their direction of origin, whereas pass-by trips will enter and exit the development in their original direction of travel. The stie trip distributions utilized in the analysis are summarized in **Table 4**.

		New T	Pass-By Trips											
AM	PM	To/From	Via	Direction	AM	PM								
7%	12%	North	Fisk Road											
40%	52%	East	Highland Road (M-59)	Westbound	42%	56%								
53%	36%	West	Highland Road (M-59)	Eastbound	58%	44%								
100%	100%		Total		100%	100%								

Т	ahlo	Δ۰	Sito	Trin	Distribution
I	able	4.	Sile	TTP	DISTUDUTION

The vehicular traffic volumes shown in **Table 3** were distributed to the study roadway network according to the distribution shown in **Table 4**. Therefore, the site generated trips shown on the attached **Figure 5** were added to the background peak hour traffic volumes shown on the attached **Figure 4**, in order to calculate the future peak hour traffic volumes, with the addition of the proposed development. Future peak hour traffic volumes are shown on the attached **Figure 6**.



#### 7 FUTURE CONDITIONS (2025)

Future peak hour vehicle delays and LOS *with the addition of the site-generated trips from the proposed development*, were calculated based on the proposed lane use and traffic controls shown on the attached **Figure 2**, the future peak hour traffic volumes shown on the attached **Figure 6**, and the methodologies presented in the HCM6. Results of the future conditions analysis are attached and summarized in **Table 5**.

				Backg	round	Conditio	ons	Futi	ure Co	onditions	;		Differ	ence	
	Intersection	Control	Approach	AM Peak		PM Peak		AM Peak		PM Peak		AM Peak		PM P	eak
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.1	В	56.4	Е	14.5	В	60.8	Е	0.4	-	4.4	-
			EBT	28.1	С	18.3	В	30.2	С	18.6	В	2.1	-	0.3	-
			EBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	-	0.0	-
	Highland Road		WBL	16.0	С	11.8	В	16.8	В	12.0	В	0.8	С→В	0.2	-
1	(M-59)	Signal	WBTR	22.9	С	25.6	С	23.9	С	26.6	С	0.0	-	0.0	-
l'	&	Signal	NBL	25.2	С	48.1	D	25.2	С	48.1	D	0.0	-	0.0	-
	Fisk Road		NBTR	23.3	С	38.0	D	22.3	С	38.0	D	0.0	-	0.0	-
			SBL	27.3	С	67.6	Е	27.6	С	70.7	Е	0.3	-	3.1	-
			SBTR	24.7	С	47.4	D	24.7	С	47.4	D	0.0	-	0.0	-
			Overall	25.6	С	29.0	С	27.1	С	29.9	С	1.5	-	0.9	-
	Highland Road	01	EBL	11.2	В	17.4	С	11.4	В	17.9	С	0.2	-	0.5	-
2	(M-59) &	Stop (Minor)	WB		Fre	e		Free				N/A			
	JOANN Fabric Dr.		SB	12.6	В	41.7	Е	12.9	В	43.7	Е	0.3	-	2.0	-
	Highland Road		EBL	10.9	В	17.2	С	11.1	В	17.7	С	0.2	-	0.5	-
	(M-59)	0	WBL	9.5	А	16.0	С	9.8	Α	16.4	С	0.3	-	0.4	-
3	`&´	Stop (Minor)	NBL	84.6	F	\$	F	95.4	F	\$	F	10.8	-	-	-
	Sunny Beach		NBTR	12.2	В	17.8	С	12.7	В	18.2	С	0.5	-	0.4	-
	Boulevard		SB	52.7	F	\$	F	63.5	F	\$	F	10.8	-	-	-
	Highland Road		EB						Fre	ee					
4	(M-59) &	Stop (Minor)	WBL	N/A				11.1	В	10.5	В	N/A			
	Site Drive		NB					32.0	D	42.0	Е				

Note: \$ Indicates delays exceeding 1,000 seconds / vehicle.

Results of the future conditions analysis indicate that all approaches and movements at the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with minor increases in delays and no additional impacts to LOS. Additionally, the proposed site driveway is expected to operate acceptably, at LOS D or better, during both peak periods, with the exception of the following:

#### Highland Road (M-59) & Site Drive

• During the PM peak hour: The northbound approach is expected to operate at LOS E.

Review of SimTraffic network simulations indicates that egress vehicles were unable to find adequate gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.

Therefore, the results of the future conditions analysis indicates that the site-generated traffic volumes from the proposed development are expected to have a negligible impact to the delay (LOS) and vehicle queueing observed at the off-site study intersections of Highland Road (M-59) with Fisk Road, JOANN Fabric Drive, and Sunny Beach Boulevard.



### 8 ACCESS MANAGEMENT

### 8.1 DRIVEWAY SPACING EVALUATION

The MDOT *Geometric Design Guidance* (Section 1.2.2) criteria were utilized to evaluate the location of the proposed site driveway, in relation to nearby intersections and access points within close proximity to the project site. The intersection corner clearance criteria were evaluated for the 50-mph section of Highland Road (M-59), adjacent to the project site. The distance of the proposed site driveway from nearby intersections and access points, and the warranting criteria are summarized in **Table 6** and displayed in **Exhibit 1**.

Adjace	nt Drive	ways & Intersections	Distance	Criteria	Meets
Site Drive	to	Preschool Drive	280 feet	455 feet	NO
Site Drive	to	Sunny Beach Boulevard	400 feet	170 feet	YES
Site Drive	to	JOANN Fabrics Drive	150 feet	750 feet	NO
Site Drive	to	ROSS Drive	130 feet	750 feet	NO



### Exhibit 1: Proposed Driveway Spacing

The results of the driveway spacing analysis indicate that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveways. However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the site plan includes proposed future cross access, stubbed at the property line to the west; this would provide improved site access, permitting this cross access between the nearby developments on the south side of Highland Road (M-59), should the adjacent property ever be redeveloped. Furthermore, shared access is not available with the Sunny Beach Boulevard neighborhood to the east.



### 8.2 AUXILIARY TURN LANE EVALUATION

The MDOT auxiliary turn lane criteria were evaluated at the proposed site driveway on Highland Road (M-59). Highland Road (M-59) currently provides an existing center two-way left-turn lane (TWLTL); therefore, the left-turn lane criteria was not evaluated at the proposed site driveway. This analysis was based on the future peak hour traffic volumes shown on the attached **Figure 6**. The results of the analysis are shown on the attached chart and are summarized in **Table 7**.

			,
Intersection	Peak I	Recommendation	
	AM Peak Hour	PM Peak Hour	Reconnicitation
Highland Road (M-59) at Site Drive	Right-Turn Lane	Right-Turn Lane	Right-Turn Lane

### Table 7: Right-turn Treatment Criteria Evaluation Summary

The result of the auxiliary turn lane evaluation indicates that a right-turn deceleration lane is warranted along eastbound Highland Road (M-59) at the proposed site driveway.

### 9 FUTURE CONDITIONS WITH IMPROVEMENTS ANALYSIS

Mitigation measures were investigated in order to improve the study intersections and mitigate the impact of the proposed development. The mitigation measures that were identified and the impacts to the study intersections are discussed below:

### 9.1 HIGHLAND ROAD (M-59) & FISK ROAD

Signal timing optimizations were reviewed at the study intersection of Highland Road (M-59) & Fisk Road and were determined to adequately improve all approaches and movements to LOS D or better during the PM peak hour. Therefore, the following improvements are recommended:

• Optimize the signal timing splits during the PM peak hour.

### 9.2 HIGHLAND ROAD (M-59) & SITE DRIVE

The proposed site plan includes shared access to the property to the west of the project site, which would reduce the projected delay for egress traffic; however, the property west would need to be redeveloped to accommodate such a cross access connection. Additionally, providing cross access with the Sunny Beach Boulevard neighborhood to the west would also reduce egress delays; however, this is not feasible. Therefore, the following improvements are recommended:

- Provide exclusive egress left-turn and right-turn lanes at the proposed Site Drive.
- Provide an eastbound right-turn lane along Highland Road (M-59) at the proposed Site Drive.

The results of the future improvements analysis, with the implementation of the recommended mitigation measures, are attached and summarized in **Table 8**.

				Futu	ure Co	onditions	\$	F	uture	w/ IMP		Difference				
	Intersection	Control	Approach	AM Pe	ak	PM Pe	eak	AM Peak		PM Peak		AM Peak		PM P	eak	
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
			EBL	14.5	В	60.8	Е			50.8	D			-10.0	$E \rightarrow D$	
			EBT	30.2	С	18.6	В			22.6	С			4.0	$B \rightarrow C$	
			EBR	14.7	В	11.0	В			13.3	В			2.3	-	
	Highland Road		WBL	16.8	В	12.0	В			15.7	В			3.7	-	
1	(М-59)	Signal	WBTR	23.9	С	26.6	С	No Cha	ngo	47.3	D	No Change		20.7	$C \rightarrow D$	
Ľ	&	Signal	NBL	25.2	С	48.1	D		inge	43.0	D	NO CH	ange	-5.1	-	
	Fisk Road		NBTR	22.3	С	38.0	D			34.1	С			-3.9	$D \rightarrow C$	
			SBL	27.6	С	70.7	Е		54.2	D	_		-16.5	$E \rightarrow D$		
			SBTR	24.7	С	47.4	D		40.9	D			-6.5	-		
			Overall	27.1	С	29.9	С			38.4	D			8.5	C→D	

### **Table 8: Future Intersection Operations with Improvements**



				Futi	ure Co	onditions	;	F	uture	w/ IMP		Difference				
	Intersection	Control	Approach	AM Peak		PM Peak		AM Peak		PM Peak		AM Peak		PM Peak		
				Dolay	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
	Highland Road (M-59)		EB		Fr	ee			Fre	ee			N	Α		
		Stop (Minor)	WBL	11.1	В	10.5	В	11.1	В	10.5	В	0.0	_	0.0		
	(101-55)		WDL	11.1	D	10.5	Ъ	11.1	D	10.5	D	0.0	_	0.0	-	
4	& Site Drive		NBL	32.0	D	42.0	E	30.4	D	46.8	E	-1.6	-	4.8	-	

The results of the future conditions with improvements analysis indicate that, with the implementation of the recommended improvements, all study intersection approaches and movements are expected to continue to operate acceptably, at LOS D or better during both peak periods, with the following exception:

### Highland Road (M-59) & Site Drive

• During the PM peak hour: The northbound left-turn movement is expected to operate at LOS E.

Review of SimTraffic microsimulations indicates improved operations and reduced vehicle queueing at the signalized study intersection of Highland Road (M-59) & Fisk Road and the stop-controlled intersection of Highland Road (M-59) & Site Drive during the PM peak hour.

### **10 QUEUEING ANALYSIS**

The drive-through vehicle queueing was reviewed to determine if the proposed on-site queue lengths provide adequate storage to accommodate the projected operations. The development plan includes two (2) drive-through windows.

The coffee-shop is expected to have a peak trip generation of 111 trips during the AM peak hour. Coffee-shops with drive-through typically have an average service rate of approximately 80 vehicles per hour, with 80% of customers utilizing the drive-through. Therefore, of the total vehicles generated by the proposed coffee-shop during the peak period, it is estimated that approximately 89 vehicles will utilize the drive-through; the remaining vehicles will park and walk-in. The evaluation of the queue length included two criteria:

- 1. A queueing analysis was performed to determine if the projected demand of the site exceeds the service rate and calculate the projected queueing. The projected demand (89 veh/hr) is greater than the service rate (80 veh/hr) of the site; therefore, there is a potential for vehicles to queue past the pickup window, as the demand exceeds the capacity.
- 2. A Poisson Distribution was performed to determine the probability of random arrivals. The results indicate a maximum potential of five (5) vehicles arriving at any given time.

The results of the queueing analysis for the coffee shop are summarized in Table 9.

DRIVE-THROUGH STACKING SPACE CALCU	LATOR
Number of Arrivals	86
Time per Vehicle (s)	45
Service Rate (veh/hr)	80
Drive-Through Queue (veh)	9
Peak Arrival (veh)	5
Vehicle Length	25
TOTAL QUEUE (ft)	350

### **Table 9: Coffee Shop Vehicle Queuing Analysis**

The fast-food restaurant is expected to have a peak trip generation of 55 trips during the AM peak hour. Fast-food restaurants with drive-through typically have an average service rate of approximately 90 vehicles per hour and 70% of customers utilizing the drive-through. Therefore, of the total vehicles generated by the proposed fast-food restaurant during the peak period, it is estimated that approximately 39 vehicles will utilize the drive-through; the remaining vehicles will park and walk-in. The evaluation of the queue length included two criteria:

- 1. A queueing analysis was performed to determine if the projected demand of the site exceeds the service rate and calculate the projected queueing. The projected demand (39 veh/hr) is less than the service rate (90 veh/hr) of the site; therefore, the required queueing for the fast-food restaurant is based on the maximum potential for random arrivals.
- 2. A Poisson Distribution was performed to determine the probability of random arrivals. The results indicate a maximum potential of four (4) vehicles arriving at any given time.

The results of the queueing analysis for the fast-food restaurant are summarized in **Table 10**.

DRIVE-THROUGH STACKING SPACE CALCUL	ATOR
Number of Arrivals	39
Time per Vehicle (s)	40
Service Rate (veh/hr)	90
Peak Arrival (veh)	4
Vehicle Length	25
TOTAL QUEUE (ft)	100

### Table 10: Fast-Food Restaurant Vehicle Queuing Analysis

The results of the projected vehicle queuing analysis indicates that the maximum anticipated arrivals generated by the proposed coffee-shop with drive-through can be adequately accommodated within the available queue length, without impacting internal site circulation or the operations along Highland Road (M-59).

### 11 CONCLUSIONS

The conclusions of this TIS are as follows:

### 1. Existing Conditions (2023)

- The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exceptions:
  - <u>Highland Road (M-59) & Fisk Road:</u> The SB left-turn movement is currently operating at LOS E, during the PM peak hour. Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed; however, the majority were observed to be processed within each cycle length, leaving minimal residual vehicle queueing.
  - <u>Highland Road (M-59) & JOANN Fabric Drive</u>: The SB approach is currently operating at LOS E during the PM peak hour. This approach was designed to prohibit egress left-turns; however, this traffic is causing the reported delay. The total volume of southbound egress traffic is very low (3 vehicles), which includes two (2) vehicles making an egress left-turn movement.
  - <u>Highland Road (M-59) & Sunny Beach Boulevard:</u> The NB left-turn movement and the SB approach are both currently operating at LOS F during both peak hours. Review of SimTraffic network simulations indicates generally acceptable operations during the AM peak hour. Occasional periods of vehicle queues were observed along the minor-street approaches; however, these queues were able to find adequate gaps in the through traffic along Highland Road (M-59).

Review of SimTraffic microsimulations during the PM peak hour indicates that vehicles along Sunny Beach Boulevard experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues along the minor street; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.



### 2. Background Conditions (2025 No Build)

- A conservative annual background growth rate of <u>0.5%</u> per year was utilized to project the existing peak hour traffic volumes to the buildout year of 2025.
- The results of the background conditions analysis indicates that the study intersections are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays due increases in background traffic volumes and the following additional impacts to LOS:
  - <u>Highland Road (M-59) & Fisk Road:</u> The EB left-turn movement is expected to operate at LOS E, during the PM peak hour.

### 3. Future Conditions (2025 Build)

- With the addition of the site-generated trips, the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with no additional impacts to LOS.
- All approaches and movements at the proposed site driveway intersection with Highland Road (M-59) are expected to operate acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exception:
  - <u>Highland Road (M-59) & Site Drive</u>: The NB approach is expected to operate at LOS E during the PM peak hour. Review of SimTraffic network simulations indicates that egress vehicles were unable to find adequate gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.
- Therefore, the results of the future conditions analysis indicates that the site-generated traffic volumes from the proposed development are expected to have a negligible impact to the delay (LOS) and vehicle queueing observed at the off-site study intersections of Highland Road (M-59) with Fisk Road, JOANN Fabric Drive, and Sunny Beach Boulevard.

### 4. Access Management

- The results of the driveway spacing analysis indicates that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveway.
  - However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the site plan includes proposed future cross access, stubbed at the property line to the west; this would provide improved site access, permitting this cross access between the nearby developments on the south side of Highland Road (M-59), should the adjacent property ever be redeveloped. Furthermore, shared access is not available with the Sunny Beach Boulevard neighborhood to the east.
- The MDOT auxiliary right-turn treatment criteria were evaluated at the proposed site driveway; the result of the analysis indicates that a right-turn lane is recommended along eastbound Highland Road (M-59) at the proposed Site Drive.

### 5. Future Conditions with Improvements

- Signal timing optimizations were reviewed and were determined to adequately improve the signalized study intersection of <u>Highland Road (M-59) & Fisk Road</u> to LOS D or better during the PM peak hour. Additionally, the vehicle queues at the signalized study intersection were observed to be reduced, with the implementation of the recommended mitigation measures.
- Mitigation measures were investigated at the intersection of Highland Road (M-59) & Site Drive. The
  results of the improvements evaluation indicates that providing exclusive egress left-turn and right-turm
  lanes would improve the projected operations Additionally, the warranted eastbound right-turn lane
  along Highland Road (M-59) was included in the improvements analysis. The results indicate that the
  northbound left-turn movement is still expected to operate at LOS E during the PM peak hour; however,
  review of SimTraffic network simulations indicates improved operations.

### 6. Drive-Through Queueing Evaluation

• The results of the drive-through queueing evaluation indicates that the proposed site plan can adequately accommodate the projected vehicle queueing associated with the proposed coffee-shop and fast-food restaurants, without impacting internal site circulation or the operations along Highland Road (M-59).

### **12 RECOMMENDATIONS**

The recommendation of this TIS are as follows:

- Provide exclusive egress left-turn and right-turn lanes at the proposed Site Drive.
- Provide an eastbound right-turn lane along Highland Road (M-59) at the proposed Site Drive.
- Optimize the PM peak hour signal timing at the Highland Road (M-59) & Fisk Road intersection.

Any questions related to this memorandum, study, analysis, and results should be addressed to Fleis & VandenBrink.



I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Michigan.

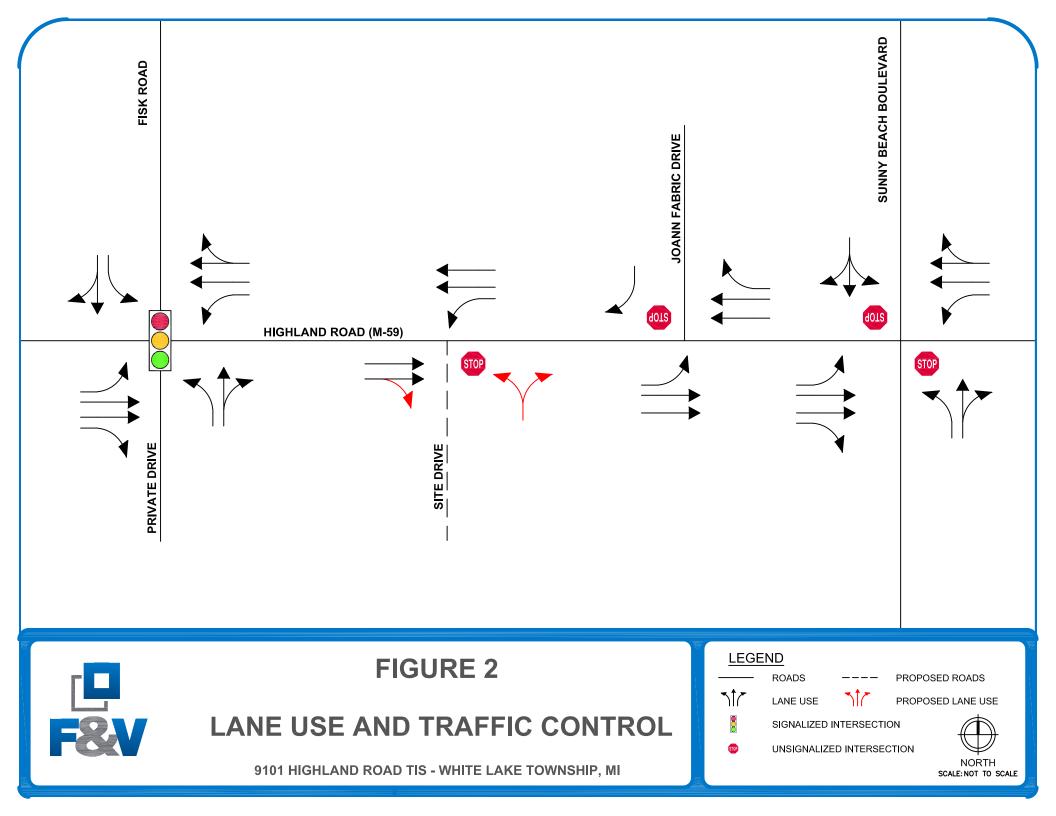
Attachments: Figures 1 – 6 Proposed Site Plan Traffic Volume Data Signal Timing Permits Synchro / SimTraffic Results Auxiliary Lane Warrants

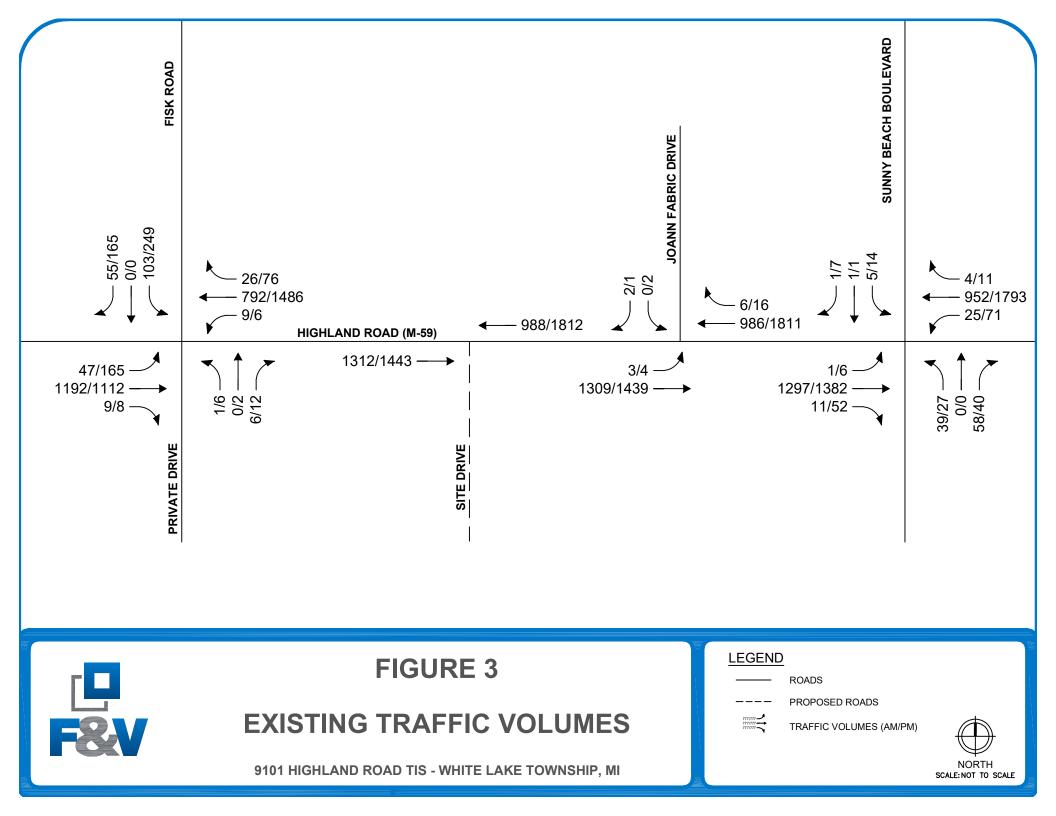


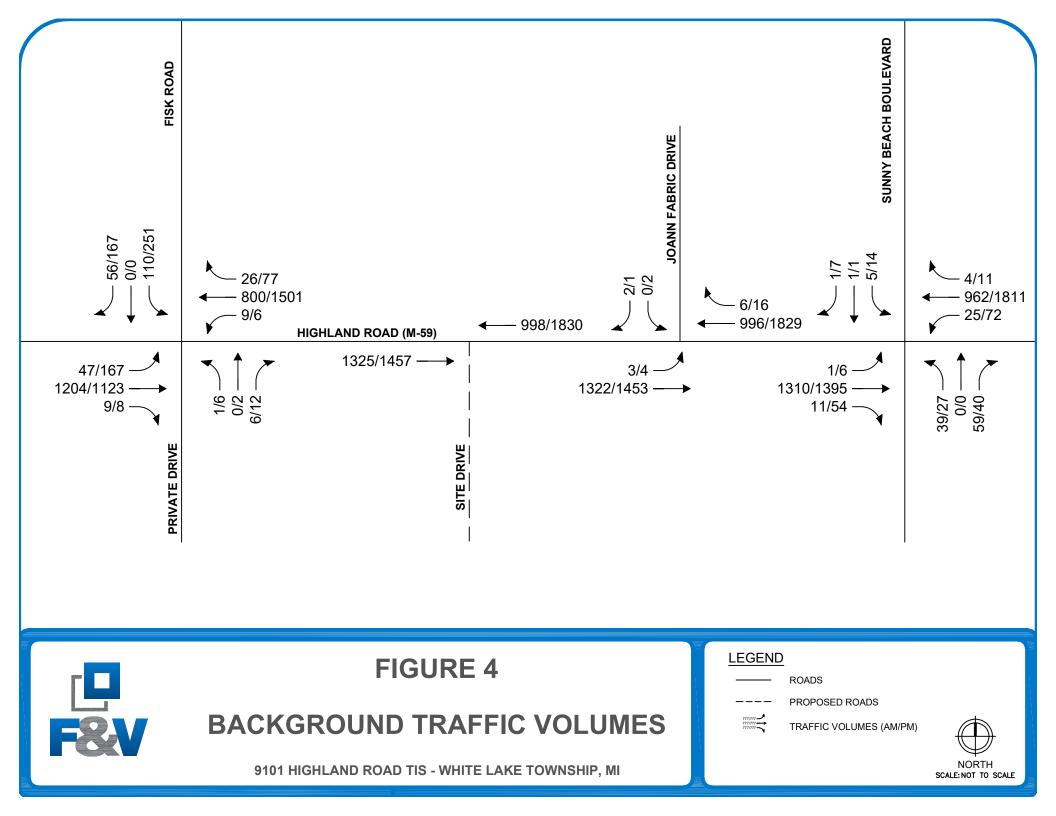


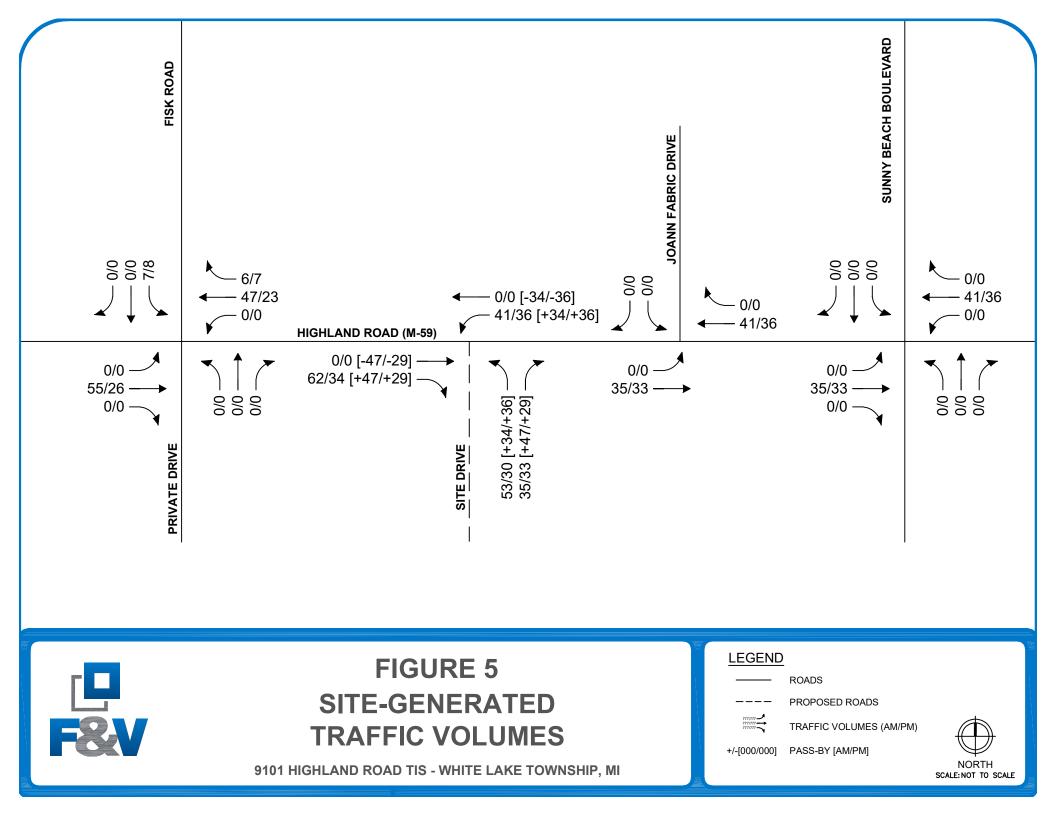


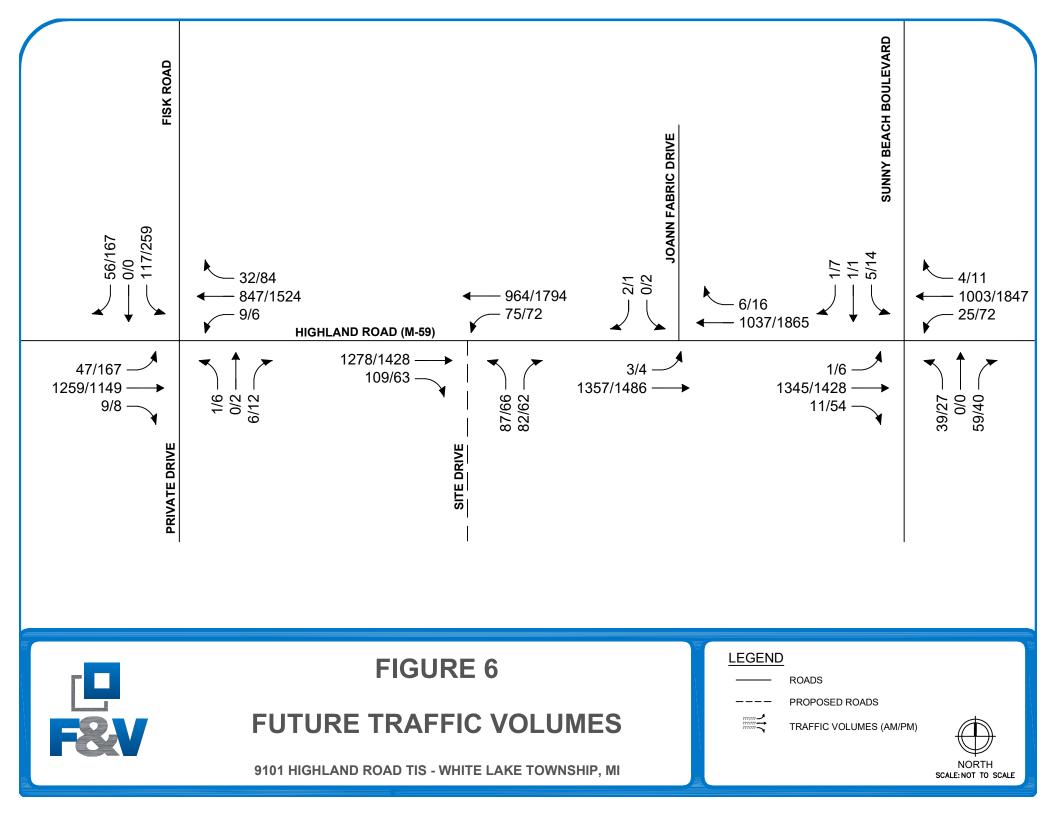
# SITE LOCATION

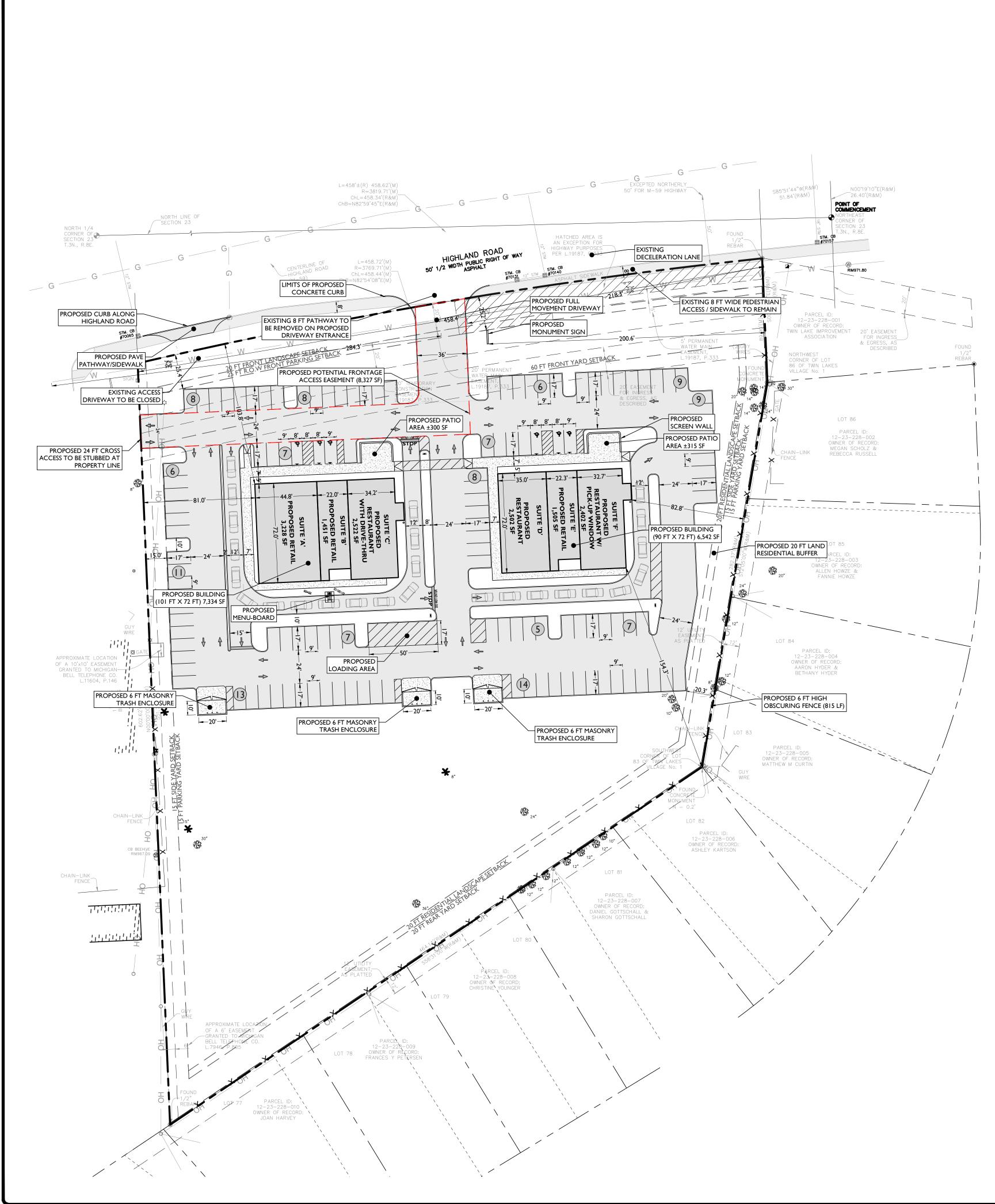

**FIGURE 1** 

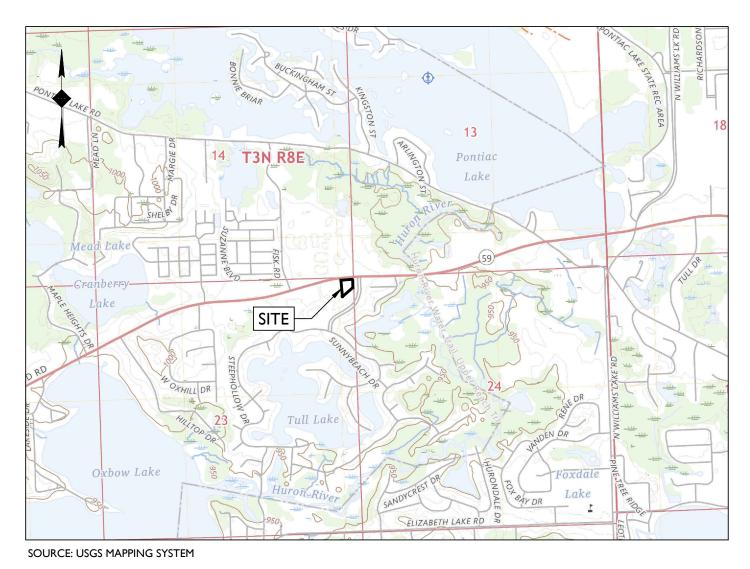

9101 HIGHLAND ROAD TIS - WHITE LAKE TOWNSHIP, MI







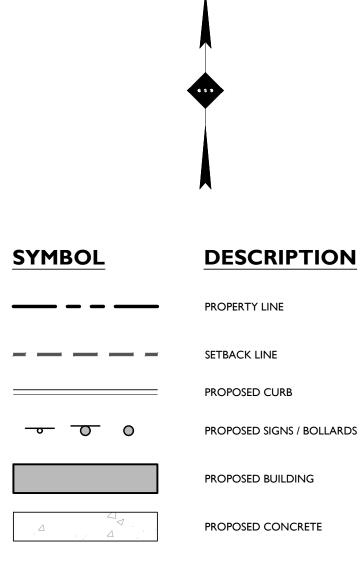


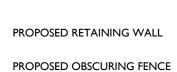





# **LOCATION MAP** SCALE: I" = 2,000'±

LAND USE AI	ND ZONING		SIGNAGE REQUIREMENTS								
PID:12-23	-227-003		CODE SECTION	REQUIRED	PROPOSEI						
EXISTING ZONE: RI-C SING	GLE FAMILY RESIDENT	TIAL	§5.9.J.I.B	MULTI-TENANT SIGN HEIGHT:	<15 FT						
REZONED TO GENERAL B	USINESS DISTRICT (G	iB)		I5 FT ⁽²⁾⁽³⁾							
PROPOSED USE	*		§5.9.J.I	SIGN AREA:	<150 SF						
RESTAURANT OR FAST FOOD	PERMITTED USE			6 SF PER I FT OF SETBACK							
DRIVE-THRU WINDOW	SPECIAL LAND USE		§5.9.J.I	MAXIMUM SIGN AREA:	<150 SF						
RETAIL STORE	PERMITTED USE			150 SF ⁽¹⁾							
ZONING REQUIREMENT		PROPOSED	§5.9.J.I.A	SIGN SETBACK:	25.2 FT						
		195,568 SF (4.5 AC)		I0 FT							
	200 FT	458.4 FT	§5.9.J.I.A	RESIDENTIAL SETBACK:	200.6 FT						
MAXIMUM BUILDING HEIGHT	35 FT (2 STORIES)	<35 FT (I STORY)		100 FT							
MINIMUM FRONT YARD SETBACK	60 FT ⁽¹⁾	103.8 FT	(I) MAXIMUM SI	GN AREA SHALL NOT INCLUDE DECORA	TIVE ELEMENTS						
MINIMUM SIDE YARD SETBACK (ONE)	I5 FT	81.0 FT	SUCH AS BAS	SES, COLUMNS OR CAPS							
MINIMUM SIDE YARD SETBACK (BOTH)	20 FT	163.8 FT	(2) MINIMUM HE	IGHT OF A SIGN BASE SHALL NE 2 FT IN F	IEIGHT						
MINIMUM REAR YARD SETBACK	20 FT	154.3 FT	(3) EACH INDIVI	dual tenant sign shall not exceed							
MINIMUM DRIVEWAY FROM RESIDENTIAL	200 FT ⁽¹⁾	218.3 FT	(3) EACH INDIVI	DOAL TEINAINT SIGIN SHALL NOT EXCEEL							
MINIMUM FRONT LANDSCAPE SETBACK	20 FT	25.4 FT									
MINIMUM R.O.W PARKING SETBACK	25 FT ⁽²⁾	25.4 FT									
INTERIOR LANDSCAPING AREA	I 5% (29,335 SF)	>15%									
MINIMUM DRIVEWAY SPACING (HIGHLAND ROAD)	455 FT	±284.3 FT TO WEST (V)									
TRASH ENCLOSURE SETBACK	FRONT LOT LINE ⁽³⁾	REAR YARD	GENERAL	NOTES							
MINIMUM SIDE PARKING SETBACK	15 FT	15.0 FT									

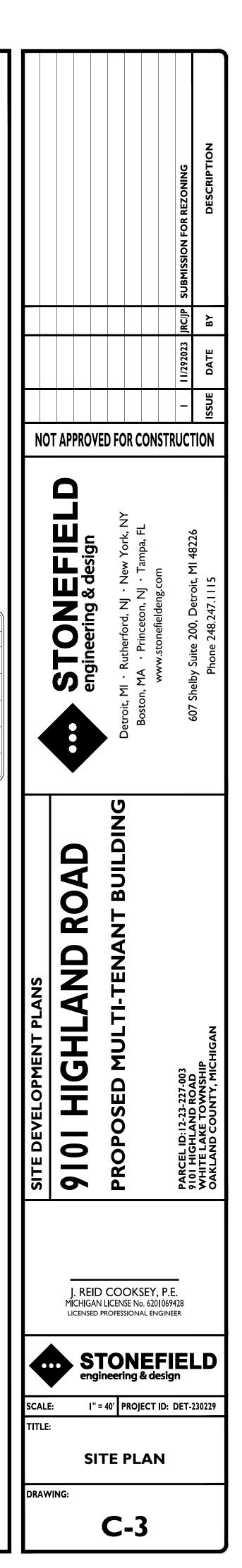

(I) REQUIREMENT FOR RESTAURANT WITH DRIVE-THRU


NO PARKING STALL SHALL BE LOCATED ADJACENT TO R.O.W LINE, STREET EASEMENT OR (2) SIDEWALK WHICHEVER IS CLOSER

(3) NO ENCLOSURES SHALL BE PERMITTED CLOSER TO THE FRONT LOT LINE THAN THE PRINCIPAL

OFF-S	TREET PARKING REQUIRE	MENTS
CODE SECTION	REQUIRED	PROPOS
§ 5.11.M	FAST FOOD PARKING:	125 SPA
	I SPACE PER 75 OF GFA	
	(2,522 SF +2,402 SF) =4,924 SF	
	(4,924 SF)(1 SPACES/ 75 SF)= 66 SPACES	
	RESTAURANT PARKING:	
	I SPACE PER 100 SF OF GFA	
	(2,502 SF)(1 SPACE/100 SF)= 25 SPACES	
	RETAIL PARKING:	
	I SPACE PER 200 SF OF GFA	
	(3,228 SF + 1,451 SF + 1,505 SF)=6,184 SF	
	(6,184 SF)(1 SPACE/200 SF)= 31 SPACES	
	TOTAL: 66 + 25 + 31= 122 SPACES	
§ 5.11.M	STACKING SPACES (WEST FAST FOOD):	I 5 SPACE
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X
§ 5.11.M	STACKING SPACES (EAST FAST FOOD):	I0 SPACE
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X
§ 5.11.Q	90° PARKING:	9 FT X 1
	9 FT X 18 FT WITH 24 FT AISLE ⁽¹⁾	W/ 24 F1
§ 5.19	LANDSCAPE REQUIREMENT:	PROVID
	20 FT WIDTH ALONG RESIDENTIAL	
	3 FT HIGH BERM WITH A 2 FT CROWN	
§ 5.11.P.I	LOADING AREA:	17 FT X 5
	10 FT X 50 FT WITH 15 FT CLEARANCE	

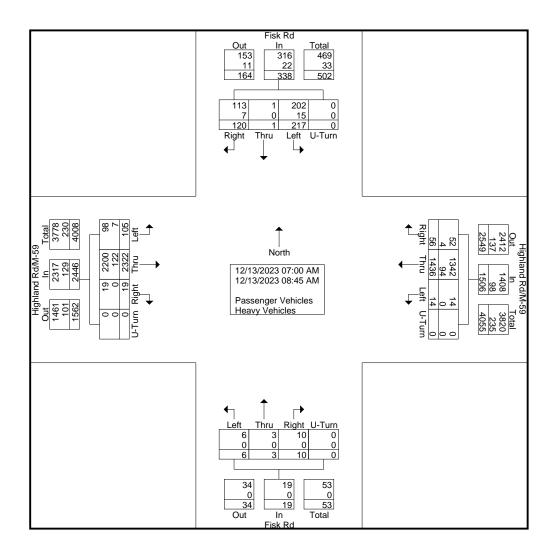
(I) PARKING SPACE LENGTH MAY BE REDUCED TO 17 FT WHERE 7 FT SIDEWALK OR LANDSCAPE IS PROVIDED





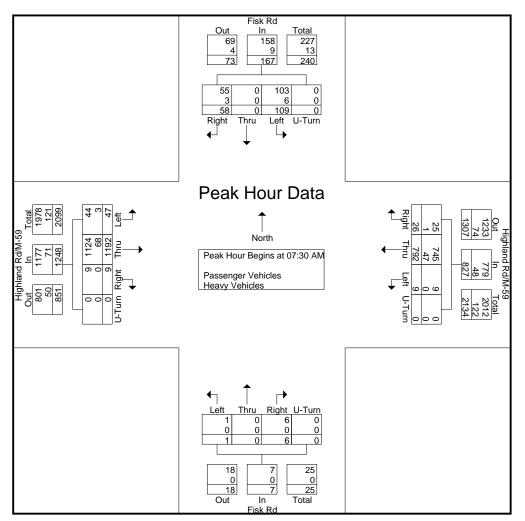



- SELVES SCOPE R TO INITIATING THE IMPROVEMENTS IDENTIFIED WITHIN THESE DOCUMENTS. SHOULD ANY DISCREPANCY BE FOUND BETWEEN THE EXISTING SITE CONDITIONS AND THE PROPOSED WORK THE CONTRACTOR SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN, LLC. PRIOR TO THE START OF CONSTRUCTION.
- 2. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND ENSURE THAT ALL REQUIRED APPROVALS HAVE BEEN OBTAINED PRIOR TO THE START OF CONSTRUCTION. COPIES OF ALL REQUIRED PERMITS AND APPROVALS SHALL BE KEPT ON SITE AT ALL TIMES DURING CONSTRUCTION.
- 3. ALL CONTRACTORS WILL, TO THE FULLEST EXTENT PERMITTED BY LAW, INDEMNIFY AND HOLD HARMLESS STONEFIELD ENGINEERING & DESIGN, LLC. AND IT'S SUB-CONSULTANTS FROM AND AGAINST ANY DAMAGES AND LIABILITIES INCLUDING ATTORNEY'S FEES ARISING OUT OF CLAIMS BY EMPLOYEES OF THE CONTRACTOR IN ADDITION TO CLAIMS CONNECTED TO THE PROJECT AS A RESULT OF NOT CARRYING THE PROPER INSURANCE FOR WORKERS COMPENSATION, LIABILITY INSURANCE, AND LIMITS OF COMMERCIAL GENERAL LIABILITY INSURANCE.
- 4. THE CONTRACTOR SHALL NOT DEVIATE FROM THE PROPOSED IMPROVEMENTS IDENTIFIED WITHIN THIS PLAN SET UNLESS APPROVAL IS PROVIDED IN WRITING BY STONEFIELD ENGINEERING & DESIGN, LLC. 5. THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND
- METHODS OF CONSTRUCTION. 6. THE CONTRACTOR SHALL NOT PERFORM ANY WORK OR CAUSE DISTURBANCE ON A PRIVATE PROPERTY NOT CONTROLLED BY THE PERSON OR ENTITY WHO HAS AUTHORIZED THE WORK WITHOUT PRIOR WRITTEN CONSENT FROM THE OWNER OF THE PRIVATE PROPERTY.
- 7. THE CONTRACTOR IS RESPONSIBLE TO RESTORE ANY DAMAGED OR UNDERMINED STRUCTURE OR SITE FEATURE THAT IS IDENTIFIED TO REMAIN ON THE PLAN SET. ALL REPAIRS SHALL USE NEW MATERIALS TO RESTORE THE FEATURE TO ITS EXISTING CONDITION AT THE CONTRACTORS EXPENSE. 8. CONTRACTOR IS RESPONSIBLE TO PROVIDE THE APPROPRIATE SHOP
- DRAWINGS, PRODUCT DATA, AND OTHER REQUIRED SUBMITTALS FOR REVIEW. STONEFIELD ENGINEERING & DESIGN, LLC. WILL REVIEW THE SUBMITTALS IN ACCORDANCE WITH THE DESIGN INTENT AS REFLECTED WITHIN THE PLAN SET. 9. THE CONTRACTOR IS RESPONSIBLE FOR TRAFFIC CONTROL IN
- ACCORDANCE WITH MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION. 10. THE CONTRACTOR IS REQUIRED TO PERFORM ALL WORK IN THE PUBLIC RIGHT-OF-WAY IN ACCORDANCE WITH THE APPROPRIATE GOVERNING AUTHORITY AND SHALL BE RESPONSIBLE FOR THE
- PROCUREMENT OF STREET OPENING PERMITS. 11. THE CONTRACTOR IS REQUIRED TO RETAIN AN OSHA CERTIFIED SAFETY INSPECTOR TO BE PRESENT ON SITE AT ALL TIMES DURING CONSTRUCTION & DEMOLITION ACTIVITIES. 12. SHOULD AN EMPLOYEE OF STONEFIELD ENGINEERING & DESIGN, LLC.
- BE PRESENT ON SITE AT ANY TIME DURING CONSTRUCTION, IT DOES NOT RELIEVE THE CONTRACTOR OF ANY OF THE RESPONSIBILITIES AND REQUIREMENTS LISTED IN THE NOTES WITHIN THIS PLAN SET.


GRAPHIC SCALE IN FEET I" = 40'



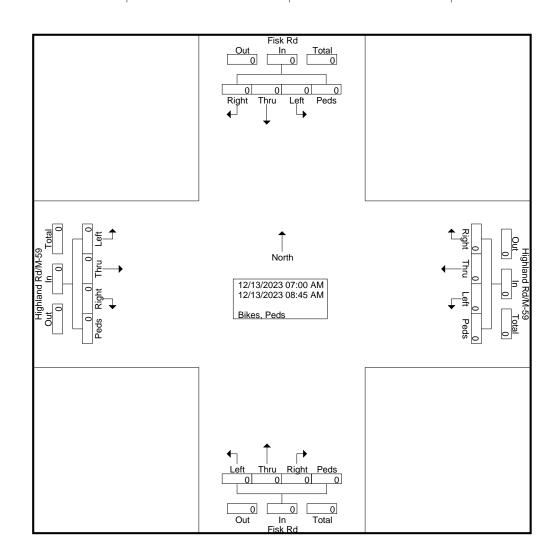



File Name : 16432201 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432201 Start Date : 12/13/2023 Page No : 1

						G	roups	Printe	d- Pas	senger	r Vehicles - Heavy Vehicles										
		Highl	and Ro	d/M-59	)		Highl	and Ro	d/M-59				Fisk R	d				Fisk R	d		
		E	<u>astbou</u>	ind			W	estbou	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
07:00 AM	9	298	2	0	309	0	126	6	0	132	0	0	0	0	0	27	0	8	0	35	476
07:15 AM	12	314	2	0	328	0	151	2	0	153	0	0	2	0	2	25	0	15	0	40	523
07:30 AM	12	300	2	0	314	1	193	2	0	196	0	0	1	0	1	25	0	11	0	36	547
07:45 AM	12	319	3	0	334	2	195	6	0	203	0	0	1	0	1	29	0	13	0	42	580
Total	45	1231	9	0	1285	3	665	16	0	684	0	0	4	0	4	106	0	47	0	153	2126
08:00 AM	9	293	2	0	304	5	219	11	0	235	1	0	2	0	3	23	0	17	0	40	582
08:15 AM	14	280	2	0	296	1	185	7	0	193	0	0	2	0	2	32	0	17	0	49	540
08:30 AM	20	264	3	0	287	2	177	11	0	190	4	1	0	0	5	23	0	16	0	39	521
08:45 AM	17	254	3	0	274	3	190	11	0	204	1	2	2	0	5	33	1	23	0	57	540
Total	60	1091	10	0	1161	11	771	40	0	822	6	3	6	0	15	111	1	73	0	185	2183
Grand Total	105	2322	19	0	2446	14	1436	56	0	1506	6	3	10	0	19	217	1	120	0	338	4309
Apprch %	4.3	94.9	0.8	0		0.9	95.4	3.7	0		31.6	15.8	52.6	0		64.2	0.3	35.5	0		
Total %	2.4	53.9	0.4	0	56.8	0.3	33.3	1.3	0	35	0.1	0.1	0.2	0	0.4	5	0	2.8	0	7.8	
Passenger Vehicles	98	2200	19	0	2317	14	1342	52	0	1408	6	3	10	0	19	202	1	113	0	316	4060
% Passenger Vehicles	93.3	94.7	100	0	94.7	100	93.5	92.9	0	93.5	100	100	100	0	100	93.1	100	94.2	0	93.5	94.2
Heavy Vehicles	7	122	0	0	129	0	94	4	0	98	0	0	0	0	0	15	0	7	0	22	249
% Heavy Vehicles	6.7	5.3	0	0	5.3	0	6.5	7.1	0	6.5	0	0	0	0	0	6.9	0	5.8	0	6.5	5.8

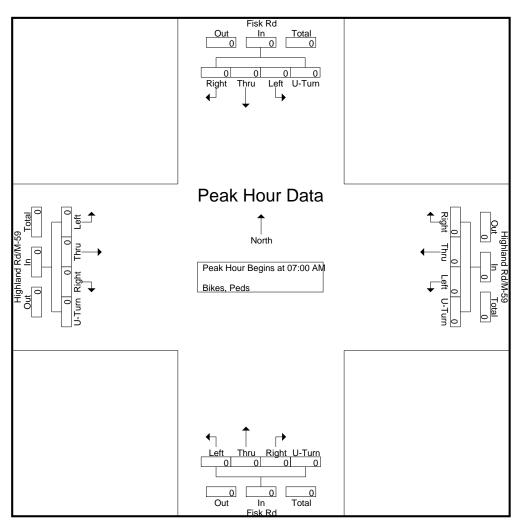





		0	and Ro astbou	d/M-59 Ind		Highland Rd/M-59 Westbound						Fisk Rd Northbound						Fisk Rd Southbound					
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total		
Peak Hour A	nalysis	s From	07:00	AM to	08:45 A	AM - P	eak 1	of 1															
Peak Hour fo	or Entir	e Inter	section	n Begir	ns at 07	:30 AN	1																
07:30 AM	12	300	2	Ō	314	1	193	2	0	196	0	0	1	0	1	25	0	11	0	36	547		
07:45 AM	12	319	3	0	334	2	195	6	0	203	0	0	1	0	1	29	0	13	0	42	580		
08:00 AM	9	293	2	0	304	5	219	11	0	235	1	0	2	0	3	23	0	17	0	40	582		
08:15 AM	14	280	2	0	296	1	185	7	0	193	0	0	2	0	2	32	0	17	0	49	540		
Total Volume	47	1192	9	0	1248	9	792	26	0	827	1	0	6	0	7	109	0	58	0	167	2249		
% App. Total	3.8	95.5	0.7	0		1.1	95.8	3.1	0		14.3	0	85.7	0		65.3	0	34.7	0				
PHF	.839	.934	.750	.000	.934	.450	.904	.591	.000	.880	.250	.000	.750	.000	.583	.852	.000	.853	.000	.852	.966		
Passenger Vehicles	44	1124	9	0	1177	9	745	25	0	779	1	0	6	0	7	103	0	55	0	158	2121		
% Passenger Vehicles	93.6	94.3	100	0	94.3	100	94.1	96.2	0	94.2	100	0	100	0	100	94.5	0	94.8	0	94.6	94.3		
Heavy Vehicles	3	68	0	0	71	0	47	1	0	48	0	0	0	0	0	6	0	3	0	9	128		
% Heavy Vehicles	6.4	5.7	0	0	5.7	0	5.9	3.8	0	5.8	0	0	0	0	0	5.5	0	5.2	0	5.4	5.7		



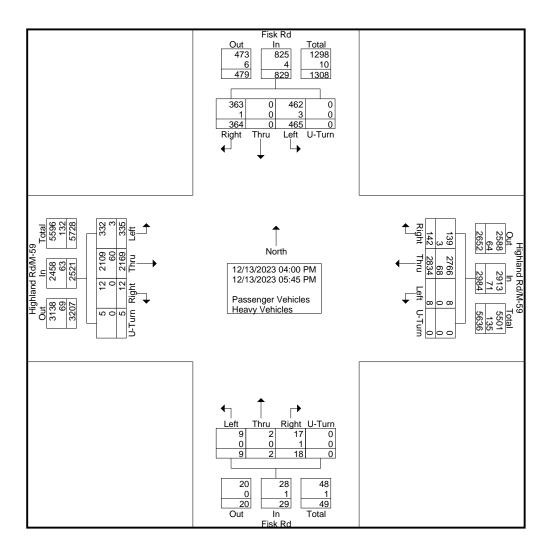



File Name : 16432201 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432201 Start Date : 12/13/2023 Page No : 1

								G	roups	Printed-	ed- Bikes, Peds										
		Highla	and Ro	d/M-59	)		Highl	and R	d/M-59	)			Fisk R	d				Fisk R	d		
		Ē	astbou	Ind			Ŵ	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	I	
Total %																					



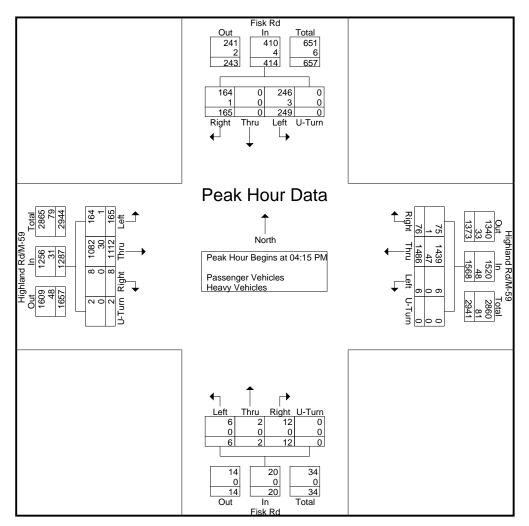



		Highl	and Ro	d/M-59	)		Highl	and R	d/M-59	)			Fisk R	d				Fisk R	d		
		Ē	astbou	ind			Ŵ	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	08:45 A	ΑM - Ρ	eak 1	of 1													
Peak Hour fo	or Entir	e Inter	sectio	n Begi	ns at 07	:00 AN	Λ														
07:00 AM	0	0	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000





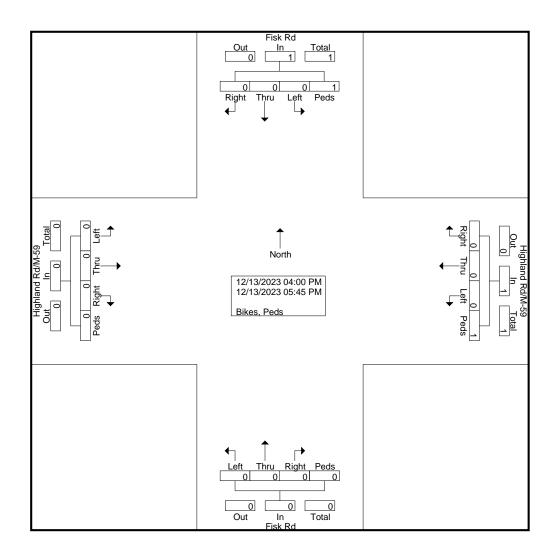
File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 1


						G	roups	Printe	d- Pas	senger	Vehicle	es - He	avy V	ehicles	;						
				d/M-59	)		0	and Ro		)			Fisk R	d				Fisk R			
		E	astbou	und			W	estbou	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
04:00 PM	44	269	2	1	316	1	327	22	0	350	1	0	3	0	4	63	0	46	0	109	779
04:15 PM	45	329	3	0	377	2	365	21	0	388	3	0	3	0	6	55	0	44	0	99	870
04:30 PM	32	222	4	1	259	1	363	21	0	385	1	1	2	0	4	64	0	52	0	116	764
04:45 PM	36	268	1	1	306	2	394	24	0	420	2	0	7	0	9	68	0	34	0	102	837
Total	157	1088	10	3	1258	6	1449	88	0	1543	7	1	15	0	23	250	0	176	0	426	3250
05:00 PM	52	293	0	0	345	1	364	10	0	375	0	1	0	0	1	62	0	35	0	97	818
05:15 PM	42	280	1	1	324	0	363	14	0	377	1	0	0	0	1	48	0	55	0	103	805
05:30 PM	39	261	0	0	300	0	339	18	0	357	0	0	1	0	1	58	0	53	0	111	769
05:45 PM	45	247	1	1	294	1	319	12	0	332	1	0	2	0	3	47	0	45	0	92	721
Total	178	1081	2	2	1263	2	1385	54	0	1441	2	1	3	0	6	215	0	188	0	403	3113
Grand Total	335	2169	12	5	2521	8	2834	142	0	2984	9	2	18	0	29	465	0	364	0	829	6363
Apprch %	13.3	86	0.5	0.2		0.3	95	4.8	0		31	6.9	62.1	0		56.1	0	43.9	0		
Total %	5.3	34.1	0.2	0.1	39.6	0.1	44.5	2.2	0	46.9	0.1	0	0.3	0	0.5	7.3	0	5.7	0	13	
Passenger Vehicles	332	2109	12	5	2458	8	2766	139	0	2913	9	2	17	0	28	462	0	363	0	825	6224
% Passenger Vehicles	99.1	97.2	100	100	97.5	100	97.6	97.9	0	97.6	100	100	94.4	0	96.6	99.4	0	99.7	0	99.5	97.8
Heavy Vehicles	3	60	0	0	63	0	68	3	0	71	0	0	1	0	1	3	0	1	0	4	139
% Heavy Vehicles	0.9	2.8	0	0	2.5	0	2.4	2.1	0	2.4	0	0	5.6	0	3.4	0.6	0	0.3	0	0.5	2.2



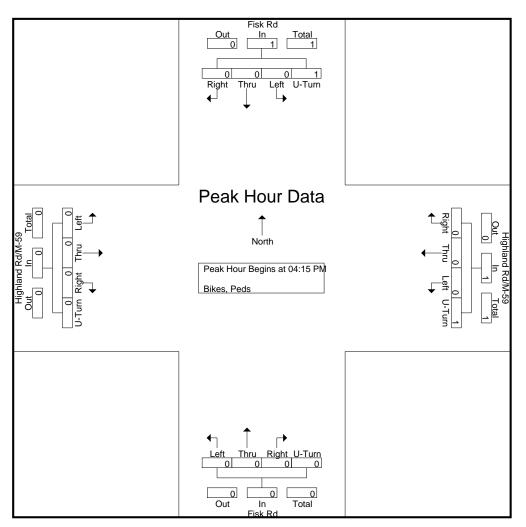


File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 2


		Highla	and Ro	J/M-59			Highl	and R	d/M-59	)			Fisk R	d				Fisk R	d		
		Ē	astbou	nd			Ŵ	estbou	und			No	orthbou	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 F	PM - P	eak 1	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begir	ns at 04	:15 PN	1														
04:15 PM	45	329	3	Ō	377	2	365	21	0	388	3	0	3	0	6	55	0	44	0	99	870
04:30 PM	32	222	4	1	259	1	363	21	0	385	1	1	2	0	4	64	0	52	0	116	764
04:45 PM	36	268	1	1	306	2	394	24	0	420	2	0	7	0	9	68	0	34	0	102	837
05:00 PM	52	293	0	0	345	1	364	10	0	375	0	1	0	0	1	62	0	35	0	97	818
Total Volume	165	1112	8	2	1287	6	1486	76	0	1568	6	2	12	0	20	249	0	165	0	414	3289
% App. Total	12.8	86.4	0.6	0.2		0.4	94.8	4.8	0		30	10	60	0		60.1	0	39.9	0		
PHF	.793	.845	.500	.500	.853	.750	.943	.792	.000	.933	.500	.500	.429	.000	.556	.915	.000	.793	.000	.892	.945
Passenger Vehicles	164	1082	8	2	1256	6	1439	75	0	1520	6	2	12	0	20	246	0	164	0	410	3206
% Passenger Vehicles	99.4	97.3	100	100	97.6	100	96.8	98.7	0	96.9	100	100	100	0	100	98.8	0	99.4	0	99.0	97.5
Heavy Vehicles	1	30	0	0	31	0	47	1	0	48	0	0	0	0	0	3	0	1	0	4	83
% Heavy Vehicles	0.6	2.7	0	0	2.4	0	3.2	1.3	0	3.1	0	0	0	0	0	1.2	0	0.6	0	1.0	2.5



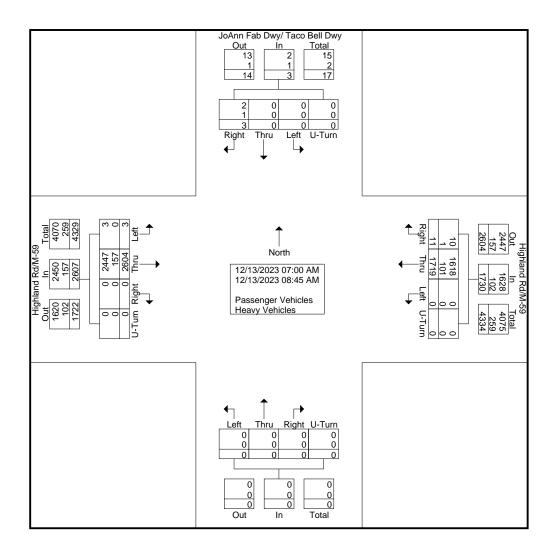



File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 1

								G	roups	Printed-	Bikes	, Peds									
		Highl	and Ro	d/M-59	)		Highl	and R	d/M-59	)			Fisk R	d				Fisk R	d		
		Ē	astbou	ind			Ŵ	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1																					
05:00 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
Grand Total	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
	0	0	0	0	0	0	0	0	100	I	0	0	0	0	0	0	0	0	100	1	2
Apprch %	0	-	0	-	_	0	0	0	100	50	-	-	-	-	0	-	-	-	100	50	
Total %	0	0	0	0	0	0	0	0	50	50	0	0	0	0	0	0	0	0	50	50	

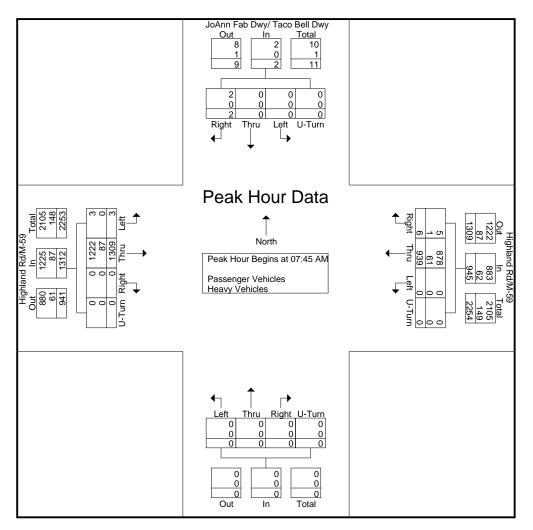





		Highl	and Ro	d/M-59	)		Highl	and R	d/M-59	)			Fisk R	d				Fisk R	d		
		E	astbou	Ind			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 I	PM - P	eak 1	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begi	ns at 04	:15 PN	Л														
04:15 PM	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
Total Volume	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
% App. Total	0	0	0	0		0	0	0	100		0	0	0	0		0	0	0	100		<u> </u>
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.250

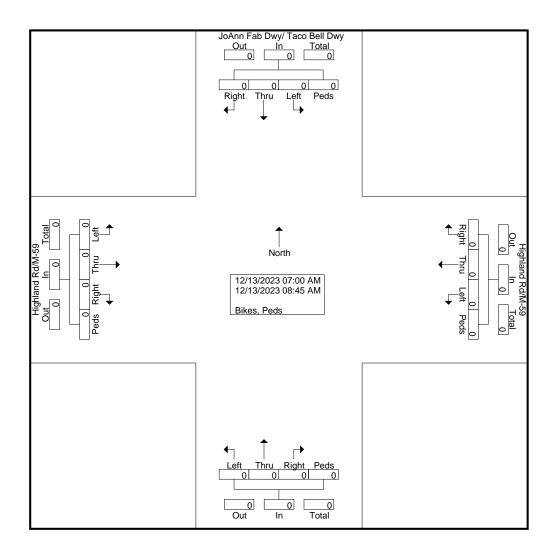





Groups Printed- Passenger Vehicles - Heav	v Vehicles
Croups I milled I assenger Vernoles Theav	, , , , , , , , , , , , , , , , , , , ,

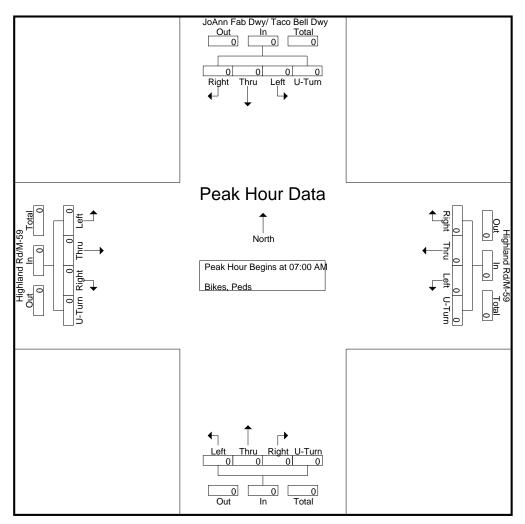
		0	and Ro astbou	d/M-59 Ind	)			and R	d/M-59 und	)		N	orthbo	und		JoA		b Dwy Dwy outhbo	/ Taco und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
07:00 AM	0	328	0	0	328	0	141	0	0	141	0	0	0	0	0	0	0	0	0	0	469
07:15 AM	0	355	0	0	355	0	172	3	0	175	0	0	0	0	0	0	0	1	0	1	531
07:30 AM	0	327	0	0	327	0	214	1	0	215	0	0	0	0	0	0	0	0	0	0	542
07:45 AM	0	367	0	0	367	0	232	2	0	234	0	0	0	0	0	0	0	0	0	0	601
Total	0	1377	0	0	1377	0	759	6	0	765	0	0	0	0	0	0	0	1	0	1	2143
08:00 AM	0	307	0	0	307	0	265	0	0	265	0	0	0	0	0	0	0	0	0	0	572
08:15 AM	1	320	0	0	321	0	220	1	0	221	0	0	0	0	0	0	0	0	0	0	542
08:30 AM	2	315	0	0	317	0	222	3	0	225	0	0	0	0	0	0	0	2	0	2	544
08:45 AM	0	285	0	0	285	0	253	1	0	254	0	0	0	0	0	0	0	0	0	0	539
Total	3	1227	0	0	1230	0	960	5	0	965	0	0	0	0	0	0	0	2	0	2	2197
Grand Total	3	2604	0	0	2607	0	1719	11	0	1730	0	0	0	0	0	0	0	3	0	3	4340
Apprch %	0.1	99.9	0	0		0	99.4	0.6	0		0	0	0	0		0	0	100	0		
Total %	0.1	60	0	0	60.1	0	39.6	0.3	0	39.9	0	0	0	0	0	0	0	0.1	0	0.1	
Passenger Vehicles	3	2447	0	0	2450	0	1618	10	0	1628	0	0	0	0	0	0	0	2	0	2	4080
% Passenger Vehicles	100	94	0	0	94	0	94.1	90.9	0	94.1	0	0	0	0	0	0	0	66.7	0	66.7	94
Heavy Vehicles	0	157	0	0	157	0	101	1	0	102	0	0	0	0	0	0	0	1	0	1	260
% Heavy Vehicles	0	6	0	0	6	0	5.9	9.1	0	5.9	0	0	0	0	0	0	0	33.3	0	33.3	6






		0	and Ro astbou	d/M-59 Ind	)		0	and Ro	d/M-59 und	l		N	orthbo	und		JoA		b Dwy Dwy outhbo	/ Taco und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	08:45 A	4M - Ρ	eak 1	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begii	ns at 07	:45 AN	1														
07:45 AM	0	367	0	0	367	0	232	2	0	234	0	0	0	0	0	0	0	0	0	0	601
08:00 AM	0	307	0	0	307	0	265	0	0	265	0	0	0	0	0	0	0	0	0	0	572
08:15 AM	1	320	0	0	321	0	220	1	0	221	0	0	0	0	0	0	0	0	0	0	542
08:30 AM	2	315	0	0	317	0	222	3	0	225	0	0	0	0	0	0	0	2	0	2	544
Total Volume	3	1309	0	0	1312	0	939	6	0	945	0	0	0	0	0	0	0	2	0	2	2259
% App. Total	0.2	99.8	0	0		0	99.4	0.6	0		0	0	0	0		0	0	100	0		
PHF	.375	.892	.000	.000	.894	.000	.886	.500	.000	.892	.000	.000	.000	.000	.000	.000	.000	.250	.000	.250	.940
Passenger Vehicles	3	1222	0	0	1225	0	878	5	0	883	0	0	0	0	0	0	0	2	0	2	2110
% Passenger Vehicles	100	93.4	0	0	93.4	0	93.5	83.3	0	93.4	0	0	0	0	0	0	0	100	0	100	93.4
Heavy Vehicles	0	87	0	0	87	0	61	1	0	62	0	0	0	0	0	0	0	0	0	0	149
% Heavy Vehicles	0	6.6	0	0	6.6	0	6.5	16.7	0	6.6	0	0	0	0	0	0	0	0	0	0	6.6

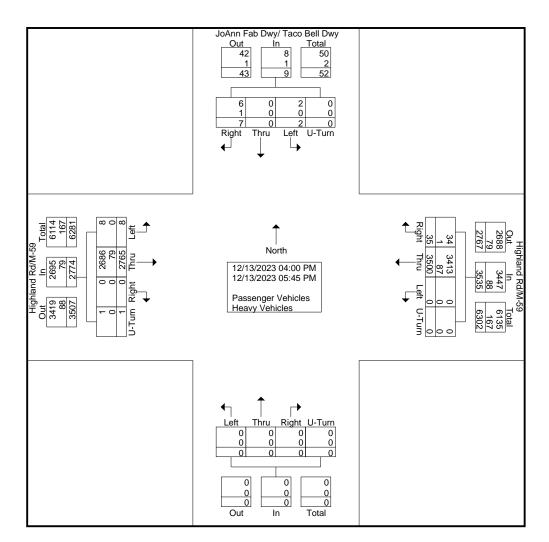





								G	roups	Printed-	Bikes	, Peds									
		Hiahl	and R	d/M-59			Hiahl	and R	d/M-59	)						JoA	Ann Fa	-	/ Taco	Bell	
			astbou					estbo				N	orthbo	und			-	Dwy			
				-														outhbo			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

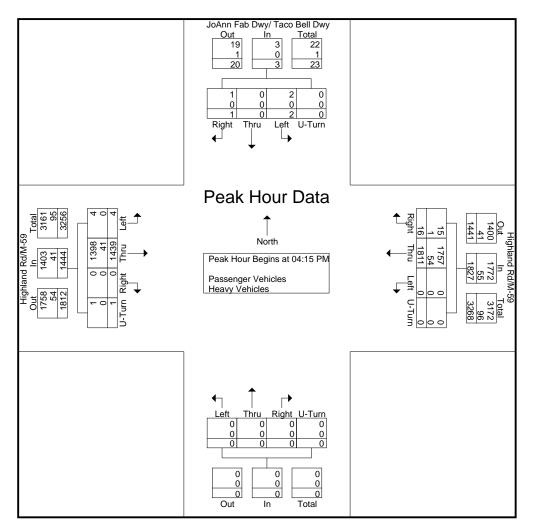





			and Ro astbou	d/M-59 Ind			0	and R	d/M-59 und			N	orthbo	und		Joł		b Dwy Dwy outhbo	v/ Taco und	Bell	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	5 From	07:00	AM to	08:45 A	λM - Ρ	eak 1 (	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begir	ns at 07	:00 AN	1														
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

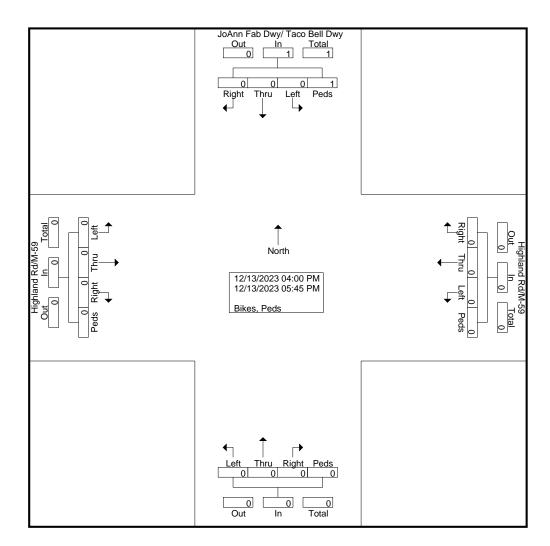





Groups Printed- Passenger Vehicles - Heavy Vehicles
-----------------------------------------------------

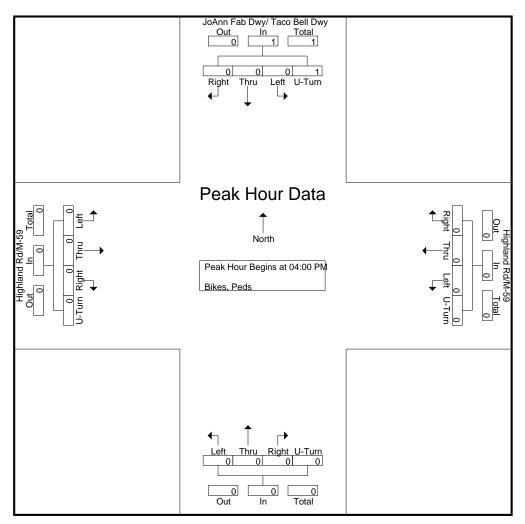
							Toups	1 miller	<u>u- i as</u>	senger		22 - 110	avy vo		)						
		Highl	and Ro	1/M-50	•		Highl	and R	d/M-59	-						Joł	Ann Fa	b Dwy	/ Taco	Bell	
			astbou		•		0	estbou				NL	orthboi	und				Dwy			
		E	asibuu	inu			vv	esibul	ina			INC		unu			Sc	uthbo	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
04:00 PM	0	337	0	0	337	0	423	7	0	430	0	0	0	0	0	0	0	0	0	0	767
04:15 PM	3	390	0	0	393	0	442	1	0	443	0	0	0	0	0	1	0	0	0	1	837
04:30 PM	0	326	0	0	326	0	447	5	0	452	0	0	0	0	0	0	0	1	0	1	779
04:45 PM	1	355	0	1	357	0	473	5	0	478	0	0	0	0	0	1	0	0	0	1	836
Total	4	1408	0	1	1413	0	1785	18	0	1803	0	0	0	0	0	2	0	1	0	3	3219
05:00 PM	0	368	0	0	368	0	449	5	0	454	0	0	0	0	0	0	0	0	0	0	822
05:15 PM	1	331	0	0	332	0	442	8	0	450	0	0	0	0	0	0	0	5	0	5	787
05:30 PM	1	350	0	0	351	0	426	0	0	426	0	0	0	0	0	0	0	1	0	1	778
05:45 PM	2	308	0	0	310	0	398	4	0	402	0	0	0	0	0	0	0	0	0	0	712
Total	4	1357	0	0	1361	0	1715	17	0	1732	0	0	0	0	0	0	0	6	0	6	3099
Grand Total	8	2765	0	1	2774	0	3500	35	0	3535	0	0	0	0	0	2	0	7	0	9	6318
Apprch %	0.3	99.7	0	0		0	99	1	0		0	0	0	0		22.2	0	77.8	0		
Total %	0.1	43.8	0	0	43.9	0	55.4	0.6	0	56	0	0	0	0	0	0	0	0.1	0	0.1	
Passenger Vehicles	8	2686	0	1	2695	0	3413	34	0	3447	0	0	0	0	0	2	0	6	0	8	6150
% Passenger Vehicles	100	97.1	0	100	97.2	0	97.5	97.1	0	97.5	0	0	0	0	0	100	0	85.7	0	88.9	97.3
Heavy Vehicles	0	79	0	0	79	0	87	1	0	88	0	0	0	0	0	0	0	1	0	1	168
% Heavy Vehicles	0	2.9	0	0	2.8	0	2.5	2.9	0	2.5	0	0	0	0	0	0	0	14.3	0	11.1	2.7






		0	and Ro astbou	d/M-59 Ind	)		0	and Ro	d/M-59 und	l		N	orthbo	und		JoA		b Dwy Dwy outhbo	/ Taco und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 F	PM - P	eak 1	of 1													
Peak Hour fo	or Entir	e Inter	sectio	n Begii	ns at 04	:15 PN	/														
04:15 PM	3	390	0	0	393	0	442	1	0	443	0	0	0	0	0	1	0	0	0	1	837
04:30 PM	0	326	0	0	326	0	447	5	0	452	0	0	0	0	0	0	0	1	0	1	779
04:45 PM	1	355	0	1	357	0	473	5	0	478	0	0	0	0	0	1	0	0	0	1	836
05:00 PM	0	368	0	0	368	0	449	5	0	454	0	0	0	0	0	0	0	0	0	0	822
Total Volume	4	1439	0	1	1444	0	1811	16	0	1827	0	0	0	0	0	2	0	1	0	3	3274
% App. Total	0.3	99.7	0	0.1		0	99.1	0.9	0		0	0	0	0		66.7	0	33.3	0		
PHF	.333	.922	.000	.250	.919	.000	.957	.800	.000	.956	.000	.000	.000	.000	.000	.500	.000	.250	.000	.750	.978
Passenger Vehicles	4	1398	0	1	1403	0	1757	15	0	1772	0	0	0	0	0	2	0	1	0	3	3178
% Passenger Vehicles	100	97.2	0	100	97.2	0	97.0	93.8	0	97.0	0	0	0	0	0	100	0	100	0	100	97.1
Heavy Vehicles	0	41	0	0	41	0	54	1	0	55	0	0	0	0	0	0	0	0	0	0	96
% Heavy Vehicles	0	2.8	0	0	2.8	0	3.0	6.3	0	3.0	0	0	0	0	0	0	0	0	0	0	2.9






								G	iroups	Printed-	Bikes	, Peds									
		High	and D	d/M-59			High	and P	d/M-59							JoA	Ann Fa	ıb Dwy	/ Taco	Bell	
			astbou					estbo		,		NL	orthbo	und				Dwy			
			asibol	ina			vv	esibol	una			INC	onnoo	una			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	100		
Total %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	





			and Ro astbou	d/M-59 Ind			0	and R	d/M-59 und			N	orthbo	und		Joł		b Dwy Dwy outhbo	v/ Taco und	Bell	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	5 From	04:00	PM to	05:45 F	PM - P	eak 1 (	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begir	ns at 04	:00 PN	1														
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	100		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.250



Transportation Data Management System



# MS2

**Transportation Data Management** System

Disclaimer: The Michigan Department of Transportation (MDOT) works with individual agencies (cities/villages, counties, metropolitan planning organizations (MPOs), regional planning organizations (RPOs), and other areas of MDOT) to identify existing traffic count programs and/or traffic data. ... more

List View	All DIRs		Report Center
Record	I 🔣 🚽 1 🕨 💓 of 1 Goto Record	go	
Location ID	63-0739	MPO ID	2717
Туре	SPOT	HPMS ID	
On NHS	No	On HPMS	No
LRS ID	0704601	LRS Loc Pt.	0.3140493
SF Group	Local Road	Route Type	
AF Group	NoFactor	Route	
GF Group	Local Road	Active	Yes
Class Dist Grp	NTL_7	Category	
Seas Clss Grp			
WIM Group			
QC Group	Default		
Fnct'l Class	(7) Local Road or Street	Milepost	
Located On	Fisk Rd		
Loc On Alias			
SOUTH OF	Pontiac Lake Rd		
More Detail 🕨			
STATION DAT	Ά		

Directions: 2-WAY NB SB

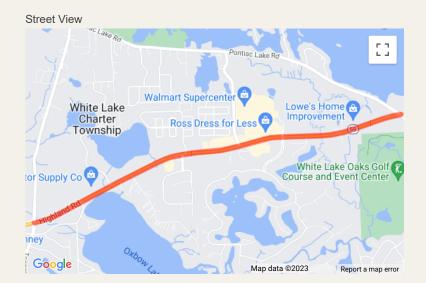
AADT	0							
	Year	AADT	DHV-30	Κ%	D %	PA	BC	Src
	2022	1,256	130	10		1,194 (95%)	62 (5%)	

VOL	UME COUNT			VOLUME	TREND 🕜
	Date	Int	Total	Year	Annual Growth
ġ	Mon 8/22/2022	60	1,274		
				CLASSIF	ICATION

CLA	SSIFICATION		
	Date	Int	Total
	N	o Data	

NOTES/	FILES		
	Note	Date	

#### SEMCOG | Southeast Michigan Council of Governments


#### Search...

# **Crash and Road Data**

# **Road Segment Report**

### Highland Rd, (PR Number 648906)

From:	Teggerdine Rd 9.938 BMP
то:	Pontiac Lake Rd 12.354 EMP
Jurisdiction:	State
FALINK ID:	1797
Community:	White Lake Township
County:	Oakland
Functional Class:	3 - Other Principal Arterial
Direction:	2 Way
Length:	2.416 miles
Number of Lanes:	5
Posted Speed:	50 (source: TCO)
Route Classification:	M-59
Annual Crash Average 2018-2022:	<u>82</u>
Traffic Volume (2022)*:	33,400 (Observed AADT)
Pavement Type (2022):	Asphalt
Pavement Rating (2022):	Fair
* AADT values are derived from Traffic Counts	



Q

OAKLAND COUNTY ROAD COMMISSION <u>TRAFFIC - SAFETY DEPARTMENT</u> <u>SIGNAL WORK ORDER</u> JAN 2 3 201	7
LOCATION: M-59 & F:sk DATE: 1-17-17	
CITY/TOWNSHIP: White Lake BY: ELA	
COUNTY#: 4135 STATE#: 63041-01-026 CHARGES: WO 168612	
PLEASE PERFORM THE FOLLOWING:	
ELECTRICAL DEVICE: INSTALL MODERNIZE MAINTENANCE	
UNDERGROUND:	
EDISON OK:YESNO JOB#:	
COORDINATE W/DISTRICT 7:	
DIAL       1       1       1       1       2       2       2       2       3       3       3       4       4       4         SPLIT.       1       2       3       4       1       2       3       4       1       2       3	4
X     CHANGE TIMING     X     X       X     CHANGE OFFSET     X     X	
CHANGE CYCLE LENGTH	
ADD DIAL/SPLIT	
CHANGE BREAKOUT OR EPROM:	
CHANGE HOURS OF OPERATION:	
OLD: <u>Gan-Ilpm</u>	
NEW: Gan - 10pm	-
X REPROGRAM TBC (IS.FF., Events)	
INSTALL INTERCONNECT: TBC MINITROL TONE	
MBT OK: YES NO	
NO CHANGE - RECORD CORRECTION	
X OTHER: Rev 4	
* MOOT RETIMING - FINAL *	
$\bigcap I \bigcap$	
APPROVED BY: DATE: 1 / 17/ 17	1
DATE INSTALLED: 1/21/17	
INSTALLED BY: RICHARDSON CASU	

		ROAD																			
INTERSEC	TION:	M-5	9 (	HIC	HL	AND	2)	& F	FISK	<											
CITY/VILL	AGE/TO	WNSH	11P:_	WH	TE	LA	KE		x					1	е С						
COUNTY#:	413	5_м	DOT	t:_6;	304	1-0	1-0	26			RE	V#:	3	DE	rro	TE	DISO	N#:			
DRAWN BY	E	Labi	940	2		\PPF	ROVI	ED B	Y: _		S	D	0		DA	re d	RAW	/N:	11	17,	17
INSTALLED	) BY: _	i dia N			Ē.										DA		ISTL	D:	1	1	2 ³⁷
HOURS OF	OPER	ATION	:	70	AM	5: (	GAR	1-1	OPH	1	1					ri 					
HOURS OF						2 1111 1111	DA		ES - \( #### 5. RI	1. AC 642 11111 NG S			_ C ₩₩ JRE	ODE HIII	: Fo	ur di HHH	gits       ***	(000 	0 - 9 	999)	
CHANNEL:	RING	PHNXT	1					(	ONC	URRE	NT P	HASE	S						СНА	NNEL	
			1	2	3	4	5	6	7	8				12	13	14	15	16	VEH	PED	
PHASE 1:	1	2	1				1	1		1.0	211-							1.0	1		
PHASE 2:	1	4		1			1	1		1				19	1. A	.C.			2	9	
PHASE 3:			1		1		24	1.5.7				14									
PHASE 4:	1 .	1				1				1	_								4	10	
PHASE 5:	2	6	1	1			1				-	1.1					-		5		
PHASE 6:	2	8	1	1				1								1			6	11	
PHASE 7:									1					1	L				1		
PHASE 8:	2	5				1				1				1.11					8	12	
PHASE 9:			1.1							Chap	1	13			1.1	14-		1			
PHASE 10:						0.06	1.1			-		1			1-1-1				- 20		
PHASE 11:		1.1		20		12	1,015						1								

Phase	11	2	2	J. A	IASE E	DA	A -	1. B/	1310	10	ING		42	44	AF	401	DANOF
		4	3	4	5	0	1	0	9	10	11	12	13	14	15	16	RANGE
Minimum Green	5	10		17	5	10		7	-								00-99
Passage	3.0			3.0	3.0			3-0			1000						0.0-9.9
Maximum #1	17	80		32	17	80		32					1.1.1				000-999
Maximum #2									e 1								000-999
Yellow Clearance	4.7	4-7		3.0	4.7	47		3.0									3.0-9.9
Red Clearance	1.6	1.6		35	1.6	1.6		3.5									0.0-9.9

Ring Number for Phase (1-4)

Phases To Be Concurrent (0=NO, 1=YES)

Phase Next In Ring (1-16)

1

1

For vehicle channel &

ped channel, enter "1"

under channel# shown.

1

1

1

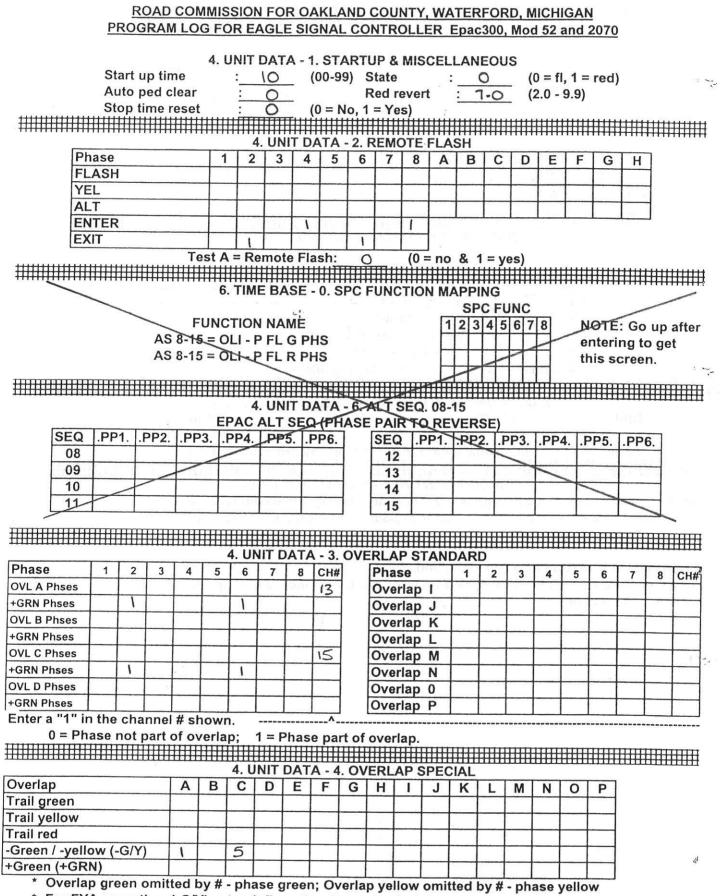
PHASE 12:

PHASE 13:

PHASE 14:

PHASE 15:

PHASE 16:


PHNXT

CONCUR PH

CODES: RING

### ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

				3. Pł	HASI	E DA	TA -	3. P	EDE	STR	AN .	TIMI	NGS					
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	RANGE (SEC
Walk			7		7		7		7									00-99
Pedest Clearance			14		18		14		18									00-99
Flashing Walk															-		1	
Extend Ped Clear			0	14	0		0		0						1		1	
Act Rest in Walk															-			1
		Шİ	IIIIİ	ШÍ	ШĤ		IIII	ШЦ	IIIIÌ	ĦĦ	mit	m	$\Pi \Pi$	Шţ	ШЦ	Ш	IIIII	
	3.	PHA	SE	DAT	A - 4	. INI	TIAL	IZE	& NC	N A	сти	ATE	DRE	SPC	NSI	Ξ	*****	*****
Phase	1	2	3									1 1:					6	
Initial	1	4	1	1	11	4	-	1				-		-	-		-	
NA Response	1		1	+		+	1	+		+	+	+		1	+-	-	-	
CODES:	8.0	0		-	1	_		2			3		_	4				
Initial		one	1.1	ina	activ	e		red		VE	ellow	,	a	reen				
NA Response		ne			0 1	•		to 2			ooth		9					
		ner energie	PHAS			- 5			= 2 P			IAN	REC		S			
Phase	11	2	3					18			1 11					5   1	6]	
Vehicle Recall		3	+-	2		3	_	2			+-	+"					-	
Pedestrian Recall		2	<u> </u>		+	12		1-	·   ····	+	+	+-	+	+	+	+-	-	
CODES:			1		1	14	<u> </u>	2	1		3	1.		4			_	
Vehicle	no			1	call			nin	۲		nax		. ·	oft				
Pedestrian	no	1			call			bed		bot				Son				
	ш	ш	11111	mi		uuu	m				11111			11111				
		1111		ACE						9.84	11111		ITRC		HIII	HIH		
Phase	11	2	3	ASE 4	5	6	7	8	19						14	-14		
Nonlock Memory	$\left  \right $	~	13	4	5	10	+-	10	19	10	11	12	2 13	14	1 1!	5 1	0	
Dual Entry				+	1.	+	+	+-	+					+		+	_	
Last Car Passage				1			1-	1	+						-		_	
Conditional Service					+		1-				1				-		_	
CODES:			Ļ	1	1		1	1		1	1	1	1	1	1	1		
		= NC	) 		1 =	YES			uuu				uuu					
		ЩЦ		ЩЩ														
J. Pr	HASE	DA	A	- 8. 5							PC	1-8 (						
Detector # on Print			1	2		64	75	86		12.8			S					ction sheet
PAC/M52 "D" Conne	ector		1	6	7	8	4	5	2	3	10	1		fc	or D-	con	nec	tor pin
ssigned Phase	j.		1	1	8	8	5	5	4	4	1.00				as	sig	nme	nts
	0		1			2	:			4		8 9°97						
peration Mode: Nor	m Ve	h I						Bar	AS	t Ba	-	. 1.						
and a standard standard standard standard standard standard standard standard standard standard standard stand		1999 A.		A. C	ONT	ROL	S.		1.	4 - 19 ⁻	RA	NGE	(SE	C)				
xtend Time				Т. ст							12	00-	99					
elay Time	11.1		8				ley 1	Sec. 1	· .		1	00-9	99	4		1973 - 19 19	et à	
	₩₩	##	ШП					ШП						Ħ		HH	ШH	
3.	. PHA	SE	DAT	ΓA - Ι	B. SF	ECI	AL C	ETE	CTC	R - 2	2. VE	EH 9	-16 (	2070	)	lini ini	The second	
etector # on Print			1	2	3	4	5	6	7	8						led i	dete	ction sheet
070 "D" Connector		1	9	10	11	12	13	14	15	16	133	for D-connector pin						
ssigned Phase				$\mathbb{T}^{n} \in \mathbb{R}$				1	1.31	1. 1911	1.1			111			nme	
ODES: (	0	19	1	5	2	1411	3		1. A.	4	-	$1 \in [h_{i}]$		i.			14	an an an an an an an an an an an an an a
peration Mode: Norr	m Vel	h N	lorn	n Pe	d 1	call	St	Bar	AS	t Bai	8-	1	- Ally		di ^{na} r			
	1. T.			4. CC				1.	- jai		(Concession of the local division of the loc	NGE	(SEC	TR				
xtend Time	11 1	I	-	-		1414-1	1.		1 - 14 P	6.934	1.10	00-9		1 11 2				and the strength seed



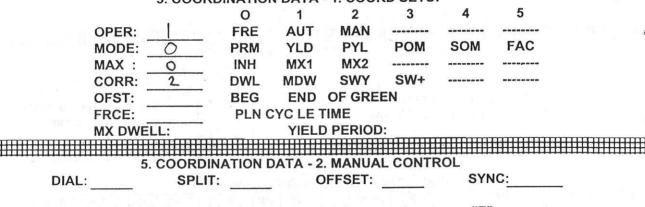
* For FYA operation, '-G/Y' entry defines the phase that is the green arrow

* For FYA operation, '+GRN' entry is the thru phase opposing the FYA phase

٦ -

### ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

#### 4. UNIT DATA - 8. I/O MISCELLANEOUS


Ring#	1	2	3	4	CONN	MODE
Input Response	1	2	1		"D"	
Output Select	1	2		1	"D"	

Connector "D": 0 = Standard & 1 = Alternate

I/O Modes	INPUT	OUTPUT
"ABC" Connector	200	
"D" Connector	1	

Controller with Solo Detection: EPAC300/M52 enter "1" under D Conn Input 2070 enter "0" under D Conn Input

5. COORDINATION DATA - 1. COORD SETUP



To set cycle zero in manual control enter "1" for sync then press "E".

Mode: 0 = actuated, 1 = coord phase, 2 = minimum recall, 3 = maximum recall, 4 = pedestrian recall, 5 = maximum + pedestrian recall, 6 = phase omit,

7 = dual coord phase.

Sequence: 00 - 15 (Unit data has definition)

Ring Lag: Ring offset from local cycle zero when not barrier locked to Ring #1. Time: 00 - 99 seconds.

#### ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

#### 5. COORDINATION DATA - 3. DIAL/SPLIT DATA

DIAL 1/SP	LIT 1 CI	CLE L	ENGT	н: 11	0 5	secs	1.1	
PHASE	1	2	3	- 4	5	6	7	8
TIME	17	61		32	17	61		32
MODE	2	1	1	2	2	1		2

DIAL 1 / SPLIT 2 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME								
MODE								

#### DIAL 1 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME								
MODE		1						

#### DIAL 1 / SPLIT 4 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME	4				25			
MODE								

# Program

# DIAL 2/SPLIT 1 CYCLE LENGTH: 90 Secs Wide length PHASE 1 2 3 4 5 6 7 8

TIME	13	45	20	13	45		20
MODE	Q		2	2	1	5	2

#### DIAL 2 / SPLIT 2 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME	1				1.1.1.1.			
MODE	1					901 ST 1		

#### DIAL 2 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME								
MODE				lt.	1 m. 1	1		

#### DIAL 2 / SPLIT 4 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME		1 m.		2	14 A. 19	1.1.1.1.1		
MODE					e fairle	191 - Le 1	*	

1	2	3
42	•	i
1	2	3
1	2	3
1	2	3
		1.1
		140
	1	42       1       2       1       1       2

OFFSET	1 1	2	3
TIME	22		1
SEQUENCE			
RING 2 LAG			
RING 3 LAG			
RING 4 LAG			
OFFSET	1	2	3
TIME			-
SEQUENCE			-
RING 2 LAG			
RING 3 LAG			
RING 4 LAG			
OFFSET	1	2	3
TIME			
SEQUENCE			
RING 2 LAG			
RING 3 LAG			
RING 4 LAG	1. 1. 1. 1.	gan in	
OFFSET	1	2	3
TIME	1		
SEQUENCE		194	1
RING 2 LAG			
RING 3 LAG		5	
RING 4 LAG			

#### ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

#### 5. COORDINATION DATA - 3. DIAL/SPLIT DATA

LEVEL 2 DIAL 3 / SI	PLIT 1 CY	CLE L	ENGI	н. 17	20	Sec	s P	mare
PHASE	1	2	3	4	5	6	7	8
TIME	13	75		27	13	75		27
MODE	2	1		2	2	i		2

#### DIAL 3 / SPLIT 2 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME		-					1.	
MODE							1	

#### DIAL 3 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME		1						
MODE								

#### DIAL 3 / SPLIT 4 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME					1.00			
MODE								

#### OFFSET 1 2 3 TIME 115 SEQUENCE **RING 2 LAG RING 3 LAG RING 4 LAG** OFFSET 1 2 3 TIME SEQUENCE **RING 2 LAG** RING 3 LAG **RING 4 LAG** OFFSET 1 2 3 TIME SEQUENCE **RING 2 LAG RING 3 LAG RING 4 LAG** OFFSET 1 2 3 TIME SEQUENCE RING 2 LAG **RING 3 LAG RING 4 LAG**

LEVEL 1

#### DIAL 4 / SPLIT 1 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME	-				1			
MODE	1							

# DIAL 4 / SPLIT 2 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME		11 R 10	1.				1	
MODE	1. A. 1.	1		- r j	12.20			

### DIAL 4 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8	
TIME			nin jagina		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1 · · · · ·		Page a 1	
MODE	al Marine gr	1. 1. The		14.4	·····				

#### DIAL 4 / SPLIT 4 CYCLE LENGTH:

F	HASE	1	2	3	4	5	6	7	8	
T	IME	and and	1. 4 . 4	1			andy the			1.
N	ODE		The Contract	hat the	- 47. 19 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	2014. C 8-	$= e \delta_{ij} p^{ij} v_{ij}^{j} p^{ij} - q^{ij}$	· · · · · · · · ·	again taran	

OFFSET	1	2	3
TIME	1.101.00		
SEQUENCE		1.15	1.1
RING 2 LAG			
RING 3 LAG			
RING 4 LAG			1.1
OFFSET	1.1.	2	. 3
TIME	1997 - 1944 1997 - 1944 1997 - 1944		1.8
SEQUENCE			
RING 2 LAG	er al c	2.2.2.2.2	
RING 3 LAG	1 (1. 1903) 1	$ \mathcal{A}(g)  = \frac{1}{2}$	
RING 4 LAG	1.10		
OFFSET	1	2	3
TIME			
SEQUENCE			$\mathcal{F}(\mathcal{L}_{X}) = \{$
RING 2 LAG	$(1, 0) \in \mathcal{O}_{\mathcal{O}}$		an an an an an an an an an an an an an a
RING 3 LAG	a		
RING 4 LAG	1.1.1.		
OFFSET	1	2	3
TIME			
SEQUENCE			
RING 2 LAG	- Completions		
RING 3 LAG		지수 있는	18.5
RING 4 LAG	1.1	10 1 Her.	

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070 6. TIME BASE DATA - 2. SET TIME / DATE -- DATE --BEG -- DST -- END -- TIME ---MON & WEEK: MM SW MM SW MM/DD/YY HH:MM:SS 3 2 11_1 1 1 : : CYCLE ZERO: 24 : 00 (HH:MM - EVENT) STZ DIFF: -18000 (GPS OFFSET) 2. UTILITIES - 8. CONFIGURE PORTS - 8. GPS CONFIGURATION GPS: \ (0-NO, 1-YES) PORT: 4 6. TIME BASE DATA - 3. TRAFFIC EVENTS PRO TIME COORD MAX 2 OMIT DAY HH : MM PATRN PHASE #S PHASE #S **REFERENCE DATA** * * * * * D / S/ O * * * * * * * * * * * * * PRO DAY = 01 - 9900:00 5/5/ 01 (Program day) 06:00 111 11 01 22:00 5151 HH:MM = 24 Hour clock 01 1 1 : 00:00 5/5 / 02 06:00 211/1 PATTERN: (D/S/O) 02 02 09:00 111 1 FLASH = 5/5/=0/0/4 02 15:00 3/1/1 FREE 19:00 11/1/1 02 02 22:00 5151 MAX2 & OMITS: 1 1 : 1 : 1 Call free, set pattern 1 1 to 0/0/0. : : 1 1 1 1 D = DIAL #: 1 : 1 S = SPLIT #1 1 0 = OFFSET # : 1 : 1 1 1 : : 1 1. : 1 1 1 1 : : 1 1 1 1 : 1 1 : 1 .: 1 : 1 1 1 1 1. 1. 1. 1 1 11 • -1 1. 1 : 12 the second 1 1 1 1. ... : 1 1 1 : 1 1 1 :

Page 7



	ROAD COMMISSION FOR OAKLAND COUNTY, WATERF	ORD. MICH	IGAN	
	PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epaca			/
	7. PREEMPT DATA - 1. ALL PREEMPTS RING TIMES 1 2 3 4	>/( <b>#</b> ()		
	MIN GREEN/WALK			
	OVERRIDE FL 1/2 2/3 3/4 4/5	5/6		
	STATUS	0,0		
	CODES 0 = NO, 1 = YES	/		
	7. PREEMPT DATA - PREEMPT 1			
	<u>C DATA:</u> (0 = no, 1 = yes) 4. PEDEST	RIAN STAT	US:	
TEST		1 2 3	4 5 6	7 8
DELAY				
RING	MXCALL: LOCK OUT: DWELL 1 2 3 4 5 6 7 8 (0=dc			
EXIT		$\frac{1}{1}$	<u>wik, 2=fiwik, 3</u>	=dark)
CALLS		1 = act	2 = recall)	
× 232		10, 1 uot,	2 100unj	
	RVAL TIMES: 5, OVERLAN	STATUS:	13	
SEL PE		A B	C D	].
SEL YE				]
SEL RE				]
TRACK		grn, 2=fir,	3=fly, 4=dark)	T
IKKPC				
		1 = act		
3. VEHIC	CLE STATUS: 6. LOW PRIC		And toward	
	U. LOWTIN			
PHASE	1 2 3 4 5 6 7 8 TEST.:		0=no, 1=yes)	
TRK GR		N-LOCK .:		:
TRK GR	N DELAY: DWELL:			: ON:
TRK GR DWELL (0=red	N DELAY:	N-LOCK.: EXTEND: MXCALL:	- DURATI	: ON:
TRK GR DWELL (0=red CYCLE	N DELAY: DWELL: , 1=grn, 2=fir, 3=fly, 4=dark) RING 1 DWELL	N-LOCK.: EXTEND: MXCALL:	- DURATI	: ON: DUT:
TRK GR DWELL (0=red CYCLE	N     DELAY:       , 1=grn, 2=fir, 3=fly, 4=dark)     DWELL:       , 1=act, 2=min recall, 3=max recall)     DWELL	N-LOCK.: EXTEND: MXCALL:	- DURATI	: ON: DUT:
TRK GR DWELL (0=red CYCLE (0=no,	N DELAY: DWELL: 1=grn, 2=flr, 3=fly, 4=dark) RING 1 DWELL 1=act, 2=min recall, 3=max recall) CALLS SIGNAL PHASING	N-LOCK.: EXTEND: MXCALL: 2 3	DURATI DURATI LOCK C 4 5 6	: ON: DUT: X 8
TRK GR DWELL (0=red CYCLE (0=no, PHASE	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD	N-LOCK.: EXTEND: MXCALL: 2 3 PHASE	- DURATI	: ON: DUT: X 8
TRK GR DWELL (0=red CYCLE (0=no, PHASE	N DELAY: DWELL: , 1=grn, 2=fir, 3=fiy, 4=dark) 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 9 HASE CL	DURATI DURATI LOCK C 4 5 6  4 5 6  4 5 6  4 5 6  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ON: DUT: 7\ 8  FLASH
TRK GR DWELL (0=red CYCLE (0=no, PHASE	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD	N-LOCK.: EXTEND: MXCALL: 2 3 PHASE	DURATI DURATI LOCK C 4 5 6	: ON: DUT: X 8
TRK GR DWELL (0=red CYCLE (0=no, PHASE	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WB M59	N-LOCK.: EXTEND: MXCALL: 2 3 4 9 PHASE CL A	DURATI DURATI LOCK C 4 5 6  4 5 6  4 5 6  1 1 2	: ON: DUT: ∧ 8 FLASH  FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 9 HASE CL A B	SKIP DURATI LOCK C 4 5 6 LOAD SW 1 2 4	ON: DUT: 7\ 8  FLASH
TRK GR DWELL (0=red CYCLE (0=no, PHASE# 1 2 3 4 5 6	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WB M59	N-LOCK.: EXTEND: MXCALL: 2 3 4 9 PHASE CL A	DURATI DURATI LOCK C 4 5 6  4 5 6  4 5 6  1 1 2	ON: DUT: X 8 FLASH FLA FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WB M59 LT (GREEN ARROW) SB FISK WB M59 LT (GREEN ARROW) EB M59 LT (GREEN ARROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 PHASE CL A B AL	SKIP DURATI LOCK C 4 5 6 4 5 6 1 LOAD SW 1 2 4 5	: ON: DUT: ∧ 8 FLASH  FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8	N DELAY: DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK NB FISK NB FISK	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 PHASE CL A B AL	SKIP DURATI LOCK C 4 5 6 4 5 6 1 LOAD SW 1 2 4 5	ON: DUT: X 8 FLASH FLA FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE# 1 2 3 4 5 6 7 8 OLA	N DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WB M59 LT (GREEN ARROW) SB FISK WB M59 LT (GREEN ARROW) EB M59 LT (GREEN ARROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 PHASE CL A 2 4 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	SKIP DURATI LOCK C 4 5 6 4 5 6 4 5 6 1 2 4 5 6	ON:
TRK GR DWELL (0=red CYCLE (0=no, PHASE# 1 2 3 4 5 6 7 8 OLA OLB	N DELAY: DELAY: DWELL: DWELL: 1=act, 2=fir, 3=fly, 4=dark) 1=act, 2=fir, 3=fly, 4=dark) Telephice NUMERIC SIGNAL PHASING ROAD SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK WB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59LT (FLASHINK YOUONARROW, YELLOW ARROW), RED MEROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	SKIP DURATI LOCK C 4 5 6 4 5 6 4 5 6 4 5 6 1 2 4 5 6 8 9	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 0LA 0LB 0LC	N DELAY: DELAY: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING F ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK NB FISK NB FISK	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 HASE CL A B AL C D	SKIP DURATI LOCK C 4 5 6 4 5 6 4 5 6 4 5 6 1 2 4 5 6 8	N: ON: DUT: X 8 FLASH FLA FLA FLA FLR
TRK GR DWELL (0=red CYCLE (0=no, PHASE# 1 2 3 4 5 6 7 8 OLA OLB	N DELAY: DELAY: DWELL: DWELL: 1=act, 2=fir, 3=fly, 4=dark) 1=act, 2=fir, 3=fly, 4=dark) Telephice NUMERIC SIGNAL PHASING ROAD SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK WB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59LT (FLASHINK YOUONARROW, YELLOW ARROW), RED MEROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	SKIP DURATI LOCK C 4 5 6 4 5 6 4 5 6 4 5 6 1 2 4 5 6 8 9	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 0LA 0LB 0LC 0LD	N DELAY: DWELL: DWELL: DWELL: DWELL 1=act, 2=min recall, 3=max recall) SIGNAL PHASING FOAD EB M59 LT (GREEN ARROW) WB M59 SB FISK WB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (FLASHING VOLONARROW, YELLOW ARROW), RED ARROW) WBM59 LT (FLASHING VOLONARROW, YELLOW ARROW), RED ARROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 HASE CL A B AL C CL D CL	SKIP DURATI LOCK C 4 5 6 1 LOAD SW 1 2 4 5 6 8 9 11 1	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE# 1 2 3 4 5 6 7 8 OLA OLB OLC OLD 1PED 2PED 3PED	N DELAY: DELAY: DWELL: DWELL: 1=act, 2=fir, 3=fly, 4=dark) 1=act, 2=fir, 3=fly, 4=dark) Telephice NUMERIC SIGNAL PHASING ROAD SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK WB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59LT (FLASHINK YOUONARROW, YELLOW ARROW), RED MEROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	SKIP DURATI LOCK C 4 5 6 4 5 6 4 5 6 4 5 6 1 2 4 5 6 8 9	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 OLA OLB OLC OLD 1PED 2PED 3PED 4PED	N DELAY: DWELL: DWELL: DWELL: DWELL 1=act, 2=min recall, 3=max recall) SIGNAL PHASING FOAD EB M59 LT (GREEN ARROW) WB M59 SB FISK WB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (FLASHING VOLONARROW, YELLOW ARROW), RED ARROW) WBM59 LT (FLASHING VOLONARROW, YELLOW ARROW), RED ARROW)	N-LOCK.: EXTEND: MXCALL: 2 3 2 3 9 9 HASE CL A B AL C CL D CL	SKIP DURATI LOCK 0 4 5 6 1 2 4 5 6 1 2 4 5 6 8 9 11	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 0LA 0LB 0LC 0LD 1PED 2PED 3PED 4PED 5PED	N DELAY: DWELL: DWELL: DWELL: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) B M59 LT (GREEN ARROW) B M59 LT (GREEN ARROW) WE M59 LT (FLASHING YOLOWARROW, YELLOW ARROW), RED ARROW) WE M59 PED (NORTH LEG) SB FISK PED (WEST LEG)	N-LOCK.: EXTEND: MXCALL: 2 3 3 9 1 2 3 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SKIP DURATI LOCK C 4 5 6 1 2 4 5 6 1 2 4 5 6 8 9 1 13 14	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 OLA OLB OLC OLD 1PED 2PED 3PED 4PED 5PED 6PED	N DELAY: DWELL: DWELL: DWELL: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) CALLS SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK WE M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (FLASHING YOUCH ARROW) WE M59 LT (FLASHING YOUCH ARROW) YELLOW ARROW, RED ARROW) WE M59 PED (NORTH LEG)	N-LOCK.: EXTEND: MXCALL: 2 3 3 9 1 2 3 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- DURATI - DURATI LOCK 0 4 5 6 	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA
TRK GR DWELL (0=red CYCLE (0=no, PHASE 1 2 3 4 5 6 7 8 0LA 0LB 0LC 0LD 1PED 2PED 3PED 4PED 5PED	N DELAY: DWELL: DWELL: DWELL: DWELL: DWELL: 1=act, 2=min recall, 3=max recall) SIGNAL PHASING ROAD EB M59 LT (GREEN ARROW) WE M59 SB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) EB M59 NB FISK EB M59 LT (GREEN ARROW) B M59 LT (GREEN ARROW) B M59 LT (GREEN ARROW) WE M59 LT (FLASHING YOLOWARROW, YELLOW ARROW), RED ARROW) WE M59 PED (NORTH LEG) SB FISK PED (WEST LEG)	N-LOCK.: EXTEND: MXCALL: 2 3 9 PHASE CL A B AL C CL D CL AL WA	SKIP DURATI LOCK C 4 5 6 1 2 4 5 6 1 2 4 5 6 8 9 1 13 14	ON:       DUT:       X       8       FLASH       -       FLA       FLA       FLA       FLA       FLA

#### CONTROLLER INFORMATION SHEET Size P44-16 Cabinet with MOD 52 EPAC w/ FYA

INTERSECTION:	M-59 (Highland) & Fisk
COUNTY NO:	4135
STATE NO:	63041-01-026
PREPARED BY:	Rachel Jones
DATE:	10/10/11

Backpanel :-

Y				
181	Load Switch 1:	EB M59 LT (G: green arrow)	CL	-
	Load Switch 2:	WB M-59	A	FLA
	Load Switch 4:	SB Fisk	В	FLR
	Load Switch 5:	WB M59 LT (G: green arrow)	AL	
	Load Switch 6:	EB M59	С	FLA
	Load Switch 8:	NB Fisk	D	FLR
	Load Switch 9:	(OLA) EB M59 LT	CL	FLA
		ng yellow arrow; Y: yellow arrow; R	: red arrow)	
		(OLC) WB M59 LT	AL	FLA
	(G: flashi	ng yellow arrow; Y: yellow arrow; R	: red arrow)	
	Load Switch 13:	WB M59 Ped (North Leg)	WA	
	Load Switch 14:	SB Fisk Ped (West Leg)	WB	
	Load Switch 15:	EB M59 Ped (South Leg)	WC	
	Load Switch 16:	NB Fisk Ped (East Leg)	WD	
		1		

Jumpers :-

A28-A29,A34-A35,A37-A38,A43-A44,B28-B29,B34-B35,B37-B38,B43-B44,B52-B53, B55-B56,B58-B59,B61-B62,D22-D26, C56-PB10, D56-PB10, 10R-PB9, 12R-PB9.

Signal Monitor :-

1-5, 1-6, 1-9, 1-11, 2-5, 2-6, 2-9, 2-11, 4-8, 5-9, 5-11, 6-9, 6-11, 9-11. All switches OFF EXCEPT: Dual Select A&B; G&Y Enable; FYA 1-9, 5-11; SSM 2,4,6,8,9,11. Minimum Flash = 4+2+1

Autoscope SOLO

Mod 50 (0#4135

#### Mini-Hub II Detector Port Master Front Panel Input/Output Pin Assignment

The Mini-Hub II has inputs and outputs available through the front panel Input/ Output connector and through the back edge connector. The pin assignments for the Mini-Hub II front connector are listed in the following table. Edge connector pins are identified by NUMBER on the component (front) side of the board. Edge connector pins are identified by LETTER on the backside of board.

1 #	Mini-Hub II conn.	Edge conn.	Front Harness	Description	D- Conn. Term #	D- Conn. Detector Descript.	On Print Detector number	Phase
١	Output 1 LED	F	1	EBM59 LT	- <b>-</b>	Det.9	1.1	1
١	Output 2 LED	W	14	EB MS9 LT NOV	6	.Det 14	. 2	1
١	Output 3 LED	S	2	EBM59 THRUL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1	Output 4 LED	Y	15	EB HS9 THRUR				
2	Output 5 LED	(JP1)4	3	NB FISK LT	7	Oct. 15	5	8
2	Output 6 LED	(JP7)5	16	NB FISK THEN ART	8	Set 16	6	8
3	Output 7 LED	(JP2)8	4	WB MS9 LT	4	Det 12	7	5
3	Output 8 LED	(JP8)9	17	WB MS9 LT AON	5	Dot 13	8	5
3	Output 9 LED	(JP3)13	5				5. <b>4</b>	
3	Output 10 LED	(JP9)14	18			•		
4	Output 11 LED	(JP4)17	6	SB FISK LT	2	Dot 10		4
4	Output 12 LED	(JP10)18	19	SB FISIC RT	3	DetII	12	4
	Output 13 LED		7					5
	Output 14 LED	S.	20					
	Output 15 LED		8					
	Output 16 LED		21		•			
1	Input 1 LED	(JP5)1	9	LS1-9 RED (C-39)				
	Input 2 LED	(JP11)2	22	LS2 ROD (C30)				
	Input 3 LED	(JP6)3	10			2		
	Input 4 LED	(JP12)10	23	154 ROD (C-36)				
	Input 5 LED			155-11 RED (0-39)				
	Input 6 LED	-		LS6 RED (D-30)				n nan it
	Input 7 LED		12					
	nput 8 LED	(withJP14*)	25	LS8 ROD (D-36)				

*Input 8 with JP14 inserted becomes 24VDC through Input/ Output Connector on front panel. Logic Ground is the GREY (pin 13) wire form Input/ Output connector on front panel.

# Chapter 5 Connecting Solo MVP Power and **Communications** Cables

Usually, the Solo cable (the "pigtail" cable from the Solo MVP) is spliced to a Branch Cable, either in a junction box or in the hand-hole at the pole base. The Branch cable runs from the splice point to the cabinet, and terminates to the ACIP. Use the chart below (copy the blank table provided in Appendix A) to record which pairs of the Solo cable are spliced to the Branch cable pairs. For Branch cable lengths of 300 ft or less, a separate cable to power the Solo Pro is not normally necessary.

Be sure to use splicing methods and materials appropriate for low voltage communications splicing. When splicing is completed, properly seal the splice.

When the branch cables are brought into the cabinet, label each cable, starting with cable 1 from the Solo MVP viewing Phases 2 and 3, and working clockwise around the intersection, labeling cables 2, 3, and 4.

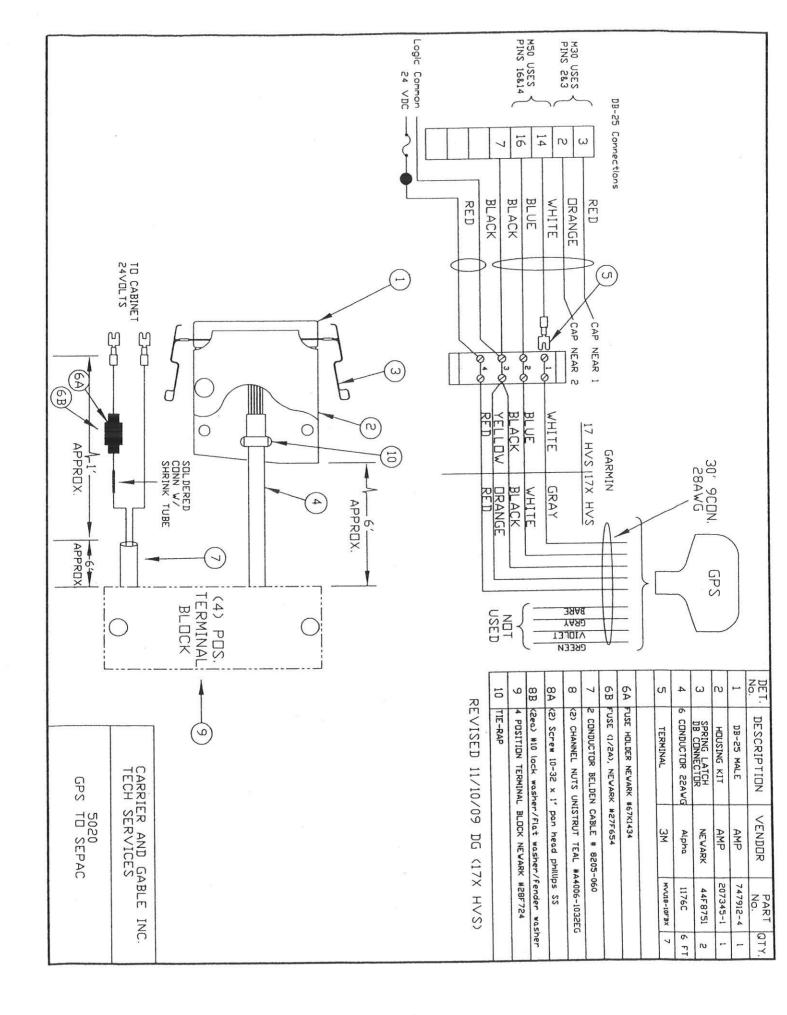
Terminate the cables to the ACIP in the same order. Taking care to assign the Sensor numbers (in the Autoscope Properties Editor) in the same order as the cables are terminated will facilitate easier maintenance and troubleshooting.

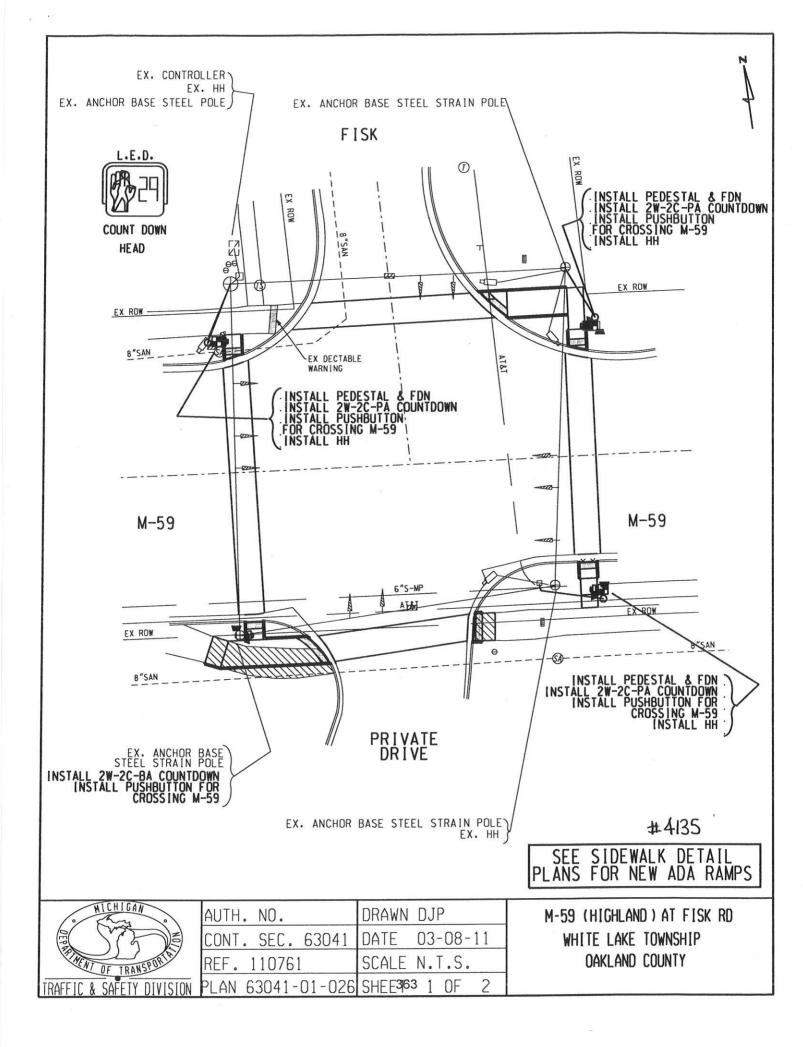
An example is shown in the table below. In this example, a separate power cable is shown. In installations where a 6-pair branch cable is used, power and communications are usually combined in one cable

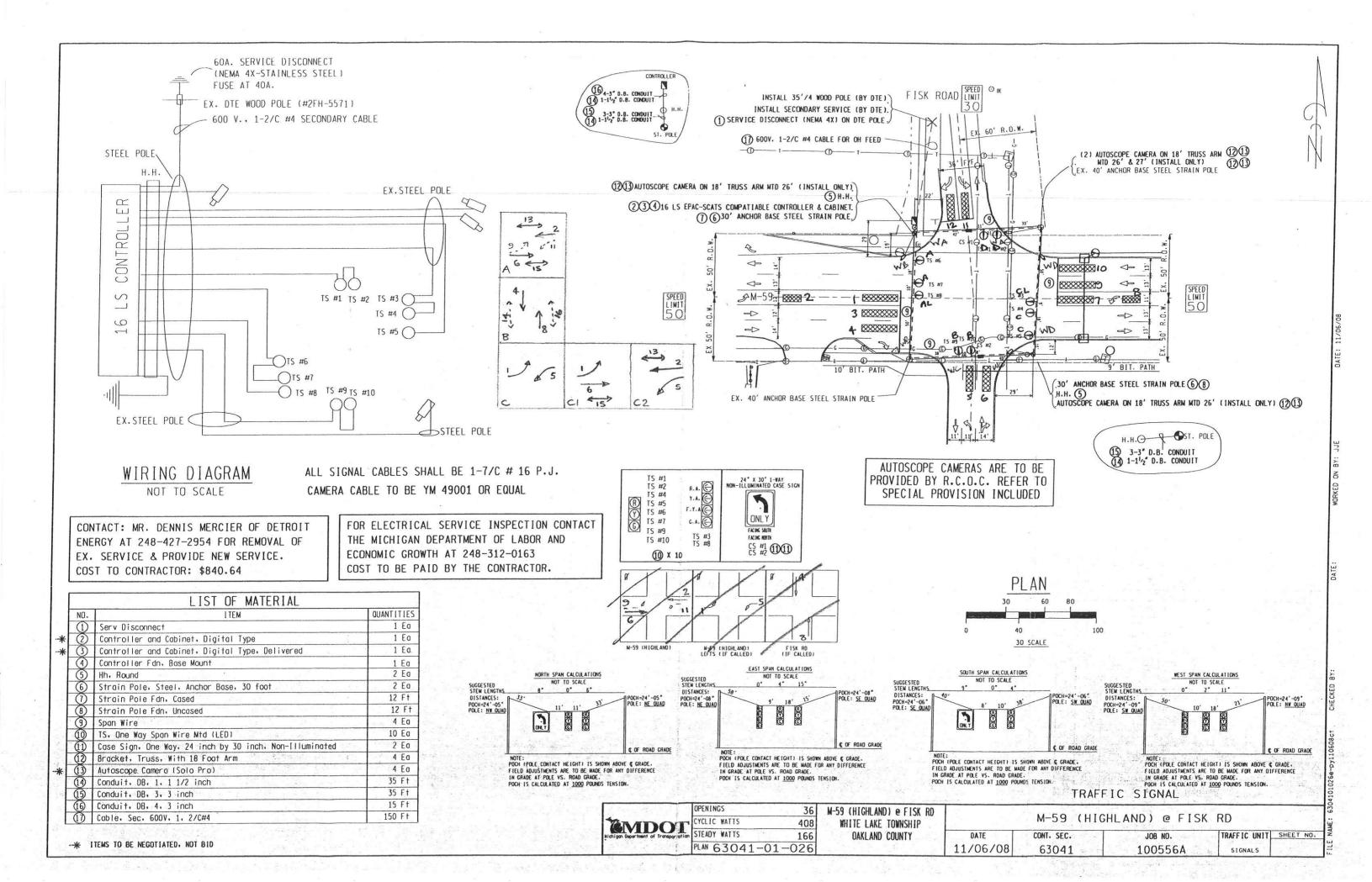
A blank copy of this table is provided for duplication in Appendix A.

DRAID WIRE OF SIL MUP to WHI BY GAN/WHI PAIR Then at CABINET WITH to Shield of Appendix A Solo System-Wide Interconnections Ground Lug

#### ATTER FACE PANEL


Duplicate the following table to keep track of all Solo MVP connections:


	Solo MVP	1.04	Branch Power Cable (write in wire stor)	Branch Communications Cable			Communications Interface Pa	
PIN	PAIR	WIRE COLOR	WIRE COLOR	PAIR	PAIRCOLOR	WIRE COLOR	SIGNAL	TERMINAL
A	BRN/BLK	F BRN *	BRN		BRN/with	BEN	24V PWR	1
В	BRN/BLK	Y BLK Y			BRN/WHI		24V RTN	2
N		"GRNMEL"			GRIJ/WHI	GEN	EARTH GND	3
P	BLU/BLK	BLU	BLU	1	Bill/WHI	BLU	SUP RX+	4
υ	BLU/BLK	BLK	WHT	1	BLU/WH	WHI	SUP RX-	5
D	RED/BLK	RED	RED	2	RED/BLU	RED	SUP TX+	6
R	RED/BLK	BLK	BLU	2	REO/BLU	BLU	SUP TX-	7
8	YEL/BLK	YEL	ORG	3	ORG/WHT	026	DET+	8
E	YEL/BLK	BLK .	WHT.	3	DRG/WHT		DET-	9
	WHI/BLK	WHI	GREY	4	GREY/WHI	GREY	VIDEO+	10
н	WHII/BLK	BLK	LUHT	4	GREY/WIT	1 WHI	VIDEO-	11


BEN

* IS SEPERATE POWER FEED

WI+T



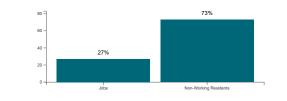




	_					
ommunity Profiles	6					
OU ARE VIEWING DATA FOR:						
White Lake Township						
7525 Highland Rd White Lake, MI 48383-2938 http://www.whitelaketwp.com/		SEMCC MEMB			Census 2020 Population: 30 Area: 37.1 square	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS					
	VIEW 2020 CENSUS	5 MAP				
EW COMMUNITY EAFLORER MAP	VIEW 2020 CENSUS	SMAP				
Economy & Jobs	VIEW 2020 CENSUS					
	VIEW 2020 CENSUS		o American Community Su	urvey (ACS) Profiles:	Select a Year 2018-2022 - Econo	omic
	VIEW 2020 CENSUS		o American Community Su	Jrvey (ACS) Profiles:	Select a Year 2018-2022 ❤ Econo	omic
Economy & Jobs			o American Community Su	urvey (ACS) Profiles:	Select a Year 2018-2022 V Econo	omic
Economy & Jobs	12,000 - 10,000 - 8,000 -		o American Community Su	urvey (ACS) Profiles:	Select a Year 2018-2022 V Econo	omic
Economy & Jobs	12,000 - 10,000 - 8,000 - 4,000 - 2,000 - 0 -		o American Community Su	Jrvey (ACS) Profiles:	Select a Year 2018-2022 V Econo	omic

Source: SEMCOG 2050 Regional Development Forecast

#### Forecasted Jobs by Industry Sector


Forecasted Jobs By Industry Sector	2019	2020	2025	2030	2035	2040	2045	2050	Change 2019-2050	Pct Change 2019-2050
Natural Resources, Mining, & Construction	1,022	1,006	1,229	1,253	1,269	1,253	1,236	1,219	197	19.3%
Manufacturing	208	194	223	216	210	195	188	182	-26	-12.5%
Wholesale Trade	293	265	282	297	307	308	307	308	15	5.1%
Retail Trade	2,227	1,940	2,106	2,046	1,930	1,851	1,814	1,768	-459	-20.6%
Transportation, Warehousing, & Utilities	327	319	390	404	415	420	429	434	107	32.7%
Information & Financial Activities	1,716	1,477	1,774	1,793	1,819	1,835	1,846	1,910	194	11.3%
Professional and Technical Services & Corporate HQ	855	813	968	1,023	1,080	1,116	1,168	1,246	391	45.7%
Administrative, Support, & Waste Services	1,132	868	1,051	1,123	1,175	1,207	1,263	1,303	171	15.1%
Education Services	970	897	972	1,016	1,017	1,027	1,033	1,038	68	7%
Healthcare Services	322	284	377	407	433	465	498	532	210	65.2%
Leisure & Hospitality	1,030	762	960	1,004	1,030	1,040	1,045	1,065	35	3.4%
Other Services	557	491	560	587	603	617	621	624	67	12%
Public Administration	158	152	166	172	174	173	173	172	14	8.9%
Total Employment Numbers	10,817	9,468	11,058	11,341	11,462	11,507	11,621	11,801	984	9.1%

Note: The base year for the employment forecast is 2019, as 2020 employment was artificially low due to the COVID recession.

Source: SEMCOG 2050 Regional Development Forecast

#### **Daytime Population**

Daytime Population	ACS 2016
Jobs	5,496
Non-Working Residents	14,870
Age 15 and under	6,198
Not in labor force	7,856
Unemployed	816
Daytime Population	20,366



Source: 2012-2016 American Community Survey 5-Year Estimates and 2012-2016 Census Transportation Planning Products Program (CTPP). For additional information, visit SEMCOG's Interactive Commuting Patterns Map

Note: The number of residents attending school outside Southeast Michigan is not available. Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

	Search	
ommunity Profiles	5	
OU ARE VIEWING DATA FOR:		
White Lake Township		
7525 Highland Rd White Lake, MI 48383-2938 http://www.whitelaketwp.com/	SEMCOG MEMBER	Census 2020 Population: 30,950 Area: 37.1 square miles
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
	Link to American Community Survey (ACS) Profiles: Sele	
	Link to American Community Survey (ACS) Profiles: Sele	
	Link to American Community Survey (ACS) Profiles: Sele	ect a Year 2018-2022 ❤ Social ⊨ Demographic nold Estimates for Southeast Michigan, 2022
Population and Households	Link to American Community Survey (ACS) Profiles: Sele	
Population and Households	Link to American Community Survey (ACS) Profiles: Sele	ect a Year 2018-2022 ∽ Social ∣ Demographic nold Estimates for Southeast Michigan, 2022
Population and Households	Link to American Community Survey (ACS) Profiles: Sele Population and Housel	
Population and Households	Link to American Community Survey (ACS) Profiles: Sele Population and House	

#### Population and Households

Population and Households	Census 2020	Census 2010	Change 2010-2020	Pct Change 2010-2020	SEMCOG Jul 2022	SEMCOG 2050
Total Population	30,950	30,019	931	3.1%	30,739	35,002
Group Quarters Population	88	76	12	15.8%	105	342
Household Population	30,862	29,943	919	3.1%	30,634	34,660
Housing Units	12,776	12,214	562	4.6%	12,949	-
Households (Occupied Units)	12,089	11,262	827	7.3%	12,110	14,325
Residential Vacancy Rate	5.4%	7.8%	-2.4%	-	6.5%	-
Average Household Size	2.55	2.66	-0.11	-	2.53	2.42

Source: U.S. Census Bureau and SEMCOG 2050 Regional Development Forecast

#### **Components of Population Change**

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2018 Avg.
Natural Increase (Births - Deaths)	218	89	22
Births	424	309	284
Deaths	206	220	262
Net Migration (Movement In - Movement Out)	112	-59	58
Population Change (Natural Increase + Net Migration)	330	30	80

Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG

#### **Household Types**

Household Types	Census 2010	ACS 2021	Change 2010-2021	Pct Change 2010-2021	SEMCOG 2050
With Seniors 65+	2,520	3,804	1,284	51%	-
Without Seniors	8,742	8,015	-727	-8.3%	-
Live Alone, 65+	882	1,141	259	29.4%	-
Live Alone, <65	1,406	1,127	-279	-19.8%	-
2+ Persons, With children	4,009	3,577	-432	-10.8%	-
2+ Persons, Without children	4,965	5,974	1,009	20.3%	-
Total Households	11,262	11,819	557	4.9%	-

Source: U.S. Census Bureau, Decennial Census, 2017-2021 American Community Survey 5-Year Estimates, and SEMCOG 2050 Regional Development Forecast

#### Level of Service Criteria for Stop Sign Controlled Intersections

The level of service criteria are given in Exhibit 20-2. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue until the vehicle departs from the stop line; this time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in queue.

V@ Aaæ & Aaæ  $A_{a} = A_{a} = A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} + A_{a} +$ 

LEVEL OF SERVICE	AVERAGE CONTROL DELAY (sec/veh)
А	<u>≤</u> 10
В	> 10 and <u>&lt;</u> 15
С	> 15 and <u>&lt;</u> 25
D	> 25 and <u>&lt;</u> 35
E	> 35 and <u>&lt;</u> 50
F	> 50

Exhibit 20-2. Level of Service Criteria for Stop-Controlled Intersections (Motor Vehciles)

Average total delay less than 10 sec/veh is defined as Level of Service (LOS) A. Follow-up times of less than 5 sec have been measured when there is no conflicting traffic for a minor street movement, so control delays of less than 10 sec/veh are appropriate for low flow conditions. A total delay of 50 sec/veh is assumed as the break point between LOS E and F.

V@AŠUÙÁ&ᢦæÁţ¦ÁAY ÙÔÁġ ¢¦•^&qi}•Åsqā} Ásiā~¦Á[{ ^, @æÁ[{ Ás@Akiæ^¦æÁ*•^åÁşiÁÔ@ej ¢¦Á;JÁ[¦Á •að}ædā^åÁg ¢¦•^&qi}•Asqi}•Êj, ¦aj æda Ási^&e^AA*AjA', ko] qi}•Ásiā~¦Áse{ [}*Ásiæ}•] ['œædi} Áædiði ćk] ^•ÈÁv@Á ^¢]^&œædi} Ási Ás@ædiÁdi } æda ^åÁsi ¢¦•^&qi} Ási Ási^•a*]^åÁgi Ási Åsi *¦^æA'¦Ása']æÂx@ædiÁdi } æda ^åÁsi ¢'!•^&qi} ÈÁvEdditionally, several driver behavior considerations combine to make delays at signalized intersections less onerous than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, where drivers on the minor approaches to unsignalized intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized than signalized intersections. For these reasons, it is considered that the total delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection.

LOS F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queueing on the minor approaches. The method, however, is based on a constant critical gap size - that is, the critical gap remains constant, no matter how long the side street motorist waits. LOS F may also appear in the form of side street vehicles' selecting smaller-than-usual gaps. In such cases, safety may be a problem and some disruption to the major traffic stream may result. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal gap acceptance behavior. The latter is more difficult to observe on the field than queueing, which is more obvious.

Source: Highway Capacity Manual, 6th Edition. Transportation Research Board, National Research Council

#### Level of Service for Signalized Intersections

Level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Specifically, level-of-service (LOS) criteria are stated in terms of the average stopped delay per vehicle. The criteria are given in Exhibit 19-8. Delay may be measured in the field or estimated using procedures presented later in this chapter. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

**LOS A** describes operations with a control delay of 10 s/veh or less. This level is typically assigned when the volume-to-capacity ratio is low and either progression is extremely favorable or the cycle length is very short. If LOS A is the result of favorable progression, most vehicles arrive during a green indication and travel through the intersection without stopping.

**LOS B** describes operations with control delay between 10 and 20 s/veh. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LEVEL OF SERVICE	STOPPED DELAY PER VEHICLE (SEC)
А	<u>≤</u> 10.0
В	> 10.0 and <u>&lt;</u> 20.0
С	> 20.0 and <u>&lt;</u> 35.0
D	> 35.0 and <u>&lt;</u> 55.0
E	> 55.0 and <u>&lt;</u> 80.0
F	>80.0

Exhibit 19.8. Level-of-Service Criteria for Signalized Intersections (Motorized Vehicles)

1. If the v/c ratio for a lane group exceeds 1.0, a LOS F is assigned to the individual lane group. LOS for approach-based and intersection-wide assessments are determined solely by the control delay.

**LOS C** describes operations with control delay between 20 and 35 s/veh. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e. one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number if vehicle stopping is significant, although many vehicles still pass through the intersection without stopping.

**LOS D** describes operations with control delay between 35 and 55 s/veh. This level is typically assigned when when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

**LOS E** describes operations with control delay between 55 and 80 s/veh. This level is typically assigned when when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

**LOS F** describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level, considered to be unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of the intersection. This level is typically assigned when the volume-to-capacity ratio is high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

Source: Highway Capacity Manual, 6th Edition. Transportation Research Board, National Research Council

	۶	+	$\mathbf{F}$	∢	+	•	1	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<b>††</b>	1	<u>۲</u>	<b>≜</b> ⊅		<u>۲</u>	ef 👘		- ሽ	eî 👘	
Traffic Volume (veh/h)	47	1192	9	9	792	26	1	0	6	109	0	55
Future Volume (veh/h)	47	1192	9	9	792	26	1	0	6	109	0	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	1000	No	1000		No		1000	No	1000
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1282	10	10	900	30	2	0	10	128	0	65
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	354	1558	695	264	1538	51	424	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3577	119	1358	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1282	10	10	456	474	2	0	10	128	0	65
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1885	1358	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	28.1	0.3	0.2	17.2	17.2	0.1	0.0	0.4	6.7	0.0	2.7
Cycle Q Clear(g_c), s	1.3	28.1	0.3	0.2	17.2	17.2	2.8	0.0	0.4	7.1	0.0	2.7
Prop In Lane	1.00	4550	1.00	1.00	770	0.06	1.00	0	1.00	1.00	0	1.00
Lane Grp Cap(c), veh/h	354	1558	695	264	779	811	424	0	480	463	0	461
V/C Ratio(X)	0.14 354	0.82	0.01 695	0.04 264	0.59	0.59	0.00	0.00	0.02	0.28 463	0.00	0.14
Avail Cap(c_a), veh/h	354 1.00	1558			779 1.00	811	424	0	480		0 1.00	461
HCM Platoon Ratio	1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 0.00	1.00 1.00	1.00 1.00	0.00	1.00
Upstream Filter(I)	13.2	22.6	14.7	15.6	19.5	19.5	1.00 25.1	0.00	23.3	25.8	0.00	1.00 24.1
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	0.9	5.1	0.0	0.3	3.2	3.1	0.0	0.0	23.3 0.1	25.6	0.0	24.1
Initial Q Delay(d3),s/veh	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	11.5	0.0	0.0	7.0	7.3	0.0	0.0	0.0	2.2	0.0	1.0
Unsig. Movement Delay, s/veh		11.5	0.1	0.1	1.0	1.5	0.0	0.0	0.2	2.2	0.0	1.0
LnGrp Delay(d),s/veh	14.0	27.7	14.7	15.9	22.7	22.6	25.1	0.0	23.3	27.3	0.0	24.7
LnGrp LOS	B	C	В	B	C	22.0 C	20.1 C	A	20.0 C	27.5 C	A	24.1 C
Approach Vol, veh/h		1343			940			12			193	
Approach Delay, s/veh		27.1			22.6			23.6			26.4	
Approach LOS		C			22.0 C			20.0 C			20.4 C	
	4					^					0	
Timer - Assigned Phs	12.0	2		22.0	12.0	6		8				
Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s	13.0 * 6.3	45.0 * 6.3		32.0 6.5	13.0 * 6.3	45.0 * 6.3		32.0 6.5				
		* 39		0.5 25.5		* 39		0.5 25.5				
Max Green Setting (Gmax), s	* 6.7 2.2	30.1		25.5 9.1	* 6.7 3.3	19.2		25.5 4.8				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	2.2 0.0	50.1 5.1		9.1 0.5	3.3 0.0	19.2 5.1		4.8 0.0				
	0.0	0.1		0.5	0.0	5.1		0.0				
Intersection Summary			05.0									
HCM 6th Ctrl Delay			25.3									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	<b>^</b>	- 11	1	Y	
Traffic Vol, veh/h	3	1309	986	6	0	2
Future Vol, veh/h	3	1309	986	6	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	0	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	60	60
Heavy Vehicles, %	7	7	7	7	0	0
Mvmt Flow	3	1471	1108	7	0	3

Major/Minor	Major1	Ν	lajor2	I	Minor2				
Conflicting Flow All	1115	0	-	0	1850	554			
Stage 1	-	-	-	-	1108	-			
Stage 2	-	-	-	-	742	-			
Critical Hdwy	4.24	-	-	-	6.8	6.9			
Critical Hdwy Stg 1	-	-	-	-	5.8	-			
Critical Hdwy Stg 2	-	-	-	-	5.8	-			
Follow-up Hdwy	2.27	-	-	-	3.5	3.3			
Pot Cap-1 Maneuver	594	-	-	-	*173	481			
Stage 1	-	-	-	-	*282	-			
Stage 2	-	-	-	-	*534	-			
Platoon blocked, %		-	-	-	1				
Mov Cap-1 Maneuver		-	-	-	*172	481			
Mov Cap-2 Maneuver	· -	-	-	-	*233	-			
Stage 1	-	-	-	-	*281	-			
Stage 2	-	-	-	-	*534	-			
Approach	EB		WB		SB				
HCM Control Delay, s	; O		0		12.5				
HCM LOS					В				
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1			
Capacity (veh/h)		594	-	-	_	481			
HCM Lane V/C Ratio		0.006	-	-	_	0.007			
HCM Control Delay (s	5)	11.1	-	-	-	12.5			
HCM Lane LOS		В	-	-	-	B			
HCM 95th %tile Q(vel	n)	0	-	-	-	0			
Notes									
~: Volume exceeds ca	anacity	¢. Do		oode 2	000	L' Com	outation Not Defined	*: All major volume in platoon	
······································	apacity	. De	iay ext	eeds 3	005	T. Com	Julation Not Delined	. An major volume in platoon	

1.8

#### Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	<b>^</b>	1	<u> </u>	<b>^</b>	1	٦	4Î			4	
Traffic Vol, veh/h	1	1297	11	25	952	4	39	0	58	5	1	1
Future Vol, veh/h	1	1297	11	25	952	4	39	0	58	5	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	330	500	-	120	0	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	88	88	88	93	93	93	60	60	60
Heavy Vehicles, %	5	5	5	6	6	6	0	0	0	0	0	0
Mvmt Flow	1	1380	12	28	1082	5	42	0	62	8	2	2

Major/Minor	Major1		1	Major2			Minor1			Minor2				
Conflicting Flow All	1087	0	0	1392	0	0	1980	2525	690	1830	2532	541		
Stage 1	-	-	-	-	-	-	1382	1382	-	1138	1138	-		
Stage 2	-	-	-	-	-	-	598	1143	-	692	1394	-		
Critical Hdwy	4.2	-	-	4.22	-	-	7.5	6.5	6.9	7.5	6.5	6.9		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Follow-up Hdwy	2.25	-	-	2.26	-	-	3.5	4	3.3	3.5	4	3.3		
Pot Cap-1 Maneuver	620	-	-	*828	-	-	*98	*28	*566	*158	*27	491		
Stage 1	-	-	-	-	-	-	*534	*467	-	*218	*279	-		
Stage 2	-	-	-	-	-	-	*461	*277	-	*534	*467	-		
Platoon blocked, %		-	-	1	-	-	1	1	1	1	1			
Mov Cap-1 Maneuver	620	-	-	*828	-	-	*90	*27	*566	*137	*26	491		
Mov Cap-2 Maneuver	-	-	-	-	-	-	*90	*27	-	*137	*26	-		
Stage 1	-	-	-	-	-	-	*533	*467	-	*218	*270	-		
Stage 2	-	-	-	-	-	-	*441	*268	-	*474	*467	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	0			0.2			37.8			50.3				
HCM LOS	-			-			E			F				
Minor Lane/Major Mvr	nt l	VBLn1N	JBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		90	566	620			* 828			91				
HCM Lane V/C Ratio		0.466		0.002	_	-	0.034	-	-	0.128				
HCM Control Delay (s	)	75.9	12.1	10.8	_	-	9.5	-	-	50.3				
HCM Lane LOS	/	70.5 F	B	B	-	-	A	-	-	F				
HCM 95th %tile Q(veh	1)	2	0.4	0	-	-	0.1	-	-	0.4				
Notes														
~: Volume exceeds ca	nacity	\$. De	lav evo	eeds 30	005 -	F. Com	putatior	Not D	efined	*· ∆II	maiory	volume in	nlatoon	
. Volume exceeds co	ipacity	ψ. De	ay ext			. 0011	pulation		Gilled	. 711	major v		platoon	

	≯	-	*	4	ł	*	<b>N</b>	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	- <b>††</b>	1	<u>۲</u>	<b>≜</b> ⊅		- ሽ	ef 👘		- ሽ	ef 👘	
Traffic Volume (veh/h)	165	1112	8	6	1486	76	6	2	12	249	0	165
Future Volume (veh/h)	165	1112	8	6	1486	76	6	2	12	249	0	165
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	194	1308	9	6	1598	82	10	3	20	280	0	185
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	231	2142	954	306	2056	105	200	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3592	183	1217	225	1502	1398	0	1679
Grp Volume(v), veh/h	194	1308	9	6	822	858	10	0	23	280	0	185
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1920	1217	0	1727	1398	0	1679
Q Serve(g_s), s	5.1	27.6	0.3	0.1	40.8	41.5	0.9	0.0	1.3	24.0	0.0	11.7
Cycle Q Clear(g_c), s	5.1	27.6	0.3	0.1	40.8	41.5	12.6	0.0	1.3	25.3	0.0	11.7
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	231	2142	954	306	1062	1099	200	0	367	342	0	357
V/C Ratio(X)	0.84	0.61	0.01	0.02	0.77	0.78	0.05	0.00	0.06	0.82	0.00	0.52
Avail Cap(c_a), veh/h	231	2142	954	306	1062	1099	200	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.2	16.9	11.0	11.5	19.7	19.8	47.4	0.0	37.7	47.8	0.0	41.8
Incr Delay (d2), s/veh	28.8	1.3	0.0	0.1	5.5	5.5	0.5	0.0	0.3	19.2	0.0	5.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.8	10.9	0.1	0.1	17.1	17.9	0.3	0.0	0.6	9.7	0.0	5.1
Unsig. Movement Delay, s/veh		10.0		44.0	05.0	05.0	47.0			07.0		47.4
LnGrp Delay(d),s/veh	53.1	18.2	11.0	11.6	25.2	25.3	47.9	0.0	38.0	67.0	0.0	47.1
LnGrp LOS	D	В	В	В	С	С	D	A	D	E	A	<u>D</u>
Approach Vol, veh/h		1511			1686			33			465	
Approach Delay, s/veh		22.6			25.2			41.0			59.1	
Approach LOS		С			С			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+I1), s	2.1	29.6		27.3	7.1	43.5		14.6				
Green Ext Time (p_c), s	0.0	11.2		0.0	0.0	12.8		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			28.6									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	ł
Lane Configurations	٦	<b>^</b>	- 11	1	Y		
Traffic Vol, veh/h	4	1439	1811	16	2	1	
Future Vol, veh/h	4	1439	1811	16	2	1	
Conflicting Peds, #/hr	1	0	0	1	0	0	)
Sign Control	Free	Free	Free	Free	Stop	Stop	)
RT Channelized	-	None	-	None	-	None	,
Storage Length	500	-	-	0	0	-	
Veh in Median Storage	, # -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	95	95	75	75	5
Heavy Vehicles, %	3	3	3	3	0	0	)
Mvmt Flow	4	1564	1906	17	3	1	

Major/Minor	Major1	Ν	/lajor2		Minor2			
Conflicting Flow All	1924	0	-	0	2697	954		
Stage 1	-	-	-	-	1907	-		
Stage 2	-	-	-	-	790	-		
Critical Hdwy	4.16	-	-	-	6.8	6.9		
Critical Hdwy Stg 1	-	-	-	-	5.8	-		
Critical Hdwy Stg 2	-	-	-	-	5.8	-		
Follow-up Hdwy	2.23	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	299	-	-	-	*14	263		
Stage 1	-	-	-	-	*105	-		
Stage 2	-	-	-	-	*462	-		
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuver	299	-	-	-	*14	263		
Mov Cap-2 Maneuver	-	-	-	-	*81	-		
Stage 1	-	-	-	-	*104	-		
Stage 2	-	-	-	-	*462	-		
Approach	EB		WB		SB			
HCM Control Delay, s	0		0		40.6			
HCM LOS					Е			
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		299	-	-	-	105		
HCM Lane V/C Ratio		0.015	-	-	-	0.038		
HCM Control Delay (s)	)	17.2	-	-	-	40.6		
HCM Lane LOS		C	_	-	-	E		
HCM 95th %tile Q(veh	I)	0	-	-	-	0.1		
Notes								
~: Volume exceeds ca	nacity	\$· D≏	lav evo	ceeds 3	00s	+: Com	outation Not Defined	*: All major volume in platoon
. Volume exceeds ca	pacity	ψ. De		eeus J	005	·. Com		

55.6

#### Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	<b>^</b>	1	5	<b>†</b> †	1	5	4		-	4	-
Traffic Vol, veh/h	6	1382	53	71	1793	11	27	0	40	14	1	7
Future Vol, veh/h	6	1382	53	71	1793	11	27	0	40	14	1	7
Conflicting Peds, #/hr	1	0	0	0	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	330	500	-	120	0	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	95	95	95	80	80	80	60	60	60
Heavy Vehicles, %	3	3	3	3	3	3	8	8	8	4	4	4
Mvmt Flow	7	1519	58	75	1887	12	34	0	50	23	2	12

Major/Minor	Major1		1	Major2		1	Minor1		1	Minor2			
Conflicting Flow All	1900	0	0	1577	0	0	2628	3583	760	2812	3629	945	
Stage 1	-	-	-	-	-	-	1533	1533	-	2038	2038	-	
Stage 2	-	-	-	-	-	-	1095	2050	-	774	1591	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.66	6.66	7.06	7.58	6.58	6.98	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-	
Follow-up Hdwy	2.23	-	-	2.23	-	-	3.58	4.08	3.38	3.54	4.04	3.34	
Pot Cap-1 Maneuver	306	-	-	409	-	-	~ 11	5	336	~ 8	5	259	
Stage 1	-	-	-	-	-	-	115	167	-	57	96	-	
Stage 2	-	-	-	-	-	-	218	91	-	353	162	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	306	-	-	409	-	-	~ 6	4	336	~ 6	4	259	
Mov Cap-2 Maneuver	• -	-	-	-	-	-	~ 6	4	-	~ 6	4	-	
Stage 1	-	-	-	-	-	-	112	163	-	56	78	-	
Stage 2	-	-	-	-	-	-	166	74	-	294	158	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.6		\$ '	1323.7		\$ 2	2517.5			
HCM LOS							F			F			
Minor Lane/Major Mvr	mt l	NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		6	336	306	-	-	409	-	-	8			
HCM Lane V/C Ratio				0.022	-	-	0.183	-	-	4.583			
HCM Control Delay (s	s) \$ (	3258.6	17.6	17	-	-	15.8	-		2517.5			
HCM Lane LOS	, +	F	С	С	-	-	С	-	-	F			
HCM 95th %tile Q(veh	n)	5.7	0.5	0.1	-	-	0.7	-	-	5.9			
Notes													
~: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	)0s -	+: Com	putatior	n Not D	efined	*: All	major \	olume i	n platoon

# Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	69	371	381	123	33	233	242	18	16	129	72	
Average Queue (ft)	27	233	215	11	6	127	127	1	2	54	21	
95th Queue (ft)	60	338	329	63	22	206	209	8	11	106	52	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			38	0								
Queuing Penalty (veh)			4	0								

# Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	WB	SB
Directions Served	L	Т	LR
Maximum Queue (ft)	28	4	21
Average Queue (ft)	1	0	2
95th Queue (ft)	11	3	11
Link Distance (ft)		204	320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	500		
Storage Blk Time (%)			
Queuing Penalty (veh)			

# Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

# Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	354	339	326	67	32	400	414	26	26	314	155	
Average Queue (ft)	149	187	176	4	5	257	257	4	5	169	74	
95th Queue (ft)	310	285	274	30	20	354	360	18	19	276	132	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						0	0					
Queuing Penalty (veh)						0	0					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			26			0						
Queuing Penalty (veh)			2			0						

# Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	29	21
Average Queue (ft)	2	2
95th Queue (ft)	15	11
Link Distance (ft)		320
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

# Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

Movement	EB	EB	EB	WB	WB	NB	NB	SB
Directions Served	L	Т	R	L	Т	L	TR	LTR
Maximum Queue (ft)	28	4	8	78	18	432	170	196
Average Queue (ft)	3	0	0	31	1	300	40	99
95th Queue (ft)	17	3	4	66	18	519	162	234
Link Distance (ft)		204			1139	520	520	248
Upstream Blk Time (%)						7	1	11
Queuing Penalty (veh)						0	0	0
Storage Bay Dist (ft)	500		330	500				
Storage Blk Time (%)								
Queuing Penalty (veh)								

	۶	-	$\mathbf{F}$	∢	←	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	<u>††</u>	1	ľ	A		۲	el el		٦	4	
Traffic Volume (veh/h)	47	1204	9	9	800	26	1	0	6	110	0	56
Future Volume (veh/h)	47	1204	9	9	800	26	1	0	6	110	0	56
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1295	10	10	909	30	2	0	10	129	0	66
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	351	1558	695	261	1539	51	423	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3578	118	1357	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1295	10	10	460	479	2	0	10	129	0	66
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1885	1357	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	28.5	0.3	0.2	17.5	17.5	0.1	0.0	0.4	6.7	0.0	2.7
Cycle Q Clear(g_c), s	1.3	28.5	0.3	0.2	17.5	17.5	2.8	0.0	0.4	7.1	0.0	2.7
Prop In Lane	1.00		1.00	1.00		0.06	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	351	1558	695	261	779	811	423	0	480	463	0	461
V/C Ratio(X)	0.15	0.83	0.01	0.04	0.59	0.59	0.00	0.00	0.02	0.28	0.00	0.14
Avail Cap(c_a), veh/h	351	1558	695	261	779	811	423	0	480	463	0	461
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.2	22.8	14.7	15.8	19.6	19.6	25.1	0.0	23.3	25.8	0.0	24.1
Incr Delay (d2), s/veh	0.9	5.3	0.0	0.3	3.3	3.2	0.0	0.0	0.1	1.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	11.7	0.1	0.1	7.2	7.4	0.0	0.0	0.2	2.2	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.1	28.1	14.7	16.0	22.9	22.8	25.2	0.0	23.3	27.3	0.0	24.7
LnGrp LOS	В	С	В	В	С	С	С	А	С	С	А	С
Approach Vol, veh/h		1356			949			12			195	
Approach Delay, s/veh		27.5			22.7			23.6			26.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	45.0		32.0	13.0	45.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 39		25.5	* 6.7	* 39		25.5				
Max Q Clear Time (g_c+l1), s	2.2	30.5		9.1	3.3	19.5		4.8				
Green Ext Time (p_c), s	0.0	4.9		0.6	0.0	5.2		0.0				
	0.0	7.0		0.0	0.0	0.2		0.0				
Intersection Summary			05.0									
HCM 6th Ctrl Delay			25.6									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	<b>^</b>	- 11	1	Y	
Traffic Vol, veh/h	3	1322	996	6	0	2
Future Vol, veh/h	3	1322	996	6	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	0	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	60	60
Heavy Vehicles, %	7	7	7	7	0	0
Mvmt Flow	3	1485	1119	7	0	3

Major/Minor	Major1	Ν	/lajor2	1	Minor2			
Conflicting Flow All	1126	0	-	0	1868	560		
Stage 1	-	-	-	-	1119	-		
Stage 2	-	-	-	-	749	-		
Critical Hdwy	4.24	-	-	-	6.8	6.9		
Critical Hdwy Stg 1	-	-	-	-	5.8	-		
Critical Hdwy Stg 2	-	-	-	-	5.8	-		
Follow-up Hdwy	2.27	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	588	-	-	-	*189	477		
Stage 1	-	-	-	-	*278	-		
Stage 2	-	-	-	-	*502	-		
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuve		-	-	-	*189	477		
Mov Cap-2 Maneuve	r -	-	-	-	*235	-		
Stage 1	-	-	-	-	*277	-		
Stage 2	-	-	-	-	*502	-		
Approach	EB		WB		SB			
HCM Control Delay, s	s 0		0		12.6			
HCM LOS					В			
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		588	-	-	-	477		
HCM Lane V/C Ratio	1	0.006	-	-	-	0.007		
HCM Control Delay (s		11.2	-	-	-	12.6		
HCM Lane LOS	- /	B	-	-	-	В		
HCM 95th %tile Q(ve	h)	0	-	-	-	0		
	,							
Notes	on o oitre	¢. D-	less erre	a a da Di	00-		utation Nat Dafined	* All main values in clatary
~: Volume exceeds c	apacity	\$: De	iay exc	ceeds 3	UUS	+: Comp	outation Not Defined	*: All major volume in platoon

1.9

#### Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<b>^</b>	1	٦	<b>^</b>	1	٦	4Î			4	
Traffic Vol, veh/h	1	1310	11	25	962	4	39	0	59	5	1	1
Future Vol, veh/h	1	1310	11	25	962	4	39	0	59	5	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	330	500	-	120	0	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	88	88	88	93	93	93	60	60	60
Heavy Vehicles, %	5	5	5	6	6	6	0	0	0	0	0	0
Mvmt Flow	1	1394	12	28	1093	5	42	0	63	8	2	2

	Major1		ľ	Major2			Minor1			Minor2				
Conflicting Flow All	1098	0	0	1406	0	0	2000	2550	697	1848	2557	547		
Stage 1	-	-	-	-	-	-	1396	1396	-	1149	1149	-		
Stage 2	-	-	-	-	-	-	604	1154	-	699	1408	-		
Critical Hdwy	4.2	-	-	4.22	-	-	7.5	6.5	6.9	7.5	6.5	6.9		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Follow-up Hdwy	2.25	-	-	2.26	-	-	3.5	4	3.3	3.5	4	3.3		
Pot Cap-1 Maneuver	614	-	-	*828	-	-	*92	*26	*566	*149	*25	486		
Stage 1	-	-	-	-	-	-	*534	*467	-	*215	*275	-		
Stage 2	-	-	-	-	-	-	*457	*274	-	*534	*467	-		
Platoon blocked, %		-	-	1	-	-	1	1	1	1	1			
Mov Cap-1 Maneuver	r 614	-	-	*828	-	-	*84	*25	*566	*129	*25	486		
Mov Cap-2 Maneuver	r -	-	-	-	-	-	*84	*25	-	*129	*25	-		
Stage 1	-	-	-	-	-	-	*533	*467	-	*215	*266	-		
Stage 2	-	-	-	-	-	-	*437	*265	-	*473	*467	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	s 0			0.2			41			52.7				
HCM LOS				•			E			F				
										-				
Minor Lane/Major Mvi	mt I	NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		84	566	614	-	-	* 828	-	-	87				
HCM Lane V/C Ratio		0.499		0.002	-	-	0.034	-	-	0.134				
HCM Control Delay (s	5)	84.6	12.2	10.9	-	-	9.5	-	-	52.7				
HCM Lane LOS	- /	F		B	-	-	A	-	-	F				
HCM 95th %tile Q(vel	h)	2.1	0.4	0	-	-	0.1	-	-	0.4				
Notes														
~: Volume exceeds ca	apacity	\$: De	elav exc	eeds 30	)0s -	+: Com	putation	Not D	efined	*: All	maior	volume ir	n platoon	

	≯	-	$\mathbf{F}$	∢	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<u></u>	1	۲.	<b>≜</b> ⊅		٦	el 🗧		٦	ef 👘	
Traffic Volume (veh/h)	167	1123	8	6	1501	77	6	2	12	251	0	167
Future Volume (veh/h)	167	1123	8	6	1501	77	6	2	12	251	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1321	9	6	1614	83	10	3	20	282	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	228	2142	954	302	2056	105	197	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3592	184	1213	225	1502	1398	0	1679
Grp Volume(v), veh/h	196	1321	9	6	830	867	10	0	23	282	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1920	1213	0	1727	1398	0	1679
Q Serve(g_s), s	5.2	28.0	0.3	0.1	41.5	42.2	0.9	0.0	1.3	24.2	0.0	11.9
Cycle Q Clear(g_c), s	5.2	28.0	0.3	0.1	41.5	42.2	12.8	0.0	1.3	25.5	0.0	11.9
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	228	2142	954	302	1062	1099	197	0	367	342	0	357
V/C Ratio(X)	0.86	0.62	0.01	0.02	0.78	0.79	0.05	0.00	0.06	0.82	0.00	0.53
Avail Cap(c_a), veh/h	228	2142	954	302	1062	1099	197	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.6	17.0	11.0	11.6	19.8	20.0	47.6	0.0	37.7	47.9	0.0	41.9
Incr Delay (d2), s/veh	31.8	1.3	0.0	0.1	5.7	5.8	0.5	0.0	0.3	19.7	0.0	5.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.0	11.1	0.1	0.1	17.4	18.3	0.3	0.0	0.6	9.9	0.0	5.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	56.4	18.3	11.0	11.8	25.6	25.8	48.1	0.0	38.0	67.6	0.0	47.4
LnGrp LOS	E	В	В	В	С	С	D	А	D	E	А	D
Approach Vol, veh/h		1526			1703			33			470	
Approach Delay, s/veh		23.1			25.6			41.1			59.5	
Approach LOS		С			С			D			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+l1), s	2.1	30.0		27.5	7.2	44.2		14.8				
Green Ext Time (p_c), s	0.0	11.4		0.0	0.0	12.8		0.1				
Intersection Summary	0.0			0.0	0.0	12.0		0.1				
			00.0									
HCM 6th Ctrl Delay			29.0									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	t I
Lane Configurations	٦	<b>^</b>	- 11	1	Y		
Traffic Vol, veh/h	4	1453	1829	16	2	1	
Future Vol, veh/h	4	1453	1829	16	2	1	
Conflicting Peds, #/hr	1	0	0	1	0	0	)
Sign Control	Free	Free	Free	Free	Stop	Stop	)
RT Channelized	-	None	-	None	-	None	<b>,</b>
Storage Length	500	-	-	0	0	-	
Veh in Median Storage	, # -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	95	95	75	75	5
Heavy Vehicles, %	3	3	3	3	0	0	)
Mvmt Flow	4	1579	1925	17	3	1	

Major/Minor	Major1	Ν	/lajor2	I	Vinor2			
Conflicting Flow All	1943	0	-	0	2724	964		
Stage 1	-	-	-	-	1926	-		
Stage 2	-	-	-	-	798	-		
Critical Hdwy	4.16	-	-	-	6.8	6.9		
Critical Hdwy Stg 1	-	-	-	-	5.8	-		
Critical Hdwy Stg 2	-	-	-	-	5.8	-		
Follow-up Hdwy	2.23	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	294	-	-	-	*13	259		
Stage 1	-	-	-	-	*102	-		
Stage 2	-	-	-	-	*462	-		
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuver		-	-	-	*13	259		
Mov Cap-2 Maneuver	-	-	-	-	*78	-		
Stage 1	-	-	-	-	*100	-		
Stage 2	-	-	-	-	*462	-		
Approach	EB		WB		SB			
HCM Control Delay, s	0		0		41.7			
HCM LOS					E			
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		294	-	-	_	102		
HCM Lane V/C Ratio		0.015	-	-	-	0.039		
HCM Control Delay (s	;)	17.4	-	-	-	41.7		
HCM Lane LOS		C	-	-	-	E		
HCM 95th %tile Q(veh	ר)	0	-	-	-	0.1		
Notes								
~: Volume exceeds ca	anacity	\$: De	lav exc	eeds 3	00s	+· Com	outation Not Defined	*: All major volume in platoon
	pacity	ψ. De		locus J	003	· · · · · · · ·		

61.7

#### Intersection

Movement         EBL         EBL         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations
Traffic Vol, veh/h         6         1395         54         72         1811         11         27         0         40         14         1         7           Future Vol, veh/h         6         1395         54         72         1811         11         27         0         40         14         1         7           Future Vol, veh/h         6         1395         54         72         1811         11         27         0         40         14         1         7           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""></t<>
Future Vol, veh/h         6         1395         54         72         1811         11         27         0         40         14         1         7           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""></t<>
Conflicting Peds, #/hr00000000000Sign ControlFreeFreeFreeFreeFreeStopStopStopStopStopRT ChannelizedNoneNoneNone
Sign ControlFreeFreeFreeFreeFreeFreeStopStopStopStopRT ChannelizedNoneNoneNone
RT Channelized None None None None
Storage Longth 500 330 500 120 0
Storage Length 500 - 550 500 - 120 0
Veh in Median Storage, # - 0 0 0 0 -
Grade, % - 0 0 0 0 -
Peak Hour Factor 91 91 91 95 95 95 80 80 80 60 60 60
Heavy Vehicles, % 3 3 3 3 3 3 8 8 8 4 4 4
Mvmt Flow 7 1533 59 76 1906 12 34 0 50 23 2 12

Major/Minor	Major1		1	Major2		1	Minor1			Minor2				
Conflicting Flow All	1918	0	0	1592	0	0	2653	3617	767	2839	3664	953		
Stage 1	-	-	-	-	-	-	1547	1547	-	2058	2058	-		
Stage 2	-	-	-	-	-	-	1106	2070	-	781	1606	-		
Critical Hdwy	4.16	-	-	4.16	-	-	7.66	6.66	7.06	7.58	6.58	6.98		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-		
Follow-up Hdwy	2.23	-	-	2.23	-	-	3.58	4.08	3.38	3.54	4.04	3.34		
Pot Cap-1 Maneuver	301	-	-	403	-	-	~ 10	5	332	~ 8	5	256		
Stage 1	-	-	-	-	-	-	113	164	-	55	94	-		
Stage 2	-	-	-	-	-	-	214	88	-	350	160	-		
Platoon blocked, %		-	-		-	-								
Mov Cap-1 Maneuver	r 301	-	-	403	-	-	~ 5	4	332	~ 6	4	256		
Mov Cap-2 Maneuver	r -	-	-	-	-	-	~ 5	4	-	~ 6	4	-		
Stage 1	-	-	-	-	-	-	110	160	-	54	76	-		
Stage 2	-	-	-	-	-	-	162	71	-	290	156	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	s 0.1			0.6		(	\$ 1616		\$ 2	2517.5				
HCM LOS							F		+	F				
							-							
Minor Lane/Major Mv	mt l	NBLn1	NRI n2	EBL	EBT	EBR	WBL	WBT	WBR	SRI n1				
Capacity (veh/h)		5	332	301	-	LDIX	403		VUIN	8				
HCM Lane V/C Ratio		6.75	0.151	0.022	-	-	403 0.188	-	-	o 4.583				
			17.8	17.2			16	-		4.565				
HCM Control Delay ( HCM Lane LOS	s) þ.	3983.6 F			-	-	C	-	ቅ					
HCM 95th %tile Q(ve	h)	г 5.8	C 0.5	C 0.1	-	-	0.7	-	-	F 5.9				
	11)	5.0	0.5	0.1	-	-	0.7	-	-	5.9				
Notes														
~: Volume exceeds c	apacity	\$: De	elay exc	ceeds 30	)0s -	+: Com	putation	n Not D	efined	*: All	major \	olume i	n platoon	

# Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	79	399	389	122	36	234	222	17	25	125	70	
Average Queue (ft)	27	229	209	8	5	129	124	1	3	57	21	
95th Queue (ft)	61	343	322	55	22	199	199	7	15	115	51	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			39	0								
Queuing Penalty (veh)			4	0								

# Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	30	21
Average Queue (ft)	2	2
95th Queue (ft)	13	11
Link Distance (ft)		320
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

# Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

Movement	EB	WB	NB	NB	SB
	LD	VVD			
Directions Served	L	L	L	TR	LTR
Maximum Queue (ft)	4	38	78	65	46
Average Queue (ft)	0	10	30	30	6
95th Queue (ft)	3	31	64	55	29
Link Distance (ft)			520	520	248
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	500	500			
Storage Blk Time (%)					
Queuing Penalty (veh)					

# Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served		 	<u></u> т	 R	110	<u>т</u>	TR		TR		TR	
Maximum Queue (ft)	347	396	346	66	32	382	415	22	21	345	174	
Average Queue (ft)	180	192	176	7	4	257	260	4	5	182	74	
95th Queue (ft)	361	308	288	44	18	354	365	17	17	308	148	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)							0					
Queuing Penalty (veh)							0					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)	0	0	26									
Queuing Penalty (veh)	2	0	2									

# Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	WB	SB
Directions Served	L	Т	LR
Maximum Queue (ft)	31	16	21
Average Queue (ft)	4	1	3
95th Queue (ft)	19	11	14
Link Distance (ft)		204	320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	500		
Storage Blk Time (%)			
Queuing Penalty (veh)			

# Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

Movement	EB	EB	EB	WB	NB	NB	SB
Directions Served	L	 T	 R	L	L	TR	LTR
Maximum Queue (ft)	21	3	18	80	326	74	259
Average Queue (ft)	4	0	1	33	207	25	156
95th Queue (ft)	16	2	10	69	432	57	307
Link Distance (ft)		204			520	520	248
Upstream Blk Time (%)							30
Queuing Penalty (veh)							0
Storage Bay Dist (ft)	500		330	500			
Storage Blk Time (%)							
Queuing Penalty (veh)							

Movement         EBL         EBR         WBL         WBR         NBL         NBL         NBR         SBL         SBL         SBT         SBR           Lane Configurations         1         1         1         1         1         1         1         1         1         1         0         6         117         0         56           Future Volume (veh/h)         47         1259         9         9         847         32         1         0         6         117         0         56           Initial Q (Ob), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		≯	-	*	•	ł	•	<b>N</b>	1	1	*	ţ	~
Traffic Volume (veh/h)       47       1259       9       9       847       32       1       0       6       117       0       56         Future Volume (veh/h)       47       1259       9       9       847       32       1       0       6       117       0       56         Future Volume (veh/h)       47       1259       9       9       847       32       1       0       6       117       0       56         Perklike Adj(A_pbT)       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.03       1.03       0.66       6       6       6       6       6       6       6       0       0       0       5       5       5       5       5       5       5       5       5 </th <th>Movement</th> <th></th> <th></th> <th></th> <th>WBL</th> <th>WBT</th> <th>WBR</th> <th>NBL</th> <th>NBT</th> <th>NBR</th> <th>SBL</th> <th>SBT</th> <th>SBR</th>	Movement				WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h)         47         1259         9         9         847         32         1         0         6         117         0         56           Initial Q (Qb), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Initial Q(D), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0													
Pack-Bike Adj(A, pbT)       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Parking Bus, Adj       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0			0			0			0			0	
Work Zone On Approach         No         No         No         No         No         No           Ad] Sat Flow, veh/hin         1906         1906         1906         1906         1906         2000         2000         2000         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1922         1923         0.43         0.66         6.6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0			4.00			4.00			4 00			4.00	
Adj Sat Flow, veh/hiln       1906       1906       1906       1906       1906       1906       1906       1906       2000       2000       2000       1922       1922       1922         Adj Kow Rate, veh/h       51       1354       10       10       962       36       2       0       10       133       0       66         Peak Hour Factor       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj       Flow Rate, veh/h       51       1354       10       10       962       36       2       0       10       138       0       66         Peak Hour Factor       0.93       0.93       0.93       0.88       0.88       0.88       0.60       0.60       0.60       0.65       0.85       0.85         Percent Heavy Veh, %       6       6       6       6       6       6       0       0       0.5       5       5         Cap, veh/h       335       1558       695       250       1531       57       423       0       480       463       0       461         Arrive On Green       0.07       0.43       0.43       0.07       0.43       0.23       1357       0       1695       1371       0       1629         Grp Volume(v), veh/h       51       1354       10       10       489       509       2       0       10       138       0       66         Grp Sat Flow(s), veh/h/In/In       1816       1811       1616       1816       11811       1882       1357       0       1695       1371       0       127         Oycle Q Clear(g.c), s       1.3       30.6		1006		1006	1006		1006	2000		2000	1000		1000
Peak Hour Factor         0.93         0.93         0.93         0.88         0.88         0.86         0.60         0.60         0.85         0.85         0.85           Percent Heavy Veh, %         6         6         6         6         6         0         0         0         5         5         5           Cap, veh/h         335         1558         695         250         1531         57         4480         463         0         460         463         0         480         463         0         461           Arrive On Green         0.07         0.43         0.43         0.07         0.43         0.43         0.28         0.00         0.28         0.28         0.00         0.28           Grp Volume(v), veh/h         51         1354         10         10         489         509         2         0         10         138         0         66           Grp Sat Flow(s), veh/h         1816         1811         1616         1816         1811         186         1817         100         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00													
Percent Heavy Veh, %         6         6         6         6         6         6         0         0         5         5           Cap, veh/h         335         1558         695         250         1531         57         423         0         480         463         0         463         0         463         0         463         0.480         0.480         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.28         0.00         0.18         0.1695         1371         0         1629         0.57         0.0         0.4         7.6         0.0         2.7         100         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00													
Cap, veh/h         335         1558         695         250         1531         57         423         0         480         463         0         461           Arrive On Green         0.07         0.43         0.07         0.43         0.27         0.43         0.28         0.00         0.28         0.28         0.00         0.28         0.28         0.00         0.28         0.28         0.00         0.28         0.28         0.00         0.28         0.1         0         1695         1371         0         1629           Grp Volume(v), veh/h         51         1354         10         10         489         509         2         0         10         138         0         65           Grp Sat Flow(s), veh/h/n         1816         1811         1616         1816         1811         1882         1357         0         0.4         7.3         0.0         2.7           Ocycle Q Clear(g_e), s         1.3         30.6         0.3         0.2         19.0         19.0         2.8         00         0.4         7.6         0.0         2.7           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00													
Arrive On Green       0.07       0.43       0.43       0.043       0.43       0.28       0.00       0.28       0.28       0.00       0.28         Sat Flow, veh/h       1816       3622       1616       1816       3560       133       1357       0       1695       1371       0       1629         Grp Volume(v), veh/h       51       1354       10       10       489       509       2       0       10       138       0       66         Grp Sat Flow(s), veh/h/n       1816       1816       1816       1816       1816       1816       1810       100       1.00       1.00       1.00       1.00       1.00       0.07       1.00       0.0       0.4       7.6       0.0       2.7         Orpol n Lane       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Sat Flow, veh/h         1816         3622         1616         1816         3560         133         1357         0         1695         1371         0         1629           Grp Volume(v), veh/h         51         1354         10         10         489         509         2         0         10         138         0         66           Grp Sat Flow(s), veh/h/ln         1816         1811         1616         1816         1811         1882         1357         0         1695         1371         0         1629           Q Serve(g, s), s         1.3         30.6         0.3         0.2         19.0         19.0         10.0         0.01         1.00         0.04         7.6         0.0         2.7           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Grp Sat Flow(s), veh/h/ln       1816       1811       1616       1816       1811       1882       1357       0       1695       1371       0       1629         Q Serve(g.s), s       1.3       30.6       0.3       0.2       19.0       19.0       0.1       0.0       0.4       7.3       0.0       2.7         Cycle Q Clear(g.c), s       1.3       30.6       0.3       0.2       19.0       19.0       2.8       0.0       0.4       7.6       0.0       2.7         Prop In Lane       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00<													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Prop In Lane       1.00       1.00       1.00       0.07       1.00       1.00       1.00       1.00       1.00         Lane Grp Cap(c), veh/h       335       1558       695       250       779       809       423       0       480       463       0       461         V/C Ratio(X)       0.15       0.87       0.01       0.04       0.63       0.63       0.00       0.00       0.02       0.30       0.00       0.01         V/C Ratio(X)       0.15       0.87       0.01       0.04       0.63       0.63       0.00       0.00       0.02       0.30       0.00       0.01         Avail Cap(c. a), veh/h       335       1558       695       250       779       809       423       0       483       0       461         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00													
V/C Ratio X       0.15       0.87       0.01       0.04       0.63       0.63       0.00       0.02       0.30       0.00       0.14         Avail Cap(c_a), veh/h       335       1558       695       250       779       809       423       0       480       463       0       461         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00		1.00			1.00		0.07	1.00		1.00	1.00		
Avail Cap(c_a), veh/h       335       1558       695       250       779       809       423       0       480       463       0       461         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1		335	1558	695	250	779	809	423	0	480	463	0	461
HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.	V/C Ratio(X)	0.15	0.87	0.01	0.04	0.63	0.63	0.00	0.00	0.02	0.30	0.00	0.14
Upstream Filter(I)       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1	Avail Cap(c_a), veh/h	335	1558	695	250	779	809	423	0	480	463	0	461
Uniform Delay (d), s/veh       13.6       23.3       14.7       16.5       20.0       25.1       0.0       23.3       26.0       0.0       24.1         Incr Delay (d2), s/veh       1.0       6.9       0.0       0.3       3.8       3.7       0.0       0.0       0.1       1.6       0.0       0.6         Initial Q Delay(d3), s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 </td <td>HCM Platoon Ratio</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td>	HCM Platoon Ratio						1.00						1.00
Incr Delay (d2), s/veh       1.0       6.9       0.0       0.3       3.8       3.7       0.0       0.0       0.1       1.6       0.0       0.6         Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
%ile BackOfQ(50%),veh/ln       0.5       12.8       0.1       0.1       7.8       8.1       0.0       0.0       0.2       2.4       0.0       1.0         Unsig. Movement Delay, s/veh       14.5       30.2       14.7       16.8       23.9       23.7       25.2       0.0       23.3       27.6       0.0       24.7         LnGrp Delay(d),s/veh       14.5       30.2       14.7       16.8       23.9       23.7       25.2       0.0       23.3       27.6       0.0       24.7         LnGrp DOS       B       C       B       C       C       C       A       C       C       A       C         Approach Vol, veh/h       1415       1008       12       204       204       Approach Delay, s/veh       29.6       23.7       23.6       26.7       Approach LOS       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       <													
Unsig. Movement Delay, s/veh         LnGrp Delay(d),s/veh       14.5       30.2       14.7       16.8       23.9       23.7       25.2       0.0       23.3       27.6       0.0       24.7         LnGrp LOS       B       C       B       B       C       C       A       C       C       A       C         Approach Vol, veh/h       1415       1008       12       204         Approach Delay, s/veh       29.6       23.7       23.6       26.7         Approach LOS       C       C       C       C       C         Timer - Assigned Phs       1       2       4       5       6       8          Phs Duration (G+Y+Rc), s       13.0       45.0       32.0       13.0       45.0       32.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       13.0       45.0       32.0       14.0       16.5       16.3       6.5       16.3       6.5       16.3       6.5       16.3       6.5       16.3       16.5       16.5													
LnGrp Delay(d),s/veh       14.5       30.2       14.7       16.8       23.9       23.7       25.2       0.0       23.3       27.6       0.0       24.7         LnGrp LOS       B       C       B       B       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       A       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       <			12.8	0.1	0.1	7.8	8.1	0.0	0.0	0.2	2.4	0.0	1.0
LnGrp LOS         B         C         B         B         C         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C			00.0	447	40.0	00.0	00 7	05.0	• •	00.0	07.0	• •	047
Approach Vol, veh/h       1415       1008       12       204         Approach Delay, s/veh       29.6       23.7       23.6       26.7         Approach LOS       C       C       C       C       C         Timer - Assigned Phs       1       2       4       5       6       8         Phs Duration (G+Y+Rc), s       13.0       45.0       32.0       13.0       45.0       32.0         Change Period (Y+Rc), s       * 6.3       * 6.3       6.5       * 6.3       * 6.3       6.5         Max Green Setting (Gmax), s       * 6.7       * 39       25.5       * 6.7       * 39       25.5         Max Q Clear Time (g_c+I1), s       2.2       32.6       9.6       3.3       21.0       4.8         Green Ext Time (p_c), s       0.0       4.0       0.6       0.0       5.4       0.0         Intersection Summary       27.1       27.1       27.1       27.1       27.1													
Approach Delay, s/veh       29.6       23.7       23.6       26.7         Approach LOS       C       C       C       C       C       C         Timer - Assigned Phs       1       2       4       5       6       8       20.0       C         Timer - Assigned Phs       1       2       4       5       6       8       20.0       C       C       C       C         Phs Duration (G+Y+Rc), s       13.0       45.0       32.0       13.0       45.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0       32.0		В		В	В		U	U		U	U		<u> </u>
Approach LOS       C       C       C       C       C       C       C         Timer - Assigned Phs       1       2       4       5       6       8	· · · ·												
Timer - Assigned Phs       1       2       4       5       6       8         Phs Duration (G+Y+Rc), s       13.0       45.0       32.0       13.0       45.0       32.0         Change Period (Y+Rc), s       * 6.3       * 6.3       6.5       * 6.3       * 6.3       6.5         Max Green Setting (Gmax), s       * 6.7       * 39       25.5       * 6.7       * 39       25.5         Max Q Clear Time (g_c+11), s       2.2       32.6       9.6       3.3       21.0       4.8         Green Ext Time (p_c), s       0.0       4.0       0.6       0.0       5.4       0.0         Intersection Summary       27.1       27.1       27.1       27.1       27.1													
Phs Duration (G+Y+Rc), s       13.0       45.0       32.0       13.0       45.0       32.0         Change Period (Y+Rc), s       * 6.3       * 6.3       6.5       * 6.3       * 6.3       6.5         Max Green Setting (Gmax), s       * 6.7       * 39       25.5       * 6.7       * 39       25.5         Max Q Clear Time (g_c+I1), s       2.2       32.6       9.6       3.3       21.0       4.8         Green Ext Time (p_c), s       0.0       4.0       0.6       0.0       5.4       0.0         Intersection Summary       27.1       27.1       27.1       27.1       27.1												U	
Change Period (Y+Rc), s       * 6.3       * 6.3       6.5       * 6.3       * 6.3       6.5         Max Green Setting (Gmax), s       * 6.7       * 39       25.5       * 6.7       * 39       25.5         Max Q Clear Time (g_c+11), s       2.2       32.6       9.6       3.3       21.0       4.8         Green Ext Time (p_c), s       0.0       4.0       0.6       0.0       5.4       0.0         Intersection Summary       4.0       4.0       4.0       4.0       4.0       4.0         HCM 6th Ctrl Delay       27.1       27.1       27.1       27.1       27.1       27.1													
Max Green Setting (Gmax), s       * 6.7       * 39       25.5       * 6.7       * 39       25.5         Max Q Clear Time (g_c+I1), s       2.2       32.6       9.6       3.3       21.0       4.8         Green Ext Time (p_c), s       0.0       4.0       0.6       0.0       5.4       0.0         Intersection Summary       4.8       4.8       4.8       4.8       4.8         HCM 6th Ctrl Delay       27.1       4.8       4.8       4.8       4.8													
Max Q Clear Time (g_c+l1), s         2.2         32.6         9.6         3.3         21.0         4.8           Green Ext Time (p_c), s         0.0         4.0         0.6         0.0         5.4         0.0           Intersection Summary         27.1	0 //												
Green Ext Time (p_c), s         0.0         4.0         0.6         0.0         5.4         0.0           Intersection Summary         400         27.1	• • • •												
Intersection Summary HCM 6th Ctrl Delay 27.1													
HCM 6th Ctrl Delay 27.1	Green Ext Time (p_c), s	0.0	4.0		0.6	0.0	5.4		0.0				
HUM bin LUS	HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	ł
Lane Configurations	٦	<b>^</b>	- 11	1	Y		
Traffic Vol, veh/h	3	1357	1037	6	0	2	)
Future Vol, veh/h	3	1357	1037	6	0	2	)
Conflicting Peds, #/hr	0	0	0	0	0	0	)
Sign Control	Free	Free	Free	Free	Stop	Stop	)
RT Channelized	-	None	-	None	-	None	÷
Storage Length	500	-	-	0	0	-	-
Veh in Median Storage,	, # -	0	0	-	0	-	-
Grade, %	-	0	0	-	0	-	-
Peak Hour Factor	89	89	89	89	60	60	)
Heavy Vehicles, %	7	7	7	7	0	0	)
Mvmt Flow	3	1525	1165	7	0	3	}

Major/Minor	Major1	Ν	/lajor2	I	Minor2			
Conflicting Flow All	1172	0	-	0	1934	583		
Stage 1	-	-	-	-	1165	-		
Stage 2	-	-	-	-	769	-		
Critical Hdwy	4.24	-	-	-	6.8	6.9		
Critical Hdwy Stg 1	-	-	-	-	5.8	-		
Critical Hdwy Stg 2	-	-	-	-	5.8	-		
Follow-up Hdwy	2.27	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	564	-	-	-	*155	461		
Stage 1	-	-	-	-	*263	-		
Stage 2	-	-	-	-	*502	-		
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuve		-	-	-	*155	461		
Mov Cap-2 Maneuve	r -	-	-	-	*216	-		
Stage 1	-	-	-	-	*262	-		
Stage 2	-	-	-	-	*502	-		
Approach	EB		WB		SB			
HCM Control Delay, s	s 0		0		12.9			
HCM LOS					В			
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		564	-	-	-	461		
HCM Lane V/C Ratio		0.006	-	-	-	0.007		
HCM Control Delay (	s)	11.4	-	-	-	12.9		
HCM Lane LOS		В	-	-	-	В		
HCM 95th %tile Q(ve	h)	0	-	-	-	0		
Notes								
~: Volume exceeds c	apacity	\$ De	lav exc	ceeds 3	00s	+· Com	outation Not Defined	*: All major volume in plator
. Volume exceeds c	apaony	φ. De		iceus J	003			

2.1

#### Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<b>†</b> †	1	ሻ	<b>†</b> †	1	ሻ	ef 👘			4	
Traffic Vol, veh/h	1	1345	11	25	1003	4	39	0	59	5	1	1
Future Vol, veh/h	1	1345	11	25	1003	4	39	0	59	5	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	330	500	-	120	0	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	88	88	88	93	93	93	60	60	60
Heavy Vehicles, %	5	5	5	6	6	6	0	0	0	0	0	0
Mvmt Flow	1	1431	12	28	1140	5	42	0	63	8	2	2

Major/Minor	Major1		1	Major2			Minor1		1	Minor2				
Conflicting Flow All	1145	0	0	1443	0	0	2060	2634	716	1914	2641	570		
Stage 1	-	-	-	-	-	-	1433	1433	-	1196	1196	-		
Stage 2	-	-	-	-	-	-	627	1201	-	718	1445	-		
Critical Hdwy	4.2	-	-	4.22	-	-	7.5	6.5	6.9	7.5	6.5	6.9		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Follow-up Hdwy	2.25	-	-	2.26	-	-	3.5	4	3.3	3.5	4	3.3		
Pot Cap-1 Maneuver	589	-	-	*777	-	-	*86	*21	*532	*142	*20	470		
Stage 1	-	-	-	-	-	-	*502	*439	-	*201	*262	-		
Stage 2	-	-	-	-	-	-	*443	*260	-	*502	*439	-		
Platoon blocked, %		-	-	1	-	-	1	1	1	1	1			
Mov Cap-1 Maneuver	589	-	-	*777	-	-	*78	*20	*532	*122	*19	470		
Mov Cap-2 Maneuver	-	-	-	-	-	-	*78	*20	-	*122	*19	-		
Stage 1	-	-	-	-	-	-	*501	*438	-	*201	*253	-		
Stage 2	-	-	-	-	-	-	*423	*251	-	*441	*438	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	0			0.2			45.6			63.5				
HCM LOS	-			-			E			F				
Minor Lane/Major Mvn	nt l	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		78	532	589			* 777		_	73				
HCM Lane V/C Ratio		0.538		0.002	-	-	0.037	-	-	0.16				
HCM Control Delay (s	)	95.4	12.7	11.1	-	-	9.8	-	-	63.5				
HCM Lane LOS	/	F	Β	B	-	-	A	-	-	F				
HCM 95th %tile Q(veh	ı)	2.3	0.4	0	-	-	0.1	-	-	0.5				
Notes														
~: Volume exceeds ca	pacity	\$: De	elav exc	eeds 30	)0s -	+: Com	putatior	n Not D	efined	*: All	maior	/olume ir	platoon	
	paony	φ. Ο					patation			. / 11			platoon	

#### Intersection

Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<b>∱</b> î,		٦	<b>^</b>	Y	
Traffic Vol, veh/h	1278	109	75	964	87	82
Future Vol, veh/h	1278	109	75	964	87	82
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	500	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	92	92
Heavy Vehicles, %	7	7	7	7	2	2
Mvmt Flow	1436	122	84	1083	95	89

Major/Minor	Major1	N	/lajor2		Minor1				
Conflicting Flow All	0	0	1558	0	2207	779			
Stage 1	-	-	-	-	1497	-			
Stage 2	-	-	-	-	710	-			
Critical Hdwy	-	-	4.24	-	6.84	6.94			
Critical Hdwy Stg 1	-	-	-	-	5.84	-			
Critical Hdwy Stg 2	-	-	-	-	5.84	-			
Follow-up Hdwy	-	-	2.27	-	3.52	3.32			
Pot Cap-1 Maneuver	-	-	678	-	~ 61	*563			
Stage 1	-	-	-	-	470	-			
Stage 2	-	-	-	-	448	-			
Platoon blocked, %	-	-	1	-	1	1			
Nov Cap-1 Maneuver		-	678	-	~ 53	*563			
Nov Cap-2 Maneuver	· -	-	-	-	219	-			
Stage 1	-	-	-	-	470	-			
Stage 2	-	-	-	-	392	-			
Approach	EB		WB		NB				
ICM Control Delay, s	; O		0.8		32				
ICM LOS					D				
/linor Lane/Major Mvr	mt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)		311	-	-	678	-			
ICM Lane V/C Ratio		0.591	-	-	0.124	-			
ICM Control Delay (s	5)	32	-	-	11.1	-			
ICM Lane LOS	,	D	-	-	В	-			
ICM 95th %tile Q(veh	n)	3.5	-	-	0.4	-			
Notes									
	angoit (	¢. Do		oodo 2	000	L. Com	utation Not Dafined	*: All major volume in plat	oor
-: Volume exceeds ca	apacity	\$: De	iay exc	eeds 3	UUS	+: Comp	outation Not Defined	*: All major volume in plat	001

	≯	-	*	4	Ļ	•	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- <b>††</b>	1	<u> </u>	<b>≜</b> †≱		ሻ	eî 👘		ሻ	ef 👘	
Traffic Volume (veh/h)	167	1149	8	6	1524	84	6	2	12	259	0	167
Future Volume (veh/h)	167	1149	8	6	1524	84	6	2	12	259	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1352	9	6	1639	90	10	3	20	291	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	223	2142	954	295	2048	112	197	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3578	195	1213	225	1502	1398	0	1679
Grp Volume(v), veh/h	196	1352	9	6	845	884	10	0	23	291	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1918	1213	0	1727	1398	0	1679
Q Serve(g_s), s	5.2	29.0	0.3	0.1	42.9	43.8	0.9	0.0	1.3	24.2	0.0	11.9
Cycle Q Clear(g_c), s	5.2	29.0	0.3	0.1	42.9	43.8	12.8	0.0	1.3	25.5	0.0	11.9
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	223	2142	954	295	1062	1098	197	0	367	342	0	357
V/C Ratio(X)	0.88	0.63	0.01	0.02	0.80	0.80	0.05	0.00	0.06	0.85	0.00	0.53
Avail Cap(c_a), veh/h	223	2142	954	295	1062	1098	197	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.2	17.2	11.0	11.9	20.1	20.3	47.6	0.0	37.7	48.3	0.0	41.9
Incr Delay (d2), s/veh	35.6	1.4	0.0	0.1	6.2	6.3	0.5	0.0	0.3	22.5	0.0	5.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.2	11.5	0.1	0.1	18.1	19.1	0.3	0.0	0.6	10.4	0.0	5.2
Unsig. Movement Delay, s/veh		40.0	44.0	10.0		00.0	10.1					47.4
LnGrp Delay(d),s/veh	60.8	18.6	11.0	12.0	26.3	26.6	48.1	0.0	38.0	70.7	0.0	47.4
LnGrp LOS	E	В	В	В	C	С	D	A	D	E	A	<u>D</u>
Approach Vol, veh/h		1557			1735			33			479	
Approach Delay, s/veh		23.9			26.4			41.1			61.6	
Approach LOS		С			С			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+I1), s	2.1	31.0		27.5	7.2	45.8		14.8				
Green Ext Time (p_c), s	0.0	11.7		0.0	0.0	12.7		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			29.9									
HCM 6th LOS			С									
•• /												

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

### Intersection

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	ł
Lane Configurations	٦	- 11	- 11	1	Y		
Traffic Vol, veh/h	4	1486	1865	16	2	1	
Future Vol, veh/h	4	1486	1865	16	2	1	
Conflicting Peds, #/hr	1	0	0	1	0	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop	)
RT Channelized	-	None	-	None	-	None	,
Storage Length	500	-	-	0	0	-	
Veh in Median Storage	, # -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	95	95	75	75	5
Heavy Vehicles, %	3	3	3	3	0	0	)
Mvmt Flow	4	1615	1963	17	3	1	

Major/Minor	Major1	Ν	/lajor2		Vinor2			
Conflicting Flow All	1981	0	-	0	2780	983		
Stage 1	-	-	-	-	1964	-		
Stage 2	-	-	-	-	816	-		
Critical Hdwy	4.16	-	-	-	6.8	6.9		
Critical Hdwy Stg 1	-	-	-	-	5.8	-		
Critical Hdwy Stg 2	-	-	-	-	5.8	-		
Follow-up Hdwy	2.23	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	284	-	-	-	*11	252		
Stage 1	-	-	-	-	*97	-		
Stage 2	-	-	-	-	*438	-		
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuver	284	-	-	-	*10	252		
Mov Cap-2 Maneuver	· _	-	-	-	*74	-		
Stage 1	-	-	-	-	*96	-		
Stage 2	-	-	-	-	*438	-		
Approach	EB		WB		SB			
HCM Control Delay, s	; O		0		43.7			
HCM LOS					Е			
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		284			-	97		
HCM Lane V/C Ratio		0.015	-	-	-	0.041		
HCM Control Delay (s	;)	17.9	-	-	_	43.7		
HCM Lane LOS	,	C	-	-	-	E		
HCM 95th %tile Q(vel	n)	0	-	-	-	0.1		
Notes								
	n o o itu :	¢, D-		anda 2	00-	LL Corre	utation Nat Dafined	* All major volume in plateon
~: Volume exceeds ca	apacity	»: De	ay exc	ceeds 3	005	+. Com	outation Not Defined	*: All major volume in platoon

74.2

### Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	<b>^</b>	1	<u> </u>	<b>^</b>	1	٦	4Î			4	
Traffic Vol, veh/h	6	1428	54	72	1847	11	27	0	40	14	1	7
Future Vol, veh/h	6	1428	54	72	1847	11	27	0	40	14	1	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	330	500	-	120	0	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	95	95	95	80	80	80	60	60	60
Heavy Vehicles, %	3	3	3	3	3	3	8	8	8	4	4	4
Mvmt Flow	7	1569	59	76	1944	12	34	0	50	23	2	12

Major/Minor	Major1		1	Major2		ľ	Minor1			Minor2			
Conflicting Flow All	1956	0	0	1628	0	0	2708	3691	785	2895	3738	972	
Stage 1	-	-	-	-	-	-	1583	1583	-	2096	2096	-	
Stage 2	-	-	-	-	-	-	1125	2108	-	799	1642	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.66	6.66	7.06	7.58	6.58	6.98	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.66	5.66	-	6.58	5.58	-	
Follow-up Hdwy	2.23	-	-	2.23	-	-	3.58	4.08	3.38	3.54	4.04	3.34	
Pot Cap-1 Maneuver	291	-	-	391	-	-	~ 9	4	323	~ 7	4	248	
Stage 1	-	-	-	-	-	-	107	158	-	52	90	-	
Stage 2	-	-	-	-	-	-	208	84	-	341	153	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	291	-	-	391	-	-	~ 4	3	323	~ 5	3	248	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 4	3	-	~ 5	3	-	
Stage 1	-	-	-	-	-	-	104	154	-	51	73	-	
Stage 2	-	-	-	-	-	-	156	68	-	281	149	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.6		\$ 2	2054.8		\$2	2929.4			
HCM LOS							F			F			
Minor Lane/Major Mvr	nt N	VBLn1I	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		4	323	291	-	-	391	-	-	7			
HCM Lane V/C Ratio		8.438		0.023	-	-	0.194	-	-	5.238			
HCM Control Delay (s		6071.9	18.2	17.7	-	-	16.4	-		2929.4			
HCM Lane LOS	, , , , ,	F	С	С	-	-	С	-	-	F			
HCM 95th %tile Q(ver	ו)	5.9	0.5	0.1	-	-	0.7	-	-	6			
Notes													
~: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	)0s -	+: Com	putatior	n Not D	efined	*: All	major v	volume i	n platoon

#### Intersection

Int Delay, s/veh	1.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- <b>†</b> î»		٦	- 11	Y	
Traffic Vol, veh/h	1428	63	72	1794	66	62
Future Vol, veh/h	1428	63	72	1794	66	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	500	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	95	95	92	92
Heavy Vehicles, %	3	3	3	3	2	2
Mvmt Flow	1552	68	76	1888	72	67

Major/Minor	Major1	ľ	Major2		Vinor1			
Conflicting Flow All	0	0	1620	0	2682	810		
Stage 1	-	-	-	-	1586	-		
Stage 2	-	-	-	-	1096	-		
Critical Hdwy	-	-	4.16	-	6.84	6.94		
Critical Hdwy Stg 1	-	-	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.23	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	*726	-	*~ 15	*488		
Stage 1	-	-	-	-	*460	-		
Stage 2	-	-	-	-	*282	-		
Platoon blocked, %	-	-	1	-	1	1		
Mov Cap-1 Maneuver	-	-	*726	-	*~ 13	*488		
Mov Cap-2 Maneuver	-	-	-	-	*154	-		
Stage 1	-	-	-	-	*460	-		
Stage 2	-	-	-	-	*252	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		0.4		42			
HCM LOS					E			
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT		
Capacity (veh/h)	-	230	-		* 726	-		
HCM Lane V/C Ratio		0.605	-		0.104	-		
HCM Control Delay (s	)	42	-	-	10.5	-		
HCM Lane LOS	/	E	-	-	B	-		
HCM 95th %tile Q(veh	ו)	3.5	-	-	0.3	-		
Notes								
	nooit (	¢. De		oodo 2	000	L. Com	autotion Not Dofined	*: All major volume in plateen
~: Volume exceeds ca	ipacity	<b>э</b> . De	elay exc	eeus 3	005	+. Com	outation Not Defined	*: All major volume in platoon

## Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	179	494	474	106	30	244	234	17	30	139	72	
Average Queue (ft)	37	274	260	9	6	134	130	1	4	59	23	
95th Queue (ft)	114	424	407	58	24	209	201	7	16	115	52	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)		0	44	0								
Queuing Penalty (veh)		0	4	0								

## Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	WB	SB
Directions Served	L	Т	LR
Maximum Queue (ft)	17	8	20
Average Queue (ft)	1	0	1
95th Queue (ft)	9	6	9
Link Distance (ft)		204	320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	500		
Storage Blk Time (%)			
Queuing Penalty (veh)			

### Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

Movement			ND	ND	CD.
Movement	EB	WB	NB	NB	SB
Directions Served	L	L	L	TR	LTR
Maximum Queue (ft)	9	39	114	65	38
Average Queue (ft)	1	11	45	26	7
95th Queue (ft)	6	32	105	49	28
Link Distance (ft)			520	520	248
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	500	500			
Storage Blk Time (%)					
Queuing Penalty (veh)					

## Intersection: 4: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	NB
Directions Served	TR	L	Т	LR
Maximum Queue (ft)	13	86	40	233
Average Queue (ft)	1	35	1	156
95th Queue (ft)	8	74	21	257
Link Distance (ft)	408		134	190
Upstream Blk Time (%)				41
Queuing Penalty (veh)				0
Storage Bay Dist (ft)		500		
Storage Blk Time (%)				
Queuing Penalty (veh)				

### Zone Summary

Zone wide Queuing Penalty: 4

## Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	327	354	343	105	27	393	408	30	22	352	190	
Average Queue (ft)	143	199	182	6	3	262	270	3	5	193	76	
95th Queue (ft)	273	294	280	47	17	354	372	17	19	321	145	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			27									
Queuing Penalty (veh)			2									

## Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	EB	SB
Directions Served	L	Т	LR
Maximum Queue (ft)	35	4	23
Average Queue (ft)	3	0	3
95th Queue (ft)	19	3	15
Link Distance (ft)		134	320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	500		
Storage Blk Time (%)			
Queuing Penalty (veh)			

## Intersection: 3: Sunny Beach Boulevard & Highland Road (M-59)

Movement	EB	EB	EB	WB	NB	NB	SB
Directions Served			R			TR	LTR
	L	1		L	L		
Maximum Queue (ft)	26	8	12	86	461	160	207
Average Queue (ft)	4	0	0	34	328	44	129
95th Queue (ft)	18	4	5	71	550	195	266
Link Distance (ft)		204			520	520	248
Upstream Blk Time (%)					8	3	21
Queuing Penalty (veh)					0	0	0
Storage Bay Dist (ft)	500		330	500			
Storage Blk Time (%)							
Queuing Penalty (veh)							

## Intersection: 4: Site Drive & Highland Road (M-59)

	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	72	223
Average Queue (ft)	33	197
95th Queue (ft)	63	220
Link Distance (ft)		190
Upstream Blk Time (%)		96
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

## Zone Summary

Zone wide Queuing Penalty: 2

#### Intersection

Int Delay, s/veh	1.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<b>^</b>	1	7	<b>^</b>	٦	1
Traffic Vol, veh/h	1278	109	75	964	87	82
Future Vol, veh/h	1278	109	75	964	87	82
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	500	-	0	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	92	92
Heavy Vehicles, %	7	7	7	7	2	2
Mvmt Flow	1436	122	84	1083	95	89

	Major1		Major2		Minor1			
Conflicting Flow All	0	0	1558	0	2146	718		
Stage 1	-	-	-	-	1436	-		
Stage 2	-	-	-	-	710	-		
Critical Hdwy	-	-	4.24	-	6.84	6.94		
Critical Hdwy Stg 1	-	-	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.27	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	678	-	*~ 73	*563		
Stage 1	-	-	-	-	*531	-		
Stage 2	-	-	-	-	*448	-		
Platoon blocked, %	-	-	1	-	1	1		
Mov Cap-1 Maneuver	-	-	678	-	*~ 64	*563		
Mov Cap-2 Maneuver	-	-	-	-	*234	-		
Stage 1	-	-	-	-	*531	-		
Stage 2	-	-	-	-	*392	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		0.8		21.8			
HCM LOS					С			
Minor Lane/Major Mvn	nt I	NBLn1	NBI n2	EBT	EBR	WBL	WBT	
Capacity (veh/h)		234	563	-	-	678	-	
HCM Lane V/C Ratio		0.404	0.158	_		0.124	-	
HCM Control Delay (s)	)	30.4	12.6	-	-	11.1	-	
HCM Lane LOS	/	D	12.0 B	-	-	B	-	
HCM 95th %tile Q(veh	ı)	1.8	0.6	-	-	0.4	-	
Notes								
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	)0s -	+: Com	outation Not Defined	*: All major volume in platoon

## HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	۶	+	7	4	┥	*	1	1	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<b>†</b> †	1	٦	<b>†</b> 1>		ሻ	f.		ሻ	Þ	
Traffic Volume (veh/h)	167	1149	8	6	1524	84	6	2	12	259	0	167
Future Volume (veh/h)	167	1149	8	6	1524	84	6	2	12	259	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1352	9	6	1639	90	10	3	20	291	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	258	1986	885	269	1750	96	254	57	382	401	0	427
Arrive On Green	0.10	0.53	0.53	0.06	0.49	0.49	0.25	0.25	0.25	0.25	0.00	0.25
Sat Flow, veh/h	1875	3741	1667	1860	3578	195	1213	225	1502	1398	0	1680
Grp Volume(v), veh/h	196	1352	9	6	845	884	10	0	23	291	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1918	1213	0	1728	1398	0	1680
Q Serve(g_s), s	7.3	31.9	0.3	0.2	51.3	52.4	0.8	0.0	1.2	23.8	0.0	11.3
Cycle Q Clear(g_c), s	7.3	31.9	0.3	0.2	51.3	52.4	12.1	0.0	1.2	25.1	0.0	11.3
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	258	1986	885	269	908	938	254	0	439	401	0	427
V/C Ratio(X)	0.76	0.68	0.01	0.02	0.93	0.94	0.04	0.00	0.05	0.73	0.00	0.44
Avail Cap(c_a), veh/h	258	1986	885	269	908	938	254	0	439	401	0	427
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.9	20.7	13.3	15.5	28.8	29.0	42.7	0.0	33.8	43.3	0.0	37.6
Incr Delay (d2), s/veh	18.9	1.9	0.0	0.2	17.3	18.3	0.3	0.0	0.2	10.9	0.0	3.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.9	13.1	0.1	0.1	24.9	26.4	0.3	0.0	0.5	9.0	0.0	4.8
Unsig. Movement Delay, s/veh			10.0							- / 0	• •	(0.0
LnGrp Delay(d),s/veh	50.8	22.6	13.3	15.7	46.0	47.3	43.0	0.0	34.1	54.2	0.0	40.9
LnGrp LOS	D	С	В	В	D	D	D	Α	С	D	A	D
Approach Vol, veh/h		1557			1735			33			479	
Approach Delay, s/veh		26.1			46.6			36.8			49.0	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	70.0		37.0	18.0	65.0		37.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 64		30.5	* 12	* 59		30.5				
Max Q Clear Time (g_c+I1), s	2.2	33.9		27.1	9.3	54.4		14.1				
Green Ext Time (p_c), s	0.0	10.9		0.7	0.1	3.4		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			38.4									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Intersection

Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<b>^</b>	1	7	<b>^</b>	٦	1
Traffic Vol, veh/h	1428	63	72	1794	66	62
Future Vol, veh/h	1428	63	72	1794	66	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	500	-	0	0
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	95	95	92	92
Heavy Vehicles, %	3	3	3	3	2	2
Mvmt Flow	1552	68	76	1888	72	67

Major/Minor I	Major1	Maj	or2	Ν	/linor1				
Conflicting Flow All	0	0 16	620	0	2648	776			
Stage 1	-	-	-	-	1552	-			
Stage 2	-	-	-	-	1096	-			
Critical Hdwy	-	- 4	.16	-	6.84	6.94			
Critical Hdwy Stg 1	-	-	-	-	5.84	-			
Critical Hdwy Stg 2	-	-	-	-	5.84	-			
Follow-up Hdwy	-	- 2	.23	-	3.52	3.32			
Pot Cap-1 Maneuver	-	- *7	726	-	*~ 17	*488			
Stage 1	-	-	-	-	*460	-			
Stage 2	-	-	-	-	*282	-			
Platoon blocked, %	-	-	1	-	1	1			
Mov Cap-1 Maneuver	-	- *7	726	-	*~ 15	*488			
Mov Cap-2 Maneuver	-	-	-	-	*155	-			
Stage 1	-	-	-	-	*460	-			
Stage 2	-	-	-	-	*252	-			
Approach	EB	١	WB		NB				
HCM Control Delay, s	0		0.4		30.7				
HCM LOS					D				
Minor Lane/Major Mvm	it NE	BLn1 NBI	_n2	EBT	EBR	WBL	WBT		
Capacity (veh/h)		155 4	488	-	-	* 726	-		
HCM Lane V/C Ratio	0		138	-		0.104	-		
HCM Control Delay (s)			3.6	-	-	10.5	-		
HCM Lane LOS		E	В	-	-	В	-		
HCM 95th %tile Q(veh)		2.1	0.5	-	-	0.3	-		
Notes									
~: Volume exceeds cap	pacity	\$: Delay	exce	eds 30	0s -	E: Com	outation Not Defined	*: All major volume in platoon	
	, only	<i>q. 20.0y</i>	5,00						

## Intersection: 4: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	WB	NB	NB
Directions Served	R	L	Т	Т	L	R
Maximum Queue (ft)	21	89	46	23	189	169
Average Queue (ft)	1	34	3	1	112	52
95th Queue (ft)	9	75	31	16	213	136
Link Distance (ft)			122	122	178	178
Upstream Blk Time (%)			0	0	24	4
Queuing Penalty (veh)			0	0	0	0
Storage Bay Dist (ft)	100	500				
Storage Blk Time (%)			0			
Queuing Penalty (veh)			0			

## Zone Summary

Zone wide Queuing Penalty: 0

# Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served		<u></u>	<u></u> т	 R	110	<u>т</u>	TR		TR		TR	
	185	323	297	81	24	485	496	21	38	289	166	
Maximum Queue (ft)												
Average Queue (ft)	87	210	204	5	4	394	398	2	6	159	78	
95th Queue (ft)	156	293	280	43	17	524	524	13	23	255	147	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						10	11					
Queuing Penalty (veh)						82	85					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			31			10						
Queuing Penalty (veh)			3			1						

## Intersection: 4: Site Drive & Highland Road (M-59)

N 4	FD				ND	
Movement	EB	WB	WB	WB	NB	NB
Directions Served	R	L	Т	Т	L	R
Maximum Queue (ft)	9	96	122	97	193	189
Average Queue (ft)	1	35	27	23	182	83
95th Queue (ft)	7	76	115	103	198	222
Link Distance (ft)			122	122	178	178
Upstream Blk Time (%)		0	3	4	96	38
Queuing Penalty (veh)		0	32	34	0	0
Storage Bay Dist (ft)	100	500				
Storage Blk Time (%)		0	3			
Queuing Penalty (veh)		0	2			

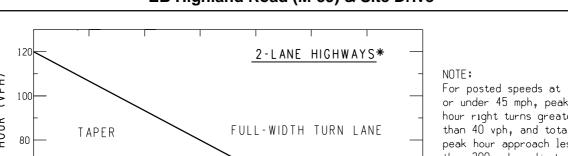
## Zone Summary

Zone wide Queuing Penalty: 238

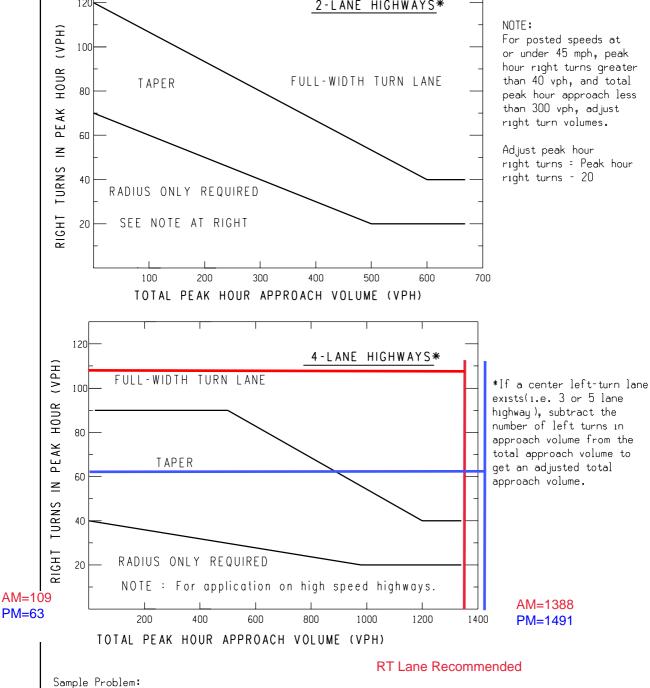
## Coffee Shop Drive Through Lane

95th Percentile Probability - Drive Through Queue Length (# of Vehicles)

Volume =	89 vph
service rate =	80 veh/hr
$\lambda =$	1.1125


	1	2	3	4	5	6	7	8	9	
λ^x	No Veh in Cycle		X!	$P=(e^{(-\lambda)})(\lambda^{x})/X!$	ΣΡ	P* # Cycle containing Volume in 1	$\Sigma$ Cycles in 6	Volume in Cycle (1*6)	$\Sigma$ volume	Poisson Queue
1.0000	0	0	1	32.87%	32.87%	26	26	0	0	NO
1.1125	1	1	1	36.57%	69.45%	29	56	29	29	NO
1.2377	2	2	2	20.34%	89.79%	16	11	33	62	NO
1.3769	3	3	6	7.54%	97.33%	6	17	18	80	NO
1.5318	4	4	24	2.10%	99.43%	2	19	7	87	NO
1.7041	5	5	120	0.47%	99.90%	0	19	2	88	MET
1.8958	6	6	720	0.09%	99.98%	0	19	0	89	MET
2.1091	7	7	5040	0.01%	100.00%	0	19	0	89	MET
2.3464	8	8	40320	0.00%	100.00%	0	19	0	89	MET
2.6104	9	9	362880	0.00%	100.00%	0	19	0	89	MET
2.9040	10	10	3628800	0.00%	100.00%	0	19	0	89	MET
3.2307	11	11	39916800	0.00%	100.00%	0	19	0	89	MET

### Fast-Food Drive Through Lane


95th Percentile Probability - Drive Through Queue Length (# of Vehicles)

Volume =	39 vph
service rate =	90 veh/hr
$\lambda =$	0.433333

		1		2	3	4	5	6	7	8	9	
λ <b>^</b> x		No Veh in Cycle	х		X!	$P = (e^{-\lambda})(\lambda^{x})/X!$	$\Sigma$ P	P* # Cycle containing Volume in 1	$\Sigma$ Cycles in 6	Volume in Cycle (1*6)	$\Sigma$ volume	Poisson Queue
	1.0000	0		0	1	64.83%	64.83%	58	58	0	0	NO
	0.4333	1		1	1	28.09%	92.93%	25	84	25	25	NO
	0.1878	2		2	2	6.09%	99.02%	5	11	11	36	NO
	0.0814	3		3	6	0.88%	99.90%	1	12	2	39	NO
	0.0353	4		4	24	0.10%	99.99%	0	12	0	39	MET
	0.0153	5		5	120	0.01%	100.00%	0	12	0	39	MET
	0.0066	6		6	720	0.00%	100.00%	0	12	0	39	MET
	0.0029	7		7	5040	0.00%	100.00%	0	12	0	39	MET
	0.0012	8		8	40320	0.00%	100.00%	0	12	0	39	MET
	0.0005	9		9	362880	0.00%	100.00%	0	12	0	39	MET
	0.0002	10	1	LO	3628800	0.00%	100.00%	0	12	0	39	MET
	0.0001	11	1	1	39916800	0.00%	100.00%	0	12	0	39	MET



### EB Highland Road (M-59) & Site Drive



The Design Speed is 55 mph. The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hour is 100 vph. Determine if a right turn lane is recommended.

#### Solution:

Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

Michigan Depar	tment of	<b>OT</b> Transportation
TRAFFIC	AND	SAFETY

TRAFFIC VOLUME GUIDELINES FOR RIGHT-TURN LANES AND TAPERS

NOTE			
DRAWN BY: MTS	08/05/2004	C04A	SHEET
CHECKED BY: JAT	PLAN DATE:	604A	2 OF 2
FILE: K:/DGN/ts notes/N	ote604A tsn.dgn	REV.08/05/200	)4



Report on Geotechnical Investigation

# **Highland Road Commercial Development** 9101 Highland Road White Lake Township, Michigan 48071

Latitude 42.657084° N Longitude 83.465138° W

Prepared for:

Affinity 10 Investments 44512 South Shore Street Waterford, Michigan 48328

G2 Project No. 240697 September 24, 2024

g2consultinggroup.com

Headquarters 1866 Woodslee St Ann Arbor 1350 Eisenhower Pl Chicagoland 1186 Heather Dr

Troy, MI 48083 P 248.680.0400 F 248.680.9745 Ann Arbor, MI 48108 P 734.390.9330 F 734.390.9331 Lake Zurich, IL 60047 P 847.353.8740 F 847.353.8742



September 24, 2024

Mr. Thomas Hannawa Affinity 10 Investments 44512 South Shore Street Waterford, Michigan 48328

c/o Ms. Susan Bowers Bowers + Associates 2400 South Huron Parkway Ann Arbor, Michigan 48104

Re: Report on Geotechnical Investigation Highland Road Commercial Development 9101 Highland Road White Lake Township, Michigan 48386 G2 Project No. 240697

Dear Mr. Hannawa:

We have completed the geotechnical investigation for the proposed Highland Road Commercial Development in White Lake Township, Michigan. This report presents the results of our observations, analyses, and our recommendations for earthwork operations, foundation and pavement design, and construction considerations as they relate to the geotechnical conditions on site.

We appreciate the opportunity to be of service to Affinity 10 Investments and Bowers & Associates and look forward to discussing the recommendations presented. In the meantime, if you have any questions regarding the report or any other matter pertaining to the project, please call us.

Sincerely,

G2 Consulting Group, LLC

Michael J. Bajorek, P.E Staff Engineer

MJB/ALS/ljv

Enclosures

Amy L. Schneider, P.E. **Project Manager** 

Headquarters 1866 Woodslee St Ann Arbor 1350 Eisenhower Pl Chicagoland 1186 Heather Dr

Troy, MI 48083 Ann Arbor, MI 48108 Lake Zurich, IL 60047

P 248.680.0400 F 248.680.9745 P 734.390.9330 F 734.390.9331 P 847.353.8740 F 847.353.8742

We understand the proposed project consists of demolition of the existing buildings and constructing two new commercial single-story, slab on grade buildings with drive-thrus totaling 13,622 square feet. Portland cement concrete pavement will be constructed in the drive-thru alignments and bituminous concrete pavement will be constructed throughout the remainder of the property. Three dumpster enclosures will be constructed at the south side of the development. Associated utilities will be installed throughout the property, including a detention pond south of the pavements.

Approximately 2 to 3 inches of bituminous concrete underlain by 2 to 6 inches of aggregate base are present at soil borings B-11 and B-14. Approximately 8 to 20 inches of topsoil are present at the remaining boring locations. Very loose silty sand fill with is present below the topsoil and pavement section at borings B-10, B-11, and B-13 and extends to approximate depths ranging from 3 to 6-1/2 feet below grade. At boring B-4, approximately 13-1/2 feet of very loose silty sand fill and hard sandy clay fill are present at the boring location. Native stiff to very stiff sandy clay underlies the topsoil at borings B-1 and B-6 (extending to approximate depths of 3 to 4 feet below grade) and the fill at borings B-10 and B-11 (extending to approximate depths of 6 to 8-1/2 feet). Native very loose to medium compact granular soils, including sand, silty sand, clayey sand, and gravelly sand, underlie the fill, topsoil, native sandy clay, and pavement section and extend to the explored depths of 5, 10, and 15 feet. In general, no groundwater was observed during and upon completion of drilling operations. However, at boring B-11, groundwater was observed during drilling operations at an approximate depth of 3 feet with a wet cave of the borehole measured at 7-1/2 feet approximately 1 hour after completion.

The existing structures must be demolished, any footings and debris resulting from demolition completely removed, and the resulting excavations backfilled with engineered fill. During demolition of the existing building foundations, the deep fill soils encountered in the vicinity of boring B-4 should be completely removed within the zone of influence of the proposed building foundations and replaced with engineered fill. Additionally, it should be noted the topsoil encountered at the boring locations is thicker than typical (up to 20 inches in thickness) and the contractor should budget for removal and replacement of these extensive deposits.

The existing fill soils are not suitable for support of building foundations. Following removal and replacement of the deep fill in the zone of influence of the building foundations in the vicinity of boring B-4, we recommend the proposed buildings be supported on shallow strip and spread footings extending through any shallow fill (such as encountered at boring B-11) and bearing on the native very loose to loose sand, silty sand, and clayey sand, very stiff sandy clay, and engineered fill overlying native soils. A net allowable bearing capacity of 1,500 pounds per square foot (psf) may be used for design of foundations bearing on native soils or engineered fill overlying native soils. The bottom of the foundation excavations should be compacted prior to placement of concrete. Exterior footings should bear at a minimum depth of 3-1/2 feet below finished grade for protection against frost heave. Interior foundations can bear at shallower depths provided suitable bearing soils are present and foundations are protected from frost during construction. We recommend a G2 Consulting Group, LLC (G2) engineer or technician be on site during construction to observe the excavations, measure the bearing depths, observe foundation installation, and verify the adequacy of the bearing soils.

Subgrade soils for support of floor slabs are anticipated to consist of native very loose to loose granular fill with up to 1.1 percent organic matter, native very loose to loose granular soils, very stiff sandy clay, or engineered fill to raise site grades and replace topsoil deposits. If the risk of some floor slab settlement can be tolerated, the existing fill soils that pass the proof compaction/proof roll evaluation as described in the SITE PREPARATION section of this report may be used to support the proposed floor slabs. If the potential for floor slab settlement cannot be tolerated, the existing fill must be completely removed from the proposed building footprint and replaced with engineered fill for support of the building floor slab and engineered fill to raise site grades.

This summary is not to be considered separate from the entire text of this report, with all the conclusions and qualifications mentioned herein. Details of our analysis and recommendations are discussed in the following sections and in the Appendix of this report.

### **PROJECT DESCRIPTION**

We understand the proposed project consists of demolition of the existing single-story building, shed, garden, and pavements and constructing two (2) new single-story, slab on grade buildings totaling 13,622 square feet. Both buildings will have a drive-thru on the south and east side of the structures. The existing building is situated within the footprint of the proposed west building and associated drive-thru. Portland cement concrete pavement will be constructed in the drive-thru alignments and bituminous concrete pavement will be constructed throughout the remainder of the property. Three dumpster enclosures will be constructed along the south side of the property. Associated utilities will be installed throughout the property including a detention pond south of the parking lot.

Based on the Grading Plan (C-4) prepared by Stonefield Engineering & Design dated July 22, 2024, the proposed buildings will have finished floor elevations of 972.00 feet each, top of pavement will range from approximately 969-1/2 feet to 972 feet, and the bottom of the pond will have an elevation of approximately 964 feet.

No information regarding structural loading conditions was available at the time of this investigation. We anticipate structural loads will be relatively light with wall loads ranging from 1 to 1-1/2 kips per linear foot. Once structural loading conditions and/or traffic loading conditions become available, G2 should be notified so that we can review the recommendations herein.

### **SCOPE OF SERVICES**

The field operations, laboratory testing, and engineering report preparation were performed under the direction and supervision of a licensed professional engineer. Our services were performed according to generally accepted standards and procedures in the practice of geotechnical engineering in this area. Our scope of services for this project is as follows:

- 1. We drilled a total of fifteen soil borings throughout the property. Soil borings B-1 through B-8 were drilled within or adjacent to proposed building corners and extended to a depth of 15 feet each below existing grade. Boring B-9 was drilled at the proposed sanitary sewer connection along Highland Road and extended to a depth of 15 feet below existing grade. Boring B-10 was drilled within the footprint of the proposed detention pond and extended to a depth of 15 feet below existing grade. Borings B-11 and B-12 were drilled at the proposed dumpster pads and extended to a depth of 10 feet each below existing grade. Borings B-13, B-14, and B-15 were drilled within proposed pavement areas and extended to a depth of 5 feet each below existing grade.
- 2. We performed laboratory testing on representative samples obtained from the soil borings. Laboratory testing included visual engineering classification, moisture content, organic matter content (loss-on-ignition) moisture content, and unconfined compressive strength determinations.
- 3. We prepared this engineering report. The report includes recommendations regarding foundation types, allowable bearing capacity, estimated settlement, pavement recommendations, and construction considerations related to site development.

### FIELD OPERATIONS

G2, in conjunction with Bowers & Associates, selected the number, depth, and location of the soil borings based on the proposed site layout. The soil boring locations were determined in the field by a G2 engineer prior to drilling using GPS mobile technology in conjunction with measuring from existing site features using conventional taping methods. The approximate soil boring locations are shown on the Soil Boring Location Plan, Plate No. 1. Ground surface elevations at the boring locations were interpolated from the contour lines and spot elevations presented on the aforementioned Grading Plan.



Soil borings were drilled using a truck-mounted drilling rig. Continuous flight 2-1/4 inch inside diameter, hollow-stem augers were used to advance the boreholes to the explored depths. Within each soil boring, soil samples were obtained at intervals of 2-1/2 feet within the upper 10 feet and an additional sample was obtained at 15 feet, where applicable. The samples were obtained by the Standard Penetration Test method ASTM D 1586, which involves driving a 2-inch diameter split-spoon sampler into the soil with a 140-pound weight falling 30 inches. The sampler is generally driven three successive 6-inch increments with the number of blows for each increment recorded. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). The blow counts for each 6-inch increment and the resulting N-value are presented on the individual soil boring logs.

The soil samples were placed in sealed containers in the field and brought to the laboratory for testing and classification. During drilling operations, the drilling crew maintained logs of the encountered subsurface conditions, including changes in stratigraphy and observed groundwater levels to be used in conjunction with our analysis of the subsurface conditions. The final boring logs are based on the field logs and laboratory soil classification and test results. After completion of the drilling operations, the boreholes were backfilled with auger cuttings and capped with cold patch, where applicable.

#### LABORATORY TESTING

Representative soil samples were subjected to laboratory testing to determine soil parameters pertinent to foundation design and site preparation. An experienced geotechnical engineer classified the samples in general conformance with the Unified Soil Classification System.

Laboratory testing on representative samples included moisture content, organic matter content (L.O.I.), and unconfined compressive strength determination. The organic matter content of representative samples was determined in accordance with ASTM Test Method D 2974, "Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils". The unconfined compressive strengths were determined using a spring-loaded hand penetrometer. The hand penetrometer estimates the unconfined compressive strength to a maximum of 4-1/2 tons per square foot (tsf), which is converted to psf, by measuring the resistance of the soil sample to the penetration of a calibrated spring-loaded cylinder.

The results of the moisture content, organic matter content, and unconfined compressive strength laboratory tests are indicated on the boring logs at the depths the samples were obtained. We will hold the soil samples for 60 days from the date of this report, after which time they will be discarded. If you would like to retain the samples beyond that date, please let us know.

### SITE CONDITIONS

The site is located at 9101 Highland Road in White Lake Township, Michigan. An existing single-story building is present on the west side of the property, situated in the footprint of the west building. A concrete drive extends to the west side of the building from Highland Road. Bituminous pavements extend west and south of the concrete drive. Two sheds are present on the site, one east of the existing building and one at the southwest corner of the property. A large garden is located east of the building, situated in the footprint of the east building. A playground and mature trees are present throughout the property.

Based on the Grading Plan, existing grades throughout the site slope downward to the south ranging from approximately 973 feet along Highland Road to 969 feet at the southwest corner of the property. Existing grades within the footprints of the proposed buildings range from 971 to 972-1/2 feet. Based on historical Oakland County aerial imagery, the site appears to have been constructed in the early 1960s with a building addition and pavement improvements completed in the 1980s. Surrounding properties are generally commercial and residential in nature.

### SOIL CONDITIONS

Approximately 2 to 3 inches of bituminous concrete underlain by 2 to 6 inches of aggregate base are present at soil borings B-11 and B-14. Approximately 8 to 20 inches of topsoil are present at the ground surface of the remaining boring locations. Silty sand fill is present below the topsoil and pavement section at borings B-10, B-11, and B-13 and extends to approximate depths ranging from 3 to 6-1/2 feet below grade. At boring B-4, approximately 13-1/2 feet of sandy clay fill and silty sand fill are present below the topsoil. Native sandy clay underlies the topsoil at borings B-1 and B-6 (extending to approximate depths of 3 to 4 feet below existing grade) and the fill at borings B-10 and B-11 (extending to approximate depths of 6 to 8-1/2 feet). Native granular soils, including sand, silty sand, clayey sand, and gravelly sand, underlie the fill, topsoil, native sandy clay, and pavement section and extend to the explored depths of 5, 10, and 15 feet.

The silty sand fill soils are very loose in compactness with Standard Penetration Test (SPT) N-values ranging from 1 to 4 blows per foot (bpf) and organic matter contents ranging from 0.5 to 1.1 percent. The sandy clay fill at boring B-4 is hard in consistency with a moisture content of 9 percent and an unconfined compressive strength of 9,000 psf. The native sandy clay is generally stiff to very stiff in consistency with moisture contents ranging from 11 to 12 percent and unconfined compressive strength of 5,000 psf. However, the native sandy clay at boring B-11 is medium in consistency with a moisture content of 24 percent and an unconfined compressive strength of 1,500 psf. The native granular soils within the upper 6 feet are generally very loose to loose in compactness with SPT N-values ranging from 2 to 9 bpf. The native granular soils below 6 feet are generally loose to medium compact with SPT N-values ranging from 7 to 24 bpf.

The stratification depths shown on the soil boring logs represent the soil conditions at the boring locations. Variations may occur between borings. Additionally, the stratigraphic lines represent the approximate boundaries between soil types. The transitions may be more gradual than what are shown. We have prepared the boring logs on the basis of laboratory classification and testing as well as field logs of the soils encountered.

The Soil Boring Location Plan, Plate No. 1, and Soil Boring Logs, Figure Nos. 1 through 15, are presented in the Appendix. The soil profiles described above are generalized descriptions of the conditions encountered at the boring locations. General Notes Terminology defining the nomenclature used on the boring logs and elsewhere in this report is presented on Figure No. 16.

### **GROUNDWATER CONDITIONS**

In general, no groundwater was observed during and upon completion of drilling operations. However, at boring B-11, groundwater was observed at an approximate depth of 3 feet during drilling operations. Approximately 1 hour after completion of drilling operations and following removal of the augers, a wet borehole cave was measured at an approximate depth of 7 feet. Fluctuations in perched and long-term groundwater levels should be anticipated due to seasonal variations and following periods of prolonged precipitation.

### SITE PREPARATION

Based on the existing conditions, we anticipate a moderate amount of earthwork will be required to develop the site. Earthwork operations are anticipated to consist of demolition of the existing building, shed, foundations, floor slabs, and utilities, backfilling associated excavations with engineered fill, removing existing pavements, playground, garden, topsoil, vegetation, and trees, proof-compacting / proof rolling the resulting subgrade, placement of engineered fill to raise grades or replace topsoil, and excavating for foundations and utilities. We recommend all earthwork operations be performed in accordance with comprehensive specifications and be properly monitored in the field by G2 geotechnical engineers or technicians under the direction of a licensed professional engineer.

The existing structures must be demolished and any footings and debris resulting from demolition of the existing structures completely removed. The existing soils at the base of demolished foundations must be evaluated by a G2 engineer to confirm soil conditions are consistent with those encountered within the soil borings and native, stable soils are present for support of backfill. The resulting excavations should be backfilled with granular engineered fill. Any existing utilities present within the footprint of the proposed building should be removed and the resulting excavations backfilled with engineered fill. Abandoned utilities outside the influence of the zone of influence of the building may be grouted in place.

During demolition of the existing building foundations, the deep fill soils encountered at boring B-4 should be evaluated to determine the extent of the material and ensure any fill within the zone of influence of the proposed foundations is undercut and backfilled with engineered fill as depicted in Figure 1 below. It may be necessary to remove and replace up to 13-1/2 feet of fill.

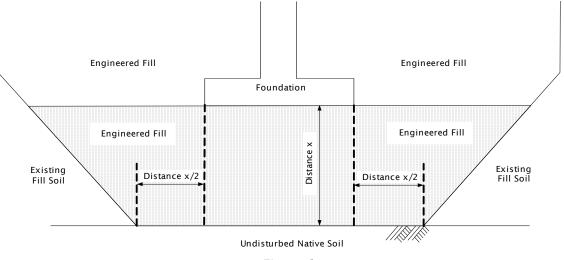



Figure 1

Following demolition of the existing structures, the existing trees and root structures, vegetation, topsoil, pavements, garden, playground, and concrete sidewalk must be completely removed. It should be noted topsoil deposits at the boring locations are up to 20 inches in thickness and the contractor should budget for the significant topsoil deposits. In addition to the engineered fill required to replace the topsoil, up to 2 feet of grade cuts and 6 inches of fill are required to achieve finished grades.

Prior to placement of any engineered fill, the resulting subgrade (anticipated to primarily consist of granular fill or native granular soils) should be thoroughly proof compacted with a heavy vibratory roller making a minimum of 10 passes in two perpendicular directions. Any cohesive soils should be thoroughly proof-rolled with a fully loaded tri-axle dump truck. During proof compaction / proof roll operations, the subgrade should be visually inspected by a qualified engineering technician or engineer for instability and/or unsuitable soil conditions. Unstable soils or soils exhibiting excessive instability should be undercut to expose stable soils or improved with further compaction. Resulting undercut excavations should be backfilled with engineered fill. The contractor should anticipate and budget for undercuts and tri-axial geogrid based on the existing fill soils and clayey sand throughout the site.

Engineered fill should be free of organic matter, frozen soil, clods, or otherwise harmful material. The fill should be placed in uniform horizontal layers, not to exceed 9 inches in loose thickness. The engineered fill should be compacted to achieve a density of at least 95 percent of the maximum dry density as determined by the Modified Proctor Compaction test (ASTM D1557). Any engineered fill should be placed at the approximate optimum moisture content. Frozen material should not be used as fill, nor should fill be placed on a frozen subgrade. The existing fill soils are not suitable for reuse as



engineered fill due to the organic matter in the material. The native soils are acceptable for use as engineered fill.

We recommend using imported granular engineered fill within confined areas such as demolished foundation or utility trenches, adjacent to foundation walls, or new utility trenches. Granular engineered fill is generally more easily compacted than cohesive soils within these confined areas. Additionally, the proper placement and compaction of backfill within these areas is imperative to provide adequate support for overlying foundations, floor slabs, and pavements.

#### FOUNDATION RECOMMENDATIONS

The existing fill soils encountered at boring B-4 are not suitable for support of building foundations. Therefore, the existing fill should be evaluated and removed and replaced with engineered fill as discussed in the SITE PREPARATION section of this report prior to foundation excavation operations.

Following removal and replacement of the existing fill in the zone of influence of the proposed buildings, we recommend the proposed buildings be supported on shallow strip and spread footings bearing at conventional depths on the native very loose to loose sand, silty sand, and clayey sand, very stiff sandy clay, and engineered fill overlying native soil. The dumpster enclosure foundations must extend through any existing fill (such as encountered at boring B-11) must extend through any existing fill soils and bear on the underlying native medium sandy clay or native very loose to loose sand. A net allowable bearing capacity of 1,500 psf may be used for design of foundations bearing on native soils or engineered fill overlying native soils. The bottom of the foundation excavations should be compacted prior to placement of concrete.

Exterior footings should bear at a minimum depth of 3-1/2 feet below finished grade for protection against frost heave. Interior foundations can bear at shallower depths provided suitable bearing soils are present and foundations are protected from frost during construction. We recommend a G2 engineer be on site during construction to observe the excavations, measure the bearing depths, observe foundation installation, and verify the adequacy of the bearing soils.

Continuous wall or strip footings should be at least 16 inches in width and isolated spread footings should be at least 30 inches in their least dimension. We recommend all strip and spread footings be suitably reinforced to minimize the effects of differential settlements associated with local variations in subsoil conditions. Adjacent spread footings at different levels should be designed and constructed so the least lateral distance between them is equivalent to or more than the difference in their bearing levels. To achieve a change in the level of the strip footings, the footings should be gradually stepped at a grade no steeper than two units horizontal to one unit vertical.

If the recommendations outlined in this report are adhered to, total and differential settlements for the completed structure should be within 1 inch and 1/2 inch, respectively. We expect settlements of these magnitudes will be within tolerable limits for the type of structure proposed.

#### FLOOR SLAB RECOMMENDATIONS

Subgrade soils for support of floor slabs are anticipated to consist of native very loose to loose granular fill with up to 1.1 percent organic matter, native very loose to loose granular soils, very stiff sandy clay, or engineered fill to raise site grades and replace deep topsoil deposits. If the risk of some floor slab settlement can be tolerated, the existing fill soils that pass proof compaction/proof roll evaluation as described in the SITE PREPARATION section of this report may be used to support the proposed floor slabs. We recommend a subgrade modulus (k) of up to 90 pounds per cubic inch (pci) may be used in the design of floor slab supported on the existing fill soils, native soils, and engineered fill.

If the potential for floor slab settlement cannot be tolerated, the existing fill must be completely removed from the proposed building footprint and replaced with engineered fill for support of the



building floor slab and engineered fill to raise site grades. A subgrade modulus of 150 pci be used for floor slabs supported by engineered fill overlying native soils and/or native loose granular soils.

We recommend at least 4 inches of clean coarse sand or pea gravel be placed between the subgrade and the bottom of the floor slab for use as a capillary break to reduce moisture transmission through the concrete floors and to reduce the potential for concrete curling. If moisture sensitive floor coverings are planned or if greater protection against vapor transmission is desired, a vapor barrier consisting of 10-mil plastic sheeting, or equivalent, may be placed on the sand layer beneath floor slabs. However, additional floor slab curing techniques will be required if a vapor barrier is used. The floor slab should be isolated from the foundation system to allow for independent movement.

#### PAVEMENT RECOMMENDATIONS

We understand the project includes construction of new bituminous concrete pavement throughout the property. In addition, Portland cement concrete pavement will be constructed in the drive-thru lanes. Subgrade soils will consist of very loose to loose silty sand and clayey sand, very loose silty sand fill, native very stiff sandy clay, and engineered fill used to raise grades or replace topsoil deposits. The existing subgrade should be properly proof compacted / proof rolled and prepared as outlined in the SITE PREPARATION section of this report.

The predominantly granular subgrade soils are typically good for support of the proposed pavement sections. Based on the primarily granular soils and completion of the subgrade preparation recommendations, we recommend the subgrade soils be assigned an effective roadbed modulus of 7,000 pounds per square inch (psi) for use in pavement design. No information regarding anticipated traffic volumes was made available at the time of this writing. Therefore, we have assumed that traffic will consist mainly of passenger vehicles.

We performed pavement design analyses in accordance with the "AASHTO Guide for Design of Pavement Structures" with an assumed load of 75,000 equivalent single-axle loads (ESALS) over a 20-year design life for standard-duty pavements. Once actual traffic loading information becomes available, G2 must be notified so that we may review our design assumptions. For purposes of design, we recommend a serviceability loss of 2.0, a standard deviation of 0.45 for flexible pavements and 0.39 for rigid pavements, and a reliability factor of 0.95. Based on the results of our analysis and construction consideration, we recommend the minimum following pavement design cross-sections:

Standard-Duty Flexible Pavement Section								
Material	Thickness	Structural Coefficient						
MDOT 5E1 Bituminous Wearing Course	2 inches	0.42						
MDOT 4E1 Bituminous Leveling Course	2 inches	0.42						
MDOT 21AA Limestone Dense-Graded Aggregate	8 inches	0.14						

Standard-Duty Rigid Pavement Section						
Material	Thickness					
MDOT P1 Portland Cement Concrete	6 inches					
MDOT 21AA Limestone Dense-Graded Aggregate	6 inches					

Large front-loading refuse trucks can impose significant concentrated wheel loads within trash dumpster pick-up areas. Therefore, we recommend 8 inches of Portland cement concrete pavement be used in these areas and be large enough to accommodate the entire truck during pick-up operations.



All pavement materials are specified within the 2020 Standard Specifications for Construction from the Michigan Department of Transportation. The bituminous pavement materials are described in Sections 501 and 904 and can be assigned a structural coefficient number of 0.42. The Portland cement concrete pavement materials are described in Section 601. We recommend that bituminous concrete utilize grade PG 64-22 binder, with no more than 17 percent of the overall binder content from reclaimed asphalt pavement (RAP) within the top wearing course layer.

Proper drainage is an important consideration for pavement design. The pavement and subgrade should be properly sloped to promote effective surface and subsurface drainage and prevent water ponding.

Regular timely maintenance should be performed on the pavement to reduce the potential deterioration associated with moisture infiltration through surface cracks. The owner should be prepared to seal the cracks with a hot-applied elastic crack filler as soon as possible after cracking develops and as often as necessary to block the passage of water to the subgrade soils. In addition, regular joint maintenance should be performed.

### CONSTRUCTION CONSIDERATIONS

We anticipate the building foundations and utility excavations can be completed in dry conditions and any surface runoff can be controlled by sumps and pumps. We anticipate perched groundwater will be encountered within foundation excavations for the west dumpster enclosure. Prior to excavation operations, we recommend groundwater be removed in the fill soils using properly constructed sumps and pumps.

Caving and sloughing of the granular soils will occur during foundation excavation. Therefore, the contractor should be prepared to over excavate and form foundations within the granular soils, as necessary. The sides of the spread and/or strip footing foundations should be constructed straight and vertical to reduce the risk of frozen soil adhering to the concrete and raising the foundations.

For excavations that extend below a depth of 5 feet, we recommend a maximum slope of two horizontal units to one vertical unit (2H:1V) within the existing fill soils and native granular soils and 1H:1V within the stiff to very stiff sandy clay. If seepage from excavation cuts is observed, the slopes must be flattened sufficiently to achieve stability, but in no case left steeper than 3H:1V at and below the seepage level. All excavations should be safely sheeted, shored, sloped, or braced in accordance with OSHA requirements. If material is stored or equipment is operated near an excavation, stronger shoring must be used to resist the extra pressure due to the superimposed loads.

Care should be exercised when excavating near existing structures to avoid undermining adjacent utilities and pavements. Under no circumstances should excavations extend below the level of existing utilities or pavements unless underpinning is planned.

### **GENERAL COMMENTS**

We have formulated the evaluations and recommendations presented in this report relative to site preparation and foundations on the basis of data provided to us relating to the project location, type of structure, and surface grade for the proposed site. Any significant change in this data should be brought to our attention for review and evaluation with respect to prevailing subsurface conditions. Furthermore, if changes occur in the design, location, or concept of the project, conclusions and recommendations contained in this report are not valid unless G2 Consulting Group, LLC reviews the changes. G2 Consulting Group, LLC will then confirm the recommendations presented herein or make changes in writing.

The scope of the present investigation was limited to evaluation of subsurface conditions for the support of proposed buildings and pavements and other related aspects of the development. No chemical, environmental, or hydrogeological testing or analyses were included in the scope of this investigation.

We base the analyses and recommendations submitted in this report upon the data from the soil borings performed at the approximate locations shown on the Soil Boring Location Plan, Plate No. 1. This report does not reflect variations that may occur between the actual boring locations and the actual structure locations. The nature and extent of any such variations may not become clear until the time of construction and upon completion of the building demolition. If significant variations then become evident, it may be necessary for us to re-evaluate our report recommendations.

We recommend G2 Consulting Group, LLC observe all geotechnical related work, including foundation construction, subgrade preparation, and engineered fill placement. G2 Consulting Group, LLC will perform the appropriate testing to confirm the geotechnical conditions given in the report are found during construction.

### APPENDIX

Soil Boring Location Plan

Soil Boring Log General Notes Terminology Plate No. 1 Figure Nos. 1 through 15 Figure No. 16



# <u>Legend</u>

Soil Borings Drilled by Strata Drilling Inc. on August 26 & 27, 2024

*B-4 offset from building corner 20 feet south due to overhead trees

## Soil Boring Location Plan

Highland Road Commercial Development 9101 Highland Road White Lake Township, Michigan 48386

	Project No. 240697				
	Drawn by: MJB				
	Date: 09/18/24	Plate			
-	Scale: NTS	No. 1			

Project Location: 9101 Highland Road White Lake Township, Michigan 48386 G2 Project No. 240697	)
G2 Project No. 240697	•
Latitude: N/A Longitude: N/A	
SUBSURFACE PROFILE     SOIL SAMPLE DATA	
ELEV. PRO- (ft) FILE GROUND SURFACE ELEVATION: 972.5 ft ± DEPTH (ft) TYPE-NO. 6-INCHES (ADD CONTENT DENSITY (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD) (PCD)	UNCONF. COMP. STR.
(ft) FILE GROUND SURFACE ELEVATION. 572.5 TE (ft) TYPE-NO. 6-INCHES (N) (%) (PCF)	(PSF)
Topsoil: Dark Brown Silty Sand (20 inches)	
1.7 3	
Stiff Reddish Brown Sandy Clay with	4000*
4.0	
967.5 S-2 3 6	
7 9 S-3 10 19	
S-3 10 19	
Loose to Medium Compact Brown Sand	
962.5 with trace silt and gravel 10 S-4 7 13	
b 957.5 6 12 6 15.0 15 S-5 6 12	
End of Boring @ 15 ft	
952.5  20    20  20    20  20    20  20    20  20    20  20    20  20    20  20    20  20    20  20    20  20    20  20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20    20       20	
Total Depth:15 ftWater Level Observation:Drilling Date:August 27, 2024Dry during and upon completion of drilling operaInspector:Dry during and upon completion of drilling opera	tions
957.5       15       5.5       6       12         957.5       End of Boring @ 15 ft       -       -       -       -         952.5       End of Boring @ 15 ft       -       -       -       -         952.5       -       -       -       -       -       -         952.5       -       -       -       -       -       -       -         952.5       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td></td></td<>	
출 도cavation Backfilling Procedure:	
Drilling Method: Auger cuttings	
Fig	gure No. 1

Lati	tude: N/	A Longitude: N/A SUBSURFACE PROFILE				OIL SAM		٨	
ELEV.	PRO-	GROUND SURFACE ELEVATION: 972.5 ft ±	DEPTH	SAMPLE	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE	MOISTURE CONTENT	DRY DENSITY	UNCONF COMP. ST
( ft)	FILE	Topsoil: Dark Brown Silty Sand	( ft)	TYPE-NO.	6-INCHES	(N)	(%)	(PCF)	(PSF)
		(8 inches) 0.7 Loose Reddish Brown Silty Sand with trace clay and gravel 2.0			3				
		Loose Brown Clayey Sand with trace silt and gravel 3.5		S-1	3 3	6			
967.5				S-2	2 2 4	6			
				S-3	5 5 6	11			
962.5		Loose to Medium Compact Brown Sand with trace silt and gravel		S-4	5 6 7	13			
 				6.5	5 6 6				
957.5		15.0 End of Boring @ 15 ft		S-5	6	12			
· -									
952.5			20						
Drillir	Depth: ng Date:	15 ft August 27, 2024			oservation nd upon	1: completior	ı of drilling	g operati	ons
Inspe Conti Drille	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Auc	ation Bac Jer cuttin	kfilling P gs	rocedure:			

Latitude: N/A Longitude: N/A SUBSURFACE PROFILE					SOIL SAMPLE DATA						
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 972.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCON COMP. S (PSF)		
_	$\frac{\sqrt{J_{2}}}{\sqrt{J_{2}}} = \frac{\sqrt{J_{2}}}{\sqrt{J_{2}}}$ $\frac{\sqrt{J_{2}}}{\sqrt{J_{2}}} = \frac{\sqrt{J_{2}}}{\sqrt{J_{2}}}$	Topsoil: Dark Brown Silty Sand (20 inches)									
-		Loose Reddish Brown Clayey Sand with trace silt and little gravel 3.(		<u>S-1</u>	1 2 3	5					
- 967.0		Very Loose Reddish Brown Silty Sand with little gravel		S-2	1 2 2	4					
-		7.	<u> </u>	S-3	0 1 1	2					
- - 962.0				S-4	2 3 4	7					
-		Very Loose to Loose Brown Sand with trace silt and gravel			3						
957.0		15.0	15	S-5	4 6	10					
-		End of Boring @ 15 ft									
- - 952.0			20								
Total Depth: Drilling Date: Inspector: Contractor: Driller:		15 ft August 26, 2024	Water Dry	er Level Observation: ry during and upon completion of drilling operations							
		Strata Drilling, Inc. B. Sienkiewicz		avation Backfilling Procedure: uger cuttings							

	UNCONF. COMP. STR. (PSF) 9000*
G2 Project No. 240697         Latitude: N/A         SUBSURFACE PROFILE         SOIL SAMPLE DATA         ELEV.       PRO- FILE       GROUND SURFACE ELEVATION: 972.5 ft ±       DEPTH (ft)       SAMPLE TYPE-NO.       BLOWS/ 6-INCHES       STD. PEN. (N)       MOISTURE CONSULTING GROUP         Moisture (ft)       Topsoil: Dark Brown Silty Sand (11 inches)       DEPTH (ft)       SAMPLE TYPE-NO.       BLOWS/ 6-INCHES       STD. PEN. (N)       MOISTURE (N)       DRY (%)	COMP. STR (PSF)
Latitude: N/A         SUBSURFACE PROFILE         SOIL SAMPLE DATA         ELEV. (ft)       PRO-FILE       GROUND SURFACE ELEVATION: 972.5 ft ±       DEPTH (ft)       SAMPLE TYPE-NO.       BLOWS/ 6-INCHES       STD. PEN. (N)       MOISTURE CONTENT (%)       DRY (PCF)         Molecular       Topsoil: Dark Brown Silty Sand (11 inches)       Topsoil: Dark Brown Silty Sand (11 inches)       Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	COMP. STR (PSF)
SUBSURFACE PROFILE       ELEV. (ft)     PRO-FILE     SAMPLE (ft)     SAMPLE (ft)     SAMPLE (ft)     STD. PEN. (N)     MOISTURE CONTENT (%)     DRY (PCF)       Moisture (ft)     Topsoil: Dark Brown Silty Sand (11 inches)     Topsoil: Dark Brown Silty Sand     Moisture (11 inches)     Moisture (11 inches)     Moisture (11 inches)     Moisture (11 inches)	COMP. STR (PSF)
ELEV. (ft)     PRO- FILE     GROUND SURFACE ELEVATION:     972.5     ft     DEPTH (ft)     SAMPLE TYPE-NO.     BLOWS/ 6-INCHES     RESISTANCE (N)     CONTENT (%)     DENSITY (PCF)     CONTENT (%)       (stright display="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state="block-state	COMP. STR. (PSF)
Topsoil: Dark Brown Silty Sand	
	9000*
	9000*
Fill: Hard Reddish Brown Sandy Clay with trace silt and gravel occasional S-1 6 10 9.5	
with trace silt and gravel, occasional sand layers	
4.0	
967.5 5 S-2 1 3	
<u>S-3 1 2</u>	
Fill: Very Loose Brown and Reddish Brown Silty Sand with trace clay,	
gravel, and roots	
962.5 10 S-4 1 2	
Medium Compact Brown Sand with 8 trace silt and gravel 10	
trace silt and gravel         10           957.5         15         S-5         11         21	
End of Boring @ 15 ft	
13.5       13.5       8         Medium Compact Brown Sand with trace silt and gravel       10         957.5       15         Sector       15.0         Find of Boring @ 15 ft       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       - <t< td=""><td></td></t<>	
952.5	
Total Depth:       15 ft       Water Level Observation:         Drilling Date:       August 26, 2024       Dry during and upon completion of drilling operation	ns
Total Depth:15 ftWater Level Observation: Dry during and upon completion of drilling operationDrilling Date:August 26, 2024Dry during and upon completion of drilling operationInspector: Contractor:Strata Drilling, Inc.Notes: * Calibrated Hand PenetrometerDrilling Method: 2-1/4 inch inside diameter hollow stem augersFigur	
Excavation Backfilling Procedure:	
Drilling Method: Auger cuttings 2-1/4 inch inside diameter hollow stem augers	
Figur	e No. 4

	Project N itude: N/				ノ	ONSUL				
Lut		SUBSURFACE PROFILE	SOIL SAMPLE DATA							
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT	DRY DENSITY	UNCONF. COMP. STR (PSF)	
		Topsoil: Dark Brown Silty Sand (8 inches) 0	.7			(N)	(%)	(PCF)	(131)	
		Loose Reddish Brown Clayey Sand with trace silt and gravel		S-1	5 4 4	8				
 <u>966.0</u>		3	<u>.0</u>	S-2	4 5 6	11				
				S-3	7 9 7	16				
		Loose to Medium Compact Brown Sand with trace silt and gravel		<u>S-4</u>	4 4 4	8				
- ·			 	S-5	6 7 7	14				
		End of Boring @ 15 ft								
951.0			20							
Drilli	l Depth: ng Date:	15 ft August 26, 2024		ater Level Observation: Dry during and upon completion of drilling operations						
Inspector: Contractor: Driller:		Strata Drilling, Inc. B. Sienkiewicz	Excav Aug	xcavation Backfilling Procedure: Auger cuttings						

Project Na	me: Highland Road Commercial Development	Soil Boring No. B-6									
Project Loo	cation: 9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL		-				
G2 Project				7							
Latitude: N											
SUBSURFACE PROFILE			SOIL SAMPLE DATA								
ELEV. PRO- (ft) FILE	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	CONTENT (%)	DRY DENSITY (PCF)	COMP. STR. (PSF)			
	Topsoil: Dark Brown Silty Sand (18 inches)			_							
	Very Stiff Reddish Brown Sandy Clay with trace silt and gravel 3.0		S-1	1 2 3	5	11.7		5000*			
966.0	Very Loose Reddish Brown Silty Sand with trace gravel		S-2	1 1 1	2						
	6.0 Very Loose Brown Sand with trace silt and gravel 8.0		S-3	1 1 1	2						
 <u>961.0</u>			S-4	2 3 5	8						
	Loose to Medium Compact Brown Sand with trace silt and gravel			8							
956.0	15.0 End of Boring @ 15 ft	15	S-5	13 11	24						
951.0											
		Water Level Observation: Dry during and upon completion of drilling operations									
Contractor: Driller:	Strata Drilling, Inc. B. Sienkiewicz	Notes * Ca		Hand Per	etrometer						
Drilling Metl 2-1/4 inch	hod: 1 inside diameter hollow stem augers	Excav Aug	ation Bac Jer cuttin	kfilling P gs	rocedure:						
							Figi	ure No. 6			

SOIL / PAVEMENT BORING 240697.GPJ 20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24

Proj	ject Nai	me: Highland Road Commercial Development				Soil	Borin	g No.	B-7
Proj	ject Loc	ation:9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL	TING G	ROUP	1
G2	Project	No. 240697			7	011002			
Lati	itude: N	I/A Longitude: N/A							
		SUBSURFACE PROFILE			S	OIL SAM	PLE DAT	۹	_
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR. (PSF)
	1/ <u>7/</u> 7	Topsoil: Dark Brown Silty Sand (11 inches) 0.9							
		Very Loose Reddish Brown Silty Sand with trace clay and gravel		S-1	4 2 2	4			
966.0		4.0	5	S-2	1 1 1	2			
		Very Loose Brown Sand with trace silt and gravel		S-3	1 1 2	3			
  <u>961.0</u>		8.0		S-4	3 5 5	10			
		Loose to Medium Compact Brown Sand with trace silt and gravel							
956.0		15.0	15	S-5	6 9 9	18			
	-	End of Boring @ 15 ft							
951.0			20						
Total	Depth: ng Date		Water	Level Ob during a	oservation nd upon	n: completior	n of drilling	g operati	ions
Conti Drille	ractor:	Strata Drilling, Inc. B. Sienkiewicz		ation Bac ger cuttin		rocedure:			
Drillin 2-1	ng Metl /4 inch	nod: inside diameter hollow stem augers						Fia	ure No. 7

SOIL / PAVEMENT BORING 240697.GPJ 20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24

Pro	ject Nar	me: Highland Road Commercial Development	:			Soil	Borin	g No.	<b>B-8</b>
Pro	ject Loc	ation: 9101 Highland Road White Lake Township, Michigan 48386		( )					
				( 4	<b>- - C</b>	ONSUL	TING G	ROUP	
	Project itude: N								
Luti		SUBSURFACE PROFILE			S	OIL SAM	PLE DAT	A	
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR. (PSF)
	$\frac{\underline{x}^{\underline{1}} I_{\underline{y}}}{I_{\underline{y}}} \cdot \frac{\underline{x}^{\underline{1}} I_{\underline{y}}}{\underline{x}^{\underline{1}}} \cdot \underline{x}^{\underline{1}}$	Topsoil: Dark Brown Silty Sand (11 inches) 0.9	,						
		Very Loose Reddish Brown Silty Sand with little gravel, occasional clay layers 3.0		<u>S-1</u>	1 2 2	4			
 966.0		Very Loose Brown Sand with trace silt and gravel		S-2	2 1 2	3			
		6.0			3 6 7	13			
-  <u>961.0</u>		Medium Compact Brown Sand with		<u>S-4</u>	5 7 8	15			
		trace silt and gravel	  	- - - S-5	6 9 11	20			
	-	End of Boring @ 15 ft		-					
				-					
Drilli	Depth: ng Date				oservation nd upon	ו completior	n of drilling	g operat ⁱ	ions
Inspe Contr Drille	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Auç	ation Bac ger cuttin	:kfilling P gs	rocedure:			
Drillin 2-1	ng Metł /4 inch	nod: inside diameter hollow stem augers						Fig	ure No. 8

SOIL / PAVEMENT BORING 240697.GPJ 20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24

Lati	tude: N/	No. 240697 /A Longitude: N/A SUBSURFACE PROFILE				OIL SAMI		<u>^</u>	
ELEV.	PRO-	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH	SAMPLE	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE	MOISTURE CONTENT	DRY DENSITY	UNCON COMP. S
( ft)	FILE	Topsoil: Dark Brown Silty Sand	( ft)	TYPE-NO.	0-INCHES	(N)	(%)	(PCF)	(PSF)
-		(14 inches) 1.2							
-		Very Loose Reddish Brown Clayey Sand with trace silt and little gravel		S-1	3 2 2	4			
-		3.0							
- 966.0_				S-2	4 6 9	15			
_									
-				S-3	7 8 8	16			
-		Medium Compact Brown Sand with trace silt, gravel, and cobbles			4				
61.0		trace siit, gravel, and cobbles	10	S-4	6 5	11			
-					10				
956.0		15.0 End of Boring @ 15 ft	15	S-5	10	18			
-									
-									
-			20						
Total Drillir	Depth: ng Date: ector:	15 ft August 26, 2024	Water		oservatior nd upon	1: completion	of drilling	g operati	ons
	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Aug	ation Bac Jer cuttin	kfilling Pı gs	rocedure:			

Pro	ject Nar	ne: Highland Road Commercial Development				Soil E	Boring	No.	B-10
Pro	ject Loc	ation:9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL			
G2	Project	No. 240697			7				
Lati	itude: N	-							
		SUBSURFACE PROFILE			S	OIL SAM	1		
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 970.0 ft $\pm$	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR. (PSF)
	<u>x 12</u> <u>x 12</u> <u>12 <u>x 12</u> <u>x</u></u>	Topsoil: Dark Brown Silty Sand (12 inches)		-					
		Fill: Very Loose Dark Brown Silty Sand with trace gravel and organic matter (Organic Matter Content = 1.1%) 3.5		<u>S-1</u>	2 1 3	4			
965.0		Stiff Reddish Brown Sandy Clay with little silt and trace gravel		<u>S-2</u>	2 1 2	3	11.4		2500*
	-	6.0			3 4 6	10			
960.0		Loose to Medium Compact Brown Sand with trace silt and gravel		S-4	4 5 6	11			
		15.0		- - - S-5	5 6 6	12			
	-	End of Boring @ 15 ft							
950.0			20						
Total Drillin Inspe Cont	Depth: ng Date ector: ractor:	: August 27, 2024 Strata Drilling, Inc.	Water Dry Notes	5:	nd upon	completior	n of drilling	g operat	ions
Drille Drillin 2-1	ng Meth	B. Sienkiewicz nod: inside diameter hollow stem augers	Excav	* Calibrated Hand Penetrometer cavation Backfilling Procedure: Auger cuttings and capped with cold patch					re No. 10

SOIL / PAVEMENT BORING 240697.GPJ 20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24

Project Name: Highland Road Commercial Development					Soil Boring No. B-11						
Pro	oject Loc	ation:9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL	_				
	Project				7	ONJOL					
Lat	itude: N			1				•			
		SUBSURFACE PROFILE			<u> </u>	STD. PEN.	MOISTURE	A DRY	UNCONF.		
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 971.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	RESISTANCE (N)	CONTENT (%)	DENSITY (PCF)	COMP. STR. (PSF)		
-		Aggregate Base: Brown Silty Sand 0.3	 	-							
-		Fill: Very Loose Dark Brown and Brown Silty Sand with trace organic matter (Organic Matter Content = 0.9%)		S-1	3 2 2	4					
- - <u>966.0</u> -		∑ 3.0 Fill: Very Loose Dark Brown Silty Sand with little gravel (Organic Matter Content = 0.5%) 6.5			1 1/12"						
-		Medium Reddish Brown Sandy Clay with trace silt and little gravel		S-3	0 1 1	2	23.7		1500*		
- 961.0	• • • • •	8.5 Loose Brown Gravelly Sand with trace silt 10.0		S-4	2 3 4	7					
DT 9/25/24	-	End of Boring @ 10 ft		-							
SOIL / PAVEMENT BORING 240697.GPJ 20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24	-		<u>    15    </u> -     -								
501 2011 16 G2 C01	-		20								
KINC 540697.02 Insp Cont Drille	l Depth: ing Date ector: rractor: er:		3 fe con Notes	et during npletion o	of drilling	7-1/2 feet	wet cave	1 hour a	fter		
Soll / PAVEMENT BOI	ing Meth I/4 inch	nod: inside diameter hollow stem augers	Notes: * Calibrated Hand Penetrometer Excavation Backfilling Procedure: Auger cuttings and capped with cold patch Figu						re No. 11		

Pro	oject Na	me: Highland Road Commercial Development				Soil E	Boring	No.	B-12
Pro	oject Loo	cation: 9101 Highland Road White Lake Township, Michigan 48386		( )					
				( 4	70	ONSUL	FING G	ROUP	
	Project? Project								
		SUBSURFACE PROFILE			S	OIL SAM	PLE DAT	Ą	
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 972.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR. (PSF)
	<u>17 - 24 - 17 - 24 - 17 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 2</u>	Topsoil: Dark Brown Silty Sand (10 inches) 0.8	_						
-		Very Loose Brown Silty Sand with trace clay and gravel 3.0		S-1	2 2 2	4			
- - <u>967.</u> (	<u>-</u> -			<u>S-2</u>	2 3 5	8			
-		Loose to Medium Compact Brown Sand with trace silt and gravel		<u>S-3</u>	4 5 8	13			
- 962.(		10.0	10	S-4	4 8 8	16			
25/24	-	End of Boring @ 10 ft							
114 TEMPLATE.GDT 9/2	- <u>-</u>								
20150116 G2 CONSULTING DATA TEMPLATE.GDT 9/25/24	-		 						
952.0	b		20						
Tota Drill	al Depth ing Date				oservation nd upon	1: completior	of drilling	g operati	ons
Source 240 Con 240 Con 240 Drill	ector: tractor: er:	Strata Drilling, Inc. B. Sienkiewicz	Excavation Backfilling Procedure: Auger cuttings						
Soll / PAVEMENT BORING 240697.GPJ BOUL / PAVEMENT BORING 240697.GPJ Drill 2-	ing Met 1/4 inch	hod: 1 inside diameter hollow stem augers							
SOIL ,								Figu	re No. 12

Pro	ject Nar	ne: Highland Road Commercial Development		6		Soil E	Boring	No.	B-13
Pro	ject Loca	ation: 9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL	TING G	ROUP	)
G2	Project I	No. 240697							
Lati	itude: N/	/A Longitude: N/A							
	,,	SUBSURFACE PROFILE			S	OIL SAM	PLE DAT	A	
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 972.0 ft $\pm$	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR. (PSF)
	1/ <u>1/</u> <u>1/</u>	Topsoil: Dark Brown Silty Sand (13 inches)							
		Fill: Very Loose Dark Brown and Brown Silty Sand with trace clay, gravel, roots, and organic matter (Organic Matter Content = 0.7%) 3.0		S-1	1 1 1	2			
967.0		Loose Brown Sand with trace silt and gravel		S-2	2 3 3	6			
		End of Boring @ 5 ft							
962.0			10						
				_					
957.0			15						
				-					
				-					
				-					
<u>957.0</u>   952.0			 	-					
952.0			20						
	Depth: ng Date:	5 ft August 26, 2024			oservation Ind upon	ו: completior	n of drillin	g operati	ions
Total Drillin Inspe Cont Drille	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Aug	ation Bac ger cuttin	ckfilling P Igs	rocedure:			
Drille Drilli 2-1	ng Meth	od: inside diameter hollow stom ourgess							
2-1	/4 men	inside diameter hollow stem augers						Fiau	re No. 13

Pro	ject Nan	ne: Highland Road Commercial Development				Soil E	Boring	No.	B-14
Pro	ject Loca	ation: 9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL	- TING G	ROUP	)
G2	Project l	No. 240697			7	0.000			
Lati	itude: N,								
		SUBSURFACE PROFILE	1			SOIL SAM			
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 972.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR (PSF)
		Aggregate Base: Brown Gravelly Sand with little silt (6 inches)		-					
		Loose Brown Silty Sand with trace clay and gravel		S-1	4 3 3	6			
		3.5		1					
967.0		Loose Brown Sand with trace silt and gravel		S-2	2 2 3	5			
507.0		End of Boring @ 5 ft		52					
			- ·						
				-					
962.0			10						
302.0									
				-					
				-					
957.0			15						
 -									
				-					
				-					
957.0				-					
952.0			20						
Total Drilli Inspe	Depth: ng Date:	5 ft August 27, 2024			oservation Ind upon	n: completior	ı of drilling	g operati	ions
	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Aug	ation Bac ger cuttin	ckfilling P Igs	rocedure:			
Drille Drilli 2-1	ng Meth	od:							
2-1	/4 inch	inside diameter hollow stem augers							
2								Figu	re No. 14

Proj	ject Narr	ne: Highland Road Commercial Development	:			Soil E	Boring	No.	B-15
Proj	ject Loca	ation: 9101 Highland Road White Lake Township, Michigan 48386		(2		ONSUL	TING G	ROUP	
	Project N								
Lati	tude: N/							_	
	<u> </u>	SUBSURFACE PROFILE	1			SOIL SAM	PLE DAT	1	UNCONF.
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 972.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	RESISTANCE (N)	CONTENT (%)	DRY DENSITY (PCF)	COMP. STR. (PSF)
	<u>11</u> <u>11</u> <u>11</u>	Topsoil: Dark Brown Silty Sand (14 inches)		-					
		Loose Reddish Brown Clayey Sand with little silt and gravel 3.0		S-1	1 3 3	6			
		Loose Brown Sand with trace silt and gravel			34				
967.0		5.0 End of Boring @ 5 ft	5	S-2	5	9			
	-								
	-			-					
962.0			10	-					
			[ .	-					
957.0			15	-					
				-					
<u>957.0</u>   <u>952.0</u>									
952.0			20						
	Depth: ng Date:	5 ft August 27, 2024			oservation Ind upon	n: completior	n of drilling	g operati	ons
Conti	ractor:	Strata Drilling, Inc. B. Sienkiewicz	Excav Aug	ation Bac ger cuttin	ckfilling P Igs	rocedure:			
Drille Drillin 2-1	ng Meth	od:							
2-1	/ 4 INCN	inside diameter hollow stem augers						Fiqui	re No. 15



# **GENERAL NOTES TERMINOLOGY**

Unless otherwise noted, all terms herein refer to the Standard Definitions presented in ASTM 653.

#### PARTICLE SIZE

Boulders Cobbles Gravel - Coarse - Fine Sand - Coarse - Medium

Silt

Clay

- Fine

- 3 inches to 12 inches
   3/4 inches to 3 inches
   No. 4 to 3/4 inches
   No. 10 to No. 4
- No. 40 to No. 10
- No. 200 to No. 40
- 0.005mm to 0.074mm

- greater than 12 inches

- Less than 0.005mm

#### CLASSIFICATION

The major soil constituent is the principal noun, i.e. clay, silt, sand, gravel. The second major soil constituent and other minor constituents are reported as follows:

Second Major Constituent (percent by weight) Trace - 1 to 12% Adjective - 12 to 35% And - over 35% Minor Constituent (percent by weight) Trace - 1 to 12% Little - 12 to 23% Some - 23 to 33%

#### **COHESIVE SOILS**

If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with the other major soil constituent as modifier, i.e. sandy clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils, i.e. silty clay, trace sand, little gravel.

	Unconfined Compressive	
Consistency	Strength (psf)	Approximate Range of (N)
Very Soft	Below 500	0 - 2
Soft	500 - 1,000	3 - 4
Medium	1,000 - 2,000	5 - 8
Stiff	2,000 - 4,000	9 - 15
Very Stiff	4,000 - 8,000	16 - 30
Hard	8,000 - 16,000	31 - 50
Very Hard	Over 16,000	Over 50

Consistency of cohesive soils is based upon an evaluation of the observed resistance to deformation under load and not upon the Standard Penetration Resistance (N).

COHESIONLESS SOILS Relative Density %	Approximate Range of (N)
0 - 15	0 - 4
16 - 35	5 - 10
36 - 65	11 - 30
66 - 85	31 - 50
86 - 100	Over 50
	0 - 15 16 - 35 36 - 65 66 - 85

Relative Density of cohesionless soils is based upon the evaluation of the Standard Penetration Resistance (N), modified as required for depth effects, sampling effects, etc.

#### SAMPLE DESIGNATIONS

- AS Auger Sample Cuttings directly from auger flight
- BS Bottle or Bag Samples
- S Split Spoon Sample ASTM D 1586
- LS Liner Sample with liner insert 3 inches in length
- ST Shelby Tube sample 3 inch diameter unless otherwise noted
- PS Piston Sample 3 inch diameter unless otherwise noted
- RC Rock Core NX core unless otherwise noted

STANDARD PENETRATION TEST (ASTM D 1586) - A 2.0 inch outside-diameter, 1-3/8 inch inside-diameter split barrel sampler is driven into undisturbed soil by means of a 140-pound weight falling freely through a vertical distance of 30 inches. The sampler is normally driven three successive 6-inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N).

# Мемо



VIA ENALLY avvilliance@aterraficIdana

		VIA EMAIL: ewilliams@stonelieldeng	.com
То:	Stonefield Engineering		
From:	Jacob Swanson, PE, PTOE Haylee Rubin, EIT		
	Fleis & VandenBrink		
Date:	January 2, 2025		
_	9101 Highland Road (M-59) – Comme	rcial Development	
Re:	White Lake Township, Michigan Traffic Impact Study		
			•••••

#### **1** INTRODUCTION

This memorandum presents the results of the Traffic Impact Study (TIS) for the proposed commercial development in White Lake Township, Michigan. The project site is generally located adjacent to the south side of Highland Road (M-59), approximately 1,000-feet east of Fisk Road, as shown in the attached **Figure 1**. The proposed development includes the construction restaurant and retail land uses. The project site is currently vacant and was most recently occupied by the Calvary Lutheran Church, which will be razed with the construction of the proposed development. Site access is proposed via one (1) full access driveway on Highland Road (M-59), which is under the jurisdiction of the Michigan Department of Transportation (MDOT). The purpose of this TIS is to evaluate the impact of the proposed development on the adjacent roadway network, as part of the site plan approval and driveway permitting processes.

The scope of work for this study was developed based on Fleis & VandenBrink's (F&V) knowledge of the study area, understanding of the development program, accepted traffic engineering practices, and information published by the Institute of Transportation Engineers (ITE). Study analyses were completed using Synchro/SimTraffic (Version 12) traffic analysis software. Sources of data for this study include F&V subconsultant Quality Counts (QC), MDOT, the Road Commission for Oakland County (RCOC), White Lake Township, the Southeast Michigan Council of Governments (SEMCOG), and ITE.

## 2 BACKGROUND

## 2.1 EXISTING ROAD NETWORK

The lane use and traffic control at the study intersections is shown in the attached **Figure 2** and study roadways are further described below. For purposes of this study, all minor streets and driveways were assumed to have an operating speed of 25 miles per hour (mph), unless otherwise noted.

**Highland Road (M-59)** generally runs in the east / west directions, adjacent to the north side of the project site. The study section of roadway is classified as an *Other Principal Arterial*, is under the jurisdiction of MDOT, has a posted speed limit of 50-mph, and has an Annual Average Daily Traffic (AADT) volume of approximately 33,400 (MDOT 2022) vehicles per day (vpd). The study section of roadway provides a typical five-lane cross-section, with two (2) lanes of travel in each direction and a center two-way left-turn lane (TWLTL). At the signalized study intersection with Fisk Road, Highland Road (M-59) widens to provide an exclusive eastbound right-turn lane. Additionally, Highland Road (M-59) widens to provide exclusive westbound right-turn lanes at all of the unsignalized intersections within the study roadway network.

**Fisk Road** generally runs in the north / south directions, approximately 1,000-feet west of the project site, terminating to the south at Highland Road (M-59). The study section of roadway is classified as a *Local Road*, is under the jurisdiction of RCOC, has an assumed prima-facie speed limit of 55-mph, and has an AADT volume of approximately 1,256 vpd (MDOT 2022). The study section of Fisk Road provides typical three-lane cross-section, with one (1) lane of travel in each direction and a center TWLTL.

**Sunny Beach Boulevard** generally runs in the north / south directions, approximately 500-feet east of the project site. The study section of roadway is classified as a *Local Road*, is under the jurisdiction of RCOC, and has an assumed residential prima-facie speed limit of 25-mph. The study section of Sunny Beach Boulevard services a residential neighborhood, to the south of Highland Road (M-59), and services commercial uses, to the north of Highland Road (M-59).

## 2.2 EXISTING TRAFFIC VOLUMES

F&V subconsultant QC collected existing weekday Turning Movement Count (TMC) data during the AM (7:00 AM to 9:00 AM) and PM (4:00 PM to 6:00 PM) peak periods, at the study intersections as summarized below:

- Highland Road (M-59) & Fisk Road (12/13/2023)
- Highland Road (M-59) & JOANN Fabrick Driveway (12/13/2023)
- Highland Road (M-59) & Sunny Beach Boulevard (3/13/2024)
- Highland Road (M-59) & W. Marketplace Drive (12/11/2024)
- Highland Road (M-59) & E. Marketplace Drive (12/11/2024)

During the collection of the TMC data, Peak Hour Factors (PHFs), pedestrian and bicycle volumes, and commercial truck percentages were recorded and used in the traffic analysis. The peak hours of each of the study intersections were utilized and the through volumes were balanced upwards through the study roadway network and carried through at the proposed site driveway. Therefore, the traffic volumes used in the analysis and shown in the attached figures may not match the raw traffic volumes shown in the data collection.

The weekday AM and PM peak hours for the adjacent study roadway network were observed to generally occur between 7:30 AM to 8:30 AM and 4:15 PM to 5:15 PM, respectively. Additionally, F&V obtained the current signal timing permit for the study intersection of Highland Road (M-59) & Fisk Road from MDOT. The existing 2024 peak hour traffic volumes used in the analysis are shown in the attached **Figure 3**. All applicable background data referenced in this memorandum are attached.

## 3 EXISTING CONDITIONS (2024)

Existing peak hour vehicle delays and Levels of Service (LOS) were calculated at the study intersections using Synchro/SimTraffic (Version 12) traffic analysis software. This analysis was based on the existing lane use and traffic control shown in the attached **Figure 2**, the exiting peak hour traffic volumes shown in the attached **Figure 3**, and methodologies presented in the *Highway Capacity Manual, 7th Edition* (HCM7).

Descriptions of LOS "A" through "F" as defined in the HCM, are attached. Typically, LOS D is considered acceptable, with LOS A representing minimal delay, and LOS F indicating failing conditions. Additionally, SimTraffic network simulations were reviewed to evaluate network operations and vehicle queues. The results for the exiting conditions analysis are attached and summarized in **Table 1**.

				Ex	isting C	onditions	
	Intersection	Control	Approach	AM P	eak	PM P	eak
		Control	Approxon	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.4	В	57.6	Е
			EBT	27.7	С	18.5	В
	Highland Road		EBR	14.7	В	11.0	В
	Highland Road		WBL	15.9	С	11.9	В
1	(M-59)	Signalized	WBTR	23.5	С	26.3	С
I '	&	Signalizeu	NBL	25.2	С	47.9	D
	Fisk Road		NBTR	23.3	С	38.0	D
			SBL	27.3	С	67.0	Е
			SBTR	24.8	С	47.1	D
			Overall	25.6	С	29.2	С

# Table 1: Existing Intersection Operations



				Ex	isting C	onditions	\$
	Intersection	Control	Approach	AM P	eak	PM P	eak
		e entre en	, pprozen	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	10.9	В	17.0	C
	Highland Road	04.0	WBL	10.9	В	12.3	В
2	(M-59) &	Stop (Minor)	NB	9.6	А	201.8	F
	W. Marketplace Drive		SBTL	56.7	F	\$	F
			SBR	12.3	В	21.4	C
	Highland Road (M-59)	01	EBL	0.0*	A	17.3	С
3	&	Stop (Minor)	WB		Fr	ee	
	E. Marketplace Drive		SB	16.5	С	25.5	Q
	Highland Road (M-59)	01	EBL	11.1	В	17.3	С
4	&	Stop (Minor)	WB		Fr	ee	
	JOANN Fabric Drive	(1011101)	SB	12.5	В	39.5	Е
			EBL	10.8	В	17.1	С
	Highland Road (M-59)	01	WBL	11.0	В	12.9	В
5	&	Stop (Minor)	NBL	194.3	F	\$	F
	Sunny Beach Boulevard		NBTR	10.4	В	10.7	В
			SB	72.9	F	\$	F

Note: \$ Indicates delays exceeding 1,000 seconds / vehicle.

The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better during both the AM and PM peak hours, with the following exceptions:

## Highland Road (M-59) & Fisk Road

• <u>During the PM peak hour</u>: the eastbound left-turn movement and southbound left-turn movement are both currently operating at LOS E.

Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed for these movements; however, the majority of vehicle queues were observed to be processed within each cycle length, leaving minimal residual vehicle queueing. Additionally, any remaining vehicle queues were observed to dissipate and were not present throughout the PM peak hour.

## Highland Road (M-59) & W. Marketplace Drive

- During the AM peak hour: the southbound shared left/through lane currently operates at LOS F.
- <u>During the PM peak hour</u>: the northbound approach and the southbound shared left/through lane are both currently operating at LOS F.

Review of SimTraffic microsimulations during the AM peak hour indicates generally acceptable operations. During the PM peak hour, periods of long vehicle queues were observed for the southbound shared left/through lane-turn movement; these queues were typically observed to persist throughout the PM peak hour. However, review of the TMC data collection videos indicates that adequate gaps are provided within the through traffic along Highland Road (M-59), in order to accommodate egress traffic from the minor street.

## Highland Road (M-59) & JOANN Fabric Drive

• During the PM peak hour: the southbound approach currently operates at LOS E.

The southbound approach was designed to prohibit egress left-turns; however, the left-turn traffic from this approach is causing the reported delay. The total volume of southbound traffic during the PM peak hour is very low (3 vehicles), which includes two (2) vehicles making a left-turn movement. Additionally, although the reported delay results in LOS E, review of SimTraffic indicates acceptable operations; the 95th percentile queue length reported for this approach was approximately 11-feet (~1 vehicle), which is not significant.



## Highland Road (M-59) & Sunny Beach Boulevard

• <u>During both the AM and PM peak periods</u>: The northbound left-turn movement and the southbound approach are both currently operating at LOS F.

Review of SimTraffic network simulations indicates generally acceptable operations during the AM peak hour. Review of SimTraffic microsimulations during the PM peak hour indicates that vehicles along Sunny Beach Boulevard experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues along the minor street; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour. However, as previously mentioned, review of the TMC data collection videos indicates traffic is able to find adequate gaps within the through traffic; therefore, SimTraffic is providing a more conservative evaluation, as it does not account for motorists making two-stage left-turns.

## 4 BACKGROUND CONDITIONS (2026)

Historical population and economic profile data was obtained for White Lake Township from the Southeast Michigan Council of Governments (SEMCOG) database, in order to calculate an annual background growth rate to project the existing 2024 peak hour traffic volumes to the site buildout year of 2026. Population and employment projections from 2020 to 2050 were reviewed and show average annual growth rates of approximately 0.41% and 0.28%, respectively.

In addition to background growth, it is important to account for traffic that will be generated by approved developments within the study area that have yet to be constructed or are currently under construction. At the time of this study, no background developments were identified within the vicinity of the project site. Therefore, a conservative annual background growth rate of 0.5% per year was applied to the existing peak hour traffic volumes, in order to forecast the background 2026 peak hour traffic volumes without the proposed development, as shown in the attached Figure 4.

Background peak hour vehicle delays and LOS *without the proposed development* were calculated at the study intersections based on the existing lane use and traffic control shown in the attached **Figure 2**, the background peak hour traffic volumes shown in the attached **Figure 4**, and methodologies presented in the HCM7. The results of the background conditions analysis are attached and summarized in **Table 2**.

				Evie	ting (	ondition		Backa	round	Conditio	one		Differ	onco	
	Intersection	Control	Approach	AM Pe		PM Pe		AM Pe		PM Pe		AM P		PM P	eak
	intersection	Control	Approach	Delay (s/veh)	LOS	Deleve	LOS	Delau	LOS	Delay (s/veh)	LOS	Deleu	LOS	Delay (s/veh)	LOS
			EBL	14.4	В	57.6	Е	14.5	В	61.5	Е	0.1	-	3.9	-
			EBT	27.7	С	18.5	В	28.1	С	18.7	В	0.4	-	0.2	-
			EBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	-	0.0	-
	Highland Road		WBL	15.9	С	11.9	В	16.0	В	12.1	В	0.1	$C \rightarrow B$	0.2	-
7	(M-59)	Cignol	WBTR	23.5	С	26.3	С	23.7	С	26.7	С	0.2	-	0.4	-
	&	Signal	NBL	25.2	С	47.9	D	25.3	С	48.1	D	0.1	-	0.2	-
	Fisk Road		NBTR	23.3	С	38.0	D	23.3	С	38.0	D	0.0	-	0.0	-
			SBL	27.3	С	67.0	Е	27.3	С	67.6	Е	0.0	-	0.6	-
			SBTR	24.8	С	47.1	D	24.8	С	47.7	D	0.0	-	0.6	-
			Overall	27.1	С	29.2	С	25.8	С	29.7	С	-1.3	-	0.5	-
	Highland Road		EBL	10.9	В	17.0	С	11.0	В	17.2	С	0.1	-	0.2	-
	(M-59)		WBL	10.9	В	12.3	В	11.0	В	12.4	В	0.1	-	0.1	-
2	`&´	Stop	NB	9.6	Α	201.8	F	9.6	Α	227.5	F	0.0	-	-	-
	W. Marketplace	(Minor)	SBTL	56.7	F	\$	F	59.8	F	\$	F	3.1	-	-	-
	Drive		SBR	12.3	В	21.4	С	12.3	В	21.8	С	0.0	-	-	-
	Highland Road	01	EBL	0.0*	А	17.3	С	0.0*	Α	17.5	С	0.0*	-	0.2	-
3	(M-59) &	Stop (Minor)	WB		Fr	ee			Fr	ee			N/	A	
	E. Marketplace D		SB	16.5	С	25.5	D	16.6	С	25.9	D	0.1	-	-	-

## Table 2: Background Intersection Operations



				Exis	ting C	ondition	s	Backg	round	Conditio	ons		Difference			
	Intersection	Control	Approach	AM Pe	ak	PM Pe	ak	AM Pe	ak	PM Pe	ak	AM P	eak	PM P	eak	
			, pprodoin	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
	Highland Road	01	EBL	11.1	В	17.3	С	11.2	В	17.5	С	0.1	-	0.2	-	
4	(M-59) &	Stop (Minor)	WB		Fre	ee			Fre	е			N/	Ά		
	JOANN Fabric Dr.		SB	12.5	В	39.5	Е	12.6	В	40.3	Е	0.1	-	0.8	-	
	Highland Road		EBL	10.4	В	17.1	С	10.9	В	17.3	С	0.5	-	0.2	-	
	(M-59)	01	WBL	11.0	В	12.9	В	11.1	В	13.1	В	0.1	I	0.2	-	
5	`&´	Stop (Minor)	NBL	194.3	F	\$	F	214.5	F	\$	F	20.2	-	-	-	
	Sunny Beach	(1011101)	NBTR	10.4	В	10.7	В	10.4	В	10.7	В	0.0	-	0.0	-	
	Boulevard		SB	72.9	F	\$	F	77.2	F	\$	F	4.3	-	-	-	

* Indicate no vehicle volume present. \$ Indicates delays exceeding 1,000 seconds / vehicle

<u>Note</u>: Decreased delays are the result of improved progression and/or HCM weighting methodology

The results of the background conditions analysis indicates that all study intersections approaches and movements are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays.

## 5 SITE TRIP GENERATION

The number of weekday peak hour (AM and PM) and daily vehicle trips that would be generated by the proposed development were calculated using the rates and equations published by the Institute of Transportation Engineers (ITE) in *Trip Generation*, 11th Edition. For purposes of this study the following land uses were assumed in the analysis: a coffee shop with drive-through, a fast-casual restaurant, and retail space. Additionally, the proposed restaurants are not anticipated to have breakfast service; however, in order to provide a conservative analysis, the AM peak hour trip generation was included for these land uses. The site trip generation forecast utilized for this study is summarized in **Table 3**.

				elleration Sun	, innun y					
Land Use	ITE	Amount	Unite	Average Daily	AM Pe	eak Hoi	ur (vph)	PM Pe	eak Hou	ur (vph)
	Code	Linount	Onita	Traffic (vpd)	In	Out	Total	In	Out	Total
Strip Retail Plaza (<40k SF)	822	2,387	SF	330	4	2	6	14	14	28
	Pass-By (C	0% AM, 40	)% <b>P</b> M)	66	0	0	0	5	5	10
		Ne	w Trips	264	4	2	6	9	9	18
Fast Casual Restaurant	930	10,043	SF	976	36	21	57	69	57	126
	Pass-By (0	)% AM, 43	3% PM)	210	0	0	0	27	27	54
		Ne	w Trips	766	36	21	57	42	30	72
Coffee Shop with Drive-Through	937	2,529	SF	1,349	111	106	217	50	49	99
	Pass-By (50	)% AM, 55	5% PM)	706	54	54	108	27	27	54
		Ne	w Trips	641	57	52	109	23	22	45
		Tota	al Trips	2,655	151	129	280	133	120	253
		Total P	°ass-By	984	54	54	108	59	59	118
		Total Nev	v Trips	1,671	97	75	172	74	61	135

## Table 3: Site Trip Generation Summary

As is typical of commercial developments, a portion of the trips generated by the proposed development are from vehicles already on the adjacent roadway network that will pass the site on their way from an origin to their ultimate destination. Therefore, not all traffic at the site driveway is necessarily new traffic added to the street system. These trips are therefore reduced from the total external trips generated by a study site. This percentage of the trips generated by the development are considered "pass-by", which are already present of the adjacent roadway network. The percentage of pass-by used in this analysis was determined based on the rates published by ITE in the *Trip Generation Manual, 11th Edition*.



## 6 SITE TRIP DISTRIBUTION

The vehicular trips that would be generated by the proposed development were assigned to the study roadway network based on the proposed stie access plan and driveway configurations, the existing peak hour traffic patterns in the adjacent roadway network, and methodologies published by ITE. The ITE trip distribution methodology assumes that new trips will enter the network and access the development, then leave the development and return to their direction of origin, whereas pass-by trips will enter and exit the development in their original direction of travel. The stie trip distributions utilized in the analysis are summarized in **Table 4**.

		bution	ie 4. Sile Trip Distri	Iau		
	By Trips	Pass-	ips	New T		
PM	AM	Direction	Via	To/From	PM	AM
			Fisk Road	North	12%	7%
44%	57%	Eastbound	Highland Road (M-59)	East	52%	41%
56%	43%	Westbound	Highland Road (M-59)	West	36%	52%
100%	100%		Total		100%	100%

Т	able	4:	Site	Trip	Distribution
	abic	<b>—</b> ••	One	111P	Distribution

The vehicular traffic volumes shown in **Table 3** were distributed to the study roadway network according to the distribution shown in **Table 4**. Therefore, the site generated trips shown in the attached **Figure 5** were added to the background peak hour traffic volumes shown in the attached **Figure 4**, in order to calculate the future peak hour traffic volumes, with the addition of the proposed development. Future peak hour traffic volumes are shown in the attached **Figure 6**.

## 7 FUTURE CONDITIONS (2026)

Future peak hour vehicle delays and LOS *with the addition of the proposed development*, were calculated based on the proposed lane use and traffic controls shown in the attached **Figure 2**, the future peak hour traffic volumes shown in the attached **Figure 6**, and the methodologies presented in the HCM7. The results of the future conditions analysis are attached and summarized in **Table 5**.

				Backg	round	Conditio	ons	Futu	ure Co	onditions			Differ	ence	
	Intersection	Control	Approach	AM Pe	ak	PM Pe	ak	AM Pe	ak	PM Pe	ak	AM P	eak	PM P	eak
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.5	В	61.5	Е	14.9	В	66.1	Е	0.4	-	4.6	-
			EBT	28.1	С	18.7	В	30.3	С	19.1	В	2.2	I	0.4	-
			ÈBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	I	0.0	-
	Highland Road		WBL	16.0	В	12.1	В	16.8	В	12.4	В	0.8	I	0.3	-
1	(M-59)	Signal	WBTR	23.7	С	26.7	С	24.6	С	27.6	С	0.0	I	0.0	-
	&	Signal	NBL	25.3	С	48.1	D	25.3	С	48.1	D	0.0	I	0.0	-
	Fisk Road		NBTR	23.3	С	38.0	D	23.3	С	38.0	D	0.0	-	0.0	-
			SBL	27.3	С	67.6	Е	27.3	С	67.6	Е	0.0	-	0.0	-
			SBTR	24.8	С	47.7	D	24.8	С	47.4	D	0.0	-	-0.3	-
			Overall	25.8	С	29.7	С	27.3	С	30.3	С	1.5	-	0.6	-
	Highland Road		EBL	11.0	В	17.2	С	11.3	В	17.6	С	0.3	-	0.4	-
	(M-59)		WBL	11.0	В	12.4	В	11.4	В	12.7	В	0.4	-	0.3	-
2	`&´	Stop (Minor)	NB	9.6	Α	227.5	F	9.7	Α	290.6	F	0.1	-	63.1	-
	W. Marketplace		SBTL	59.8	F	\$	F	72.1	F	\$	F	12.3	-	\$	-
	Drive		SBR	12.3	В	21.8	С	12.6	В	22.4	С	0.3	-	0.6	-
	Highland Road	0.1	EBL	0.0*	Α	17.5	С	0.0*	Α	17.8	С	0.0*	-	0.3	-
3	(M-59) &	Stop (Minor)	WB		Fr	ee			Fr	эе			N	/A	
1	E. Marketplace Dr.		SB	16.6	С	25.9	D	17.4	С	26.7	D	0.8	-	0.8	-

## Table 5: Future Intersection Operations



				Backgi	round	Conditio	ons	Fut	ure Co	onditions	;		Diffe	rence			
	Intersection	Control	Approach	AM Pe	ak	PM Pe	ak	AM Pe	eak	PM Pe	ak	AM P	eak	PM P	eak		
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS		
	Highland Road	0	EBL	11.2	В	17.5	С	11.4	В	17.9	С	0.2	-	0.4	-		
4	(M-59) &	Stop (Minor)	WB		Fre	ee			Fr	ee			N	/A			
	JOANN Fabric Dr.		SB	12.6	В	40.3	Е	12.9	В	42.1	Е	0.3	-	1.8	-		
	Highland Road		EBL	10.9	В	17.3	С	11.1	В	17.8	С	0.2	-	0.5	-		
	(M-59)	0	WBL	11.1	В	13.1	В	11.2	В	13.4	В	0.1	-	0.3	-		
5	&	Stop (Minor)	NBL	214.5	F	\$	F	261.7	F	\$	F	47.2	-	\$	-		
	Sunny Beach Boulevard		NBTR	10.4	В	10.7	В	10.6	В	10.8	В	0.2		0.1	-		
	Boulevaru		SB	77.2	F	\$	F	89.7	F	\$	F	12.5	-	\$	-		
			EB						Fr	ee							
6	Highland Road	Stop	WBL		NI/	٨		13.3	В	13.3	В		N				
0	(M-59) & Site Drive	(Minor)	NBL		N/	A		42.7 E 66.7 F			F		N	PA I			
	Site Drive		(Minor)	(IVIINOr)	NBR					10.4	В	10.9	В				

* Indicate no vehicle volume present. \$ Indicates delays exceeding 1,000 seconds / vehicle <u>Note</u>: Decreased delays are the result of improved progression and/or HCM weighting methodology

The results of the future conditions analysis indicates that all study intersection approaches and movements are expected to continue operating in a manner similar to the background conditions analysis, with minor increases in delays and no additional impacts to LOS. Additionally, the proposed site driveway is expected to operate acceptably, at LOS D or better during both peak periods, with the exception of the following:

## Highland Road (M-59) & Site Drive

- During the AM peak hour: The northbound approach is expected to operate at LOS E.
- During the PM peak hour: The northbound approach is expected to operate at LOS F.

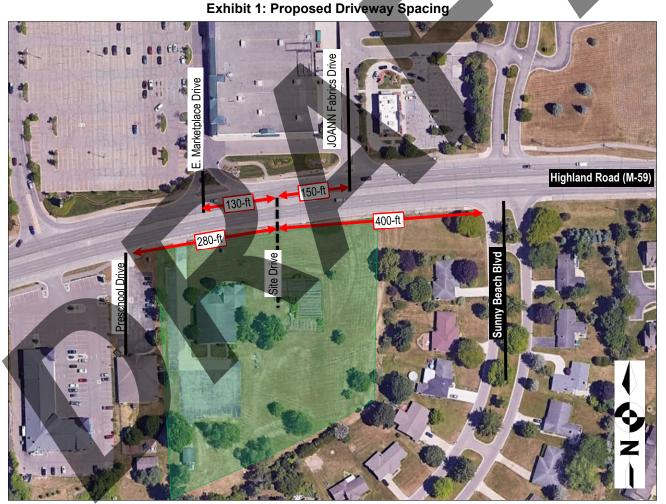
Review of SimTraffic network simulations during the AM peak hour indicates acceptable operations. Review of SimTraffic microsimulations during the PM peak hour indicates that vehicles existing the Site Drive approach experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues. These vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour. However, as identified during the existing conditions analysis, SimTraffic microsimulations do not account for motorists making two-stage left-turn movements; therefore, SimTraffic network simulations are providing a more conservative evaluation than what drivers can expect to experience.

# 1 **RIGHT-TURN TREATMENT EVALUATION**

The MDOT right-turn treatment criteria were evaluated at the proposed site driveway on Highland Road (M-59), with the addition of the site-generated traffic volumes. *Note: There is currently an existing center two-way left-turn lane (TWLTL) present along Highland Road (M-59), adjacent to the project site; therefore, only the right-turn lane criteria was reviewed.* This analysis was based on the future peak hour traffic volumes shown in the attached **Figure 6**. The results of the analysis are shown on the attached MDOT warranting chart and is summarized in **Table 6**.

Table 0. Right-turn			, anniar y
Intersection	Peak	Period	Recommendation
	AM Peak Hour	PM Peak Hour	
Highland Road (M-59) & Site Drive	Right-Turn Lane	Right-Turn Lane	Right-Turn Lane

## Table 6: Right-turn Treatment Criteria Evaluation Summary


The result of the right-turn treatment evaluation indicates that a right-turn deceleration lane is warranted along eastbound Highland Road (M-59) at the proposed site driveway.



## 7.2 DRIVEWAY SPACING EVALUATION

The MDOT *Geometric Design Guidance* (Section 1.2.2) criteria were utilized to evaluate the location of the proposed site driveway, in relation to nearby intersections and access points within close proximity to the project site. The intersection corner clearance criteria were evaluated for the 50-mph section of Highland Road (M-59), adjacent to the project site. The distance of the proposed site driveway from nearby intersections and access points, and the warranting criteria are summarized in **Table 7** and displayed in **Exhibit 1**.

_		Tab	e 7: Desirable Corner Cl	earance Su	mmary	
	Adjace	nt Drive	eways & Intersections	Distance	Criteria	Meets
	Site Drive	to	Preschool Drive	280 feet	455 feet	NO
	Site Drive	to	Sunny Beach Boulevard	400 feet	170 feet	YES
	Site Drive	to	JOANN Fabrics Drive	150 feet	750 feet	NO
	Site Drive	to	ROSS Drive	130 feet	750 feet	NO



The results of the driveway spacing analysis indicates that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveways. However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the site plan includes future cross access, stubbed at the property line to the west; this would provide improved site access, permitting cross access between the nearby developments on the south side of Highland Road (M-59), should the adjacent property be redeveloped. Furthermore, shared access was investigated and is not available with the Sunny Beach Boulevard neighborhood to the east.



## 8 FUTURE CONDITIONS WITH IMPROVEMENTS ANALYSIS

Mitigation measures were investigated in order to improve the study intersections and mitigate any of the impacts generated by the proposed development. The mitigation measures that were identified and the impacts to the study intersections are discussed below:

## 8.1 HIGHLAND ROAD (M-59) & FISK ROAD

Signal timing optimizations were reviewed at the study intersection of Highland Road (M-59) & Fisk Road and were determined to adequately improve all approaches and movements to LOS D or better during the PM peak hour. Therefore, the following improvements are recommended:

• Optimize the signal timing splits during the PM peak hour.

## 8.2 HIGHLAND ROAD (M-59) & SITE DRIVE

The proposed site plan includes shared access to the property to the west of the project site, which would reduce the projected delay for egress traffic; however, the property to the west would need to be redeveloped, in order to accommodate such a cross-access connection. Additionally, providing cross access with the Sunny Beach Boulevard neighborhood to the east would also reduce egress delays; however, this is not feasible. Therefore, since the egress delay cannot be reduced, the following improvement is recommended:

• Provide an eastbound right-turn lane along Highland Road (M-59) at the proposed Site Drive.

The results of the future improvements analysis, with the implementation of the recommended mitigation measures, are attached and summarized in **Table 8**.

				Futu	ure Co	onditions		F	uture	w/ IMP			Diffe	rence	
	Intersection	Control	Approach	AM Pe	ak	PM Pe	ak	AM Pe	ak	PM Pe	ak	AM P	eak	PM P	Peak
	intersection	0011101	Approuch	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.9	В	66.1	E			53.4	D			-12.7	$E \rightarrow D$
			EBT	30.3	С	19,1	B			29.2	С			10.1	$B \rightarrow C$
			EBR	14.7	В	11.0	В			16.3	В			5.3	-
	Highland Road (M-59)		WBL	16.8	В	12.4	В			16.3	В			3.9	-
1		Signal	WBTR	24.6	С	27.6	C	No Cha	nao	50.9	D	No Ch	anao	23.3	$C \rightarrow D$
<b> </b> '	&	Signal	Signal	NBL	25.3	С	48.1	D	D	43.0	D	NO CH	ange	-5.1	-
	Fisk Road		NBTR	23.3	C	38.0	D	D	34.1	С			-3.9	$D \rightarrow C$	
			SBL	27.3	С	67.6	Е		52.8	D			-14.8	$E \rightarrow D$	
			SBTR	24.8	С	47.4	D			40.9	D			-6.5	-
			Overall	27.3	С	30.3	С			42.3	D			12.0	C→D
	Highland Road		EB		Fr	ee			Fr	ee			N	/A	
C	(M-59)	Stop	WBL	13.3	В	13.3	В	13.3	В	13.3	В	0.0	-	0.0	-
6		(Minor)	NBL	42.7	Е	66.7	F	39.2	Е	63.1	F	-3.5	-	-3.6	-
	Site Drive		NBR	10.4	В	10.9	В	10.4	В	10.9	В	0.0	-	0.0	-

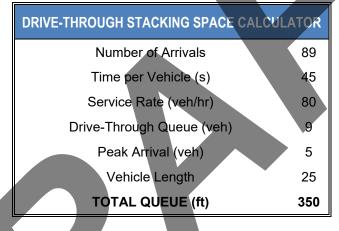
 Table 8: Future Intersection Operations with Improvement

The results of the future conditions with improvements analysis indicates that, with the implementation of the recommended improvements, the study intersection approaches and movements are expected to operate acceptably, at LOS D or better during both peak periods, with the following exception:

#### Highland Road (M-59) & Site Drive

- During the AM peak hour: The northbound left-turn movement is expected to operate at LOS E.
- During the PM peak hour: The northbound left-turn movement is expected to operate at LOS F.

Review of SimTraffic network simulations indicates generally acceptable operations during both peak periods, with reduced queues from the background conditions analysis. However, as previously identified, SimTraffic microsimulations do not account for motorists making two-stage left-turn movements and therefore provides a more conservative evaluation than what drivers can expect to experience.




## 9 QUEUEING ANALYSIS

The drive-through vehicle queueing was reviewed to determine if the proposed on-site queue lengths provide adequate storage to accommodate the projected operations. The coffee-shop is expected to have a peak trip generation of 111 trips during the AM peak hour. Coffee-shops with drive-through typically have an average service rate of approximately 80 vehicles per hour (vph), with 80% of customers utilizing the drive-through. Therefore, of the total vehicles generated by the proposed coffee-shop during the peak period, it is estimated that approximately 89 vehicles will utilize the drive-through; the remaining vehicles will park and walk-in. The evaluation of the queue length included two criteria:

- 1. A queueing analysis was performed to determine if the projected demand of the site exceeds the service rate and calculate the projected queueing. The projected demand (89 vph) is greater than the service rate (80 vph) of the site; therefore, there is a potential for vehicles to queue past the pickup window, as the demand exceeds the capacity.
- 2. A Poisson Distribution was performed to determine the probability of random arrivals. The results indicate a maximum potential of five (5) vehicles arriving at any given time.

The results of the queueing analysis for the coffee shop are summarized in Table 9.



## Table 9: Coffee Shop Vehicle Queuing Analysis

## **10 CONCLUSIONS**

The conclusions of this TIS are as follows:

- 1. Existing Conditions (2024)
  - The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exceptions:
    - <u>Highland Road (M-59) & Fisk Road:</u> The EB and SB left-turn movements are both currently operating at LOS E, during the PM peak hour. Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed; however, the majority were observed to be processed within each cycle length, leaving minimal residual vehicle queueing.
    - Highland Road (M-59) & W. Marketplace Drive: The NB approach and SB shared left/through lane are both currently operating at LOS F, during the AM peak hour. Additionally, the SB shared left/through lane is currently operating at LOS F, during the PM peak hour. Review of SimTraffic microsimulations indicates periods of long vehicle queues during the PM peak hour.
    - <u>Highland Road (M-59) & JOANN Fabric Drive</u>: The SB approach currently operates at LOS E, during the PM peak hour. This approach was designed to prohibit egress left-turns; however, the left-turns are causing the reported delay. The total volume of southbound egress traffic is very low (3 vehicles), which includes two (2) vehicles making an egress left-turn movement.



- <u>Highland Road (M-59) & Sunny Beach Boulevard:</u> The NB left-turn movement and the SB approach are both currently operating at LOS F, during both peak hours. Review of SimTraffic indicates generally acceptable operations during the AM peak hour. Review of SimTraffic during the PM peak hour indicates that vehicles along Sunny Beach Boulevard experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues along the minor street; these vehicle queues do not dissipate and were typically observed to persist throughout the PM peak hour.
- However, review of the TMC data collection videos indicates traffic is able to find adequate gaps within the through traffic; therefore, SimTraffic is providing a more conservative evaluation, as it does not account for motorists making two-stage left-turns

#### 2. <u>Background Conditions (2026 No Build)</u>

- A conservative annual background growth rate of <u>0.5%</u> per year was utilized to project the existing 2024 peak hour traffic volumes to the site buildout year of 2026.
- The results of the background conditions analysis indicates that the study intersections are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays due increases in background traffic volumes.

#### 3. Future Conditions (2026 Build)

- With the addition of the site-generated trips, the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with no additional impacts to LOS.
- All approaches and movements at the proposed site driveway intersection with Highland Road (M-59) are expected to operate acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exception:
  - <u>Highland Road (M-59) & Site Drive</u>: The NB approach is expected to operate at LOS E, during the AM peak hour, and at LOS F, during the PM peak hour. Review of SimTraffic network simulations during the PM peak hour indicates that vehicles existing the Site Drive approach experience difficulty in finding gaps within the through traffic along Highland Road (M-59), resulting in long vehicle queues.
  - However, as identified during the existing conditions analysis, SimTraffic does not account for motorists making two-stage left-turn movements and therefore provides a more conservative evaluation than what drivers can expect to experience
- Therefore, the results of the future conditions analysis indicates that the site-generated traffic volumes from the proposed development are expected to have a negligible impact to the delay (LOS) and vehicle queueing observed at the off-site study intersections along Highland Road (M-59).

## 4. Access Management

- The MDOT right-turn treatment criteria were evaluated at the proposed site driveway; the result of the analysis indicates that a right-turn lane is recommended along eastbound Highland Road (M-59) at the proposed Site Drive.
- The results of the driveway spacing analysis indicates that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveway.
  - However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the site plan includes proposed future cross access, stubbed at the property line to the west; this would provide improved site access, permitting this cross access between the nearby developments on the south side of Highland Road (M-59), should the adjacent property ever be redeveloped. Furthermore, shared access was investigated and is not available with the Sunny Beach Boulevard neighborhood to the east.



#### 5. Future Conditions with Improvements

 Signal timing optimizations were reviewed and were determined to adequately improve the signalized study intersection of <u>Highland Road (M-59) & Fisk Road</u> to LOS D or better during the PM peak hour. Additionally, the vehicle queues at the signalized study intersection were observed to be reduced, with the implementation of the recommended mitigation measures.

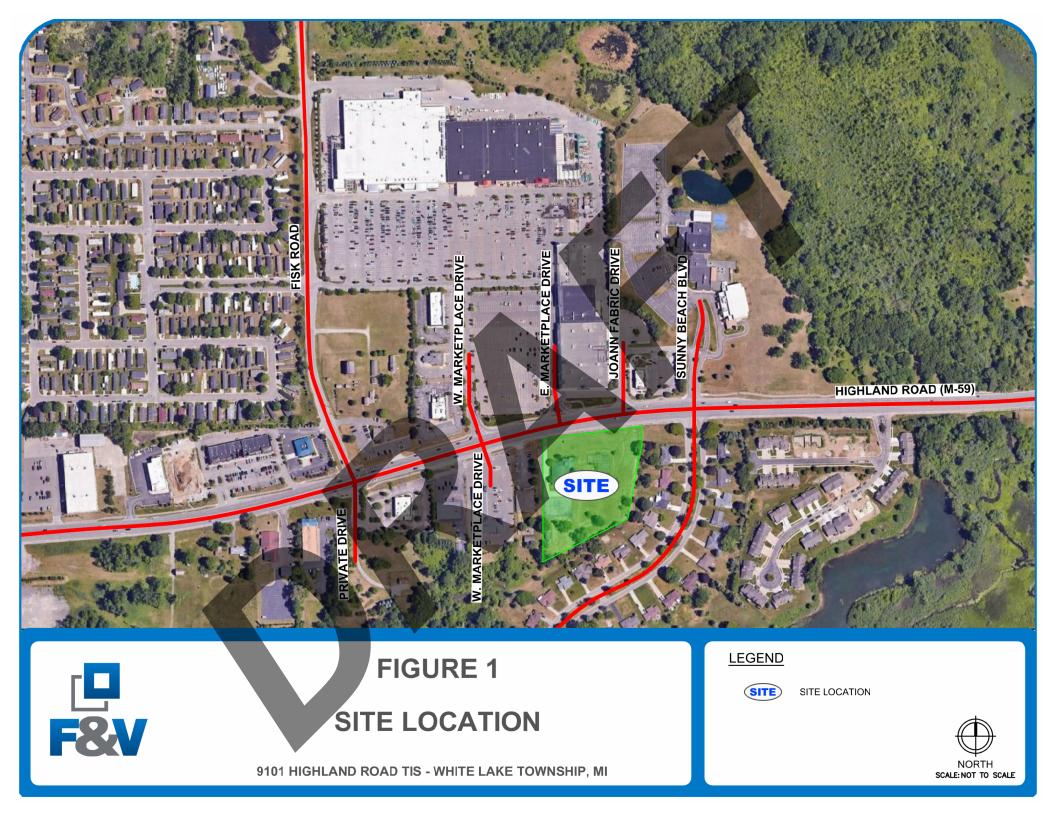
#### 6. Drive-Through Queueing Evaluation

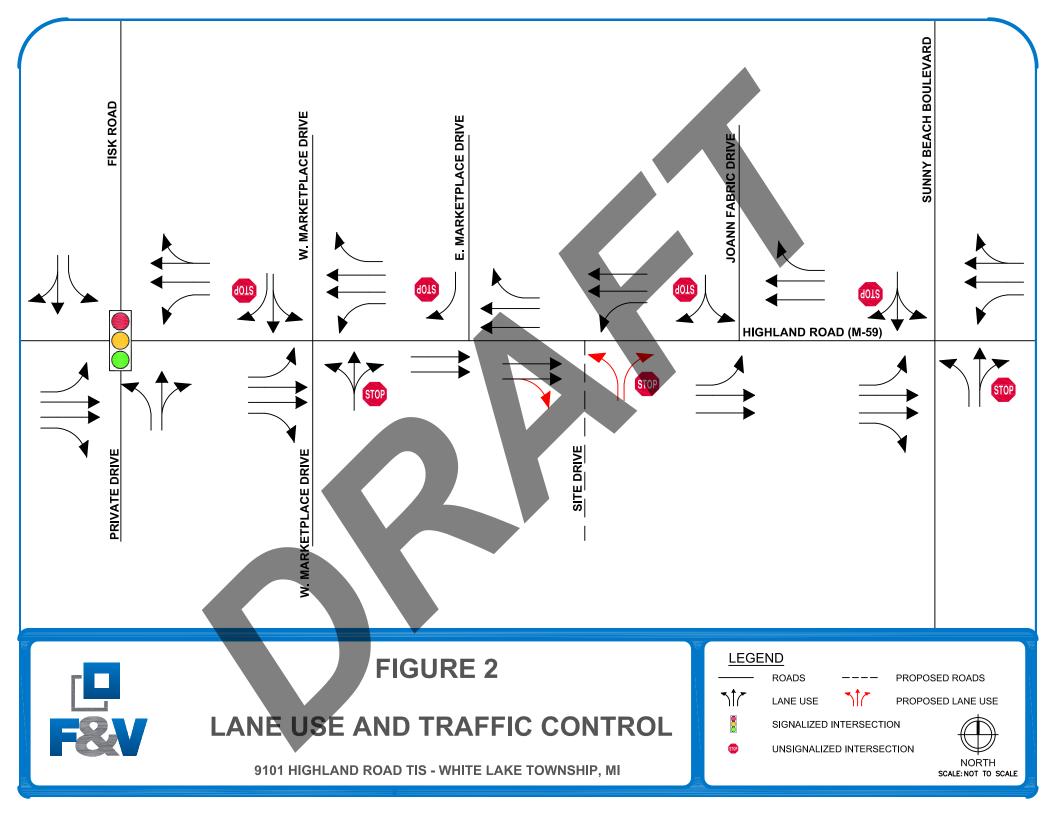
• The results of the drive-through queueing evaluation indicates that the proposed site plan can adequately accommodate the projected vehicle queueing associated with the proposed coffee-shop, without impacting internal site circulation or the operations along Highland Road (M-59).

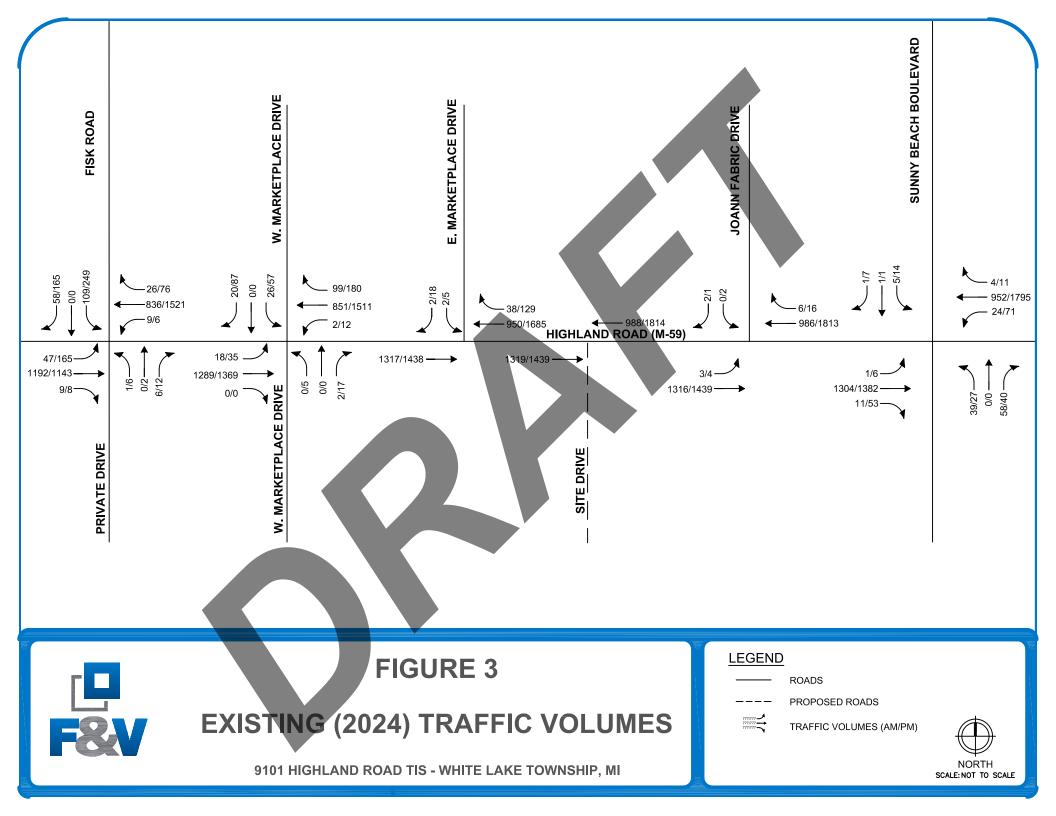
#### **11 RECOMMENDATIONS**

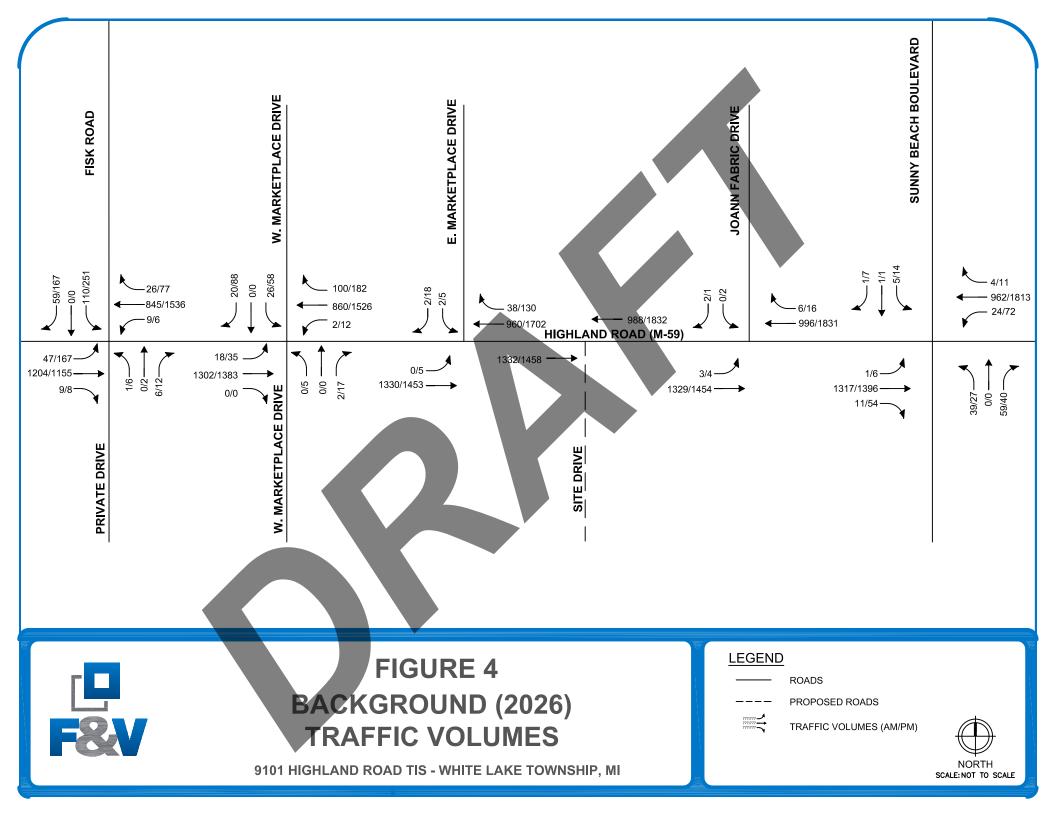
The recommendation of this TIS are as follows:

- Provide an eastbound right-turn lane along Highland Road (M-59) at the proposed Site Drive.
- Optimize the PM peak hour signal timing at the Highland Road (M-59) & Fisk Road intersection.


Any questions related to this memorandum, study, analysis, and results should be addressed to Fleis & VandenBrink.


I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Michigan.


Attachments: Figures 1 – 6


Proposed Site Plan Traffic Volume Data Signal Timing Permits Synchro / SimTraffic Results Auxiliary Lane Warrants

