Director's Report

Project Name: 9101 Highland

Description: Rezoning Request

Date on Agenda this packet pertains to: March 7th, 2024

 \boxtimes Public Hearing

 \Box Special Land Use

⊠Initial Submittal □Revised Plans

□Other:_____

⊠Rezoning

□Preliminary Approval

□Final Approval

Contact	Consultants &	Approval	Denial	Approved w/Conditions	Other	Comments
	Departments					
Sean	Community				\boxtimes	Based on comments from the Staff
O'Neil	Development					Planner
	Director					
Justin	Staff Planner	\boxtimes				See letter dated
Quagliata						02/16/2024

WHITE LAKE TOWNSHIP PLANNING COMMISSION

REPORT OF THE COMMUNITY DEVELOPMENT DEPARTMENT

TO:	Planning Commission
FROM:	Sean O'Neil, AICP, Community Development Director
	Justin Quagliata, Staff Planner
DATE:	February 16, 2024
RE:	9101 Highland Road (Parcel Number 12-23-227-003) Rezoning – Review #1

Affinity 10 Investments, LLC (Tom Hannawa) has requested the rezoning of approximately five acres located at 9101 Highland Road from R1-C (Single-Family Residential) to GB (General Business). The site is located on the south side of Highland Road, west of Sunnybeach Boulevard and contains approximately 458.4 feet of frontage on Highland Road.

The Future Land Use Map from the draft 2024 Master Plan designates the subject site in the Commercial Corridor category, which is intended to provide regional goods and services (such as large box-stores and drive-thrus) to residents and non-residents.

DRAFT 2024 FUTURE LAND USE MAP

Zoning

The subject site is currently zoned R1-C, which requires a minimum of 100 feet of lot width and 16,000 square feet of lot area. The requested GB zoning district requires a minimum of 200 feet of lot width and one (1) acre of lot area. With approximately 458.4 feet of lot width on Highland Road and five acres of lot area, the site meets the minimum standards for both lot area and lot width of the existing and proposed zoning districts. The following table illustrates the lot width and lot area standards for the existing R1-C and proposed GB zoning districts:

ZONING DISTRICT	LOT WIDTH	LOT AREA
R1-C	100 feet	16,000 square feet
GB	200 feet	1 acre

ZONING MAP

Physical Features

The former Calvary Lutheran Church building and its associated parking lot occupy the property, as well as a community garden. Topography of the site is generally level. The Michigan Department of Environment, Great Lakes, and Energy (EGLE) Wetland Map and the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map indicate neither wetlands nor floodplain are present on or near the site.

9101 Highland Road Rezoning – Review #1 Page 3

Access

The site fronts on Highland Road, which along the property is a five-lane road (two lanes in each direction and a center turn lane).

Utilities

Municipal water and sanitary sewer are available to serve the site. The location and capacity of utilities for any proposed development will be reviewed in detail by the Township Engineering Consultant at the time of a development submittal.

Staff Analysis

In considering any petition for an amendment to the zoning map, the Planning Commission and Township Board must consider the following criteria from Article 7, Section 13 of the Zoning Ordinance in making its findings, recommendations, and decision:

- A. Consistency with the goals, policies and future land use map of the White Lake Township Master Plan, including any subarea or corridor studies. If conditions have changed since the Master Plan was adopted, the consistency with recent development trends in the area. The Future Land Use Map from the draft 2024 Master Plan designates the subject site in the Commercial Corridor category, which aligns with the proposed GB zoning district.
- B. Compatibility of the site's physical, geological, hydrological and other environmental features with the host of uses permitted in the proposed zoning district. If the property is rezoned to GB, it would not directly or indirectly have a substantial adverse impact on the natural resources of the Township.
- C. Evidence the Applicant cannot receive a reasonable return on investment through developing the property with one (1) of the uses permitted under the current zoning. While no such evidence has been submitted, the property is five acres in size and located in a commercial corridor on Highland Road (M-59) with access to municipal water and sanitary sewer. It is reasonable to request commercial zoning on this type of property.
- D. The compatibility of all the potential uses allowed in the proposed zoning district with surrounding uses and zoning in terms of land suitability, impacts on the environment, density, nature of use, traffic impacts, aesthetics, infrastructure and potential influence on property values. The majority of the permitted and special land uses in the GB district are compatible with the surrounding uses and the nature of the uses anticipated in the Township Master Plan. Only the Township Assessor may provide comment on property values.
- E. The capacity of Township utilities and services sufficient to accommodate the uses permitted in the requested district without compromising the "health, safety and welfare" of the Township. The site is in an area intended to be serviced by public water and sanitary sewer. The Community Development Department defers to the Director of Public Services and Township Engineering Consultant on this matter.

9101 Highland Road Rezoning – Review #1 Page 4

- F. The capability of the street system to safely and efficiently accommodate the expected traffic generated by uses permitted in the requested zoning district. A traffic impact study (TIS) has been submitted. For the purpose of this rezoning application, the information provided is sufficient. The TIS describes existing traffic conditions and compares the potential trip generation of the site's use under the existing and proposed zoning classifications. If the rezoning is approved, prior to submitting a site plan review / special land use application a revised TIS shall be submitted to include Highland Road (M-59) and Sunnybeach Boulevard as a study intersection. Additionally, the site trip generation shall be revised to include potential trip generation based on two drive-thru restaurants, not one (a pick-up window (shown on the submitted concept plan) shall be calculated as a drive-thru restaurant). Also, AM peak hour trips shall be included for one of the two fast-casual restaurants (the TIS states the two potential fast-casual restaurants will not have breakfast service; however, this is an assumption and not indicative of how the proposed restaurants may be used if developed). Note when completing a full evaluation of the TIS during site plan review additional information or revisions may be required.
- G. The apparent demand for the types of uses permitted in the requested zoning district in relation to the amount of land in the Township currently zoned and available to accommodate the demand. Evidence of the demand in the Township for additional retail commercial uses has not been submitted. However, the location is appropriate for property zoned GB, given the traffic, residential units, and general density in the area.
- H. The boundaries of the requested rezoning district are reasonable in relationship to its surroundings, and construction on the site will be able to meet the dimensional regulations for the zoning district listed in the Schedule of Regulations. The subject site is located in a commercial corridor on Highland Road (M-59). The Applicant provided a concept plan showing two multi-tenant buildings on the site: the west building is 7,334 square feet in size and the east building is 6,542 square feet in size. The easterly unit in each building contains a drive-thru restaurant and each building has a patio in front; drive-thru restaurants and outdoor dining require special land use approval from the Planning Commission. Parking is shown on all sides of the buildings, with one driveway accessing Highland Road near the center of the site. The Applicant did not volunteer conditions on the rezoning related to the concept plan. Site plan review and approval would be required from the Planning Commission and Township Board to construct the buildings. The concept plan is not under consideration by the Township, and it has not been reviewed for compliance with applicable Zoning Ordinance requirements. Other factors that may impact future development of the site, such as, but not limited to, soils, topography, site layout, landscape and screening, stormwater/drainage, and utilities would be considered at the time of a development proposal.
- *I.* The requested zoning district is considered to be more appropriate from the Township's perspective than another zoning district. The uses allowed in the GB district are appropriate for the site.

- J. If the request is for a specific use, is rezoning the land more appropriate than amending the list of permitted or special land uses in the current zoning district to allow the use? Rezoning would be the most appropriate way to allow for the proposed use. Amending the R1-C zoning district to allow retail commercial uses and drive-thru restaurants would not be advised.
- *K. The requested rezoning will not create an isolated and unplanned spot zone.* The site is surrounded by R1-C (Single-Family Residential) zoning to the east and south, LB (Local Business) zoning to the west, and PB (Planned Business) zoning to the north.
- L. The request has not previously been submitted within the past one (1) year, unless conditions have changed or new information has been provided. This request is a new application.
- *M.* An offer of conditions submitted as part of a conditional rezoning request shall bear a reasonable and rational relationship to the property for which rezoning is requested. This standard is not applicable.
- *N. Other factors deemed appropriate by the Planning Commission and Township Board.* The Planning Commission and Township Board could also consider other factors which may be relevant to the rezoning request.

Planning Commission Options

The Planning Commission may recommend approval or denial of the rezoning request, or it may recommend a different zoning designation than proposed by the Applicant to the Township Board. <u>The proposed rezoning is compatible with the draft 2024 Master Plan and surrounding land uses. Staff recommends approval of the rezoning from R1-C to GB.</u>

CHARTER TOWNSHIP OF WHITE LAKE COMMUNITY DEVELOPMENT DEPARTMENT 7525 Highland Road, White Lake, Michigan 48383-2900 248-698-3300, Ext. 163

APPLICATION TO REZONE PROPERTY

_{Date:} 01/17/2	2024
Applicant Affin	ity 10 Investment LLC
Address, 4512	South Shore Street. Waterford MI 48328
Address. <u>- 248</u>	-361-1666
$\frac{Phone No.:}{Thom}$	<u></u> Fax No.:
E-mail: THOM	
Applicant's Interes	t in Property: LOI to purchase
Property Owner:	Calvary Evangelical Lutheran Church of Clarkston
Owner's Address:	6805 Bluegrass Dr, Clarkston MI 48346
Phone No.:	Fax No.:
	0101 Highland Road
Location of Proper	
Sidwell No(s).: 12	2-23-227-003
Total area of chan	ge: <u>5.02</u> acres
I, the undersigned	(owner, attorney, or option holder) hereby request that this property now classified
as R1-C (Single F	amily Residential) District, be reclassified as <u>GB (General Business)</u> District.
Applicant's Signat	ure:
	Tom Hannawa
Please Print Name	
Required Attachme	ents:
<u>× </u>	Legal description of the property proposed to be recorded.
$\frac{1}{2}$	Location map
<u>A</u> 3.	Rezoning sign location map
<u>X</u> _4.	Statement indicating why change is requested
<u>Х</u> 5.	Review fee (check payable to the Charter Township of White Lake)

LOCATION MAP SCALE: I" = 2,000'±

CODE SECTION §5.9.J.I.B §5.9.J.I §5.9.J.I §5.9.J.I.A §5.9.J.I.A	REQUIRED MULTI-TENANT SIGN HEIGHT: 15 FT ⁽²⁾⁽³⁾ SIGN AREA: 6 SF PER I FT OF SETBACK MAXIMUM SIGN AREA: 150 SF ⁽¹⁾ SIGN SETBACK: 10 FT RESIDENTIAL SETBACK: 100 FT	PROPOSED <15 FT <150 SF <150 SF 25.2 FT 200.6 FT
\$5.9.J.I.B \$5.9.J.I \$5.9.J.I \$5.9.J.I.A \$5.9.J.I.A	MULTI-TENANT SIGN HEIGHT: I5 FT ⁽²⁾⁽³⁾ SIGN AREA: 6 SF PER I FT OF SETBACK MAXIMUM SIGN AREA: I50 SF ⁽¹⁾ SIGN SETBACK: I0 FT RESIDENTIAL SETBACK: I00 FT	<15 FT <150 SF <150 SF 25.2 FT 200.6 FT
§5.9.J.I §5.9.J.I §5.9.J.I.A §5.9.J.I.A	I 5 FT ⁽²⁾⁽³⁾ SIGN AREA: 6 SF PER I FT OF SETBACK MAXIMUM SIGN AREA: I 50 SF ⁽¹⁾ SIGN SETBACK: I 0 FT RESIDENTIAL SETBACK: 100 FT	<150 SF <150 SF 25.2 FT 200.6 FT
\$5.9.J.I \$5.9.J.I \$5.9.J.I.A \$5.9.J.I.A	SIGN AREA: 6 SF PER I FT OF SETBACK MAXIMUM SIGN AREA: 150 SF ⁽¹⁾ SIGN SETBACK: 10 FT RESIDENTIAL SETBACK: 100 FT	<150 SF <150 SF 25.2 FT 200.6 FT
§5.9.J.I.A §5.9.J.I.A §5.9.J.I.A	6 SF PER I FT OF SETBACK MAXIMUM SIGN AREA: I50 SF ⁽¹⁾ SIGN SETBACK: I0 FT RESIDENTIAL SETBACK: I00 FT	<150 SF 25.2 FT 200.6 FT
§5.9.J.I.A §5.9.J.I.A §5.9.J.I.A	MAXIMUM SIGN AREA: 150 SF ⁽¹⁾ SIGN SETBACK: 10 FT RESIDENTIAL SETBACK: 100 FT	<150 SF 25.2 FT 200.6 FT
§5.9.J.I.A §5.9.J.I.A	I 50 SF ⁽¹⁾ SIGN SETBACK: I0 FT RESIDENTIAL SETBACK: I00 FT	25.2 FT 200.6 FT
§5.9.J.I.A §5.9.J.I.A	SIGN SETBACK: 10 FT RESIDENTIAL SETBACK: 100 FT	25.2 FT 200.6 FT
§5.9.J.I.A	I0 FT <u>RESIDENTIAL SETBACK:</u> 100 FT	200.6 FT
§5.9.J.I.A	RESIDENTIAL SETBACK:	200.6 FT
	1 100 FT	200.6 F1
2	10011	
(I) MAXIMUM S	SIGN AREA SHALL NOT INCLUDE DECORAT	TIVE ELEMENTS
SUCH AS BA	ASES, COLUMNS OR CAPS	
(2) MINIMUM H	EIGHT OF A SIGN BASE SHALL NE 2 FT IN H	IEIGHT
(3) EACH INDI	/IDUAL TENANT SIGN SHALL NOT EXCEED	4 FT IN HEIGHT
GENERAI	NOTES	
((2) MINIMUM H 3) EACH INDIN <u>GENERAI</u> I. THE WITH	 MINIMUM HEIGHT OF A SIGN BASE SHALL NE 2 FT IN H EACH INDIVIDUAL TENANT SIGN SHALL NOT EXCEED <u>GENERAL NOTES</u> THE CONTRACTOR SHALL VERIFY AND FAM WITH THE EXISTING SITE CONDITIONS AND TO OF WORK (INCLUDING DIMENSIONS, LAYO

(I) REQUIREMENT FOR RESTAURANT WITH DRIVE-THRU

NO PARKING STALL SHALL BE LOCATED ADJACENT TO R.O.W LINE, STREET EASEMENT OR (2) SIDEWALK WHICHEVER IS CLOSER

(3) NO ENCLOSURES SHALL BE PERMITTED CLOSER TO THE FRONT LOT LINE THAN THE PRINCIPAL

BUILDING				
OFF-S	TREET PARKING REQUIRE	MENTS		
CODE SECTION	REQUIRED	PROPO		
§ 5.11.M	FAST FOOD PARKING:	125 SP/		
	I SPACE PER 75 OF GFA			
	(2,522 SF +2,402 SF) =4,924 SF			
	(4,924 SF)(1 SPACES/ 75 SF)= 66 SPACES			
	RESTAURANT PARKING:			
	I SPACE PER 100 SF OF GFA			
	(2,502 SF)(1 SPACE/100 SF)= 25 SPACES			
	RETAIL PARKING:			
	I SPACE PER 200 SF OF GFA			
	(3,228 SF + 1,451 SF + 1,505 SF)=6,184 SF			
	(6,184 SF)(1 SPACE/200 SF)= 31 SPACES			
	TOTAL: 66 + 25 + 31= 122 SPACES			
§ 5.11.M	STACKING SPACES (WEST FAST FOOD):	15 SPAC		
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X		
§ 5.11.M	STACKING SPACES (EAST FAST FOOD):	I0 SPAC		
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X		
§ 5.11.Q	90° PARKING:	9 FT X I		
	9 FT X 18 FT WITH 24 FT AISLE $^{(1)}$	W/ 24 F		
§ 5.19	LANDSCAPE REQUIREMENT:	PROVID		
	20 FT WIDTH ALONG RESIDENTIAL			
	3 FT HIGH BERM WITH A 2 FT CROWN			
§ 5.11.P.I	LOADING AREA:	17 FT X		
	10 FT X 50 FT WITH 15 FT CLEARANCE			

(I) PARKING SPACE LENGTH MAY BE REDUCED TO 17 FT WHERE 7 FT SIDEWALK OR LANDSCAPE IS PROVIDED

- SELVES SCOPE R TO INITIATING THE IMPROVEMENTS IDENTIFIED WITHIN THESE DOCUMENTS. SHOULD ANY DISCREPANCY BE FOUND BETWEEN THE EXISTING SITE CONDITIONS AND THE PROPOSED WORK THE CONTRACTOR SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN, LLC. PRIOR TO THE START OF CONSTRUCTION.
- 2. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND ENSURE THAT ALL REQUIRED APPROVALS HAVE BEEN OBTAINED PRIOR TO THE START OF CONSTRUCTION. COPIES OF ALL REQUIRED PERMITS AND APPROVALS SHALL BE KEPT ON SITE AT ALL TIMES DURING CONSTRUCTION.
- 3. ALL CONTRACTORS WILL, TO THE FULLEST EXTENT PERMITTED BY LAW, INDEMNIFY AND HOLD HARMLESS STONEFIELD ENGINEERING & DESIGN, LLC. AND IT'S SUB-CONSULTANTS FROM AND AGAINST ANY DAMAGES AND LIABILITIES INCLUDING ATTORNEY'S FEES ARISING OUT OF CLAIMS BY EMPLOYEES OF THE CONTRACTOR IN ADDITION TO CLAIMS CONNECTED TO THE PROJECT AS A RESULT OF NOT CARRYING THE PROPER INSURANCE FOR WORKERS COMPENSATION, LIABILITY INSURANCE, AND LIMITS OF COMMERCIAL GENERAL LIABILITY INSURANCE.
- 4. THE CONTRACTOR SHALL NOT DEVIATE FROM THE PROPOSED IMPROVEMENTS IDENTIFIED WITHIN THIS PLAN SET UNLESS APPROVAL IS PROVIDED IN WRITING BY STONEFIELD ENGINEERING & DESIGN, LLC. 5. THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND
- METHODS OF CONSTRUCTION. 6. THE CONTRACTOR SHALL NOT PERFORM ANY WORK OR CAUSE DISTURBANCE ON A PRIVATE PROPERTY NOT CONTROLLED BY THE PERSON OR ENTITY WHO HAS AUTHORIZED THE WORK WITHOUT PRIOR WRITTEN CONSENT FROM THE OWNER OF THE PRIVATE PROPERTY.
- 7. THE CONTRACTOR IS RESPONSIBLE TO RESTORE ANY DAMAGED OR UNDERMINED STRUCTURE OR SITE FEATURE THAT IS IDENTIFIED TO REMAIN ON THE PLAN SET. ALL REPAIRS SHALL USE NEW MATERIALS TO RESTORE THE FEATURE TO ITS EXISTING CONDITION AT THE CONTRACTORS EXPENSE. 8. CONTRACTOR IS RESPONSIBLE TO PROVIDE THE APPROPRIATE SHOP
- DRAWINGS, PRODUCT DATA, AND OTHER REQUIRED SUBMITTALS FOR REVIEW. STONEFIELD ENGINEERING & DESIGN, LLC. WILL REVIEW THE SUBMITTALS IN ACCORDANCE WITH THE DESIGN INTENT AS REFLECTED WITHIN THE PLAN SET. 9. THE CONTRACTOR IS RESPONSIBLE FOR TRAFFIC CONTROL IN
- ACCORDANCE WITH MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION. 10. THE CONTRACTOR IS REQUIRED TO PERFORM ALL WORK IN THE PUBLIC RIGHT-OF-WAY IN ACCORDANCE WITH THE APPROPRIATE GOVERNING AUTHORITY AND SHALL BE RESPONSIBLE FOR THE
- PROCUREMENT OF STREET OPENING PERMITS. 11. THE CONTRACTOR IS REQUIRED TO RETAIN AN OSHA CERTIFIED SAFETY INSPECTOR TO BE PRESENT ON SITE AT ALL TIMES DURING CONSTRUCTION & DEMOLITION ACTIVITIES. 12. SHOULD AN EMPLOYEE OF STONEFIELD ENGINEERING & DESIGN, LLC.
- BE PRESENT ON SITE AT ANY TIME DURING CONSTRUCTION, IT DOES NOT RELIEVE THE CONTRACTOR OF ANY OF THE RESPONSIBILITIES AND REQUIREMENTS LISTED IN THE NOTES WITHIN THIS PLAN SET.

GRAPHIC SCALE IN FEET I" = 40'

Мемо

VIA EMAIL: ewilliams@stonefieldeng.com

То:	Stonefield Engineering
From:	Jacob Swanson, PE Paul Bonner, EIT
	Fleis & VandenBrink
Date:	January 11, 2024
	9101 Highland Road (M-59) – Commercial Development
Re:	White Lake Township, Michigan Traffic Impact Study

1 INTRODUCTION

This memorandum presents the results of the Traffic Impact Study (TIS) for the proposed commercial development in White Lake Township, Michigan. The project site is generally located on the south side of Highland Road (M-59), approximately 1,000-feet east of Fisk Road, as shown on the attached **Figure 1**. The proposed commercial development includes construction of commercial development that includes retail and restaurant land uses. The project site is currently vacant and was previously occupied by the Calvary Lutheran Church, which will be razed with the construction of the proposed development. Site access is proposed via one (1) full access driveway on Highland Road (M-59). The study section of Highland Road (M-59) is under the jurisdiction of the Michigan Department of Transportation (MDOT). The purpose of this TIS is to evaluate the impact of the proposed development on the adjacent roadway network, as part of the site plan approval and driveway permitting processes.

Scope of work for this study was developed based on Fleis & VandenBrink's (F&V) knowledge of the study area, understanding of the development program, accepted traffic engineering practices, and information published by the Institute of Transportation Engineers (ITE). Study analyses were completed using Synchro/SimTraffic (Version 11) traffic analysis software. Sources of data for this study include F&V subconsultant Quality Counts (QC), MDOT, the Road Commission for Oakland County (RCOC), White Lake Township, the Southeast Michigan Council of Governments (SEMCOG), and ITE.

2 BACKGROUND

2.1 EXISTING ROAD NETWORK

Lane uses and traffic control at the study intersections are shown on the attached **Figure 2** and study roadways are further described below. For purposes of this study, all minor street and driveways were assumed to have an operating speed of 25 miles per hour (mph), unless otherwise noted.

Highland Road (M-59) generally runs in the east / west directions, adjacent to the north side of the project site. The study section of roadway is classified as an *Other Principal Arterial*, is under the jurisdiction of MDOT, has a posted speed limit of 50-mph, and has an Average Annual Daily Traffic (AADT) volume of approximately 33,400 (MDOT 2022) vehicles per day (vpd). The study section of roadway provides a typical five-lane cross-section, with two (2) lanes of travel in each direction and a center two-way left-turn lane (TWLTL). At the signalized intersection with Fisk Road, Highland Road (M-59) widens to provide an exclusive eastbound right-turn lane. Additionally, Highland Road (M-59) widens to provide an exclusive westbound right-turn lane at the intersection with the JOANN Fabric driveway.

Fisk Road generally runs in the north / south directions, west of the project site, terminating at Highland Road (M-59). The study section of roadway is classified as a *Local Road*, is under the jurisdiction of RCOC, has an assumed prima facie speed limit of 55-mph, and has an AADT volume of approximately 1,256 vpd (MDOT 2022). The study section of Fisk Road provides typical three-lane cross-section, with one (1) lane of travel in each direction and a center two-way left-turn lane (TWLTL).

2.2 EXISTING TRAFFIC VOLUMES

F&V subconsultant QC collected existing Turning Movement Count (TMC) data on Wednesday, December 13, 2023, during the AM (7:00 AM to 9:00 AM) and PM (4:00 PM to 6:00 PM) peak periods at the following study intersections:

Highland Road (M-59) & Fisk Road
 Highland Road (M-59) & JOANN Fabric Driveway

During collection of the turning movement counts, Peak Hour Factors (PHFs), pedestrian and bicycle volumes, and commercial truck percentages were recorded and used in the traffic analysis. The peak hours of each of the study intersections were utilized and the through volumes were carried through the roadway network and balanced upwards at the proposed site driveways. Therefore, traffic volumes used in the analysis and shown on the attached traffic volume figures may not match the raw traffic volumes shown in the data collection.

The weekday AM and PM peak hours for the adjacent roadway network were observed to generally occur between 7:30 AM to 8:30 AM and 4:15 PM to 5:15 PM, respectively. F&V collected an inventory of existing lane use and traffic controls, as shown on the attached **Figure 2**. F&V also obtained the current signal timing permit for the study intersection of Highland Road (M-59) & Fisk Road from MDOT. The existing 2023 peak hour traffic volumes used in the analysis are shown on the attached **Figure 3**. All applicable background data referenced in this memorandum are attached.

3 EXISTING CONDITIONS

Existing peak hour vehicle delays and Levels of Service (LOS) were calculated at the study intersections using Synchro/SimTraffic (Version 11) traffic analysis software. This analysis was based on the existing lane use and traffic control shown on the attached **Figure 2**, the exiting peak hour traffic volumes shown on the attached **Figure 3**, and methodologies presented in the *Highway Capacity Manual*, *6*th Edition (HCM6).

Descriptions of LOS "A" through "F" as defined in the HCM6, are attached. Typically, LOS D is considered acceptable, with LOS A representing minimal delay, and LOS F indicating failing conditions. Additionally, SimTraffic network simulations were reviewed to evaluate network operations and vehicle queues. The results for the exiting conditions analysis are attached and shown in **Table 1**.

				Existing Conditions					
	Intersection	Control	Approach	AM P	eak	PM Peak			
		Control	ripprodon	Delay (s/veh)	LOS	PM Peak Delay (s/veh) LOS 53.1 D 18.2 B 11.0 B 11.6 B 25.3 C 47.9 D 38.0 D 67.0 E 47.1 D 28.6 C 17.2 C Free 40.6	LOS		
			EBL	14.0	В	53.1	D		
			EBT	27.7	С	18.2	В		
			EBR	14.7	В	11.0	В		
	Highland Road (M-59) & Fisk Road	Signalized	WBL	15.9	С	11.6	В		
4			WBTR	22.7	С	25.3	С		
1			NBL	25.1	С	47.9	D		
	T ION T IOU		NBTR	22.3	С	38.0	D		
			SBL	27.3	С	67.0	Е		
			SBTR	24.7	С	47.1	D		
			Overall	25.3	С	28.6	С		
	Highland Road (M-59)	0	EBL	10.8	В	17.2	С		
2	&	Stop (Minor)	WB		Free				
	JOANN Fabric Drive		SB	12.2	В	40.6	Е		

Table 1: Existing Intersection Operations

The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exceptions:

Highland Road (M-59) & Fisk Road

• During the PM peak hour: the southbound left-turn movement currently operates at LOS E.

Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed for this movement; however, the majority of vehicle queues were observed to be processed within each cycle length, leaving minimal residual vehicle queueing. Additionally, any remaining vehicle queues were observed to dissipate and were not present throughout the PM peak hour.

Highland Road (M-59) & JOANN Fabric Drive

• During the PM peak hour: the southbound approach currently operates at LOS E.

The southbound approach was designed to prohibit egress left-turns; however, the left-turn traffic from this approach is causing the reported delay. The total volume of southbound egress traffic during the PM peak hour is very low (3 vehicles), which includes two (2) vehicles making an egress left-turn movement. Additionally, although the delay experienced by these vehicles causes the approach to operate at LOS E, review of SimTraffic microsimulations indicates acceptable operations; the 95th percentile queue length reported for this approach was approximately 15-feet (~1 vehicle), which is not significant.

4 BACKGROUND CONDITIONS (2025)

Historical population and economic profile data was obtained for White Lake Township from the Southeast Michigan Council of Governments (SEMCOG) database, in order to calculate a background growth rate to project the existing 2023 peak hour traffic volumes to the site buildout year of 2025. Population and employment projections from 2020 to 2050 were reviewed and show average annual growth rates of 0.41% and 0.28%, respectively. Therefore, a conservative background growth rate of **0.5%** per year was applied to the existing peak hour traffic volumes to forecast the background 2025 peak hour traffic volume *without the proposed development*, as shown on the attached **Figure 4**.

In addition to background growth, it is important to account for traffic that will be generated by approved developments within the study area that have yet to be constructed or are currently under construction. At the time of this study, no background developments were identified within the vicinity of the project site.

Background peak hour vehicle delays and LOS *without the proposed development* were calculated at the study intersections based on the existing lane use and traffic control shown on the attached **Figure 2**, the background peak hour traffic volumes shown on the attached **Figure 4**, and methodologies presented in the HCM6. The results of the background conditions analysis are attached and summarized in **Table 2**.

					Existing Conditions				Background Conditions				Difference			
	Intersection	Control	Approach	AM Pe	ak	PM Pe	PM Peak		AM Peak		ak	AM Peak		PM Peak		
		Control	Approach	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
			EBL	14.0	В	53.1	D	14.1	В	56.4	Е	0.1	-	3.3	D→E	
			EBT	27.7	С	18.2	В	28.1	С	18.3	В	0.4	-	0.1	-	
	Highland Road (M-59) &	Signal	EBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	-	0.0	-	
			WBL	15.9	С	11.6	В	16.0	С	11.8	В	0.1	-	0.2	-	
4			WBTR	22.7	С	25.3	С	22.9	С	25.8	С	0.2	-	0.5	-	
1			NBL	25.1	С	47.9	D	25.2	С	48.1	D	0.1	-	0.2	-	
	Fisk Road		NBTR	22.3	С	38.0	D	23.3	С	38.0	D	0.0	-	0.0	-	
			SBL	27.3	С	67.0	Е	27.3	С	67.6	Е	0.0	-	0.6	-	
			SBTR	24.7	С	47.1	D	24.7	С	47.4	D	0.0	-	0.3	-	
			Overall	25.3	С	28.6	С	25.6	С	29.0	С	0.3	-	0.4	-	
	Highland Road	01	EBL	10.8	В	17.2	С	10.9	В	17.4	С	0.1	-	0.2	-	
2	(M-59) &	Stop (Minor)	WB		Fr	ee		Free				N/A				
	JOANN Fabric Dr. (Minor)		SB	12.2	В	40.6	Е	12.3	В	41.7	Е	0.1	-	1.1	-	

Table 2: Background Intersection Operations

The results of the background conditions analysis indicates that all approaches and movements at the study intersections are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays and the following additional impacts to LOS:

Highland Road (M-59) & Fisk Road

• During the PM peak hour: The eastbound left-turn movement is expected to operate at LOS E.

Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed for the eastbound and southbound left-turn movements during the PM peak hour; however, the majority of vehicle queues were observed to be processed within 1-2 cycle length, leaving minimal residual vehicle queueing. Additionally, any remaining vehicle queues were observed to dissipate and were not present throughout the peak hour.

Review of SimTraffic microsimulations throughout the remaining study roadway network indicates acceptable operations and minimal vehicle queueing during both the AM and PM peak hours.

5 SITE TRIP GENERATION

The number of weekday peak hour (AM and PM) and daily vehicle trips that would be generated by the proposed development were calculated using the rates published by the Institute of Transportation Engineers (ITE) in *Trip Generation, 11th Edition.* The proposed project includes a commercial development with retail and restaurant land uses. For purposes of this study the following land uses were assumed in the analysis: a coffee shop with drive-through, two (2) fast-casual restaurants, and retail space. Additionally, the two potential fast-casual restaurants will not have breakfast service; therefore, AM peak hour trips were not included for this land use. The site trip generation forecast utilized for this study is summarized in **Table 3**.

Land Lico	ITE	Amount	Unite	Average Daily	AM P	eak Ho	ur (vph)	PM Peak Hour (vph)			
	Code	Amount	Units	Traffic (vpd)	In	Out	Total	In	Out	Total	
Strip Retail Plaza (<40k SF)	Strip Retail Plaza (<40k SF) 822 6,184 SF		SF	491	9	6	15	28	27	55	
Pa)% PM)	98	0	0	0	11	11	22			
		Ne	w Trips	393	9	6	15	17	15	33	
Fast Casual Restaurant	930	4,904	SF	476	0	0	0	34	28	62	
Pa	ss-By ((0% AM, 43	3% PM)	205	0	0	0	13	13	26	
		Ne	w Trips	271	0	0	0	21	15	36	
Coffee Shop with Drive-Through	937	2,522	SF	1,346	111	106	217	49	49	98	
Pass	s-By (50	0% AM, 55	5% PM)	707	54	54	108	27	27	54	
		Ne	w Trips	639	57	52	109	22	22	44	
		Tota	al Trips	2,313	120	112	232	111	104	215	
		Total F	Pass-By	1,010	54	54	108	51	51	102	
		Total Ne	w Trips	1,303	66	58	124	60	53	113	

Table 3: Site Trip Generation Summary

As is typical of commercial developments, a portion of the trips generated by the proposed development are from vehicles already on the adjacent roadway network that will pass the site on their way from an origin to their ultimate destination. Therefore, not all traffic at the site driveway is necessarily new traffic added to the street system. These trips are therefore reduced from the total external trips generated by a study site. This percentage of the trips generated by the development are considered "pass-by", which are already present of the adjacent roadway network. The percentage of pass-by used in this analysis was determined based on the rates published by ITE in the *Trip Generation Manual, 11th Edition*.

6 SITE TRIP DISTRIBUTION

The vehicular trips that would be generated by the proposed development were assigned to the study roadway network based on the proposed stie access plan and driveway configurations, the existing peak hour traffic patterns in the adjacent roadway network, and methodologies published by ITE. The ITE trip distribution

methodology assumes that new trips will enter the network and access the development, then leave the development and return to their direction of origin, whereas pass-by trips will enter and exit the development in their original direction of travel. The stie trip distributions utilized in the analysis are summarized in **Table 4**.

		New T	rips	Pass-By Trips					
AM	PM	To/From	Via	Direction	AM	PM			
7%	12%	North	Fisk Road						
40%	52%	East	Highland Road (M-59)	Westbound	42%	56%			
53%	36%	West	Highland Road (M-59)	Eastbound	58%	44%			
100%	100%		Total		100%	100%			

Table 4: Site Trip Distribution

The vehicular traffic volumes shown in **Table 3** were distributed to the study roadway network according to the distribution shown in **Table 4**. Therefore, the site generated trips shown on the attached **Figure 5** were added to the background peak hour traffic volumes shown on the attached **Figure 4**, in order to calculate the future peak hour traffic volumes, with the addition of the proposed development. Future peak hour traffic volumes are shown on the attached **Figure 6**.

7 FUTURE CONDITIONS (2025)

Future peak hour vehicle delays and LOS *with the addition of the site-generated trips from the proposed development*, were calculated based on the proposed lane use and traffic controls shown on the attached **Figure 2**, the future peak hour traffic volumes shown on the attached **Figure 6**, and the methodologies presented in the HCM6. Results of the future conditions analysis are attached and summarized in **Table 5**.

				Backg	rounc	Conditio	ons	Future Conditions				Difference			
	Intersection	Control	Approach	AM Pe	eak	PM Peak		AM Peak		PM Peak		AM Peak		PM Peak	
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS
			EBL	14.1	В	56.4	Е	14.4	В	60.0	Е	0.3	-	3.6	-
			EBT	28.1	С	18.3	В	29.4	С	18.5	В	1.3	-	0.2	-
			EBR	14.7	В	11.0	В	14.7	В	11.0	В	0.0	-	0.0	-
	Highland Road		WBL	16.0	С	11.8	В	16.5	С	12.0	В	0.5	-	0.2	-
4	(M-59) & Fisk Road	Signal	WBTR	22.9	С	25.8	С	23.5	С	26.5	С	0.0	-	0.0	-
l '			NBL	25.2	С	48.1	D	25.2	С	48.1	D	0.0	-	0.0	-
			NBTR	23.3	С	38.0	D	23.3	С	38.0	D	0.0	-	0.0	-
			SBL	27.3	С	67.6	Е	27.5	С	70.3	Е	0.2	-	2.7	-
			SBTR	24.7	С	47.4	D	24.7	С	47.4	D	0.0	-	0.0	-
			Overall	25.6	С	29.0	С	26.5	С	29.8	С	0.9	-	0.8	-
	Highland Road		EBL	10.9	В	17.4	С	11.0	В	17.8	С	0.1	-	0.4	-
2	(M-59) &	Stop (Minor)	WB		Fr	ee		Free				N/A			
	JOANN Fabric Dr.		SB	12.3	В	41.7	Е	12.5	В	43.3	Е	0.2	-	1.6	-
	Highland Road		EB						Fr	ee					
3	(M-59) &	Stop (Minor)	WBL		N	/A		10.5	В	10.4	В	N/A			
	Site Drive		NB					21.7	С	33.1	D				

Table 5: Future Intersection Operations

Results of the future conditions analysis indicate that all approaches and movements at the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with minor increases in delays and no additional impacts to LOS. Additionally, the proposed site driveway is expected to operate acceptably, at LOS D or better during both the AM and PM peak hours.

8 ACCESS MANAGEMENT

8.1 DRIVEWAY SPACING EVALUATION

The MDOT *Geometric Design Guidance* (Section 1.2.2) criteria were utilized to evaluate the location of the proposed site driveway, in relation to nearby intersections and access points within close proximity to the project site. The intersection corner clearance criteria were evaluated for the 50-mph section of Highland Road (M-59), adjacent to the project site. The distance of the proposed site driveway from nearby intersections and access points, and the warranting criteria are summarized in **Table 6** and displayed in **Exhibit 1**.

				-	
Adjace	nt Drive	eways & Intersections	Distance	Criteria	Meets
Site Drive	to	Preschool Drive	280 feet	455 feet	NO
Site Drive	to	Sunny Beach Boulevard	400 feet	170 feet	YES
Site Drive	to	JOANN Fabrics Drive	150 feet	750 feet	NO
Site Drive	to	ROSS Drive	130 feet	750 feet	NO
Site Drive	to	ROSS Drive	130 feet	750 feet	

Table 6: Desirable Corner Clearance Summary

The results of the driveway spacing analysis indicate that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveways. However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the development site plan includes proposed future cross access, stubbed at the property line to the west; this would provide improved site access, should the adjacent property ever be redeveloped, permitting this cross access between the nearby developments on the south side of Highland Road (M-59).

8.2 AUXILIARY TURN LANE EVALUATION

The MDOT auxiliary turn lane criteria were evaluated at the proposed site driveway on Highland Road (M-59). Highland Road (M-59) currently provides an existing center two-way left-turn lane (TWLTL); therefore, the left-turn lane criteria was not evaluated at the proposed site driveway. This analysis was based on the future peak hour traffic volumes shown on the attached **Figure 6**. The results of the analysis are shown on the attached chart and are summarized in **Table 7**.

Intersection	Peak	Recommendation	
	AM Peak Hour	PM Peak Hour	Recommendation
Highland Road (M-59) at Site Drive	Right-Turn Lane	Right-Turn Lane	Right-Turn Lane

Table 7: Right-turn Treatment Criteria Evaluation Summary

The result of the auxiliary turn lane evaluation indicates that a right-turn deceleration lane is warranted on Highland Road (M-59) at the proposed site driveway.

9 FUTURE CONDITIONS WITH IMPROVEMENTS ANALYSIS

Signal timing optimizations were reviewed at the signalized study intersection of Highland Road (M-59) & Fisk Road and were determined to adequately improve the study intersection to LOS D or better during the PM peak hour. Additionally, the recommended right-turn lane was included in the future improvements analysis. The results of the future intersection operations, with the recommended mitigation measures are attached and summarized in **Table 8**.

				Fut	onditions	F	uture	w/ IMP		Difference						
	Intersection	Control	Approach	AM Pe	eak	PM Peak		AM Peak		PM Peak		AM Peak		PM P	Peak	
				Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
			EBL	14.4	В	60.0	Е			50.7	D			-9.3	E→D	
	Highland Road		EBT	29.4	С	18.5	В			21.2	С			2.7	B→C	
			EBR	14.7	В	11.0	В			12.6	В			1.6	-	
			WBL	16.5	С	12.0	В	No Change		15.8	В	No Change		3.8	-	
4		Signal	WBTR	23.5	С	26.5	С			46.7	D			20.2	C→D	
	&		NBL	25.2	С	48.1	D			43.0	D			-5.1	-	
	FISK ROad		NBTR	23.3	С	38.0	D				С			0.0	D→C	
			SBL	27.5	С	70.3	Е			54.0	D			-16.3	E→D	
			SBTR	24.7	С	47.4	D			40.9	D			-6.5	-	
			Overall	26.5	С	29.8	С			37.7	D			7.9	C→D	
	Highland Road		EB		Fr	ee			Fr	ee		N/A				
3	(M-59) &	Stop (Minor)	WBL	10.5	В	10.4	В	10.5	В	10.4	В	0.0	-	0.0	-	
	Site Drive	(winor)	NB	21.7	С	33.1	D	20.8	С	32.9	D	-0.9	-	-0.2	-	

Table 8: Future Intersection Operations with Improvements

The results of the future conditions with improvements analysis indicate that, with the implementation of the recommended mitigation measures, all study intersection approaches and movements are expected to continue to operate acceptably, at LOS D or better during both the AM and PM peak hours. Review of SimTraffic microsimulations also indicates improved operations and reduced vehicle queues at the signalized study intersection of Highland Road (M-59) & Fisk Road during the PM peak hour.

10 QUEUEING ANALYSIS

The drive-through vehicle queueing was reviewed to determine if the proposed on-site queue lengths provide adequate storage to accommodate the projected operations. The development plan includes two (2) drive-through windows; however, only the coffee-shop has an order board. The fast casual restaurant provides a pick-up window only, for order ahead and food delivery services. Therefore, the drive-through queueing analysis was performed only for the coffee-shop, in order to insure adequate on-site storage is provided to accommodate the projected peak hour trip generation demand.

The coffee-shop is expected to have a peak trip generation of 111 trips during the AM peak hour. Coffee-shops with drive-through typically have an average service rate of approximately 80 vehicles per hour, with 80% of customers utilizing the drive-through. Therefore, of the total vehicles generated by the proposed coffee-shop during the peak period, it is estimated that approximately 89 vehicles will utilize the drive-through; the remaining vehicles will park and walk-in. The evaluation of the queue length included two criteria:

- 1. A queueing analysis was performed to determine if the projected demand of the site exceeds the service rate and calculate the projected queueing. The projected demand (89 veh/hr) is greater than the service rate (80 veh/hr) of the site; therefore, there is a potential for vehicles to queue past the pickup window, as the demand exceeds the capacity.
- 2. A Poisson Distribution was performed to determine the probability of random arrivals. The results indicate a maximum potential of five (5) vehicles arriving at any given time.

The results of the analysis are summarized in Table 9.

DRIVE-THROUGH STACKING SPACE CALCULATOR									
Number of Arrivals	86								
Time per Vehicle (s)	45								
Service Rate (veh/hr)	80								
Drive-Through Queue (veh)	9								
Peak Arrival (veh)	5								
Vehicle Length	25								
TOTAL QUEUE (ft)	350								

Table 9: Vehicle Queuing Analysis

The results of the projected vehicle queuing analysis indicates that the maximum anticipated arrivals generated by the proposed coffee-shop with drive-through can be adequately accommodated within the available queue length, without impacting internal site circulation or the operations along Highland Road (M-59).

11 CONCLUSIONS

The conclusions of this TIS are as follows:

1. Existing Conditions (2023)

- The results of the existing conditions analysis indicates that all approaches and movements at the study intersections are currently operating acceptably, at LOS D or better, during both the AM and PM peak hours, with the following exceptions:
 - <u>Highland Road (M-59) & Fisk Road:</u> The SB left-turn movement is currently operating at LOS E, during the PM peak hour. Review of SimTraffic network simulations indicates generally acceptable operations. Occasional periods of vehicle queues were observed; however, the majority were observed to be processed within each cycle length, leaving minimal residual vehicle queueing.
 - <u>Highland Road (M-59) & JOANN Fabric Drive</u>: The SB approach is currently operating at LOS E during the PM peak hour. This approach was designed to prohibit egress left-turns; however, this traffic is causing the reported delay. The total volume of southbound egress traffic is very low (3 vehicles), which includes two (2) vehicles making an egress left-turn movement.

2. Background Conditions (2025 No Build)

- A conservative annual background growth rate of **0.5%** was utilized to project the existing 2023 traffic volumes to the buildout year of 2025.
- The results of the background conditions analysis indicates that the study intersections are expected to continue operating in a manner similar to the existing conditions analysis, with minor increases in delays due increases in background traffic volumes.
 - <u>Highland Road (M-59) & Fisk Road:</u> The EB left-turn movement is expected to operate at LOS E, during the PM peak hour.

3. Future Conditions (2025 Build)

- With the addition of the site-generated trips, the study intersections are expected to continue operating in a manner similar to the background conditions analysis, with no additional impacts to LOS.
- All approaches and movements at the proposed site driveway intersection with Highland Road (M-59) are expected to operate acceptably, at LOS D or better, during both the AM and PM peak hours.

4. Access Management

- The results of the driveway spacing analysis indicates that the location of the proposed site driveway on Highland Road (M-59) is not expected to meet the desirable MDOT spacing criteria, in relation to the nearby intersection and driveway.
 - However, there is not sufficient property frontage to meet the recommended spacing criteria. Additionally, the proposed development site plan includes proposed future cross access, stubbed at the property line to the west; this would provide improved site access, should the adjacent property ever be redeveloped, permitting this cross access between all of the nearby developments on the south side of Highland Road (M-59), east of Fisk Road.
- The MDOT auxiliary right-turn treatment criteria were evaluated at the proposed site driveway; the result of the analysis indicates that a right-turn lane is recommended on Highland Road (M-59).

5. Future Conditions with Improvements

Signal timing optimizations were reviewed and were determined to adequately improve the study
intersection to acceptable operations, to LOS D or better during the PM peak hour; additionally, the
vehicle queues at the signalized intersection of Highland Road (M-59) & Fisk Road were observed to
reduce, with the implementation of the recommended mitigation measures.

6. Drive-Through Queueing Evaluation

• The results of the drive-through queueing evaluation indicates that the proposed site plan can adequately accommodate the projected vehicle queueing generated by the proposed coffee-shop, without impacting internal site circulation or the operations along Highland Road (M-59).

12 RECOMMENDATIONS

The recommendation of this TIS are as follows:

- Provide a right-turn lane on Highland Road (M-59) at the proposed site driveway. •
- Optimize the PM peak hour signal timing at the Highland Road (M-59) & Fisk Road intersection. •

Any questions related to this memorandum, study, analysis, and results should be addressed to Fleis & VandenBrink.

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Michigan.

Digitally signed Jacob Swanson by Jacob Swanson Date: 2024.01.11 15:13:09 -05'00'

- Attached:
- Figures 1 6 Proposed Site Plan Traffic Volume Data **Signal Timing Permits** Synchro / SimTraffic Results **Auxiliary Lane Warrants**

FIGURE 1

SITE LOCATION

9101 HIGHLAND ROAD TIS -WHITE LAKE TOWNSHIP, MI

LEGEND

SITE LOCATION

FIGURE 5 SITE-GENERATED TRAFFIC VOLUMES

9101 HIGHLAND ROAD TIS -WHITE LAKE TOWNSHIP, MI

<u>LEGEND</u>		
	ROADS	
	PROPOSED ROADS	Э
num J	TRAFFIC VOLUMES (AM/PM)	т
+/-[000/000]	PASS-BY [AM/PM]	
		NORTH SCALE:NOT TO SCALE

LOCATION MAP SCALE: I" = 2,000'±

	Ĭ
SYMBOL	DESCRIPTION
	PROPERTY LINE
	SETBACK LINE
	PROPOSED CURB
~ ~ 0	PROPOSED SIGNS / BOLLARDS
	PROPOSED BUILDING
	PROPOSED CONCRETE
	PROPOSED RETAINING WALL

CRIPTION

ED RETAINING WALL PROPOSED OBSCURING FENCE

H ВΥ DATE NOT APPROVED FOR CONSTRUCTION

VARIANCE (∨)

REQUIREMENT FOR RESTAURANT WITH DRIVE-THRU (1)

NO PARKING STALL SHALL BE LOCATED ADJACENT TO R.O.W LINE , STREET EASEMENT OR SIDEWALK WHICHEVER IS CLOSER (2)

NO ENCLOSURES SHALL BE PERMITTED CLOSER TO THE FRONT LOT LINE THAN THE PRINCIPAL BUILDING (3)

OFF-STREET PARKING REQUIREMENTS										
CODE SECTION	REQUIRED	PROPOSED								
§ 5.11.M	FAST FOOD PARKING:	125 SPACES								
	I SPACE PER 75 OF GFA									
	(2,522 SF +2,402 SF) =4,924 SF									
	(4,924 SF)(1 SPACES/ 75 SF)= 66 SPACES									
	RESTAURANT PARKING:									
	I SPACE PER 100 SF OF GFA									
	(2,502 SF)(1 SPACE/100 SF)= 25 SPACES									
	RETAIL PARKING:									
	I SPACE PER 200 SF OF GFA									
	(3,228 SF + 1,451 SF + 1,505 SF)=6,184 SF									
	(6,184 SF)(1 SPACE/200 SF)= 31 SPACES									
	TOTAL: 66 + 25 + 31= 122 SPACES									
§ 5.11.M	STACKING SPACES (WEST FAST FOOD):	15 SPACES								
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X 20 FT)								
§ 5.11.M	STACKING SPACES (EAST FAST FOOD):	10 SPACES								
	8 STACKING CARS (9 FT X 18 FT)	(12 FT X 20 FT)								
§ 5.11.Q	90° PARKING:	9 FT X 17 FT								
	9 FT X 18 FT WITH 24 FT AISLE (1)	W/ 24 FT AISLE								
§ 5.19	LANDSCAPE REQUIREMENT:	PROVIDED								
	20 FT WIDTH ALONG RESIDENTIAL									
	3 FT HIGH BERM WITH A 2 FT CROWN									
§ 5.11.P.1	LOADING AREA:	17 FT X 50 FT								
	10 FT X 50 FT WITH 15 FT CLEARANCE									

(I) PARKING SPACE LENGTH MAY BE REDUCED TO 17 FT WHERE 7 FT SIDEWALK OR LANDSCAPE IS PROVIDED

	SIGNAGE REQUIREMENTS											
CODE SECTION	REQUIRED	PROPOSED										
§5.9.J.I.B	MULTI-TENANT SIGN HEIGHT: IS FT ⁽²⁾⁽³⁾	<15 FT										
§5.9.J.I	SIGN AREA: 6 SF PER I FT OF SETBACK	<150 SF										
§5.9.J.I	MAXIMUM SIGN AREA: 150 SF ⁽ⁱ⁾	<150 SF										
§5.9.J.I.A	SIGN SETBACK: 10 FT	25.2 FT										
§5.9.J.I.A	RESIDENTIAL SETBACK: 100 FT	200.6 FT										

MAXIMUM SIGN AREA SHALL NOT INCLUDE DECORATIVE ELEMENTS SUCH AS BASES, COLUMNS OR CAPS

MINIMUM HEIGHT OF A SIGN BASE SHALL NE 2 FT IN HEIGHT

(3) EACH INDIVIDUAL TEM

GENERAL NOTES

- THE CONTRACTOR SHALL VERIFY AND FAMILIARIZE THEMSELVES
- THE CONTRACTOR SHALL VERIFY AND FAMILIARIZE THEMSELVES WITH THE EXISTING SITE CONDITIONS AND THE PROPOSED SCOPE OF WORK (INCLUDING DIMENSIONS, LAYOUT, ETC.) PRIOR TO INITIATING THE IMPROVEMENTS IDENTIFIED WITHIN THESE DOCUMENTS. SHOULD ANY DISCREPANCY BE FOUND BETWEEN THE EXISTING SITE CONDITIONS AND THE PROPOSED WORK THE CONTRACTOR SHALL NOTIFY STONEFIELD ENGINEERING & DESIGN, ILC, PRIOR TO THE START OF CONSTRUCTION.
 THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND ENSURE THAT ALL REQUIRED APPROVALS HAVE BEEN OBTAINED PRIOR TO THE START OF CONSTRUCTION.
 ALL CONTRACTORS WILL, TO THE FULLEST EXTENT PERMITTED BY LAW, INDEMNIFY AND HOLD HARMLESS TONEFIELD ENGINEERING & DURING CONSTRUCTION.
 ALL CONTRACTORS WILL, TO THE FULLEST EXTENT PERMITTED BY LAW, INDEMNIFY AND HOLD HARMLESS STONEFIELD ENGINEERING & DESIGN, LLC. AND IT'S SUB-CONSULTANTS FROM AND AGAINST ANY DAMAGES AND LIABILITIES INCLUDING ATTORNEYS FEES ARISING OUT OF CLAIMS PEMPERVERS OF THE CONTRACTOR IN ADDITION TO CLAIMS CONNECTED TO THE PROJECT AS A RESULT OF NOT CARRYING THE PROPER INSURANCE FOR WORKERS COMPENSATION, LIABILITY INSURANCE, AND LIMITS OF COMMERCIAL GENERAL LIABILITY INSURANCE.
 THE CONTRACTOR SHALL NOT DEVIATE FROM THE PROPOSED IMPROVEMENTS IDENTIFIED WITHIN THIS PLAN SET UNLESS APPROVAL IS PROVIDED IN WRITING BY STONEFIELD ENGINEERING & DESIGN, LLC.
 THE CONTRACTOR SHALL NOT DEVIATE FROM THE PROPOSED IMPROVEMENTS IDENTIFIED WITHIN THIS PLAN SET UNLESS APPROVAL IS PROVIDED IN WRITING BY STONEFIELD ENGINEERING & DESIGN, LLC.
 THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND
- THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND THE CONTRACTOR IS RESPONSIBLE TO DETERMINE THE MEANS AND METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL NOT PERFORM ANY WORK OR CAUSE DISTURBANCE ON A PRIVATE PROPERTY NOT CONTROLLED BY THE PERSON OR ENTITY WHO HAS AUTHORIZED THE WORK WITHOUT PRIOR WRITTEN CONSENT FROM THE OWNER OF THE PRIVATE BRODEDTY.
- THE CONTRACTOR IS RESPONSIBLE TO RESTORE ANY DAMAGED OR UNDERMINED STRUCTURE OR SITE FEATURE THAT IS IDENTIFIED TO REMAIN ON THE PLAN SET. ALL REPAIRS SHALL USE NEW MATERIALS TO RESTORE THE FEATURE TO ITS EXISTING CONDITION AT THE
- REFURIN ON THE FLAN SET. ALL REPAIRS SHALL OSE NEW MATERIALS TO RESTORE THE FEATURE TO ITS EXISTING CONDITION AT THE CONTRACTOR IS RESPONSIBLE TO PROVIDE THE APPROPRIATE SHOP DRAWINGS, PRODUCT DATA, AND OTHER REQUIRED SUBMITTALS FOR REVIEW. STONEFIELD ENGINEERING & DESIGN, LLC. WILL REVIEW THE SUBMITTALS IN ACCORDANCE WITH THE DESIGN INTENT AS REFLECTED WITHIN THE PLAN SET.
 9. THE CONTRACTOR IS RESPONSIBLE FOR TRAFFIC CONTROL IN ACCORDANCE WITH MANUAL ON UNIFORM TRAFFIC CONTROL IN ACCORDANCE WITH MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION.
 10. THE CONTRACTOR IS REQUIRED TO PERFORM ALL WORK IN THE PUBLIC RIGHT-OF-WAY IN ACCORDANCE WITH THE APPROPRIATE GOVERNING AUTHORITY AND SHALL BE RESPONSIBLE FOR THE PROCUREMENT OF STREET OPENING PERMITS.
 11. THE CONTRACTOR IS REQUIRED TO RETAIN AN OSHA CERTIFIED SAFETY INSPECTOR TO BE FRESENT ON STE AT ALL TIMES DURING CONSTRUCTION & DEMOLITION ACTIVITIES.
 12. SHOULD AN EMPLOYEE OF STONEFIELD ENGINEERING & DESIGN, LLC. BE PRESENT ON SITE AT ANY TIME DURING CONSTRUCTION, IT DOES NOT RELIEVE THE CONTRACTOR OF ANY OF THE RESPONSIBILITES AND REQUIREMENTS LISTED IN THE NOTES WITHIN THIS PLAN SET.

C-3

File Name : 16432201 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432201 Start Date : 12/13/2023 Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

		Highla	and Ro	1/M-59		Highland Rd/M-59						Fisk Rd					Fisk Rd					
		E	astbou	Ind			W	/estbou	und		Northbound											
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Int. Total	
07:00 AM	9	298	2	0	309	0	126	6	0	132	0	0	0	0	0	27	0	8	0	35	476	
07:15 AM	12	314	2	0	328	0	151	2	0	153	0	0	2	0	2	25	0	15	0	40	523	
07:30 AM	12	300	2	0	314	1	193	2	0	196	0	0	1	0	1	25	0	11	0	36	547	
07:45 AM	12	319	3	0	334	2	195	6	0	203	0	0	1	0	1	29	0	13	0	42	580	
Total	45	1231	9	0	1285	3	665	16	0	684	0	0	4	0	4	106	0	47	0	153	2126	
08:00 AM	9	293	2	0	304	5	219	11	0	235	1	0	2	0	3	23	0	17	0	40	582	
08:15 AM	14	280	2	0	296	1	185	7	0	193	0	0	2	0	2	32	0	17	0	49	540	
08:30 AM	20	264	3	0	287	2	177	11	0	190	4	1	0	0	5	23	0	16	0	39	521	
08:45 AM	17	254	3	0	274	3	190	11	0	204	1	2	2	0	5	33	1	23	0	57	540	
Total	60	1091	10	0	1161	11	771	40	0	822	6	3	6	0	15	111	1	73	0	185	2183	
Grand Total	105	2322	19	0	2446	14	1436	56	0	1506	6	3	10	0	19	217	1	120	0	338	4309	
Apprch %	4.3	94.9	0.8	0		0.9	95.4	3.7	0		31.6	15.8	52.6	0		64.2	0.3	35.5	0			
Total %	2.4	53.9	0.4	0	56.8	0.3	33.3	1.3	0	35	0.1	0.1	0.2	0	0.4	5	0	2.8	0	7.8		
Passenger Vehicles	98	2200	19	0	2317	14	1342	52	0	1408	6	3	10	0	19	202	1	113	0	316	4060	
% Passenger Vehicles	93.3	94.7	100	0	94.7	100	93.5	92.9	0	93.5	100	100	100	0	100	93.1	100	94.2	0	93.5	94.2	
Heavy Vehicles	7	122	0	0	129	0	94	4	0	98	0	0	0	0	0	15	0	7	0	22	249	
% Heavy Vehicles	6.7	5.3	0	0	5.3	0	6.5	7.1	0	6.5	0	0	0	0	0	6.9	0	5.8	0	6.5	5.8	

		Highl	and Ro	I/M-59			Highl	and Ro	1/M-59				Fisk R	d		Fisk Rd					
		E	astbou	nd			W	estbou	Ind			Northbound				Southbound					
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																				
Peak Hour for	or Enti	re Intei	rsectio	n Begi	ns at 07	7:30 Al	M														
07:30 AM	12	300	2	0	314	1	193	2	0	196	0	0	1	0	1	25	0	11	0	36	547
07:45 AM	12	319	3	0	334	2	195	6	0	203	0	0	1	0	1	29	0	13	0	42	580
08:00 AM	9	293	2	0	304	5	219	11	0	235	1	0	2	0	3	23	0	17	0	40	582
08:15 AM	14	280	2	0	296	1	185	7	0	193	0	0	2	0	2	32	0	17	0	49	540
Total Volume	47	1192	9	0	1248	9	792	26	0	827	1	0	6	0	7	109	0	58	0	167	2249
% App. Total	3.8	95.5	0.7	0		1.1	95.8	3.1	0		14.3	0	85.7	0		65.3	0	34.7	0		
PHF	.839	.934	.750	.000	.934	.450	.904	.591	.000	.880	.250	.000	.750	.000	.583	.852	.000	.853	.000	.852	.966
Passenger Vehicles	44	1124	9	0	1177	9	745	25	0	779	1	0	6	0	7	103	0	55	0	158	2121
% Passenger Vehicles	93.6	94.3	100	0	94.3	100	94.1	96.2	0	94.2	100	0	100	0	100	94.5	0	94.8	0	94.6	94.3
Heavy Vehicles	3	68	0	0	71	0	47	1	0	48	0	0	0	0	0	6	0	3	0	9	128
% Heavy Vehicles	6.4	5.7	0	0	5.7	0	5.9	3.8	0	5.8	0	0	0	0	0	5.5	0	5.2	0	5.4	5.7

File Name : 16432201 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432201 Start Date : 12/13/2023 Page No : 1

Groups Printed-	Bikes, Peds
-----------------	-------------

		Highl	and Ro	d/M-59			Highl	and Ro	d/M-59				Fisk R	d				Fisk R	d		
		Ē	astbou	Ind			W	estbou	und			No	orthbo	und			Sc	outhbou	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

File Name : 16432201 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432201 Start Date : 12/13/2023 Page No : 2

		Highla	and Rd astbou	l/M-59 nd			Highl W	and Ro /estboi	d/M-59 und			N	Fisk R orthbo	d und			So	Fisk R outhbou	.d Jnd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	08:45	AM - Pe	eak 1 d	of 1													
Peak Hour fo	or Entir	e Inter	sectio	n Beg	ins at 0	7:00 AI	N														
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
			Highland Rd/M-59 Out In Total						Peak F Bikes,	Fisk f 0 0 Thru 4 K HOU A Nort 1 1 1 1 1 1 1 1 1 1 1 1 1	Ir Da				1 	Right Thru Left U-Tum		Highland Rd/M-59			
												Turn 0 J tal									

File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 1

Group	os Printed-	Passenger	Vehicles	- Heavy	/Vehicles
-------	-------------	-----------	----------	---------	-----------

		Highla	and Ro	1/M-59			Highl	and Ro	1/M-59				Fisk R	d				Fisk R	d		
		Ea	astbou	Ind			W	estbou	Ind			No	orthbou	und			So	outhbou	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Int. Total
04:00 PM	44	269	2	1	316	1	327	22	0	350	1	0	3	0	4	63	0	46	0	109	779
04:15 PM	45	329	3	0	377	2	365	21	0	388	3	0	3	0	6	55	0	44	0	99	870
04:30 PM	32	222	4	1	259	1	363	21	0	385	1	1	2	0	4	64	0	52	0	116	764
04:45 PM	36	268	1	1	306	2	394	24	0	420	2	0	7	0	9	68	0	34	0	102	837
Total	157	1088	10	3	1258	6	1449	88	0	1543	7	1	15	0	23	250	0	176	0	426	3250
05:00 PM	52	293	0	0	345	1	364	10	0	375	0	1	0	0	1	62	0	35	0	97	818
05:15 PM	42	280	1	1	324	0	363	14	0	377	1	0	0	0	1	48	0	55	0	103	805
05:30 PM	39	261	0	0	300	0	339	18	0	357	0	0	1	0	1	58	0	53	0	111	769
05:45 PM	45	247	1	1	294	1	319	12	0	332	1	0	2	0	3	47	0	45	0	92	721
Total	178	1081	2	2	1263	2	1385	54	0	1441	2	1	3	0	6	215	0	188	0	403	3113
Grand Total	335	2169	12	5	2521	8	2834	142	0	2984	9	2	18	0	29	465	0	364	0	829	6363
Apprch %	13.3	86	0.5	0.2		0.3	95	4.8	0		31	6.9	62.1	0		56.1	0	43.9	0		
Total %	5.3	34.1	0.2	0.1	39.6	0.1	44.5	2.2	0	46.9	0.1	0	0.3	0	0.5	7.3	0	5.7	0	13	
Passenger Vehicles	332	2109	12	5	2458	8	2766	139	0	2913	9	2	17	0	28	462	0	363	0	825	6224
% Passenger Vehicles	99.1	97.2	100	100	97.5	100	97.6	97.9	0	97.6	100	100	94.4	0	96.6	99.4	0	99.7	0	99.5	97.8
Heavy Vehicles	3	60	0	0	63	0	68	3	0	71	0	0	1	0	1	3	0	1	0	4	139
% Heavy Vehicles	0.9	2.8	0	0	2.5	0	2.4	2.1	0	2.4	0	0	5.6	0	3.4	0.6	0	0.3	0	0.5	2.2

		Highl	and Ro	J/M-59			Highl	and Ro	J/M-59				Fisk R	d				Fisk R	d		
		E	astbou	Ind			W	estbou	und			N	orthbo	und			So	outhbou	und		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysi	s From	04:00	PM to	05:45 F	PM - Pe	eak 1 d	of 1													
Peak Hour for	or Enti	re Intei	rsectio	n Begi	ns at 04	1:15 PI	М														
04:15 PM	45	329	3	Ō	377	2	365	21	0	388	3	0	3	0	6	55	0	44	0	99	870
04:30 PM	32	222	4	1	259	1	363	21	0	385	1	1	2	0	4	64	0	52	0	116	764
04:45 PM	36	268	1	1	306	2	394	24	0	420	2	0	7	0	9	68	0	34	0	102	837
05:00 PM	52	293	0	0	345	1	364	10	0	375	0	1	0	0	1	62	0	35	0	97	818
Total Volume	165	1112	8	2	1287	6	1486	76	0	1568	6	2	12	0	20	249	0	165	0	414	3289
% App. Total	12.8	86.4	0.6	0.2		0.4	94.8	4.8	0		30	10	60	0		60.1	0	39.9	0		
PHF	.793	.845	.500	.500	.853	.750	.943	.792	.000	.933	.500	.500	.429	.000	.556	.915	.000	.793	.000	.892	.945
Passenger Vehicles	164	1082	8	2	1256	6	1439	75	0	1520	6	2	12	0	20	246	0	164	0	410	3206
% Passenger Vehicles	99.4	97.3	100	100	97.6	100	96.8	98.7	0	96.9	100	100	100	0	100	98.8	0	99.4	0	99.0	97.5
Heavy Vehicles	1	30	0	0	31	0	47	1	0	48	0	0	0	0	0	3	0	1	0	4	83
% Heavy Vehicles	0.6	2.7	0	0	2.4	0	3.2	1.3	0	3.1	0	0	0	0	0	1.2	0	0.6	0	1.0	2.5

File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 1

Groups Printed-	Bikes, Peds
-----------------	-------------

		Highl	and Ro	1/M-59			Highl	and Ro	J/M-59				Fisk R	d				Fisk R	d		
		E	astbou	Ind			W	estbou	und			No	orthbo	und			Sc	outhbou	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
Grand Total	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
Apprch %	0	0	0	0		0	0	0	100		0	0	0	0		0	0	0	100		
Total %	0	0	0	0	0	0	0	0	50	50	0	0	0	0	0	0	0	0	50	50	

File Name : 16432202 - Fisk Rd -- Highland Rd_M-59 Site Code : 16432202 Start Date : 12/13/2023 Page No : 2

		Highla	and Rd astbou	l/M-59 nd			Highl	and Ro estbou	1/M-59 und			No	Fisk R orthbo	ld und			So	Fisk R uthbou	.d und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	04:00	PM to	05:45 F	PM - Pe	eak 1 c	of 1			÷										
Peak Hour fo	or Entir	e Inter	sectio	n Begi	ins at 04	4:15 PI	N _												_		
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04.45 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
Total Volume	0	0	0	Õ	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
% App. Total	0	0	0	0		0	0	0	100		0	0	0	0	-	0	0	0	100		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.250
			Highland Rd/M-59 Out In Total						Out 0 Right ↓ Peak H Bikes, I	Fisk F 0 0 Thru V V North 0 0 0 0 0 0 0 0 0 0 0 0 0	I To O Left U Left U s at 04:	tal 1 1 Turn			1	Right Thru Left U-Tum		Highland RdM-59			
											Right U- 0	Turn 0 1 1 1 1 1									

File Name : 16432205 - JoAnn Fab Dwy_ Taco Bell Dwy -- Highland Rd_M-59 Site Code : 16432205 Start Date : 12/13/2023 Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

		Highl E	and Ro astbou	d/M-59 Ind			Highl W	and Ro /estbou	d/M-59 und			No	orthbo	und		Jo	Ann Fa So	ab Dwy Dwy outhbo	/ Taco und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Int. Total
07:00 AM	0	328	0	0	328	0	141	0	0	141	0	0	0	0	0	0	0	0	0	0	469
07:15 AM	0	355	0	0	355	0	172	3	0	175	0	0	0	0	0	0	0	1	0	1	531
07:30 AM	0	327	0	0	327	0	214	1	0	215	0	0	0	0	0	0	0	0	0	0	542
07:45 AM	0	367	0	0	367	0	232	2	0	234	0	0	0	0	0	0	0	0	0	0	601
Total	0	1377	0	0	1377	0	759	6	0	765	0	0	0	0	0	0	0	1	0	1	2143
																					i.
08:00 AM	0	307	0	0	307	0	265	0	0	265	0	0	0	0	0	0	0	0	0	0	572
08:15 AM	1	320	0	0	321	0	220	1	0	221	0	0	0	0	0	0	0	0	0	0	542
08:30 AM	2	315	0	0	317	0	222	3	0	225	0	0	0	0	0	0	0	2	0	2	544
08:45 AM	0	285	0	0	285	0	253	1	0	254	0	0	0	0	0	0	0	0	0	0	539
Total	3	1227	0	0	1230	0	960	5	0	965	0	0	0	0	0	0	0	2	0	2	2197
Grand Total	3	2604	0	0	2607	0	1719	11	0	1730	0	0	0	0	0	0	0	3	0	3	4340
Apprch %	0.1	99.9	0	0		0	99.4	0.6	0		0	0	0	0		0	0	100	0		
Total %	0.1	60	0	0	60.1	0	39.6	0.3	0	39.9	0	0	0	0	0	0	0	0.1	0	0.1	
Passenger Vehicles	3	2447	0	0	2450	0	1618	10	0	1628	0	0	0	0	0	0	0	2	0	2	4080
% Passenger Vehicles	100	94	0	0	94	0	94.1	90.9	0	94.1	0	0	0	0	0	0	0	66.7	0	66.7	94
Heavy Vehicles	0	157	0	0	157	0	101	1	0	102	0	0	0	0	0	0	0	1	0	1	260
% Heavy Vehicles	0	6	0	0	6	0	5.9	9.1	0	5.9	0	0	0	0	0	0	0	33.3	0	33.3	6

File Name : 16432205 - JoAnn Fab Dwy_ Taco Bell Dwy -- Highland Rd_M-59 Site Code : 16432205 Start Date : 12/13/2023 Page No : 2

		Highl E	and Ro astbou	l/M-59 Ind			Highl W	and Ro /estbou	d/M-59 und			N	orthbou	und		Jo	Ann Fa So	b Dwy Dwy outhbo	/ Tacc und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysi	s From	07:00	AM to	08:45 A	λM - Ρ	eak 1 d	of 1													
Peak Hour for	or Enti	re Intei	rsectio	n Begi	ns at 07	7:45 A	М														
07:45 AM	0	367	0	0	367	0	232	2	0	234	0	0	0	0	0	0	0	0	0	0	601
08:00 AM	0	307	0	0	307	0	265	0	0	265	0	0	0	0	0	0	0	0	0	0	572
08:15 AM	1	320	0	0	321	0	220	1	0	221	0	0	0	0	0	0	0	0	0	0	542
08:30 AM	2	315	0	0	317	0	222	3	0	225	0	0	0	0	0	0	0	2	0	2	544
Total Volume	3	1309	0	0	1312	0	939	6	0	945	0	0	0	0	0	0	0	2	0	2	2259
% App. Total	0.2	99.8	0	0		0	99.4	0.6	0		0	0	0	0		0	0	100	0		
PHF	.375	.892	.000	.000	.894	.000	.886	.500	.000	.892	.000	.000	.000	.000	.000	.000	.000	.250	.000	.250	.940
Passenger Vehicles	3	1222	0	0	1225	0	878	5	0	883	0	0	0	0	0	0	0	2	0	2	2110
% Passenger Vehicles	100	93.4	0	0	93.4	0	93.5	83.3	0	93.4	0	0	0	0	0	0	0	100	0	100	93.4
Heavy Vehicles	0	87	0	0	87	0	61	1	0	62	0	0	0	0	0	0	0	0	0	0	149
% Heavy Vehicles	0	6.6	0	0	6.6	0	6.5	16.7	0	6.6	0	0	0	0	0	0	0	0	0	0	6.6

File Name : 16432205 - JoAnn Fab Dwy_ Taco Bell Dwy -- Highland Rd_M-59 Site Code : 16432205 Start Date : 12/13/2023 Page No : 1

								G	roups	Printed-	Bikes	, Peds									
		Highla	and Ro	J/M-59			Highl	and Ro	: /M-59							Jo	Ann Fa	ab Dwy	/ Taco	Bell	
		E	astbou	Ind			W	estbou	und			N	orthbo	und			Sc	bwy	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch % Total %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		

		Highland Rd/M-59 Eastbound Left Thru Right Peds App. Total				Highl W	and Ro estbou	d/M-59 und)		N	orthbo	und		Jo	Ann Fa So	ab Dwy Dwy outhbo	v/ Taco und	Bell		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	08:45 A	λM - Ρ	eak 1 d	of 1													
Peak Hour for	or Entir	re Inte	rsectio	n Begi	ins at 07	7:00 A	М														
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

Groups Printed- Passenger Vehicles - Heavy Vehicles

		Highl E	and Ro astbou	l/M-59 Ind			Highl W	and Ro /estbou	d/M-59 und			No	orthbou	und		Jo	Ann Fa So	ab Dwy Dwy outhbo	/ Taco und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Int. Total
04:00 PM	0	337	0	0	337	0	423	7	0	430	0	0	0	0	0	0	0	0	0	0	767
04:15 PM	3	390	0	0	393	0	442	1	0	443	0	0	0	0	0	1	0	0	0	1	837
04:30 PM	0	326	0	0	326	0	447	5	0	452	0	0	0	0	0	0	0	1	0	1	779
04:45 PM	1	355	0	1	357	0	473	5	0	478	0	0	0	0	0	1	0	0	0	1	836
Total	4	1408	0	1	1413	0	1785	18	0	1803	0	0	0	0	0	2	0	1	0	3	3219
05:00 PM	0	368	0	0	368	0	449	5	0	454	0	0	0	0	0	0	0	0	0	0	822
05:15 PM	1	331	0	0	332	0	442	8	0	450	0	0	0	0	0	0	0	5	0	5	787
05:30 PM	1	350	0	0	351	0	426	0	0	426	0	0	0	0	0	0	0	1	0	1	778
05:45 PM	2	308	0	0	310	0	398	4	0	402	0	0	0	0	0	0	0	0	0	0	712
Total	4	1357	0	0	1361	0	1715	17	0	1732	0	0	0	0	0	0	0	6	0	6	3099
Grand Total	8	2765	0	1	2774	0	3500	35	0	3535	0	0	0	0	0	2	0	7	0	9	6318
Apprch %	0.3	99.7	0	0		0	99	1	0		0	0	0	0		22.2	0	77.8	0		
Total %	0.1	43.8	0	0	43.9	0	55.4	0.6	0	56	0	0	0	0	0	0	0	0.1	0	0.1	
Passenger Vehicles	8	2686	0	1	2695	0	3413	34	0	3447	0	0	0	0	0	2	0	6	0	8	6150
% Passenger Vehicles	100	97.1	0	100	97.2	0	97.5	97.1	0	97.5	0	0	0	0	0	100	0	85.7	0	88.9	97.3
Heavy Vehicles	0	79	0	0	79	0	87	1	0	88	0	0	0	0	0	0	0	1	0	1	168
% Heavy Vehicles	0	2.9	0	0	2.8	0	2.5	2.9	0	2.5	0	0	0	0	0	0	0	14.3	0	11.1	2.7

		Highl E	and Ro astbou	l/M-59 nd			Highl W	and Ro /estbou	d/M-59 und			N	orthbo	und		Jo	Ann Fa So	ab Dwy Dwy outhbo	// Tacc und	Bell	
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A	nalysi	s From	04:00	PM to	05:45 F	PM - Pe	eak 1 d	of 1								·					
Peak Hour for	or Enti	re Intei	rsectio	n Begi	ns at 04	4:15 P	М														
04:15 PM	3	390	0	0	393	0	442	1	0	443	0	0	0	0	0	1	0	0	0	1	837
04:30 PM	0	326	0	0	326	0	447	5	0	452	0	0	0	0	0	0	0	1	0	1	779
04:45 PM	1	355	0	1	357	0	473	5	0	478	0	0	0	0	0	1	0	0	0	1	836
05:00 PM	0	368	0	0	368	0	449	5	0	454	0	0	0	0	0	0	0	0	0	0	822
Total Volume	4	1439	0	1	1444	0	1811	16	0	1827	0	0	0	0	0	2	0	1	0	3	3274
% App. Total	0.3	99.7	0	0.1		0	99.1	0.9	0		0	0	0	0		66.7	0	33.3	0		
PHF	.333	.922	.000	.250	.919	.000	.957	.800	.000	.956	.000	.000	.000	.000	.000	.500	.000	.250	.000	.750	.978
Passenger Vehicles	4	1398	0	1	1403	0	1757	15	0	1772	0	0	0	0	0	2	0	1	0	3	3178
% Passenger Vehicles	100	97.2	0	100	97.2	0	97.0	93.8	0	97.0	0	0	0	0	0	100	0	100	0	100	97.1
Heavy Vehicles	0	41	0	0	41	0	54	1	0	55	0	0	0	0	0	0	0	0	0	0	96
% Heavy Vehicles	0	2.8	0	0	2.8	0	3.0	6.3	0	3.0	0	0	0	0	0	0	0	0	0	0	2.9

								G	iroups	Printed-	Bikes	, Peds									
		Highl	and Ro	1/M-59			Hiahl	and Ro	d/M-59							Jo	Ann Fa	ab Dwy	/ Taco	Bell	
		F	asthou	ind			W	esthou	ind			N	orthbo	und			~	Dwy			
-			401000					001.001	unia .					ana			Sc	buthbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	100		
 Total %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	
																1					1

		Highland Rd/M-59 Eastbound				Highl W	and Ro estbou	d/M-59 und	I		N	orthbo	und		Jo	Ann Fa So	ab Dwy Dwy outhbo	v/ Taco und	Bell		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 F	PM - Pe	eak 1 d	of 1													
Peak Hour for	or Entii	re Inte	rsectio	n Begi	ns at 04	1:00 P	M														
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	100		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.250

Transportation Data Management System

Transportation Data Management System

Disclaimer: The Michigan Department of Transportation (MDOT) works with individual agencies (cities/villages, counties, metropolitan planning organizations (MPOs), regional planning organizations (RPOs), and other areas of MDOT) to identify existing traffic count programs and/or traffic data <u>more</u>

List View	All DIRs		Report Center
Record	I 🙌 🚽 1 🕨 💓 of 1 Goto Record	go	
Location ID	63-0739	MPO ID	2717
Туре	SPOT	HPMS ID	
On NHS	No	On HPMS	No
LRS ID	0704601	LRS Loc Pt.	0.3140493
SF Group	Local Road	Route Type	
AF Group	NoFactor	Route	
GF Group	Local Road	Active	Yes
Class Dist Grp	NTL_7	Category	
Seas Clss Grp			
WIM Group			
QC Group	Default		
Fnct'l Class	(7) Local Road or Street	Milepost	
Located On	Fisk Rd		
Loc On Alias			
SOUTH OF	Pontiac Lake Rd		
More Detail 🕨			
STATION DAT	ΓΑ		

Directions: 2-WAY NB SB

AADT	. 🕜							
	Year	AADT	DHV-30	Κ%	D %	PA	BC	Src
	2022	1,256	130	10		1,194 (95%)	62 (5%)	

VOL	UME COUNT			VOLUME	
	Date	Int	Total	Year	Annual Growth
÷,	Mon 8/22/2022	60	1,274		

CLA	SSIFICATION										
	Date	Int	Total								
	No Data										

NOTES/F	ILES		
	Note	Date	

SEMCOG | Southeast Michigan Council of Governments

Search...

Q

Crash and Road Data

Road Segment Report

Highland Rd, (PR Number 648906)

From:	Teggerdine Rd 9.938 BMP
То:	Pontiac Lake Rd 12.354 EMP
Jurisdiction:	State
FALINK ID:	1797
Community:	White Lake Township
County:	Oakland
Functional Class:	3 - Other Principal Arterial
Direction:	2 Way
Length:	2.416 miles
Number of Lanes:	5
Posted Speed:	50 (source: TCO)
Route Classification:	M-59
Annual Crash Average 2018-2022:	<u>82</u>
Traffic Volume (2022)*:	33,400 (Observed AADT)
Pavement Type (2022):	Asphalt
Pavement Rating (2022):	Fair
* AADT values are derived from Traffic Counts	

https://www.semcog.org/crash-and-road-data/falink_id/1797/view/roadsegmentreport

	JA	N 2	23	2017							
LOCATION: /"1_ =-§_g	<u>{t=-F_,'"''.s= (</u>				D	ATE:	<u></u>	.17	-\7		
<u>c1TY/TOWNSHIP:</u>	<u>La1(t</u>				BY:	<u>IZ</u>	<u>'- </u>	<u>\-</u>			
COUNTY#: <u>'-{ / 3> &;('</u> stati	e#: <u>b y)'-f1-01</u>	• 0 CHARGE	s: _ ,\J	<u>IJ -=c:</u>	<u>) 1_'7</u> .	-=S'	= <u>{.: :</u>	/º	2	-	
	PLEASE PERF		OLLOW	ING:							
ELECTRICAL DEVICE:	INSTALL	MODERNI	ZE	MAI	NTENA	NCE					
UNDERGROUND:											
EDISON OK: YES	NO		JOB#:	:							_
COORDINATE W/DISTRf	СТ 7:										
							_				
	DIAL 1 1 1 SPLIT. 1 2 3	I 2 4 1	2 2 2 3	2	3 3 1 2	3	3	4	4	4 4 3 4	_
CHANGE TIMING/Q. f x CHANGE OFFSET	: <u> ;:><</u>				IX X						_
CHANGE CYCLE LENGTH											
CHANGE BREAKOUT OR E	EPROM:										
X CHANGE HOURS OF OPER	ATION:					-					
	NA 15										
NEW: G cs	0 0	<u> -P</u>		<u>C</u>							
_}{_REPROGRAMTBC (,.,.	f:•c <i>Er</i>	k-J-									
INSTALL INTERCONNECT	: TBC	MINJTROL	_	TONE							
MBTOK: YES	NO										
NO CHANGE - RECORD CO	ORRECTION										
LOTHER: RV	i										
	-										
* MOOT RETIMING -	FINAL *										
	$\bigcirc 10$						4				
APPROVED BY:	LAL Y					DA	TE: _		17	17	
DATE INSTALLED:	U				1						
INSTALLED BY: RICHARDS	ON CASU										

	PRO	<u>ROAD</u> DGRAM		<u>/MIS</u> G FO	SION REA	N FO	R OA	AKLA ANAL	<u>ND C</u> . COI		<u>ITY.</u> Olle	WA ER E	<u>TER</u> Epac	<u>FOR</u> 300.	D, M Mod	<u>ICHI</u> 52 a	GA nd	<u>N</u> 2070			
INTERSE	CTION	: <u>\'\ S</u>	9	<u>(\\</u>	<u>\ HL</u> ,	JI.t-I	<u>) 8</u>	<u>k</u> <u>F</u>	<u>1SI<</u>	<u>.</u>											
CITYNILLAG	E/TOWN	ISHIP: <u></u>			1;.'"'l	_A.''	'f.e'"""'-														
<u>COUNTY#:</u>	<u>4\3</u>	<u>5</u> мо	тос	#: <u>b</u>	0204	1∖- C	<u>1 -0</u>	<u>26</u>			R	ΞV	# :I	DET	ROI	T EC	DIS	ON#_	_:		_
DRAWN B	Y: <u>-[</u>	<i>l.a</i> b1'	<u>9''1</u>	<u>'0</u>	ŀ	\PPF	OVE	ED BN	/:	_	<u></u>	:::v	v -=	<u></u> [DATE	E <u>DF</u>	RAV	VN:	<u>.\</u> I	\11	<u>rJ</u>
INSTALLED) BY:														DAT	EIN	STI	LD:	1	I	
HOURS OF	OPER	ATION:			DI'MS	<u> - (</u>	G.∕n	<u>ı - \(</u>	GRh												
HOURS OF 111111111111111111111111111111111111	FLASH 11111111	IING: 1111 IIIII	III11	7 1 11111	t>k1 <u> </u>	S• . <u>III II</u> 2.	\()F [[[[[[]]]] [][[]]	Ph - LITIE .:	b-Ar S -1	."\ <u> </u> . AC 1 2.	III IIII CES	<u> </u> S	<u> </u> C	<u>II III</u> ODE	<u> </u>	<u>IIIIII</u> ur die	<u>III</u> aits	<u> </u>	<u>I III i</u> 0 - 9	<u> </u> 999)	<u>I III</u> I
I <u>IIIIIIIII</u>	IIII IIII	<u>III I111</u>	11111	111111	111111	<u>1111 I</u>								IIIIII	111111	111111	1111	<u>. 111111</u>	111111	, 111111	<u>11111</u> 1
		*****	*****	*****	-+.	*****	*****	*****	*****	*****	*****			*****	*****	*****	a de ade				
		******) E:	INS		<u>ALL</u>	*****		<u>5 FIF</u>	*****		<u>N N.</u>	<u>X 8</u>		*****	<u>IR•••</u>	**				
CHANNEL:	RING	PHNXI	י או	0	0	4	F	C	ONCU	RREN	NT PH	IASE	S	40	40	4.4	4.5	10	CHA	NNEI	L
	T	2	1_ 1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	VEH	PED	
PHASE 2	I	4	1	1				-											0	9	
PHASE 3:	1			'	1		`		-		-		_						2	5	
PHASE 4:	Ι	\setminus				1				\setminus									4-	10	
PHASE 5:	2	to	\	Ι			1			-									S		
PHASE 6:	1	8	\	Ι				1											-		
PHASE 7:									1												
PHASE 8:	2.	'S				t				1									'a	1'2.	
PHASE 9:											1										
PHASE 10:												1									
PHASE 11:													1								
PHASE 12:														1	4						
PHASE 13:															1	1					
PHASE 15:																'	1				
PHASE 16:											-							1			
CODES: RING PHNXT CONCUR P	R! P H_Ph	.9 -1 se _ase_T	'!1- t. o Be	! !. n e Coi	Phas g (1- ncurr	se (1- -16) ent (-4) (0=N	0, 1=	=YES	·)		Fc pe un	orve d ch der	h le anno chan	chai el, er inel#	nnel nter ' sho	& "1" wn.	- \ _	/	\setminus	
					3. P	PHAS	E D	ATA-	1. B/	ASIC		/ING	s					T			
Phase		1	2	3	4	5	6	7	8	9	10	11	12	2 13	3 14	1	5	16	RA	NGE	
Minimum Gre	en	5	10)	7	S,	H		7										0	0-99	
Passaae		3.()		3.0) 3.()		3.0										0.	0-9.9	
Maximum #1			0			1	a	9											00	0-999	i
Maximum#2			4	1		0 1 1			10: 0								4		00	J-999	
Red Clearance		4- f	1 4- 1 1 t	1	5.(/ 4] -/ h	4-1	3	("			\vdash	+	_	-	-	+	+	رد ۱)-9.9)_0 0	
			1 1.1	~ •		1 1	_ <u>→</u> • !	~	1			1					1		0.0	0.0	1

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

			-	3 P	HASE		TA-	<u>3 P</u>	EDE:	STR	AN	ГІМІ	NGS	5					<u> </u>	
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	RAN	GE (S	EC)
Walk			7		7		7		7										00-99	
Pedest Clearance			1 l.f		11		14		lf{										00-99	
Flashinq Walk																				
Extend Ped Clear			0		0	()		0											
Act Rest in Walk																				
Dhaaa	3.	PH	ASE	DAT	A- 4			7E 8	NO	N A			DRE	ESP(
Phase	, I	4	2 ,	3 4	+ 0 T	0		5		1		1 1	2	13	14]	.5 _	LЮ			
	\	4		\	1	4-	-	_	١	_	_									
		0			1			2			3			4						
Initial	n	one		ina	active	e	I	red		У	ellov	V	9	gree	n					
NA Response	n	one		0	to 1		t	02			both			~ ^ / /	~					
Dhaso	1	3.				<u>- 5. V</u>			& P		STR	<u>IAN</u>	2 1		<u>S</u>	5 1	6			
	1	3		2	5	3		2			<u>'</u>	<u> </u>	2 1	5	4 1	5 1	0			
Pedestrian Basell		2	'	2	•	2		2	•	_		_	_	_	_	_				
					1	2		<u> </u>												
Vehicle	n	one		1	ı cəll		r	∠ nin			ა nav			4 soft						
Pedestrian	n	one		1	call		r	hed		bot	ΝΔ			3011						
	11111	11111	1111	• 11111	111111	11111	۳ ۱۱۱۱۱	11111	111:	11111	11 M	••	11111	1 1 TT	IIIIII	тттт т	TITITI	1111111	1111111	11
<u> </u>		<u>ا ا ا ا ا</u>	<u> </u>			Δ_ 6			<u>)CK-</u>	2 - M			JTR(<u></u> DIS		•				11
Phase	1	2	3	4	5	6	7	8	9	1) 1'	1 1	2 1	3 1	4 1	5 1	6			
Nonlock Memory	Ι				1			1												
Dual Entry				Ι																
_ast Car Passage																				
Conditional Service	0		0		1=	YES														
			\mathbb{I}			I			I	11111111	111111111	11111111	111111111	111111111	1111111111	111111111	11111111111	111111111111	1111111111111	
3. PH	IASI	E DA	TA-	8. S	PEC)ETE	СТО	<u>OR-</u>	0. S	PC 1	-8 (1	EpiiO	C 300)/M5	2)•				•
Detector# on Print			1	2	S, Z	bf	,a'	'8'	'7	' 8'	'			See	attac	hed	dete	ction	sheet	
PAC/M52 "D" Conne	ctor		1	6	7	8	4	5	2	3					for D	-cor	nnect	t <mark>or</mark> pir	n'	
ssianed Phase			\	\	,g		5,	S	4-	4					as	sigr	nmen	its •		
ODES:	0		1		2	2	3	5.		4										
peration Mode: Nor	m V	eh	Nor	m Pe	ed 1	call	St	3ar <i>i</i>	A S	tBa	ır.,₿	:;		,						
				A.C	ONTF	OLS	•	0			RA	NGE	i se	<u>ЕС</u>)]						
xtend Time				1						1	1.24	00-	99							
elay Time									1	1		00-	999		Generation		n de la	6, 94	5. di	
	 . PH	HIII ASE	 DA	 TA -	#### 8. SF	PECI/		ETE	СТС	 	2. V	EH 9	-16	(207	0)					
<u>et</u>																		<u></u>	heet	101 - 10 101 - 10 102 - 10
070 "D" Conn																		or pin		
ssl ned Phase																	mei	nts		
DDES: ()	200				1. J.	N. 10. 10	ou e in	_	~	1								h te ligge des	See. 1
peration Mode: Nor	mV e	∋h	Nor	m Pe	d 1	call	St	Bar	AS	t Ba	rB-			212.1	, ⁶⁷ - 1			1.1	n en e	1.00
							_					NGE	(SE	C)						
stend There			101000000	-											1810 1 10		100 million 100	and the second	1. No	
ctend Time	1	-	~	\square								0_0-	99	100	λ.a.					

ROAD	COMM	SSION	FOR C	AKLA	ND CO	JNTY	<u>′, W</u> A	TER	FOR	D, M	ICHI	<u>GAN</u>				
PROGRA	<u>M LOG F</u>	OR EA	GLE SI	GNAL	<u>CONTR</u>	ROLL	ER	Epac	300,	Mod	<u>52 a</u>	<u>nd 2</u>	2070			
Start up ti Auto ped Stop time	4 me clear reset	UNIT	DATA - <u>\0</u> 0	1. ST/ (00-9 (0 =	ARTUP 99) Sta Rec No, 1 =	& MI te treve Yes)	SCEI ert	LLAN	IEOU <u>0</u> 1 ·0	JS ((0 = f 2.0 -	l, 1 = 9.9)	red)			,
	111111111111		T i tutt			ттт,				шп		пп	Ш	[T T11111	111111	1111
		4		DATA	-2 REI	MOTI	E-FL/	ASH								
Phase		1 2	3	4 5	6	7 8	3 A	ιВ	С	D	E	F	G	Н		
FLASH																
YEL																
ALT						_										
ENTER				\		1										
EXII				1	I				4							
	Test	A= Re	emote F	lasn:	0	((y = nc	ЪĞ	1 = y	es)						
A: A:	FUN 5 - = 5 8-15 =	6. TIME ICTION OU - F	E BASE N NAMÉ P FL G F FL R F	- 0. S PHS PHS	PC FUN	ICTIC	DN M	APP 5F 1 2 3			i	e tl	enteri his so	: Go t ng to creen.	յp af geւ	fter
		4.	. UNIT	С	08	- 1	15	5								
		EPAC			ASE P	AI	RE		(SE)						-	
SEQ .PP1PP2	PP3.	.PP4.	L-PP'5.	.996.	S	EQ .	.PP1.	2.	.1	P3.	.PP	4	PP5.	.996.	_	
00		1				12		_	1'-			_			4	
10	,,					13		_			[_			4	
10 1_1_ [±] ,, ^m						14		-							4	
						15									╡	
T 111111111111 1111 TT 11111	111111111	1	пшп	III I11	11111111111	ппп	ппт	птт	ттп	1 11 1 11	111111	111111	1111111	11111111	11111	111
		4. UN		A - 3	OVERL	$\frac{11111}{APS}$	TAN	DAR	D	1 11 1 11	111111			<u> </u>	<u>11111</u>	<u>111</u>
Phase 1 2 3	4 4	5 6	7 8	CH#	Ph	ase		1	2	3	4	5	6	7	8 (CH#
OVL A Phses				13	0	/erlap										
+GRN Phses					0	/erlap	эJ									
OVL B Phses					0\	/erlap	κ									
+GRN Phses		+		_	0\	/erlap) L									
OVL C Phses				,5	0\	/erlap	Μ								\perp	
+GRN Phses I		1			0\	erlap	N								\perp	
OVL D Phses		╉			0\	erlap) () - D								\rightarrow	_
Enter a "1" in the channe	# show	n.		A	0\	eria	P									
0 = Phase not part	of overl	ар; 1	l = Pha	se pa	rt of ove	erlap.										
<u>1111111111111111111111111111111111111</u>	111111111	1111111111	11II I I	IIII	[I I I1	111111	1111111	1111111	111111	111111	111111	11111111	111111111	111111	11
Overlap		4 U		TA - 4			SPE(М	N	0				
Trail areen						<u> </u>	J	r\	L	141	14	U	Р			
Trail vellow		╉╌╂	_	+												
Trail red		╉╼╋														
-Green / -vellow (-G/YI	I	5		+												
+Green (+GRN)		+				1	1									
* Overlap green omi	tted by#	- phas	se gree	n; Ov	erlap ye	ellow	omit	ted b	oy# -	pha	ise y	ellov	V			
* For FYA operation	'-G/Y' e	ntry de	efines t	he ph	ase tha	t is th	ne gr	een a	arrow	/	-					

 * For FYA operation, '+GRN' entry is the thru phase opposing the FYA phase

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2,070

4. UNIT DATA 8. 1/0 MISCELLANEOUS

3

2

2.

2-

1

١

Ι Connector "D": 0 = Standard & 1 = Alternate

Rina#

Input Response

Output Select

CONN

.D ..

"D"

4

MODE

					_	_	
1/0 Modes	INPUT	OUTPUT	Contr	roller with	n Solo De	tection:	
"ABC" Connector			EPAC	C300/M52	enter "1"	under D	Conn Input
"D" Connector	\		2070	enter "O"	under D	Conn Ing	put
111111111111111111111111111111111111111	111111111111111		1111111111111	<u>1111111111111111111111111111111111111</u>	1111111111111	111111111111	1111111111
5. CO	ORDINATI	ON DATA	-1. COOI	RD SETU	P	_	
	0	1	2	3	4	5	
OPER:	FRE	AUT	MAN				
MODE: <u>0</u>	PRM	I YLO	PYL	POM	SOM	FAC	
MAX : Q	INH	MX1	MX2				
CORR: '2	OWL	_ MOW	SWY	SW+			
OFST:	BEG	END	OF GRE	EN			
FRCF	PIN		TIME				
		VIFI)·			
	т т ттттттттт	111111111111		7. 11 T T T T T T T T	т пт т т111111	111111111111	1111111111111111111111
<u> </u>							
			OFFORT.				
DIAL: 5F	·LII:	,	OFFSEI	_	511	<u>vc:</u>	-
To sot cycle zero in m	anual conf	rol ontor	"1" for ev	ne than n	roce "E"		
		I OI enter	1 101 5y	ne men p	1622 E.		f ;[]
						11111	
5.000	RDINATIC		3. UIAUS		IA		
Mode: 0 = actuated, 1 = coord	l phase, 2	= minimu	m recall,	$3 = \max$	imum rec	all,	
4 = pedestrian recall,	5 = maxim	um + ped	estrian re	ecall, 6 =	phase on	nit,	
7 = dual coord phase.							

Sequence: 00 - 15 (Unit data has definition) Ring Lag: Ring offset from local cycle zero when not barrier locked to Ring #1. Time: 00 • 99 seconds.

Page 4

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

5. COORDINATION DATA · 3. DIAL/SPLIT DATA

Program Cycle Length

8

20

2

LEVEL 2							_	
DIAL 1 / SPL	IT 1 CY	CLE L	ENGT	H: //	'0 S	e<	, ,	
PHASE	1	2	3	4	5	6	7	8
TIME	17	C . /		"'l,:l	17	61		3
MODE	12	,J		2 '		Ι		2.

DIAL 1 / SPLIT 2 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME	12 R	1.1						14 - 45 ₆₅
MODE						181		

DIAL 1 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME								
MODE		1				1.1		

DIAL 1 / SPLIT 4 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME	14				1911			
IODE						0.111		

DIAL 2/SPLIT 1 CYCLE LENGTH: 90 Secs

3

4

20

2

5

13

2

6

45

7

2

45

1

LEVEL 1 OFFSET 1 2 3 TIME 2.5 SEQUENCE **RING 2 LAG RING 3 LAG RING4LAG** OFFSET 1 2 3 TIME SEQUENCE **RING 2 LAG** RING 3 LAG **RING4LAG** OFFSET 2 1 3 TIME SEQUENCE **RING 2 LAG RING 3 LAG RING 4 LAG** OFFSET 1 2 3 TIME SEQUENCE RING 2 LAG **RING 3 LAG** RING4 LAG

OFFORT	4	0	0
UFFSET		2	3
TIME	ZZ		
SEQUENCE			
RING 2 LAG			
RING 3 LAG			
RING4 LAG			
OFFSET	1	2	3
TIME			
SEQUENCE			
RING2LAG			
RING 3 LAG			
RING4 LAG			
OFFSET	1	2	3
TIME			
SEQUENCE			
RING2LAG			
RING3LAG			
RING4 LAG			
OFFSET.	1	2	3
TIME			
SEQUENCE			
RING2LAG			
RING 3 LAG			
RING4 LAG			

DIAL 2 / SPLIT 2 CYCLE LENGTH:

1

13

2

PHASE

TIME

MODE

PHASE	1	2	3	4	5	6	7	8
TIME					a sala	0.255		-
MODE					1.1	90 ° C - 1		

DIAL 2 / SPLIT 3 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME								
MOOE	_							

DIAL 2 / SPLIT 4 CYCLE LENGTH:

PHASE	1	2	3	4	5	6	7	8
TIME		Sec. 1			1.0	1.1.1		
MOOE					e d'altre de		*	

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac.300, Mod 52 and 2070

LEVEL 2 1 2 3 4 5 7 8 DIAL 3 / SPLIT 1 CYCLE LENGTH: 1 2 3 5 9 7 8 115" 1 2 3 MODE 0 1 2 3 4 5 6 7 8 118" 12 3 4 5 6 7 8 118" 12 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1				Į	5. COO	RDINA ⁻	TION I	DATA-	3. DIAUS	SPLI	Γ DATA			
DIAL 3/ SPLIT 1 CYCLE LENGTH: J Q. S::::: S * (R),-j(*-OFFSET 1 2 3 PHASE 1 2 3 5 5 7 8 1157 IMME 3 1 2 3 5 5 7 8 MODE Q. 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 3 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 MODE 1 2 3 4 5 6 7 8 MODE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 4 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 1 CYCLE LENGTH: <	LEVEL 2						, -	· 1	Q.A\		LEVEL 1			
HASE 1 2 3 5 6 7 8 IME 3 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 3 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 3 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 4 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3/SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4/SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4/SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4	DIAL 3/ 3	<u>SPLIT 1 (</u>	CYCLE	LENGT	<u>H:</u> <u>J</u>	Q	<u>.\$<::</u> <	<u>:: .S</u>	<u>∙</u> • \R	L),j'(r-offset	1	2	3
IMME 3 1 3 1 3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	PHASE	1	<u>2</u>	<u>3</u>		<u>5</u>	<u>6</u>	<u>7</u>	8		TIME	115"		
MODE Q. 1 2 RING 2 LAG RING 3 LAG DIAL 3 / SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 3 / SPLIT 3 CYCLE LENGTH: Imme	TIME	<u>.3</u>	Ļ						<u>a_'')</u>		SEQUENCE			
DIAL 3 / SPLIT 2 CYCLE LENGTH: RING 3 LAG RING 3 LAG PHASE 1 2 3 4 5 6 7 8 DIAL 3 / SPLIT 2 CYCLE LENGTH: IMODE IME IME SQUENCE RING 3 LAG RING 3 LAG DIAL 3 / SPLIT 3 CYCLE LENGTH: IME	MODE	<u>Q.</u>	7						2		RING 2 LAG			
DIAL 3 / SPLIT 2 CYCLE LENGTH: RING 4 LAG Imme PHASE 1 2 3 4 5 6 7 8 IME Imme						All			- 1		RING 3 LAG			
DIAL 3 / SPLIT 2 CYCLE LENGTH: OFFSET 1 2 3 IME Ime Ime Ime Ime Ime Ime Ime MODE Ime											RING 4 LAG			
PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence	DIAL 3/S	SPLIT 2 C	YCLE	LENGT	[H:						OFFSET	1	2	3
IME SEQUENCE MODE I	PHASE	1	2	3	4	5	6	7	8		TIME			
MODE RJNG2 LAG DIAL 3 / SPLIT 3 CYCLE LENGTH: RING3 LAG PHASE 1 2 3 4 5 6 7 8 DIAL 3 / SPLIT 4 CYCLE LENGTH: Imme Imme <td< td=""><td>TIME</td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>1.</td><td></td><td></td><td>SEQUENCE</td><td></td><td></td><td></td></td<>	TIME			1	1		1	1.			SEQUENCE			
DIAL 3/ SPLIT 3 CYCLE LENGTH: RING 3 LAG RING 3 LAG PHASE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 3 CYCLE LENGTH: MODE Ime Ime </td <td>MODE</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>RJNG2 LAG</td> <td></td> <td></td> <td></td>	MODE			1	1	1	1	1			RJNG2 LAG			
DIAL 3 / SPLIT 3 CYCLE LENGTH: RING4 LAG OFFSET 1 2 3 MODE I			·			1		4			RING 3 LAG			
DIAL 3 / SPLIT 3 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 MODE Image: Sequence Image:											RING4 LAG			
PHASE 1 2 3 4 5 6 7 8 IIME	DIAL 3/S	PLIT 3 C	YCLEI	ENGT	Ή:						OFFSET	1	2	3
TIME SEQUENCE RING2 LAG MODE 1 2 3 4 5 6 7 8 DIAL 3/ SPLIT 4 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 MODE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: PHASE 1 2 3	PHASE	11	2	3	4	5	6	7	8		TIME			
MODE R1NG2 LAG RING3 LAG DIAL 3 / SPLIT 4 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 DIAL 3 / SPLIT 1 CYCLE LENGTH: 0 FFSET 1 2 3 MODE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: 0 FFSET 1 2 3 1 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: 0	TIME	1	1	<u> </u>	<u> </u>			+			SEOUENCE			1
DIAL 3/ SPLIT 4 CYCLE LENGTH: RING3 LAG RING4 LAG PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 MODE 1 2 3 4 5 6 7 8 DIAL 4/ SPLIT 1 CYCLE LENGTH: RING3 LAG RING3 LAG RING3 LAG RING4 LAG 1 DIAL 4/ SPLIT 1 CYCLE LENGTH: 0FFSET 1 2 3 4 5 6 7 8 DIAL 4/ SPLIT 2 CYCLE LENGTH: 0FFSET 1 2 3 1 2 3 DIAL 4/ SPLIT 2 CYCLE LENGTH: 0FFSET 1 2 3 1 1 2 3 DIAL 4/ SPLIT 2 CYCLE LENGTH: 0FFSET 1 2 3 1 1 3 1 1 2 3 DIAL 4/ SPLIT 2 CYCLE LENGTH: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MODE	1	1		1			1	+		R1NG2 LAG			1
DIAL 3 / SPLIT 4 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 2 CYCLE LENGTH: 1 2 3 4 5 6 7 8 PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 PHASE 1 2 3 4	L	1		1	1		1				RING3 LAG			1
DIAL 3/ SPLIT 4 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME MODE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME 1 2 3 4 5 6 7 8 7 8 1 2 3 DIAL 4 / SPLIT 2 CYCLE LENGTH: Image: Context = 1 1 2 3 1 1 1 2 3 DIAL 4 / SPLIT 2 CYCLE LENGTH: Image: Context = 1 1 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											R1NG4 LAG			1
PHASE 1 2 3 4 5 6 7 8 TIME MODE 1 2 3 4 5 6 7 8 TIME Image: Sequence	DIAL 3/S	PLIT 4 C	YCLEL	ENGT	H:						OFFSET	1	2	3
TIME SEQUENCE RING 2 LAG RING 3 LAG RING 4 LAG RING 4 LAG RING 2 LAG DIAL 4 / SPLIT 1 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence Image: Seque	PHASE	_ 1	_ 2	_ 3	_ 4	5 -	6	7	- 8		TIME			
MODE R1NG 2 LAG R DIAL 4 / SPLIT 1 CYCLE LENGTH: RING 3 LAG RING 4 LAG RING 4 LAG PHASE 1 2 3 4 5 6 7 8 TIME 1 1 1 1 1 1 1 1 MODE 1 1 1 1 1 1 1 1 DIAL 4 / SPLIT 2 CYCLE LENGTH: RING 2 LAG 1 2 3 1<	TIME						Ţ		Ŭ		SEQUENCE			1
DIAL 4 / SPLIT 1 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence Image:	MODE										R1NG 2 LAG			t
DIAL 4 / SPLIT 1 CYCLE LENGTH: OFFSET 1 2 3 4 5 6 7 8 TIME Image: I	L		-	• •				• •	•		RING 3 LAG			1
DIAL 4 / SPLIT 1 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence Image:											RtNG4 LAG			
DIAL 4 / SPLIT 1 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME 1 1 1 1 1 1 1 1 1 1 2 3 MODE 1												1	I	1
DIAL 4 / SPLIT 1 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence Image:														
PHASE 1 2 3 4 5 6 7 8 TIME Image: Sequence	DIAL 4 / SI	PLIT 1 C	YCLEI	ENGT	н:					ſ	OFFSET	1	2	3
TIME MODE DIAL 4 / SPLIT 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 SEQUENCE RING3 LAG OFFSET 1 2 3 4 5 6 7 8 SEQUENCE RING3 LAG OFFSET 1 2 3 1 2 3 4 5 6 7 8 SEQUENCE R1NG2 LAG R1NG3 LAG R1NG3 LAG R1NG3 LAG R1NG3 LAG R1NG4 LAG	PHASE	11	2	3	4	5	6	7	8	ŀ	TIME			
MODE RING2 LAG DIAL 4 / SPLIT 2 CYCLE LENGTH: RING3 LAG PHASE 1 2 3 4 5 6 7 8 TIME SEQUENCE R1NG2 LAG 1 2 3 MODE Image: Sequence R1NG2 LAG 1 1 2 3 DIAL 4 / SPLIT 3 CYCLE LENGTH: Image: Sequence R1NG2 LAG Image: Sequence 1	TIME									ŀ	SEOUENCE			
DIAL 4 / SPLIT 2 CYCLE LENGTH: RING3 LAG PHASE 1 2 3 4 5 6 7 8 TIME SEQUENCE R1NG3 LAG SEQUENCE R1NG2 LAG 1 2 3 MODE SEQUENCE R1NG3 LAG R1NG3 LAG R1NG3 LAG 1 <	MODE									ŀ	RING21AG			
Ninter 2 CYCLE LENGTH: PHASE 1 2 3 4 5 6 7 8 TIME Image: Second			1		11					ŀ	RING3 LAG			
DIAL 4 / SPLIT 2 CYCLE LENGTH: OFFSET 1 2 3 PHASE 1 2 3 4 5 6 7 8 TIME Image: Second s										ŀ	RaNG4 LAG			
PHASE 1 2 3 4 5 6 7 8 TIME	DIAL 4/SE			ENGT	ц					ŀ	OFFSET	1	2	3
TIME SEQUENCE MODE R1NG2 LAG RfNG3 LAG Rf;NG4 LAG OLAL 4/SPLIT 3 CYCLE LENCTH: OEESET	PHASE	1 1	2	2		6 1	E	7	0	ŀ	11MF		~	
MODE Bilgolineli R1NG2 LAG RfNG3 LAG Rf,NG4 LAG Rf,NG4 LAG	TIME			3			0		0	ŀ	SEOUENCE			
RfNG3 LAG Rf,NG4 LAG OFESET 4 2 2	MODE		1							ŀ	R1NG2LAG			
Rf;NG4 LAG		الم الم				2.91.1				ŀ	RfNG314G			
										ŀ	Rf:NG4 AG			
				ENCT	u.	1.1	CI Gan yana			ŀ	OFESET	1	2	2

PHASE	1	2	3	4	5	6	7	8
TIME	i la serie		1	-	1.1.1.2. 194	1. 1. 1.		1.020 g
MODE	1 1 1 g g	1. 1. The	1.1		14. 44. 97 A	1.11	1. S	

DIAL 4/ SPLIT 4 CYCLE LENGTH:

PHASE	Sec. A sector	2	3	4	5	6	7	8	
TIME	Terter apple	12 - 1 2 - 14	t garana			and the	5.1		1
MODE	ng Malag	1 Cart	Section Section	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Chain S	- Marial Cont		and the second	ang ang kang taga

SEQUENCE			
RING2 LAG			
RING3 LAG			
RaNG4 LAG			
OFFSET	1	2	3
11ME			
SEQUENCE			
R1NG2 LAG			
RfNG3 LAG			
Rf;NG4 LAG			
OFFSET	1	2	3
•TIME • •		÷.	
SEQUENCE			
RIHG2 LAG			
RING3 LAG			
RtNG4 LAG		:	
OfFSET· ,	1 .∙,	,,2.;	.,. 3-
rr.ue		t -,•_1·	
seQOENCE	/: .:		
RING'2 LA'G'	. ,r,	• •	
RtNG3 LAG	, .		
RING4LAG			

ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER Epac300, Mod 52 and 2070

	6. TIME BASE [DATA - 2. SET TIN	1E/ DA	TE		
DATE	TIME		BE	EG •• O	ST - EN	D
MMIDD/YY	HH:MM:SS	MON & WEEK:	MM	SW	MM	SW
LL			3	'2.		j

CYCLE ZERO: $\underline{Z.4-}$: <u>CO</u> (HH:MM - EVENT)

STZ DIFF: <u>-18000</u> (GPS OFFSET)

PRO TIME DAY H H MIN	COORD PATRN		MAX 2 PHASE #S	OMIT PHASE#S	REFERENCE DAT A
• • * * * • • *	DISI O	* •	• * • • • *	* * • • • •	PRO DAY = 01 - 99
0\ 00 :CO	SIS I				(Program day)
0 > 0 :ct:>	$\setminus I \setminus I$				
0\ '2,.;(\0	5. / S /				HH:MM = 24 Hour clock
02. CO:OO	SIS /				
<u>C1 6, :</u>	;}.:/ \ /				PATTERN: (D/S/O)
02 0e, :00	$1 / \setminus \Lambda$				FLASH =5/5/
02 / S :ao	3/ I / \				FREE =0/0/4
0"2 rq :00	1,/ ,1 /				
<i>OiJ</i> :::11:00	51 _z:; I			╉┈╋╋╋╋	
	1 1			┽┽┥┽┽┥┽┽┽	MAX2 & OMITS:
	1 1			+++++++++	Gill free, set pattern
				↓↓↓↓↓↓↓↓	• to 01010.
•				++++++++++	D
			+ + + + + + +	╋╋╋╋╋╋╋╋╋╋	D = DIAL#
:				╉╋╋╋╋	S = SPLIT#
				++++++++++++++++++++++++++++++++++++	0=OFFSET#
				++++++++++++++++++++++++++++++++++++	
				++++++++++++++++++++++++++++++++++++	

			+ + + + + + +	*******	
•				++++++++++++++++++++++++++++++++++++	
				······································	<'
		+. ·			
:	, 1				
	II		.,	ġ.	
- ¹	ΙΙ				
· · ·	"-'.·I •.,/	V - 12	· · · · · · · ·		···· ,
:	I - T	;	γ		
e e training	I	l,,* *.f</td <td>-</td> <td>5 • 2</td> <td>e tê sinê lê ser</td>	-	5 • 2	e tê sinê lê ser
0 0 0 0	-/- I				
	ΙΙ		· · · ·		
:					
	I I				

-ROAD COMMISSION FOR OAKLAND COUNTY, WATERFORD, MICHIGAN ^p OGRAM LOG FOR EAGLE SIGNAL CONTROLLER Eoac300 Mod 52 and 2070

	ROAD COMMISSION FOR OAKLAND COUNTY, WATER	FORD, MICH	IIGAN and 2070	
	PROGRAM LOG FOR EAGLE SIGNAL CONTROLLER E	300 1000 52	and 2070	
	7 PREEMPT DATA -1 ALL PREEMPT	S ·		
	• RING TIMES 1 2 3 4	Ĩ		
	MIN GREEN/W ALK			
	VERRIDE FL 1/2 2/3 3/4 4/5	516 I		
	ST US	I		
	CODE 0 = NO, 1 = YES			
	7. PREEMPTDATA-PREEMPT1			
<u>MISC</u>	<u>CDATA</u> : (0 = no, 1 = yes) 4.PEDES ⁻	TRI STATI	JS:	
TEST	N-LOCK.: LINK PR . • PHASE	1 2 3	4 5 6	7 8
DELAY	EXTEND: DURATION: TRKG			
	MXCALL: LOCK OUT: D L	-		
RING	1 2 3 4 5 6 7 8	dont wlk, 1=v	<u>vlk, 2=flwlk, J</u>	<u>=dark)</u>
EXIT	CYCLE			
CALLS		= no, 1 = act,	2=recall)	-
28. H				
	RVAL TIMES: 5. OVERL	<u>AP STATUS:</u>		
SEL PE	ED CLR: TRK YEL CHG: 0 LAP	<u>A</u> <u>B</u>	C D	
SEL YE	EL CHG: TRK RED CLR: TRK N	1		
SELRE	D CLR: DWELLGRE IVVELL	<u></u>		
TRACK	GREEN: RETPED R: (0=red, /	: <u>}*</u> ;;;;;?,	3=flv; 4=rlark;	,. ;;.;.::
IRKPE	D CLR: RETY CHG: CYCLE •	··· <u>·</u> ··,_·	·· <u>·</u> ,	<u> . . </u>
	RE EL CLR: (0 =	no, $1 = t$		
."2 \/EUI/				
	$\frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{9} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{9} \frac{1}{1} \frac{1}$	<u>(IORITY:</u> (()- o, 1=yes)	
TRK GR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-LOCK.:	_KIP	:
"DWELI	L tt:r':,1t+t-++-+t1	EXTEND:	DTI	ON:
(0-roc	$\frac{1}{2-flr} = \frac{1}{2-flr} + \frac{1}{2-flr} = \frac{1}{2-flr} = \frac{1}{2-flr} + \frac{1}{2-flr} = $	MXCALL:		<u>UI:</u>
	$r_{1}, \frac{-g_{111}}{2}$ RING	<u>23</u>	<u>4 5 6</u>	<u>×</u>
CYCL	J J J J J 1-act 2-min recall 3-max recall CALLO ¹⁻	+	++-+-	+
110,				
PHASE	BOAD BOAD	PHASE		FLASI
111/102	$t = B_{k9}$ LT (C i i 2.01 N	C I	I	=
2	We e		2	f1 A
3			۷.	11.7
4	Se	R	4	FU
5	'V1 r'\SS> 1r (C	AT	5	
6	, e. t-"li.::.!:'	C.	b	FL.A
7	1			
8	Ne.	D	8	!=Le
OLA	f:'e S.91t' I ., "-wJtLt>J 'thW-Ow hO<7D\'lil a. W	C 1	9	1 A
OLB		0.1		11 1
OLC	we,Y'IL't(\."6.'v-\\r-IC'-1 - 'f (Z.cl,.l, O+.1)	AL	I	- LA
01,D		1		
1PEO		1		
2PED	v.JL h<9 f>6;D (r-10e"t'\ 1-eC-)	wA	• . \	
3PEP		,	*	
PED.	e'o "(JC T- t .,.c,.'.	• WR•,.• ••	:-r4	11
,;p O ∶'			· · · · · ·	
. 6fE0.\	<i>Mt:;</i> 9 <=−€ <i>Q</i> _{Bol.11"1} -'(• c; \	we	• tS	
.7PED…::				
SPED	e, <i>, i</i> P ('t;./\S:T. LEc_)	WI)	IG:,	

CONTROLLER INFORMATION SHEET Size P44-16 Cabinet with MOD 52 EPAC w/ FYA

INTERSECTION:	M-59 (Highland) & Fisk
COUNTY NO:	4135
STATE NO:	63041-01-026
PREPARED BY:	Rachel Jones
DATE:	10/10/11

Backpanel :-

Load Switch 1:	EB M59 LT (G: green arrow)	CL	
Load Switch 2:	WB M-59	A	FLA
Load Switch 4:	SB Fisk	В	FLR
Load Switch 5:	WB M59 LT (G: green arrow)	AL	
Load Switch 6:	EB M59	С	FLA
Load Switch 8:	NB Fisk	D	FLR
Load Switch 9:	(OLA) EB M59 LT	CL	FLA
(G: flash	ning yellow arrow; Y: yellow arrow; R:	red arrow)	
Load Switch 11:	(OLC) WB M59 LT	AL	FLA
(G: flash	ning yellow arrow; Y: yellow arrow; R:	red arrow)	
Load Switch 13:	WB M59 Ped (North Leg)	WA	
Load Switch 14:	SB Fisk Ped (West Leg)	WB	
Load Switch 15:	EB M59 Ped (South Leg)	WC	
Load Switch 16:	NB Fisk Ped (East Leg)	WD	

Jumpers :-A28-A29,A34-A35,A37-A38,A43-A44,B28-B29,B34-B35,B37-B38,B43-B44,B52-B53, B55-B56,B58-B59,B61-B62,D22-D26, C56-PB10, D56-PB10, 10R-PB9, 12R-PB9.

Signal Monitor :- 1-5, 1-6, 1-9, 1-11, 2-5, 2-6, 2-9, 2-11, 4-8, 5-9, 5-11, 6-9, 6-11, 9-11. All switches OFF EXCEPT: Dual Select A&B; G&Y Enable; FYA 1-9, 5-11; SSM 2,4,6,8,9,11. Minimum Flash = 4+2+1

Autoscope SOLOJ-

(Y\ool <u>o</u>

Co-#-4135

Mini-Hub O Detector Port Master Front Panel Input/Output Pio Assignment

The Mini-Hub II has inputs and outputs available through the front panel Input/ Output connector and through the back edge connector. The pin assignments for the Mini-Hub II front connector are listed in the following table. Edge connector pins are identified by NI.JMBER on the component (front) side of the board. Edge connector pins are identified by LETTER on the backside of board

1 \$	Mini-Hub II conn.	Edge conn.	Front Harness	Description	D- Conn. Term #	0- Conn. Detector Descript.	On Print Detector number	Phase
\	Output 1 LED	F	1.	£S MS.5 1:-r	I.	9	١.	1
Ι	Output 2 LED	w	14	EB J-1S9 Ltk&/	f>	\4	2	Ι
I	Output 3 LED	S	2	6-8115 Tt-tCZUL				
I	Output 4 LED	У	15	E;"Sh "'f"1WR				
Z	Output 5 LED	(JP1)4	3	t-I F"\SK. Lt	(1S	5	0
?_	Output 6 LED	(JP7)5	16	N% / <i>r\S.\l.</i> 'i.it\Q'IJ ei'	8	't.t: \b	6	þ
3	Output 7 LED	(JP2)8	4	L> t"\\$9 <i>t. 1'</i>	4	'∙t.eJ\'1	1	5
3	Output 8 LED	(JP8)9	17	We i"\;9 '-"'fflr;o-l	5	/	<a< td=""><td>5</td></a<>	5
3	Output 9 LED	(JP3)13	5					
3	Output 10 LED	(JP9)14	18					
	Output 11 LED	(JP4)17	6	C::, L'{	2	/0		4
	Output 12 LED	(JP10)18	19	\$8, 'PIS.I(f	3	//	\'2	4
	Output 13 LED		7					
	Output 14 LED		20					
	Output 15 LED		8					
	Output 16 LED		21					
	Input 1 LED	(JP5)1	9	LS\- 12.c0 Cc-3a)				
		(JP11)2	22	\ '2-,Q,e\') Cc3.0)				
	Input 3 LED	(JP6)3	10					
_	Input 4 LED	(JP12)10	23	LS4 (C3,)				
			11	LSS-11 (.t) :))				
			24	LS b '12tt) (0 • '30>				
		(with IP14•)	25	$\langle c \rangle \langle c $				
			23	1.5.% e-6 / (C· 50)				

• Input 8 with JPI 4 inserted becomes 24 VDC through Input/ Output Connector on front panel. Logic Ground is the GREY (pin IJ) wire form Input/ Output connector *on* front oanel.

Chapter 5 Connecting Solo MVP Power and Communications Cables

Usllally.1he Solo cable (1he "pig1ail" cable from I.he Solo I\-IVP) is spliced to a Branch Cable, eithe!r in a junction bo>. or in the hand-hole at the pole base. The Branch cable runs from the sphec poin110 1h.: cabinel, and 1crminales to 1he ACI..P Use the chart below (copy the blan}.; rable pro, ided in .\ppendix A) 10 record which pairs of the Solo cable are spliced 10 the. Br:lllch cable pairs. For Branch cable lengths 0f 300 ft or less. a separalc cable 10 power lhe Solo Pro is not normally necessary.

Be rnre rouse sulicing methods and nialerials ap[)ropriare for low vol1:ige cornmunic:itions ,plici11g. When splicing is comµle1ed, properly seal the splice.

When the br:inch cables are brought into the c:ibir. 1. label each (Jble, stnr1i11g ".ith cable 1 from the Solo MVP virning Phises 2 attd 5, and Working cloci-wise ;,round the intersection, labeling cabks 2, 3, and 4

Termin:11c lhe c11bles to th ACTP in 1hr si\me 01der. Tn ing c:irc 10 il - ign the Sensor numbers (in !he Autoscoµc Proµerties Edilor) ill 1hc same orde1 3s the c:iules arc terinina1ed will fJcilira1c e:isicr main1e11ancc a11d 1roublcshoo1i11g.

An example is shown in the 1:iblc below. In this e.,:imµlc, :i cr:irnte []011 cr oblc is-shown 111 111 1.1lla1io11s where., 6-pair branch cable is usu.I, ro, vcr a11d coinmunic:111011s are 11su:illy combined in one cable

 \wedge bl:ink copy of 1 his 1:ible is provided for c1uplica1io11 in \wedge rµc11dix A

v.)1'2-t ..., $5,ic, v'_4Vr > +-0 w - 1 "b (::rQN/wt+1 (:..d' - ...) + +$ DRAIN <...-'1--P,1f\6r 101t1 .h, "'::,hu:!.lcb , .l'\-r--c.dl-..c .A i..c:, Appen ix

<u>G. -v...!</u> Solo System-Wide Interconnections

*I*C=-a- *H*\--c:. € *f* A-*f**l* L

O1,rli<.:atc 1he followi11g wulc 10 kccr 1r:ich of :ill Solo MVP connections

		Solo MVP !.,-,It i'I w-r,,01	nvfflb,r)	Branch Power Cable (wffit II) •Yf :,lorJ	В	ranch Communics j-,,۱٬۱۱۲٬۰۰۰t د	aliom Cable "X)	Communicaliom	Interlace Panel
	PIN	PAIR COLOR	WIRE COLOR	WIRE COLOR	PAIR	PAIR COLOR	WIRE COLOR	SIGNAL	1ERMINAL
	A	BRN/BLK	^{,,f} BRN ≻t	. <i>B</i>		BUi/::tt-	1 (0	24V PWR	1
	В	BRN/BLK	I' BLK,.	1.:,\1- I		8 (Z.rv/ ,.,:.,F	lr 0 t4 I	24V RTN	2
	Ν		"'GRN/YELt	&e.0		&e.1:::i/ }{1	6	EARTH GND	3
	р	BLU/BLK	BLU	BLU	1	</0H	AL"v∖	SUP RX•	4
Γ	u	BLU/BLK	BLK	W r\1	1	P-t L/i,.)i-,	;,0 I	SUP RX-	5
Γ	D	R=DiBLK	RED	gf-u	2	'2J:: D/ril u	(2. C U	SUP TX+	6
	R	REOIBLK	BLK	{3(_1.,\	2	f!.J::.,) iBuJ	6Lt…L	SUP TX-	7
		YEL/BLK	YEL	o \.;-	J	о <i>£1.&/ ;</i> үн	O C::s-	DET•	8
_	- ·	YELIBLK	BLK	wr1-r	J	, c)c(,./i.j <i>i-1-T</i>) t+-r	DET-	9
	J .	·-,'."HI/BLK	WHI	bCEi	J	1A <i>u=y</i> /W r-1,	G /'-£ .t	VIDEO.	10
	rl 1	··/\"HI/8LK	BLK	L,01-\1	4	'h-£2€1 /.,j1	I \0'1° \	VIDEO-	11

D

1.12

* IS SEPERATE POWER

White Lake Township			
7525 Highland Rd White Lake, MI 48383-2938 http://www.whitelaketwp.com/	SEMC: MEMB	OG BER	Census 2020 Population: 30,95 Area: 37.1 square mile
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP		
Economy & Jobs			
	Links	to American Community Survey (ACS) Drofiles:	Soloct a Voar 2018-2022 V Economic
Forecasted Jobs	Link	to American Community Survey (ACS) Profiles:	Select a Year <u>2018-2022</u> ∽ Economic

Search...

Q

Source: SEMCOG 2050 Regional Development Forecast

Forecasted Jobs by Industry Sector

Forecasted Jobs By Industry Sector	2019	2020	2025	2030	2035	2040	2045	2050	Change 2019-2050	Pct Change 2019-2050
Natural Resources, Mining, & Construction	1,022	1,006	1,229	1,253	1,269	1,253	1,236	1,219	197	19.3%
Manufacturing	208	194	223	216	210	195	188	182	-26	-12.5%
Wholesale Trade	293	265	282	297	307	308	307	308	15	5.1%
Retail Trade	2,227	1,940	2,106	2,046	1,930	1,851	1,814	1,768	-459	-20.6%
Transportation, Warehousing, & Utilities	327	319	390	404	415	420	429	434	107	32.7%
Information & Financial Activities	1,716	1,477	1,774	1,793	1,819	1,835	1,846	1,910	194	11.3%
Professional and Technical Services & Corporate HQ	855	813	968	1,023	1,080	1,116	1,168	1,246	391	45.7%
Administrative, Support, & Waste Services	1,132	868	1,051	1,123	1,175	1,207	1,263	1,303	171	15.1%
Education Services	970	897	972	1,016	1,017	1,027	1,033	1,038	68	7%
Healthcare Services	322	284	377	407	433	465	498	532	210	65.2%
Leisure & Hospitality	1,030	762	960	1,004	1,030	1,040	1,045	1,065	35	3.4%
Other Services	557	491	560	587	603	617	621	624	67	12%
Public Administration	158	152	166	172	174	173	173	172	14	8.9%
Total Employment Numbers	10,817	9,468	11,058	11,341	11,462	11,507	11,621	11,801	984	9.1%

Note: The base year for the employment forecast is 2019, as 2020 employment was artificially low due to the COVID recession.

Source: SEMCOG 2050 Regional Development Forecast

Daytime Population

Daytime Population	ACS 2016
Jobs	5,496
Non-Working Residents	14,870
Age 15 and under	6,198
Not in labor force	7,856
Unemployed	816
Daytime Population	20,366

Source: 2012-2016 American Community Survey 5-Year Estimates and 2012-2016 Census Transportation Planning Products Program (CTPP). For additional information, visit SEMCOG's Interactive Commuting Patterns Map

Note: The number of residents attending school outside Southeast Michigan is not available. Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

	Search	
mmunity Profiles	5	
ou are viewing data for: Nhite I ake Townshin		
7525 Highland Rd White Lake, MI 48383-2938 http://www.whitelaketwp.com/	SEMCOG MEMBER	Census 2020 Population: 30,950 Area: 37.1 square mile
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP	
EW COMMUNITY EXPLORER MAP	VIEW 2020 CENSUS MAP Link to American Community Survey (ACS) Profiles: Sele Population and House	ect a Year 2018-2022 ∽ Social ⊨ Demographic hold Estimates for Southeast Michigan, 2022
EW COMMUNITY EXPLORER MAP Population and Households Population Forecast	VIEW 2020 CENSUS MAP Link to American Community Survey (ACS) Profiles: Sele Population and House	ect a Year <u>2018-2022</u> Social ⊢Demographic hold Estimates for Southeast Michigan, 2022
Population and Households Population Forecast	VIEW 2020 CENSUS MAP	ect a Year 2018-2022 ∽ Social ⊢Demographic hold Estimates for Southeast Michigan, 2022

Population and Households

Population and Households	Census 2020	Census 2010	Change 2010-2020	Pct Change 2010-2020	SEMCOG Jul 2022	SEMCOG 2050
Total Population	30,950	30,019	931	3.1%	30,739	35,002
Group Quarters Population	88	76	12	15.8%	105	342
Household Population	30,862	29,943	919	3.1%	30,634	34,660
Housing Units	12,776	12,214	562	4.6%	12,949	-
Households (Occupied Units)	12,089	11,262	827	7.3%	12,110	14,325
Residential Vacancy Rate	5.4%	7.8%	-2.4%	-	6.5%	-
Average Household Size	2.55	2.66	-0.11	-	2.53	2.42

Source: U.S. Census Bureau and SEMCOG 2050 Regional Development Forecast

Components of Population Change

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2018 Avg
Natural Increase (Births - Deaths)	218	89	2
Births	424	309	284
Deaths	206	220	262
Net Migration (Movement In - Movement Out)	112	-59	5
Population Change (Natural Increase + Net Migration)	330	30	8

Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG

Household Types

Household Types	Census 2010	ACS 2021	Change 2010-2021	Pct Change 2010-2021	SEMCOG 2050
With Seniors 65+	2,520	3,804	1,284	51%	-
Without Seniors	8,742	8,015	-727	-8.3%	-
Live Alone, 65+	882	1,141	259	29.4%	-
Live Alone, <65	1,406	1,127	-279	-19.8%	-
2+ Persons, With children	4,009	3,577	-432	-10.8%	-
2+ Persons, Without children	4,965	5,974	1,009	20.3%	-
Total Households	11,262	11,819	557	4.9%	-

Source: U.S. Census Bureau, Decennial Census, 2017-2021 American Community Survey 5-Year Estimates, and SEMCOG 2050 Regional Development Forecast

Level of Service Criteria for Stop Sign Controlled Intersections

The level of service criteria are given in Exhibit 20-2. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue until the vehicle departs from the stop line; this time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in queue.

The average total delay for any particular controlled movement is a function three (capacity) factors: distribution of gaps in the major-street traffic stream, driver judgment in selecting gaps through which to execute the desired maneuvers, and the follow-up headways required by each driver in a queue.

The basic capacity model assumes gaps in the conflicting movements are randomly distributed. When traffic signals are present on the major street, upstream of the subject intersection, flows may not be random but will likely have some platoon structure. Although the procedures in this chapter provide a method for approximating the operations of a TWSC intersection with an upstream signal, the operations of such an intersection is arguably best handled by including it in a complete simulation

LEVEL OF SERVICE	AVERAGE CONTROL DELAY (sec/veh)
А	<u>≤</u> 10
В	> 10 and <u><</u> 15
С	> 15 and <u><</u> 25
D	> 25 and <u><</u> 35
E	> 35 and <u><</u> 50
F	> 50

Exhibit 20-2. Level of Service Criteria for Stop-Controlled Intersections (Motor Vehciles)

Average total delay less than 10 sec/veh is defined as Level of Service (LOS) A. Follow-up times of less than 5 sec have been measured when there is no conflicting traffic for a minor street movement, so control delays of less than 10 sec/veh are appropriate for low flow conditions. A total delay of 50 sec/veh is assumed as the break point between LOS E and F.

The LOS criteria for TWSC intersections differ somewhat from the criteria used in Chapter 19 for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection is designed to carry higher traffic volumes and will present greater delay than an unsignalized intersection. Additionally, several driver behavior considerations combine to make delays at signalized intersections less onerous than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, where drivers on the minor approaches to unsignalized intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized than signalized intersections. For these reasons, it is considered that the total delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection.

LOS F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queueing on the minor approaches. The method, however, is based on a constant critical gap size - that is, the critical gap remains constant, no matter how long the side street motorist waits. LOS F may also appear in the form of side street vehicles' selecting smaller-than-usual gaps. In such cases, safety may be a problem and some disruption to the major traffic stream may result. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal gap acceptance behavior. The latter is more difficult to observe on the field than queueing, which is more obvious.

Source: Highway Capacity Manual, 6th Edition. Transportation Research Board, National Research Council

Level of Service for Signalized Intersections

Level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Specifically, level-of-service (LOS) criteria are stated in terms of the average stopped delay per vehicle. The criteria are given in Exhibit 19-8. Delay may be measured in the field or estimated using procedures presented later in this chapter. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

LOS A describes operations with a control delay of 10 s/veh or less. This level is typically assigned when the volume-to-capacity ratio is low and either progression is extremely favorable or the cycle length is very short. If LOS A is the result of favorable progression, most vehicles arrive during a green indication and travel through the intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LEVEL OF SERVICE	STOPPED DELAY PER VEHICLE (SEC)
A	<u><</u> 10.0
В	> 10.0 and <u><</u> 20.0
С	> 20.0 and <u><</u> 35.0
D	> 35.0 and <u><</u> 55.0
E	> 55.0 and <u><</u> 80.0
F	>80.0

Exhibit 19.8. Level-of-Service Criteria for Signalized Intersections (Motorized Vehicles)

1. If the v/c ratio for a lane group exceeds 1.0, a LOS F is assigned to the individual lane group. LOS for approach-based and intersection-wide assessments are determined solely by the control delay.

LOS C describes operations with control delay between 20 and 35 s/veh. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e. one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number if vehicle stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D describes operations with control delay between 35 and 55 s/veh. This level is typically assigned when when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh. This level is typically assigned when when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level, considered to be unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of the intersection. This level is typically assigned when the volume-to-capacity ratio is high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

Source: Highway Capacity Manual, 6th Edition. Transportation Research Board, National Research Council

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	٠	→	7	4	+	*	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u></u>	1	7	† Ъ		٦	ef 🕯		7	ef 🕯	
Traffic Volume (veh/h)	47	1192	9	9	792	26	1	0	6	109	0	55
Future Volume (veh/h)	47	1192	9	9	792	26	1	0	6	109	0	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1282	10	10	900	30	2	0	10	128	0	65
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	354	1558	695	264	1538	51	424	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3577	119	1358	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1282	10	10	456	474	2	0	10	128	0	65
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1885	1358	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	28.1	0.3	0.2	17.2	17.2	0.1	0.0	0.4	6.7	0.0	2.7
Cycle Q Clear(g_c), s	1.3	28.1	0.3	0.2	17.2	17.2	2.8	0.0	0.4	7.1	0.0	2.7
Prop In Lane	1.00		1.00	1.00		0.06	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	354	1558	695	264	779	811	424	0	480	463	0	461
V/C Ratio(X)	0.14	0.82	0.01	0.04	0.59	0.59	0.00	0.00	0.02	0.28	0.00	0.14
Avail Cap(c_a), veh/h	354	1558	695	264	779	811	424	0	480	463	0	461
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.2	22.6	14.7	15.6	19.5	19.5	25.1	0.0	23.3	25.8	0.0	24.1
Incr Delay (d2), s/veh	0.9	5.1	0.0	0.3	3.2	3.1	0.0	0.0	0.1	1.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	11.5	0.1	0.1	7.0	7.3	0.0	0.0	0.2	2.2	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.0	27.7	14.7	15.9	22.7	22.6	25.1	0.0	23.3	27.3	0.0	24.7
LnGrp LOS	В	С	В	В	С	С	С	A	С	С	A	C
Approach Vol, veh/h		1343			940			12			193	
Approach Delay, s/veh		27.1			22.6			23.6			26.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	45.0		32.0	13.0	45.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 39		25.5	* 6.7	* 39		25.5				
Max Q Clear Time (g_c+I1), s	2.2	30.1		9.1	3.3	19.2		4.8				
Green Ext Time (p_c), s	0.0	5.1		0.5	0.0	5.1		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			25.3									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	۲		††	1	Y		
Traffic Vol, veh/h	3	1309	939	6	0	2	
Future Vol, veh/h	3	1309	939	6	0	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	500	-	-	425	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	89	89	89	89	60	60	
Heavy Vehicles, %	7	7	7	7	0	0	
Mvmt Flow	3	1471	1055	7	0	3	

Approach	EB	WB	SB
HCM Control Delay, s	0	0	12.2
HCM LOS			В

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1			
Capacity (veh/h)	623	-	-	- 500			
HCM Lane V/C Ratio	0.005	-	-	- 0.007			
HCM Control Delay (s)	10.8	-	-	- 12.2			
HCM Lane LOS	В	-	-	- B			
HCM 95th %tile Q(veh)	0	-	-	- 0			
Notes							
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s +: Com	putation Not Defined	*: All major volume in platoon	

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	٠	→	7	4	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	^	1	٦	† Ъ		٦	ef (7	ef (
Traffic Volume (veh/h)	165	1112	8	6	1486	76	6	2	12	249	0	165
Future Volume (veh/h)	165	1112	8	6	1486	76	6	2	12	249	0	165
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	194	1308	9	6	1598	82	10	3	20	280	0	185
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	231	2142	954	306	2056	105	200	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3592	183	1217	225	1502	1398	0	1679
Grp Volume(v), veh/h	194	1308	9	6	822	858	10	0	23	280	0	185
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1920	1217	0	1727	1398	0	1679
Q Serve(g_s), s	5.1	27.6	0.3	0.1	40.8	41.5	0.9	0.0	1.3	24.0	0.0	11.7
Cycle Q Clear(g_c), s	5.1	27.6	0.3	0.1	40.8	41.5	12.6	0.0	1.3	25.3	0.0	11.7
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	231	2142	954	306	1062	1099	200	0	367	342	0	357
V/C Ratio(X)	0.84	0.61	0.01	0.02	0.77	0.78	0.05	0.00	0.06	0.82	0.00	0.52
Avail Cap(c_a), veh/h	231	2142	954	306	1062	1099	200	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.2	16.9	11.0	11.5	19.7	19.8	47.4	0.0	37.7	47.8	0.0	41.8
Incr Delay (d2), s/veh	28.8	1.3	0.0	0.1	5.5	5.5	0.5	0.0	0.3	19.2	0.0	5.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.8	10.9	0.1	0.1	17.1	17.9	0.3	0.0	0.6	9.7	0.0	5.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	53.1	18.2	11.0	11.6	25.2	25.3	47.9	0.0	38.0	67.0	0.0	47.1
LnGrp LOS	D	В	В	В	C	С	D	A	D	E	A	D
Approach Vol, veh/h		1511			1686			33			465	
Approach Delay, s/veh		22.6			25.2	_		41.0			59.1	
Approach LOS		С			С			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+I1), s	2.1	29.6		27.3	7.1	43.5		14.6				
Green Ext Time (p_c), s	0.0	11.2		0.0	0.0	12.8		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			28.6									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	^	- † †	1	Y	
Traffic Vol, veh/h	4	1439	1811	16	2	1
Future Vol, veh/h	4	1439	1811	16	2	1
Conflicting Peds, #/hr	1	0	0	1	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	425	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	95	95	75	75
Heavy Vehicles, %	3	3	3	3	0	0
Mymt Flow	4	1564	1906	17	3	1

Major/Minor	Major1	Ν	1ajor2	Ν	Minor2		
Conflicting Flow All	1924	0	-	0	2697	954	
Stage 1	-	-	-	-	1907	-	
Stage 2	-	-	-	-	790	-	
Critical Hdwy	4.16	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.23	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	299	-	-	-	*14	263	
Stage 1	-	-	-	-	*105	-	
Stage 2	-	-	-	-	*462	-	
Platoon blocked, %		-	-	-	1		
Mov Cap-1 Maneuver	299	-	-	-	*14	263	
Mov Cap-2 Maneuver	-	-	-	-	*81	-	
Stage 1	-	-	-	-	*104	-	
Stage 2	-	-	-	-	*462	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		40.6		
HCM LOS					Е		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		299	-	-	-	105	
HCM Lane V/C Ratio		0.015	-	-	-	0.038	
HCM Control Delay (s)	17.2	-	-	-	40.6	
HCM Lane LOS		С	-	-	-	E	
HCM 95th %tile Q(ver	ו)	0	-	-	-	0.1	

+: Computation Not Defined

~: Volume exceeds capacity

\$: Delay exceeds 300s

Notes

*: All major volume in platoon

Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	69	362	318	125	35	235	217	9	22	148	69	
Average Queue (ft)	27	227	206	9	6	133	127	0	3	60	26	
95th Queue (ft)	60	320	304	57	22	206	198	6	14	117	56	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			38	0								
Queuing Penalty (veh)			3	0								

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	24	16
Average Queue (ft)	2	1
95th Queue (ft)	12	10
Link Distance (ft)		321
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Zone Summary

Zone wide Queuing Penalty: 4

Intersection: 1: Private Drive/Fisk Road & Highland Road (M-59)

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	348	308	268	83	24	405	398	29	39	355	157	
Average Queue (ft)	170	193	168	5	4	273	277	3	7	173	71	
95th Queue (ft)	349	270	243	39	16	370	381	16	24	311	131	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						0	0					
Queuing Penalty (veh)						0	0					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)	0		26			0						
Queuing Penalty (veh)	0		2			0						

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

	30
L	LR
23	25
3	3
16	15
	321
500	
	L 23 3 16 500

Zone Summary

Zone wide Queuing Penalty: 3

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	٠	-	7	4	-	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	1	٦	† Ъ		7	ţ,		٦	ţ,	
Traffic Volume (veh/h)	47	1204	9	9	800	26	1	0	6	110	0	56
Future Volume (veh/h)	47	1204	9	9	800	26	1	0	6	110	0	56
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1295	10	10	909	30	2	0	10	129	0	66
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	351	1558	695	261	1539	51	423	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3578	118	1357	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1295	10	10	460	479	2	0	10	129	0	66
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1885	1357	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	28.5	0.3	0.2	17.5	17.5	0.1	0.0	0.4	6.7	0.0	2.7
Cycle Q Clear(g_c), s	1.3	28.5	0.3	0.2	17.5	17.5	2.8	0.0	0.4	7.1	0.0	2.7
Prop In Lane	1.00		1.00	1.00		0.06	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	351	1558	695	261	779	811	423	0	480	463	0	461
V/C Ratio(X)	0.15	0.83	0.01	0.04	0.59	0.59	0.00	0.00	0.02	0.28	0.00	0.14
Avail Cap(c_a), veh/h	351	1558	695	261	779	811	423	0	480	463	0	461
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.2	22.8	14.7	15.8	19.6	19.6	25.1	0.0	23.3	25.8	0.0	24.1
Incr Delay (d2), s/veh	0.9	5.3	0.0	0.3	3.3	3.2	0.0	0.0	0.1	1.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	11.7	0.1	0.1	7.2	7.4	0.0	0.0	0.2	2.2	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.1	28.1	14.7	16.0	22.9	22.8	25.2	0.0	23.3	27.3	0.0	24.7
LnGrp LOS	В	С	В	В	С	С	С	А	С	С	А	С
Approach Vol, veh/h		1356			949			12			195	
Approach Delay, s/veh		27.5			22.7			23.6			26.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	45.0		32.0	13.0	45.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 39		25.5	* 6.7	* 39		25.5				
Max Q Clear Time (g_c+I1), s	2.2	30.5		9.1	3.3	19.5		4.8				
Green Ext Time (p_c), s	0.0	4.9		0.6	0.0	5.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			25.6									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.
| Int Delay, s/veh | 0 | | | | | | |
|------------------------|------|------|------|------|------|------|--|
| Movement | EBL | EBT | WBT | WBR | SBL | SBR | |
| Lane Configurations | ٦ | | | 1 | Y | | |
| Traffic Vol, veh/h | 3 | 1322 | 948 | 6 | 0 | 2 | |
| Future Vol, veh/h | 3 | 1322 | 948 | 6 | 0 | 2 | |
| Conflicting Peds, #/hr | 0 | 0 | 0 | 0 | 0 | 0 | |
| Sign Control | Free | Free | Free | Free | Stop | Stop | |
| RT Channelized | - | None | - | None | - | None | |
| Storage Length | 500 | - | - | 425 | 0 | - | |
| Veh in Median Storage, | # - | 0 | 0 | - | 0 | - | |
| Grade, % | - | 0 | 0 | - | 0 | - | |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 60 | 60 | |
| Heavy Vehicles, % | 7 | 7 | 7 | 7 | 0 | 0 | |
| Mvmt Flow | 3 | 1485 | 1065 | 7 | 0 | 3 | |

Major/Minor	Major1	Majo	r2	Ν	/linor2					
Conflicting Flow All	1072	0	-	0	1814	533				
Stage 1	-	-	-	-	1065	-				
Stage 2	-	-	-	-	749	-				
Critical Hdwy	4.24	-	-	-	6.8	6.9				
Critical Hdwy Stg 1	-	-	-	-	5.8	-				
Critical Hdwy Stg 2	-	-	-	-	5.8	-				
Follow-up Hdwy	2.27	-	-	-	3.5	3.3				
Pot Cap-1 Maneuver	617	-	-	-	*222	496				
Stage 1	-	-	-	-	*297	-				
Stage 2	-	-	-	-	*502	-				
Platoon blocked, %		-	-	-	1					
Mov Cap-1 Maneuver	617	-	-	-	*221	496				
Mov Cap-2 Maneuver	• -	-	-	-	*256	-				
Stage 1	-	-	-	-	*296	-				
Stage 2	-	-	-	-	*502	-				

Approach	EB	WB	SB
HCM Control Delay, s	0	0	12.3
HCM LOS			В

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1			
Capacity (veh/h)	617	-	-	- 496			
HCM Lane V/C Ratio	0.005	-	-	- 0.007			
HCM Control Delay (s)	10.9	-	-	- 12.3			
HCM Lane LOS	В	-	-	- B			
HCM 95th %tile Q(veh)	0	-	-	- 0			
Notes							
~: Volume exceeds capacity	\$: De	lay exc	eeds 30	00s +: Com	outation Not Defined	*: All major volume in platoon	

HCM 6th Signalized Intersection Summary <u>1: Private Drive/Fisk Road & Highland Road (M-59)</u>

	٠	→	7	4	+	*	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	^	1	7	1		5	1÷		٦	1÷	
Traffic Volume (veh/h)	167	1123	8	6	1501	77	6	2	12	251	0	167
Future Volume (veh/h)	167	1123	8	6	1501	77	6	2	12	251	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1321	9	6	1614	83	10	3	20	282	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	228	2142	954	302	2056	105	197	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3592	184	1213	225	1502	1398	0	1679
Grp Volume(v), veh/h	196	1321	9	6	830	867	10	0	23	282	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1920	1213	0	1727	1398	0	1679
Q Serve(g_s), s	5.2	28.0	0.3	0.1	41.5	42.2	0.9	0.0	1.3	24.2	0.0	11.9
Cycle Q Clear(g_c), s	5.2	28.0	0.3	0.1	41.5	42.2	12.8	0.0	1.3	25.5	0.0	11.9
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	228	2142	954	302	1062	1099	197	0	367	342	0	357
V/C Ratio(X)	0.86	0.62	0.01	0.02	0.78	0.79	0.05	0.00	0.06	0.82	0.00	0.53
Avail Cap(c_a), veh/h	228	2142	954	302	1062	1099	197	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.6	17.0	11.0	11.6	19.8	20.0	47.6	0.0	37.7	47.9	0.0	41.9
Incr Delay (d2), s/veh	31.8	1.3	0.0	0.1	5.7	5.8	0.5	0.0	0.3	19.7	0.0	5.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.0	11.1	0.1	0.1	17.4	18.3	0.3	0.0	0.6	9.9	0.0	5.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	56.4	18.3	11.0	11.8	25.6	25.8	48.1	0.0	38.0	67.6	0.0	47.4
LnGrp LOS	E	В	В	В	С	С	D	А	D	E	А	D
Approach Vol, veh/h		1526			1703			33			470	
Approach Delay, s/veh		23.1			25.6			41.1			59.5	
Approach LOS		С			С			D			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+l1), s	2.1	30.0		27.5	7.2	44.2		14.8				
Green Ext Time (p_c), s	0.0	11.4		0.0	0.0	12.8		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			29.0									
HCM 6th LOS			С									

Notes

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	^	† †	*	Y	
Traffic Vol, veh/h	4	1453	1829	16	2	1
Future Vol, veh/h	4	1453	1829	16	2	1
Conflicting Peds, #/hr	1	0	0	1	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	425	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	95	95	75	75
Heavy Vehicles, %	3	3	3	3	0	0
Mvmt Flow	4	1579	1925	17	3	1

Major/Minor	Major1	Ν	1ajor2	Ν	/linor2				
Conflicting Flow All	1943	0	-	0	2724	964			
Stage 1	-	-	-	-	1926	-			
Stage 2	-	-	-	-	798	-			
Critical Hdwy	4.16	-	-	-	6.8	6.9			
Critical Hdwy Stg 1	-	-	-	-	5.8	-			
Critical Hdwy Stg 2	-	-	-	-	5.8	-			
Follow-up Hdwy	2.23	-	-	-	3.5	3.3			
Pot Cap-1 Maneuver	294	-	-	-	*13	259			
Stage 1	-	-	-	-	*102	-			
Stage 2	-	-	-	-	*462	-			
Platoon blocked, %		-	-	-	1				
Mov Cap-1 Maneuver	294	-	-	-	*13	259			
Mov Cap-2 Maneuver	-	-	-	-	*78	-			
Stage 1	-	-	-	-	*100	-			
Stage 2	-	-	-	-	*462	-			
Approach	FB		WB		SB				
HCM Control Delay	20	_	0	_	41 7				
HCMLOS	, U		U		F				
					L.				
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLn1			
Capacity (veh/h)		294	-	-	-	102			
HCM Lane V/C Ratio		0.015	-	-	-	0.039			
HCM Control Delay (s	5)	17.4	-	-	-	41.7			
HCM Lane LOS		С	-	-	-	E			
HCM 95th %tile Q(ver	ר)	0	-	-	-	0.1			
Notes									
~: Volume exceeds ca	apacity	\$: De	lav exc	eeds 30)0s -	+: Com	outation Not Defined	*: All maior volume in platoon	

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	81	397	406	106	32	261	239	13	17	155	66	
Average Queue (ft)	31	233	213	10	5	139	136	1	2	59	24	
95th Queue (ft)	67	343	342	62	22	216	218	6	12	119	52	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			40	0								
Queuing Penalty (veh)			4	0								

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	24	17
Average Queue (ft)	1	1
95th Queue (ft)	12	8
Link Distance (ft)		321
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Zone Summary

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	331	294	286	102	24	409	381	18	24	345	173	
Average Queue (ft)	154	186	174	7	3	261	261	3	6	180	78	
95th Queue (ft)	297	263	253	48	16	358	357	15	20	309	144	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						0						
Queuing Penalty (veh)						0						
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			25			0						
Queuing Penalty (veh)			2			0						

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

EB	SB
L	LR
34	21
4	2
21	13
	321
500	
	EB L 34 4 21 500

Zone Summary

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	11	1	۲	† ‡		7	ef 👔		٦	ef 👔	
Traffic Volume (veh/h)	47	1239	9	9	831	30	1	0	6	115	0	56
Future Volume (veh/h)	47	1239	9	9	831	30	1	0	6	115	0	56
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1332	10	10	944	34	2	0	10	135	0	66
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	340	1558	695	254	1533	55	423	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3566	128	1357	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1332	10	10	479	499	2	0	10	135	0	66
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1883	1357	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	29.8	0.3	0.2	18.5	18.5	0.1	0.0	0.4	7.1	0.0	2.7
Cycle Q Clear(g_c), s	1.3	29.8	0.3	0.2	18.5	18.5	2.8	0.0	0.4	7.5	0.0	2.7
Prop In Lane	1.00		1.00	1.00		0.07	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	340	1558	695	254	779	810	423	0	480	463	0	461
V/C Ratio(X)	0.15	0.86	0.01	0.04	0.62	0.62	0.00	0.00	0.02	0.29	0.00	0.14
Avail Cap(c_a), veh/h	340	1558	695	254	779	810	423	0	480	463	0	461
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.5	23.1	14.7	16.2	19.9	19.9	25.1	0.0	23.3	25.9	0.0	24.1
Incr Delay (d2), s/veh	0.9	6.2	0.0	0.3	3.6	3.5	0.0	0.0	0.1	1.6	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	12.4	0.1	0.1	7.6	7.9	0.0	0.0	0.2	2.3	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.4	29.4	14.7	16.5	23.5	23.4	25.2	0.0	23.3	27.5	0.0	24.7
LnGrp LOS	В	С	В	В	С	С	С	А	С	С	А	С
Approach Vol, veh/h		1393			988			12			201	
Approach Delay, s/veh		28.7			23.4			23.6			26.6	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	45.0		32.0	13.0	45.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 39		25.5	* 6.7	* 39		25.5				
Max Q Clear Time (g_c+l1), s	2.2	31.8		9.5	3.3	20.5		4.8				
Green Ext Time (p_c), s	0.0	4.4		0.6	0.0	5.3		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			26.5									
HCM 6th LOS			С									

Notes

Int Delay, s/veh	0							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	٢			7	Y			
Traffic Vol, veh/h	3	1345	974	6	0	2		
Future Vol, veh/h	3	1345	974	6	0	2		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	500	-	-	425	0	-		
Veh in Median Storage,	# -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	89	89	89	89	60	60		
Heavy Vehicles, %	7	7	7	7	0	0		
Mvmt Flow	3	1511	1094	7	0	3		

Major/Minor	Major1	Majo	or2	Ν	/linor2		
Conflicting Flow All	1101	0	-	0	1856	547	
Stage 1	-	-	-	-	1094	-	
Stage 2	-	-	-	-	762	-	
Critical Hdwy	4.24	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.27	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	601	-	-	-	*196	486	
Stage 1	-	-	-	-	*287	-	
Stage 2	-	-	-	-	*502	-	
Platoon blocked, %		-	-	-	1		
Mov Cap-1 Maneuver	601	-	-	-	*195	486	
Mov Cap-2 Maneuver	-	-	-	-	*242	-	
Stage 1	-	-	-	-	*286	-	
Stage 2	-	-	-	-	*502	-	

Approach	EB	WB	SB
HCM Control Delay, s	0	0	12.5
HCM LOS			В

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1			
Capacity (veh/h)	601	-	-	- 486			
HCM Lane V/C Ratio	0.006	-	-	- 0.007			
HCM Control Delay (s)	11	-	-	- 12.5			
HCM Lane LOS	В	-	-	- B			
HCM 95th %tile Q(veh)	0	-	-	- 0			
Notes							
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s +: Comp	outation Not Defined	*: All major volume in platoon	

Int Delay, s/yeb

Int Delay, s/veh	1.2							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		٦		Y			
Traffic Vol, veh/h	1294	71	49	927	58	54		
Future Vol, veh/h	1294	71	49	927	58	54		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	-	500	-	0	-		
Veh in Median Storage,	# 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	89	89	89	89	92	92		
Heavy Vehicles, %	7	7	7	7	2	2		
Mvmt Flow	1454	80	55	1042	63	59		

Major/Minor	Major1	Ν	Major2		Minor1				
Conflicting Flow All	0	0	1534	0	2125	767			
Stage 1	-	-	-	-	1494	-			
Stage 2	-	-	-	-	631	-			
Critical Hdwy	-	-	4.24	-	6.84	6.94			
Critical Hdwy Stg 1	-	-	-	-	5.84	-			
Critical Hdwy Stg 2	-	-	-	-	5.84	-			
Follow-up Hdwy	-	-	2.27	-	3.52	3.32			
Pot Cap-1 Maneuver	-	-	705	-	77	*563			
Stage 1	-	-	-	-	473	-			
Stage 2	-	-	-	-	492	-			
Platoon blocked, %	-	-	1	-	1	1			
Mov Cap-1 Maneuver	• -	-	705	-	71	*563			
Mov Cap-2 Maneuver	• -	-	-	-	244	-			
Stage 1	-	-	-	-	473	-			
Stage 2	-	-	-	-	454	-			
Approach	EB		WB		NB				
HCM Control Delay, s	s 0		0.5		21.7				
HCMLOS					С				
					Ū				
Minor Long/Major Mu	nat.		грт						
	mu		EDI	EDK	VVDL	VVDI			
Capacity (ven/n)		330	-	-	/05	-			
HCM Lane V/C Ratio	,	0.362	-	-	0.078	-			
HCM Control Delay (s	5)	21.7	-	-	10.5	-			
HCM Lane LUS	L)		-	-	B	-			
	1)	1.0	-	-	0.3	-			
Notes									
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s	+: Comp	utation Not Defined	*: All major volume in platoon	

HCM 6th Signalized Intersection Summary <u>1: Private Drive/Fisk Road & Highland Road (M-59)</u>

	٠	-	7	1	-	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	<u></u>	1	۲	† Ъ		7	ef 🔒		7	ef (
Traffic Volume (veh/h)	167	1145	8	6	1520	83	6	2	12	258	0	167
Future Volume (veh/h)	167	1145	8	6	1520	83	6	2	12	258	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1347	9	6	1634	89	10	3	20	290	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	224	2142	954	296	2049	111	197	48	319	342	0	357
Arrive On Green	0.06	0.57	0.57	0.06	0.57	0.57	0.21	0.21	0.21	0.21	0.00	0.21
Sat Flow, veh/h	1875	3741	1667	1860	3580	194	1213	225	1502	1398	0	1679
Grp Volume(v), veh/h	196	1347	9	6	843	880	10	0	23	290	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1918	1213	0	1727	1398	0	1679
Q Serve(g_s), s	5.2	28.9	0.3	0.1	42.7	43.5	0.9	0.0	1.3	24.2	0.0	11.9
Cycle Q Clear(g_c), s	5.2	28.9	0.3	0.1	42.7	43.5	12.8	0.0	1.3	25.5	0.0	11.9
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	224	2142	954	296	1062	1098	197	0	367	342	0	357
V/C Ratio(X)	0.88	0.63	0.01	0.02	0.79	0.80	0.05	0.00	0.06	0.85	0.00	0.53
Avail Cap(c_a), veh/h	224	2142	954	296	1062	1098	197	0	367	342	0	357
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.1	17.1	11.0	11.8	20.1	20.3	47.6	0.0	37.7	48.2	0.0	41.9
Incr Delay (d2), s/veh	34.9	1.4	0.0	0.1	6.1	6.2	0.5	0.0	0.3	22.1	0.0	5.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.2	11.5	0.1	0.1	18.0	19.0	0.3	0.0	0.6	10.4	0.0	5.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	60.0	18.5	11.0	12.0	26.2	26.5	48.1	0.0	38.0	70.3	0.0	47.4
LnGrp LOS	E	В	В	В	С	С	D	А	D	E	А	D
Approach Vol, veh/h		1552			1729			33			478	
Approach Delay, s/veh		23.7			26.3			41.1			61.3	
Approach LOS		С			С			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	75.0		32.0	13.0	75.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 69		25.5	* 6.7	* 69		25.5				
Max Q Clear Time (g_c+l1), s	2.1	30.9		27.5	7.2	45.5		14.8				
Green Ext Time (p_c), s	0.0	11.7		0.0	0.0	12.7		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			29.8									
HCM 6th LOS			С									

Notes

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	۲		††	1	Y		
Traffic Vol, veh/h	4	1481	1860	16	2	1	
Future Vol, veh/h	4	1481	1860	16	2	1	
Conflicting Peds, #/hr	1	0	0	1	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	500	-	-	425	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	95	95	75	75	
Heavy Vehicles, %	3	3	3	3	0	0	
Mvmt Flow	4	1610	1958	17	3	1	

Major/Minor	Major1	Majo	2	Ν	Minor2	
Conflicting Flow All	1976	0	-	0	2772	980
Stage 1	-	-	-	-	1959	-
Stage 2	-	-	-	-	813	-
Critical Hdwy	4.16	-	-	-	6.8	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	2.23	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	285	-	-	-	*11	253
Stage 1	-	-	-	-	*98	-
Stage 2	-	-	-	-	*438	-
Platoon blocked, %		-	-	-	1	
Mov Cap-1 Maneuver	285	-	-	-	*11	253
Mov Cap-2 Maneuver	• -	-	-	-	*75	-
Stage 1	-	-	-	-	*97	-
Stage 2	-	-	-	-	*438	-

Approach	EB	WB	SB
HCM Control Delay, s	0	0	43.3
HCM LOS			E

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1			
Capacity (veh/h)	285	-	-	- 98			
HCM Lane V/C Ratio	0.015	-	-	- 0.041			
HCM Control Delay (s)	17.8	-	-	- 43.3			
HCM Lane LOS	С	-	-	- E			
HCM 95th %tile Q(veh)	0	-	-	- 0.1			
Notes							
~: Volume exceeds capacity	\$: De	lay exc	eeds 30)0s +: Comp	outation Not Defined	*: All major volume in platoon	

Int Delay, s/veh	1.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	11		7		Y		
Traffic Vol, veh/h	1434	52	59	1802	53	51	
Future Vol, veh/h	1434	52	59	1802	53	51	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	500	-	0	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	95	95	92	92	
Heavy Vehicles, %	3	3	3	3	2	2	
Mvmt Flow	1559	57	62	1897	58	55	

Major/Minor	Major1	I	Major2	Ν	Minor1			
Conflicting Flow All	0	0	1616	0	2661	808		
Stage 1	-	-	-	-	1588	-		
Stage 2	-	-	-	-	1073	-		
Critical Hdwy	-	-	4.16	-	6.84	6.94		
Critical Hdwy Stg 1	-	-	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.23	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	*726	-	*~ 16	*488		
Stage 1	-	-	-	-	*460	-		
Stage 2	-	-	-	-	*290	-		
Platoon blocked, %	-	-	1	-	1	1		
Mov Cap-1 Maneuver	-	-	*726	-	*~ 14	*488		
Mov Cap-2 Maneuver	-	-	-	-	*159	-		
Stage 1	-	-	-	-	*460	-		
Stage 2	-	-	-	-	*265	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		0.3		33.1			
HCM LOS	•				D			
Minor Lane/Maior Myr	nt	NRI n1	FBT	FBR	WBI	WRT		
Canacity (veh/h)		238			* 726	-		
HCM Lane V/C Ratio		0 475	-	_	0.086	_		
HCM Control Delay (s))	33.1	_	_	10.000	_		
HCM Lane LOS	/	D	-	-	B	-		
HCM 95th %tile Q(veh	ı)	2.4	-	-	0.3	-		
Notes								
	nacity	¢, D-		anda 20	00-	LL Care	utation Nat Dafined	* All major volume in plateen
~. volume exceeds ca	ipacity	\$: D6	eay exc	eeus 3l	JUS	+. Comp	butation Not Defined	. All major volume in platoon

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	78	404	392	90	36	253	243	9	21	151	72	
Average Queue (ft)	29	247	234	8	5	133	130	0	2	64	21	
95th Queue (ft)	63	359	356	48	23	211	208	5	11	125	51	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)		0	40	0								
Queuing Penalty (veh)		0	4	1								

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	24	16
Average Queue (ft)	1	1
95th Queue (ft)	12	8
Link Distance (ft)		321
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	NB
Directions Served	TR	L	Т	LR
Maximum Queue (ft)	9	85	10	194
Average Queue (ft)	0	26	0	70
95th Queue (ft)	6	59	7	143
Link Distance (ft)	408		134	190
Upstream Blk Time (%)				2
Queuing Penalty (veh)				0
Storage Bay Dist (ft)		500		
Storage Blk Time (%)				
Queuing Penalty (veh)				

Zone Summary

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	316	334	305	67	28	412	427	30	30	332	164	
Average Queue (ft)	148	179	169	5	4	278	282	4	7	182	79	
95th Queue (ft)	288	257	251	36	18	383	387	19	23	296	144	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						0	0					
Queuing Penalty (veh)						1	0					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			26			0						
Queuing Penalty (veh)			2			0						

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	33	25
Average Queue (ft)	4	3
95th Queue (ft)	20	15
Link Distance (ft)		321
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	NB
Directions Served	TR	L	Т	LR
Maximum Queue (ft)	12	81	72	213
Average Queue (ft)	0	28	3	197
95th Queue (ft)	6	59	32	224
Link Distance (ft)	408		134	190
Upstream Blk Time (%)			0	98
Queuing Penalty (veh)			0	0
Storage Bay Dist (ft)		500		
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Zone Summary

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	≁	→	7	4	+	•	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	^	1	٦	† ‡		٦	ef 👔		٦	ħ	
Traffic Volume (veh/h)	47	1239	9	9	831	30	1	0	6	115	0	56
Future Volume (veh/h)	47	1239	9	9	831	30	1	0	6	115	0	56
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1906	1906	1906	1906	1906	1906	2000	2000	2000	1922	1922	1922
Adj Flow Rate, veh/h	51	1332	10	10	944	34	2	0	10	135	0	66
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.88	0.60	0.60	0.60	0.85	0.85	0.85
Percent Heavy Veh, %	6	6	6	6	6	6	0	0	0	5	5	5
Cap, veh/h	340	1558	695	254	1533	55	423	0	480	463	0	461
Arrive On Green	0.07	0.43	0.43	0.07	0.43	0.43	0.28	0.00	0.28	0.28	0.00	0.28
Sat Flow, veh/h	1816	3622	1616	1816	3566	128	1357	0	1695	1371	0	1629
Grp Volume(v), veh/h	51	1332	10	10	479	499	2	0	10	135	0	66
Grp Sat Flow(s),veh/h/ln	1816	1811	1616	1816	1811	1883	1357	0	1695	1371	0	1629
Q Serve(g_s), s	1.3	29.8	0.3	0.2	18.5	18.5	0.1	0.0	0.4	7.1	0.0	2.7
Cycle Q Clear(g_c), s	1.3	29.8	0.3	0.2	18.5	18.5	2.8	0.0	0.4	7.5	0.0	2.7
Prop In Lane	1.00		1.00	1.00		0.07	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	340	1558	695	254	779	810	423	0	480	463	0	461
V/C Ratio(X)	0.15	0.86	0.01	0.04	0.62	0.62	0.00	0.00	0.02	0.29	0.00	0.14
Avail Cap(c_a), veh/h	340	1558	695	254	779	810	423	0	480	463	0	461
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.5	23.1	14.7	16.2	19.9	19.9	25.1	0.0	23.3	25.9	0.0	24.1
Incr Delay (d2), s/veh	0.9	6.2	0.0	0.3	3.6	3.5	0.0	0.0	0.1	1.6	0.0	0.6
Initial Q Delay(03),s/ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%Ile BackOfQ(50%), ven/in	0.5	12.4	0.1	0.1	0.1	7.9	0.0	0.0	0.2	2.3	0.0	1.0
Unsig. Movement Delay, s/ven	111	20.4	117	1C E	00 E	00.4	05.0	0.0	00.0	07 E	0.0	047
LnGrp Delay(d),s/ven	14.4 D	29.4	14. <i>1</i>	10.5 D	23.5	23.4	25.2	0.0	23.3	21.5	0.0	24.7
	D	4202	D	D	000	U	U	A 40	U	U	A 004	0
Approach Vol, ven/n		1393			988			12			201	
Approach LOS		20.7			23.4			23.0			20.0	
Approach LOS		U			U			U			U	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	45.0		32.0	13.0	45.0		32.0				
Change Period (Y+Rc), s	* 6.3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax), s	* 6.7	* 39		25.5	* 6.7	* 39		25.5				
Max Q Clear Time (g_c+I1), s	2.2	31.8		9.5	3.3	20.5		4.8				
Green Ext Time (p_c), s	0.0	4.4		0.6	0.0	5.3		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			26.5									
HCM 6th LOS			С									

Notes

Int Delay, s/veh	1.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^	7	7		Y		
Traffic Vol, veh/h	1294	71	49	927	58	54	
Future Vol, veh/h	1294	71	49	927	58	54	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	500	-	0	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	89	89	89	89	92	92	
Heavy Vehicles, %	7	7	7	7	2	2	
Mvmt Flow	1454	80	55	1042	63	59	

Major/Minor	Major1	Ν	/lajor2	1	Minor1				
Conflicting Flow All	0	0	1534	0	2085	727			
Stage 1	-	-	-	-	1454	-			
Stage 2	-	-	-	-	631	-			
Critical Hdwy	-	-	4.24	-	6.84	6.94			
Critical Hdwy Stg 1	-	-	-	-	5.84	-			
Critical Hdwy Stg 2	-	-	-	-	5.84	-			
Follow-up Hdwy	-	-	2.27	-	3.52	3.32			
Pot Cap-1 Maneuver	-	-	705	-	87	*563			
Stage 1	-	-	-	-	516	-			
Stage 2	-	-	-	-	492	-			
Platoon blocked, %	-	-	1	-	1	1			
Mov Cap-1 Maneuver	-	-	705	-	80	*563			
Mov Cap-2 Maneuver	-	-	-	-	257	-			
Stage 1	-	-	-	-	516	-			
Stage 2	-	-	-	-	454	-			
Approach	EB		WB		NB				
HCM Control Delay, s	0		0.5		20.8				
HCM LOS					С				
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)		348	-	-	705	-			
HCM Lane V/C Ratio		0.35	-	-	0.078	-			
HCM Control Delay (s))	20.8	-	-	10.5	-			
HCM Lane LOS	,	С	-	-	В	-			
HCM 95th %tile Q(veh	ı)	1.5	-	-	0.3	-			
Notes									
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s	+: Comp	outation Not Defined	*: All major volume in platoon	

HCM 6th Signalized Intersection Summary 1: Private Drive/Fisk Road & Highland Road (M-59)

	≯	-	\mathbf{r}	<	←	•	1	Ť		1	Ŧ	<
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	† †	1	٦	t₽		٦	ef (٦	¢Î	
Traffic Volume (veh/h)	167	1145	8	6	1520	83	6	2	12	258	0	167
Future Volume (veh/h)	167	1145	8	6	1520	83	6	2	12	258	0	167
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	С
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1953	1953	1953	2000	2000	2000	1984	1984	1984
Adj Flow Rate, veh/h	196	1347	9	6	1634	89	10	3	20	290	0	188
Peak Hour Factor	0.85	0.85	0.85	0.93	0.93	0.93	0.60	0.60	0.60	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	3	3	3	0	0	0	1	1	1
Cap, veh/h	259	1986	885	270	1751	95	254	57	382	401	0	427
Arrive On Green	0.10	0.53	0.53	0.06	0.49	0.49	0.25	0.25	0.25	0.25	0.00	0.25
Sat Flow, veh/h	1875	3741	1667	1860	3580	194	1213	225	1502	1398	0	1680
Grp Volume(v), veh/h	196	1347	9	6	843	880	10	0	23	290	0	188
Grp Sat Flow(s),veh/h/ln	1875	1870	1667	1860	1856	1918	1213	0	1728	1398	0	1680
Q Serve(g_s), s	7.2	31.7	0.3	0.2	51.0	52.0	0.8	0.0	1.2	23.7	0.0	11.3
Cycle Q Clear(g c), s	7.2	31.7	0.3	0.2	51.0	52.0	12.1	0.0	1.2	25.0	0.0	11.3
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	259	1986	885	270	908	938	254	0	439	401	0	427
V/C Ratio(X)	0.76	0.68	0.01	0.02	0.93	0.94	0.04	0.00	0.05	0.72	0.00	0.44
Avail Cap(c_a), veh/h	259	1986	885	270	908	938	254	0	439	401	0	427
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.6	20.6	13.3	15.5	28.7	28.9	42.7	0.0	33.8	43.3	0.0	37.6
Incr Delay (d2), s/veh	18.6	1.9	0.0	0.2	16.9	17.8	0.3	0.0	0.2	10.8	0.0	3.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.8	13.0	0.1	0.1	24.7	26.2	0.3	0.0	0.5	9.0	0.0	4.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	50.2	22.5	13.3	15.6	45.5	46.7	43.0	0.0	34.1	54.0	0.0	40.9
LnGrp LOS	D	С	В	В	D	D	D	А	С	D	А	D
Approach Vol, veh/h	-	1552	-	-	1729	-	-	33	-	-	478	
Approach Delay, s/veh		26.0			46.0			36.8			48.8	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	70.0		37.0	18.0	65.0		37.0				
Change Period (Y+Rc) s	* 6 3	* 6.3		6.5	* 6.3	* 6.3		6.5				
Max Green Setting (Gmax) s	* 6 7	* 64		30.5	* 12	* 59		30.5				
Max Q Clear Time ($q c+11$), s	2.2	33.7		27.0	9.2	54.0		14.1				
Green Ext Time (p. c), s	0.0	10.9		0.7	0.1	3.7		0.1				
Intersection Summary												
			20.4									
			38.1									
HCM 6th LOS			D									

Notes

Intersection						
Int Delay, s/veh	1.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	††	1	ኘ	↑ ↑	Y	
Traffic Vol, veh/h	1434	52	59	1802	53	51
Future Vol, veh/h	1434	52	59	1802	53	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	500	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	95	95	92	92
Heavy Vehicles, %	3	3	3	3	2	2
Mymt Flow	1559	57	62	1897	58	55

Major/Minor	Major1	Ν	/lajor2	1	Minor1				
Conflicting Flow All	0	0	1616	0	2632	780			
Stage 1	-	-	-	-	1559	-			
Stage 2	-	-	-	-	1073	-			
Critical Hdwy	-	-	4.16	-	6.84	6.94			
Critical Hdwy Stg 1	-	-	-	-	5.84	-			
Critical Hdwy Stg 2	-	-	-	-	5.84	-			
Follow-up Hdwy	-	-	2.23	-	3.52	3.32			
Pot Cap-1 Maneuver	-	-	*726	-	*~ 18	*488			
Stage 1	-	-	-	-	*460	-			
Stage 2	-	-	-	-	*290	-			
Platoon blocked, %	-	-	1	-	1	1			
Mov Cap-1 Maneuver	-	-	*726	-	*~ 16	*488			
Mov Cap-2 Maneuver	-	-	-	-	*160	-			
Stage 1	-	-	-	-	*460	-			
Stage 2	-	-	-	-	*265	-			
Approach	EB		WB		NB				
HCM Control Delay, s	0		0.3		32.9				
HCM LOS					D				
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)		239	-	-	* 726	-			
HCM Lane V/C Ratio		0.473	-	-	0.086	-			
HCM Control Delay (s)	32.9	-	-	10.4	-			
HCM Lane LOS	/	D	-	-	В	-			
HCM 95th %tile Q(veh	I)	2.3	-	-	0.3	-			
Notes									
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s	+: Comp	outation Not Defined	*: All major volume in platoon	

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	78	366	360	86	38	239	246	12	25	145	65	
Average Queue (ft)	31	241	223	9	6	128	131	0	3	63	24	
95th Queue (ft)	65	342	330	55	25	205	218	5	16	125	54	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			40	0								
Queuing Penalty (veh)			4	0								

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	28	16
Average Queue (ft)	1	1
95th Queue (ft)	11	9
Link Distance (ft)		321
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	500	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	NB
Directions Served	R	L	Т	LR
Maximum Queue (ft)	13	61	11	170
Average Queue (ft)	1	22	0	79
95th Queue (ft)	6	54	8	156
Link Distance (ft)			134	177
Upstream Blk Time (%)				5
Queuing Penalty (veh)				0
Storage Bay Dist (ft)	100	500		
Storage Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ff) Storage Blk Time (%) Queuing Penalty (veh)	100	500		

Zone Summary

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	190	307	299	82	113	491	500	22	33	355	156	
Average Queue (ft)	84	199	188	4	6	383	388	4	5	182	73	
95th Queue (ft)	155	281	276	37	71	530	533	17	20	304	135	
Link Distance (ft)		1480	1480			471	471		200		1113	
Upstream Blk Time (%)						6	7					
Queuing Penalty (veh)						52	58					
Storage Bay Dist (ft)	500			50	500			100		1000		
Storage Blk Time (%)			29			6						
Queuing Penalty (veh)			2			0						

Intersection: 2: Highland Road (M-59) & JOANN Fabric Drive

Movement	EB	WB	WB	SB
Directions Served	L	Т	Т	LR
Maximum Queue (ft)	30	83	77	21
Average Queue (ft)	3	6	7	2
95th Queue (ft)	17	57	58	12
Link Distance (ft)		1430	1430	321
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	500			
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Site Drive & Highland Road (M-59)

Movement	EB	WB	WB	WB	NB
Directions Served	R	L	Т	Т	LR
Maximum Queue (ft)	8	79	61	65	207
Average Queue (ft)	0	31	9	10	188
95th Queue (ft)	4	65	63	69	204
Link Distance (ft)			134	134	177
Upstream Blk Time (%)		0	0	1	98
Queuing Penalty (veh)		0	4	6	0
Storage Bay Dist (ft)	100	500			
Storage Blk Time (%)		0	0		
Queuing Penalty (veh)		0	0		

Zone Summary

Sample Problem:

RT Radius Recommended

The Design Speed 1s 55 mph. The Peak Hour Approach Volume 1s 300 vph. The Number of Right Turns in the Peak Hour 1s 100 vph. Determine 1f a right turn lane 1s recommended.

Solut10n:

F1gure indicates that the 1ntersect1on of 300 vph and 100 vph 1s located above the upper trend line; thus,a nght-turn lane may be recommended.

Mictigen Opport.met. of TrispOtublen TRAFFIC AND SAFETY NOTE	TRAFFIC VOL FDR RIGHT-TURI	LUME GUIDELINE N LANES AND T	ES APERS	
DRAWN BY: MTS	08/05/2004	6044	SHEET	
CHECKED BY: JAT	PLAN DATE:	004A	2 OF 2	
FILE: K:/OGN/ts notes/No	REV. 08/05/2	REV. 08/05/2004		

Coffee Shop Drive Through Lane

95th Percentile Probability - Drive Through Queue Length (# of Vehicles)

89 vph	Volume =
80 veh/hr	service rate =
1.1125	$\lambda =$

	1	2	3	4	5	6	7	8	9	
λ^x	No Veh in Cycle		X!	$P = (e^{(-\lambda)})(\lambda^{x})/X!$	ΣΡ	P* # Cycle containing Volume in 1	Σ Cycles in 6	Volume ir Cycle (1*6)	Σ volume	Poisson Queue
1.0000	0	0	1	32.87%	32.87%	26	26	0	0	NO
1.1125	1	1	1	36.57%	69.45%	29	56	29	29	NO
1.2377	2	2	2	20.34%	89.79%	16	11	33	62	NO
1.3769	3	3	6	7.54%	97.33%	6	17	18	80	NO
1.5318	4	4	24	2.10%	99.43%	2	19	7	87	NO
1.7041	5	5	120	0.47%	99.90%	0	19	2	88	MET
1.8958	6	6	720	0.09%	99.98%	0	19	0	89	MET
2.1091	7	7	5040	0.01%	100.00%	0	19	0	89	MET
2.3464	8	8	40320	0.00%	100.00%	0	19	0	89	MET
2.6104	9	9	362880	0.00%	100.00%	0	19	0	89	MET
2.9040	10	10	3628800	0.00%	100.00%	0	19	0	89	MET
3.2307	11	11	39916800	0.00%	100.00%	0	19	0	89	MET