Traffic Calming Fact Sheets

May 2018 Update

Speed Table/Raised Crosswalks

Description:

- Long, raised speed humps with a flat section in the middle and ramps on the ends; sometimes constructed with brick or other textured materials on the flat section
- If placed at a pedestrian crossing, it is referred to as a raised crosswalk
- If placed only in one direction on a road, it is called an offset speed table

Applications:

- Appropriate for local and collector streets; mid-block or at intersections, with/without crosswalks
- Can be used on a one-lane one-way or two-lane two-way street
- Not appropriate for roads with 85th percentile speeds of 45 mph or more
- Typically long enough for the entire wheelbase of a passenger car to rest on top or within limits of ramps
- Work well in combination with textured crosswalks, curb extensions, and curb radius reductions
- Can be applied both with and without sidewalks or dedicated bicycle facilities
- Typically installed along closed-section roads (i.e. curb and gutter) but feasible on open section

(Source: Google Maps, Boulder, Colorado)

(Source: Delaware Department of Transportation)

ITE/FHWA Traffic Calming EPrimer: https://safety.fhwa.dot.gov/speedmgt/traffic_calm.cfm

Design/Installation Issues:

- ITE recommended practice "Guidelines for the Design and Application of Speed Humps"
- Most common height is between 3 and 4 inches (reported as high as 6 inches)
- Ramps are typically 6 feet long (reported up to 10 feet long) and are either parabolic or linear
- Careful design is needed for drainage
- Posted speed typically 30 mph or less

Potential Impacts:

- No impact on non-emergency access
- Speeds reductions typically less than for speed humps (typical traversing speeds between 25 and 27 miles per hour)
- Speeds typically decline approximately 0.5 to 1 mph midway between tables for each 100 feet beyond the 200-foot approach and exit points of consecutive speed tables
- Average traffic volumes diversions of 20 percent when a series of speed tables are implemented
- Average crash rate reduction of 45 percent on treated streets
- Increase pedestrian visibility and likelihood of driver yield compliance
- Generally not appropriate for BRT bus routes

Emergency Response Issues:

• Typically preferred by fire departments over speed humps, but not appropriate for primary emergency vehicle routes; typically less than 3 seconds of delay per table for fire trucks

Typical Cost (2017 dollars):

 Cost ranges between \$2,500 and \$8,000 for asphalt tables; higher for brickwork, stamped asphalt, concrete ramps, and other enhancements sometimes used at pedestrian crossings