Attachment D

Exhibit B

Old Highway 99 Corridor Study

City of Tumwater

November 2022

Old Highway 99 Corridor Study

Project Information

Project:	Old Highway 99 Corridor Study
Prepared for:	City of Tumwater Brandon Hicks, PE Mary Heather Ames, PE 555 Israel Road SW Tumwater, WA 98501
Reviewing Agency	
Jurisdiction:	City of Tumwater555 Israel Road SW Tumwater, WA 98501
Project Representative	
Prepared by:	SCJ Alliance 8730 Tallon Lane NE, Suite 200 Lacey, WA 98516 360.352.1465 scjalliance.com
Contact:	Patrick Holm, PE / David Rowland, PE
Project Reference:	SCJ #0625.29 Path: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 05 - Preliminary Design\0625.29 - Old Hwy 99 and 79th Ave Corridor Study - 2022-0811.docx

TABLE OF CONTENTS

1	PUR	POSE
-		
2	BAC	KGROUND5
	2.1	Existing Conditions5
	2.2	Previous Work
3	COR	RIDOR TRAFFIC VALIDATION6
4	ALTE	RNATIVES ANALYSIS AND PUBLIC INVOLVEMENT8
	4.1	Alternatives Analysis
	4.2	Public Involvement/Stakeholder Engagement
5	PREI	IMINARY DESIGN LAYOUTS
	5.1	Roadway Layout11
	5.2	Roundabout Layouts
	5.3	Stormwater
	5.4	Utilities
	5.5	Landscaping and Streetscape
6	ENV	IRONMENTAL STRATEGIES
	6.1	Environmental Considerations
7	РНА	SING PLAN AND COST ESTIMATES14
	7.1	Project Phasing14
	7.2	Phase Cost Estimates

LIST OF FIGURES

Figure 1.1 Vicinity Map	4
Figure 4.1 Alternative 3B - Recommended Section for Old Highway 99	9
Figure 7.1 Old Highway 99 Project Phases	14
Figure 7.2 Future 79th Avenue Roundabout	15
Figure 7.3 Future Henderson Avenue Roundabout	16

LIST OF TABLES

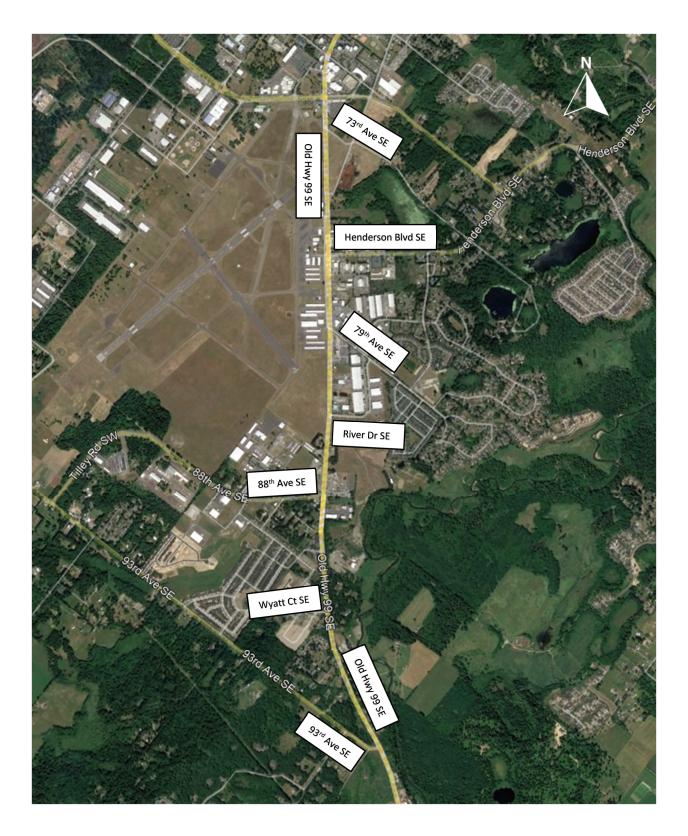
Table 3.1 AM Peak Hour Intersection LOS Summary	. 6
Table 3.2 PM Peak Hour Intersection LOS Summary	7
Table 4.1 Performance Priorities	
Table 4.2 Stakeholders	. 9
Table 7.1 Phase Costs	17
Table 7.2 Right of Way Costs	18

LIST OF APPENDICES

APPENDIX A - TRAFFIC OPPERATIONAL ANALYSIS APPENDIX B - ALTERNATIVES ANALYSIS MEMO APPENDIX C - PUBLIC PARTICIPATION PLAN APPENDIX D - PROJECT PHASE ESTIMATES APPENDIX E - CONCEPT RIGHT OF WAY PLANS AND ESTIMATE APPENDIX F - PRELIMINARY DESIGN SUPPORTING DOCUMENTS APPENDIX G - ENVIRONMENTAL TECH MEMO

1 PURPOSE

The objective of this *Old Highway 99 Corridor Study* (Project) is to validate and build on recommendations from the *Tumwater City Plan 2036, Transportation Master Plan November 2016* (TMP), and to recommend changes resulting from the process and prepare preliminary design for the Old Highway 99 corridor improvements from approximately 73rd Avenue SE to 93rd Avenue SE. This Project also seeks to create proposed project phases to guide future budgeting and funding pursuits. This report presents an overview of the findings and recommendations for the Project. The study consists of the following elements:


- Corridor Traffic Validation:
 - Validation of operational analysis of the corridor with the proposed and recommended alternatives to validate implementation.
- Alternatives Analysis and Public Involvement
 - Evaluation of alternatives and recommendation for selection.
 - Recommendations for access management and neighborhood traffic calming solutions throughout the corridor.
 - Presentation of the public engagement process.
 - Recommendations of alternatives.
- Preliminary Corridor Concept
 - Conceptual plans defining the recommended improvements that include intersection improvements, key improvements along the corridor, access modifications, stormwater management, and utility undergrounding.
 - Preliminary geotechnical investigation for stormwater design.
- Environmental Strategy
 - Environmental considerations based on existing and known conditions and potential permit requirements.
- Right of Way Plans:
 - Preliminary right of way plans between 73rd Avenue SE and 93rd Avenue SE.
- Project Phasing and Cost Estimates
 - Estimated project costs and recommend phasing of the improvements based on traffic analysis.

Each of these study elements informed a preliminary design that considers traffic, public input, and environmental considerations. With the proposed improvements to the corridor comes larger right of way needs and associated construction costs for each phase of the Project.

The Summary section of the report provides an overview of each element.

Figure 1.1 – Vicinity Map shows the Project limits of the Old Highway 99 Corridor Study.

Figure 1.1 Vicinity Map

2 BACKGROUND

2.1 EXISTING CONDITIONS

Old Highway 99 from 73rd Avenue to 93rd Avenue is a two-lane National Highway System (NHS) arterial from 73rd Avenue to 88th Avenue and connecter from 88th Avenue to 93rd Avenue with a general right of way width varying from 60 to 88 feet. The existing street width varies from 32 to 44 feet from pavement edge to pavement edge. There are 11-foot travel lanes with 5-foot shoulders located along the corridor on each side of the edge of travel way. 12-foot turn lanes are introduced at the following intersections:

- 73rd Avenue
- Henderson Boulevard
- 79th Avenue
- River Drive
- 88th Avenue
- Silver Spot Drive
- 93rd Avenue

The *Tumwater City Plan 2036* future zoning map identifies the properties adjacent to Old Highway 99 for light industrial uses along the east side of the corridor and a mix of general commercial, airport, mixed use, and residential uses along the west side.

Capitol Boulevard provides the primary north-south link for traffic, transit, pedestrians, and bicyclists within the city of Tumwater east of Interstate 5. The corridor currently carries approximately 16,000 vehicles per day and is projected to carry 24,000 vehicles per day by 2040. Old Highway 99 also provides connections to residential developments along the corridor, such as the Bush Prairie, Sterling Crossing, The Preserve, and Melody Pines Estates neighborhoods.

Currently, traffic on Old Highway 99 is heavy and congested, especially in morning and evening peak hours. The 79th Avenue intersection currently fails the city of Tumwater level of service (LOS) standards. Intersections at Henderson Avenue, 88th Avenue, and 93rd Avenue currently operate at an acceptable level of service but fail to maintain an acceptable LOS in 20 years for peak-hour traffic.

2.2 PREVIOUS WORK

In November 2016, the city of Tumwater published the *2036 Transportation Master Plan* (TMP) and laid out plans for the improvement from 73rd Avenue to 93rd Avenue on Old Highway 99. This document acknowledges that 79th Avenue fails to provide an acceptable LOS for existing traffic in 2016 and needs to be upgraded. It also evaluates the intersections at Henderson Avenue, 88th Avenue, and 93rd Avenue and marks these as intersections for improvement to handle projected traffic increase. Old Highway 99 also is projected to need widening to five lanes (two travel lanes in both directions and a middle turn lane) from 73rd Avenue to 88th Avenue and three lanes (one travel lane in each direction and a middle turn lane) from 88th to 93rd Avenue according to the TMP.

3 CORRIDOR TRAFFIC VALIDATION

The Traffic Operational Analysis in **Appendix A** describes the traffic count collection, traffic forecasting, and operational analysis for the Old Highway 99 Corridor. The traffic volumes and analysis were used to determine the intersection and roadway design and provide the baseline future conditions for a value engineering alternatives analysis for the Old Highway 99 intersections at 73rd Avenue, Henderson Boulevard, 88th Avenue, and 93rd Avenue. In support of this study, traffic volume data was collected prepandemic in early 2020 at the following locations:

- Old Highway 99/Henderson Boulevard
- Old Highway 99/79th Avenue
- Old Highway 99/88th Avenue
- Old Highway 99/93rd Avenue

Based on the traffic count surveys, the morning and evening peak hours are between 7:15-8:15 AM and 4:30-5:30 PM respectively. These periods represent the highest level of traffic in a single hour and informed the study's determination of LOS for each intersection.

Traffic analysis was conducted for the 2036 Corridor Plan Improvements using the projected 2040 AM and PM peak hour volumes with cycle lengths and phase lengths optimized. The following improvements were included in the 2036 Corridor Plan Improvements:

- Old Highway 99 / 73rd to 88th Avenue widening to five lanes including two-lane roundabouts at Henderson Boulevard and 88th Avenue.
- Old Highway 99 / 79th Avenue widening to five lanes including two-lane roundabout.
- Old Highway 99 / 93rd Avenue installation of a single lane roundabout.

The AM and PM peak hour operations results for the existing 2020, 2040 Baseline, and 2040 Corridor Plan Improvement analysis scenarios are summarized below in Tables 3.1 and 3.2.

		Existing 2020	2040 Baseline	2040 - Corridor Plan Improvements ¹
Intersection	Control Type	Intersection LOS and Delay	Intersection LOS and Delay	Intersection LOS and Delay
Old Highway 99 / Henderson Boulevard	Signal	C (22.4)	F (192.7)	A (5.6)
Old Highway 99 / 79 th Avenue	Stop	F (59.0)	F (300+)	A (5.2)
Old Highway 99 / 88 th Avenue	Signal	A (9.0)	F (120.7)	B (11.5)
Old Highway 99 / 93 rd Avenue	Stop	C (23.9)	D (34.0)	A (5.6)

Table 3.1 AM Peak Hour Intersection LOS Summary

1 Reflects conversion to RAB

		Existing 2020	2040 Baseline	2040 - Corridor Plan Improvements ¹
Intersection	Control Type	Intersection LOS and Delay	Intersection LOS and Delay	Intersection LOS and Delay
Old Highway 99 / Henderson Boulevard	Signal	B (13.0)	D (40.7)	A (6.1)
Old Highway 99 / 79 th Avenue	Stop	F (115.0)	F (300+)	A (5.4)
Old Highway 99 / 88 th Avenue	Signal	A (9.6)	B (12.8)	A (4.8)
Old Highway 99 / 93 rd Avenue	Stop	C (21.5)	E (37.7)	A (7.3)

Table 3.2 PM Peak Hour Intersection LOS Summary

1 Reflects conversion to RAB

Evaluation of the traffic present at these intersections verified the city's assessment of the corridor capacity needs and the immediate need for improvement at the intersection of Old Highway 99 and 79th Avenue. The 79th Avenue intersection currently fails the city's LOS standards and needs improvement to better handle the current traffic. Also, the traffic operational analysis found given the 20-year projection of the intersections at Henderson Avenue and 88th Avenue intersections with Old Highway 99, they will not meet the city LOS standards and will need to be upgraded as well.

4 ALTERNATIVES ANALYSIS AND PUBLIC INVOLVEMENT

4.1 ALTERNATIVES ANALYSIS

This study included an alternatives analysis to determine and recommend roadway cross sections and intersection improvements along the corridor from 73rd Avenue through 88th Avenue in context with the overall corridor improvements. Each alternative evaluated met the requirements laid out in the *2036 Tumwater TMP*. The future section from 88th Avenue to 93rd Avenue will follow the proposed improved section from the TMP and did not undergo an alternatives analysis.

Alternatives for Old Highway 99 from 73rd Avenue to 88th Avenue were evaluated based on the following criteria:

- Bicycle Function/Usability
- Pedestrian Function/Usability
- Emergency Access
- Aesthetics
- Environmental Impact (Mazama Pocket Gopher Habitat)

Through discussion with the city and stakeholders these criteria were ranked from highest to lowest priority. Each criterion was weighed using pair-wise comparisons. Environmental Impact and Emergency Access were prioritized the highest, followed by Bicycle and Pedestrian Function, and Aesthetic received the lowest priority. Table 4.1 shows the performance priorities based on these criteria with input from stakeholders and the city:

Performance Attributes	Priorities
Bike Function	0.167
Ped Function	0.167
EMS Function	0.300
Aesthetic	0.067
Enviro Impact	0.300
тота	1.00
TOTAL	1.00

Table 4.1 Performance Priorities

Once the performance attributes rankings were developed, six roadway section alternatives were created to be evaluated and modified through public involvement and stakeholder review. Section 4.2 describes public involvement and how it informed the revised roadway section.

Through the analysis of six alternatives using the performance attributes rankings and public input, Alternative 3B was selected because it provided the highest cost to value ratio. The recommended alternative differed from the TMP by shifting pedestrian facilities to the east side of Old Highway 99 with a 10-foot sidewalk for shared use with bicycles. A 6-foot bicycle lane would be provided for bicycles on the west side of the corridor and provision made for a 10-foot median in place of the two-way left turn lane. The northbound outer lane would have a width of 13 feet and inner lanes a width of 12 feet to provide shy distance from the median. The total width of the recommended alternative is 83 feet.

Because a substantial portion of the west side of Old Highway 99 is bordered by the Olympia Airport, it was determined that sidewalks on the west side will not be heavily used and do not need to be included in the section. To better fit the future section within right of way, the bike lane on the east side of the roadway was removed and the east side sidewalk was widened to provide a shared path for pedestrians and bicyclists. On the east side of the project are businesses which can be linked by a proposed shared used path. Figure 4.1 shows the recommended section below. As the frontage develops for the west side of the corridor bordering the Port of Olympia, the Port of Olympia will undertake frontage improvements.

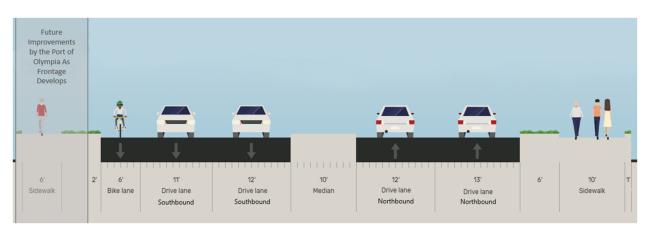


Figure 4.1 Alternative 3B - Recommended Section for Old Highway 99

As laid out in the TMP, the section from 88th Avenue to 93rd Avenue will include three lanes (one travel lane in both directions and one middle left turn lane), 6-foot northbound and southbound bike lanes, and 5-foot sidewalks on both sides of the roadway. Sidewalks and bike lanes for this portion of the project will allow residents of the nearby neighborhoods to connect to pedestrian and bicycle accommodations more easily and safely. The west sidewalk will terminate at the 88th Avenue roundabout and have crosswalks to connect to the west sidewalk to continue north. For alternative scoring and results see **Appendix B** - Alternatives Analysis Memo.

4.2 PUBLIC INVOLVEMENT/STAKEHOLDER ENGAGEMENT

To inform the alternatives analysis, public input was gathered through a Maptionnaire survey that assessed the perceived safety and functionality of the current Old Highway 99 Corridor. The survey allowed respondents to pinpoint locations that they believed have issues. The results revealed safety and visibility concerns, sidewalk and bicycle needs, transit access insight, and ideas for improving the corridor.

Afterwards, to gather further input on the plan for Old Highway 99, workshops were held for stakeholders from Thurston Emergency Medical Services (EMS), Intercity Transit, Tumwater Unified School District (TUSD), Thurston County, Port of Olympia, Tumwater Fire, Thurston Regional Planning Council (TRPC), and Tumwater Police. Table 4.2 shows a list of the stakeholders:

Table 4.2 Stakeholders

Stakeholder	Agency
Kurt Hardin	Thurston EMS
Eric Phillips	Intercity Transit
Mel Murray	TUSD
Matt Unzelman	Thurston County
Becky Conn	Thurston County
Rudy Rudolph	Port of Olympia
Rachael Jamison	Port of Olympia
Brian Hurley	Tumwater Fire
Scott Carte	TRPC
Bruce Brenna	Tumwater Police

Two workshops were conducted to accommodate public involvement and stakeholder engagement. The first workshop was used to evaluate performance attributes and rank them by importance, providing a basis to weigh the scoring. Six alternative sections were then developed and analyzed. The second workshop was held for the city and stakeholders to assess and rank the alternates. Next, the alternatives were modified based on the second workshop. The modified alternatives were then analyzed to determine a recommended alternative with the best cost to value ratio. This recommended alternative was then presented at a virtual open house. For alternative scoring and results see **Appendix B** - Alternatives Analysis Memo.

5 PRELIMINARY DESIGN LAYOUTS

The preliminary design defines the improvements for the Old Highway 99 Corridor. The intent of this task is to define the improvements listed below in sufficient detail to estimate construction costs at a conceptual design level (30% contingency) and identify right of way needs.

5.1 ROADWAY LAYOUT

Through the process of alternatives analysis and public involvement the following design elements were determined for the preliminary roadway layout design of the Old Highway 99 improvements:

Old Highway 99 will have two main roadway sections:

- 1. 79th Avenue to 88th Avenue Two travel lanes in both directions, a median dividing both directions of travel, 6-foot bike lanes on the west side, 10-foot sidewalks on the east side.
- 2. 88th Avenue to 93rd Avenue One travel lane in each direction, a median dividing both directions of travel, 6-foot bike lanes on both sides, 6-foot sidewalks on both sides.

In **Appendix F** preliminary plan sheets show the recommended channelization of Old Highway 99.

5.2 ROUNDABOUT LAYOUTS

At the intersections at 79th Avenue, Henderson Avenue, 88th Avenue, and 93rd Avenue, roundabouts are the preferred alternative for improving the intersection.

Appendix F contains layouts, sight distance, and fastest path for the intersections at 79th Avenue, Henderson Avenue, 88th Avenue, and 93rd Avenue.

5.3 STORMWATER

Stormwater studies were conducted based on the 2022 Drainage Design and Erosion Control Manual for *Tumwater*. Ongoing evaluation is currently taking place to determine the local water tables and the infiltration rates anticipated for the project. Prior to final design, Geotech must conduct a more comprehensive study of the soils on the project site and perform pit tests to determine final design infiltration rates. Two methods were used for modeling the stormwater along both sides of the roadway: 1) Bioretention for roadway edges with curb and gutter and 2) Compost Amended Vegetated Filter Strips (CAFVS) for roadway edges without curb and gutter. For each of the proposed roundabouts, infiltrations basins can be used to capture the roundabout stormwater runoff and receive any overflow from the bioretention swales and CAVFS.

Full design of all facilities will have to be based on infiltration rates found through Geotech test pits and evaluation of the water table at each specific roundabout location.

Information for stormwater was gathered and summarized to create a stormwater technical memorandum describing the anticipated stormwater design, to document major design decisions, and to serve as a concept for flow control at this preliminary stage. See the Stormwater Tech Memo within **Appendix F**.

5.4 UTILITIES

As a part of the utility coordination, we collected as-built plans for public and private utilities to create an exhibit that shows all the known utilities on the project site. From this a *Utility Tech Memo* was created to identify any utility conflicts for the project. Due to the expanded section for Old Highway 99 and the introduction of roundabouts at four intersections, certain utilities will need to be relocated, including but not limited to junction boxes, sewer maintenance holes, and water valves. New illumination, signage, and stormwater will have to be coordinated with current utility locations. All aboveground franchise utilities will be required to be relocated underground for the corridor.

As a part of the phases, the utility work will need to be coordinated with utility purveyors to determine where relocations and coordination need to take place.

Appendix F contains the Utility Tech Memo showing all horizontal crossings for the project as identified from the as-built plans.

5.5 LANDSCAPING AND STREETSCAPE

Through the process of developing a plan for the Old Highway 99 Corridor Improvements, it was determined that landscaping would consist of grass planting in the planter strips between the street curbs and the sidewalks. Cross sections were created for the corridor from 73rd Avenue to 88th Avenue, and a section from 88th Avenue to 93rd Avenue.

For the entire corridor, there were six visual streetscape and landscape renderings that were evaluated, and a section was determined for the proposed improvements. For alternatives evaluation, see information in **Appendix B**.

6 ENVIRONMENTAL STRATEGIES

6.1 ENVIRONMENTAL CONSIDERATIONS

Our environmental assessment follows the premise laid out in Part 4 – Environmental Considerations from the NEPA CE Categorical Exclusion Documentation Form. Considerations include thirteen elements to identify impacts and the plan for mitigation when needed. **Appendix G** contains a tech memo that addresses the following environmental considerations:

- Air Quality
- Critical Areas
- Cultural Resources/Historic Structures
- Floodplains and Floodways
- Hazardous and Problem Waste
- Noise
- 4(f)/6(f) Resources
- Agricultural Lands
- Rivers, Streams, or Tidal Waters
- Tribal Lands
- Water Quality/Stormwater
- Previous Environmental Commitments
- Environmental Justice

Each of these elements were evaluated at a preliminary level to inform where potential considerations may impact design and identify potential mitigation. Specific aspects of the project will need to be evaluated as outlined below:

- 1. Air Quality evaluation since the improvements will increase corridor capacity.
- 2. Mazama Pocket Gopher (MPG) habitat which will impact the considerations for design. MPG habitat is adjacent to the corridor along the east and west side of Old Highway 99.
- 3. Historic sites including a historic oak tree and the George Washington Bush Interpretive site.
- 4. Hazardous waste material which may be located on property acquired at the gas station and Pick-n-Pull automobile salvage yard, both which overlap the project site.
- 5. Noise impacts and whether the widening moves traffic closer to noise receptors.
- 6. An environmental justice assessment for the right of way acquisition and relocation.

For additional information and supporting reports, see **Appendix G** containing the Environmental Tech Memo.

7 PHASING PLAN AND COST ESTIMATES

7.1 PROJECT PHASING

We evaluated the corridor and phasing options for improvements along Old Highway 99. We based the phasing options on operational benefit, funding opportunities, and practical project size. First, we gave priority to phases providing more operational benefit. Second, we defined phases based on funding opportunities. Third, we sought to keep the cost for individual phases between \$4M and \$15M (in 2022 dollars). With these considerations in mind, the following phases were determined for the project and their anticipated costs determined.

Figure 7.1 Old Highway 99 Project Phases

7.1.1 Phase 1 – 79th Avenue Roundabout (\$4.9 Million)

For the Project, 79th Avenue fails to provide an acceptable LOS for existing traffic base on the 2020 traffic counts. The construction of a roundabout would alleviate the congestion at this location and raise it to LOS A. Because it is the only intersection that currently has a failing LOS, it is a critical improvement.

The constructed roundabout would have two circulating lanes through the roundabout on Old Highway 99 and then taper to one lane to match the roadway section on both sides of the proposed roundabout. 79th Avenue would tie into the roundabout with one lane going in both directions. A 10-foot sidewalk would be constructed on the east side of the roadway and a 10-foot sidewalk would be constructed on the west side, providing opportunities for bicycles to exit

the roadway before reaching the roundabout or allow bicyclists who are comfortable with merging with vehicle traffic to travel through the roundabout.

Construction of new stormwater facilities, signage, and illumination would also be included in Phase 1. Right of way property acquisition will be required for the construction of this phase.

Figure 7.2 Future 79th Avenue Roundabout

7.1.2 Phase $2 - 73^{rd}$ Avenue to 79^{th} Avenue (\$14.2 Million)

Henderson is projected to have a failing LOS in 2040 and is the next highest priority after 79th Avenue improvements. Widening from 73rd Avenue to 79th Avenue would provide continuity with two lanes of travel and a section that accommodates pedestrians and bicyclists connecting to the recent improvements of Capitol Boulevard.

Starting on the north side and working our way south after the 79th Avenue Roundabout, work would include the construction of a roundabout at Henderson Avenue and the widening of Old Highway 99 to two lanes of travel in both directions and a median that ties into the 79th Avenue roundabout improvements. 10-foot sidewalks would be constructed on the east side of the roadway providing pedestrian and bicycle access and bike lanes would be constructed on the west side to tie into the bike lanes constructed for the 79th avenue roundabout. On the west side of the Henderson roundabout, a 10-foot sidewalk would be constructed to provide an exit for bicyclists who are not comfortable merging with traffic to travel through the roundabout.

Construction of new stormwater facilities, signage, and illumination would also be included in Phase 2. Right of way property acquisition will be required for the construction of this phase.

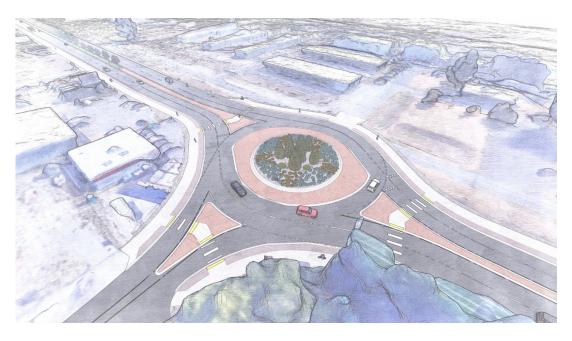


Figure 7.3 Future Henderson Avenue Roundabout

7.1.3 Phase 3 – 79th Avenue to 88th Avenue Roundabout (\$11.1 Million)

After 73rd to 79th Avenue improvements, the next phase would include widening to two lanes in both directions and a median between 79th Avenue and 88th Avenue and the construction of a roundabout at 88th Avenue. 10-foot sidewalks would be provided on both the west side and east side of the roundabout to provide both bicycle and pedestrian access. The sidewalk on the west side serves as an exit for bicycles before and after the roundabout at 88th Avenue. The sidewalk on the east side would continue all the way from 79th Avenue to 88th Avenue. From 88th Avenue two lanes of travel in both directions would taper down to one lane of travel in each direction.

Construction of new stormwater facilities, signage, and illumination would also be included in Phase 3. Right of way property acquisition will be required for the construction of this phase.

7.1.4 Phase 4 – 88th Avenue Roundabout to Wyatt Court (\$3.8 Million)

Following the 79th Avenue and 88th Avenue Roundabout improvements, would be 88th Avenue to Wyatt Court improvements, including widening for a median dividing the two opposing lanes of travel, 6-foot sidewalks on both sides, and 6-foot bike lanes continuing from the previous phase.

Construction of new stormwater facilities, signage, and illumination would also be included in Phase 4. Right of way property acquisition will be required for the construction of this phase.

7.1.5 Phase 5 – Wyatt Court to 93rd Avenue Roundabout (\$11.4 Million)

To conclude the Old Highway 99 improvements, Wyatt Court to 93rd Avenue improvements would include widening for a median dividing the two opposing lanes of travel, 6-foot sidewalks on both sides that taper out to 10-foot sidewalks at 93rd Avenue Roundabout, and bike lanes continuing from the previous phase. A roundabout at 93rd Avenue will be constructed to terminate the project with a sidewalk on both south and north sides of the roundabout to give access to both pedestrians and bicyclists travelling through the roundabout.

Construction of new stormwater facilities, signage, and illumination would also be included in Phase 5. Right of way property acquisition will be required for the construction of this phase.

7.2 PHASE COST ESTIMATES

Each phase was evaluated, and a cost estimated for their completion. Table 7.1 shows the five proposed phases and the combined cost for construction, right of way acquisition, and engineering services.

Table 7.1 Filase Costs			
Phase	Description	Cost*	
Phase 1	79 th Avenue Roundabout	\$4,920,000*	
Phase 2	73 rd Avenue to 79 th Avenue	\$14,220,000*	
Phase 3	79 th Avenue to 88 th Avenue Roundabout	\$11,100,000*	
Phase 4	88 th Avenue Roundabout to Wyatt Court	\$3,780,000*	
Phase 5	Wyatt Court to 93 rd Avenue Roundabout	\$11,400,000*	

Table 7.1 Phase Costs

*Cost includes construction, right of way acquisition, and engineering. See Section 8 – Right of Way Plan.

The total phase costs in Table 7.1 are preliminary and represented in 2022 dollars. Over the last three to five years, we have experienced a 15-20% increase in construction costs and continue to see increases on a yearly basis. These cost increases are unprecedented and difficult to predict. Due to these increases and general inflation, we recommend doing a cost analysis to account for inflation and increased construction costs prior to submitting grant applications. **Appendix D** includes copies of the conceptual cost estimates for each phase of the project.

If the city wants to further break down the phases due to cost, the roundabouts can be constructed separate from the section widening. These phases however follow an order that reflects the needs and continuity of the corridor improvements moving forward.

Table 7.2 summarizes the estimated right of way acquisition and relocation cost for each phase listed in the Phasing Plan. **Appendix E** includes a copy of the conceptual right of way plans and estimates.

Project	Description	Property Acquisitions	Relocations	Cost
Phase 1	79 th Avenue Roundabout	4	1	\$900,000
Phase 2	73 rd Avenue to 79 th Avenue	18	1	\$3,750,000
Phase 3	79 th Avenue to 88 th Avenue Roundabout	24	0	\$1,990,000
Phase 4	88 th Roundabout to Wyatt Court	8	0	\$580,000
Phase 5	Wyatt Court to 93 rd Avenue Roundabout	25	1	\$2,220,000

Table 7.2 Right of Way Costs

*Cost includes right of way acquisition and engineering.

Project funding estimates (PFE) for each phase should be completed during the preliminary engineering (PE) phase. Project funding estimates should consider loss of parking and circulation impacts to each parcel. We also recommend establishing contact with each affected property owner early in the PE phase to setup expectations and understand their needs.

See Appendix E for concept right of way plans and cost estimates.

APPENDIX A - TRAFFIC OPPERATIONAL ANALYSIS

Traffic Operational Analysis Old Highway 99 Corridor Study

City of Tumwater

Prepared For: City of Tumwater

Prepared By:

SCJ Alliance Ryan Shea, PTP, Senior Transportation Planner 8730 Tallon Lane NE, Suite 200 Lacey, WA 98516 360.352.1465

Operational Analysis

Project Information

Project:	Old Highway 99 Corridor Study
Prepared for:	City of Tumwater
	Mary Heather Ames
Reviewing Agency	
Jurisdiction:	City of Tumwater
Project Representative	
Prepared by:	SCJ Alliance 8730 Tallon Lane NE, Suite 200 Lacey, WA 98516 360.352.1465 scjalliance.com
Contact:	Ryan Shea, PTP, Senior Transportation Planner
	Patrick Hold, PE, Project Manager
Project Reference:	SCJ #0625.29
	Path: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation\Report\2020-0622 Traffic Operations.docx

Table of Contents

1 Introduction		oduction1
	1.1	Project Overview1
	1.2	Study Context
2	Exis	ting Conditions2
	2.1	Area Land Uses
	2.2	Roadway Inventory2
	2.3	Traffic Volume Data
3	Futu	re Conditions6
	3.1	Travel Demand Model
	3.2	Traffic Volume Forecasts
	3.3	Comparison to Tumwater Transportation Plan8
	3.4	Sensitivity Analysis Scenario10
4	Traf	fic Operations Analysis15
	4.1	Level of Service
	4.2	2040 Intersection Analysis16
	4.3	2025 Opening Year Intersection Analysis19
5	Sum	mary/Conclusion21

List of Tables

Table 1. AM and PM Peak Hour Trip Generation Characteristics – Baseline Baseline
Table 2. AM and PM Peak Period Trip Generation 8
Table 3. PM Peak Hour 2040 Volume Comparison 10
Table 4. AM and PM Peak Hour Shopping Center (LU 820) Trip Generation – Sensitivity Scenario 11
Table 5. AM and PM Peak Hour Shopping Center (LU 820) Trip Generation – Sensitivity Scenario 11
Table 6. 2040 Volume Comparison With Sensitivity Scenario 12
Table 7. Level of Service Criteria for Intersections 15
Table 8. Existing and 2040 AM Peak Hour Intersection Level of Service
Table 9. Existing and 2040 PM Peak Hour Intersection Level of Service
Table 10. 2025 AM Peak Hour Intersection Level of Service 19
Table 11. 2025 PM Peak Hour Intersection Level of Service

List of Figures

Figure 1. Site Vicinity Map	1
Figure 2. Existing Channelization and Intersection Control	4
Figure 3. Existing 2020 AM and PM Peak Hour Volumes	5
Figure 4. Projected 2025 AM and PM Peak Hour Volumes	7
Figure 5. Projected 2040 Baseline AM and PM Peak Hour Volumes	9
Figure 6. Projected 2040 Sensitivity Analysis AM and PM Peak Hour Volumes 1	.3
Figure 7. Locations of Additional Growth1	4

List of Appendices

- Appendix A Traffic Volume Counts
- Appendix B Traffic Volume Calculation Worksheets
- Appendix C Capacity Analysis Worksheets

1 Introduction

1.1 **Project Overview**

The City of Tumwater is conducting the *Old Highway 99 Corridor Study* (Corridor Study) to validate the transportation recommendations included in the *Tumwater City Plan 2036, Transportation Master Plan November 2016* (Transportation Plan) to identify and prioritize future projects and to develop strategies for future funding. The Transportation Plan recommends widening the Old Highway 99 corridor to 5 lanes from 73rd Avenue to 88th Avenue and widen to 3 lanes from 88th Avenue to 93rd Avenue. Included in the corridor improvement project was conversion of the two existing traffic signals, at Henderson Boulevard and 88th Avenue, to roundabouts. The Transportation Plan also identified intersection improvements at 79th Avenue and 93rd Avenue, recommending roundabouts at both locations.

The Corridor Study will identify necessary or recommended changes to these recommendations as a result of the validation process and identify preliminary design improvements. The Corridor Study extends from approximately 73rd Avenue SE to 93rd Avenue SE in Tumwater, Washington.

Figure 1 illustrates the Corridor Study area.

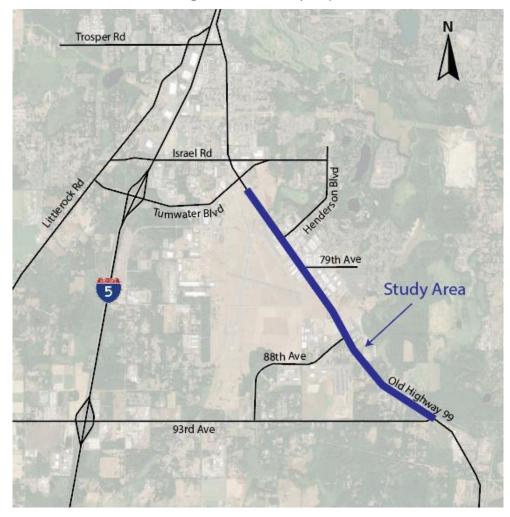


Figure 1. Site Vicinity Map

1.2 Study Context

The Corridor Study validation process includes conducting a transportation operational analysis for potential roadway and intersection alternatives. This report describes the traffic count collection, traffic volume forecasting, and operational analysis performed to determine/confirm the recommended roadway and intersection design concepts. The operational analysis has been prepared for existing 2020 AM and PM peak hour conditions, forecasted 2025 AM and PM peak hour conditions and forecasted 2040 AM and PM peak hour conditions at the following intersections:

- Old Highway 99/Henderson Boulevard
- Old Highway 99/79th Avenue
- Old Highway 99/88th Avenue
- Old Highway 99/93rd Avenue

2 Existing Conditions

2.1 Area Land Uses

The Corridor Study extends from 73rd Avenue SE to 93rd Avenue SE. The surrounding land uses along the corridor includes a mix of industrial, commercial and undeveloped land. The Olympia Regional Airport and airport related uses are located along the west side of Old Highway 99 for a large majority of the study area. Old Highway 99 also provides connections to residential developments along the corridor.

The *Tumwater City Plan 2036* future zoning map identifies the properties adjacent to Old Highway 99 to be light industrial uses along the east side of the corridor and a mix of general commercial, airport, mixed use, and residential uses along the west side.

2.2 Roadway Inventory

2.2.1 Old Highway 99

Old Highway 99 is classified as an arterial from 73rd Avenue to south of 88th Avenue, and as a collector from south of 88th Avenue to 93rd Avenue. In the study area, Old Highway 99 has one lane in each direction. The roadway has a paved shoulder with intermittent sidewalks and has a posted speed limit of 50 mph from 93rd Avenue to 79th Avenue where the speed limit drops to 40 mph. The speed limit drops again to 35 mph north of the study area. Old Highway 99 extends from the City of Tenino north to the City of Tumwater. North of the study area, Old Highway 99 transitions to Capitol Boulevard serving as the city's primary north-south transportation route.

2.2.2 Henderson Boulevard

In the study area, Henderson Boulevard is classified as a collector roadway and has one lane in each direction. This roadway has intermittent paved shoulders with no sidewalks and has a posted speed limit of 35 mph. Henderson Boulevard serves as a link between Old Highway 99 and Yelm Highway.

2.2.3 79th Avenue

79th Avenue is classified as a collector roadway and has one lane in each direction. This roadway provides sidewalks along portions of each side of the road and has a posted speed limit of 35 mph. 79th Avenue provides access to residential developments located on the east side of the corridor.

2.2.4 88th Avenue

88th Avenue is classified as a collector roadway and has one lane in each direction. As 88th Avenue transitions to Tilley Road it provides one lane in each direction with a two-way-center-left-turn-lane. This roadway provides paved shoulders and sidewalks and has a posted speed limit of 50 mph. Bike lanes are provided at the transition to Tilley Road. 88th Avenue serves as a link between Old Highway 99 and Tilley Road, which provides access to rural Thurston County.

2.2.5 93rd Avenue

93rd Avenue transitions through several roadway classifications, near Old Highway 99 it is classified as a collector roadway and near I-5 the roadway is an arterial. Between 88th Avenue and I-5, 93rd Avenue changes between collector and arterial as it travels through City and UGA limits. 93rd Avenue provides one lane in each direction and has a posted speed limit of 50 mph between Old Highway 99 and Tilley Road, before reducing to a posted speed limit of 40 mph west of Tilley Road. This roadway serves as a connection to the south and west portions of the City of Tumwater and provides access to and from I-5.

A summary of the existing intersection channelization and control type for each of the study intersections is provided in **Figure 2**.

2.3 Traffic Volume Data

Traffic Count Consultants, Inc (TC2), a transportation data collection service, provided peak period turning movement counts for the study intersections. The counts were conducted between 7:00 am - 9:00 am and between 4:00 pm - 6:00 pm on Wednesday, March 04, 2020 at the following locations:

- Old Highway 99/Henderson Boulevard
- Old Highway 99/79th Avenue
- Old Highway 99/88th Avenue
- Old Highway 99/93rd Avenue

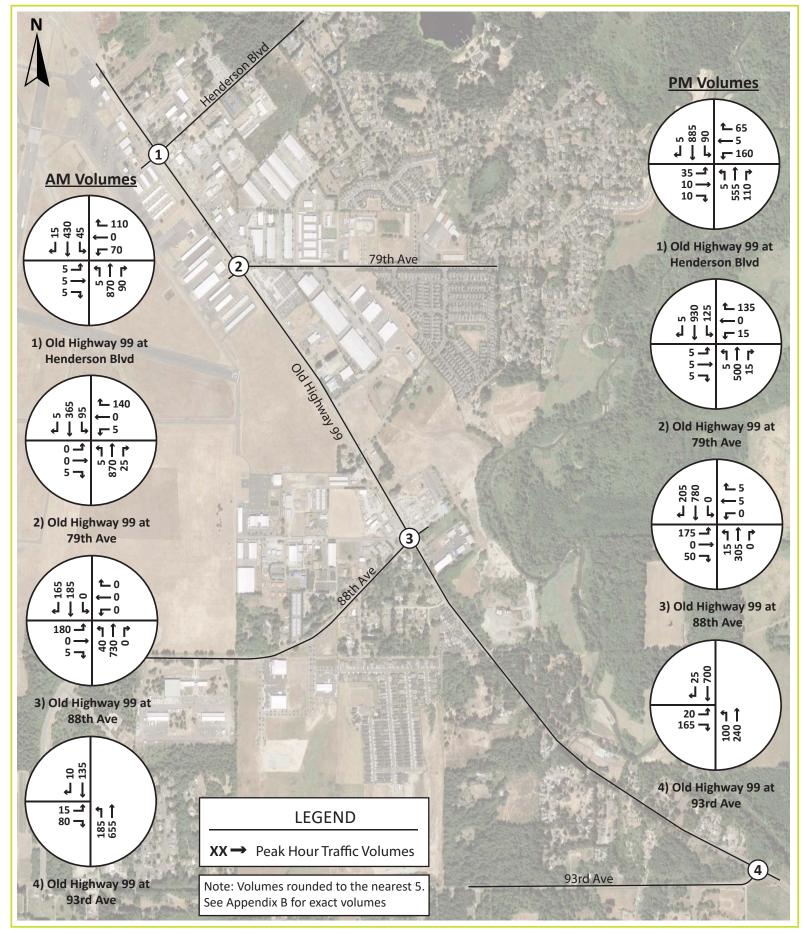

The morning and evening peak traffic periods were selected as the appropriate time periods because they represent the peak commute hours and create the highest level of activity at the study intersections.

Figure 3 shows the existing 2020 AM and PM peak hour traffic volumes for the study intersections. The turning movement count diagrams are provided in **Appendix A**.

Old Highway 99 Corridor Study Tumwater, Washington Figure 2 Existing Channelization

Old Highway 99 Corridor Study Tumwater, Washington Figure 3 Existing 2020 AM & PM Peak Hour Traffic Volumes

3 Future Conditions

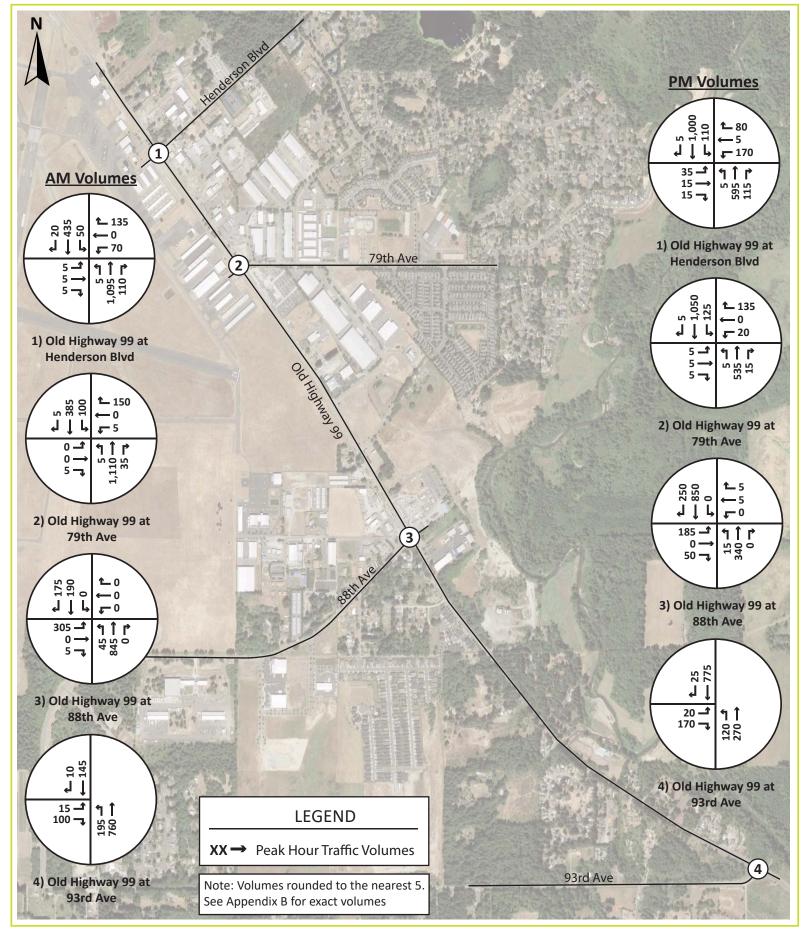
3.1 Travel Demand Model

The traffic volume projections used in this analysis were calculated using the Thurston Regional Planning Council (TRPC) Emme/4 transportation demand model. The model, prepared by TRPC, has been most recently updated to represent 2015 traffic conditions. The model provides AM and PM peak hour traffic assignments.

TRPC has prepared a 2040 model scenario that includes the regionally adopted household and employment projections for the region. The 2040 scenario also includes all roadway improvements identified in the current Thurston County Regional Transportation Plan (RTP).

3.2 Traffic Volume Forecasts

Using the outputs from the TRPC travel demand models, baseline 2025 and 2040 volume forecasts were prepared. These forecasts were calculated using the annual model volume growth added to the existing turning movement counts at each study intersection. The projected 2025 AM and PM peak hour volumes are provided on **Figure 4**.


The growth contained in the 2040 demand model for the area along the study corridor was evaluated and found to be minimal. To provide a more conservative long-range forecast, an evaluation of the vacant properties along the study corridor was performed. Based on the amount of available land and the current zoning, additional development was assumed and incorporated into the long-range traffic forecast.

3.2.1 Adjustment to the 2040 Baseline Traffic Volume Forecast

To calculate a more conservative 2040 volume forecast an assessment of the vacant property along the study corridor was performed. With the Olympia Regional Airport located on much of the western side of the corridor, the vacant land assessment was primarily performed on the east side of the corridor. Between Henderson Boulevard and 88th Avenue there is approximately 46.25 of vacant land. In discussions with the City it was determined that 80% of this land would be considered built out for the 2040 horizon, resulting in approximately 37 acres of additional development. The current zoning for this entire area is light industrial. An assessment of other developments in the vicinity suggest approximately 40% of the total property contains buildings, with the rest dedicated to access, parking and stormwater treatment. Using 40% for the building coverage, approximately 14.8 acres, or 650,000 square feet, was determined as the amount of additional development.

The vehicle trip generation for the additional development potentialwas estimated using the trip generation rates contained in the 10th edition of the <u>Trip Generation Manual</u> by the *Institute of Transportation Engineers (ITE)*. The land-use category "Warehousing" (land-use code 150) and "General Light Industrial" (land-use code 110) were used.

Table 1 shows the trip generation characteristics for Warehousing and General Light Industrial for theAM and PM peak periods.

Old Highway 99 Corridor Study Tumwater, Washington Figure 4 2025 Baseline AM & PM Peak Hour Traffic Volumes

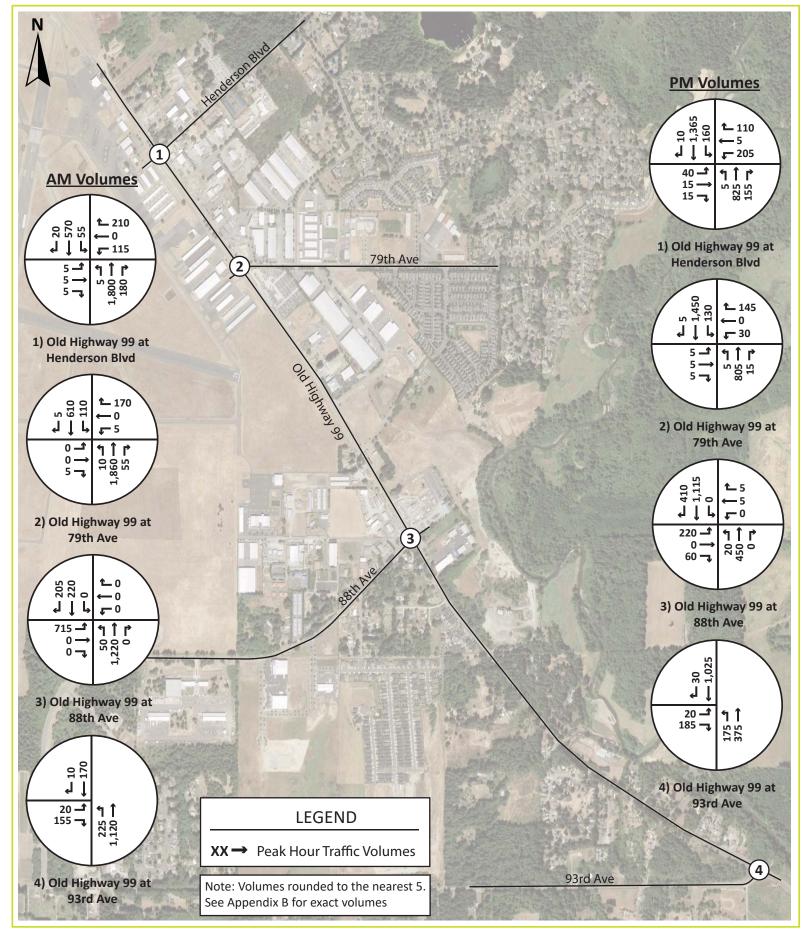
ITE Land Use (LU)	Unit	Trip Rate	Enter %	Exit %
AM Peak Period				
Warehousing	1,000-sq ft	0.17	77%	23%
General Light Industrial	1,000-sq ft	0.70	88%	12%
PM Peak Period				
Warehousing	1,000-sq ft	0.19	27%	73%
General Light Industrial	1,000-sq ft	0.63	13%	87%

Table 1. AM and PM Peak Hour Trip Generation Characte	ristics – Baseline
---	--------------------

The total trip generation is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The trip generation is shown in **Table 2** for AM and PM peak periods.

Land Use	Unit	Total Trips	Enter	Exit
AM Peak Period				
Warehousing	325.00	55	43	12
General Light Industrial	325.00	228	200	28
Total Trips	-	283	243	40
PM Peak Period				
Warehousing	325.00	62	17	45
General Light Industrial	325.00	205	27	178
Total Trips	-	267	44	223

Table 2. AM and PM Peak Period Trip Generation


This volume was assigned to the study area using the following distribution patterns from the TRPC travel demand model:

- 15% to/from 88th Avenue
- 15% to/from Henderson Boulevard
- 15% to/from the south on Old Highway 99
- 55% to/from the north on Old Highway 99

These volumes were added to the 2040 baseline forecast volumes described above to produce the modified baseline volumes used in the operational analysis. The 2040 AM and PM peak hour baseline volumes are provided on **Figure 5**.

3.3 Comparison to Tumwater Transportation Plan

The City of Tumwater's Transportation Plan, published in 2016, recommended Old Highway 99 from 73rd Avenue to 88th Avenue be widened to five lanes. An initial step to validate that recommendation is to compare the current PM peak hour volume forecasts to the volume forecasts prepared in the Transportation Plan. The total entering volumes for each of the study intersections were compared to determine if the current 2040 volume forecasts are consistent with the previous volume forecast. These volumes are provided in **Table 3**.

Old Highway 99 Corridor Study Tumwater, Washington Figure 5 2040 Baseline AM & PM Peak Hour Traffic Volumes

Intersection	Master Plan Volume	Current Volumes	Volume Delta
Old Hwy 99/Henderson Blvd	2,725	2,910	+185
Old Hwy 99/79 th Ave	2,415	2,580	+165
Old Hwy 99/88 th Ave	2,125	2,275	+150
Old Hwy 99/93 rd Ave	1,670	1,810	+140

Table 3. PM Peak Hour 2040 Volume Comparison

At each of the study intersections the current 2040 traffic volume forecast is similar to but higher than the traffic volume forecasts from the 2016 Transportation Plan. This indicates that the recommendations from the Transportation Plan are still valid.

3.4 Sensitivity Analysis Scenario

In addition to calculating some of the additional growth potential along the study corridor, the City recognizes the potential for property along the corridor to be rezoned in the future, allowing for higher trip generation potential. Given the potential attractiveness of the adjacent properties once the corridor improvement project is constructed, it is anticipated that the property located at each of the controlled intersections could redevelop to commercial/retail uses and generate much higher traffic volumes at the intersections. To ensure that the study intersections are designed to accommodate this higher growth potential an additional 2040 volume forecast scenario was prepared.

All of the growth in this sensitivity scenario is assumed to be commercial/retail. An estimate of the total acreage that could develop/redevelop at each intersection was prepared. A building coverage factor of 25% was then applied to the total acreage to determine the amount of square footage. Below is a description of each study intersection.

3.4.1 Old Highway 99/Henderson Boulevard

The property in each corner of the intersection was evaluated for redevelopment potential. As part of this sensitivity analysis the property in the north and east corners of the intersection (east of Old Highway 99) were both assumed to redevelop. West of Old Highway 99 is the Olympia Regional Airport. This portion of the airport property has some vacant property and office buildings. The west corner of the intersection was also assumed to redevelop to a commercial/retail use. In total, this redevelopment potential amounted to 5.5 acres, which equates to approximately 60,000 sqft.

3.4.2 Old Highway 99/79th Avenue

For this intersection the property on the west side of Old Highway 99, which is the Olympia Regional Airport, contains airplane hangars. None of this property was assumed to redevelop. On the east side of Old Highway 99 the northeast corner has recently been developed. For this scenario only the property to the southeast was assumed to redevelop. The existing pick-a-part business in this property will be impacted by the proposed reconfiguration of the intersection (assumed roundabout project) and half of the property was assumed to redevelop for this scenario (2 acres) which equates to approximately 25,000 sqft.

3.4.3 Old Highway 99/88th Avenue

At this intersection the property to the northwest, which contains the Kiperts retail store, was assumed to remain as is. The existing auto pawn property on the east side of Old Highway 99 was assumed to redevelop. The existing single-family homes southwest of the intersection are currently zones as mixed use. Given this zoning half of the neighborhood was assumed to redevelop as well. Together this equates to roughly 13 acres and 145,000 sqft.

3.4.4 Old Highway 99/93rd Avenue

This intersection is located at the end of the study corridor and was considered too far away from the City to redevelop with commercial/retail activity. No additional growth was added at this location.

3.4.5 Sensitivity Analysis Volume Calculations

Based on the development/redevelopment potential at the different study intersections, the sensitivity analysis includes 230,000 square feet. The vehicle trip generation was estimated using the land-use category "Shopping Center" (land-use code 820). This land use category includes a wide range of commercial and retail uses and should represent the variety of development that could occur if these areas were rezoned.

Table 4 shows the trip generation characteristics for Shopping Center for the AM and PM peak periods.

-		-		-
Shopping Center (LU 820)	Unit	Trip Rate	Enter %	Exit %
AM Peak Period	1,000-sq ft	0.94	62%	38%

1,000-sq ft

Equation¹

48%

52%

Table 4. AM and PM Peak Hour Shopping Center (LU 820) Trip Generation – Sensitivity Scenario

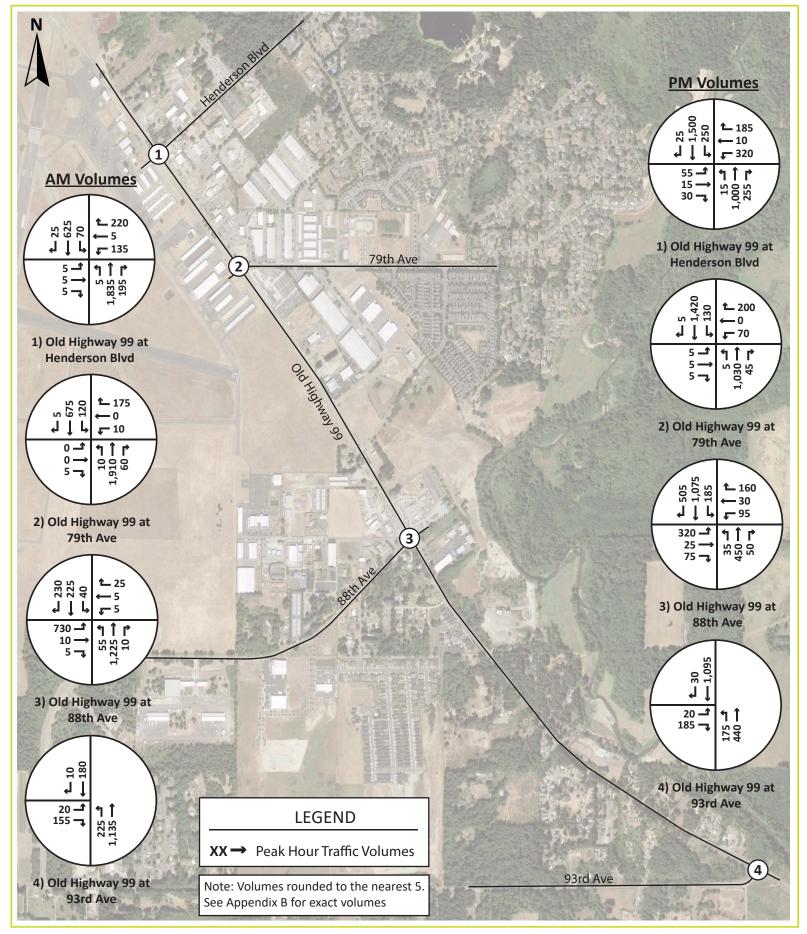
1. See appendix B for equation rates

PM Peak Period

For the PM peak period the ITE Trip Generation Manual has a fitted curve equation for the shopping center land use. This equation adjusts the trip rate based on the size of the development. The trip generation calculations were done for the square footages at each intersection. The detailed trip calculations are included in **Appendix B**.

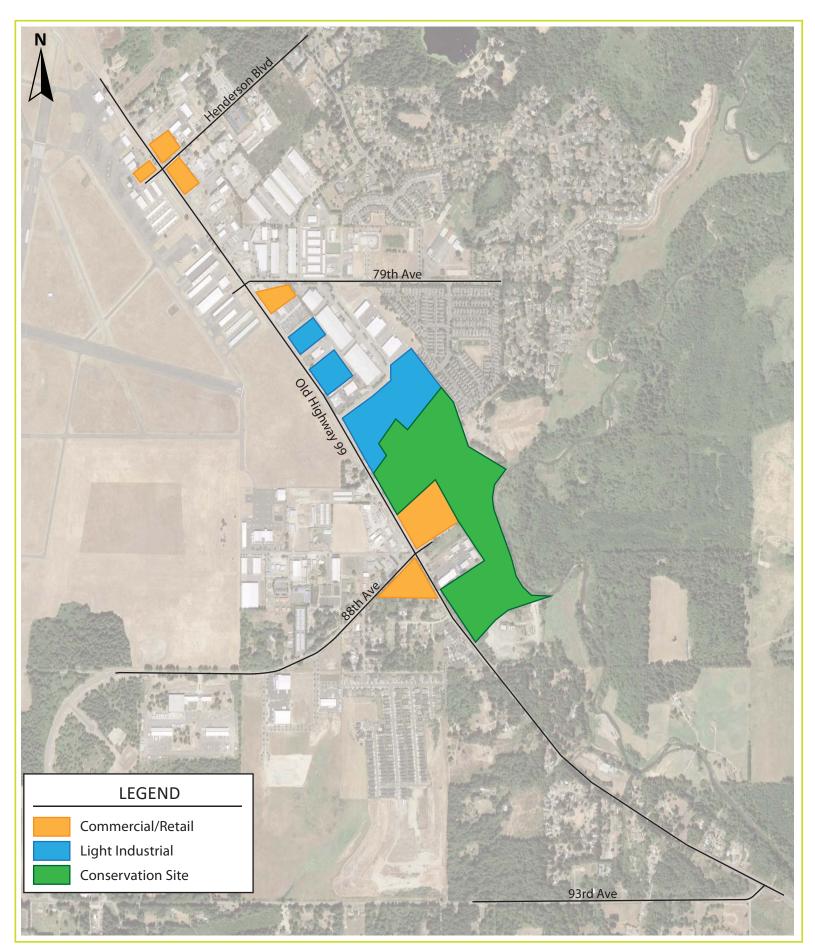
The total trip generation is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The trip generation is shown in **Table 5** for AM and PM peak periods.

Table 5. AM and PM Peak Hour Shopping Center (LU 820) Trip Generation – Sensitivity Scenario


Shopping Center (LU 820)	Unit	Total Trips	Enter	Exit
AM Peak Period	230.00	216	134	82
PM Peak Period	230.00	1,411	678	733

These trips were assigned to the study corridor using the same distribution outlined above in section 3.2.1. This assignment was then added to the 2040 baseline volumes to produce the 2040 sensitivity analysis scenario volumes. The total entering volumes for each of the study intersections with and without the additional sensitivity volumes are provided in **Table 6** to help illustrate the amount of additional traffic with the sensitivity scenario.

		AM Peak Hour		PM Peak Hour								
Intersection -	Baseline	Sensitivity	Volume Delta	Baseline	Sensitivity	Volume Delta						
Old Hwy 99/Henderson Blvd	2,960	3,125	+165	2,910	3,670	+760						
Old Hwy 99/79 th Ave	2,825	2,960	+135	2,580	3,205	+625						
Old Hwy 99/88 th Ave	2,410	2,560	+150	2,275	3,005	+730						
Old Hwy 99/93 rd Ave	1,700	1,730	+30	1,810	1,950	+140						


Table 6. 2040 Volume Comparison With Sensitivity Scenario

The AM and PM peak hour 2040 sensitivity scenario volumes are provided in **Figure 6**. The land included in the modified baseline trip generation and sensitivity scenario trip generation is shown on **Figure 7**.

Old Highway 99 Corridor Study Tumwater, Washington Figure 6 2040 Projected Sensitivity Scenario AM & PM Peak Hour Traffic Volumes

Old Highway 99 Corridor Study Tumwater, Washington Figure 7 Locations of Additional Growth

4 Traffic Operations Analysis

Traffic analyses were conducted to identify any deficiencies within the study area for the AM peak hour and PM peak hour for the 2020 base year and the 2025 and 2040 project opening year.

4.1 Level of Service

The acknowledged source for determining overall capacity for arterial segments and independent intersections is the current edition of the *Highway Capacity Manual* (HCM) published by the Transportation Research Board (TRB).

Intersection analysis for stop control and traffic signal intersections was performed using the Synchro software package. This software implements the methods of the 6th Edition HCM. For the roundabout intersection alternatives, the Sidra software package was used. Capacity analysis results are described in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a street or highway during a specific time interval. LOS ranges from A (very little delay) to F (long delays and congestion).

The Tumwater 2016 Transportation Plans identifies a LOS D standard for intersections within city limits.

4.1.1 Intersection Operations

For signalized intersections, the overall LOS grade represents the weighted average of all movements at the intersection. For intersections under minor street stop-sign control, the LOS of the most difficult movement (typically the minor street left turn) represents the intersection level of service. The LOS/delay criteria for stop sign-controlled intersections are different than for signalized intersections because driver expectation is that a signalized intersection is designed to carry higher traffic volumes and experience greater delay. The following table shows the Level of Service criteria for stop-controlled intersections and signalized intersections

Level of Service	Signalized Intersection Average Control Delay (seconds/vehicle)	Stop-Controlled Intersection Average Control Delay (seconds/vehicle)
А	≤ 10	≤ 10
В	> 10-20	> 10-15
С	> 20-35	> 15-25
D	> 35-55	> 25-35
E	> 55-80	> 35-50
F	> 80	> 50

Table 7.	Level of	of Service	Criteria	for	Intersections

4.2 2040 Intersection Analysis

The analysis was conducted for the following scenarios:

- Existing 2020 traffic volumes
- Projected 2040 baseline traffic volumes without the corridor widening
- Projected 2040 baseline traffic volumes with the corridor widening
- Projected 2040 baseline traffic volumes with the corridor widening and intersection improvements
- Projected 2040 sensitivity scenario traffic volumes with the corridor widening and intersection improvements.

The operational analysis results of the study intersections for the projected 2040 scenarios are provided in **Table 8** for the AM peak hour and **Table 9** for the PM peak hour. The LOS analysis worksheets are included in **Appendix C.** Existing intersection channelization is provided in Figure 2.

							Projecte	d 2040			
				I	Existing Cha	nnelizatior		Roundabo	out Contro	I	
		Existin	g 2020	No Wi	idening	With W	/idening	With W	/idening		ensitivity nario
	Intersection	LOS (delay)	Worst v/c (dir)								
1	Old Highway 99/	C	0.96	F	1.55	C	0.91	A	0.55	A	0.69
	Henderson Boulevard	(22.4)	(NB)	(192.7)	(NB)	(22.2)	(NB)	(5.6)	(WB)	(6.0)	(NB)
2	Old Highway 99/	F	0.51	F	1.98	F	0.68	A	0.66	A	0.68
	79 th Avenue	(59.0)	(WB)	(300+)	(WB)	(300+)	(WB)	(5.2)	(NB)	(5.4)	(NB)
3	Old Highway 99/	A	0.82	F	1.25	D	0.92	B	0.71	B	0.79
	88 th Avenue	(9.0)	(NB)	(120.7))	(NB)	(35.6)	(NB)	(11.5)	(NB)	(14.3)	(NB)
4	Old Highway 99/	C	0.16	D	0.18	D	0.18	A	0.94	A	0.66
	93 rd Avenue	(23.9)	(NB)	(34.0)	(EB)	(34.0)	(EB)	(5.6)	(NB)	(4.8)	(NB)

Table 8. Existing and 2040 AM Peak Hour Intersection Level of Service

					Existing Cha	nnelization	I		Roundabo	out Contro	I
		Existin	g 2020	No W	idening	/idening	With W	/idening	With Sensiti Scenario		
	Intersection	LOS (delay)	Worst v/c (dir)	LOS (delay)	Worst v/c (dir)						
1	Old Highway 99/	B	0.84	D	0.98	B	0.78	A	0.56	A	0.73
	Henderson Boulevard	(13.0)	(NB)	(40.7)	(SB)	(11.9)	(SB)	(6.1)	(SB)	(8.4)	(SB)
2	Old Highway 99/	F	0.36	F	6.20	F	4.43	A 0.51		A	0.61
	79 th Avenue	(115.0)	(WB)	(300+)	(WB)	(300+)	(WB)	(5.4) (SB)		(5.3)	(SB)
3	Old Highway 99/	A	0.83	B	0.89	A	0.63	A	0.54	A	0.77
	88 th Avenue	(9.6)	(SB)	(12.8)	(SB)	(7.4)	(SB)	(4.8)	(SB)	(8.9)	(EB)
4	Old Highway 99/	C	0.46	E	0.65	E	0.65	A	0.82	A	0.60
	93 rd Avenue	(21.5)	(EB)	(37.7)	(EB)	(37.7)	(EB)	(7.3)	(SB)	(5.5)	(SB)

Table 9. Existing and 2040 PM Peak Hour Intersection Level of Service

4.2.1 Old Highway 99/Henderson Boulevard

This intersection operates under traffic signal control. In the 2040 horizon with no intersection or corridor improvements the intersection is projected to operate at LOS F in the AM peak hour and LOS D in the PM peak hour. The AM peak hour is projected to have a very high volume of traffic traveling northbound into the City (1,800) which cannot be accommodated by a single travel lane. The PM peak hour volumes are more balanced between northbound and southbound, but the volume to capacity ratios for the southbound direction are approaching 1.0, indicating likely queue and congestion issues with a single travel lane.

With the corridor widening to provide two through lanes in each direction of Old Highway 99 the existing traffic signal is projected to operate within the LOS D standard during both peak periods. Roundabout control for the 2040 baseline volumes was also analyzed, resulting in LOS A during both peak periods. The roundabout geometry included two travel lanes in each direction of Old Highway 99 and single-lane approaches for Henderson Boulevard. This roundabout layout was assessed with the sensitivity scenario and is projected to remain at LOS A.

4.2.2 Old Highway 99/79th Avenue

This intersection operates under stop-sign control for the eastbound and westbound approaches. The intersection currently operates at LOS F for both peak periods and is projected to worsen significantly in 2040, with and without the corridor widening improvement. With construction of a roundabout the intersection is projected to operate at LOS A for both peak periods. The roundabout geometry included two travel lanes in each direction of Old Highway 99 and single-lane approaches for Henderson Boulevard. This roundabout layout was assessed with the sensitivity scenario and is projected to remain at LOS A.

4.2.3 Old Highway 99/88th Avenue

This intersection operates under traffic signal-control, with the southbound approach, which serves the existing auto pawn business, often gated. This intersection currently operates at LOS A during both peak periods. In the 2040 horizon with no corridor widening the intersection is projected to operate at LOS F in the AM peak hour and LOS B in the PM peak hour. As with the Henderson Boulevard intersection, the AM peak hour has a large volume of traffic traveling north on Old Highway 99, coming from further south on Old Highway 99 and from 88th Avenue. During the PM peak hour, the southbound v/c ratio is approaching 0.90, suggesting that approach will experience some queue and congestion issues.

With the corridor widening to provide two through lanes in each direction of Old Highway 99 the existing traffic signal is projected to operate at LOS D for the AM peak hour and LOS A for the PM peak hour. Roundabout control for the 2040 baseline volumes was also analyzed. A single-lane roundabout was evaluated, to determine if roundabout control would remove the need for corridor widening at the intersection. However, given the high volume of northbound traffic during the AM peak hour a multi-lane roundabout will be necessary. This roundabout layout assumed single lane approaches for both 88th Avenue approaches. Additionally, the analysis included short approach and departure lanes for the south leg, as Old Highway 99 transitions to a 2/3 lane corridor. This layout results in a LOS B during the AM peak hour and a LOS A in the PM peak hour. This roundabout layout was assessed with the sensitivity scenario and is projected to maintain the same level of service results.

4.2.4 Old Highway 99/93rd Avenue

This is a tee intersection which operates under stop-sign control for the eastbound approach. To maximize the existing control the intersection has been improved over the years to include acceleration lanes for both directions of Old Highway 99, providing a northbound acceleration lane for the 93rd Ave eastbound left-turns and a southbound acceleration lane for the 93rd Ave eastbound right-turns.

This intersection currently operates at LOS C during the AM peak hour and LOS D during the PM peak hour. In the 2040 baseline the intersection is projected to operate at LOS D for the AM peak hour and LOS E during the PM peak hour. The corridor widening is not planned to extend down to 93rd Avenue and had no impact on the intersection operational analysis. With a LOS E result in the PM peak hour this intersection falls below the City's LOS standard. A single-lane roundabout was analyzed for both peak hours and was found to operate within the City of Tumwater's LOS standard, but with directional v/c ratios (NB in the AM and SB in the PM) that are approaching 1.0. For the sensitivity scenario analysis, the NB approach during the AM peak hour and the SB approach during the PM peak hour both experienced v/c ratios that produced significant queues. To accommodate this, additional entry lanes for both Old Highway 99 approaches were assessed. The south leg contains a through lane and left-turn lane and two exit lanes, the north leg provides two through lanes and a single exit lane and the 93rd Avenue leg provides a single approach and departure lane. This configuration is projected to operate at LOS A in 2040 for the baseline and the sensitivity scenarios.

The roundabout layouts for each of the study intersections are provided in Appendix C.

4.3 2025 Opening Year Intersection Analysis

The 2040 operational analysis has validated the Transportation Plan improvements and have provided the long-term needs of each study intersection. The project has identified a 2025 opening year and this analysis has been performed to identify which improvements are anticipated to be needed during the opening year. The study intersections have been analyzed for the following scenarios:

- Existing 2020 traffic volumes
- Projected 2025 baseline traffic volumes without the corridor widening
- Projected 2025 baseline traffic volumes with the corridor widening
- Projected 2025 baseline traffic volumes with the corridor widening and intersection improvements

The operational analysis results of the study intersections for the projected 2025 scenarios are provided in **Table 10** for the AM peak hour and **Table 11** for the PM peak hour. The LOS analysis worksheets are included in **Appendix C.** Existing intersection channelization is provided in Figure 2.

						Project	ed 2025			
		Existin	g 2020	No Wic	dening	With W	idening	Roundabo	ut Control	
	Intersection	LOS (delay)	Worst v/c (dir)							
1	Old Highway 99/ Henderson Boulevard	C (22.4)	0.96 (NB)	C (28.7)	0.96 (NB)	B (11.6)	0.76 (NB)	A (5.0)	0.43 (NB)	
2	Old Highway 99/ 79 th Avenue	F (59.0)	0.51 (WB)	F (121.5)	0.70 (WB)	F (75.9)	0.36 (WB)	A (5.0)	0.39 (NB)	
3	Old Highway 99/ 88 th Avenue	A (9.0)	0.82 (NB)	B (13.0)	0.85 (NB)	A (8.5)	0.60 (NB)	A (6.4)	0.38 (NB)	
4	Old Highway 99/ 93 rd Avenue	(()39)		C (22.4)	0.14 (NB)	C (22.4)	0.14 (NB)	A (5.2) 0		

Table 10. 2025 AM Peak Hour Intersection Level of Service

						Project	ed 2025		
		Existin	g 2020	No Wic	lening	With W	idening	Roundabo	ut Control
	Intersection	LOS (delay)	Worst v/c (dir)	LOS (delay)	Worst v/c (dir)	LOS (delay)	Worst v/c (dir)	LOS (delay)	Worst v/c (dir)
1	Old Highway 99/ Henderson Boulevard	C (13.0)	0.84 (NB)	B (15.8)	0.86 (NB)	B (10.1)	0.71 (SB)	A (5.9)	0.43 (SB)
2	Old Highway 99/ 79 th Avenue	F (115.0)	0.36 (WB)	F (156.4)	0.51 (WB)	F (60.8)	0.26 (WB)	A (4.8)	0.40 (SB)
3	Old Highway 99/ 88 th Avenue	A (9.6) 0.83 (SB)		A (8.4)	0.80 (SB)	A (6.4)	0.52 (SB)	A (5.3)	0.42 (SB)
4	Old Highway 99/ 93 rd Avenue	C (21.5)	0.46 (EB)	C (22.8)	0.47 (EB)	C (22.8)	0.47 (EB)	A (5.7)	0.63 (SB)

4.3.1 Old Highway 99/Henderson Boulevard

This intersection is projected to operate at LOS C for the AM peak hour and LOS B for the PM peak hour. However, given the high northbound v/c ratio during the AM peak hour it is anticipated that widening of Old Highway 99 through this intersection will be needed for the 2025 horizon. The southbound v/c ratio during the PM peak hour (0.84) is also fairly high but may be accommodated with a single travel lane.

4.3.2 Old Highway 99/79th Avenue

Given the existing operational failure at this location during both peak periods, intersection improvements are warranted for the 2025 horizon. With the ultimate configuration roundabout, with two travel lanes in each direction of Old Highway 99, the intersection is projected to operate at LOS A for both peak periods, with no v/c ratio above 0.40. This suggests a single-lane roundabout may be sufficient as an opening condition. A single-lane roundabout is projected to also operate at LOS A for both peak periods, although the NB v/c ratio during the AM peak hour is projected to be 0.88, suggesting it would soon need to provide additional capacity.

4.3.3 Old Highway 99/88th Avenue

This intersection is currently operating at LOS A during each peak hour and is projected to operate at LOS B or better during both peak hours for the 2025 horizon without any corridor widening. This suggests that the southern portion of the Old Highway 99 study corridor may not require widening as soon as the northern portion.

4.3.4 Old Highway 99/93rd Avenue

This intersection currently provides acceleration lanes for both minor street stop-controlled movements, with those elements it is currently operating at LOS C for each peak hour. In the 2025 horizon this intersection is projected to remain at LOS C. This suggests that corridor or intersection improvements near 93rd Avenue will not be needed in the short term.

5 Summary/Conclusion

The City of Tumwater is conducting the *Old Highway 99 Corridor Study* to validate the transportation recommendations included in the *Tumwater City Plan 2036, Transportation Master Plan November 2016*. The plan recommends widening Old Highway 99 to 5 lanes from 73rd Avenue to 88th Avenue and widen to 3 lanes from 88th Avenue to 93rd Avenue. Included in the corridor improvement project was conversion of the two existing traffic signals, at Henderson Boulevard and 8th Avenue, to roundabouts. Additional projects in the Transportation Plan identified intersection improvements at 79th Avenue and 93rd Avenue, recommending roundabouts at both locations.

A summary of the key conclusions reached from this analysis includes:

- Based on the updated volume forecast and 2040 baseline operational analysis, each of the improvements identified in the Transportation Master Plan are still warranted.
- Based on the 2040 operational analysis, the existing study intersections operating under traffic signal control, Henderson Boulevard and 88th Avenue, are projected to operate within the City of Tumwater's LOS standard under traffic signal or roundabout control with the widened Old Highway 99 corridor improvement.
- The 79th Avenue intersection operates below the City's LOS standard today. With a widened corridor roundabout control is projected to operate at LOS A.
- The 93rd Avenue intersection currently operates at LOS C or better for both peak periods. In the 2040 horizon the PM peak hour is projected to operate at LOS E. Installation of a single lane roundabout is projected to operate at LOS A for both peak periods.
- Based on the 2025 opening year analysis the corridor widening will be needed for the northern portion of the study corridor.
- A sensitivity analysis should be performed to determine how far the widening will be needed for the opening year horizon.
- Additional sensitivity analysis should be conducted to determine when the roundabout improvements need to provide additional throughput on Old Highway 99.

Appendix A Traffic Volume Counts

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Appendix B

Traffic Volume Calculations Worksheets

Old Highway 99

Trip Generation Summary - Baseline Modification

Tumwater, WA

AM Peak Hour Trip Generation															
Site Plan Description	LUC	ITE Description	Variable	Value	ITE Rate	Distribution		Total Trips			Pass-B	y Trips	Net New Trips		
Site Plan Description	100		Variable	value	IIL Nate	In	Out	In	Out	Total	%	Total	In	Out	Total
Warehousing	150	Warehousing	ksqft	325.000	0.17	77%	23%	43	12	55	0.0%	0	43	12	55
Light Industrial	110	General Light Industrial	ksqft	325.000	0.70	88%	12%	200	28	228	0.0%	0	200	28	228
Total								243	40	283		0	243	40	283

PM Peak Hour Trip Generation															
Site Plan Description	LUC	ITE Description	Variable	Value	ITE Rate	Distribution		Total Trip			Pass-By Trips		Net New Trip		ps
Site Plan Description	LUC					In	Out	In	Out	Total	%	Total	In	Out	Total
Warehousing	150	Warehousing	ksqft	325.000	0.19	27%	73%	17	45	62	0.0%	0	17	45	62
Light Industrial	110	General Light Industrial	ksqft	325.000	0.63	13%	87%	27	178	205	0.0%	0	27	178	205
Total								44	223	267		0	44	223	267

Old Highway 99

Trip Generation Summary - Sensitivity Scenario

Tumwater, WA

AM Peak Hour Trip Generation															
Site Plan Description	LUC	ITE Description	Variable	Value	ITE Rate	Distribution		Total Trips			Pass-By Trips		Net New Trips		ps
Site Plan Description	LUC		Variable	value		In	Out	In	Out	Total	%	Total	In	Out	Total
Mixed-Use Commercial - Henderson	820	Shopping Center	ksqft	60.000	0.94	62%	38%	35	21	56	0.0%	0	35	21	56
Mixed-Use Commercial - 79th	820	Shopping Center	ksqft	25.000	0.94	62%	38%	15	9	24	0.0%	0	15	9	24
Mixed-Use Commercial - 88th North	820	Shopping Center	ksqft	100.000	0.94	62%	38%	58	36	94	0.0%	0	58	36	94
Mixed-Use Commercial - 88th South	820	Shopping Center	ksqft	45.000	0.94	62%	38%	26	16	42	0.0%	0	26	16	42
Total								134	82	216		0	134	82	216

PM Peak Hour Trip Generation	2M Peak Hour Trip Generation														
Site Plan Description	LUC	ITE Description	Variable	hla Valua	ITE Rate	Distribution		Total Trips			Pass-By Trips		Net New Trips		
Site Plan Description	LUC	The Description	variable	Value	IIE Kale	In	Out	In	Out	Total	%	Total	In	Out	Total
Mixed-Use Commercial - Henderson	820	Shopping Center	ksqft	60.000	6.21	48%	52%	179	193	372	34.0%	127	118	127	245
Mixed-Use Commercial - 79th	820	Shopping Center	ksqft	25.000	7.79	48%	52%	94	101	195	34.0%	66	62	67	129
Mixed-Use Commercial - 88th North	820	Shopping Center	ksqft	100.000	5.43	48%	52%	261	282	543	34.0%	185	172	186	358
Mixed-Use Commercial - 88th South	820	Shopping Center	ksqft	45.000	6.69	48%	52%	144	157	301	34.0%	102	95	104	199
Total								678	733	1,411		480	447	484	931

820 Fitted Curve Equation - Henderson: 6.21

820 Fitted Curve Equation - 79th: 7.79

820 Fitted Curve Equation - 88th North: 5.43

820 Fitted Curve Equation - 88th South: 6.69

Old Highway 99 Corridor

CONSULTING SERVICES

annual 1.00% Global Growth Rate:

								Bas	eline					Se	nsitivity Scena	ario
			EXISTING	Existing	Future	Model	Background	Annual	Background	Interim	Baseline	Baseline	Modified	Sensitivity	Sensitivity	Sensitivity
Intersection	Mov		2020	0		2040	2040	Growth	2025	2025	2040	Modificaton	2040	Scenario	Scenario	Scenario
			VOLUMES	Model	Model	Growth	Growth	Rate	Growth	Volumes			Baseline	Primary	Pass-Bv	2040
			4	-	-	0	1	0	0	4	5	0	5	2	0	7
	EB	Т	2	-	-	0	0	0	0	2	2	0	2	0	0	2
		R	1	-	-	0	0	0	0	1	1	0	1	1	0	2
1		L	71	146	152	6	0	0	1	72	77	37	114	21	0	135
Old Highway 99	WB	T	0	-	-	0	0	0	0	0	0	0	0	1	0	1
Henderson Blvd	VV B	R	111	164	264	100	0	0	25	136	211	0	211	10	0	221
Henderson Biva		K I	3	104	204	0	1	0	0	3	4	0	4	2	0	6
TMC D-1 - 02/04/2020		Т	869	1,139	2,047	908	0	0	226	1,095	1,777	22	1,799	34	0	1,833
TMC Date: 03/04/2020	NB	R	91	1,139	2,047	908	0	0	226	1,095	1,777	6	1,799	54 19	0	1,855
			45	43	54		0			48			56		0	72
7:00-8:00		L	45 431	-	-	11	-	0	3	48	56 438	0		16	-	
PHF: 0.93	SB	Т		575	582		0	0				134	572	54 3	0	626
		R	17	-	-	0	3	U	1	18	20	0	20	-	U	23
											0		0	163		163
		L	0	-	-	0	0	0	0	0	0	0	0	0	0	0
	EB	Т	0	-	-	0	0	0	0	0	0	0	0	0	0	0
	L	R	1	-	-	0	0	0	0	1	1	0	1	0	0	1
2		L	5	47	44	-3	1	0	0	5	6	0	6	2	0	8
Old Highway 99	WB	Т	0	-	-	0	0	0	0	0	0	0	0	0	0	0
79th Ave		R	142	80	108	28	0	0	7	149	170	0	170	7	0	177
		L	7	-	-	0	1	0	0	7	8	0	8	0	0	8
TMC Date: 03/04/2020	NB	Т	871	1,179	2,140	961	0	0	240	1,111	1,832	28	1,860	48	0	1,908
		R	27	92	120	28	0	0	7	34	55	0	55	4	0	59
7:00-8:00		L	95	94	110	16	0	0	4	99	111	0	111	11	0	122
PHF: 0.88	SB	Т	366	627	625	-2	73	0	18	384	439	171	610	65	0	675
		R	2	-	-	0	0	0	0	2	2	0	2	0	0	2
											0		0	137		137
		L	180	266	763	497	0	0	124	304	677	36	713	19	0	732
	EB	Т	0	-	-	0	0	0	0	0	0	0	0	9	0	9
		R	2	8	6	-2	0	0	0	2	2	0	2	2	0	4
3		L	0	-	-	0	0	0	0	0	0	0	0	5	0	5
Old Highway 99	WB	Т	0	-	-	0	0	0	0	0	0	0	0	5	0	5
88th Ave		R	0	-	-	0	0	0	0	0	0	0	0	26	0	26
		L	41	60	33	-27	8	0	2	43	49	0	49	4	0	53
TMC Date: 03/04/2020	NB	Т	730	906	1,358	452	0	0	113	843	1,182	36	1,218	7	0	1,225
		R	0	-	-	0	0	0	0	0	0	0	0	8	0	8
7:00-8:00		L	0	-	-	0	0	0	0	0	0	0	0	41	0	41
PHF: 0.87	SB	Т	185	249	278	29	0	0	7	192	214	6	220	4	0	224
		R	167	328	264	-64	33	0	8	175	200	6	206	22	0	228
											0		0	152		152
		L	16	3	0	-3	3	0	1	17	19	0	19	0	0	19
	EB	Т	0	-	-	0	0	0	0	0	0	0	0	0	0	0
		R	78	105	184	79	0	0	20	98	157	0	157	0	0	157
4		L	0	-	-	0	0	0	0	0	0	0	0	0	0	0
Old Highway 99	WB	Т	0	-	-	0	0	0	0	0	0	0	0	0	0	0
93rd Ave		R	0	-	-	0	0	0	0	0	0	0	0	0	0	0
		L	187	366	238	-128	37	0	9	196	224	0	224	0	0	224
TMC Date: 03/04/2020	NB	Т	654	963	1,391	428	0	0	108	762	1,082	36	1,118	19	0	1,137
		R	0	-	-	0	0	0	0	0	0	0	0	0	0	0
7:00-8:00		L	0	-	-	0	0	0	0	0	0	0	0	0	0	0
PHF: 0.82	SB	T	136	256	282	26	0	0	7	143	162	6	168	11	0	179
		R	10	1	1	0	2	0	1	11	12	0	12	0	0	12
													0	30		1,728

Old Highway 99 Corridor

CONSULTING SERVICES

annual 1.00% Global Growth Rate:

								Base	eline					Se	nsitivity Scena	ario
			EXISTING	Existing	Future	Model	Background	Annual	Background	Interim	Baseline	Baseline	Modified	Sensitivity	Sensitivity	Sensitivity
Intersection	Mov	ement	2020			2040	2040	Growth	2025	2025	2040	Modificaton	2040	Scenario	Scenario	Scenario
			VOLUMES	Model	Model	Growth	Growth	Rate	Growth	Volumes	Volumes		Baseline	Primary	Pass-By	2040
		L	34	-	-	0	7	1.0%	2	36	41	0	41	12	4	57
	EB	т	12	-	-	0	2	1.0%	1	13	14	0	14	3		17
		R	12	-	-	0	2	1.0%	1	13	14	0	14	7	7	28
1		L	161	79	118	39	0	1.2%	10	171	200	7	207	80	34	321
Old Highway 99	WB	т	5	-	-	0	1	1.0%	0	5	6	0	6	3		9
Henderson Blvd		R	67	37	80	43	0	3.2%	11	78	110	0	110	58	18	186
		L	5	-	-	0	1	1.0%	0	5	6	0	6	6	4	16
TMC Date: 03/04/2020	NB	т	557	587	732	145	0	1.3%	36	593	702	123	825	196	-22	999
		R	110	80	91	11	0	0.5%	3	113	121	34	155	83	18	256
4:30-5:30		L	91	49	120	71	0	3.9%	18	109	162	0	162	54	35	251
PHF: 0.94	SB	т	884	688	1,143	455	0	2.6%	115	999	1,339	24	1,363	181	-42	1502
		R	7	-	-	0	1	1.0%	0	7	8	0	8	11	7	26
											0		0	694		694
		L	2	-	-	0	0	1.0%	0	2	2	0	2	0	0	2
	EB	Т	1	-	-	0	0	1.0%	0	1	1	0	1	0	0	1
		R	6	-	-	0	1	1.0%	0	6	7	0	7	0	0	7
2		L	17	56	69	13	0	3.8%	3	20	30	0	30	20	22	72
Old Highway 99	WB	т	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
79th Ave		R	133	68	79	11	0	0.4%	3	136	144	0	144	47	11	202
		L	1	-	-	0	0	1.0%	0	1	1	0	1	0	0	1
TMC Date: 03/04/2020	NB	т	501	599	744	145	0	1.4%	35	536	646	157	803	238	-11	1,030
		R	13	47	48	1	0	0.4%	0	13	14	0	14	19	11	44
4:30-5:30		L	123	66	71	5	0	0.2%	1	124	128	0	128	43	22	193
PHF: 0.91	SB	т	931	702	1,190	488	0	2.6%	121	1,052	1,419	31	1,450	225	-22	1653
		R	1	-	-	0	0	1.0%	0	1	1	0	1	0	0	1
											0		0	592		592
		L	176	213	195	-18	35	1.0%	9	185	211	7	218	100	0	318
	EB	т	0	-	-	0	0	0.0%	0	0	0	0	0	26	0	26
		R	49	28	17	-11	10	1.0%	2	51	59	0	59	15	0	74
3		L	0	-	-	0	0	0.0%	0	0	0	0	0	28	65	93
Old Highway 99	WB	Т	2	-	-	0	0	1.0%	0	2	2	0	2	28	0	30
88th Ave		R	1	-	-	0	0	1.0%	0	1	1	0	1	130	27	158
		L	16	18	13	-5	3	1.0%	1	17	19	0	19	14	0	33
TMC Date: 03/04/2020	NB	Т	305	361	500	139	0	2.3%	35	340	444	6	450	27	-27	450
		R	0	-	-	0	0	0.0%	0	0	0	0	0	25	27	52
4:30-5:30		L	0	-	-	0	0	0.0%	0	0	0	0	0	121	66	187
PHF: 0.89	SB	Т	778	466	768	302	0	1.9%	74	852	1,080	33	1,113	29	-66	1076
		R	206	213	385	172	0	4.2%	43	249	378	33	411	95	0	506
											0		0	638		638
		L	18	2	4	2	0	0.6%	1	19	20	0	20	0	0	20
	EB	Т	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
		R	167	175	193	18	0	0.5%	4	171	185	0	185	0	0	185
4		L	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
Old Highway 99	WB	Т	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
93rd Ave		R	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
		L	98	93	171	78	0	4.0%	20	118	176	0	176	0	0	176
TMC Date: 03/04/2020	NB	Т	239	378	509	131	0	2.7%	32	271	370	6	376	66	0	442
		R	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
4:30-5:30		L	0	-	-	0	0	0.0%	0	0	0	0	0	0	0	0
PHF: 0.90	SB	Т	701	492	782	290	0	2.1%	74	775	991	33	1,024	72	0	1096
		R	25	3	3	0	5	1.0%	1	26	30	0	30	0	0	30
													0	138		1,949

Appendix C Capacity Analysis Worksheets

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	×	2	F	×	ť	3	*	~	í,	×	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	†	1	۳	ef 🔰			\$		ሻ	el 👘	
Traffic Volume (vph)	45	430	15	5	870	90	5	2	1	70	1	110
Future Volume (vph)	45	430	15	5	870	90	5	2	1	70	1	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		C
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	12.0	56.5	56.5	44.5	44.5		33.5	33.5		33.5	33.5	
Total Split (%)	13.3%	62.8%	62.8%	49.4%	49.4%		37.2%	37.2%		37.2%	37.2%	
Maximum Green (s)	6.5	51.0	51.0	39.0	39.0		28.0	28.0		28.0	28.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 6	5.8											
Natural Cycle: 110												
Control Type: Actuated-U	Incoordinated	1										
Splits and Phases: 1: 0	Old Hwy 99 &	Henders	on Blvd									
			011 2110				1.0					

Ø1	№ ₀₂	≯ ø₄
12 s	44.5 s	33.5 s
🔪 ø6		× 08
56.5 s		33.5 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	4	X	2	ŗ	×	۲	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	↑	1	<u>۲</u>	4			4		ኘ	4	
Traffic Volume (veh/h)	45	430	15	5	870	90	5	2	1	70	1	110
Future Volume (veh/h)	45	430	15	5	870	90	5	2	1	70	1	110
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1856	1856	1856	1900	1900	1900	1870	1870	1870
Adj Flow Rate, veh/h	48	462	16	5	935	97	5	2	1	75	1	118
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	5	5	5	3	3	3	0	0	0	2	2	2
Cap, veh/h	78	1318	1117	650	978	101	122	42	10	278	1	168
Arrive On Green	0.04	0.72	0.72	0.59	0.59	0.59	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1739	1826	1547	909	1653	172	289	391	97	1414	13	1574
Grp Volume(v), veh/h	48	462	16	5	0	1032	8	0	0	75	0	119
Grp Sat Flow(s),veh/h/ln	1739	1826	1547	909	0	1825	777	0	0	1414	0	1587
Q Serve(g_s), s	1.7	6.0	0.2	0.1	0.0	34.1	0.0	0.0	0.0	0.0	0.0	4.6
Cycle Q Clear(g_c), s	1.7	6.0	0.2	0.1	0.0	34.1	4.7	0.0	0.0	2.8	0.0	4.6
Prop In Lane	1.00		1.00	1.00		0.09	0.62		0.12	1.00		0.99
Lane Grp Cap(c), veh/h	78	1318	1117	650	0	1079	174	0	0	278	0	169
V/C Ratio(X)	0.62	0.35	0.01	0.01	0.00	0.96	0.05	0.00	0.00	0.27	0.00	0.70
Avail Cap(c_a), veh/h	176	1451	1230	665	0	1109	650	0	0	744	0	692
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	30.1	3.3	2.5	5.4	0.0	12.3	25.8	0.0	0.0	26.9	0.0	27.7
Incr Delay (d2), s/veh	2.9	0.2	0.0	0.0	0.0	17.3	0.0	0.0	0.0	0.2	0.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	0.8	0.0	0.0	0.0	13.5	0.1	0.0	0.0	1.0	0.0	1.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	33.0	3.5	2.5	5.4	0.0	29.6	25.9	0.0	0.0	27.0	0.0	29.7
LnGrp LOS	С	A	A	A	A	С	С	A	A	С	A	<u> </u>
Approach Vol, veh/h		526			1037			8			194	
Approach Delay, s/veh		6.1			29.5			25.9			28.7	
Approach LOS		А			С			С			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	8.4	43.5		12.3		51.8		12.3				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	6.5	39.0		28.0		51.0		28.0				
Max Q Clear Time (g_c+I1), s	3.7	36.1		6.7		8.0		6.6				
Green Ext Time (p_c), s	0.0	1.8		0.0		2.8		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			22.4									
HCM 6th LOS			С									

3.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NW
Lane Configurations		\$			÷	1	1	el el			\$	
Traffic Vol, veh/h	1	1	1	5	1	140	95	365	5	5	870	25
Future Vol, veh/h	1	1	1	5	1	140	95	365	5	5	870	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	5	5	5	5	5	5	3	3	3
Mvmt Flow	1	1	1	5	1	154	104	401	5	5	956	27

Major/Minor	Minor1		ľ	Minor2			Major1			Major2			
Conflicting Flow All	1669	1605	404	1593	1594	970	983	0	0	406	0	0	
Stage 1	612	612	-	980	980	-	-	-	-	-	-	-	
Stage 2	1057	993	-	613	614	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.15	6.55	6.25	4.15	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.545	4.045	3.345	2.245	-	-	2.227	-	-	
Pot Cap-1 Maneuver	77	106	651	85	105	303	691	-	-	1147	-	-	
Stage 1	484	487	-	297	324	-	-	-	-	-	-	-	
Stage 2	275	326	-	475	478	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 33	89	651	74	88	303	691	-	-	1147	-	-	
Mov Cap-2 Maneuver	r 33	89	-	74	88	-	-	-	-	-	-	-	
Stage 1	411	413	-	252	321	-	-	-	-	-	-	-	
Stage 2	134	323	-	402	406	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	59	29.7	2.3	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	WBLn2	SEL	SET	SER
Capacity (veh/h)	1147	-	-	70	76	303	691	-	-
HCM Lane V/C Ratio	0.005	-	-	0.047	0.087	0.508	0.151	-	-
HCM Control Delay (s)	8.2	0	-	59	56.8	28.5	11.1	-	-
HCM Lane LOS	А	Α	-	F	F	D	В	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.3	2.7	0.5	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	4	×	2	~	×	ť	3	×	~	í,	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	1	†	1	ኘ	eî 👘		<u>۲</u>	eî			\$	
Traffic Volume (vph)	1	185	165	40	730	1	180	1	5	1	1	
Future Volume (vph)	1	185	165	40	730	1	180	1	5	1	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		0	150		0	0		(
Storage Lanes	1		1	1		0	1		0	0		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Ye
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			1410			1160			265	
Travel Time (s)		52.5			19.2			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	34.0	34.0	34.0	34.0	34.0		26.0	26.0		26.0	26.0	
Total Split (%)	56.7%	56.7%	56.7%	56.7%	56.7%		43.3%	43.3%		43.3%	43.3%	
Maximum Green (s)	28.0	28.0	28.0	28.0	28.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
ntersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 5	4.1											
Natural Cycle: 60												
Control Type: Actuated-U	Incoordinated											
Colite and Dhasaar 2:0		d Uua 00										
Splits and Phases: 3: 8	88th Ave & O	u nwy 95	1									

26 s 26 s 26 s 26 s ∞06 ∞08

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	¥	X	2	ŗ	×	۲	3	×	~	Ĺ	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦.	↑	1	ሻ	ef 👘		ሻ	4Î			4	
Traffic Volume (veh/h)	1	185	165	40	730	1	180	1	5	1	1	1
Future Volume (veh/h)	1	185	165	40	730	1	180	1	5	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1885	1885	1885	1841	1841	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	213	190	46	839	1	207	1	6	1	1	1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	3	3	3	1	1	1	4	4	4	0	0	0
Cap, veh/h	308	1008	854	673	1022	1	455	43	256	187	155	106
Arrive On Green	0.54	0.54	0.54	0.54	0.54	0.54	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	650	1856	1572	990	1883	2	1393	228	1367	306	826	566
Grp Volume(v), veh/h	1	213	190	46	0	840	207	0	7	3	0	0
Grp Sat Flow(s),veh/h/ln	650	1856	1572	990	0	1885	1393	0	1595	1698	0	0
Q Serve(g_s), s	0.0	2.2	2.3	0.9	0.0	13.6	5.2	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	13.7	2.2	2.3	3.1	0.0	13.6	5.2	0.0	0.1	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.86	0.33		0.33
Lane Grp Cap(c), veh/h	308	1008	854	673	0	1024	455	0	298	447	0	0
V/C Ratio(X)	0.00	0.21	0.22	0.07	0.00	0.82	0.45	0.00	0.02	0.01	0.00	0.00
Avail Cap(c_a), veh/h	446	1402	1188	883	0	1424	1021	0	947	1108	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	12.6	4.4	4.4	5.2	0.0	7.0	14.4	0.0	12.3	12.3	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	0.0	2.8	0.7	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.2	0.2	0.1	0.0	2.2	1.4	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.6	4.5	4.5	5.2	0.0	9.8	15.1	0.0	12.3	12.3	0.0	0.0
LnGrp LOS	В	A	A	A	A	A	В	A	В	В	A	<u> </u>
Approach Vol, veh/h		404			886			214			3	
Approach Delay, s/veh		4.5			9.5			15.0			12.3	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		26.1		10.9		26.1		10.9				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		28.0		22.0		28.0		22.0				
Max Q Clear Time (g_c+I1), s		15.6		7.2		15.7		2.1				
Green Ext Time (p_c), s		4.5		0.5		1.3		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			9.0									
HCM 6th LOS			А									

Intersection

Int Delay, s/veh	2.4					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	1	1	٦	1	٦	1
Traffic Vol, veh/h	135	10	185	655	15	80
Future Vol, veh/h	135	10	185	655	15	80
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	,# 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, %	4	4	1	1	6	6
Mvmt Flow	165	12	226	799	18	98

Major/Minor	Major1	Ν	/lajor2		Minor1								
Conflicting Flow All	0	0	177	0	1416	165							
Stage 1	-	-	-	-	165	-							
Stage 2	-	-	-	-	1251	-							
Critical Hdwy	-	-	4.11	-	6.46	6.26							
Critical Hdwy Stg 1	-	-	-	-	5.46	-							
Critical Hdwy Stg 2	-	-	-		5.46	-							
Follow-up Hdwy	-		2.209	-	3.554	3.354							
Pot Cap-1 Maneuver		-	1405	-	148	869							
Stage 1	-	-	-	-	855	-							
Stage 2	-	-	-	-	265	-							
Platoon blocked, %	-	-		-									
Mov Cap-1 Maneuve		-	1405	-		869							
Mov Cap-2 Maneuve	er -	-	-	-	209	-							
Stage 1	-	-	-	-	855	-							
Stage 2	-	-	-	-	222	-							

Approach	EB	WB	NE
HCM Control Delay, s	0	1.8	11.9
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	209	869	-	-	1405	-
HCM Lane V/C Ratio	0.088	0.112	-	-	0.161	-
HCM Control Delay (s)	23.9	9.7	-	-	8.1	-
HCM Lane LOS	С	А	-	-	А	-
HCM 95th %tile Q(veh)	0.3	0.4	-	-	0.6	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	×	2	F	×	ť	3	×	~	í,	×	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ľ	•	1	ľ	el el			\$		۲ ۲	el el	
Traffic Volume (vph)	50	435	20	5	1095	110	5	2	1	70	1	135
Future Volume (vph)	50	435	20	5	1095	110	5	2	1	70	1	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	11.2	116.4	116.4	105.2	105.2		33.6	33.6		33.6	33.6	
Total Split (%)	7.5%	77.6%	77.6%	70.1%	70.1%		22.4%	22.4%		22.4%	22.4%	
Maximum Green (s)	5.7	110.9	110.9	99.7	99.7		28.1	28.1		28.1	28.1	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 1	32.9											
Natural Cycle: 150												
Control Type: Actuated-L	Incoordinated											
Splits and Phases: 1: (Hondoro	on Dlud									
Splits and Fliases. 1.	Dld Hwy 99 &	rienuels										

	1 04
11.2 s 105.2 s	33.6 s
≫ ø6	× 08
116.4 s	33.6 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	-	×	2	~	×	ť	3	×	~	í,	¥	*~
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	•	1	ሻ	4Î			4		ሻ	4	
Traffic Volume (veh/h)	50	435	20	5	1095	110	5	2	1	70	1	135
Future Volume (veh/h)	50	435	20	5	1095	110	5	2	1	70	1	135
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1856	1856	1856	1900	1900	1900	1870	1870	1870
Adj Flow Rate, veh/h	53	458	21	5	1153	116	5	2	1	74	1	142
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	5	5	5	3	3	3	0	0	0	2	2	2
Cap, veh/h	68	1472	1248	714	1201	121	63	22	6	191	1	169
Arrive On Green	0.04	0.81	0.81	0.72	0.72	0.72	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1739	1826	1547	908	1659	167	156	205	52	1414	11	1576
Grp Volume(v), veh/h	53	458	21	5	0	1269	8	0	0	74	0	143
Grp Sat Flow(s),veh/h/ln	1739	1826	1547	908	0	1826	413	0	0	1414	0	1587
Q Serve(g_s), s	3.8	8.3	0.3	0.2	0.0	80.1	0.1	0.0	0.0	0.0	0.0	11.3
Cycle Q Clear(g_c), s	3.8	8.3	0.3	0.2	0.0	80.1	11.3	0.0	0.0	7.3	0.0	11.3
Prop In Lane	1.00		1.00	1.00		0.09	0.62		0.12	1.00		0.99
Lane Grp Cap(c), veh/h	68	1472	1248	714	0	1322	90	0	0	191	0	170
V/C Ratio(X)	0.78	0.31	0.02	0.01	0.00	0.96	0.09	0.00	0.00	0.39	0.00	0.84
Avail Cap(c_a), veh/h	78	1590	1347	768	0	1429	251	0	0	352	0	350
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	60.7	3.2	2.4	4.9	0.0	15.9	51.4	0.0	0.0	54.0	0.0	55.8
Incr Delay (d2), s/veh	30.4	0.1	0.0	0.0	0.0	14.8	0.2	0.0	0.0	0.5	0.0	4.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.2	1.9	0.1	0.0	0.0	30.3	0.2	0.0	0.0	2.3	0.0	4.7
Unsig. Movement Delay, s/veh	l											
LnGrp Delay(d),s/veh	91.1	3.3	2.4	4.9	0.0	30.6	51.5	0.0	0.0	54.5	0.0	60.0
LnGrp LOS	F	Α	Α	Α	Α	С	D	А	А	D	Α	<u> </u>
Approach Vol, veh/h		532			1274			8			217	
Approach Delay, s/veh		12.0			30.5			51.5			58.1	
Approach LOS		В			С			D			E	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	10.5	97.7		19.2		108.2		19.2				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	5.7	99.7		28.1		110.9		28.1				
Max Q Clear Time (g_c+I1), s	5.8	82.1		13.3		10.3		13.3				
Green Ext Time (p_c), s	0.0	10.2		0.0		2.8		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			28.7									
HCM 6th LOS			С									

5.5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations		4			સં	1	5	4			4		
Traffic Vol, veh/h	1	1	1	5	1	150	100	385	5	5	1110	35	
Future Vol, veh/h	1	1	1	5	1	150	100	385	5	5	1110	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	0	0	5	5	5	5	5	5	3	3	3	
Mvmt Flow	1	1	1	5	1	158	105	405	5	5	1168	37	

Major/Minor	Minor1		ſ	Minor2			Major1		1	Major2			
Conflicting Flow All	1894	1833	408	1816	1817	1187	1205	0	0	410	0	0	
Stage 1	618	618	-	1197	1197	-	-	-	-	-	-	-	
Stage 2	1276	1215	-	619	620	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.15	6.55	6.25	4.15	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.545	4.045	3.345	2.245	-	-	2.227	-	-	
Pot Cap-1 Maneuver	54	77	648	59	77	226	569	-	-	1143	-	-	
Stage 1	480	484	-	224	256	-	-	-	-	-	-	-	
Stage 2	207	256	-	471	475	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 14	62	648	49	62	226	569	-	-	1143	-	-	
Mov Cap-2 Maneuver	r 14	62	-	49	62	-	-	-	-	-	-	-	
Stage 1	391	394	-	183	253	-	-	-	-	-	-	-	
Stage 2	61	253	-	382	387	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	121.5	52.4	2.6	0	
HCM LOS	F	F			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	WBLn2	SEL	SET	SER	
Capacity (veh/h)	1143	-	-	34	51	226	569	-	-	
HCM Lane V/C Ratio	0.005	-	-	0.093	0.124	0.699	0.185	-	-	
HCM Control Delay (s)	8.2	0	-	121.5	85.3	51.1	12.8	-	-	
HCM Lane LOS	А	А	-	F	F	F	В	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.3	0.4	4.5	0.7	-	-	

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

		\mathbf{X}	2	-	×	₹	3	×	~	4	*	۰.
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SW
Lane Configurations	1	†	1	7	ef 🕺		۲	¢Î			\$	
Traffic Volume (vph)	1	190	175	45	845	1	305	1	5	1	1	
Future Volume (vph)	1	190	175	45	845	1	305	1	5	1	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Storage Length (ft)	125		150	150		0	150		0	0		(
Storage Lanes	1		1	1		0	1		0	0		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Ye
_ink Speed (mph)		50			50			30			30	
_ink Distance (ft)		3851			1410			1160			265	
Travel Time (s)		52.5			19.2			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Vinimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Vinimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	53.0	53.0	53.0	53.0	53.0		27.0	27.0		27.0	27.0	
Total Split (%)	66.3%	66.3%	66.3%	66.3%	66.3%		33.8%	33.8%		33.8%	33.8%	
Maximum Green (s)	47.0	47.0	47.0	47.0	47.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 6	8.2											
Natural Cycle: 65												
Control Type: Actuated-L	Incoordinated	1										

Splits and Phases: 3: 88th Ave & Old Hwy 99

× ₀₂	¥ø₄
53 s	27 s
× Ø6	A_08
53 s	27 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	-	X	2	~	×	۲	3	×	~	í,	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	↑	1	ሻ	4		ሻ	4Î			4	
Traffic Volume (veh/h)	1	190	175	45	845	1	305	1	5	1	1	1
Future Volume (veh/h)	1	190	175	45	845	1	305	1	5	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1885	1885	1885	1841	1841	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	200	184	47	889	1	321	1	5	1	1	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	3	3	3	1	1	1	4	4	4	0	0	0
Cap, veh/h	225	1026	870	633	1041	1	501	71	355	194	189	148
Arrive On Green	0.55	0.55	0.55	0.55	0.55	0.55	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h	620	1856	1572	1007	1883	2	1393	267	1334	402	710	556
Grp Volume(v), veh/h	1	200	184	47	0	890	321	0	6	3	0	0
Grp Sat Flow(s),veh/h/ln	620	1856	1572	1007	0	1885	1393	0	1601	1669	0	0
Q Serve(g_s), s	0.1	3.0	3.3	1.4	0.0	22.1	12.1	0.0	0.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	22.2	3.0	3.3	4.3	0.0	22.1	12.1	0.0	0.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.83	0.33		0.33
Lane Grp Cap(c), veh/h	225	1026	870	633	0	1042	501	0	426	531	0	0
V/C Ratio(X)	0.00	0.19	0.21	0.07	0.00	0.85	0.64	0.00	0.01	0.01	0.00	0.00
Avail Cap(c_a), veh/h	408	1575	1335	931	0	1600	709	0	665	774	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.9	6.2	6.3	7.3	0.0	10.5	19.3	0.0	15.0	14.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	0.0	2.9	1.4	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.7	0.7	0.2	0.0	6.1	3.7	0.0	0.1	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	19.9	6.3	6.4	7.3	0.0	13.4	20.7	0.0	15.0	14.9	0.0	0.0
LnGrp LOS	В	Α	Α	Α	Α	В	С	А	В	В	Α	<u> </u>
Approach Vol, veh/h		385			937			327			3	
Approach Delay, s/veh		6.4			13.1			20.6			14.9	
Approach LOS		А			В			С			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		36.6		18.7		36.6		18.7				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		47.0		23.0		47.0		23.0				
Max Q Clear Time (g_c+l1), s		24.1		14.1		24.2		2.1				
Green Ext Time (p_c), s		6.5		0.7		1.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			13.0									
HCM 6th LOS			В									

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	۲.	•	ľ	1
Traffic Vol, veh/h	145	10	195	760	15	100
Future Vol, veh/h	145	10	195	760	15	100
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	e, # 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	4	4	1	1	6	6
Mvmt Flow	153	11	205	800	16	105

Major1	Majo	2	N	Ainor1		_
0	0 16	4	0	1363	153	
-	-	-	-	153	-	
-	-	-	-	1210	-	
-	- 4.1	1	-	6.46	6.26	
-	-	-	-	5.46	-	
-	-	-	-	5.46	-	
-	- 2.20	9	-	3.554	3.354	
-	- 142	1	-	160	883	
-	-	-	-	865	-	
-	-	-	-	277	-	
-	-		-			
-	- 142	1	-	137	883	
-	-	-	-	223	-	
-	-	-	-	865	-	
-	-	-	-	237	-	
		4.1 4.1 2.20 142 	4.11 4.11 2.209 1421 	4.11 - - 4.11 - - 2.209 - - 1421 - 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Approach	EB	WB	NE
HCM Control Delay, s	0	1.6	11.3
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	223	883	-	-	1421	-
HCM Lane V/C Ratio	0.071	0.119	-	-	0.144	-
HCM Control Delay (s)	22.4	9.6	-	-	8	-
HCM Lane LOS	С	А	-	-	А	-
HCM 95th %tile Q(veh)	0.2	0.4	-	-	0.5	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	X	2	*	×	ť	3	*	~	í,	×	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	- ††	1	ሻ	∱ ⊅			4		ሻ	4	
Traffic Volume (vph)	50	435	20	5	1095	110	5	2	1	70	1	135
Future Volume (vph)	50	435	20	5	1095	110	5	2	1	70	1	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	10.8	46.4	46.4	35.6	35.6		33.6	33.6		33.6	33.6	
Total Split (%)	13.5%	58.0%	58.0%	44.5%	44.5%		42.0%	42.0%		42.0%	42.0%	
Maximum Green (s)	5.3	40.9	40.9	30.1	30.1		28.1	28.1		28.1	28.1	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80	1.0											
Actuated Cycle Length: 5	1.9											
Natural Cycle: 80												
Control Type: Actuated-U	Incoordinated											
Splits and Phases: 1: 0	Old Hwy 99 &	Henders	on Blvd									
	,,					- 1 W						

Ø1	₽ Ø2	¥04	
10.8 s	35.6 s	33.6 s	
🔪 ø6		× Ø8	
46.4 s		33.6 s	

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	¥	×	2	Ť	×	ť	3	×	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	††	1	ሻ	↑ ĵ≽			4		ሻ	4	
Traffic Volume (veh/h)	50	435	20	5	1095	110	5	2	1	70	1	135
Future Volume (veh/h)	50	435	20	5	1095	110	5	2	1	70	1	135
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1856	1856	1856	1900	1900	1900	1870	1870	1870
Adj Flow Rate, veh/h	53	458	21	5	1153	116	5	2	1	74	1	142
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	5	5	5	3	3	3	0	0	0	2	2	2
Cap, veh/h	92	2218	989	579	1525	153	162	55	13	363	1	206
Arrive On Green	0.05	0.64	0.64	0.47	0.47	0.47	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h	1739	3469	1547	908	3235	325	303	419	103	1414	11	1576
Grp Volume(v), veh/h	53	458	21	5	627	642	8	0	0	74	0	143
Grp Sat Flow(s),veh/h/ln	1739	1735	1547	908	1763	1797	826	0	0	1414	0	1587
Q Serve(g_s), s	1.4	2.6	0.2	0.1	14.0	14.0	0.0	0.0	0.0	0.0	0.0	4.1
Cycle Q Clear(g_c), s	1.4	2.6	0.2	0.1	14.0	14.0	4.1	0.0	0.0	1.9	0.0	4.1
Prop In Lane	1.00		1.00	1.00		0.18	0.62		0.12	1.00		0.99
Lane Grp Cap(c), veh/h	92	2218	989	579	831	847	230	0	0	363	0	207
V/C Ratio(X)	0.58	0.21	0.02	0.01	0.76	0.76	0.03	0.00	0.00	0.20	0.00	0.69
Avail Cap(c_a), veh/h	193	2968	1324	722	1110	1131	880	0	0	1009	0	933
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.1	3.6	3.2	6.7	10.4	10.4	18.2	0.0	0.0	18.9	0.0	19.9
Incr Delay (d2), s/veh	2.1	0.0	0.0	0.0	2.1	2.1	0.0	0.0	0.0	0.1	0.0	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.3	0.0	0.0	3.6	3.7	0.1	0.0	0.0	0.7	0.0	1.4
Unsig. Movement Delay, s/veh				• -	10 -	· • -		• •				
LnGrp Delay(d),s/veh	24.2	3.6	3.2	6.7	12.5	12.5	18.3	0.0	0.0	19.0	0.0	21.4
LnGrp LOS	С	Α	A	A	В	В	В	Α	A	В	Α	C
Approach Vol, veh/h		532			1274			8			217	
Approach Delay, s/veh		5.7			12.5			18.3			20.6	
Approach LOS		A			В			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	8.0	28.0		11.8		36.1		11.8				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	5.3	30.1		28.1		40.9		28.1				
Max Q Clear Time (g_c+l1), s	3.4	16.0		6.1		4.6		6.1				
Green Ext Time (p_c), s	0.0	6.5		0.0		2.9		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			11.6									
HCM 6th LOS			В									

2.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations		4			र्स	1	۲.	A			đĥ-		
Traffic Vol, veh/h	1	1	1	5	1	150	100	385	5	5	1110	35	
Future Vol, veh/h	1	1	1	5	1	150	100	385	5	5	1110	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	0	0	5	5	5	5	5	5	3	3	3	
Mvmt Flow	1	1	1	5	1	158	105	405	5	5	1168	37	

Major/Minor	Minor1		Ν	Minor2		M	Major1		Ν	lajor2			
Conflicting Flow All	1213	1833	205	1610	1817	603	1205	0	0	410	0	0	
Stage 1	618	618	-	1197	1197	-	-	-	-	-	-	-	
Stage 2	595	1215	-	413	620	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.5	6.9	7.6	6.6	7	4.2	-	-	4.16	-	-	
Critical Hdwy Stg 1	6.5	5.5	-	6.6	5.6	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.5	-	6.6	5.6	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.55	4.05	3.35	2.25	-	-	2.23	-	-	
Pot Cap-1 Maneuver	140	77	808	68	75	435	558	-	-	1138	-	-	
Stage 1	448	484	-	192	251	-	-	-	-	-	-	-	
Stage 2	463	256	-	579	471	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 75	62	808	57	60	435	558	-	-	1138	-	-	
Mov Cap-2 Maneuver	· 75	62	-	57	60	-	-	-	-	-	-	-	
Stage 1	364	393	-	156	248	-	-	-	-	-	-	-	
Stage 2	290	253	-	468	382	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	43	20.1	2.6	0.1	
HCM LOS	Е	С			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	WBLn2	SEL	SET	SER
Capacity (veh/h)	1138	-	-	98	57	435	558	-	-
HCM Lane V/C Ratio	0.005	-	-	0.032	0.111	0.363	0.189	-	-
HCM Control Delay (s)	8.2	0.1	-	43	75.9	17.9	12.9	-	-
HCM Lane LOS	А	А	-	Е	F	С	В	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.4	1.6	0.7	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	-	×	2	~	×	ť	3	×	~	í,	×	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ľ	<u></u>	1	ľ	≜ ⊅		۲ ۲	el el			\$	
Traffic Volume (vph)	1	190	175	45	845	1	305	1	5	1	1	1
Future Volume (vph)	1	190	175	45	845	1	305	1	5	1	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		0	150		0	0		0
Storage Lanes	1		1	1		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			487			1160			265	
Travel Time (s)		52.5			6.6			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	31.0	31.0	31.0	31.0	31.0		29.0	29.0		29.0	29.0	
Total Split (%)	51.7%	51.7%	51.7%	51.7%	51.7%		48.3%	48.3%		48.3%	48.3%	
Maximum Green (s)	25.0	25.0	25.0	25.0	25.0		25.0	25.0		25.0	25.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 4	5.5											
Natural Cycle: 55												
Control Type: Actuated-U	Incoordinated											
Splits and Phases: 3: 8	38th Ave & Ol	d Hwv 90)									
			,									

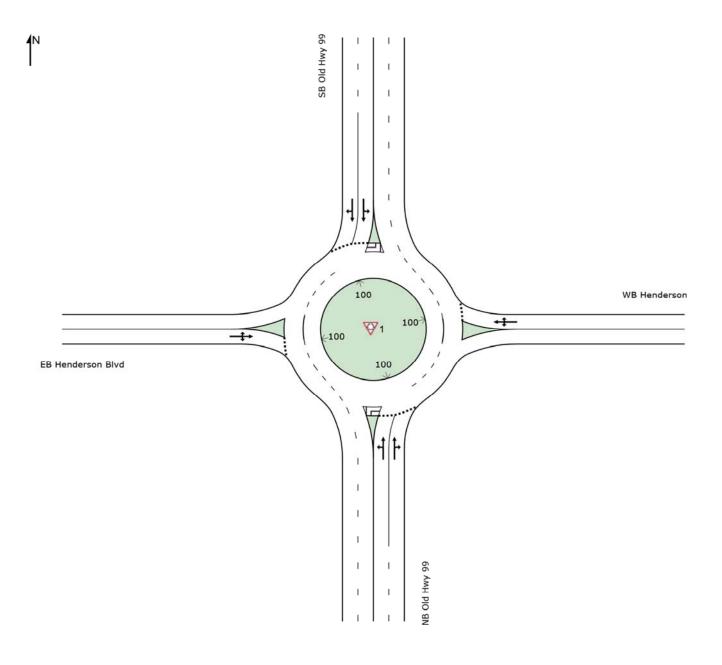
₹ _{a2}	Mar	
31 s	∠Ø4 29 s	
× 06	× 08	
31 s	29 s	

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	¥	×	2	ŗ	×	ť	3	*	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	۳.	††	1	<u>۲</u>	≜ †≱		<u> </u>	ef 👘			- 4 >	
Traffic Volume (veh/h)	1	190	175	45	845	1	305	1	5	1	1	1
Future Volume (veh/h)	1	190	175	45	845	1	305	1	5	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1885	1885	1885	1841	1841	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	200	184	47	889	1	321	1	5	1	1	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	3	3	3	1	1	1	4	4	4	0	0	0
Cap, veh/h	354	1416	631	592	1474	2	625	77	383	248	224	162
Arrive On Green	0.40	0.40	0.40	0.40	0.40	0.40	0.29	0.29	0.29	0.29	0.29	0.29
Sat Flow, veh/h	620	3526	1572	1007	3671	4	1393	267	1334	343	781	562
Grp Volume(v), veh/h	1	200	184	47	434	456	321	0	6	3	0	0
Grp Sat Flow(s),veh/h/ln	620	1763	1572	1007	1791	1884	1393	0	1601	1687	0	0
Q Serve(g_s), s	0.0	1.2	2.5	1.0	6.1	6.1	6.8	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	6.2	1.2	2.5	2.2	6.1	6.1	6.8	0.0	0.1	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.83	0.33		0.33
Lane Grp Cap(c), veh/h	354	1416	631	592	719	757	625	0	460	634	0	0
V/C Ratio(X)	0.00	0.14	0.29	0.08	0.60	0.60	0.51	0.00	0.01	0.00	0.00	0.00
Avail Cap(c_a), veh/h	587	2742	1223	971	1393	1465	1307	0	1245	1431	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	10.0	6.1	6.5	6.8	7.6	7.6	10.6	0.0	8.2	8.2	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.3	0.1	0.8	0.8	0.7	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.2	0.4	0.1	1.1	1.1	1.6	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	10.0	6.1	6.8	6.8	8.4	8.4	11.3	0.0	8.2	8.2	0.0	0.0
LnGrp LOS	В	A	Α	Α	Α	Α	В	А	А	Α	Α	<u> </u>
Approach Vol, veh/h		385			937			327			3	
Approach Delay, s/veh		6.5			8.3			11.2			8.2	
Approach LOS		А			А			В			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		18.9		13.2		18.9		13.2				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		25.0		25.0		25.0		25.0				
Max Q Clear Time (g_c+I1), s		8.1		8.8		8.2		2.0				
Green Ext Time (p_c), s		4.8		0.9		1.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			8.5									
HCM 6th LOS			A									

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	<u>۲</u>	•	<u>ار</u>	1
Traffic Vol, veh/h	145	10	195	760	15	100
Future Vol, veh/h	145	10	195	760	15	100
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	e, # 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	4	4	1	1	6	6
Mvmt Flow	153	11	205	800	16	105

Major/Minor	Major1	Major2	Mi	inor1	
Conflicting Flow All	0	0 164	0	1363	153
Stage 1	-		-	153	-
Stage 2	-		- '	1210	-
Critical Hdwy	-	- 4.11	-	6.46	6.26
Critical Hdwy Stg 1	-		-	5.46	-
Critical Hdwy Stg 2	-		-	5.46	-
Follow-up Hdwy	-	- 2.209	- 3	8.554	3.354
Pot Cap-1 Maneuver	-	- 1421	-	160	883
Stage 1	-		-	865	-
Stage 2	-		-	277	-
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuve	r -	- 1421	-	137	883
Mov Cap-2 Maneuve	r -		-	223	-
Stage 1	-		-	865	-
Stage 2	-		-	237	-


Approach	EB	WB	NE
HCM Control Delay, s	0	1.6	11.3
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	223	883	-	-	1421	-
HCM Lane V/C Ratio	0.071	0.119	-	-	0.144	-
HCM Control Delay (s)	22.4	9.6	-	-	8	-
HCM Lane LOS	С	А	-	-	Α	-
HCM 95th %tile Q(veh)	0.2	0.4	-	-	0.5	-

SITE LAYOUT

V Site: 1 [AM 2025 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:24:21 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-Henderson.sip8

Site: 1 [AM 2025 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2025 AM Peak Hour Site Category: (None) Roundabout

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	
South	: NB Old	Hwy 99										
3	L2	5	3.0	0.432	10.2	LOS B	2.8	72.5	0.25	0.40	0.25	37.2
8	T1	1095	3.0	0.432	4.3	LOS A	2.8	72.6	0.24	0.40	0.24	37.2
18	R2	110	3.0	0.432	4.4	LOS A	2.8	72.6	0.24	0.40	0.24	35.9
Appro	bach	1210	3.0	0.432	4.3	LOS A	2.8	72.6	0.24	0.40	0.24	37.1
East:	WB Hend	derson Blvd										
1	L2	70	2.0	0.299	13.3	LOS B	1.1	28.9	0.61	0.82	0.62	35.2
6	T1	5	2.0	0.299	7.4	LOS A	1.1	28.9	0.61	0.82	0.62	35.0
16	R2	135	2.0	0.299	7.3	LOS A	1.1	28.9	0.61	0.82	0.62	34.0
Appro	ach	210	2.0	0.299	9.3	LOS A	1.1	28.9	0.61	0.82	0.62	34.4
North	: SB Old	Hwy 99										
7	L2	50	5.0	0.188	10.2	LOS B	1.0	26.7	0.25	0.46	0.25	36.6
4	T1	435	5.0	0.188	4.3	LOS A	1.0	27.1	0.24	0.42	0.24	36.9
14	R2	20	5.0	0.188	4.4	LOS A	1.0	27.1	0.24	0.40	0.24	35.9
Appro	ach	505	5.0	0.188	4.9	LOS A	1.0	27.1	0.24	0.43	0.24	36.9
West:	EB Hend	derson Blvd										
5	L2	5	0.0	0.017	11.3	LOS B	0.1	1.3	0.40	0.61	0.40	36.1
2	T1	5	0.0	0.017	5.4	LOS A	0.1	1.3	0.40	0.61	0.40	35.9
12	R2	5	0.0	0.017	5.3	LOS A	0.1	1.3	0.40	0.61	0.40	34.9
Appro	ach	15	0.0	0.017	7.3	LOS A	0.1	1.3	0.40	0.61	0.40	35.6
All Ve	hicles	1940	3.4	0.432	5.0	LOS A	2.8	72.6	0.28	0.45	0.28	36.7

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

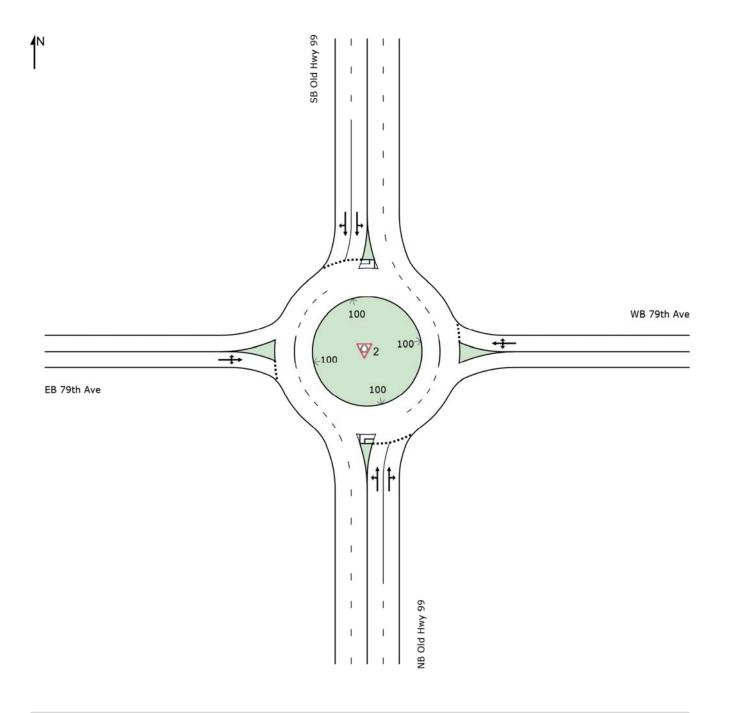
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:24:54 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-Henderson.sip8

SITE LAYOUT

W Site: 2 [AM 2040 Old Hwy 99-79th Ave - Land Use 2]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:33:50 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-79th Ave.sip8

V Site: 2 [AM 2025 Old Hwy 99-79th Ave - Baseline]

Projected 2025 AM Peak Hour Site Category: (None) Roundabout

Move	Movement Performance - Vehicles											
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
3	L2	11wy 99 5	3.0	0.386	10.4	LOS B	2.3	57.6	0.30	0.43	0.30	37.0
		-										
8	T1	1010	3.0	0.386	4.5	LOS A	2.3	57.8	0.29	0.42	0.29	37.0
18	R2	35	3.0	0.386	4.6	LOS A	2.3	57.8	0.29	0.42	0.29	35.7
Appro	ach	1050	3.0	0.386	4.5	LOS A	2.3	57.8	0.29	0.42	0.29	37.0
East:	WB 79th	Ave										
1	L2	5	5.0	0.227	12.9	LOS B	0.8	21.1	0.58	0.77	0.58	36.2
6	T1	1	5.0	0.227	7.1	LOS A	0.8	21.1	0.58	0.77	0.58	36.1
16	R2	150	5.0	0.227	7.0	LOS A	0.8	21.1	0.58	0.77	0.58	35.0
Appro	ach	156	5.0	0.227	7.2	LOS A	0.8	21.1	0.58	0.77	0.58	35.1
North	SB Old	Hwy 99										
7	L2	100	5.0	0.172	9.9	LOS A	0.9	22.5	0.07	0.51	0.07	36.5
4	T1	385	5.0	0.172	4.0	LOS A	0.9	22.6	0.07	0.42	0.07	37.4
14	R2	5	5.0	0.172	4.2	LOS A	0.9	22.6	0.07	0.37	0.07	36.5
Appro	ach	490	5.0	0.172	5.2	LOS A	0.9	22.6	0.07	0.44	0.07	37.2
West:	EB 79th	Ave										
5	L2	1	0.0	0.003	11.1	LOS B	0.0	0.2	0.36	0.55	0.36	36.2
2	T1	1	0.0	0.003	5.2	LOS A	0.0	0.2	0.36	0.55	0.36	36.0
12	R2	1	0.0	0.003	5.1	LOS A	0.0	0.2	0.36	0.55	0.36	35.0
Appro	ach	3	0.0	0.003	7.1	LOS A	0.0	0.2	0.36	0.55	0.36	35.8
All Ve	hicles	1699	3.8	0.386	5.0	LOS A	2.3	57.8	0.25	0.46	0.25	36.9

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

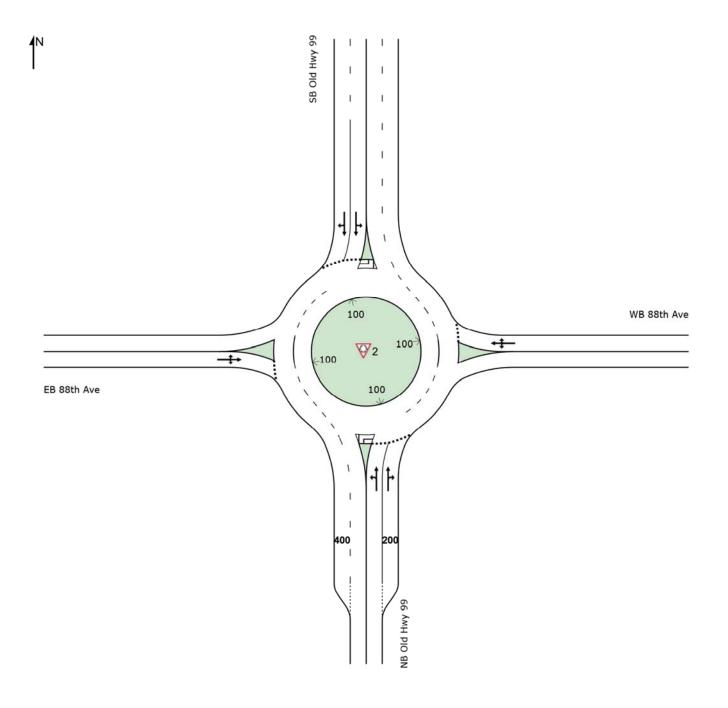
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:31:10 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-79th Ave.sip8

SITE LAYOUT

W Site: 2 [PM 2040 Old Hwy 99-88th Ave - Land Use 2]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:44:38 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-88th Ave.sip8

V Site: 2 [AM 2025 Old Hwy 99-88th Ave - Baseline]

Projected 2025 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
3	L2	45	1.0	0.376	11.5	LOS B	2.3	57.6	0.53	0.57	0.53	36.0
-												
8	T1	845	1.0	0.376	5.5	LOS A	2.4	59.5	0.52	0.54	0.52	36.1
18	R2	1	1.0	0.376	5.5	LOS A	2.4	59.5	0.52	0.51	0.52	35.0
Appro	ach	891	1.0	0.376	5.8	LOS A	2.4	59.5	0.52	0.54	0.52	36.1
East:	WB 88th	Ave										
1	L2	1	0.0	0.005	12.8	LOS B	0.0	0.4	0.60	0.65	0.60	35.4
6	T1	1	0.0	0.005	6.9	LOS A	0.0	0.4	0.60	0.65	0.60	35.2
16	R2	1	0.0	0.005	6.9	LOS A	0.0	0.4	0.60	0.65	0.60	34.2
Appro	ach	3	0.0	0.005	8.9	LOS A	0.0	0.4	0.60	0.65	0.60	34.9
North	: SB Old	Hwy 99										
7	L2	1	3.0	0.130	10.0	LOS A	0.7	17.3	0.16	0.37	0.16	37.6
4	T1	190	3.0	0.130	4.1	LOS A	0.7	17.3	0.16	0.37	0.16	37.5
14	R2	175	3.0	0.130	4.3	LOS A	0.7	17.0	0.17	0.46	0.17	36.2
Appro	ach	366	3.0	0.130	4.2	LOS A	0.7	17.3	0.17	0.41	0.17	36.9
West:	EB 88th	Ave										
5	L2	305	4.0	0.309	10.8	LOS B	1.3	34.7	0.34	0.67	0.34	34.2
2	T1	1	4.0	0.309	5.0	LOS A	1.3	34.7	0.34	0.67	0.34	34.1
12	R2	5	4.0	0.309	4.9	LOS A	1.3	34.7	0.34	0.67	0.34	33.2
Appro	ach	311	4.0	0.309	10.7	LOS B	1.3	34.7	0.34	0.67	0.34	34.2
All Ve	hicles	1571	2.1	0.376	6.4	LOS A	2.4	59.5	0.40	0.54	0.40	35.9

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

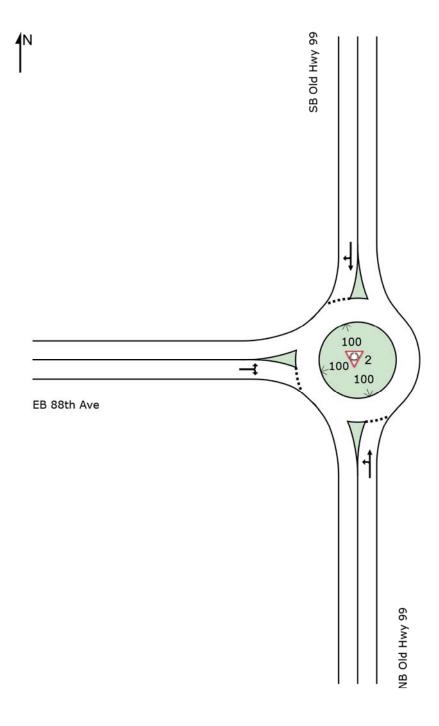
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:42:08 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-88th Ave.sip8

SITE LAYOUT

W Site: 2 [PM 2025 Old Hwy 99-93rd Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 27, 2020 11:47:37 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

V Site: 2 [AM 2025 Old Hwy 99-93rd Ave - Baseline]

Projected 2025 AM Peak Hour Site Category: (None) Roundabout

Move	ment P	erformance	e - Vehi	icles								
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South:	NB Old	Hwy 99										
3	L2	205	1.0	0.770	10.0	LOS B	11.5	290.0	0.27	0.41	0.27	36.7
8	T1	800	1.0	0.770	4.1	LOS A	11.5	290.0	0.27	0.41	0.27	36.6
Approa	ach	1005	1.0	0.770	5.3	LOS A	11.5	290.0	0.27	0.41	0.27	36.6
North:	SB Old	Hwy 99										
4	T1	153	4.0	0.150	4.8	LOS A	0.7	18.4	0.36	0.47	0.36	36.8
14	R2	11	4.0	0.150	4.9	LOS A	0.7	18.4	0.36	0.47	0.36	35.7
Appro	ach	163	4.0	0.150	4.8	LOS A	0.7	18.4	0.36	0.47	0.36	36.7
West:	EB 88th	Ave										
5	L2	16	6.0	0.110	10.5	LOS B	0.5	13.5	0.31	0.52	0.31	36.8
12	R2	105	6.0	0.110	4.6	LOS A	0.5	13.5	0.31	0.52	0.31	35.6
Approa	ach	121	6.0	0.110	5.4	LOS A	0.5	13.5	0.31	0.52	0.31	35.7
All Vel	nicles	1289	1.8	0.770	5.2	LOS A	11.5	290.0	0.29	0.43	0.29	36.6

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Tuesday, May 5, 2020 12:34:26 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	\mathbf{x}	2		×	ť	3	*	~	í,	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	↑	1	ሻ	ef 👘			4		ሻ	ef 👘	
Traffic Volume (vph)	55	570	20	5	1800	180	5	2	1	115	1	210
Future Volume (vph)	55	570	20	5	1800	180	5	2	1	115	1	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	10.5	116.5	116.5	106.0	106.0		33.5	33.5		33.5	33.5	
Total Split (%)	7.0%	77.7%	77.7%	70.7%	70.7%		22.3%	22.3%		22.3%	22.3%	
Maximum Green (s)	5.0	111.0	111.0	100.5	100.5		28.0	28.0		28.0	28.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 138.4												
Natural Cycle: 150												
Control Type: Actuated-U	ncoordinated											
Splits and Phases: 1: C	Splits and Phases: 1: Old Hwy 99 & Henderson Blvd											

	≯ ø₄
10.5 s 106 s	33.5 s
≫ ø6	× _ Ø8
116.5 s	33.5 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	ي.	X	2	F	×	۲	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	↑	1	<u>۲</u>	4Î			4		ኘ	4	
Traffic Volume (veh/h)	55	570	20	5	1800	180	5	2	1	115	1	210
Future Volume (veh/h)	55	570	20	5	1800	180	5	2	1	115	1	210
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1856	1856	1856	1900	1900	1900	1870	1870	1870
Adj Flow Rate, veh/h	55	570	20	5	1800	180	5	2	1	115	1	210
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	5	5	5	3	3	3	0	0	0	2	2	2
Cap, veh/h	61	1415	1199	602	1165	116	56	20	5	228	1	234
Arrive On Green	0.03	0.78	0.78	0.70	0.70	0.70	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1739	1826	1547	820	1660	166	99	132	33	1414	8	1579
Grp Volume(v), veh/h	55	570	20	5	0	1980	8	0	0	115	0	211
Grp Sat Flow(s),veh/h/ln	1739	1826	1547	820	0	1826	264	0	0	1414	0	1586
Q Serve(g_s), s	4.5	14.6	0.4	0.3	0.0	100.5	0.1	0.0	0.0	0.0	0.0	18.7
Cycle Q Clear(g_c), s	4.5	14.6	0.4	4.4	0.0	100.5	18.8	0.0	0.0	13.2	0.0	18.7
Prop In Lane	1.00		1.00	1.00		0.09	0.62		0.12	1.00		1.00
Lane Grp Cap(c), veh/h	61	1415	1199	602	0	1281	80	0	0	228	0	235
V/C Ratio(X)	0.91	0.40	0.02	0.01	0.00	1.55	0.10	0.00	0.00	0.50	0.00	0.90
Avail Cap(c_a), veh/h	61	1415	1199	602	0	1281	145	0	0	295	0	310
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	68.9	5.3	3.7	7.7	0.0	21.3	53.3	0.0	0.0	57.6	0.0	59.9
Incr Delay (d2), s/veh	81.0	0.2	0.0	0.0	0.0	249.3	0.2	0.0	0.0	0.6	0.0	19.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.3	4.3	0.1	0.0	0.0	123.5	0.3	0.0	0.0	4.0	0.0	8.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	149.8	5.4	3.7	7.7	0.0	270.6	53.5	0.0	0.0	58.2	0.0	79.5
LnGrp LOS	F	A	A	A	A	F	D	A	A	E	A	<u> </u>
Approach Vol, veh/h		645			1985			8			326	
Approach Delay, s/veh		17.7			270.0			53.5			72.0	
Approach LOS		В			F			D			E	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	10.5	106.0		26.7		116.5		26.7				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	5.0	100.5		28.0		111.0		28.0				
Max Q Clear Time (g_c+I1), s	6.5	102.5		20.8		16.6		20.7				
Green Ext Time (p_c), s	0.0	0.0		0.0		3.7		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			192.7									
HCM 6th LOS			F									

36

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4			र्स	1	٦	f,			4	
Traffic Vol, veh/h	1	1	1	5	1	170	110	610	5	10	1860	55
Future Vol, veh/h	1	1	1	5	1	170	110	610	5	10	1860	55
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	5	5	5	5	5	5	3	3	3
Mvmt Flow	1	1	1	5	1	170	110	610	5	10	1860	55

Major/Minor	Minor1		ľ	Minor2			Major1			Major2			
Conflicting Flow All	2826	2768	613	2742	2743	1888	1915	0	0	615	0	0	
Stage 1	833	833	-	1908	1908	-	-	-	-	-	-	-	
Stage 2	1993	1935	-	834	835	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.15	6.55	6.25	4.15	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.15	5.55	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.545	4.045	3.345	2.245	-	-	2.227	-	-	
Pot Cap-1 Maneuver	11	20	496	13	20	~ 86	302	-	-	960	-	-	
Stage 1	366	386	-	86	114	-	-	-	-	-	-	-	
Stage 2	80	114	-	358	379	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· -	13	496	9	13	~ 86	302	-	-	960	-	-	
Mov Cap-2 Maneuver	· -	13	-	9	13	-	-	-	-	-	-	-	
Stage 1	233	245	-	55	114	-	-	-	-	-	-	-	
Stage 2	-	114	-	226	241	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s		\$ 563.4	3.6	0	
HCM LOS	-	F			

NWL	NWT	NWR EBL	n1WBL	_n1V	VBLn2	SEL	SET	SER				
960	-	-	-	9	86	302	-	-				
0.01	-	-	- 0.6	667	1.977	0.364	-	-				
8.8	0	-	-\$ 68	4.4\$	559.1	23.6	-	-				
А	А	-	-	F	F	С	-	-				
0	-	-	-	1.3	14.8	1.6	-	-				
	960 0.01 8.8	960 - 0.01 - 8.8 0 A A	960 0.01 8.8 0 - A A -	960 0.01 0.0 8.8 0\$68 A A	960 9 0.01 0.667 8.8 0\$684.4\$ A A F	960 9 86 0.01 0.667 1.977 8.8 0\$ 684.4\$ 559.1 A A F F	960 - - 9 86 302 0.01 - - 0.667 1.977 0.364 8.8 0 - -\$684.4\$\$559.1 23.6 A A - - F F	960 - - 9 86 302 - 0.01 - - 0.667 1.977 0.364 - 8.8 0 - -\$684.4\$\$ 559.1 23.6 - A A - - F F C -	960 - - 9 86 302 - - 0.01 - - 0.667 1.977 0.364 - - 8.8 0 - -\$684.4\$\$ 559.1 23.6 - - A A - - F F C -	960 9 86 302 0.01 0.667 1.977 0.364 8.8 0\$684.4\$559.1 23.6 A A F F C	960 9 86 302 0.01 0.667 1.977 0.364 8.8 0\$684.4\$559.1 23.6 A A F F C	960 9 86 302 0.01 0.667 1.977 0.364 8.8 0\$684.4\$559.1 23.6 A A F F C

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	4	×	2	~	×	ť	3	×	~	4	*	۴.,
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	۲	†	1	ኘ	eî 👘		ľ	eî.			\$	
Traffic Volume (vph)	1	220	205	50	1220	1	715	1	5	1	1	
Future Volume (vph)	1	220	205	50	1220	1	715	1	5	1	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		0	150		0	0		(
Storage Lanes	1		1	1		0	1		0	0		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Ye
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			1410			1160			265	
Travel Time (s)		52.5			19.2			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	84.0	84.0	84.0	84.0	84.0		66.0	66.0		66.0	66.0	
Total Split (%)	56.0%	56.0%	56.0%	56.0%	56.0%		44.0%	44.0%		44.0%	44.0%	
Maximum Green (s)	78.0	78.0	78.0	78.0	78.0		62.0	62.0		62.0	62.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 15	50											
Natural Cycle: 150												
Control Type: Actuated-Ur	ncoordinated	1										
Control Type. Actuated Of		4										

Splits and Phases: 3: 88th Ave & Old Hwy 99

♪ _{Ø2}	≯ ø4
84 s	66 s
× Ø6	K
84 s	66 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2	~	×	ť	3	×	~	í,	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	- ሽ	↑	1	<u>۲</u>	ef 👘		<u>۲</u>	ef 👘			- 4 >	
Traffic Volume (veh/h)	1	220	205	50	1220	1	715	1	5	1	1	1
Future Volume (veh/h)	1	220	205	50	1220	1	715	1	5	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1885	1885	1885	1841	1841	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	220	205	50	1220	1	715	1	5	1	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	3	3	3	1	1	1	4	4	4	0	0	0
Cap, veh/h	48	965	818	490	979	1	624	110	551	242	241	225
Arrive On Green	0.52	0.52	0.52	0.52	0.52	0.52	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	453	1856	1572	970	1883	2	1393	267	1334	507	584	545
Grp Volume(v), veh/h	1	220	205	50	0	1221	715	0	6	3	0	0
Grp Sat Flow(s),veh/h/ln	453	1856	1572	970	0	1885	1393	0	1601	1636	0	0
Q Serve(g_s), s	0.0	9.7	10.8	4.4	0.0	78.0	61.9	0.0	0.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	78.0	9.7	10.8	14.1	0.0	78.0	62.0	0.0	0.3	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.83	0.33		0.33
Lane Grp Cap(c), veh/h	48	965	818	490	0	980	624	0	662	708	0	0
V/C Ratio(X)	0.02	0.23	0.25	0.10	0.00	1.25	1.15	0.00	0.01	0.00	0.00	0.00
Avail Cap(c_a), veh/h	48	965	818	490	0	980	624	0	662	708	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	75.0	19.6	19.9	23.5	0.0	36.0	46.4	0.0	25.9	25.9	0.0	0.0
Incr Delay (d2), s/veh	0.2	0.1	0.2	0.1	0.0	119.2	83.5	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	4.1	3.9	1.0	0.0	65.5	38.7	0.0	0.1	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	75.2	19.7	20.0	23.5	0.0	155.2	129.9	0.0	25.9	25.9	0.0	0.0
LnGrp LOS	E	В	С	С	A	F	F	A	С	С	A	<u> </u>
Approach Vol, veh/h		426			1271			721			3	
Approach Delay, s/veh		20.0			150.0			129.0			25.9	
Approach LOS		С			F			F			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		84.0		66.0		84.0		66.0				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		78.0		62.0		78.0		62.0				
Max Q Clear Time (g_c+I1), s		80.0		64.0		80.0		2.1				
Green Ext Time (p_c), s		0.0		0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			120.7									
HCM 6th LOS			F									

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	۲.	•	<u>ار</u>	1
Traffic Vol, veh/h	180	10	225	1135	20	155
Future Vol, veh/h	180	10	225	1135	20	155
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	e, # 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	4	4	1	1	6	6
Mvmt Flow	180	10	225	1135	20	155

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	190	0	1765	180
Stage 1	-	-	-	-	180	-
Stage 2	_	-	-	-	1585	-
Critical Hdwy	-	-	4.11	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.209	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	1390	-	90	853
Stage 1	-	-	-	-	841	-
Stage 2	-	-	-	-	181	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	1390	-	75	853
Mov Cap-2 Maneuve	r -	-	-	-	144	-
Stage 1	-	-	-	-	841	-
Stage 2	-	-	-	-	152	-

Approach	EB	WB	NE
HCM Control Delay, s	0	1.3	12.9
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	144	853	-	-	1390	-
HCM Lane V/C Ratio	0.139	0.182	-	-	0.162	-
HCM Control Delay (s)	34	10.2	-	-	8.1	-
HCM Lane LOS	D	В	-	-	А	-
HCM 95th %tile Q(veh)	0.5	0.7	-	-	0.6	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	\mathbf{x}	2	~	×	₹.	3	×	~	<u>í</u>	*	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	ሻ	††	1	ኘ	A			4		٦	eî 🗧	
Traffic Volume (vph)	55	570	20	5	1800	180	5	2	1	115	1	210
Future Volume (vph)	55	570	20	5	1800	180	5	2	1	115	1	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		(
Storage Lanes	1		1	1		0	0		0	1		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	11.0	76.4	76.4	65.4	65.4		33.6	33.6		33.6	33.6	
Total Split (%)	10.0%	69.5%	69.5%	59.5%	59.5%		30.5%	30.5%		30.5%	30.5%	
Maximum Green (s)	5.5	70.9	70.9	59.9	59.9		28.1	28.1		28.1	28.1	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 110												
Actuated Cycle Length: 9	1.5											
Natural Cycle: 110												
Control Type: Actuated-U	Incoordinated	1										
Splits and Phases: 1: 0	Old Hwy 99 &	Hondora	on Blud									
	Juliwy 39 Q	I ICHUCIS										

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	à	×	2	٢	×	۲	3	*	ľ	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦	<u></u>	1	٦	↑ ĵ≽			4		٦	et 🗧	
Traffic Volume (veh/h)	55	570	20	5	1800	180	5	2	1	115	1	210
Future Volume (veh/h)	55	570	20	5	1800	180	5	2	1	115	1	210
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1856	1856	1856	1900	1900	1900	1870	1870	1870
Adj Flow Rate, veh/h	55	570	20	5	1800	180	5	2	1	115	1	210
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	5	5	5	3	3	3	0	0	0	2	2	2
Cap, veh/h	71	2504	1117	588	2013	198	88	31	8	276	1	250
Arrive On Green	0.04	0.72	0.72	0.62	0.62	0.62	0.16	0.16	0.16	0.16	0.16	0.16
Sat Flow, veh/h	1739	3469	1547	820	3242	319	156	197	50	1414	8	1579
Grp Volume(v), veh/h	55	570	20	5	965	1015	8	0	0	115	0	211
Grp Sat Flow(s),veh/h/ln	1739	1735	1547	820	1763	1798	403	0	0	1414	0	1586
Q Serve(g_s), s	2.9	5.0	0.3	0.2	42.0	45.1	0.1	0.0	0.0	0.0	0.0	11.8
Cycle Q Clear(g_c), s	2.9	5.0	0.3	0.2	42.0	45.1	11.9	0.0	0.0	8.1	0.0	11.8
Prop In Lane	1.00		1.00	1.00		0.18	0.62		0.12	1.00		1.00
Lane Grp Cap(c), veh/h	71	2504	1117	588	1094	1116	127	0	0	276	0	251
V/C Ratio(X)	0.77	0.23	0.02	0.01	0.88	0.91	0.06	0.00	0.00	0.42	0.00	0.84
Avail Cap(c_a), veh/h	104	2683	1197	614	1152	1175	329	0	0	486	0	486
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	43.5	4.2	3.6	6.6	14.6	15.1	33.3	0.0	0.0	35.9	0.0	37.5
Incr Delay (d2), s/veh	10.0	0.0	0.0	0.0	7.9	10.2	0.1	0.0	0.0	0.4	0.0	2.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	1.1	0.1	0.0	14.9	16.9	0.2	0.0	0.0	2.4	0.0	4.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	53.5	4.3	3.6	6.6	22.5	25.3	33.3	0.0	0.0	36.3	0.0	40.4
LnGrp LOS	D	Α	Α	Α	С	С	С	А	А	D	Α	D
Approach Vol, veh/h		645			1985			8			326	
Approach Delay, s/veh		8.5			23.9			33.3			38.9	
Approach LOS		А			С			С			D	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.3	62.4		20.0		71.7		20.0				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	5.5	59.9		28.1		70.9		28.1				
Max Q Clear Time (g_c+I1), s	4.9	47.1		13.9		7.0		13.8				
Green Ext Time (p_c), s	0.0	9.8		0.0		3.8		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			22.2									
HCM 6th LOS			С									

5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations		4			्र	1	۲.	Ŷ≽			đ þ		
Traffic Vol, veh/h	1	1	1	5	1	170	110	610	5	10	1860	55	
Future Vol, veh/h	1	1	1	5	1	170	110	610	5	10	1860	55	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	5	5	5	5	5	5	3	3	3	
Mvmt Flow	1	1	1	5	1	170	110	610	5	10	1860	55	

Major/Minor	Minor1		ſ	Minor2		1	Major1		Ν	lajor2			
Conflicting Flow All	1784	2768	308	2434	2743	958	1915	0	0	615	0	0	
Stage 1	833	833	-	1908	1908	-	-	-	-	-	-	-	
Stage 2	951	1935	-	526	835	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.5	6.9	7.6	6.6	7	4.2	-	-	4.16	-	-	
Critical Hdwy Stg 1	6.5	5.5	-	6.6	5.6	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.5	-	6.6	5.6	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.55	4.05	3.35	2.25	-	-	2.23	-	-	
Pot Cap-1 Maneuver	53	20	694	16	19	252	294	-	-	954	-	-	
Stage 1	334	386	-	68	111	-	-	-	-	-	-	-	
Stage 2	283	114	-	496	374	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 12	13	694	11	12	252	294	-	-	954	-	-	
Mov Cap-2 Maneuver	r 12	13	-	11	12	-	-	-	-	-	-	-	
Stage 1	209	242	-	43	111	-	-	-	-	-	-	-	
Stage 2	91	114	-	309	234	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Dela	ay,s 227.2	61.1	3.7	0	
HCM LOS	F	F			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1V	VBLn2	SEL	SET	SER
Capacity (veh/h)	954	-	-	19	11	252	294	-	-
HCM Lane V/C Ratio	0.01	-	-	0.158	0.545	0.675	0.374	-	-
HCM Control Delay (s)	8.8	0	-	227.2\$	531.3	44.5	24.4	-	-
HCM Lane LOS	Α	Α	-	F	F	Е	С	-	-
HCM 95th %tile Q(veh)	0	-	-	0.5	1.2	4.4	1.7	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

		×	2	F	×	ť	3	×	~	4	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	ľ	<u>†</u> †	1	ľ	≜ ⊅		1	el el			\$	
Traffic Volume (vph)	1	220	205	50	1220	1	715	1	5	1	1	
Future Volume (vph)	1	220	205	50	1220	1	715	1	5	1	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		250	150		0	0		(
Storage Lanes	1		1	1		1	1		0	0		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			501			1160			265	
Travel Time (s)		52.5			6.8			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	39.0	39.0	39.0	39.0	39.0		51.0	51.0		51.0	51.0	
Total Split (%)	43.3%	43.3%	43.3%	43.3%	43.3%		56.7%	56.7%		56.7%	56.7%	
Maximum Green (s)	33.0	33.0	33.0	33.0	33.0		47.0	47.0		47.0	47.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 8	9.6											
Natural Cycle: 90												
Control Type: Actuated-U	Incoordinated	1										

Splits and Phases: 3: 88th Ave & Old Hwy 99

₩ _{Ø2}	¥ø4
39 s	51s
× 06	× Ø8
39 s	51 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2	~	×	۲	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	^	1	ሻ	≜1 }-		ሻ	4Î			4	
Traffic Volume (veh/h)	1	220	205	50	1220	1	715	1	5	1	1	1
Future Volume (veh/h)	1	220	205	50	1220	1	715	1	5	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1885	1885	1885	1841	1841	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	220	205	50	1220	1	715	1	5	1	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	3	3	3	1	1	1	4	4	4	0	0	0
Cap, veh/h	101	1274	568	391	1327	1	814	140	701	315	314	287
Arrive On Green	0.36	0.36	0.36	0.36	0.36	0.36	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	453	3526	1572	970	3673	3	1393	267	1334	495	598	547
Grp Volume(v), veh/h	1	220	205	50	595	626	715	0	6	3	0	0
Grp Sat Flow(s),veh/h/ln	453	1763	1572	970	1791	1885	1393	0	1601	1640	0	0
Q Serve(g_s), s	0.2	3.8	8.5	3.3	28.1	28.1	44.2	0.0	0.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	28.3	3.8	8.5	7.0	28.1	28.1	44.3	0.0	0.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.83	0.33		0.33
Lane Grp Cap(c), veh/h	101	1274	568	391	647	681	814	0	841	916	0	0
V/C Ratio(X)	0.01	0.17	0.36	0.13	0.92	0.92	0.88	0.00	0.01	0.00	0.00	0.00
Avail Cap(c_a), veh/h	106	1314	586	402	667	702	821	0	850	925	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	40.6	19.3	20.8	21.6	27.0	27.0	20.5	0.0	10.0	10.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.4	0.1	17.6	17.0	10.7	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	1.4	2.9	0.7	13.8	14.4	15.3	0.0	0.1	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	40.6	19.3	21.1	21.8	44.7	44.0	31.2	0.0	10.0	10.0	0.0	0.0
LnGrp LOS	D	В	С	С	D	D	С	А	В	A	A	<u> </u>
Approach Vol, veh/h		426			1271			721			3	
Approach Delay, s/veh		20.2			43.4			31.0			10.0	
Approach LOS		С			D			С			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		38.0		50.5		38.0		50.5				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		33.0		47.0		33.0		47.0				
Max Q Clear Time (g_c+l1), s		30.1		46.3		30.3		2.1				
Green Ext Time (p_c), s		1.9		0.2		0.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			35.6									
HCM 6th LOS			D									

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	۲.	•	<u>ار</u>	1
Traffic Vol, veh/h	180	10	225	1135	20	155
Future Vol, veh/h	180	10	225	1135	20	155
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	e, # 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	4	4	1	1	6	6
Mvmt Flow	180	10	225	1135	20	155

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	190	0	1765	180
Stage 1	-	-	-	-	180	-
Stage 2	_	-	-	-	1585	-
Critical Hdwy	-	-	4.11	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.209	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	1390	-	90	853
Stage 1	-	-	-	-	841	-
Stage 2	-	-	-	-	181	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	1390	-	75	853
Mov Cap-2 Maneuve	r -	-	-	-	144	-
Stage 1	-	-	-	-	841	-
Stage 2	-	-	-	-	152	-

Approach	EB	WB	NE
HCM Control Delay, s	0	1.3	12.9
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	144	853	-	-	1390	-
HCM Lane V/C Ratio	0.139	0.182	-	-	0.162	-
HCM Control Delay (s)	34	10.2	-	-	8.1	-
HCM Lane LOS	D	В	-	-	А	-
HCM 95th %tile Q(veh)	0.5	0.7	-	-	0.6	-

V Site: 1 [AM 2040 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov	Turn	Demand F		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
	L2	пwy 99 5	3.0	0.662	10.4	LOS B	6.6	168.2	0.38	0.41	0.20	36.7
3		-			10.4		6.6				0.38	
8	T1	1800	3.0	0.662	4.5	LOS A	6.6	168.2	0.36	0.41	0.36	36.8
18	R2	180	3.0	0.662	4.6	LOS A	6.5	166.9	0.34	0.41	0.34	35.6
Appro	ach	1985	3.0	0.662	4.5	LOS A	6.6	168.2	0.36	0.41	0.36	36.7
East:	WB Hend	derson Blvd										
1	L2	115	2.0	0.549	17.4	LOS B	3.1	79.3	0.81	1.00	1.10	33.0
6	T1	5	2.0	0.549	11.6	LOS B	3.1	79.3	0.81	1.00	1.10	32.9
16	R2	210	2.0	0.549	11.5	LOS B	3.1	79.3	0.81	1.00	1.10	32.0
Appro	ach	330	2.0	0.549	13.6	LOS B	3.1	79.3	0.81	1.00	1.10	32.4
North	SB Old	Hwy 99										
7	L2	55	5.0	0.233	10.4	LOS B	1.4	36.3	0.33	0.48	0.33	36.4
4	T1	570	5.0	0.233	4.4	LOS A	1.5	37.7	0.33	0.45	0.33	36.7
14	R2	20	5.0	0.233	4.6	LOS A	1.5	37.7	0.32	0.42	0.32	35.6
Appro	ach	645	5.0	0.233	5.0	LOS A	1.5	37.7	0.33	0.45	0.33	36.6
West:	EB Hend	derson Blvd										
5	L2	5	0.0	0.016	11.3	LOS B	0.1	1.3	0.45	0.62	0.45	36.0
2	T1	5	0.0	0.016	5.5	LOS A	0.1	1.3	0.45	0.62	0.45	35.8
12	R2	5	0.0	0.016	5.4	LOS A	0.1	1.3	0.45	0.62	0.45	34.8
Appro	ach	15	0.0	0.016	7.4	LOS A	0.1	1.3	0.45	0.62	0.45	35.5
All Ve	hicles	2975	3.3	0.662	5.6	LOS A	6.6	168.2	0.40	0.49	0.44	36.1

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:18:19 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-Henderson.sip8

W Site: 2 [AM 2040 Old Hwy 99-79th Ave - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand I		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
		,	0.0	0.000	40.0		5.0	450.0	0.40	0.47	0.40	00.4
3	L2	10	3.0	0.660	10.8	LOS B	5.9	150.2	0.46	0.47	0.46	36.4
8	T1	1860	3.0	0.660	4.8	LOS A	5.9	150.2	0.44	0.46	0.44	36.5
18	R2	55	3.0	0.660	4.9	LOS A	5.8	149.5	0.42	0.45	0.42	35.3
Appro	ach	1925	3.0	0.660	4.9	LOS A	5.9	150.2	0.44	0.46	0.44	36.4
East:	WB 79th	Ave										
1	L2	5	5.0	0.333	16.0	LOS B	1.6	41.1	0.78	0.91	0.86	34.5
6	T1	1	5.0	0.333	10.1	LOS B	1.6	41.1	0.78	0.91	0.86	34.5
16	R2	170	5.0	0.333	10.0	LOS B	1.6	41.1	0.78	0.91	0.86	33.5
Appro	ach	176	5.0	0.333	10.2	LOS B	1.6	41.1	0.78	0.91	0.86	33.5
North	SB Old	Hwy 99										
7	L2	110	5.0	0.237	9.9	LOS A	1.3	33.2	0.09	0.48	0.09	36.7
4	T1	610	5.0	0.237	4.0	LOS A	1.3	33.6	0.09	0.41	0.09	37.4
14	R2	5	5.0	0.237	4.2	LOS A	1.3	33.6	0.09	0.37	0.09	36.4
Appro	ach	725	5.0	0.237	4.9	LOS A	1.3	33.6	0.09	0.42	0.09	37.3
West:	EB 79th	Ave										
5	L2	1	0.0	0.003	11.2	LOS B	0.0	0.2	0.41	0.57	0.41	36.1
2	T1	1	0.0	0.003	5.4	LOS A	0.0	0.2	0.41	0.57	0.41	35.9
12	R2	1	0.0	0.003	5.3	LOS A	0.0	0.2	0.41	0.57	0.41	34.9
Appro	ach	3	0.0	0.003	7.3	LOS A	0.0	0.2	0.41	0.57	0.41	35.6
All Ve	hicles	2829	3.6	0.660	5.2	LOS A	5.9	150.2	0.37	0.48	0.37	36.4

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:23:37 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-79th Ave.sip8

V Site: 2 [AM 2040 Old Hwy 99-88th Ave - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec	_	veh	ft	_	_	_	mph
3	L2	50 50	1.0	0.713	20.5	LOS C	8.6	216.3	0.97	1.14	1.41	32.3
-												
8	T1	1220	1.0	0.713	13.5	LOS B	9.7	245.3	0.98	1.10	1.39	32.9
18	R2	1	1.0	0.713	12.8	LOS B	9.7	245.3	0.98	1.07	1.37	32.3
Appro	bach	1271	1.0	0.713	13.8	LOS B	9.7	245.3	0.98	1.10	1.39	32.8
East:	WB 88th	Ave										
1	L2	1	0.0	0.008	17.3	LOS B	0.0	1.0	0.84	0.74	0.84	33.2
6	T1	1	0.0	0.008	11.4	LOS B	0.0	1.0	0.84	0.74	0.84	33.1
16	R2	1	0.0	0.008	11.3	LOS B	0.0	1.0	0.84	0.74	0.84	32.2
Appro	ach	3	0.0	0.008	13.3	LOS B	0.0	1.0	0.84	0.74	0.84	32.8
North	: SB Old											
7	L2	⊓wy 99 1	3.0	0.138	9.9	LOS A	0.8	21.6	0.19	0.37	0.19	37.5
4	T1	220	3.0	0.138	4.1	LOS A	0.8	21.6	0.19	0.37	0.19	37.4
14	R2	205	3.0	0.146	4.3	LOS A	0.9	22.3	0.20	0.46	0.20	36.1
Appro	bach	426	3.0	0.146	4.2	LOS A	0.9	22.3	0.20	0.41	0.20	36.8
West:	EB 88th	Ave										
5	L2	715	4.0	0.653	11.8	LOS B	4.9	127.6	0.55	0.72	0.58	33.7
2	T1	1	4.0	0.653	6.0	LOS A	4.9	127.6	0.55	0.72	0.58	33.6
12	R2	5	4.0	0.653	5.9	LOS A	4.9	127.6	0.55	0.72	0.58	32.7
Appro	ach	721	4.0	0.653	11.8	LOS B	4.9	127.6	0.55	0.72	0.58	33.7
All Ve	hicles	2421	2.2	0.713	11.5	LOS B	9.7	245.3	0.71	0.87	0.94	33.7

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:26:53 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-88th Ave.sip8

V Site: 2 [AM 2040 Old Hwy 99-93rd Ave - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South:	South: NB Old Hwy 99												
3	L2	225	1.0	0.939	10.7	LOS D	42.3	1065.8	0.78	0.34	0.78	35.2	
8	T1	1120	1.0	0.939	4.7	LOS D	42.3	1065.8	0.78	0.34	0.78	35.1	
Approa	ach	1345	1.0	0.939	5.7	LOS A	42.3	1065.8	0.78	0.34	0.78	35.1	
North:	SB Old	Hwy 99											
4	T1	170	4.0	0.154	4.7	LOS A	0.9	22.1	0.42	0.47	0.42	36.6	
14	R2	10	4.0	0.154	4.8	LOS A	0.9	22.1	0.42	0.47	0.42	35.5	
Approa	ach	180	4.0	0.154	4.7	LOS A	0.9	22.1	0.42	0.47	0.42	36.5	
West:	EB 88th	Ave											
5	L2	20	6.0	0.145	10.5	LOS B	0.7	19.0	0.34	0.52	0.34	36.8	
12	R2	155	6.0	0.145	4.6	LOS A	0.7	19.0	0.34	0.52	0.34	35.6	
Approa	ach	175	6.0	0.145	5.3	LOS A	0.7	19.0	0.34	0.52	0.34	35.7	
All Vel	nicles	1700	1.8	0.939	5.6	LOS A	42.3	1065.8	0.70	0.37	0.70	35.3	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 4, 2020 9:52:12 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

V Site: 1 [AM 2040 Old Hwy 99-Henderson Blvd - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	Average Speed mph
South	: NB Old	Hwy 99										
3	L2	5	3.0	0.687	10.6	LOS B	7.2	183.1	0.45	0.44	0.45	36.5
8	T1	1835	3.0	0.687	4.6	LOS A	7.2	183.1	0.43	0.43	0.43	36.5
18	R2	195	3.0	0.687	4.7	LOS A	7.1	182.3	0.41	0.43	0.41	35.4
Appro	ach	2035	3.0	0.687	4.7	LOS A	7.2	183.1	0.42	0.43	0.42	36.4
East:	WB Hend	lerson Blvd										
1	L2	135	2.0	0.633	19.1	LOS B	4.0	101.0	0.85	1.06	1.25	32.2
6	T1	5	2.0	0.633	13.2	LOS B	4.0	101.0	0.85	1.06	1.25	32.1
16	R2	220	2.0	0.633	13.1	LOS B	4.0	101.0	0.85	1.06	1.25	31.2
Appro	ach	360	2.0	0.633	15.4	LOS B	4.0	101.0	0.85	1.06	1.25	31.6
North:	SB Old I	Hwy 99										
7	L2	70	5.0	0.265	10.5	LOS B	1.6	42.8	0.37	0.50	0.37	36.2
4	T1	625	5.0	0.265	4.5	LOS A	1.7	44.6	0.37	0.46	0.37	36.5
14	R2	25	5.0	0.265	4.6	LOS A	1.7	44.6	0.36	0.43	0.36	35.4
Appro	ach	720	5.0	0.265	5.1	LOS A	1.7	44.6	0.37	0.46	0.37	36.4
West:	EB Hend	lerson Blvd										
5	L2	5	0.0	0.017	11.5	LOS B	0.1	1.4	0.48	0.63	0.48	35.9
2	T1	5	0.0	0.017	5.6	LOS A	0.1	1.4	0.48	0.63	0.48	35.7
12	R2	5	0.0	0.017	5.6	LOS A	0.1	1.4	0.48	0.63	0.48	34.7
Appro	ach	15	0.0	0.017	7.6	LOS A	0.1	1.4	0.48	0.63	0.48	35.4
All Ve	hicles	3130	3.3	0.687	6.0	LOS A	7.2	183.1	0.46	0.51	0.51	35.8

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 12:33:48 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-Henderson.sip8

V Site: 2 [AM 2040 Old Hwy 99-79th Ave - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles Mov Turn Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No. Average												
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	
South	: NB Old	Hwy 99										
3	L2	10	3.0	0.684	10.9	LOS B	6.4	162.8	0.50	0.49	0.50	36.3
8	T1	1910	3.0	0.684	5.0	LOS A	6.4	162.8	0.48	0.47	0.48	36.3
18	R2	60	3.0	0.684	5.0	LOS A	6.3	162.4	0.46	0.46	0.46	35.1
Appro	ach	1980	3.0	0.684	5.0	LOS A	6.4	162.8	0.48	0.47	0.48	36.3
East:	WB 79th	Ave										
1	L2	10	5.0	0.373	16.7	LOS B	1.8	48.0	0.80	0.93	0.92	34.1
6	T1	1	5.0	0.373	10.8	LOS B	1.8	48.0	0.80	0.93	0.92	34.0
16	R2	175	5.0	0.373	10.8	LOS B	1.8	48.0	0.80	0.93	0.92	33.0
Appro	ach	186	5.0	0.373	11.1	LOS B	1.8	48.0	0.80	0.93	0.92	33.1
North	: SB Old	Hwy 99										
7	L2	120	5.0	0.263	9.9	LOS A	1.5	39.6	0.12	0.48	0.12	36.7
4	T1	675	5.0	0.263	4.1	LOS A	1.6	40.3	0.11	0.41	0.11	37.3
14	R2	5	5.0	0.263	4.2	LOS A	1.6	40.3	0.11	0.37	0.11	36.3
Appro	ach	800	5.0	0.263	4.9	LOS A	1.6	40.3	0.12	0.42	0.12	37.2
West:	EB 79th	Ave										
5	L2	1	0.0	0.003	11.4	LOS B	0.0	0.2	0.43	0.58	0.43	36.0
2	T1	1	0.0	0.003	5.5	LOS A	0.0	0.2	0.43	0.58	0.43	35.8
12	R2	1	0.0	0.003	5.4	LOS A	0.0	0.2	0.43	0.58	0.43	34.8
Appro	bach	3	0.0	0.003	7.4	LOS A	0.0	0.2	0.43	0.58	0.43	35.5
All Ve	hicles	2969	3.7	0.684	5.4	LOS A	6.4	162.8	0.40	0.49	0.41	36.3

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 1:58:30 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-79th Ave.sip8

V Site: 2 [AM 2040 Old Hwy 99-88th Ave - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand I		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
3	L2	55	1.0	0.791	26.0	LOS C	11.4	287.5	1.00	1.28	1.71	29.9
8	T1	1225	1.0	0.791	18.6	LOS B	13.3	336.4	1.00	1.24	1.68	30.6
18	R2	10	1.0	0.791	17.7	LOS B	13.3	336.4	1.00	1.21	1.66	30.2
Appro	ach	1290	1.0	0.791	18.9	LOS B	13.3	336.4	1.00	1.24	1.68	30.6
East:	WB 88th	Ave										
1	L2	5	2.0	0.097	18.4	LOS B	0.5	12.8	0.86	0.93	0.86	33.1
6	T1	5	2.0	0.097	12.5	LOS B	0.5	12.8	0.86	0.93	0.86	33.0
16	R2	25	2.0	0.097	12.5	LOS B	0.5	12.8	0.86	0.93	0.86	32.1
Appro	ach	35	2.0	0.097	13.3	LOS B	0.5	12.8	0.86	0.93	0.86	32.3
North	SB Old	Hwy 99										
7	L2	40	3.0	0.167	10.0	LOS A	1.0	26.0	0.22	0.43	0.22	37.0
4	T1	225	3.0	0.167	4.1	LOS A	1.0	26.0	0.22	0.43	0.22	36.9
14	R2	230	3.0	0.167	4.4	LOS A	1.0	25.1	0.23	0.46	0.23	36.0
Appro	ach	495	3.0	0.167	4.7	LOS A	1.0	26.0	0.22	0.44	0.22	36.5
West:	EB 88th	Ave										
5	L2	732	4.0	0.698	12.9	LOS B	6.2	159.8	0.63	0.79	0.71	33.5
2	T1	10	4.0	0.698	7.0	LOS A	6.2	159.8	0.63	0.79	0.71	33.4
12	R2	5	4.0	0.698	7.0	LOS A	6.2	159.8	0.63	0.79	0.71	32.5
Appro	ach	747	4.0	0.698	12.8	LOS B	6.2	159.8	0.63	0.79	0.71	33.5
All Ve	hicles	2567	2.3	0.791	14.3	LOS B	13.3	336.4	0.74	0.95	1.11	32.4

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

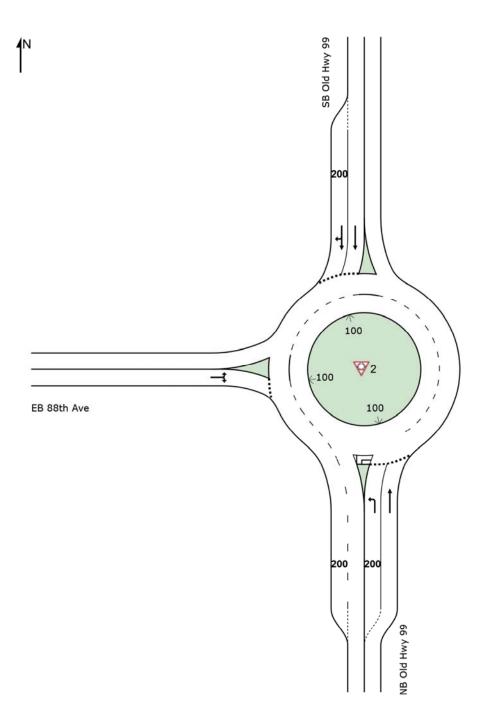
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 2:20:10 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-88th Ave.sip8

SITE LAYOUT

W Site: 2 [AM 2040 Old Hwy 99-93rd Ave -Land Use 2 (2 NB lanes)]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Tuesday, May 5, 2020 2:57:15 PM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation

Site: 2 [AM 2040 Old Hwy 99-93rd Ave - Sensitivity Scenario multiple entry lanes]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South:	South: NB Old Hwy 99												
3	L2	225	1.0	0.183	9.9	LOS A	0.9	22.9	0.11	0.62	0.11	34.8	
8	T1	1135	1.0	0.659	3.7	LOS A	6.8	170.3	0.18	0.34	0.18	37.9	
Approa	ach	1360	1.0	0.659	4.8	LOS A	6.8	170.3	0.17	0.39	0.17	37.3	
North:	SB Old	Hwy 99											
4	T1	180	4.0	0.106	4.8	LOS A	0.4	10.2	0.28	0.45	0.28	36.9	
14	R2	10	4.0	0.053	5.2	LOS A	0.2	4.8	0.29	0.46	0.29	35.6	
Appro	ach	190	4.0	0.106	4.8	LOS A	0.4	10.2	0.28	0.45	0.28	36.9	
West:	EB 88th	Ave											
5	L2	20	6.0	0.158	10.5	LOS B	0.6	15.3	0.28	0.53	0.28	37.1	
12	R2	155	6.0	0.158	4.6	LOS A	0.6	15.3	0.28	0.53	0.28	35.8	
Approa	ach	175	6.0	0.158	5.2	LOS A	0.6	15.3	0.28	0.53	0.28	35.9	
All Vel	nicles	1725	1.8	0.659	4.8	LOS A	6.8	170.3	0.19	0.41	0.19	37.1	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 2:26:27 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	×	2	F	×	ť	3	×	~	4	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	ሻ	†	1	٦	eî			÷		۲	el 👘	
Traffic Volume (vph)	90	885	5	5	555	110	35	10	10	160	5	65
Future Volume (vph)	90	885	5	5	555	110	35	10	10	160	5	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		(
Storage Lanes	1		1	1		0	0		0	1		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	12.0	56.5	56.5	44.5	44.5		33.5	33.5		33.5	33.5	
Total Split (%)	13.3%	62.8%	62.8%	49.4%	49.4%		37.2%	37.2%		37.2%	37.2%	
Maximum Green (s)	6.5	51.0	51.0	39.0	39.0		28.0	28.0		28.0	28.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90	0.4											
Actuated Cycle Length: 6	9.1											
Natural Cycle: 90												
Control Type: Actuated-U	Incoordinated	1										
Splits and Phases: 1: C	Old Hwy 99 &	Henders	on Blvd									
	,						1. 10					

Ø1	₩ ₀₂	≯ ø₄
12 s	44.5 s	33.5 s
🔪 ø6		× 08
56.5 s		33.5 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	-	X	2	~	×	۲	3	×	~	í,	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኘ	↑	1	ኘ	4î			4		<u>۲</u>	4	
Traffic Volume (veh/h)	90	885	5	5	555	110	35	10	10	160	5	65
Future Volume (veh/h)	90	885	5	5	555	110	35	10	10	160	5	65
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1870	1870	1870	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	96	941	5	5	590	117	37	11	11	170	5	69
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	1	1	1	2	2	2	0	0	0	1	1	1
Cap, veh/h	130	1211	1026	309	703	139	209	62	36	362	16	219
Arrive On Green	0.07	0.64	0.64	0.46	0.46	0.46	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1795	1885	1598	593	1516	301	662	428	250	1401	109	1505
Grp Volume(v), veh/h	96	941	5	5	0	707	59	0	0	170	0	74
Grp Sat Flow(s),veh/h/ln	1795	1885	1598	593	0	1816	1339	0	0	1401	0	1614
Q Serve(g_s), s	2.7	18.5	0.1	0.3	0.0	17.7	0.4	0.0	0.0	2.7	0.0	2.1
Cycle Q Clear(g_c), s	2.7	18.5	0.1	9.5	0.0	17.7	2.6	0.0	0.0	5.3	0.0	2.1
Prop In Lane	1.00		1.00	1.00		0.17	0.63		0.19	1.00		0.93
Lane Grp Cap(c), veh/h	130	1211	1026	309	0	842	308	0	0	362	0	234
V/C Ratio(X)	0.74	0.78	0.00	0.02	0.00	0.84	0.19	0.00	0.00	0.47	0.00	0.32
Avail Cap(c_a), veh/h	225	1857	1574	480	0	1368	890	0	0	916	0	873
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	23.5	6.6	3.3	13.3	0.0	12.2	19.7	0.0	0.0	21.0	0.0	19.8
Incr Delay (d2), s/veh	3.1	1.2	0.0	0.0	0.0	2.6	0.1	0.0	0.0	0.4	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	3.0	0.0	0.0	0.0	5.1	0.6	0.0	0.0	1.8	0.0	0.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.6	7.8	3.3	13.3	0.0	14.8	19.9	0.0	0.0	21.4	0.0	20.1
LnGrp LOS	С	А	А	В	А	В	В	А	А	С	А	С
Approach Vol, veh/h		1042			712			59			244	
Approach Delay, s/veh		9.5			14.8			19.9			21.0	
Approach LOS		А			В			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.2	29.5		13.0		38.8		13.0				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	6.5	39.0		28.0		51.0		28.0				
Max Q Clear Time (g_c+I1), s	4.7	19.7		4.6		20.5		7.3				
Green Ext Time (p_c), s	0.0	4.3		0.1		7.5		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			13.0									
HCM 6th LOS			В									

3.1

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4			र्स	1	۲	Þ			4	
Traffic Vol, veh/h	2	1	5	15	1	135	125	930	15	1	500	15
Future Vol, veh/h	2	1	5	15	1	135	125	930	15	1	500	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	2	2	2	1	1	1	3	3	3
Mvmt Flow	2	1	5	16	1	148	137	1022	16	1	549	16

Major/Minor	Minor1		1	Minor2			Major1			Major2			
Conflicting Flow All	1938	1871	1030	1866	1871	557	565	0	0	1038	0	0	
Stage 1	1304	1304	-	559	559	-	-	-	-	-	-	-	
Stage 2	634	567	-	1307	1312	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.12	6.52	6.22	4.11	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.518	4.018	3.318	2.209	-	-	2.227	-	-	
Pot Cap-1 Maneuver	50	73	286	56	72	530	1012	-	-	666	-	-	
Stage 1	199	232	-	513	511	-	-	-	-	-	-	-	
Stage 2	471	510	-	196	228	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 32	63	286	48	62	530	1012	-	-	666	-	-	
Mov Cap-2 Maneuver	· 32	63	-	48	62	-	-	-	-	-	-	-	
Stage 1	172	201	-	444	510	-	-	-	-	-	-	-	
Stage 2	338	509	-	165	197	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	53.4	25.1	1.1	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1V	VBLn2	SEL	SET	SER
Capacity (veh/h)	666	-	-	83	49	530	1012	-	-
HCM Lane V/C Ratio	0.002	-	-	0.106	0.359	0.28	0.136	-	-
HCM Control Delay (s)	10.4	0	-	53.4	115	14.4	9.1	-	-
HCM Lane LOS	В	А	-	F	F	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.3	1.3	1.1	0.5	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	4	×	2	~	×	ť	3	*	~	í,	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	1	•	1	ľ	el el		<u>م</u>	el el			\$	
Traffic Volume (vph)	1	780	205	15	305	1	175	1	50	1	2	1
Future Volume (vph)	1	780	205	15	305	1	175	1	50	1	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		0	150		0	0		(
Storage Lanes	1		1	1		0	1		0	0		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Ye
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			1410			1160			265	
Travel Time (s)		52.5			19.2			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	34.0	34.0	34.0	34.0	34.0		26.0	26.0		26.0	26.0	
Total Split (%)	56.7%	56.7%	56.7%	56.7%	56.7%		43.3%	43.3%		43.3%	43.3%	
Maximum Green (s)	28.0	28.0	28.0	28.0	28.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 5	3.5											
Natural Cycle: 65												
Control Type: Actuated-U	Incoordinated											
Splits and Phases: 3: 8	38th Ave & Ol	d Hwv ac)									
		<u> </u>	•									

26 s 26 s 26 s 26 s 26 s 26 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2	ŗ	×	۲	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		↑	1	<u>۲</u>	4		ሻ	4î 👘			4	
Traffic Volume (veh/h)	1	780	205	15	305	1	175	1	50	1	2	1
Future Volume (veh/h)	1	780	205	15	305	1	175	1	50	1	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	1	876	230	17	343	1	197	1	56	1	2	1
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	0	0	0
Cap, veh/h	662	1051	891	272	1047	3	450	5	294	151	210	82
Arrive On Green	0.56	0.56	0.56	0.56	0.56	0.56	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	1045	1885	1598	514	1879	5	1414	28	1561	195	1114	436
Grp Volume(v), veh/h	1	876	230	17	0	344	197	0	57	4	0	0
Grp Sat Flow(s),veh/h/ln	1045	1885	1598	514	0	1884	1414	0	1589	1745	0	0
Q Serve(g_s), s	0.0	15.1	2.9	1.1	0.0	3.9	5.1	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	3.9	15.1	2.9	16.2	0.0	3.9	5.2	0.0	1.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.98	0.25		0.25
Lane Grp Cap(c), veh/h	662	1051	891	272	0	1050	450	0	300	443	0	0
V/C Ratio(X)	0.00	0.83	0.26	0.06	0.00	0.33	0.44	0.00	0.19	0.01	0.00	0.00
Avail Cap(c_a), veh/h	822	1340	1136	351	0	1340	973	0	888	1059	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.8	7.2	4.5	13.9	0.0	4.7	15.0	0.0	13.4	13.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	3.7	0.2	0.1	0.0	0.2	0.7	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	2.8	0.3	0.1	0.0	0.5	1.5	0.0	0.4	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.8	10.9	4.7	14.0	0.0	4.9	15.7	0.0	13.8	13.0	0.0	0.0
LnGrp LOS	A	В	A	В	A	A	В	A	В	В	A	<u> </u>
Approach Vol, veh/h		1107			361			254			4	
Approach Delay, s/veh		9.6			5.3			15.3			13.0	
Approach LOS		A			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		28.0		11.4		28.0		11.4				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		28.0		22.0		28.0		22.0				
Max Q Clear Time (g_c+l1), s		18.2		7.2		17.1		2.1				
Green Ext Time (p_c), s		1.3		0.7		4.8		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			9.6									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	۳	↑	٦	1
Traffic Vol, veh/h	700	25	100	240	20	165
Future Vol, veh/h	700	25	100	240	20	165
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storag	e,# 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	1	1	2	2	1	1
Mymt Flow	778	28	111	267	22	183

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	806	0	1267	778
Stage 1	-	-	-	-	778	-
Stage 2	-	-	-	-	489	-
Critical Hdwy	-	-	4.12	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	-	-	2.218	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	819	-	187	398
Stage 1	-	-	-	-	455	-
Stage 2	-	-	-	-	619	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	819	-	162	398
Mov Cap-2 Maneuve	r -	-	-	-	360	-
Stage 1	-	-	-	-	455	-
Stage 2	-	-	-	-	535	-

Approach	EB	WB	NE
HCM Control Delay, s	0	3	20.9
HCM LOS			С

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	360	398	-	-	819	-
HCM Lane V/C Ratio	0.062	0.461	-	-	0.136	-
HCM Control Delay (s)	15.7	21.5	-	-	10.1	-
HCM Lane LOS	С	С	-	-	В	-
HCM 95th %tile Q(veh)	0.2	2.4	-	-	0.5	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	-	×	2	~	×	ť	3	*	~	í,	¥	۰.
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	ľ	•	1	1	et			\$		1	el el	
Traffic Volume (vph)	110	1000	5	5	595	115	35	15	15	170	5	8
Future Volume (vph)	110	1000	5	5	595	115	35	15	15	170	5	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Storage Length (ft)	175		50	50		0	0		0	150		(
Storage Lanes	1		1	1		0	0		0	1		(
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Ye
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	12.4	56.5	56.5	44.1	44.1		33.5	33.5		33.5	33.5	
Total Split (%)	13.8%	62.8%	62.8%	49.0%	49.0%		37.2%	37.2%		37.2%	37.2%	
Maximum Green (s)	6.9	51.0	51.0	38.6	38.6		28.0	28.0		28.0	28.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 7	3.8											
Natural Cycle: 90												
Control Type: Actuated-U	Incoordinated	1										
Splits and Phases: 1: 0	Old Hwy 99 &	Hondoro	on Blud									
	510 T WY 33 0											

Ø1	₽ ⁰²	≯ ø₄
12.4 s	44.1s	33.5 s
A Ø6		× 08
56.5 s		33.5 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	-	×	2	~	×	۲	3	×	~	í,	*	*~
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	↑	1	ኘ	4î			4		<u>۲</u>	4	
Traffic Volume (veh/h)	110	1000	5	5	595	115	35	15	15	170	5	80
Future Volume (veh/h)	110	1000	5	5	595	115	35	15	15	170	5	80
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1870	1870	1870	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	116	1053	5	5	626	121	37	16	16	179	5	84
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	2	2	2	0	0	0	1	1	1
Cap, veh/h	149	1239	1050	246	726	140	177	75	47	356	13	226
Arrive On Green	0.08	0.66	0.66	0.48	0.48	0.48	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1795	1885	1598	533	1523	294	532	507	314	1388	91	1521
Grp Volume(v), veh/h	116	1053	5	5	0	747	69	0	0	179	0	89
Grp Sat Flow(s),veh/h/ln	1795	1885	1598	533	0	1817	1353	0	0	1388	0	1611
Q Serve(g_s), s	3.6	24.6	0.1	0.4	0.0	20.7	0.3	0.0	0.0	2.9	0.0	2.8
Cycle Q Clear(g_c), s	3.6	24.6	0.1	14.8	0.0	20.7	3.2	0.0	0.0	6.1	0.0	2.8
Prop In Lane	1.00		1.00	1.00		0.16	0.54		0.23	1.00		0.94
Lane Grp Cap(c), veh/h	149	1239	1050	246	0	867	299	0	0	356	0	239
V/C Ratio(X)	0.78	0.85	0.00	0.02	0.00	0.86	0.23	0.00	0.00	0.50	0.00	0.37
Avail Cap(c_a), veh/h	219	1699	1440	356	0	1240	816	0	0	837	0	797
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.4	7.5	3.3	17.2	0.0	13.1	21.5	0.0	0.0	22.9	0.0	21.7
Incr Delay (d2), s/veh	5.4	3.2	0.0	0.0	0.0	4.6	0.1	0.0	0.0	0.4	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.5	5.0	0.0	0.0	0.0	6.7	0.8	0.0	0.0	2.1	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	30.9	10.7	3.3	17.3	0.0	17.7	21.6	0.0	0.0	23.3	0.0	22.1
LnGrp LOS	С	В	Α	В	Α	В	С	А	А	С	Α	<u> </u>
Approach Vol, veh/h		1174			752			69			268	
Approach Delay, s/veh		12.7			17.7			21.6			22.9	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	10.2	32.5		13.9		42.7		13.9				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	6.9	38.6		28.0		51.0		28.0				
Max Q Clear Time (g_c+I1), s	5.6	22.7		5.2		26.6		8.1				
Green Ext Time (p_c), s	0.0	4.3		0.2		8.5		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			15.8									
HCM 6th LOS			В									

3.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWF
Lane Configurations		4			र्स	1	٦	¢î			4	
Traffic Vol, veh/h	2	1	5	20	1	135	125	1050	1	1	535	15
Future Vol, veh/h	2	1	5	20	1	135	125	1050	1	1	535	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	2	2	2	1	1	1	3	3	3
Mvmt Flow	2	1	5	21	1	142	132	1105	1	1	563	16

Major/Minor	Minor1		1	Minor2			Major1			Major2			
Conflicting Flow All	2015	1951	1106	1946	1943	571	579	0	0	1106	0	0	
Stage 1	1370	1370	-	573	573	-	-	-	-	-	-	-	
Stage 2	645	581	-	1373	1370	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.12	6.52	6.22	4.11	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.518	4.018	3.318	2.209	-	-	2.227	-	-	
Pot Cap-1 Maneuver	44	65	258	49	65	520	1000	-	-	628	-	-	
Stage 1	183	216	-	505	504	-	-	-	-	-	-	-	
Stage 2	464	503	-	180	214	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 28	56	258	42	56	520	1000	-	-	628	-	-	
Mov Cap-2 Maneuver	r 28	56	-	42	56	-	-	-	-	-	-	-	
Stage 1	159	187	-	438	503	-	-	-	-	-	-	-	
Stage 2	336	502	-	152	186	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	59.8	33.6	1	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	WBLn2	SEL	SET	SER
Capacity (veh/h)	628	-	-	74	43	520	1000	-	-
HCM Lane V/C Ratio	0.002	-	-	0.114	0.514	0.273	0.132	-	-
HCM Control Delay (s)	10.7	0	-	59.8	156.4	14.5	9.1	-	-
HCM Lane LOS	В	А	-	F	F	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.4	1.9	1.1	0.5	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	\mathbf{X}	2	-	×	₹.	3	×	~	<u> </u>	*	*
SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SW
<u>ک</u>	•	1	<u>ک</u>	eî 🕺		ľ	eî 🕺			\$	
1	850	250	15	340	1	185	1	50	1	2	
1	850	250	15	340	1	185	1	50	1	2	
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
125		150	150		0	150		0	0		(
1		1	1		0	1		0	0		(
25			25			25			25		
		Yes			Yes			Yes			Yes
	50			50			30			30	
	3851			1410			1160			265	
	52.5			19.2			26.4			6.0	
Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
	6			2			4			8	
6		6	2			4			8		
6	6	6	2	2		4	4		8	8	
6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
64.0	64.0	64.0	64.0	64.0		26.0	26.0		26.0	26.0	
71.1%	71.1%	71.1%	71.1%	71.1%		28.9%	28.9%		28.9%	28.9%	
58.0	58.0	58.0	58.0	58.0		22.0	22.0		22.0	22.0	
5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Min	Min	Min	Min	Min		None	None		None	None	
5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
0	0	0	0	0		0	0		0	0	
Other											
coordinated											
	1 1900 125 1 1900 125 1 25 Perm 6 60 26.0 64.0 71.1% 58.0 5.0 1.0 0.0 6.0 3.0 Min 5.0 15.0 0 Other	↑ 1 850 1 850 1900 1900 125 1 25 50 3851 52.5 Perm NA 6 6 6 6 6 6 71.1% 71.1% 58.0 5.0 5.0 5.0 1.0 1.0 0.0 0.0 6.0 6.0 6 6 6 6 5.0 5.0 5.0 5.0 1.0 1.0 0.0 0.0 3.0 3.0 Min Min 5.0 5.0 15.0 15.0 0 0	SEL SET SER 1 850 250 1 850 250 1900 1900 1900 125 150 1 1 1 1 25 50 3851 52.5 Perm NA Perm NA Perm 6 6 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 50.0 50.0 71.1% 71.1% 71.1% 58.0 58.0 58.0 5.0 5.0 5.0 1.0 1.0 1.0 0.0 0.0 6.0 6.0 6.0 6.0 71.1% 71.1% 71.1% 58.0 58.0 58.0 5.0 5.0 5.0 1.0 1.0 1.0 0.0 0.0 0.0 <td>SEL SET SER NWL 1 850 250 15 1 850 250 15 1900 1900 1900 1900 125 150 150 1 1 1 1 25 25 25 50 3851 25.5 Perm NA Perm Perm 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 71.1% 71.1% 71.1% 71.1% 71.1% 71.1% 58.0 58.0 58.0 5.0 5.0 5.0</td> <td>SEL SET SER NWL NWT 1 850 250 15 340 1900 1900 1900 1900 1900 125 150 150 150 1 1 1 1 1 25 25 25 50 50 3851 1410 52.5 19.2 Perm NA Perm Perm NA 6 6 2 2 2 6 6 6 2 2 2 6 6 2 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 50 <</td> <td>SEL SET SER NWL NWT NWR 1 850 250 15 340 1 1 850 250 15 340 1 1900 1900 1900 1900 1900 1900 125 150 150 0 0 1 1 1 0 0 25 25 25 150 150 25 25 19.2 1410 1410 52.5 19.2 19.2 19.2 19.2 Perm NA Perm Perm NA 6 6 2 2 6 6.0 6.0 6.0 6.0 6.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 64.0 64.0 64.0 64.0 64.0 71.1% 71.1% 71.1% 71.1% <td>SEL SET SER NWL NWT NWR NEL 1 850 250 15 340 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 25 25 25 25 25 25 150 50 50 50 1410 52.5 19.2 144 140 1410 1410 1410 1410 152.5 19.2 144 16 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 2 4 6 6 2 2 4 6 6</td><td>SEL SET SER NWL NWT NWR NEL NET 1 850 250 15 340 1 185 1 1 850 250 15 340 1 185 1 1900 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>SEL SER SER NWL NWR NER NER 1 850 250 15 340 1 185 1 50 1 850 250 15 340 1 185 1 50 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1800<</td><td>SEL SER NWL NWT NWR NEL NET NER SWL 1 850 250 15 340 1 185 1 50 1 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900</td><td>SEL SET SER NWL NWT NWR NET NET NER SWL SWT 1 850 250 15 340 1 185 1 50 1 2 1 850 250 15 340 1 185 1 50 1 2 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 130</td></td<></td></td>	SEL SET SER NWL 1 850 250 15 1 850 250 15 1900 1900 1900 1900 125 150 150 1 1 1 1 25 25 25 50 3851 25.5 Perm NA Perm Perm 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 71.1% 71.1% 71.1% 71.1% 71.1% 71.1% 58.0 58.0 58.0 5.0 5.0 5.0	SEL SET SER NWL NWT 1 850 250 15 340 1900 1900 1900 1900 1900 125 150 150 150 1 1 1 1 1 25 25 25 50 50 3851 1410 52.5 19.2 Perm NA Perm Perm NA 6 6 2 2 2 6 6 6 2 2 2 6 6 2 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 6 6 2 2 2 6 50 <	SEL SET SER NWL NWT NWR 1 850 250 15 340 1 1 850 250 15 340 1 1900 1900 1900 1900 1900 1900 125 150 150 0 0 1 1 1 0 0 25 25 25 150 150 25 25 19.2 1410 1410 52.5 19.2 19.2 19.2 19.2 Perm NA Perm Perm NA 6 6 2 2 6 6.0 6.0 6.0 6.0 6.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 64.0 64.0 64.0 64.0 64.0 71.1% 71.1% 71.1% 71.1% <td>SEL SET SER NWL NWT NWR NEL 1 850 250 15 340 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 25 25 25 25 25 25 150 50 50 50 1410 52.5 19.2 144 140 1410 1410 1410 1410 152.5 19.2 144 16 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 2 4 6 6 2 2 4 6 6</td> <td>SEL SET SER NWL NWT NWR NEL NET 1 850 250 15 340 1 185 1 1 850 250 15 340 1 185 1 1900 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>SEL SER SER NWL NWR NER NER 1 850 250 15 340 1 185 1 50 1 850 250 15 340 1 185 1 50 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1800<</td><td>SEL SER NWL NWT NWR NEL NET NER SWL 1 850 250 15 340 1 185 1 50 1 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900</td><td>SEL SET SER NWL NWT NWR NET NET NER SWL SWT 1 850 250 15 340 1 185 1 50 1 2 1 850 250 15 340 1 185 1 50 1 2 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 130</td></td<></td>	SEL SET SER NWL NWT NWR NEL 1 850 250 15 340 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 185 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 25 25 25 25 25 25 150 50 50 50 1410 52.5 19.2 144 140 1410 1410 1410 1410 152.5 19.2 144 16 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 4 6 6 2 2 4 6 6 2 2 4 6 6	SEL SET SER NWL NWT NWR NEL NET 1 850 250 15 340 1 185 1 1 850 250 15 340 1 185 1 1900 1900 1900 1900 1900 1900 1900 1900 125 150 150 0 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>SEL SER SER NWL NWR NER NER 1 850 250 15 340 1 185 1 50 1 850 250 15 340 1 185 1 50 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1800<</td><td>SEL SER NWL NWT NWR NEL NET NER SWL 1 850 250 15 340 1 185 1 50 1 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900</td><td>SEL SET SER NWL NWT NWR NET NET NER SWL SWT 1 850 250 15 340 1 185 1 50 1 2 1 850 250 15 340 1 185 1 50 1 2 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 130</td></td<>	SEL SER SER NWL NWR NER NER 1 850 250 15 340 1 185 1 50 1 850 250 15 340 1 185 1 50 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1800<	SEL SER NWL NWT NWR NEL NET NER SWL 1 850 250 15 340 1 185 1 50 1 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	SEL SET SER NWL NWT NWR NET NET NER SWL SWT 1 850 250 15 340 1 185 1 50 1 2 1 850 250 15 340 1 185 1 50 1 2 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 130

Splits and Phases: 3: 88th Ave & Old Hwy 99

₩ø2	¥ø4	
64 s	26 s	
₩ _{Ø6}	K8	
64 s	26 s	

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2	~	×	۲	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኘ	•	1	ሻ	4î		ሻ	eî 👘			4	
Traffic Volume (veh/h)	1	850	250	15	340	1	185	1	50	1	2	1
Future Volume (veh/h)	1	850	250	15	340	1	185	1	50	1	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	1	895	263	16	358	1	195	1	53	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	0	0	0
Cap, veh/h	676	1123	951	272	1119	3	418	5	284	137	201	79
Arrive On Green	0.60	0.60	0.60	0.60	0.60	0.60	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	1031	1885	1598	489	1879	5	1414	29	1560	205	1101	436
Grp Volume(v), veh/h	1	895	263	16	0	359	195	0	54	4	0	0
Grp Sat Flow(s),veh/h/ln	1031	1885	1598	489	0	1884	1414	0	1590	1742	0	0
Q Serve(g_s), s	0.0	16.5	3.6	1.2	0.0	4.3	5.8	0.0	1.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.3	16.5	3.6	17.6	0.0	4.3	5.9	0.0	1.3	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.98	0.25		0.25
Lane Grp Cap(c), veh/h	676	1123	951	272	0	1122	418	0	290	418	0	0
V/C Ratio(X)	0.00	0.80	0.28	0.06	0.00	0.32	0.47	0.00	0.19	0.01	0.00	0.00
Avail Cap(c_a), veh/h	1390	2429	2058	611	0	2428	852	0	777	928	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.6	7.0	4.4	13.8	0.0	4.5	17.4	0.0	15.6	15.1	0.0	0.0
Incr Delay (d2), s/veh	0.0	1.3	0.2	0.1	0.0	0.2	0.8	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	2.6	0.4	0.1	0.0	0.6	1.8	0.0	0.4	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.6	8.4	4.6	13.9	0.0	4.7	18.2	0.0	15.9	15.1	0.0	0.0
LnGrp LOS	Α	Α	Α	В	Α	Α	В	А	В	В	А	<u> </u>
Approach Vol, veh/h		1159			375			249			4	
Approach Delay, s/veh		7.5			5.1			17.7			15.1	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		32.8		12.2		32.8		12.2				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		58.0		22.0		58.0		22.0				
Max Q Clear Time (g_c+I1), s		19.6		7.9		18.5		2.1				
Green Ext Time (p_c), s		2.2		0.7		8.4		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			8.4									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	↑	1	۳	•	٦	1
Traffic Vol, veh/h	775	25	120	270	20	170
Future Vol, veh/h	775	25	120	270	20	170
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	,#0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	1	1	2	2	1	1
Mvmt Flow	816	26	126	284	21	179

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	842	0	1352	816
Stage 1	-	-	-	-	816	-
Stage 2	-	-	-	-	536	-
Critical Hdwy	-	-	4.12	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	-	-	2.218	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	794	-	166	378
Stage 1	-	-	-	-	436	-
Stage 2	-	-	-	-	589	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	794	-	140	378
Mov Cap-2 Maneuve	r –	-	-	-	337	-
Stage 1	-	-	-	-	436	-
Stage 2	-	-	-	-	495	-

Approach	EB	WB	NE
HCM Control Delay, s	0	3.2	22.1
HCM LOS			С

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	337	378	-	-	794	-
HCM Lane V/C Ratio	0.062	0.473	-	-	0.159	-
HCM Control Delay (s)	16.4	22.8	-	-	10.4	-
HCM Lane LOS	С	С	-	-	В	-
HCM 95th %tile Q(veh)	0.2	2.5	-	-	0.6	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	X	2	~	×	ť	3	×	~	í,	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	- ††	1	ሻ	∱1 ≽			- 4 >		<u>۲</u>	eî 👘	
Traffic Volume (vph)	110	1000	5	5	595	115	35	15	15	170	5	80
Future Volume (vph)	110	1000	5	5	595	115	35	15	15	170	5	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	19.0	55.0	55.0	36.0	36.0		35.0	35.0		35.0	35.0	
Total Split (%)	21.1%	61.1%	61.1%	40.0%	40.0%		38.9%	38.9%		38.9%	38.9%	
Maximum Green (s)	13.5	49.5	49.5	30.5	30.5		29.5	29.5		29.5	29.5	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	2.0	3.0	3.0	3.0	3.0		1.5	1.5		1.5	1.5	
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		15.0	15.0	16.0	16.0		23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 5	6.7											
Natural Cycle: 75												
Control Type: Actuated-U	Incoordinated											
Splits and Phases: 1: 0	Old Hwy 99 &	Henders	on Blvd									
		1010013										

1 **X** 1.16

Ø1	<i>▶</i> 02	Ø 4
19 s	36 s	35 s
≥ ø6		× 08
55 s		35 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	¥	×	2	Ť	×	ť	3	×	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	^	1	<u>۲</u>	∱1 ≱			4		ሻ	ef 👘	
Traffic Volume (veh/h)	110	1000	5	5	595	115	35	15	15	170	5	80
Future Volume (veh/h)	110	1000	5	5	595	115	35	15	15	170	5	80
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1870	1870	1870	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	116	1053	5	5	626	121	37	16	16	179	5	84
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	2	2	2	0	0	0	1	1	1
Cap, veh/h	163	2010	896	358	988	191	230	95	56	427	15	248
Arrive On Green	0.09	0.56	0.56	0.33	0.33	0.33	0.16	0.16	0.16	0.16	0.16	0.16
Sat Flow, veh/h	1795	3582	1598	533	2971	573	561	584	346	1388	91	1521
Grp Volume(v), veh/h	116	1053	5	5	374	373	69	0	0	179	0	89
Grp Sat Flow(s),veh/h/ln	1795	1791	1598	533	1777	1767	1491	0	0	1388	0	1611
Q Serve(g_s), s	2.5	7.3	0.1	0.3	7.1	7.1	0.0	0.0	0.0	2.3	0.0	2.0
Cycle Q Clear(g_c), s	2.5	7.3	0.1	0.3	7.1	7.1	2.0	0.0	0.0	4.3	0.0	2.0
Prop In Lane	1.00		1.00	1.00		0.32	0.54		0.23	1.00		0.94
Lane Grp Cap(c), veh/h	163	2010	896	358	591	587	382	0	0	427	0	263
V/C Ratio(X)	0.71	0.52	0.01	0.01	0.63	0.63	0.18	0.00	0.00	0.42	0.00	0.34
Avail Cap(c_a), veh/h	608	4446	1983	588	1359	1352	1243	0	0	1227	0	1192
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	17.6	5.4	3.9	9.0	11.3	11.3	14.5	0.0	0.0	15.6	0.0	14.8
Incr Delay (d2), s/veh	2.2	0.2	0.0	0.0	1.1	1.1	0.1	0.0	0.0	0.2	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.9	0.9	0.0	0.0	1.9	1.9	0.5	0.0	0.0	1.3	0.0	0.6
Unsig. Movement Delay, s/veh					10.1	10.1				45.0		4 = 4
LnGrp Delay(d),s/veh	19.8	5.7	3.9	9.0	12.4	12.4	14.6	0.0	0.0	15.9	0.0	15.1
LnGrp LOS	В	A	A	A	B	В	В	A	A	В	A	B
Approach Vol, veh/h		1174			752			69			268	
Approach Delay, s/veh		7.0			12.4			14.6			15.6	
Approach LOS		A			В			В			В	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.1	18.8		12.0		27.9		12.0				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	13.5	30.5		29.5		49.5		29.5				
Max Q Clear Time (g_c+I1), s	4.5	9.1		4.0		9.3		6.3				
Green Ext Time (p_c), s	0.1	4.1		0.2		8.1		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			10.1									
HCM 6th LOS			В									

2.3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations		4			र्स	1	5	≜ †₽			4îÞ		
Traffic Vol, veh/h	2	1	5	20	1	135	125	1050	1	1	535	15	
Future Vol, veh/h	2	1	5	20	1	135	125	1050	1	1	535	15	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	0	0	2	2	2	1	1	1	3	3	3	
Mvmt Flow	2	1	5	21	1	142	132	1105	1	1	563	16	

Major/Minor	Minor1		Ν	/linor2		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1654	1951	553	1390	1943	290	579	0	0	1106	0	0	
Stage 1	1370	1370	-	573	573	-	-	-	-	-	-	-	
Stage 2	284	581	-	817	1370	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.5	6.9	7.54	6.54	6.94	4.12	-	-	4.16	-	-	
Critical Hdwy Stg 1	6.5	5.5	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.5	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.52	4.02	3.32	2.21	-	-	2.23	-	-	
Pot Cap-1 Maneuver	66	65	482	102	64	707	998	-	-	621	-	-	
Stage 1	157	216	-	472	502	-	-	-	-	-	-	-	
Stage 2	705	503	-	337	212	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	• 47	56	482	89	55	707	998	-	-	621	-	-	
Mov Cap-2 Maneuver	• 47	56	-	89	55	-	-	-	-	-	-	-	
Stage 1	136	187	-	410	501	-	-	-	-	-	-	-	
Stage 2	561	502	-	288	184	-	-	-	-	-	-	-	
3													

Approach	EB	WB	SE	NW	
HCM Control Delay, s	39.4	18.1	1	0	
HCM LOS	Е	С			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	NBLn2	SEL	SET	SER
Capacity (veh/h)	621	-	-	113	86	707	998	-	-
HCM Lane V/C Ratio	0.002	-	-	0.075	0.257	0.201	0.132	-	-
HCM Control Delay (s)	10.8	0	-	39.4	60.8	11.4	9.2	-	-
HCM Lane LOS	В	Α	-	Е	F	В	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0.9	0.7	0.5	-	-

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	4	X	2	*	×	ť	3	×	~	í,	¥	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	1	- ††	1	٦	A1⊅		<u>۲</u>	eî.			\$	
Traffic Volume (vph)	1	850	250	15	340	1	185	1	50	1	2	1
Future Volume (vph)	1	850	250	15	340	1	185	1	50	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		150	150		0	150		0	0		0
Storage Lanes	1		1	1		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		50			50			30			30	
Link Distance (ft)		3851			489			1160			265	
Travel Time (s)		52.5			6.7			26.4			6.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2			4			8		
Detector Phase	6	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Total Split (s)	55.0	55.0	55.0	55.0	55.0		35.0	35.0		35.0	35.0	
Total Split (%)	61.1%	61.1%	61.1%	61.1%	61.1%		38.9%	38.9%		38.9%	38.9%	
Maximum Green (s)	49.0	49.0	49.0	49.0	49.0		31.0	31.0		31.0	31.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	15.0	15.0	15.0	15.0	15.0		15.0	15.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 4	5.7											
Natural Cycle: 55												
Control Type: Actuated-L	Incoordinated											
Splits and Phases: 3: 8	38th Ave & Ol	d Hwy 00	,									
opino anu Filases. J. C		u nwy 95	/									

 ✓
 ✓

 55 s
 35 s

 ✓
 Ø6

 55 s
 35 s

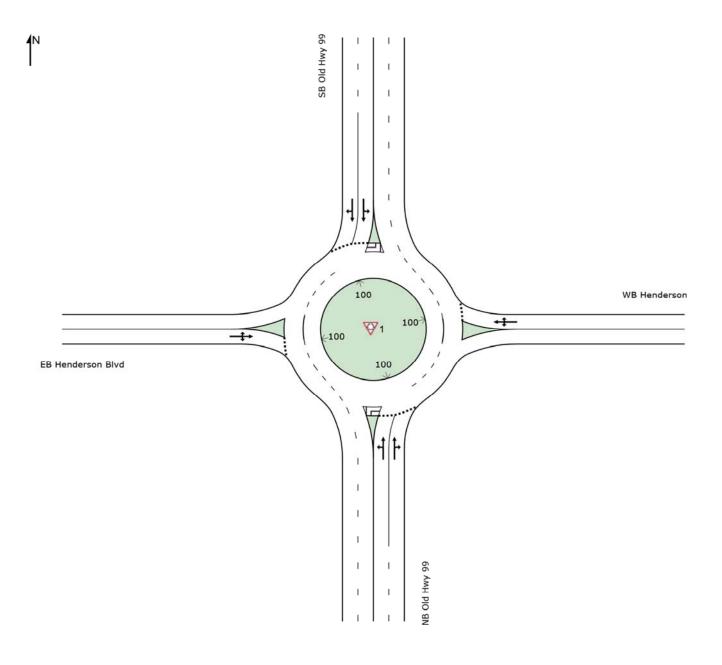
 55 s
 35 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2	~	×	ť	3	×	~	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	- ††	1	<u>۲</u>	≜ †≱		<u>۲</u>	ef 👘			- 4 >	
Traffic Volume (veh/h)	1	850	250	15	340	1	185	1	50	1	2	1
Future Volume (veh/h)	1	850	250	15	340	1	185	1	50	1	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	1	895	263	16	358	1	195	1	53	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	0	0	0
Cap, veh/h	672	1732	773	384	1772	5	508	6	304	179	222	85
Arrive On Green	0.48	0.48	0.48	0.48	0.48	0.48	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1031	3582	1598	489	3664	10	1414	29	1560	177	1138	438
Grp Volume(v), veh/h	1	895	263	16	175	184	195	0	54	4	0	0
Grp Sat Flow(s),veh/h/ln	1031	1791	1598	489	1791	1883	1414	0	1590	1753	0	0
Q Serve(g_s), s	0.0	5.4	3.2	0.7	1.7	1.7	3.9	0.0	0.9	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.8	5.4	3.2	6.1	1.7	1.7	4.0	0.0	0.9	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.98	0.25		0.25
Lane Grp Cap(c), veh/h	672	1732	773	384	866	911	508	0	310	487	0	0
V/C Ratio(X)	0.00	0.52	0.34	0.04	0.20	0.20	0.38	0.00	0.17	0.01	0.00	0.00
Avail Cap(c_a), veh/h	1796	5639	2515	917	2819	2965	1640	0	1583	1820	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.1	5.5	5.0	7.6	4.6	4.6	11.7	0.0	10.4	10.1	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.2	0.3	0.0	0.1	0.1	0.5	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.5	0.3	0.0	0.2	0.2	1.0	0.0	0.3	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.1	5.8	5.2	7.7	4.7	4.7	12.2	0.0	10.7	10.1	0.0	0.0
LnGrp LOS	Α	Α	Α	Α	Α	Α	В	А	В	В	Α	<u> </u>
Approach Vol, veh/h		1159			375			249			4	
Approach Delay, s/veh		5.6			4.8			11.8			10.1	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		21.1		10.1		21.1		10.1				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		49.0		31.0		49.0		31.0				
Max Q Clear Time (g_c+I1), s		8.1		6.0		7.4		2.1				
Green Ext Time (p_c), s		2.1		0.8		7.7		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			6.4									
HCM 6th LOS			A									

Intersection							
Int Delay, s/veh	3.9						
Movement	EBT	EBR	WBL	WBT	NEL	NER	ł
Lane Configurations	•	1	۳	•	<u>ار</u>	1	
Traffic Vol, veh/h	775	25	120	270	20	170)
Future Vol, veh/h	775	25	120	270	20	170)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	,
Storage Length	-	450	300	-	300	0)
Veh in Median Storage	, # 0	-	-	0	2	-	-
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	95	95	95	95	j
Heavy Vehicles, %	1	1	2	2	1	1	
Mvmt Flow	816	26	126	284	21	179)

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	842	0	1352	816
Stage 1	-	-	-	-	816	-
Stage 2	-	-	-	-	536	-
Critical Hdwy	-	-	4.12	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	-	-	2.218	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	794	-	166	378
Stage 1	-	-	-	-	436	-
Stage 2	-	-	-	-	589	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	794	-	140	378
Mov Cap-2 Maneuve	r -	-	-	-	337	-
Stage 1	-	-	-	-	436	-
Stage 2	-	-	-	-	495	-


Approach	EB	WB	NE
HCM Control Delay, s	0	3.2	22.1
HCM LOS			С

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	337	378	-	-	794	-
HCM Lane V/C Ratio	0.062	0.473	-	-	0.159	-
HCM Control Delay (s)	16.4	22.8	-	-	10.4	-
HCM Lane LOS	С	С	-	-	В	-
HCM 95th %tile Q(veh)	0.2	2.5	-	-	0.6	-

SITE LAYOUT

V Site: 1 [AM 2025 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:24:21 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-Henderson.sip8

MOVEMENT SUMMARY

Site: 1 [PM 2025 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2025 PM Peak Hour Site Category: (None) Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov	Turn	Demand F		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec	_	veh	ft	_	_	_	mph
3	L2	5	2.0	0.273	10.5	LOS B	1.5	37.9	0.35	0.45	0.35	36.9
8	T1	595	2.0	0.273	4.6	LOSA	1.5	38.6	0.34	0.46	0.34	36.9
18	R2	115	2.0	0.273	4.0	LOSA	1.5	38.6	0.34	0.40	0.34	35.6
Appro	acn	715	2.0	0.273	4.7	LOS A	1.5	38.6	0.34	0.46	0.34	36.7
East:	WB Hend	derson Blvd										
1	L2	170	1.0	0.306	12.0	LOS B	1.2	30.2	0.53	0.80	0.53	34.9
6	T1	5	1.0	0.306	6.2	LOS A	1.2	30.2	0.53	0.80	0.53	34.7
16	R2	80	1.0	0.306	6.1	LOS A	1.2	30.2	0.53	0.80	0.53	33.7
Appro	ach	255	1.0	0.306	10.1	LOS B	1.2	30.2	0.53	0.80	0.53	34.5
North	: SB Old	Hwy 99										
7	L2	110	1.0	0.431	10.8	LOS B	2.9	73.8	0.45	0.53	0.45	36.1
4	T1	1000	1.0	0.431	4.9	LOS A	3.0	75.4	0.44	0.49	0.44	36.3
14	R2	5	1.0	0.431	5.0	LOS A	3.0	75.4	0.44	0.46	0.44	35.2
Appro	ach	1115	1.0	0.431	5.5	LOS A	3.0	75.4	0.45	0.49	0.45	36.3
West:	EB Hend	derson Blvd										
5	L2	35	0.0	0.103	13.1	LOS B	0.4	9.6	0.62	0.83	0.62	34.7
2	T1	15	0.0	0.103	7.2	LOS A	0.4	9.6	0.62	0.83	0.62	34.5
12	R2	15	0.0	0.103	7.2	LOS A	0.4	9.6	0.62	0.83	0.62	33.6
Appro	ach	65	0.0	0.103	10.4	LOS B	0.4	9.6	0.62	0.83	0.62	34.4
All Ve	hicles	2150	1.3	0.431	5.9	LOS A	3.0	75.4	0.43	0.53	0.43	36.1

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

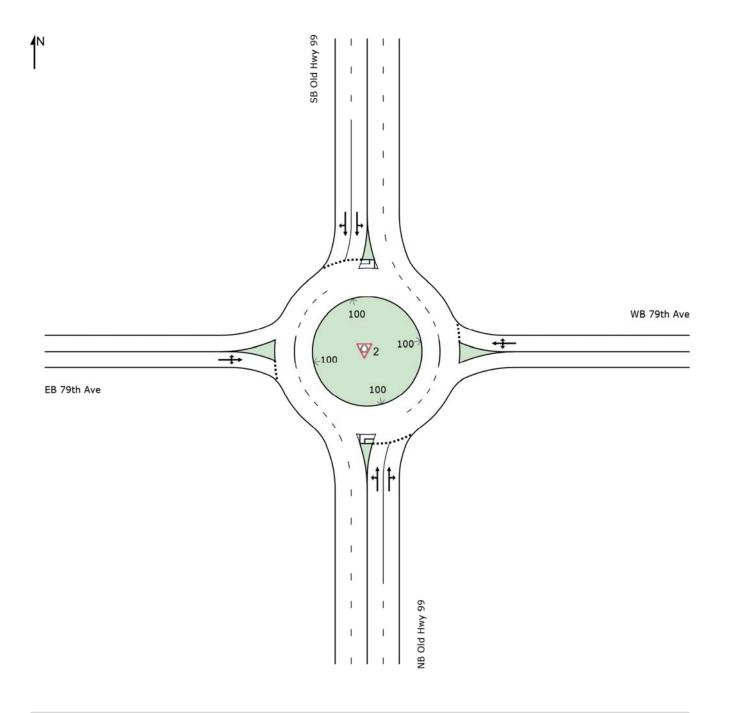
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:25:21 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-Henderson.sip8

SITE LAYOUT

W Site: 2 [AM 2040 Old Hwy 99-79th Ave - Land Use 2]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:33:50 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-79th Ave.sip8

MOVEMENT SUMMARY

V Site: 2 [PM 2025 Old Hwy 99-79th Ave - Baseline]

Projected 2025 PM Peak Hour Site Category: (None) Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h Hwy 99	%	v/c	sec	_	veh	ft	_	_	_	mph
3	L2	5	3.0	0.209	10.4	LOS B	1.0	26.2	0.29	0.43	0.29	37.1
8	T1	535	3.0	0.209	4.5	LOSA	1.0	26.5	0.23	0.43	0.23	37.1
18	R2	15	3.0	0.209	4.5	LOSA	1.0	26.5	0.28	0.43	0.28	35.8
Appro	acn	555	3.0	0.209	4.6	LOS A	1.0	26.5	0.28	0.43	0.28	37.0
East:	WB 79th	Ave										
1	L2	20	2.0	0.180	11.6	LOS B	0.6	15.9	0.45	0.68	0.45	36.6
6	T1	1	2.0	0.180	5.7	LOS A	0.6	15.9	0.45	0.68	0.45	36.5
16	R2	135	2.0	0.180	5.6	LOS A	0.6	15.9	0.45	0.68	0.45	35.4
Appro	ach	156	2.0	0.180	6.4	LOS A	0.6	15.9	0.45	0.68	0.45	35.6
North	: SB Old	Hwy 99										
7	L2	125	1.0	0.402	9.9	LOS A	2.7	68.5	0.16	0.44	0.16	37.0
4	T1	1050	1.0	0.402	4.1	LOS A	2.7	68.7	0.15	0.40	0.15	37.3
14	R2	5	1.0	0.402	4.2	LOS A	2.7	68.7	0.15	0.37	0.15	36.3
Appro	ach	1180	1.0	0.402	4.7	LOS A	2.7	68.7	0.15	0.40	0.15	37.3
West:	EB 79th	Ave										
5	L2	5	0.0	0.020	12.5	LOS B	0.1	1.6	0.52	0.70	0.52	35.6
2	T1	5	0.0	0.020	6.6	LOS A	0.1	1.6	0.52	0.70	0.52	35.4
12	R2	5	0.0	0.020	6.6	LOS A	0.1	1.6	0.52	0.70	0.52	34.4
Appro	ach	15	0.0	0.020	8.6	LOS A	0.1	1.6	0.52	0.70	0.52	35.1
All Ve	hicles	1906	1.7	0.402	4.8	LOS A	2.7	68.7	0.22	0.44	0.22	37.1

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

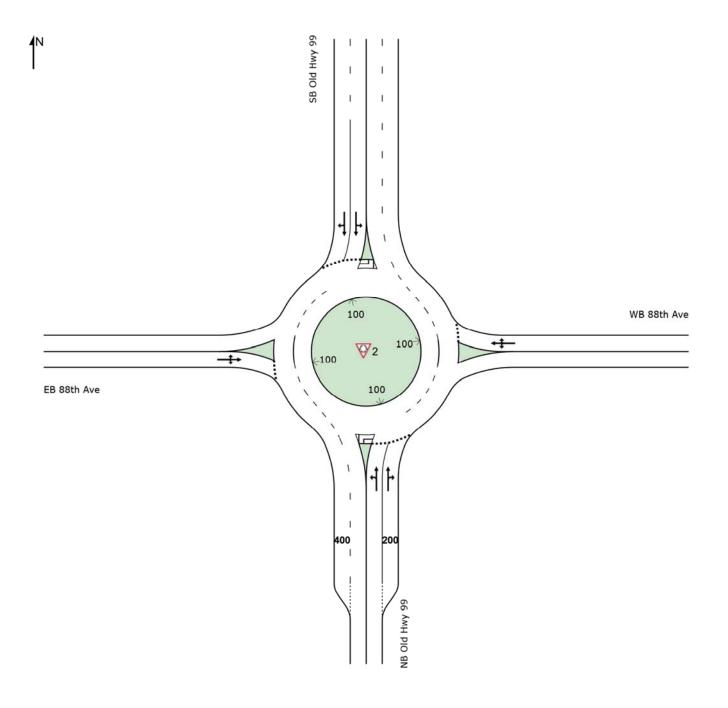
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:32:21 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-79th Ave.sip8

SITE LAYOUT

W Site: 2 [PM 2040 Old Hwy 99-88th Ave - Land Use 2]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 13, 2020 9:44:38 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-88th Ave.sip8

MOVEMENT SUMMARY

V Site: 2 [PM 2025 Old Hwy 99-88th Ave - Baseline]

Projected 2025 PM Peak Hour Site Category: (None) Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	
South	: NB Old	Hwy 99										
3	L2	15	1.0	0.138	10.5	LOS B	0.7	18.2	0.36	0.47	0.36	36.7
8	T1	340	1.0	0.138	4.6	LOS A	0.7	18.6	0.35	0.45	0.35	36.7
18	R2	1	1.0	0.138	4.7	LOS A	0.7	18.6	0.35	0.44	0.35	35.6
Appro	ach	356	1.0	0.138	4.9	LOS A	0.7	18.6	0.35	0.45	0.35	36.7
East:	WB 88th	Ave										
1	L2	1	0.0	0.008	11.2	LOS B	0.0	0.6	0.40	0.53	0.40	36.5
6	T1	5	0.0	0.008	5.4	LOS A	0.0	0.6	0.40	0.53	0.40	36.3
16	R2	1	0.0	0.008	5.3	LOS A	0.0	0.6	0.40	0.53	0.40	35.3
Appro	ach	7	0.0	0.008	6.2	LOS A	0.0	0.6	0.40	0.53	0.40	36.2
North	SB Old	Hwy 99										
7	L2	1	1.0	0.418	9.9	LOS A	2.8	70.3	0.13	0.37	0.13	37.8
4	T1	850	1.0	0.418	4.0	LOS A	2.8	70.3	0.13	0.38	0.13	37.7
14	R2	250	1.0	0.336	4.2	LOS A	2.0	50.7	0.12	0.42	0.12	36.4
Appro	ach	1101	1.0	0.418	4.1	LOS A	2.8	70.3	0.13	0.39	0.13	37.4
West:	EB 88th	Ave										
5	L2	185	2.0	0.307	13.1	LOS B	1.2	31.3	0.58	0.85	0.58	34.0
2	T1	1	2.0	0.307	7.2	LOS A	1.2	31.3	0.58	0.85	0.58	33.9
12	R2	50	2.0	0.307	7.2	LOS A	1.2	31.3	0.58	0.85	0.58	33.0
Appro	ach	236	2.0	0.307	11.8	LOS B	1.2	31.3	0.58	0.85	0.58	33.8
All Ve	hicles	1700	1.1	0.418	5.3	LOS A	2.8	70.3	0.24	0.46	0.24	36.7

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

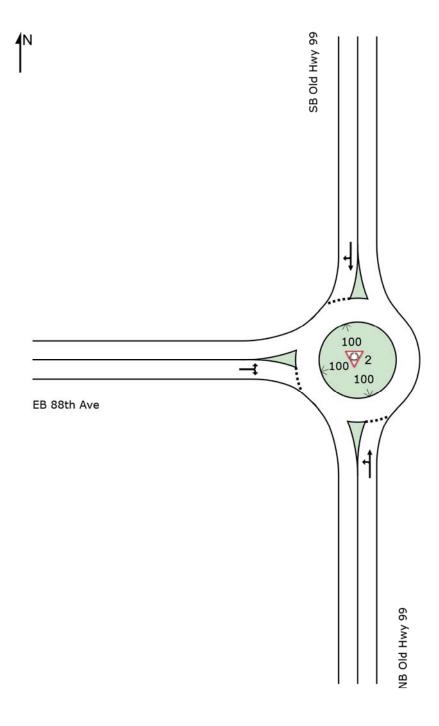
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: SCJ ALLIANCE | Processed: Monday, April 13, 2020 9:41:09 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 04 - Alternatives Analysis\Operations \Old Hwy 99-88th Ave.sip8

SITE LAYOUT

W Site: 2 [PM 2025 Old Hwy 99-93rd Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Monday, April 27, 2020 11:47:37 AM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

MOVEMENT SUMMARY

V Site: 2 [PM 2025 Old Hwy 99-93rd Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

Move	ment P	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	NB Old	Hwy 99										
3	L2	126	2.0	0.291	9.9	LOS A	2.0	49.8	0.14	0.47	0.14	36.8
8	T1	284	2.0	0.291	3.9	LOS A	2.0	49.8	0.14	0.47	0.14	36.7
Appro	ach	411	2.0	0.291	5.7	LOS A	2.0	49.8	0.14	0.47	0.14	36.7
North:	SB Old	Hwy 99										
4	T1	816	1.0	0.633	4.8	LOS A	5.4	135.3	0.46	0.48	0.46	36.5
14	R2	26	1.0	0.633	4.9	LOS A	5.4	135.3	0.46	0.48	0.46	35.4
Appro	ach	842	1.0	0.633	4.8	LOS A	5.4	135.3	0.46	0.48	0.46	36.5
West:	EB 88th	Ave										
5	L2	21	1.0	0.265	14.5	LOS B	1.8	44.7	0.80	0.82	0.80	35.1
12	R2	179	1.0	0.265	8.6	LOS A	1.8	44.7	0.80	0.82	0.80	33.9
Appro	ach	200	1.0	0.265	9.2	LOS A	1.8	44.7	0.80	0.82	0.80	34.1
All Vel	nicles	1453	1.3	0.633	5.7	LOS A	5.4	135.3	0.42	0.52	0.42	36.2

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Processed: Tuesday, May 5, 2020 12:34:58 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	X	2	~	×	ť	3	×	~	í,	¥	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኘ	†	1	ኘ	eî 🗧			\$		٦	¢Î	
Traffic Volume (vph)	160	1365	10	5	825	155	40	15	15	205	5	110
Future Volume (vph)	160	1365	10	5	825	155	40	15	15	205	5	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	2%	2%	2%	0%	0%	0%	1%	1%	1%
Shared Lane Traffic (%)												
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	19.5	106.5	106.5	87.0	87.0		33.5	33.5		33.5	33.5	
Total Split (%)	13.9%	76.1%	76.1%	62.1%	62.1%		23.9%	23.9%		23.9%	23.9%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Intersection Summary												
Area Type:	Other											
Cycle Length: 140												
Actuated Cycle Length: 135	5.4											
Natural Cycle: 140												
Control Type: Actuated-Und	coordinated	1										

Splits and Phases: 1: Old Hwy 99 & Henderson Blvd

Ø1	₩ ₀₂	×04
19.5 s	87 s	33.5 s
🔪 ø6		A_08
106.5 s		33.5 s

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	4	\mathbf{x}	2	~	×	ť	3	*	~	í,	¥	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	↑	1	<u>۲</u>	f,			4		ሻ	4	
Traffic Volume (veh/h)	160	1365	10	5	825	155	40	15	15	205	5	110
Future Volume (veh/h)	160	1365	10	5	825	155	40	15	15	205	5	110
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1870	1870	1870	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	160	1365	10	5	825	155	40	15	15	205	5	110
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	1	2	2	2	0	0	0	1	1	1
Cap, veh/h	184	1394	1181	76	913	171	138	52	40	278	12	275
Arrive On Green	0.10	0.74	0.74	0.60	0.60	0.60	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	1795	1885	1598	395	1531	288	538	292	226	1391	70	1538
Grp Volume(v), veh/h	160	1365	10	5	0	980	70	0	0	205	0	115
Grp Sat Flow(s),veh/h/ln	1795	1885	1598	395	0	1819	1055	0	0	1391	0	1608
Q Serve(g_s), s	11.8	91.8	0.2	1.6	0.0	63.4	4.0	0.0	0.0	9.2	0.0	8.5
Cycle Q Clear(g_c), s	11.8	91.8	0.2	74.2	0.0	63.4	12.5	0.0	0.0	21.8	0.0	8.5
Prop In Lane	1.00		1.00	1.00		0.16	0.57		0.21	1.00		0.96
Lane Grp Cap(c), veh/h	184	1394	1181	76	0	1084	231	0	0	278	0	287
V/C Ratio(X)	0.87	0.98	0.01	0.07	0.00	0.90	0.30	0.00	0.00	0.74	0.00	0.40
Avail Cap(c_a), veh/h	187	1418	1201	80	0	1104	274	0	0	320	0	335
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	59.4	16.5	4.6	60.6	0.0	23.8	51.5	0.0	0.0	54.8	0.0	48.8
Incr Delay (d2), s/veh	31.2	18.9	0.0	0.4	0.0	10.4	0.3	0.0	0.0	5.8	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	6.8	36.7	0.1	0.2	0.0	27.1	2.2	0.0	0.0	7.3	0.0	3.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	90.6	35.4	4.6	61.0	0.0	34.2	51.8	0.0	0.0	60.6	0.0	49.1
LnGrp LOS	F	D	Α	E	Α	С	D	А	А	E	A	<u>D</u>
Approach Vol, veh/h		1535			985			70			320	
Approach Delay, s/veh		41.0			34.3			51.8			56.5	
Approach LOS		D			С			D			E	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	19.3	85.6		29.5		104.8		29.5				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	14.0	81.5		28.0		101.0		28.0				
Max Q Clear Time (g_c+I1), s	13.8	76.2		14.5		93.8		23.8				
Green Ext Time (p_c), s	0.0	3.0		0.1		5.5		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			40.7									
HCM 6th LOS			D									

51.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	-
Lane Configurations		4			र्भ	1	٦	ef 👘			4	
Traffic Vol, veh/h	2	1	5	30	1	145	1	805	15	130	1450	
Future Vol, veh/h	2	1	5	30	1	145	1	805	15	130	1450	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Ν
Storage Length	-	-	-	-	-	300	275	-	-	-	-	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	2	2	2	1	1	1	3	3	3
Mvmt Flow	2	1	5	30	1	145	1	805	15	130	1450	1

Major/Minor	Minor1		1	Minor2			Major1		Ν	/lajor2			
Conflicting Flow All	2599	2526	813	2529	2533	1451	1451	0	0	820	0	0	
Stage 1	815	815	-	1711	1711	-	-	-	-	-	-	-	
Stage 2	1784	1711	-	818	822	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.12	6.52	6.22	4.11	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.518	4.018	3.318	2.209	-	-	2.227	-	-	
Pot Cap-1 Maneuver	17	28	382	~ 19	27	160	470	-	-	805	-	-	
Stage 1	374	394	-	115	146	-	-	-	-	-	-	-	
Stage 2	105	147	-	370	388	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 0	5	382	~ 5	5	160	470	-	-	805	-	-	
Mov Cap-2 Maneuver	r 0	5	-	~ 5	5	-	-	-	-	-	-	-	
Stage 1	373	393	-	115	24	-	-	-	-	-	-	-	
Stage 2	2	25	-	363	387	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Delay, s	178.7	\$ 743.6	0	0.8	
HCM LOS	F	F			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1V	VBLn1\	WBLn2	SEL	SET	SER	
Capacity (veh/h)	805	-	-	28	5	160	470	-	-	
HCM Lane V/C Ratio	0.161	-	-	0.286	6.2	0.906	0.002	-	-	
HCM Control Delay (s)	10.3	0	-	178.\$	3732.9	104.5	12.7	-	-	
HCM Lane LOS	В	Α	-	F	F	F	В	-	-	
HCM 95th %tile Q(veh)	0.6	-	-	0.9	5.4	6.5	0	-	-	
Notes										
~: Volume exceeds capacity	\$: De	elay exc	eeds 3	00s	+: Com	putatio	n Not De	efined	*: All n	najor volume in platoon

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

	SET ↑ 1115 1115 1900 50 3851 52.5 1.00 1% NA 6	SER 410 410 1900 150 1 Yes 1.00 1% Perm	NWL 20 20 1900 150 1 25 1.00 1%	NWT 450 450 1900 50 1410 19.2 1.00 1%	NWR 1 1900 0 0 Ves 1.00 1%	NEL 220 220 1900 150 1 25	NET 1 1 1900 30 1160 26.4 1.00	NER 60 1900 0 0 Yes	SWL 1 1900 0 0 25	SWT 2 2 1900 30 265 6,0	SWR 1 1900 0 0 Yes
Traffic Volume (vph)1Future Volume (vph)1Ideal Flow (vphpl)1900Storage Length (ft)125Storage Lanes1Taper Length (ft)25Right Turn on Red1Link Speed (mph)1Link Distance (ft)1%Travel Time (s)1%Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%7	1115 1115 1900 50 3851 52.5 1.00 1% NA	410 410 1900 150 1 Yes 1.00 1%	20 20 1900 150 1 25 1.00 1%	450 450 1900 50 1410 19.2 1.00	1 1900 0 0 Yes	220 220 1900 150 1 25	1 1900 30 1160 26.4	60 1900 0 0 Yes	1 1900 0 0	2 2 1900 30 265	1 1900 0 0
Future Volume (vph)1Ideal Flow (vphpl)1900Storage Length (ft)125Storage Lanes1Taper Length (ft)25Right Turn on Red1Link Speed (mph)1Link Distance (ft)7Travel Time (s)1%Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1%Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%Total Split (%)71.1%	1115 1900 50 3851 52.5 1.00 1% NA	410 1900 150 1 Yes 1.00 1%	20 1900 150 1 25 1.00 1%	450 1900 50 1410 19.2 1.00	1 1900 0 0 Yes	220 1900 150 1 25	1 1900 30 1160 26.4	60 1900 0 0 Yes	1 1900 0 0	2 2 1900 30 265	1 1900 0 0
Ideal Flow (vphpl)1900Storage Length (ft)125Storage Lanes1Taper Length (ft)25Right Turn on Red1Link Speed (mph)1Link Distance (ft)1Travel Time (s)1%Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%Total Split (%)71.1%	1900 50 3851 52.5 1.00 1% NA	1900 150 1 Yes 1.00 1%	1900 150 1 25 1.00 1%	1900 50 1410 19.2 1.00	1900 0 0 Yes	1900 150 1 25	1900 30 1160 26.4	1900 0 0 Yes	1900 0 0	1900 30 265	1900 0 0
Storage Length (ft)125Storage Lanes1Taper Length (ft)25Right Turn on Red1Link Speed (mph)1Link Distance (ft)1Travel Time (s)1%Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%77	50 3851 52.5 1.00 1% NA	150 1 Yes 1.00 1%	150 1 25 1.00 1%	50 1410 19.2 1.00	0 0 Yes 1.00	150 1 25	30 1160 26.4	0 0 Yes	0 0	30 265	0 0
Storage Lanes1Taper Length (ft)25Right Turn on Red1Link Speed (mph)1Link Distance (ft)1Travel Time (s)1%Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1%Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%77	3851 52.5 1.00 1% NA	1 Yes 1.00 1%	1 25 1.00 1%	1410 19.2 1.00	0 Yes 1.00	1 25	1160 26.4	0 Yes	0	265	0
Taper Length (ft)25Right Turn on RedLink Speed (mph)Link Distance (ft)Travel Time (s)Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)Turn TypePermProtected Phases6Detector Phase6Switch Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%77	3851 52.5 1.00 1% NA	Yes 1.00 1%	25 1.00 1%	1410 19.2 1.00	Yes 1.00	25	1160 26.4	Yes		265	
Right Turn on RedLink Speed (mph)Link Distance (ft)Travel Time (s)Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)Turn TypePermProtected Phases6Detector Phase6Switch Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (%)71.1%77	3851 52.5 1.00 1% NA	1.00 1%	1.00 1%	1410 19.2 1.00	1.00		1160 26.4		25	265	Yes
Link Speed (mph) Link Distance (ft) Travel Time (s) Peak Hour Factor 1.00 Heavy Vehicles (%) 1% Shared Lane Traffic (%) Turn Type Perm Protected Phases Permitted Phases 6 Detector Phase 6 Switch Phase Minimum Initial (s) 6.0 Minimum Split (s) 26.0 Total Split (s) 71.1% 7	3851 52.5 1.00 1% NA	1.00 1%	1%	1410 19.2 1.00	1.00	1.00	1160 26.4			265	Yes
Link Distance (ft) Travel Time (s) Peak Hour Factor 1.00 Heavy Vehicles (%) 1% Shared Lane Traffic (%) Turn Type Perm Protected Phases Permitted Phases 6 Detector Phase 6 Switch Phase Minimum Initial (s) 6.0 Minimum Split (s) 26.0 Total Split (%) 71.1% 7	3851 52.5 1.00 1% NA	1%	1%	1410 19.2 1.00		1.00	1160 26.4			265	
Travel Time (s)Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1%Turn TypePermProtected Phases6Detector Phase6Switch Phase6Switch Phase6.0Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	52.5 1.00 1% NA	1%	1%	19.2 1.00		1.00	26.4				
Peak Hour Factor1.00Heavy Vehicles (%)1%Shared Lane Traffic (%)1%Turn TypePermProtected Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	1.00 1% NA	1%	1%	1.00		1.00				60	
Heavy Vehicles (%)1%Shared Lane Traffic (%)Turn TypeProtected PhasesPermitted PhasesPermitted Phases6Detector Phase6Switch PhaseMinimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	1% NA	1%	1%			1.00	4 00				
Shared Lane Traffic (%)Turn TypePermProtected Phases6Permitted Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	NA			1%	1%		1.00	1.00	1.00	1.00	1.00
Turn TypePermProtected Phases6Permitted Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%		Perm			. / •	2%	2%	2%	0%	0%	0%
Protected PhasesPermitted Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%		Perm									
Permitted Phases6Detector Phase6Switch Phase6Minimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	6		Perm	NA		Perm	NA		Perm	NA	
Detector Phase6Switch PhaseMinimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%	-			2			4			8	
Switch PhaseMinimum Initial (s)6.0Minimum Split (s)26.0Total Split (s)64.0Total Split (%)71.1%		6	2			4			8		
Minimum Initial (s) 6.0 Minimum Split (s) 26.0 Total Split (s) 64.0 Total Split (%) 71.1%	6	6	2	2		4	4		8	8	
Minimum Split (s) 26.0 Total Split (s) 64.0 Total Split (%) 71.1%											
Total Split (s) 64.0 Total Split (%) 71.1% 7	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Total Split (%) 71.1% 7	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
,	64.0	64.0	64.0	64.0		26.0	26.0		26.0	26.0	
$\mathbf{V}_{\mathbf{r}} \parallel_{\mathbf{r}} \dots \mathbf{T}_{\mathbf{r}} = \mathbf{r} \left(\mathbf{r} \right) \qquad \mathbf{r} 0$	71.1%	71.1%	71.1%	71.1%		28.9%	28.9%		28.9%	28.9%	
Yellow Time (s) 5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
All-Red Time (s) 1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s) 0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s) 6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode Min	Min	Min	Min	Min		None	None		None	None	
Intersection Summary											
Area Type: Other											
Cycle Length: 90											
Actuated Cycle Length: 82.1											
Natural Cycle: 90											
Control Type: Actuated-Uncoordinated											

Splits and Phases: 3: 88th Ave & Old Hwy 99

× ø2	≫ Ø4
64 s	26 s
× 06	× 08
64 s	26 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	4	X	2		×	۲	3	×	~	í,	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦.	↑	1	ሻ	4		ሻ	4Î			- ↔	
Traffic Volume (veh/h)	1	1115	410	20	450	1	220	1	60	1	2	1
Future Volume (veh/h)	1	1115	410	20	450	1	220	1	60	1	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	1	1115	410	20	450	1	220	1	60	1	2	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	0	0	0
Cap, veh/h	638	1259	1067	169	1256	3	370	5	293	113	195	81
Arrive On Green	0.67	0.67	0.67	0.67	0.67	0.67	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	947	1885	1598	344	1880	4	1414	26	1563	253	1040	431
Grp Volume(v), veh/h	1	1115	410	20	0	451	220	0	61	4	0	0
Grp Sat Flow(s),veh/h/ln	947	1885	1598	344	0	1884	1414	0	1589	1723	0	0
Q Serve(g_s), s	0.0	33.2	7.9	3.5	0.0	7.2	10.2	0.0	2.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	7.2	33.2	7.9	36.6	0.0	7.2	10.3	0.0	2.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.98	0.25		0.25
Lane Grp Cap(c), veh/h	638	1259	1067	169	0	1258	370	0	298	388	0	0
V/C Ratio(X)	0.00	0.89	0.38	0.12	0.00	0.36	0.59	0.00	0.20	0.01	0.00	0.00
Avail Cap(c_a), veh/h	802	1585	1343	228	0	1585	556	0	507	607	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.6	9.3	5.1	24.2	0.0	5.0	26.9	0.0	23.7	22.8	0.0	0.0
Incr Delay (d2), s/veh	0.0	5.4	0.2	0.3	0.0	0.2	1.5	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	9.0	1.5	0.3	0.0	1.6	3.5	0.0	0.8	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	6.6	14.7	5.3	24.5	0.0	5.2	28.5	0.0	24.0	22.8	0.0	0.0
LnGrp LOS	A	В	A	С	A	A	С	A	С	С	A	A
Approach Vol, veh/h		1526			471			281			4	
Approach Delay, s/veh		12.2			6.0			27.5			22.8	
Approach LOS		В			А			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		52.1		16.9		52.1		16.9				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		58.0		22.0		58.0		22.0				
Max Q Clear Time (g_c+l1), s		38.6		12.3		35.2		2.1				
Green Ext Time (p_c), s		2.7		0.7		10.9		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			12.8									
HCM 6th LOS			В									

Intersection							
Int Delay, s/veh	5.3						
Movement	EBT	EBR	WBL	WBT	NEL	NER	2
Lane Configurations	•	1	<u>۲</u>	•	۲.	1	ſ
Traffic Vol, veh/h	1025	30	175	375	20	185	5
Future Vol, veh/h	1025	30	175	375	20	185	;
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	ę
Storage Length	-	450	300	-	300	0)
Veh in Median Storage	, # 0	-	-	0	2	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	1	1	2	2	1	1	I
Mvmt Flow	1025	30	175	375	20	185	;

Major/Minor	Major1	Ма	ajor2		Minor1								
Conflicting Flow All	0	0 ^	1055	0	1750	1025		-					
Stage 1	-	-	-	-	1025	-							
Stage 2	-	-	-	-	725	-							
Critical Hdwy	-	-	4.12	-	6.41	6.21							
Critical Hdwy Stg 1	-	-	-	-	5.41	-							
Critical Hdwy Stg 2	-	-	-	-	5.41	-							
Follow-up Hdwy	-	- 2	.218	-	3.509	3.309							
Pot Cap-1 Maneuver	-	-	660	-	95	287							
Stage 1	-	-	-	-	348	-							
Stage 2	-	-	-	-	481	-							
Platoon blocked, %	-	-		-									
Mov Cap-1 Maneuve	r -	-	660	-	70	287							
Mov Cap-2 Maneuve	۰ ۲ -	-	-	-	244	-							
Stage 1	-	-	-	-	348	-							
Stage 2	-	-	-	-	354	-							

Approach	EB	WB	NE
HCM Control Delay, s	0	3.9	36.1
HCM LOS			E

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	244	287	-	-	660	-
HCM Lane V/C Ratio	0.082	0.645	-	-	0.265	-
HCM Control Delay (s)	21.1	37.7	-	-	12.4	-
HCM Lane LOS	С	E	-	-	В	-
HCM 95th %tile Q(veh)	0.3	4.1	-	-	1.1	-

Lanes, Volumes, Timings 1: Old Hwy 99 & Henderson Blvd

	4	×	2	~	×	ť	3	×	~	6	×	×
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	1	<u></u>	1	٦	A1⊅			\$		۲.	el 🗧	
Traffic Volume (vph)	160	1365	10	5	825	155	40	15	15	205	5	110
Future Volume (vph)	160	1365	10	5	825	155	40	15	15	205	5	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		50	50		0	0		0	150		0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1810			1652			415			1137	
Travel Time (s)		24.7			22.5			9.4			25.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	2%	2%	2%	0%	0%	0%	1%	1%	1%
Shared Lane Traffic (%)												
Turn Type	Prot	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1	6			2			4			8	
Permitted Phases			6	2			4			8		
Detector Phase	1	6	6	2	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.5	25.5	25.5	26.5	26.5		33.5	33.5		33.5	33.5	
Total Split (s)	15.0	46.5	46.5	31.5	31.5		33.5	33.5		33.5	33.5	
Total Split (%)	18.8%	58.1%	58.1%	39.4%	39.4%		41.9%	41.9%		41.9%	41.9%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5			5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	Min	Min	Min	Min		None	None		None	None	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 62	3											
Natural Cycle: 80												
Control Type: Actuated-Ur	coordinated	ł										

Splits and Phases: 1: Old Hwy 99 & Henderson Blvd

Ø1	A22	X Ø4	
15 s	31.5 s	33.5 s	
≥ Ø6		K _{Ø8}	
46.5 s		33.5 s	

HCM 6th Signalized Intersection Summary 1: Old Hwy 99 & Henderson Blvd

	¥	×	2	Ť	×	ť	7	×	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	††	1	<u>۲</u>	≜ †≱			4		ሻ	4	
Traffic Volume (veh/h)	160	1365	10	5	825	155	40	15	15	205	5	110
Future Volume (veh/h)	160	1365	10	5	825	155	40	15	15	205	5	110
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1870	1870	1870	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	160	1365	10	5	825	155	40	15	15	205	5	110
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	1	2	2	2	0	0	0	1	1	1
Cap, veh/h	205	2158	963	290	1119	210	205	76	45	413	12	262
Arrive On Green	0.11	0.60	0.60	0.37	0.37	0.37	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1795	3582	1598	395	2985	561	520	449	264	1391	70	1538
Grp Volume(v), veh/h	160	1365	10	5	491	489	70	0	0	205	0	115
Grp Sat Flow(s),veh/h/ln	1795	1791	1598	395	1777	1769	1233	0	0	1391	0	1608
Q Serve(g_s), s	4.2	11.8	0.1	0.4	11.6	11.6	0.3	0.0	0.0	2.4	0.0	3.1
Cycle Q Clear(g_c), s	4.2	11.8	0.1	1.2	11.6	11.6	3.4	0.0	0.0	5.8	0.0	3.1
Prop In Lane	1.00		1.00	1.00		0.32	0.57		0.21	1.00		0.96
Lane Grp Cap(c), veh/h	205	2158	963	290	666	663	327	0	0	413	0	274
V/C Ratio(X)	0.78	0.63	0.01	0.02	0.74	0.74	0.21	0.00	0.00	0.50	0.00	0.42
Avail Cap(c_a), veh/h	353	3035	1354	354	955	951	922	0	0	982	0	931
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	20.8	6.2	3.8	10.1	13.1	13.1	17.5	0.0	0.0	18.9	0.0	17.9
Incr Delay (d2), s/veh	2.4	0.3	0.0	0.0	1.8	1.8	0.1	0.0	0.0	0.3	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.6	1.8	0.0	0.0	3.5	3.5	0.6	0.0	0.0	2.0	0.0	1.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	23.3	6.5	3.8	10.1	14.9	14.9	17.6	0.0	0.0	19.2	0.0	18.3
LnGrp LOS	С	А	Α	В	В	В	В	Α	А	В	Α	B
Approach Vol, veh/h		1535			985			70			320	
Approach Delay, s/veh		8.2			14.8			17.6			18.9	
Approach LOS		А			В			В			В	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	11.0	23.6		13.7		34.7		13.7				
Change Period (Y+Rc), s	5.5	5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s	9.5	26.0		28.0		41.0		28.0				
Max Q Clear Time (g_c+I1), s	6.2	13.6		5.4		13.8		7.8				
Green Ext Time (p_c), s	0.1	4.6		0.2		10.7		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									

35.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4			र्भ	1	۲	A			4î h	
Traffic Vol, veh/h	2	1	5	30	1	145	1	805	15	130	1450	1
Future Vol, veh/h	2	1	5	30	1	145	1	805	15	130	1450	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	300	275	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	2	2	2	1	1	1	3	3	3
Mvmt Flow	2	1	5	30	1	145	1	805	15	130	1450	1

Major/Minor	Minor1		Ν	Minor2		M	Major1		Ν	lajor2			
Conflicting Flow All	1801	2526	410	2116	2533	726	1451	0	0	820	0	0	
Stage 1	815	815	-	1711	1711	-	-	-	-	-	-	-	
Stage 2	986	1711	-	405	822	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.5	6.9	7.54	6.54	6.94	4.12	-	-	4.16	-	-	
Critical Hdwy Stg 1	6.5	5.5	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.5	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.52	4.02	3.32	2.21	-	-	2.23	-	-	
Pot Cap-1 Maneuver	51	28	596	~ 29	27	367	468	-	-	798	-	-	
Stage 1	342	394	-	94	144	-	-	-	-	-	-	-	
Stage 2	270	147	-	593	386	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 8	4	596	~ 7	4	367	468	-	-	798	-	-	
Mov Cap-2 Maneuver	r 8	4	-	~ 7	4	-	-	-	-	-	-	-	
Stage 1	341	393	-	94	23	-	-	-	-	-	-	-	
Stage 2	25	23	-	585	385	-	-	-	-	-	-	-	

Approach	EB	WB	SE	NW	
HCM Control Dela	ay, s\$ 369.1	\$ 468.9	0	4.2	
HCM LOS	F	F			

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1	WBLn1\	WBLn2	SEL	SET	SER	
Capacity (veh/h)	798	-	-	16	7	367	468	-	-	
HCM Lane V/C Ratio	0.163	-	-	0.5	4.429	0.395	0.002	-	-	
HCM Control Delay (s)	10.4	3.7	-\$	369.\$	2563.5	21.1	12.7	-	-	
HCM Lane LOS	В	Α	-	F	F	С	В	-	-	
HCM 95th %tile Q(veh)	0.6	-	-	1.3	5.2	1.8	0	-	-	
Notes										
-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation No					n Not De	efined	*: All n	najor volume in platoon		

Lanes, Volumes, Timings 3: 88th Ave & Old Hwy 99

Lane Group SEL SET SER NWL NWT NWR NEL NET NER SWL SWT Lane Configurations ↑ <		4	×	2	~	×	ť	3	×	~	í,	×	×
Traffic Volume (vph) 1 1115 410 20 450 1 220 1 60 1 2 Future Volume (vph) 1 1115 410 20 450 1 220 1 60 1 2 Ideal Flow (vph) 1900 <t< th=""><th>Lane Group</th><th>SEL</th><th></th><th></th><th></th><th></th><th>NWR</th><th></th><th>NET</th><th>NER</th><th>SWL</th><th>SWT</th><th>SWR</th></t<>	Lane Group	SEL					NWR		NET	NER	SWL	SWT	SWR
Future Volume (vph) 1 1115 410 20 450 1 220 1 60 1 2 Ideal Flow (vphp) 1900	Lane Configurations	٦	- † †	1	٦	A1⊅		ሻ	el 🕺			\$	
Ideal Flow (vphp) 1900 19	Traffic Volume (vph)	1	1115	410	20	450	1	220	1		1	2	1
Storage Length (ft) 125 150 150 0 150 0 0 0 Storage Lanes 1 1 1 0 1 0 0 0 Taper Length (ft) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 25 25 26 25 26 25 26 25 26	Future Volume (vph)	1	1115	410	20	450	1	220	1	60	1	2	1
Storage Lanes 1 1 1 1 0 1 0 0 Tape Length (ft) 25 25 25 25 25 25 25 25 25 25 25 25 25 26 25 26 25 26 25 26 25 26 26 26 265 30 30 100 <td>Ideal Flow (vphpl)</td> <td>1900</td>	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (ft) 25 25 25 25 Right Turn on Red Yes Yes Yes Yes Link Speed (mph) 50 50 30 30 Link Distance (ft) 3851 497 1160 265 Travel Time (s) 52.5 6.8 26.4 6.0 Peak Hour Factor 1.00 <td>Storage Length (ft)</td> <td>125</td> <td></td> <td>150</td> <td>150</td> <td></td> <td>0</td> <td>150</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>	Storage Length (ft)	125		150	150		0	150		0	0		0
Right Turn on Red Yes Yes Yes Yes Link Speed (mph) 50 50 30 30 Link Distance (ft) 3851 497 1160 265 Travel Time (s) 52.5 6.8 26.4 6.0 Peak Hour Factor 1.00	Storage Lanes			1			0			0	0		0
Link Speed (mph) 50 50 30 30 Link Distance (ft) 3851 497 1160 265 Travel Time (s) 52.5 6.8 26.4 6.0 Peak Hour Factor 1.00	Taper Length (ft)	25			25			25			25		
Link Distance (ft) 3851 497 1160 265 Travel Time (s) 52.5 6.8 26.4 6.0 Peak Hour Factor 1.00 1.0 1.0 1.0 1.0 <t< td=""><td>Right Turn on Red</td><td></td><td></td><td>Yes</td><td></td><td></td><td>Yes</td><td></td><td></td><td>Yes</td><td></td><td></td><td>Yes</td></t<>	Right Turn on Red			Yes			Yes			Yes			Yes
Travel Time (s) 52.5 6.8 26.4 6.0 Peak Hour Factor 1.00 NA Perm NA Subition Subition Subition Subition Subitio	Link Speed (mph)					50			30			30	
Peak Hour Factor 1.00 1.01 1.01 1.01 1.01	Link Distance (ft)		3851			497			1160			265	
Heavy Vehicles (%) 1% 1% 1% 1% 1% 2% 2% 2% 0% 0% Shared Lane Traffic (%) Turn Type Perm NA Sign 53<	Travel Time (s)											6.0	
Shared Lane Traffic (%) Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 6 2 4 8 8 Permitted Phases 6 6 2 4 8 8 Detector Phase 6 6 2 2 4 8 8 Switch Phase 6 6 0 6.0 20.0 22.0 32.0 <td>Peak Hour Factor</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td>	Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA Protected Phases 6 2 4 8 8 Permitted Phases 6 6 2 4 8 8 Detector Phase 6 6 6 2 4 4 8 8 Switch Phase	Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	0%	0%	0%
Protected Phases 6 2 4 8 Permitted Phases 6 6 2 4 8 Detector Phase 6 6 2 2 4 4 8 Switch Phase 6 6 6 2 2 4 4 8 8 Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 26.0 32.0 32.0 32.0 32.0 3	Shared Lane Traffic (%)												
Permitted Phases 6 6 2 4 8 Detector Phase 6 6 2 2 4 4 8 8 Switch Phase 6 6 0 2 4 4 8 8 Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 26.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30.0 3.0 3.0	Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Detector Phase 6 6 6 2 2 4 4 8 8 Switch Phase Minimum Initial (s) 6.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Protected Phases		6			2			4			8	
Switch Phase Minimum Initial (s) 6.0 26.0 20	Permitted Phases	6		6	2			4			8		
Minimum Initial (s) 6.0 7.0	Detector Phase	6	6	6	2	2		4	4		8	8	
Minimum Split (s) 26.0 26.0 26.0 26.0 24.0 24.0 26.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <td>Switch Phase</td> <td></td>	Switch Phase												
Total Split (s) 58.0 58.0 58.0 58.0 58.0 58.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Total Split (%) 64.4% 64.4% 64.4% 64.4% 35.6% 35.6% 35.6% 35.6% Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 3.0 <td< td=""><td>Minimum Split (s)</td><td>26.0</td><td>26.0</td><td>26.0</td><td>26.0</td><td>26.0</td><td></td><td>24.0</td><td>24.0</td><td></td><td>26.0</td><td>26.0</td><td></td></td<>	Minimum Split (s)	26.0	26.0	26.0	26.0	26.0		24.0	24.0		26.0	26.0	
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 3.0	Total Split (s)	58.0	58.0	58.0	58.0	58.0		32.0	32.0		32.0	32.0	
All-Red Time (s) 1.0 <td>Total Split (%)</td> <td>64.4%</td> <td>64.4%</td> <td>64.4%</td> <td>64.4%</td> <td>64.4%</td> <td></td> <td>35.6%</td> <td>35.6%</td> <td></td> <td>35.6%</td> <td>35.6%</td> <td></td>	Total Split (%)	64.4%	64.4%	64.4%	64.4%	64.4%		35.6%	35.6%		35.6%	35.6%	
Lost Time Adjust (s) 0.0 4.0	Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		3.0	3.0		3.0	3.0	
Total Lost Time (s) 6.0 6.0 6.0 6.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Recall Mode Min Min Min Min None None None None Intersection Summary Area Type: Other Cycle Length: 90 Actuated Cycle Length: 60.1 Vertice None None	All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lead/Lag Lead-Lag Optimize? Recall Mode Min Min Min Min Min None None None None None Intersection Summary Area Type: Other Cycle Length: 90 Actuated Cycle Length: 60.1	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Lead-Lag Optimize? Recall Mode Min Min Min Min None None None None None Intersection Summary	Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		4.0	4.0			4.0	
Recall Mode Min Min Min Min Min None None None None Intersection Summary	Lead/Lag												
Intersection Summary Area Type: Other Cycle Length: 90 Other Actuated Cycle Length: 60.1 Other	Lead-Lag Optimize?												
Area Type: Other Cycle Length: 90 Actuated Cycle Length: 60.1	Recall Mode	Min	Min	Min	Min	Min		None	None		None	None	
Cycle Length: 90 Actuated Cycle Length: 60.1													
Actuated Cycle Length: 60.1		Other											
Natural Cycle: 55		.1											
Control Type: Actuated-Uncoordinated	Control Type: Actuated-Ur	ncoordinated	1										

Splits and Phases: 3: 88th Ave & Old Hwy 99

× ₀₂	≯ ø₄
58 s	32 s
× Ø6	× 08
58 s	32 s

HCM 6th Signalized Intersection Summary 3: 88th Ave & Old Hwy 99

	¥	×	2	Ť	×	ť	7	×	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>۲</u>	- ††	1	<u>۲</u>	≜ †≱		- ሽ	ef 👘			- 4 >	
Traffic Volume (veh/h)	1	1115	410	20	450	1	220	1	60	1	2	1
Future Volume (veh/h)	1	1115	410	20	450	1	220	1	60	1	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	1	1115	410	20	450	1	220	1	60	1	2	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	0	0	0
Cap, veh/h	637	1774	884	281	2029	5	466	5	324	151	227	90
Arrive On Green	0.55	0.55	0.55	0.55	0.55	0.55	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	947	3205	1598	344	3666	8	1414	26	1563	211	1093	435
Grp Volume(v), veh/h	1	1115	410	20	220	231	220	0	61	4	0	0
Grp Sat Flow(s),veh/h/ln	947	1602	1598	344	1791	1884	1414	0	1589	1739	0	0
Q Serve(g_s), s	0.0	10.0	6.4	1.8	2.6	2.6	6.0	0.0	1.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.6	10.0	6.4	11.7	2.6	2.6	6.1	0.0	1.3	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.98	0.25		0.25
Lane Grp Cap(c), veh/h	637	1774	884	281	991	1043	466	0	330	468	0	0
V/C Ratio(X)	0.00	0.63	0.46	0.07	0.22	0.22	0.47	0.00	0.19	0.01	0.00	0.00
Avail Cap(c_a), veh/h	1290	3983	1985	518	2226	2341	1119	0	1063	1235	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.4	6.4	5.6	10.4	4.8	4.8	15.5	0.0	13.7	13.2	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.4	0.4	0.1	0.1	0.1	0.7	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	1.3	0.9	0.1	0.4	0.4	1.7	0.0	0.4	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.4	6.8	6.0	10.5	4.9	4.9	16.3	0.0	13.9	13.2	0.0	0.0
LnGrp LOS	A	A	A	В	A	A	В	Α	В	В	A	A
Approach Vol, veh/h		1526			471			281			4	
Approach Delay, s/veh		6.6			5.1			15.8			13.2	
Approach LOS		A			A			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		29.2		12.7		29.2		12.7				
Change Period (Y+Rc), s		6.0		4.0		6.0		4.0				
Max Green Setting (Gmax), s		52.0		28.0		52.0		28.0				
Max Q Clear Time (g_c+11) , s		13.7		8.1		12.0		2.1				
Green Ext Time (p_c), s		2.8		0.9		11.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			7.4									
HCM 6th LOS			A									
			~									

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NEL	NER
Lane Configurations	•	1	۳	•	۳	1
Traffic Vol, veh/h	1025	30	175	375	20	185
Future Vol, veh/h	1025	30	175	375	20	185
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	450	300	-	300	0
Veh in Median Storage	e, # 0	-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	1	1	2	2	1	1
Mvmt Flow						

Major/Minor	Major1	Ν	/lajor2		Minor1	
Conflicting Flow All	0	0	1055	0	1750	1025
Stage 1	-	-	-	-	1025	-
Stage 2	-	-	-	-	725	-
Critical Hdwy	-	-	4.12	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-		5.41	-
Follow-up Hdwy	-	-	2.218	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	660	-	95	287
Stage 1	-	-	-	-	348	-
Stage 2	-	-	-	-	481	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	660	-	70	287
Mov Cap-2 Maneuve	r -	-	-	-	244	-
Stage 1	-	-	-	-	348	-
Stage 2	-	-	-	-	354	-

Approach	EB	WB	NE
HCM Control Delay, s	0	3.9	36.1
HCM LOS			E

Minor Lane/Major Mvmt	NELn1	NELn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	244	287	-	-	660	-
HCM Lane V/C Ratio	0.082	0.645	-	-	0.265	-
HCM Control Delay (s)	21.1	37.7	-	-	12.4	-
HCM Lane LOS	С	Е	-	-	В	-
HCM 95th %tile Q(veh)	0.3	4.1	-	-	1.1	-

V Site: 1 [PM 2040 Old Hwy 99-Henderson Blvd - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	Average Speed mph	
South	: NB Old	Hwy 99											
3	L2	5	2.0	0.361	10.8	LOS B	2.2	56.8	0.44	0.48	0.44	36.5	
8	T1	825	2.0	0.361	4.9	LOS A	2.3	59.0	0.43	0.48	0.43	36.5	
18	R2	155	2.0	0.361	4.9	LOS A	2.3	59.0	0.42	0.48	0.42	35.4	
Appro	ach	985	2.0	0.361	4.9	LOS A	2.3	59.0	0.43	0.48	0.43	36.4	
East:	WB Henc	lerson Blvd											
1	L2	205	1.0	0.372	12.4	LOS B	1.7	41.8	0.61	0.85	0.64	34.7	
6	T1	5	1.0	0.372	6.5	LOS A	1.7	41.8	0.61	0.85	0.64	34.6	
16	R2	110	1.0	0.372	6.5	LOS A	1.7	41.8	0.61	0.85	0.64	33.6	
Appro	ach	320	1.0	0.372	10.3	LOS B	1.7	41.8	0.61	0.85	0.64	34.3	
North:	SB Old I	Hwy 99											
7	L2	160	1.0	0.562	11.1	LOS B	4.6	115.0	0.57	0.56	0.57	35.7	
4	T1	1365	1.0	0.562	5.1	LOS A	4.7	119.5	0.55	0.51	0.55	35.9	
14	R2	10	1.0	0.562	5.2	LOS A	4.7	119.5	0.54	0.48	0.54	34.9	
Appro	ach	1535	1.0	0.562	5.7	LOS A	4.7	119.5	0.56	0.52	0.56	35.9	
West:	EB Hend	lerson Blvd											
5	L2	40	0.0	0.118	13.8	LOS B	0.5	12.8	0.72	0.87	0.72	34.2	
2	T1	15	0.0	0.118	7.9	LOS A	0.5	12.8	0.72	0.87	0.72	34.1	
12	R2	15	0.0	0.118	7.9	LOS A	0.5	12.8	0.72	0.87	0.72	33.1	
Appro	ach	70	0.0	0.118	11.3	LOS B	0.5	12.8	0.72	0.87	0.72	34.0	
All Ve	hicles	2910	1.3	0.562	6.1	LOS A	4.7	119.5	0.52	0.55	0.53	35.8	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:18:21 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-Henderson.sip8

V Site: 2 [PM 2040 Old Hwy 99-79th Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles Mov Turn Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No. Average													
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles		
South	: NB Old	Hwy 99											
3	L2	5	3.0	0.288	10.4	LOS B	1.6	40.1	0.32	0.44	0.32	37.0	
8	T1	805	3.0	0.288	4.5	LOS A	1.6	40.8	0.31	0.43	0.31	37.0	
18	R2	15	3.0	0.288	4.6	LOS A	1.6	40.8	0.30	0.42	0.30	35.7	
Appro	ach	825	3.0	0.288	4.5	LOS A	1.6	40.8	0.30	0.43	0.30	36.9	
East:	WB 79th	Ave											
1	L2	30	2.0	0.197	11.8	LOS B	0.7	18.3	0.52	0.72	0.52	36.3	
6	T1	1	2.0	0.197	6.0	LOS A	0.7	18.3	0.52	0.72	0.52	36.2	
16	R2	145	2.0	0.197	5.9	LOS A	0.7	18.3	0.52	0.72	0.52	35.1	
Appro	ach	176	2.0	0.197	6.9	LOS A	0.7	18.3	0.52	0.72	0.52	35.3	
North	SB Old	Hwy 99											
7	L2	130	1.0	0.507	10.0	LOS B	4.1	103.4	0.22	0.43	0.22	37.0	
4	T1	1450	1.0	0.507	4.1	LOS A	4.1	104.0	0.21	0.40	0.21	37.2	
14	R2	5	1.0	0.507	4.3	LOS A	4.1	104.0	0.20	0.37	0.20	36.1	
Appro	ach	1585	1.0	0.507	4.6	LOS A	4.1	104.0	0.21	0.40	0.21	37.2	
West:	EB 79th	Ave											
5	L2	5	0.0	0.020	13.1	LOS B	0.1	1.9	0.61	0.73	0.61	35.2	
2	T1	5	0.0	0.020	7.2	LOS A	0.1	1.9	0.61	0.73	0.61	35.1	
12	R2	5	0.0	0.020	7.2	LOS A	0.1	1.9	0.61	0.73	0.61	34.1	
Appro	ach	15	0.0	0.020	9.2	LOS A	0.1	1.9	0.61	0.73	0.61	34.8	
All Ve	hicles	2601	1.7	0.507	4.8	LOS A	4.1	104.0	0.26	0.43	0.26	36.9	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:24:09 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-79th Ave.sip8

V Site: 2 [PM 2040 Old Hwy 99-88th Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles Mov Turn Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No. Average													
Mov ID	Turn	Demand ∣ Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles		
South	: NB Old	Hwy 99											
3	L2	20	1.0	0.174	10.6	LOS B	1.0	24.6	0.41	0.48	0.41	36.5	
8	T1	450	1.0	0.174	4.7	LOS A	1.0	25.8	0.40	0.46	0.40	36.6	
18	R2	1	1.0	0.174	4.8	LOS A	1.0	25.8	0.39	0.44	0.39	35.4	
Appro	ach	471	1.0	0.174	4.9	LOS A	1.0	25.8	0.40	0.46	0.40	36.6	
East:	WB 88th	Ave											
1	L2	1	0.0	0.007	11.2	LOS B	0.0	0.6	0.44	0.54	0.44	36.4	
6	T1	5	0.0	0.007	5.4	LOS A	0.0	0.6	0.44	0.54	0.44	36.2	
16	R2	1	0.0	0.007	5.3	LOS A	0.0	0.6	0.44	0.54	0.44	35.2	
Appro	ach	7	0.0	0.007	6.2	LOS A	0.0	0.6	0.44	0.54	0.44	36.1	
North:	: SB Old	Hwy 99											
7	L2	1	1.0	0.538	9.9	LOS A	4.4	111.1	0.17	0.36	0.17	37.7	
4	T1	1115	1.0	0.538	4.1	LOS A	4.4	111.1	0.16	0.38	0.16	37.6	
14	R2	410	1.0	0.432	4.2	LOS A	3.0	75.7	0.16	0.42	0.16	36.3	
Appro	ach	1526	1.0	0.538	4.1	LOS A	4.4	111.1	0.16	0.39	0.16	37.2	
West:	EB 88th	Ave											
5	L2	220	2.0	0.369	14.5	LOS B	1.8	46.7	0.69	0.91	0.75	33.3	
2	T1	1	2.0	0.369	8.7	LOS A	1.8	46.7	0.69	0.91	0.75	33.2	
12	R2	60	2.0	0.369	8.6	LOS A	1.8	46.7	0.69	0.91	0.75	32.3	
Appro	ach	281	2.0	0.369	13.2	LOS B	1.8	46.7	0.69	0.91	0.75	33.1	
All Ve	hicles	2285	1.1	0.538	5.4	LOS A	4.4	111.1	0.28	0.47	0.28	36.5	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Sunday, May 3, 2020 7:26:15 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-88th Ave.sip8

V Site: 2 [PM 2040 Old Hwy 99-93rd Ave - Baseline]

Projected 2040 PM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	0	
South	: NB Old	Hwy 99											
3	L2	175	2.0	0.389	9.9	LOS A	3.2	80.4	0.16	0.47	0.16	36.7	
8	T1	375	2.0	0.389	3.9	LOS A	3.2	80.4	0.16	0.47	0.16	36.6	
Appro	ach	550	2.0	0.389	5.8	LOS A	3.2	80.4	0.16	0.47	0.16	36.6	
North:	SB Old	Hwy 99											
4	T1	1025	1.0	0.820	7.0	LOS A	11.7	294.2	0.76	0.64	0.82	35.4	
14	R2	30	1.0	0.820	7.0	LOS A	11.7	294.2	0.76	0.64	0.82	34.4	
Appro	ach	1055	1.0	0.820	7.0	LOS A	11.7	294.2	0.76	0.64	0.82	35.4	
West:	EB 88th	Ave											
5	L2	20	1.0	0.405	18.2	LOS B	3.3	83.2	0.99	0.99	1.05	33.2	
12	R2	185	1.0	0.405	12.3	LOS B	3.3	83.2	0.99	0.99	1.05	32.1	
Appro	ach	205	1.0	0.405	12.9	LOS B	3.3	83.2	0.99	0.99	1.05	32.2	
All Vel	hicles	1810	1.3	0.820	7.3	LOS A	11.7	294.2	0.61	0.63	0.65	35.4	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 4, 2020 9:52:59 AM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

V Site: 1 [AM 2040 Old Hwy 99-Henderson Blvd - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles	Average Speed mph	
South	: NB Old	Hwy 99											
3	L2	5	3.0	0.687	10.6	LOS B	7.2	183.1	0.45	0.44	0.45	36.5	
8	T1	1835	3.0	0.687	4.6	LOS A	7.2	183.1	0.43	0.43	0.43	36.5	
18	R2	195	3.0	0.687	4.7	LOS A	7.1	182.3	0.41	0.43	0.41	35.4	
Appro	ach	2035	3.0	0.687	4.7	LOS A	7.2	183.1	0.42	0.43	0.42	36.4	
East:	WB Hend	lerson Blvd											
1	L2	135	2.0	0.633	19.1	LOS B	4.0	101.0	0.85	1.06	1.25	32.2	
6	T1	5	2.0	0.633	13.2	LOS B	4.0	101.0	0.85	1.06	1.25	32.1	
16	R2	220	2.0	0.633	13.1	LOS B	4.0	101.0	0.85	1.06	1.25	31.2	
Appro	ach	360	2.0	0.633	15.4	LOS B	4.0	101.0	0.85	1.06	1.25	31.6	
North:	SB Old I	Hwy 99											
7	L2	70	5.0	0.265	10.5	LOS B	1.6	42.8	0.37	0.50	0.37	36.2	
4	T1	625	5.0	0.265	4.5	LOS A	1.7	44.6	0.37	0.46	0.37	36.5	
14	R2	25	5.0	0.265	4.6	LOS A	1.7	44.6	0.36	0.43	0.36	35.4	
Appro	ach	720	5.0	0.265	5.1	LOS A	1.7	44.6	0.37	0.46	0.37	36.4	
West:	EB Hend	lerson Blvd											
5	L2	5	0.0	0.017	11.5	LOS B	0.1	1.4	0.48	0.63	0.48	35.9	
2	T1	5	0.0	0.017	5.6	LOS A	0.1	1.4	0.48	0.63	0.48	35.7	
12	R2	5	0.0	0.017	5.6	LOS A	0.1	1.4	0.48	0.63	0.48	34.7	
Appro	ach	15	0.0	0.017	7.6	LOS A	0.1	1.4	0.48	0.63	0.48	35.4	
All Ve	hicles	3130	3.3	0.687	6.0	LOS A	7.2	183.1	0.46	0.51	0.51	35.8	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 12:33:48 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-Henderson.sip8

V Site: 2 [AM 2040 Old Hwy 99-79th Ave - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Movement Performance - Vehicles Mov Turn Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No. Average													
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued		Aver. No. Cycles		
South	: NB Old	Hwy 99											
3	L2	10	3.0	0.684	10.9	LOS B	6.4	162.8	0.50	0.49	0.50	36.3	
8	T1	1910	3.0	0.684	5.0	LOS A	6.4	162.8	0.48	0.47	0.48	36.3	
18	R2	60	3.0	0.684	5.0	LOS A	6.3	162.4	0.46	0.46	0.46	35.1	
Appro	bach	1980	3.0	0.684	5.0	LOS A	6.4	162.8	0.48	0.47	0.48	36.3	
East:	WB 79th	Ave											
1	L2	10	5.0	0.373	16.7	LOS B	1.8	48.0	0.80	0.93	0.92	34.1	
6	T1	1	5.0	0.373	10.8	LOS B	1.8	48.0	0.80	0.93	0.92	34.0	
16	R2	175	5.0	0.373	10.8	LOS B	1.8	48.0	0.80	0.93	0.92	33.0	
Appro	ach	186	5.0	0.373	11.1	LOS B	1.8	48.0	0.80	0.93	0.92	33.1	
North	: SB Old	Hwy 99											
7	L2	120	5.0	0.263	9.9	LOS A	1.5	39.6	0.12	0.48	0.12	36.7	
4	T1	675	5.0	0.263	4.1	LOS A	1.6	40.3	0.11	0.41	0.11	37.3	
14	R2	5	5.0	0.263	4.2	LOS A	1.6	40.3	0.11	0.37	0.11	36.3	
Appro	ach	800	5.0	0.263	4.9	LOS A	1.6	40.3	0.12	0.42	0.12	37.2	
West:	EB 79th	Ave											
5	L2	1	0.0	0.003	11.4	LOS B	0.0	0.2	0.43	0.58	0.43	36.0	
2	T1	1	0.0	0.003	5.5	LOS A	0.0	0.2	0.43	0.58	0.43	35.8	
12	R2	1	0.0	0.003	5.4	LOS A	0.0	0.2	0.43	0.58	0.43	34.8	
Appro	bach	3	0.0	0.003	7.4	LOS A	0.0	0.2	0.43	0.58	0.43	35.5	
All Ve	hicles	2969	3.7	0.684	5.4	LOS A	6.4	162.8	0.40	0.49	0.41	36.3	

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 1:58:30 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-79th Ave.sip8

V Site: 2 [AM 2040 Old Hwy 99-88th Ave - Sensitivity Scenario]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Move	ement P	erformance	e - Vehi	icles								
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: NB Old	veh/h	%	v/c	sec		veh	ft				mph
3	L2	55	1.0	0.791	26.0	LOS C	11.4	287.5	1.00	1.28	1.71	29.9
8	T1	1225	1.0	0.791	18.6	LOS C	13.3	336.4	1.00	1.20	1.68	30.6
0 18	R2	1225	1.0	0.791	17.7	LOS B	13.3	336.4 336.4	1.00	1.24	1.66	30.0
Appro	bach	1290	1.0	0.791	18.9	LOS B	13.3	336.4	1.00	1.24	1.68	30.6
East:	WB 88th	Ave										
1	L2	5	2.0	0.097	18.4	LOS B	0.5	12.8	0.86	0.93	0.86	33.1
6	T1	5	2.0	0.097	12.5	LOS B	0.5	12.8	0.86	0.93	0.86	33.0
16	R2	25	2.0	0.097	12.5	LOS B	0.5	12.8	0.86	0.93	0.86	32.1
Appro	bach	35	2.0	0.097	13.3	LOS B	0.5	12.8	0.86	0.93	0.86	32.3
North	: SB Old I	Hwy 99										
7	L2	40	3.0	0.167	10.0	LOS A	1.0	26.0	0.22	0.43	0.22	37.0
4	T1	225	3.0	0.167	4.1	LOS A	1.0	26.0	0.22	0.43	0.22	36.9
14	R2	230	3.0	0.167	4.4	LOS A	1.0	25.1	0.23	0.46	0.23	36.0
Appro	bach	495	3.0	0.167	4.7	LOS A	1.0	26.0	0.22	0.44	0.22	36.5
West:	EB 88th	Ave										
5	L2	732	4.0	0.698	12.9	LOS B	6.2	159.8	0.63	0.79	0.71	33.5
2	T1	10	4.0	0.698	7.0	LOS A	6.2	159.8	0.63	0.79	0.71	33.4
12	R2	5	4.0	0.698	7.0	LOS A	6.2	159.8	0.63	0.79	0.71	32.5
Appro	bach	747	4.0	0.698	12.8	LOS B	6.2	159.8	0.63	0.79	0.71	33.5
All Ve	hicles	2567	2.3	0.791	14.3	LOS B	13.3	336.4	0.74	0.95	1.11	32.4

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

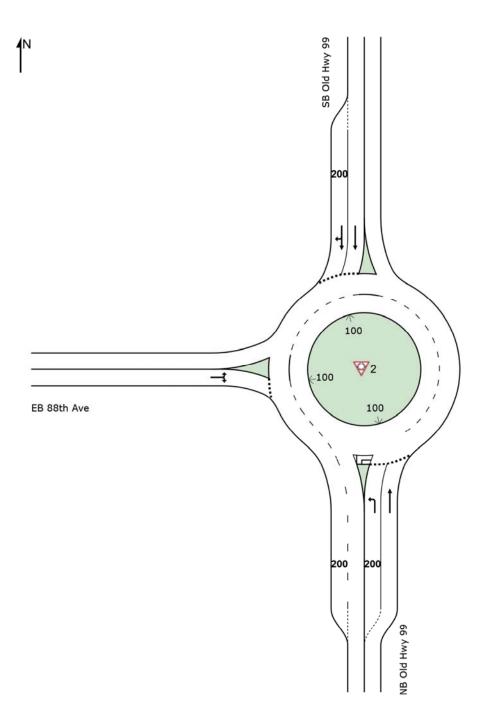
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 2:20:10 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-88th Ave.sip8

SITE LAYOUT

W Site: 2 [AM 2040 Old Hwy 99-93rd Ave -Land Use 2 (2 NB lanes)]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCJ ALLIANCE | Created: Tuesday, May 5, 2020 2:57:15 PM Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation

Site: 2 [AM 2040 Old Hwy 99-93rd Ave - Sensitivity Scenario multiple entry lanes]

Projected 2040 AM Peak Hour Site Category: (None) Roundabout

Move	ment P	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South:	NB Old	Hwy 99										
3	L2	225	1.0	0.183	9.9	LOS A	0.9	22.9	0.11	0.62	0.11	34.8
8	T1	1135	1.0	0.659	3.7	LOS A	6.8	170.3	0.18	0.34	0.18	37.9
Approa	ach	1360	1.0	0.659	4.8	LOS A	6.8	170.3	0.17	0.39	0.17	37.3
North:	SB Old	Hwy 99										
4	T1	180	4.0	0.106	4.8	LOS A	0.4	10.2	0.28	0.45	0.28	36.9
14	R2	10	4.0	0.053	5.2	LOS A	0.2	4.8	0.29	0.46	0.29	35.6
Appro	ach	190	4.0	0.106	4.8	LOS A	0.4	10.2	0.28	0.45	0.28	36.9
West:	EB 88th	Ave										
5	L2	20	6.0	0.158	10.5	LOS B	0.6	15.3	0.28	0.53	0.28	37.1
12	R2	155	6.0	0.158	4.6	LOS A	0.6	15.3	0.28	0.53	0.28	35.8
Approa	ach	175	6.0	0.158	5.2	LOS A	0.6	15.3	0.28	0.53	0.28	35.9
All Vel	nicles	1725	1.8	0.659	4.8	LOS A	6.8	170.3	0.19	0.41	0.19	37.1

Site Level of Service (LOS) Method: Delay & Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

Intersection and Approach LOS values are based on average delay for all movements (v/c not used).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

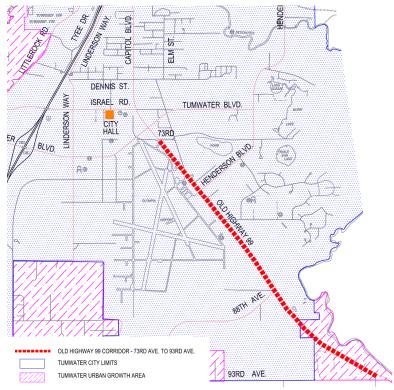
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Processed: Monday, May 18, 2020 2:26:27 PM

Project: N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\Phase 02 - Corridor Traffic Validation \Operations\Old Hwy 99-93th Ave.sip8

APPENDIX B ALTERNATIVES ANALYSIS MEMO



TECHNICAL MEMORANDUM

то:	Mary Heather Ames
FROM:	Patrick Holm
DATE:	May 3, 2021
PROJECT #:	0625.29
SUBJECT:	Old Highway 99 Corridor Study – Alternatives Analysis – Methods Memo

BACKGROUND

The objective of the Old Highway 99 Corridor Study is to validate the transportation recommendations included in the Tumwater City Plan 2036, Transportation Master Plan November 2016 (Transportation Plan), manage necessary or recommended changes resulting from the validation process, and prepare preliminary design for the Old Highway 99 corridor improvements from approximately 73rd Avenue SE to 93rd Avenue SE. This project will perform transportation and alternatives analysis to determine and recommend roadway cross section and intersection improvements at Henderson Boulevard, 79th Avenue SE, 88th Avenue SE, and 93rd Avenue SE in context with the overall corridor improvements. The corridor study will build upon the Transportation Plan to ultimately define the footprint of improvements and progress a conceptual design.

PURPOSE

The purpose of this alternatives analysis is to analyze potential roadway cross sections proposed for the Old Highway 99 Corridor Study project. Each alternative will be rated based on performance and cost.

CONCEPTUAL ASSUMPTIONS/DESIGN CRITERIA

Old Highway 99 is a Minor Arterial based upon the classification of the City of Tumwater Development Guide (Development Guide). The City's Transportation Master Plan recommends a four-lane section from 73rd Avenue to 88th Avenue with roundabout intersections at Henderson Boulevard, 79th Avenue, 88th Avenue, and 93rd Avenue. All alternatives will meet these minimum requirements. Currently, the posted speed on the corridor varies from 35 mph to 50 mph.

PERFORMANCE RANKING

Criteria and Weighting

We based the following criteria (performance attributes) on the goals of the project and feedback from the first stakeholder's workshop.

The criteria follow:

- Bicycle Function/Usability
- Pedestrian Function/Usability
- Emergency Access
 Function/Usability
- Aesthetic
- Environmental Impact (Mazama Pocket Gopher Habitat)

Each criterion was originally weighed using pair-wise comparisons based on feedback from the stakeholder group.

Scoring

Each of the six alternatives were scored against the criteria above by the stakeholder group at the second workshop. A rating of 0 to 10 was applied to each performance attribute.

PERI	ORM/	ANCE	ATTRI	BUTE	MATR	IX		
C	ld Higl	hway 9	9 Cori	ridor S	tudy			
Rate the relative importa	ince of th	e attribu	tes relat	ive to the	e project'	s Nee	ed an	d Purpose.
Performance Attributes	Bike Function	Ped Function	EMS Function	Aesthetic	Enviro Impact		Total Count	PRIORITIES
Bike Function	А	A/B	С	А	А		3.5	0.233
Ped Function		В	С	В	В		3.5	0.233
EMS Function			С	С	С		5	0.333
Aesthetic				D	D		2	0.133
Enviro Impact					E		1	0.067
SUB-TOTALS						1!	5.00	1.00

Cost

We generated conceptual cost estimates for each alternative using industry standard cost breakdowns and unit cost values derived from WSDOT unit bid tabs. Each estimate was given a 20% contingency factor due to the conceptual nature. The calculated costs are based on 2021 dollars. We included the following cost-reducing ideas in the alternatives:

 Per discussion with the City, minimizing the roadway section with narrow lanes to decrease pavement. In addition, the following opportunities may provide cost savings as design details progress:

Integrating the stormwater mitigation into planter strips has the potential to minimize footprint for stormwater facilities.

Value Ranking

We ranked each alternative by its value. The value of each alternative is a function of the cost index and alternative score, where the cost index is the ratio of individual alternative cost divided by the sum of all alternative costs. The alternative value is determined by dividing the alternative score by the cost index. The alternative with the best value will be the recommended alternative.

ALTERNATIVES

(Exhibits of Cross Sections available in Attachment 1)

Alternative 1

Alternative 1 follows the standard City of Tumwater minor arterial prescription with the exception of lane width. The road has four 11-foot travel lanes and one 12-foot two-way left turn lane with 6-foot bike lanes on both sides. The cross section also features 6-foot sidewalks and 6-foot planter strips with a 2-foot buffer strip behind the back of walk. The total width of Alternative 1 is 96 feet.

Alternative 2

Alternative 2 shifts all pedestrian movement to the east side of Old Highway 99 with an 8-foot sidewalk and provides a 6-foot median in place of a two-way left turn lane. The bike lanes remain six feet but the inside lanes grow to 12 feet to provide shy distance for the median. The total width of Alternative 2 is 85 feet.

Alternative 3

Alternative 3 is similar to Alternative 2 but removes bikes from the northbound road and combines them with pedestrians on a 12-foot shared use path. The northbound outer lane grows to 13 feet. The total width of Alternative 3 is 85 feet.

Alternative 4

Alternative 4 builds on Alternative 3 and removes the bike lane from the southbound road and combines it with the eastside shared use path. This would require bikes to be re-routed to the shared use path at intersections bordering the study area. The total width of Alternative 4 is 81 feet.

Alternative 5

Alternative 5 removes bike lanes from the roadway and combines bicycle and pedestrian uses on their respective side with two 10-foot shared use paths. The inner travel lanes are 12 feet with the outer travel lanes at 13 feet. The total width of Alternative 5 is 92 feet.

$$Criteria\ Score = weight * rating$$

$$Alternative\ Score = \sum criteria\ scores$$

$$Cost\ Index = \frac{Alternative\ Cost}{\sum\ Alternative\ Cost}$$

$$Alternative\ Value = \frac{Alternative\ Score}{Cost\ Index}$$

Formulae for developing Value Index

Alternative 6

Alternative 6 provides the standard section on the northbound: two travel lanes (12-foot inner, 11-foot outer), 6-foot bike lane, 6-foot planter strip, and 6-foot sidewalk. On the southbound side, the bike and pedestrian traffic is separated from the road on a 10-foot shared use path as in Alternative 5. The total width of Alternative 6 is 92 feet

CONCLUSION

After Workshop 2, the stakeholder group completed the performance scoring and value ranking. This process yielded the following ranking:

- 1. Alternative 5
- 2. Alternative 1
- 3. Alternative 6
- 4. Alternative 3
- 5. Alternative 4
- 6. Alternative 2

The highest value alternative was Alternative 5 which has two 10-foot shared use paths and no bike lanes on the road.

After the workshop, the City reviewed

the results internally and recommended revising steps of the process.

Revised Criteria

The original criteria had placed Environmental Impact as the least important criterion. The City advised to change Environmental Impact to be equally important as the highest criterion (EMS Function) because of the anticipated requirements and hard and soft costs of permitting for Federally listed endangered species. This was mentioned as a likely revision in Workshop 2.

These updated criteria ranking placed a higher value on footprint and impacted the rankings as follows:

- 1. Alternative 4
- 2. Alternative 3
- 3. Alternative 5
- 4. Alternative 2
- 5. Alternative 6
- 6. Alternative 1

The new highest value became Alternative 4 which had no bike lanes either direction and a 12-foot shared use path on the east side of Old Highway 99. The City felt bicycle users would still attempt to go southbound on the road in Alternative 4 introducing multi-modal conflict. For this reason, Alternative 4 was eliminated.

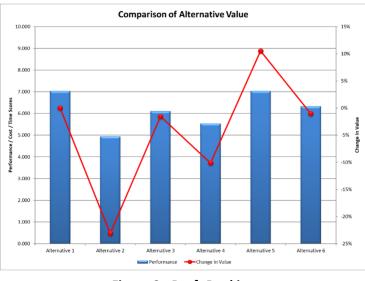
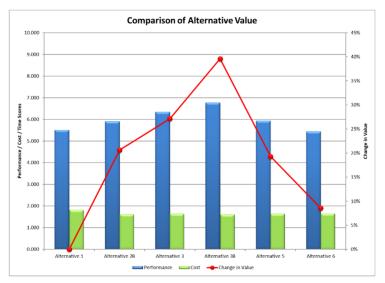


Figure 2 - Draft Ranking

Two alternatives were modified to further reduce impact and look for the highest value:

Alternative 2B

Alternative 2B is the same as Alternative 2 with the exception of a 6-foot sidewalk instead of an 8-foot sidewalk which is more consistent with City sidewalk standards and reduces width.


Alternative 3B

Alternative 3B is the same as Alternative 3 but with a 10-ft sidewalk.

With these modified alternatives, the ranking shuffled slightly as follows:

- 1. Alternative 3B
- 2. Alternative 3
- 3. Alternative 2B
- 4. Alternative 5
- 5. Alternative 6
- 6. Alternative 1

Recommendation

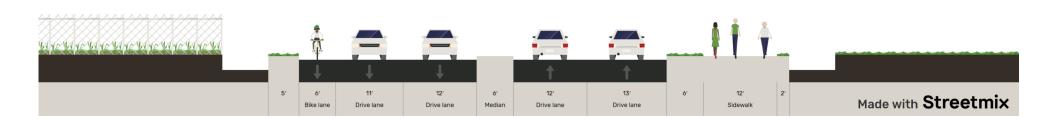
Figure 3 - Final Ranking

Alternative 3B has the highest value of the revised alternatives. It provides a

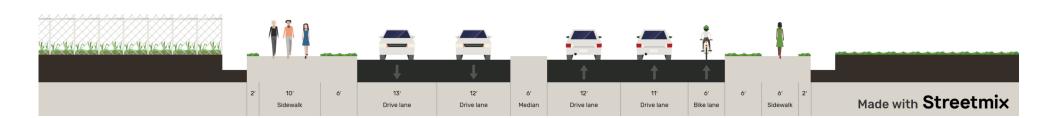

wide shared use path for pedestrians and cyclists on the westside of Old Highway 99 while also allowing for cyclists to use a bike lane for southbound travel if they choose not to use the shared use path. This alternative will include implementation of a median along the corridor. As the design progresses, the design team will coordinate with stakeholders to coordinate appropriate breaks as needed for safety and access.

Attachment 1 – Alternative Cross Sections

Attachment 2 – Value Metrics Data


Attachment 3 – Cost Estimates

Attachment 1 – Cross Sections



Attachment 2 – Value Metrics Data

PERFORMANCE ATTRIBUTES Old Hwy 99 Corridor Study

Performance Attribute	Definition				
Bike Function					
	Scales				
Rating	Rating Rationale	Rating			
Unacceptable	No Bike Facilities	0			
	6-ft bike lanes on road	5			
	Separated 12-ft shared use trail ((both directions) one side of road	5			
	Separated 10-ft shared use trail one direction, 6-ft bike lane	7			
	Separated 12-ft shared use trail one direction, 6-ft bike lane	8			
	Separated 10-ft shared use trails on both sides of road	9			
Ideal	Separated 10-ft shared use trails on both sides of road, bike lanes	10			

Performance Attribute	Definition					
Ped Function	ed Function					
	Scales					
Rating	Rating Rationale	Rating				
Unacceptable	No Pedestrian Facilities/No sidewalk	0				
	8-ft sidewalk on eastside	5				
	12-ft shared use path on eastside	7				
	6-ft sidewalks on both sides with buffer	8				
	10-ft shared use trail one side, 6-ft sidewalk other side	9				
Ideal	10-ft shared use trail on both sides	10				

Performance Attribute	Definition					
EMS Function						
	Scales					
Rating	Rating Rationale	Rating				
	No turnarounds	0				
	Medians with turnarounds at intersections	3				
Ideal	Two-way left turn lane for full access	10				

Performance Attribute	Definition					
Aesthetic						
	Scales					
Rating	Rating Rationale	Rating				
	No vegetation	0				
	Least vegetation	5				
	Median vegetation	8				
Ideal	Most vegetation	10				

Performance Attribute	Definition					
Enviro Impact						
	Scales					
Rating	Rating Rationale	Rating				
	Most impact to west	0				
	Second most impact to west	4				
	Second least impact to west	8				
Ideal	Least impact to west	10				

PERFORMANCE ATTRIBUTE MATRIX

Old Highway 99 Corridor Study

Rate the relative importance of the attributes relative to the project's Need and Purpose.

Performance Attributes	Bike Function	Ped Function	EMS Function	Aesthetic	Enviro Impact	Total Count	PRIORITIES
Bike Function	А	A/B	С	А	E	2.5	0.167
Ped Function		В	С	В	E	2.5	0.167
EMS Function			С	С	C/E	4.5	0.300
Aesthetic				D	E	1	0.067
Enviro Impact					E	4.5	0.300
SUB-TOTALS						15.00	1.00

PERFORMANCE ASSESSMENT MATRIX Old Hwy 99 Corridor Study

Alternative 1

Performance Attributes	Rationale	Rating
Bike Function	6-ft bike lanes	5
Ped Function	Sidewalks on both sides	8
EMS Function	TWLTL	10
Aesthetic	Least Vegetation	5
Enviro Impact	Most Impact	0

Alternative 2B	Name	
Performance Attributes	Rationale	Rating
Bike Function		5
Ped Function		5
EMS Function		3
Aesthetic	Least Vegetation	5
Enviro Impact	Least Impact	10

Alternative 3	Name	
Performance Attributes	Rationale	Rating
Bike Function		8
Ped Function		7
EMS Function		3
Aesthetic	Middle amount of vegetation	8
Enviro Impact	Second Least	8

Alternative 3B	Name	
Performance Attributes	Rationale	Rating
Bike Function		7
Ped Function		7
EMS Function		3
Aesthetic	Middle amount of vegetation	8
Enviro Impact	Least Impact	10

Alternative 5	Name	
Performance Attributes	Rationale	Rating
Bike Function		9
Ped Function		10
EMS Function		3
Aesthetic		10
Enviro Impact	Second to Most	4

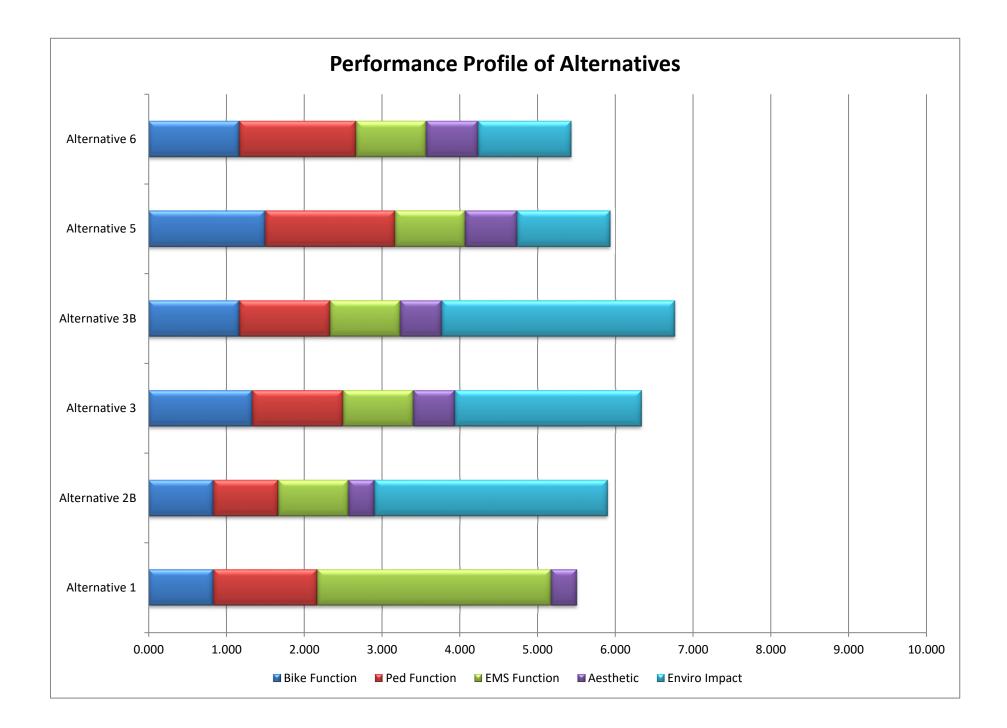
Alternative 6	Name	
Performance Attributes	Rationale	Rating
Bike Function		7

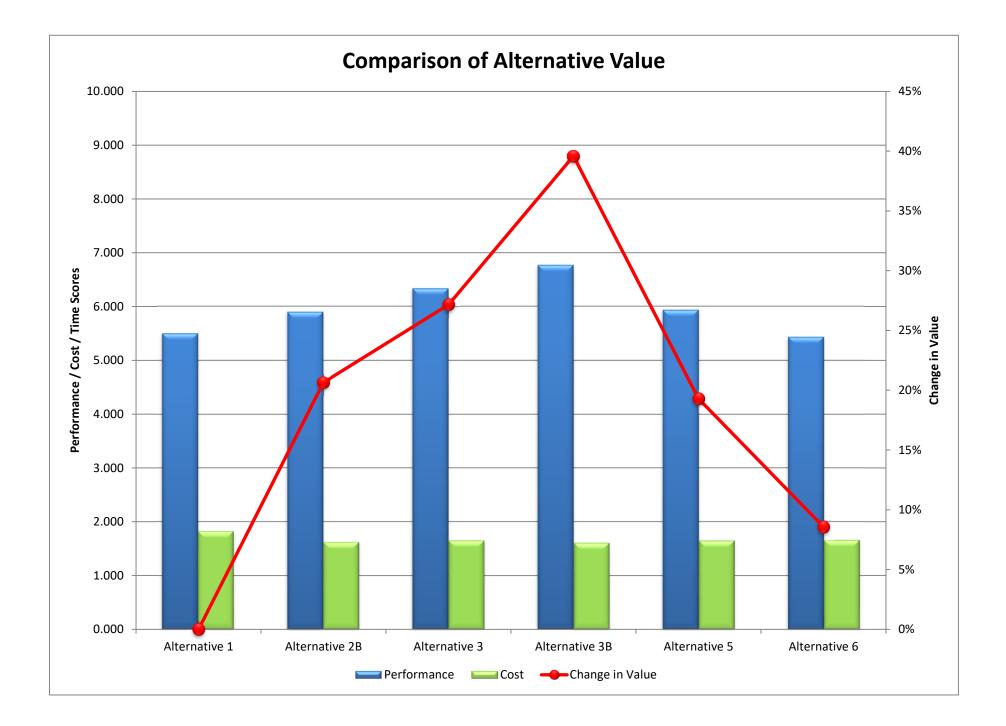
Ped Function		9
EMS Function		3
Aesthetic		10
Enviro Impact	Second to Most	4

Alternative No. 6	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		

Alternative No. 7	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		

Alternative No. 8	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		


Alternative No. 9	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		


Alternative No. 10	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		

Alternative No. 11	Name	
Performance Attributes	Rationale	Rating

Bike Function	
Ped Function	
EMS Function	
Aesthetic	
Enviro Impact	

Alternative No. 12	Name	
Performance Attributes	Rationale	Rating
Bike Function		
Ped Function		
EMS Function		
Aesthetic		
Enviro Impact		

Attachment 3 – Cost Estimates

	SCJ ALLIANCE consulting services			ALT 1			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement			
Roadwork	Estimated Quantities			Measurement	\$	13,140,445	
	Mobilization	LS	8%	1	\$	1,139,365	
	Clearing and Grubbing	SF	\$0.23	578,000	\$	132,691	
	Roadway Excavation/Select Borrow	CY	\$25.00	30,222	\$	755,556	
	Roadway Section	SF	\$5.13	578,000	\$	2,966,296	
	Conveyance	LF	\$62.30	8,500	\$	529,550	
	Water Quality/Flow Control	SF	\$2.28	578,000	\$	1,314,950	
	Sidewalk	SY	\$45.83	11,333	\$	519,384	
	Curb and Gutter	LF	\$50.83	8,500	\$	432,038	
	Erosion Control	LF	\$16.80	8,500	\$	142,800	
	Roundabouts	EACH	\$1,000,000	3	\$	3,000,000	
	Illumination	LF	\$78	8,500	\$	663,816	
	Permanent Signing	LF	\$4.00	8,500	\$	34,000	
	Landscaping	LF	\$60.00	8,500	\$	510,000	
	Traffic Control	LS	\$1,000,000	1	\$	1,000,000	
Right-of-Way					\$	4,440,000	
	Parcels	Value			\$	4,440,000	
Engineering	22%				\$	2,890,898	
	PE	12%			\$	1,576,853	
	CN	10%			\$	1,314,045	
	Sul	ototal		<u> </u>	\$	20,471,344	
						\$	

20,471,344 2,628,089 **23,100,000**

\$ \$

	SCJ ALLIANCE consulting services			ALT 2			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement			
Roadwork	Estimated Quantities			Measurement	\$	12,242,767	
	Mobilization	LS	8%	1	\$	1,063,813	
	Clearing and Grubbing	SF	\$0.23	425,000	\$	97,567	
	Roadway Excavation/Select Borrow	CY	\$25.00	23,926	\$	598,148	
	Roadway Section	SF	\$5.13	493,000	\$	2,530,076	
	Conveyance	LF	\$62.30	8,500	\$	529,550	
	Water Quality/Flow Control	SF	\$2.28	493,000	\$	1,121,575	
	Sidewalk	SY	\$45.83	11,333	\$	519,384	
	Curb and Gutter	LF	\$50.83	8,500	\$	432,038	
	Erosion Control	LF	\$16.80	8,500	\$	142,800	
	Roundabouts	EACH	\$1,000,000	3	\$	3,000,000	
	Illumination	LF	\$78	8,500	\$	663,816	
	Permanent Signing	LF	\$4.00	8,500	\$	34,000	
	Landscaping	LF	\$60.00	8,500	\$	510,000	
	Traffic Control	LS	\$1,000,000	1	\$	1,000,000	
Right-of-Way					\$	3,152,700	
	Parcels	Value			\$	3,152,700	
Engineering	22%				\$	2,693,409	
	PE	12%			\$	1,469,132	
	CN	10%			\$	1,224,277	

18,088,876 2,448,553 **20,540,000**

\$ \$

	SCJ ALLIANCE consulting services			ALT 3			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement			
Roadwork	Estimated Quantities			Measurement	\$	12,342,668	
	Mobilization	LS	8%	1	\$	1,071,367	
	Clearing and Grubbing	SF	\$0.23	484,500	\$	111,226	
	Roadway Excavation/Select Borrow	CY	\$25.00	26,759	\$	668,981	
	Roadway Section	SF	\$5.13	459,000	\$	2,355,588	
	Conveyance	LF	\$62.30	8,500	\$	529,550	
	Water Quality/Flow Control	SF	\$2.28	459,000	\$	1,044,22	
	Sidewalk	SY	\$45.83	17,000	\$	779,076	
	Curb and Gutter	LF	\$50.83	8,500	\$	432,038	
	Erosion Control	LF	\$16.80	8,500	\$	142,800	
	Roundabouts	EACH	\$1,000,000	3	\$	3,000,000	
	Illumination	LF	\$78	8,500	\$	663,81	
	Permanent Signing	LF	\$4.00	8,500	\$	34,00	
	Landscaping	LF	\$60.00	8,500	\$	510,000	
	Traffic Control	LS	\$1,000,000	1	\$	1,000,000	
Right-of-Way					\$	3,390,000	
	Parcels	Value			\$	3,390,000	
Engineering	22%				\$	2,715,38	
	PE	12%			\$	1,481,120	
	CN	10%			\$	1,234,26	
	Sul	btotal			\$	18,448,05	
		(000/)			•	0 400 5	

18,448,054 2,468,534 **20,920,000**

\$ \$

Element Element Based Upon Roadwork Estimated Quantities Mobilization Clearing and Grubbing Clearing and Grubbing Roadway Excavation/Select Borrow Roadway Section Conveyance Water Quality/Flow Control Sidewalk	Unit LS SF	Unit Cost	Estimate Measurement	
Mobilization Clearing and Grubbing Roadway Excavation/Select Borrow Roadway Section Conveyance Water Quality/Flow Control			Weasurement	
Clearing and Grubbing Roadway Excavation/Select Borrow Roadway Section Conveyance Water Quality/Flow Control				\$ 12,406,904
Roadway Excavation/Select Borrow Roadway Section Conveyance Water Quality/Flow Control	۶r	8%	1	\$ 1,077,336
Roadway Section Conveyance Water Quality/Flow Control	55	\$0.23	467,500	\$ 107,323
Conveyance Water Quality/Flow Control	СҮ	\$25.00	25,815	\$ 645,370
Water Quality/Flow Control	SF	\$5.13	459,000	\$ 2,355,588
<i>P</i> :	LF	\$62.30	8,500	\$ 529,550
Sidewalk	SF	\$2.28	459,000	\$ 1,044,225
	SY	\$45.83	9,444	\$ 432,820
Curb and Gutter	LF	\$50.83	17,000	\$ 864,076
Erosion Control	LF	\$16.80	8,500	\$ 142,800
Roundabouts	EACH	\$1,000,000	3	\$ 3,000,000
Illumination	LF	\$78	8,500	\$ 663,816
Permanent Signing	LF	\$4.00	8,500	\$ 34,000
Landscaping	LF	\$60.00	8,500	\$ 510,000
Traffic Control	LS	\$1,000,000	1	\$ 1,000,000
Right-of-Way				\$ 2,734,118
Parcels	Value			\$ 2,734,118
Engineering 22%				\$ 2,729,519
PE	12%			\$ 1,488,828
CN	10%			\$ 1,240,690
	Subtotal			

17,870,541 2,481,381 **20,360,000**

\$ \$

SCJ ALLIANCE consulting services			ALT 5			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement		
Roadwork	Estimated Quantities				\$	12,520,190
	Mobilization	LS	8%	1	\$	1,085,720
	Clearing and Grubbing	SF	\$0.23	544,000	\$	124,885
	Roadway Excavation/Select Borrow	CY	\$25.00	28,963	\$	724,074
	Roadway Section	SF	\$5.13	425,000	\$	2,181,100
	Conveyance	LF	\$62.30	8,500	\$	529,550
	Water Quality/Flow Control	SF	\$2.28	425,000	\$	966,875
	Sidewalk	SY	\$45.83	24,556	\$	1,125,332
	Curb and Gutter	LF	\$50.83	8,500	\$	432,038
	Erosion Control	LF	\$16.80	8,500	\$	142,800
	Roundabouts	EACH	\$1,000,000	3	\$	3,000,000
	Illumination	LF	\$78	8,500	\$	663,816
	Permanent Signing	LF	\$4.00	8,500	\$	34,000
	Landscaping	LF	\$60.00	8,500	\$	510,000
	Traffic Control	LS	\$1,000,000	1	\$	1,000,000
Right-of-Way					\$	3,110,000
	Parcels	Value			\$	3,110,000
Engineering	22%				\$	2,754,442
	PE	12%			\$	1,502,423
	CN	10%			\$	1,252,019
			1	1	1	

18,384,632 2,504,038 **20,890,000**

\$ \$

SCJ AL				ALT 6			
CONSULTING	Element Based Upon	Unit	Unit Cost	Estimate Measurement			
Roadwork	Estimated Quantities				\$	12,606,45	
	Mobilization	LS	8%	1	\$	1,093,27	
	Clearing and Grubbing	SF	\$0.23	544,000	\$	124,88	
	Roadway Excavation/Select Borrow	CY	\$25.00	28,963	\$	724,07	
	Roadway Section	SF	\$5.13	459,000	\$	2,355,58	
	Conveyance	LF	\$62.30	8,500	\$	529,55	
	Water Quality/Flow Control	SF	\$2.28	459,000	\$	1,044,22	
	Sidewalk	SY	\$45.83	20,778	\$	952,20	
	Curb and Gutter	LF	\$50.83	8,500	\$	432,03	
	Erosion Control	LF	\$16.80	8,500	\$	142,80	
	Roundabouts	EACH	\$1,000,000	3	\$	3,000,00	
	Illumination	LF	\$78	8,500	\$	663,81	
	Permanent Signing	LF	\$4.00	8,500	\$	34,00	
	Landscaping	LF	\$60.00	8,500	\$	510,00	
	Traffic Control	LS	\$1,000,000	1	\$	1,000,00	
light-of-Way					\$	3,110,00	
	Parcels	Value			\$	3,110,00	
ngineering	22%				\$	2,773,42	
	PE	12%			\$	1,512,77	
	CN	10%			\$	1,260,64	
	ISut	ototal	<u> </u>		\$	18,489,87	
	Conceptual Contingency/Miscellaneous (20%)			\$	2,521,29	
		Total			\$	21,020,00	

APPENDIX C - PUBLIC PARTICIPATION PLAN

Public Participation Plan

City of Tumwater | Old Highway 99 Corridor Study (2020)

Introduction

Old Highway 99 was first assigned in the mid-1920s as the original north-south highway running along the West Coast of the United States. Extending from Blaine, Washington in the north to its southern terminus in Calexico, California, it ran 1,600 miles border to border.

In Washington State, this corridor spurred growth and commerce for more than 40 different communities as goods and travelers were able to quickly navigate from one city to the next. While this route has since lost many of its once daily travelers to Interstate 5 (I-5), the corridor still offers an identity that is closely linked to many of these early west coast cities. In recent years, many of these communities have invested in the revitalization of this route through main street projects, placemaking efforts and expanded boulevards.

At the local level, Old Highway 99 connects south Thurston County, Bush Prairie and the Olympia Regional Airport to the City of Tumwater and Interstate 5. Commercial and residential use levels have crept upwards in recent years, extending rush hours and lengthening vehicle queues.

Currently, there are no bike lanes along this stretch of the corridor and sidewalks are relegated to highly segmented portions connected to new construction. Pedestrians and bikes end up using the shoulder which is as narrow as 2 feet in some locations. With minimal lighting, this becomes especially challenging in the early and later hours of the day as non-motorized travel mixes with vehicle commuters and freight shipments.

Who

The City of Tumwater has received grant funding from the Federal Highway Administration (FHWA) through support from the Thurston Regional Planning Council (TRPC) and Washington State Department of Transportation (WSDOT) to develop safety and mobility strategies to fit in with the surrounding uses while providing for solutions to local and regional commuters, pedestrians, bikes, and freight.

This effort is intended to be completed in close collaboration and participation from local businesses, residents and property owners, tenants, various other stakeholders, and the general public.

What

The study will focus on validating previous traffic information to help inform decision making and strategize development. This stretch of Old Highway 99 also cuts through known Mazama Pocket gopher habitat which is a federally listed species and in close proximity to the Jack Davis Garry Oak Tree. Environmental reports will cover these topics and other environmental factors that will further inform the development of a corridor strategy.

The main goal of the study will be to advance design (intersections, cross-section, stormwater, etc.) and environmental documentation far enough to determine the following:

- Future right-of-way needs (areas and cost).
- Strategies to phase construction projects.
- Estimates for Mazama Pocket Gopher habitat credits per phased project.

Where

For the purposes of this planning effort, the project boundaries run along Old Highway 99 from 73rd Avenue to the southern boundary of the Urban Growth Area at 93rd Avenue. Neighboring parcels and street approaches will also be included within the evaluation and planning process.

When and How

Transportation touches everyone's daily life in some way. As a result, people tend to have a lot of interest, big ideas, and strong opinions when it comes to corridor development. A successful engagement process harnesses that energy and inspires community ownership, while adapting to new insights and feedback.

Stakeholders and community members supply the local knowledge, context, and information necessary to make informed project decisions. Early and often engagement of the residents and businesses who regularly use and depend on Old Highway 99 will be a key factor in the success of this project. This starts with the Public Participation Plan where we identify steps to ensure project transparency, open communication and multiple opportunities for feedback and collaboration.

- 1. Virtual Public Workshop: As a major transportation corridor within Thurston County, thousands of travelers and goods are funneled through this section of Old Highway 99 on a daily basis. It is important that experiences and expectations of these travelers are reflected in the decisions and outcomes of this project.
 - Action: A virtual workshop for the project corridor will be developed to offer community members an opportunity to learn about the project goals and provide location-based insights, pinpoint concerns, share ideas, upload images, and discuss topics with neighbors and other corridor users about the spaces they know and value.
 - **Format:** Opportunities to access, navigate, and participate within this virtual workshop will be distributed publicly across social media platforms, the City of Tumwater website, and other city communication channels (email, utility flyers, project website, etc.) The virtual public workshop will be accessible from any internet connected device.
 - **Timeline:** The virtual workshop will start in September 2020 and run through the end of October 2020. This timeline is intended to reduce as many barriers as possible by offering 24-hour availability and in-home access in a format that is flexible to community schedules.
 - **Outcome:** After this phase of outreach has concluded, submitted comments will be reviewed for similarities and new perspectives that can better inform and drive project tasks. Project alternatives and opportunities will then be evaluated based on community input and support.
- **2. Project Specific Webpage:** In support of these outreach efforts, a project specific webpage will be developed as the primary information hub for updates, ongoing efforts, and project milestones.
 - Action: The webpage will provide an additional level of project transparency as project documents, contact information, opportunities for participation, and next steps will all be published and made publicly available.

- **Format:** The project webpage will be linked and accessible through the City of Tumwater website, with easy navigation and opportunities to provide comments and contact project leads.
- **Timeline:** The webpage will be released and promoted early in the project, allowing visitors to become familiar with the site, learn about the project phases, and identify opportunities for participation.
- **Outcome:** The webpage will ensure transparency throughout the project; providing timely updates; open communication channels, project milestones, and an opportunity to join the mailing list.
- 3. **Key Stakeholder Outreach/Informational Interviews:** Multiple agencies depend on this section of Old Highway 99 for continued operations and network access. These agencies have a unique understanding of this corridor as it represents a primary link within their daily activities and needs. Target stakeholders within this phase include Intercity Transit, Thurston Regional Planning Council, Thurston County, the Port of Olympia, Tumwater Emergency Services, Tumwater School District, and the Tumwater Traffic Team.
 - Action: A targeted outreach effort will be made to hear directly from each of these stakeholder groups; giving them an opportunity to identify any initial thoughts, needs, and concerns, while offering an opportunity for open dialog with the project team. One of the objectives of this phase is to identify site-specific details that may get overlooked at later stages in the process.
 - **Format:** Outreach within this phase will primarily take place via email or telephone depending on stakeholder preferences and available resources.
 - **Timeline:** This phase of outreach is intended to run concurrently with alternative development and refinement following feedback collected within previous phases of outreach. The goal is to have these informational interviews completed as early as possible to best inform project tasks and alternatives analysis.
 - **Outcome:** Once this phase of outreach has been completed, a summary document of frequently asked questions will be made available to the greater public via the project page.
- 4. Virtual Project Open House: Following the insights and ideas gathered throughout this process, a preliminary design will be developed for the corridor. To ensure these designs reflect the expectations of the community, a virtual project open house will be held in early 2021.
 - Action: The recommended preliminary corridor design will be shared publicly and distributed to the project webpage and mailing lists.
 - **Format:** The virtual open house will offer interested community members an opportunity to review the preliminary designs and provide feedback to the project team.
 - **Timeline:** The open house will be held in early 2021.
 - **Outcome:** The project team will use the collected input to refine the project into a final design.
- 5. **City Council Briefings:** To ensure the project is reflective of City goals and community insights, Councilmembers will receive updates on project findings, milestones, and alternatives.

- Action: City Council will receive project briefings at two public meetings to review project materials, progress, and recommendations.
- **Format:** Council briefings will take place at two regularly scheduled public meetings. Face to face video presentations from the project leads will promote clarity and open dialogue.
- **Timeline:** Two Council briefings are currently scheduled. The first will take place near the project's midpoint to update the Council on project milestones, findings, and initial renderings. The second briefing will take place near the project's conclusion with refined renderings, deliverables, insights from the community.
- **Outcome:** The intent of this phase is to ensure Councilmembers are well informed and have multiple opportunities to provide targeted guidance to the project leads.

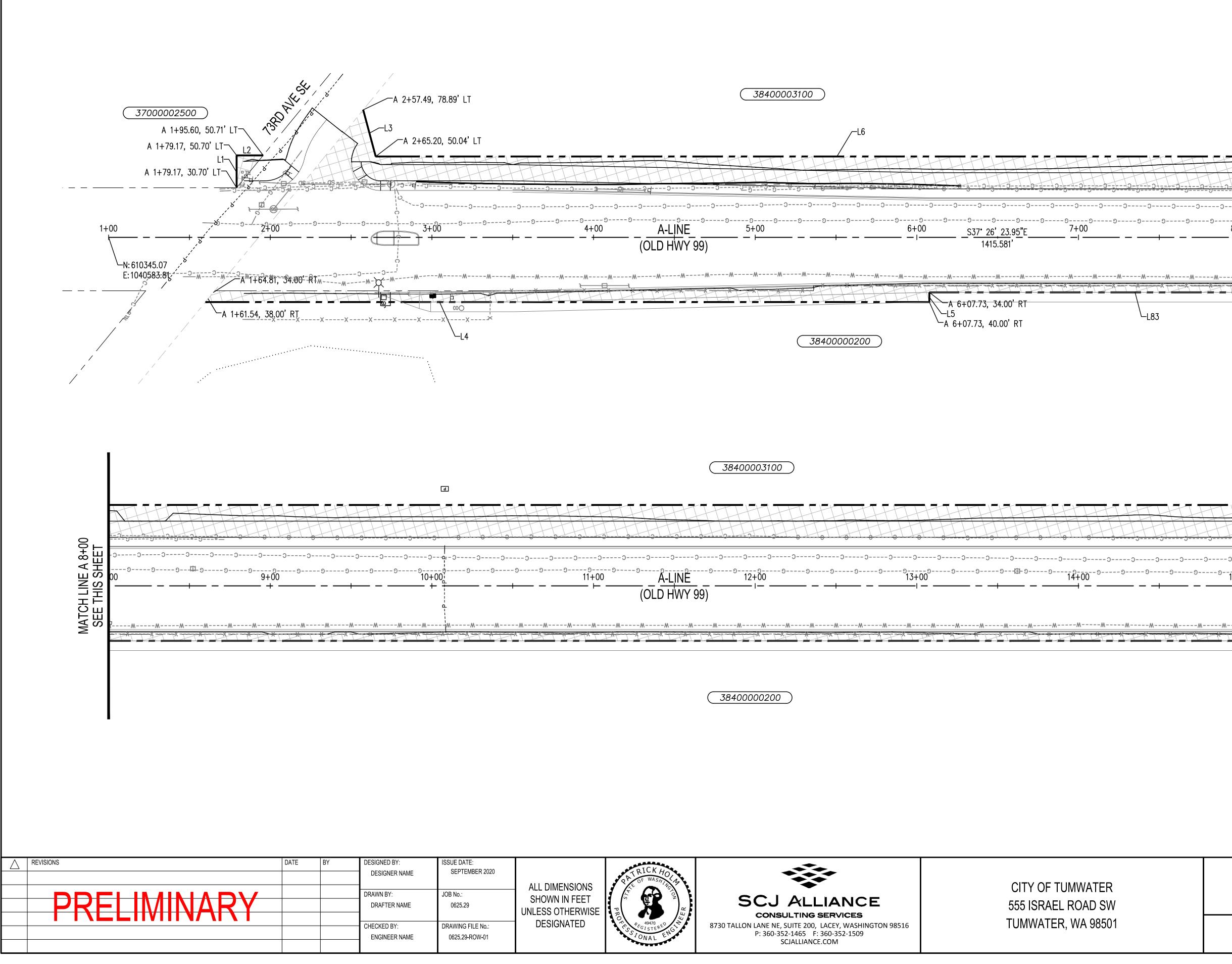
COVID-19

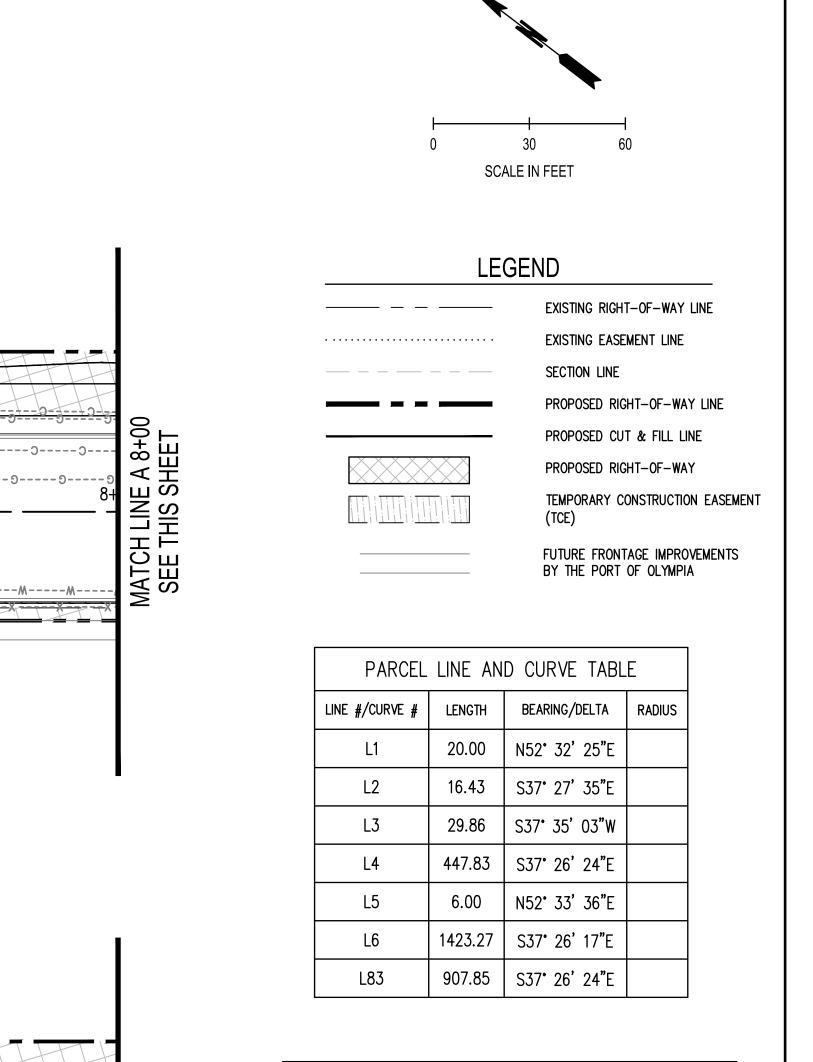
Given the ongoing and variable health risks associated with in person communication, all outreach efforts have been developed for online or telephone-based communication channels. If public gatherings and in person conversations are deemed safe by licensed state health practitioners before the completion of this project, the public participation plan may be revisited.

APPENDIX D - PROJECT PHASE ESTIMATES

SCJ A	LLIANCE Ng services			Ph	ase 1	
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement		
Roadwork	Estimated Quantities				\$	2,636,099
	Mobilization	LS	8%	1	\$	230,899
	Roundabout	EACH	\$1,890,000	1	\$	1,890,000
	Illumination	LF	\$78	3,800	\$	300,000
	Permanent Signing	LF	\$4.00	3,800	\$	15,200
	Traffic Control	LS	\$200,000	1	\$	200,000
	Subtotal Contruction				\$	2,636,099
	Conceptual Contingency/Miscellaneous (20%)				\$	527,220
	Total Construction				\$	3,163,319
	PE		12%		\$	379,598
	СМ		15%		\$	474,498
	ROW		Value		\$	900,000
	Total				\$	4,920,000

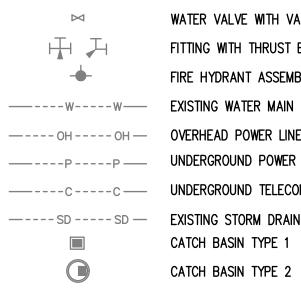
SCJ A	SCJ ALLIANCE CONSULTING SERVICES			Phase 2		
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement		
Roadwork	Estimated Quantities				\$	6,868,160
	Mobilization	LS	8%	1	\$	601,591
	Clearing and Grubbing	SF	\$0.23	312,800	\$	71,809
	Roadway Excavation/Select Borrow	CY	\$25.00	13,459	\$	336,481
	Roadway Section	SF	\$5.13	294,400	\$	1,510,861
	Conveyance	LF	\$62.30	4,600	\$	286,580
	Water Quality/Flow Control	SF	\$2.28	294,400	\$	669,760
	Sidewalk	SY	\$45.83	3,067	\$	140,539
	Curb and Gutter	LF	\$101.66	4,600	\$	467,618
	Erosion Control	LF	\$16.80	4,600	\$	77,280
	Roundabout	EACH	\$1,890,000	1	\$	1,890,000
	Illumination	LF	\$78	4,600	\$	359,242
	Permanent Signing	LF	\$4.00	4,600	\$	18,400
	Landscaping	LF	\$30.00	4,600	\$	138,000
	Traffic Control	LS	\$300,000	1	\$	300,000
	Subtotal Contruction		•	•	\$	6,868,160
	Conceptual Contingency/Miscellaneous (20%)				\$	1,373,632
	Total Construction				\$	8,241,792
	PE		12%		\$	989,015
	СМ		15%		\$	1,236,269
	ROW		Value		\$	3,750,000
	Total				\$	14,220,000

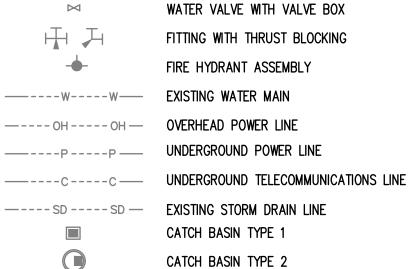

	SCJ ALLIANCE			Phase 3		
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement		
Roadwork	Estimated Quantities				\$	5,977,245
	Mobilization	LS	8%	1	\$	523,554
	Clearing and Grubbing	SF	\$0.23	185,000	\$	42,470
	Roadway Excavation/Select Borrow	CY	\$25.00	10,826	\$	270,648
	Roadway Section	SF	\$5.13	236,800	\$	1,215,258
	Conveyance	LF	\$62.30	3,700	\$	230,510
	Water Quality/Flow Control	SF	\$2.28	236,800	\$	538,720
	Sidewalk	SY	\$45.83	2,467	\$	113,042
	Curb and Gutter	LF	\$101.66	3,700	\$	376,127
	Erosion Control	LF	\$16.80	3,700	\$	62,160
	Roundabouts	EACH	\$1,890,000	1	\$	1,890,000
	Illumination	LF	\$78	3,700	\$	288,955
	Permanent Signing	LF	\$4.00	3,700	\$	14,800
	Landscaping	LF	\$30.00	3,700	\$	111,000
	Traffic Control	LS	\$300,000	1	\$	300,000
	Subtotal Contruction			•	\$	5,977,245
	Conceptual Contingency/Miscellaneous (20%)				\$	1,195,449
	Total Construction				\$	7,172,694
	PE		12%		\$	860,723
	СМ		15%		\$	1,075,904
	ROW		Value		\$	1,990,000
	Total				\$	11,100,000


SCJ ALLIANCE	
CONSULTING SERVICES	

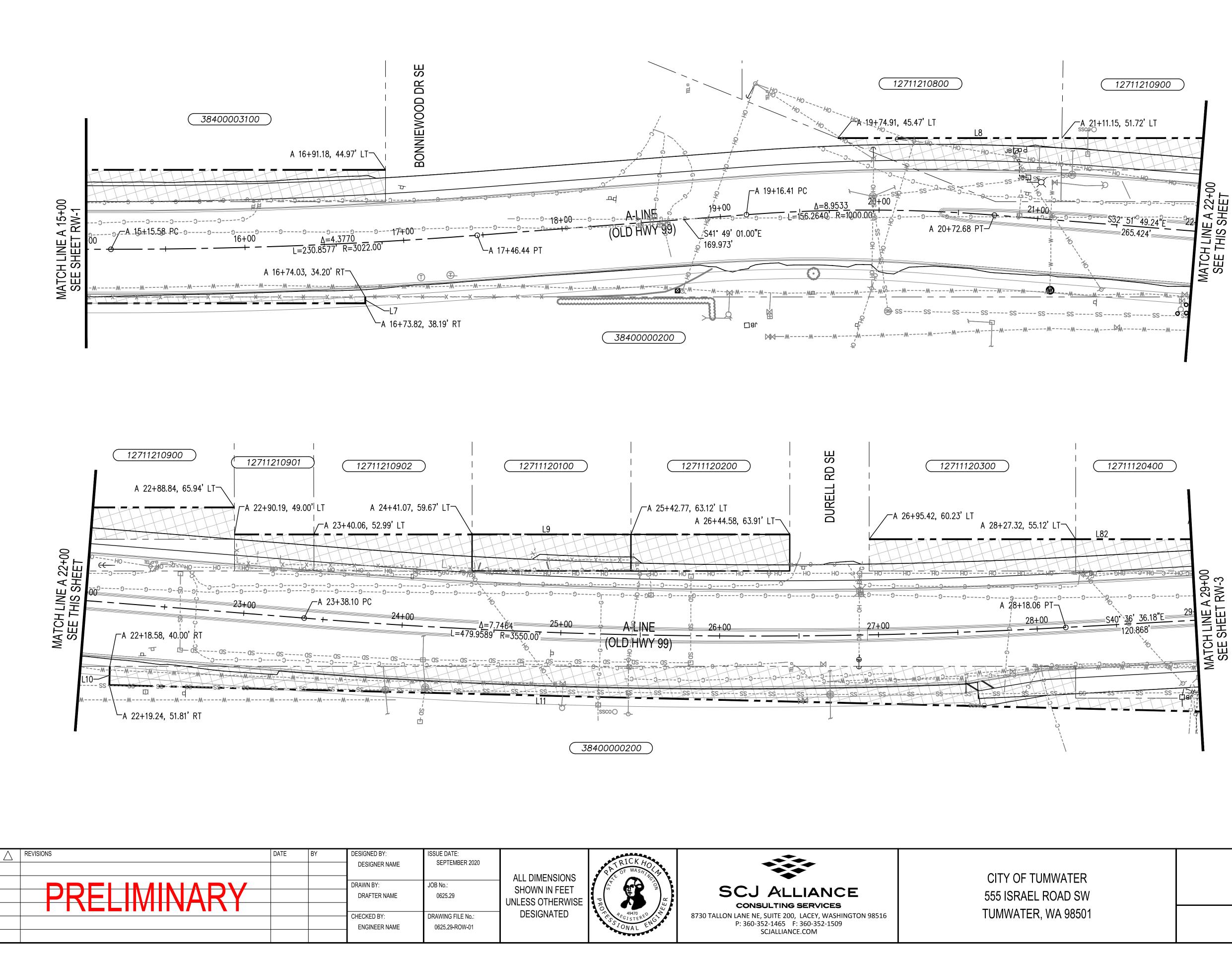
SCJ ALLIANCE consulting services			Phase 4			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement		
Roadwork	Estimated Quantities				\$	2,096,746
	Mobilization	LS	8%	1	\$	183,657
	Clearing and Grubbing	SF	\$0.23	136,800	\$	31,405
	Roadway Excavation/Select Borrow	CY	\$25.00	6,578	\$	164,444
	Roadway Section	SF	\$5.13	110,400	\$	566,573
	Conveyance	LF	\$62.30	2,400	\$	149,520
	Water Quality/Flow Control	SF	\$2.28	110,400	\$	251,160
	Sidewalk	SY	\$45.83	3,200	\$	146,650
	Curb and Gutter	LF	\$50.83	2,400	\$	121,987
	Erosion Control	LF	\$16.80	2,400	\$	40,320
	Illumination	LF	\$78	2,400	\$	187,430
	Permanent Signing	LF	\$4.00	2,400	\$	9,600
	Landscaping	LF	\$60.00	2,400	\$	144,000
	Traffic Control	LS	\$100,000	1	\$	100,000
	Subtotal Contruction				\$	2,096,746
	Conceptual Contingency/Miscellaneous (20%)				\$	419,349
	Total Construction				\$	2,516,095
	PE		12%		\$	301,931
	СМ		15%		\$	377,414
	ROW		Value		\$	580,000
	Total				\$	3,780,000

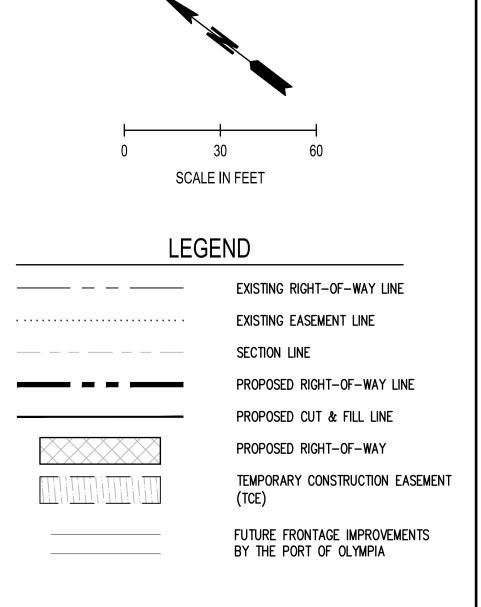
SCJ A	SCJ ALLIANCE CONSULTING SERVICES			Phase 5			
Element	Element Based Upon	Unit	Unit Cost	Estimate Measurement			
Roadwork	Estimated Quantities				\$	6,021,285	
	Mobilization	LS	8%	1	\$	527,412	
	Clearing and Grubbing	SF	\$0.23	225,500	\$	51,768	
	Roadway Excavation/Select Borrow	CY	\$25.00	11,237	\$	280,926	
	Roadway Section	SF	\$5.13	188,600	\$	967,895	
	Conveyance	LF	\$62.30	4,100	\$	255,430	
	Water Quality/Flow Control	SF	\$2.28	188,600	\$	429,065	
	Sidewalk	SY	\$45.83	5,467	\$	250,526	
	Curb and Gutter	LF	\$50.83	8,200	\$	416,790	
	Erosion Control	LF	\$16.80	4,100	\$	68,880	
	Roundabouts	EACH	\$1,890,000	1	\$	1,890,000	
	Illumination	LF	\$78	4,100	\$	320,194	
	Permanent Signing	LF	\$4.00	4,100	\$	16,400	
	Landscaping	LF	\$60.00	4,100	\$	246,000	
	Traffic Control	LS	\$300,000	1	\$	300,000	
	Subtotal Contruction				\$	6,021,285	
	Conceptual Contingency/Miscellaneous (20%)				\$	1,204,257	
	Total Construction				\$	7,225,542	
	PE		12%		\$	867,065	
	СМ		15%		\$	1,083,831	
	ROW		Value		\$	2,220,000	
	Total				\$	11,400,000	


APPENDIX E - CONCEPT RIGHT OF WAY PLANS AND ESTIMATE

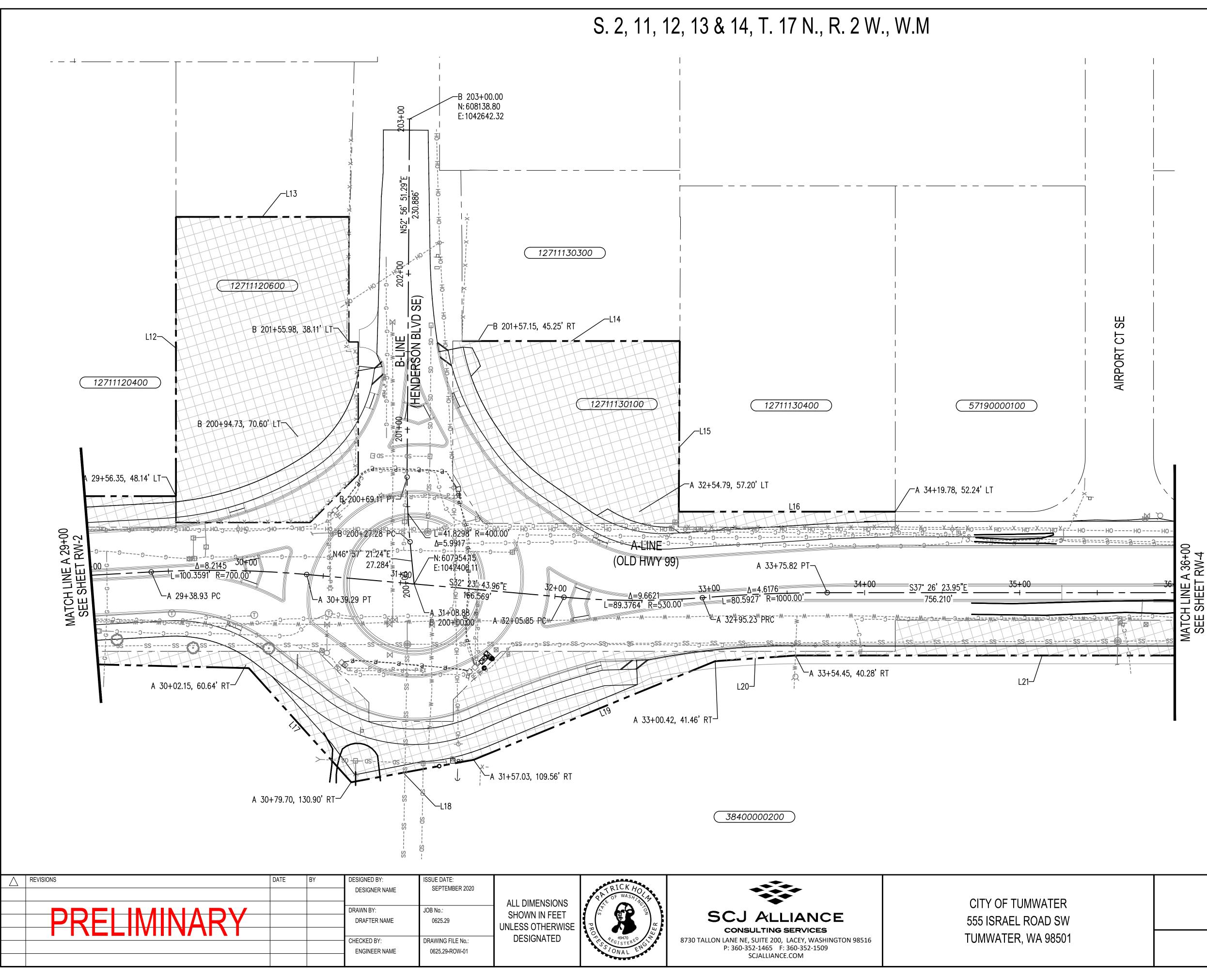


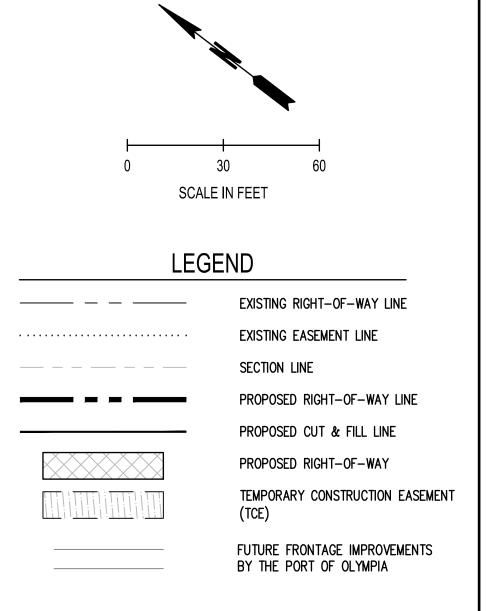
OWNERSHIP TABLE			
PARCEL NO.	R/W TCE		
3700002500	164 SF		
38400003100	28,795 SF		
38400000200	128,290 SF	1,508 SF	


EXISTING LEGEND


MATCH LINE A 15+00 SEE SHEET RW-2

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	drawing no.: RW-1
	SHEET No .:
RIGHT-OF-WAY PLAN A 1+00 - A 15+00	1 of 14

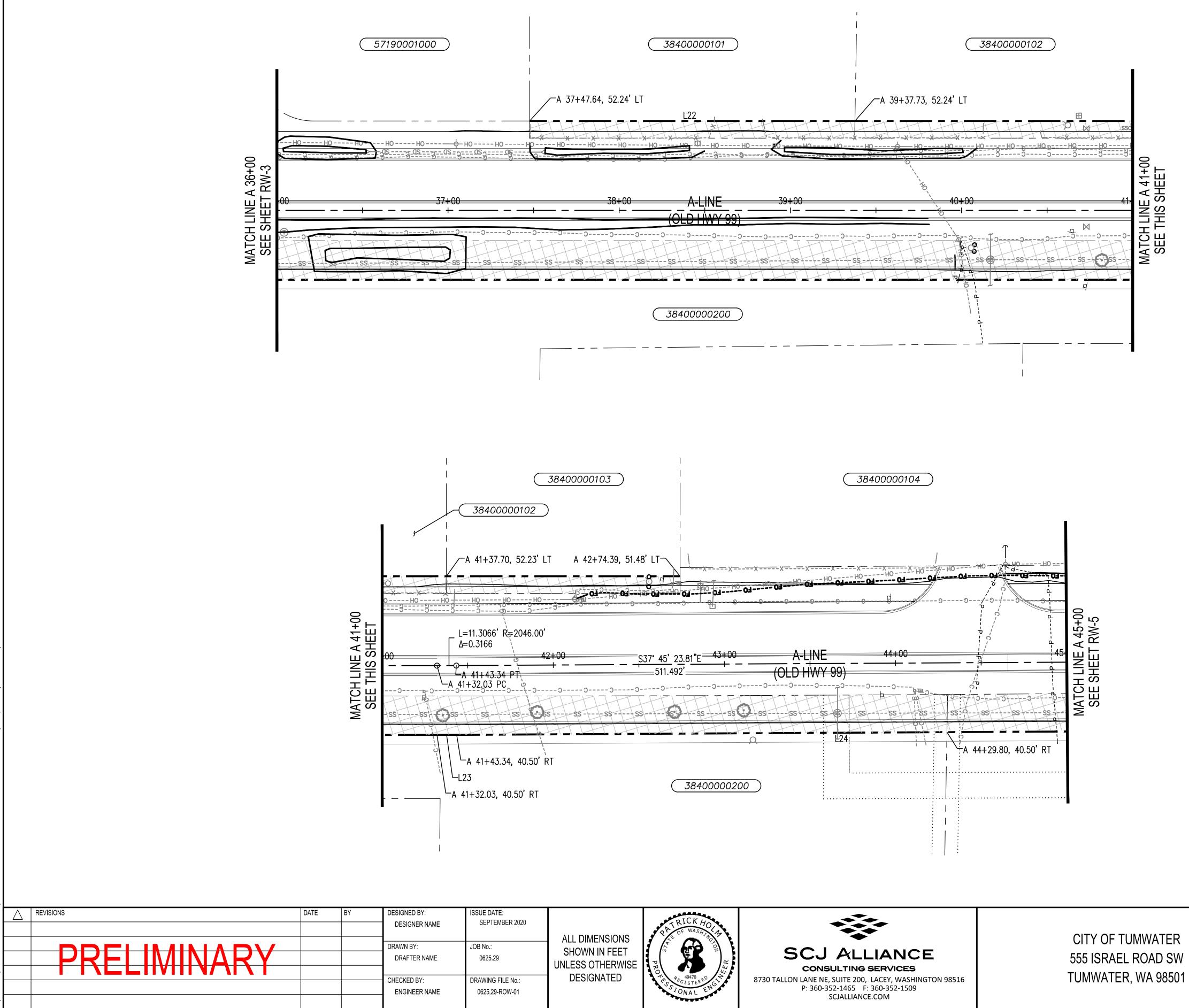

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M



PARCEL LINE AND CURVE TABLE				
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS	
L7	4.00	N52• 33' 36"E		
L8	319.23	S37° 26' 24"E		
L9	349.61	S37° 26' 24"E		
L10	11.83	N53° 56' 56"E		
L11	786.00	N36° 03' 04"W		
L82	260.42	S37° 26' 24"E		

OWNERSHIP TABLE			
PARCEL NO.	R/W	TCE	
12711210800	2,320 SF		
12711210900	3,568 SF		
12711210901	1,150 SF		
12711210902	2,291 SF		
12711120100	2,311 SF		
12711120200	2,300 SF		
12711120300	2,600 SF		
12711120400	2,609 SF		

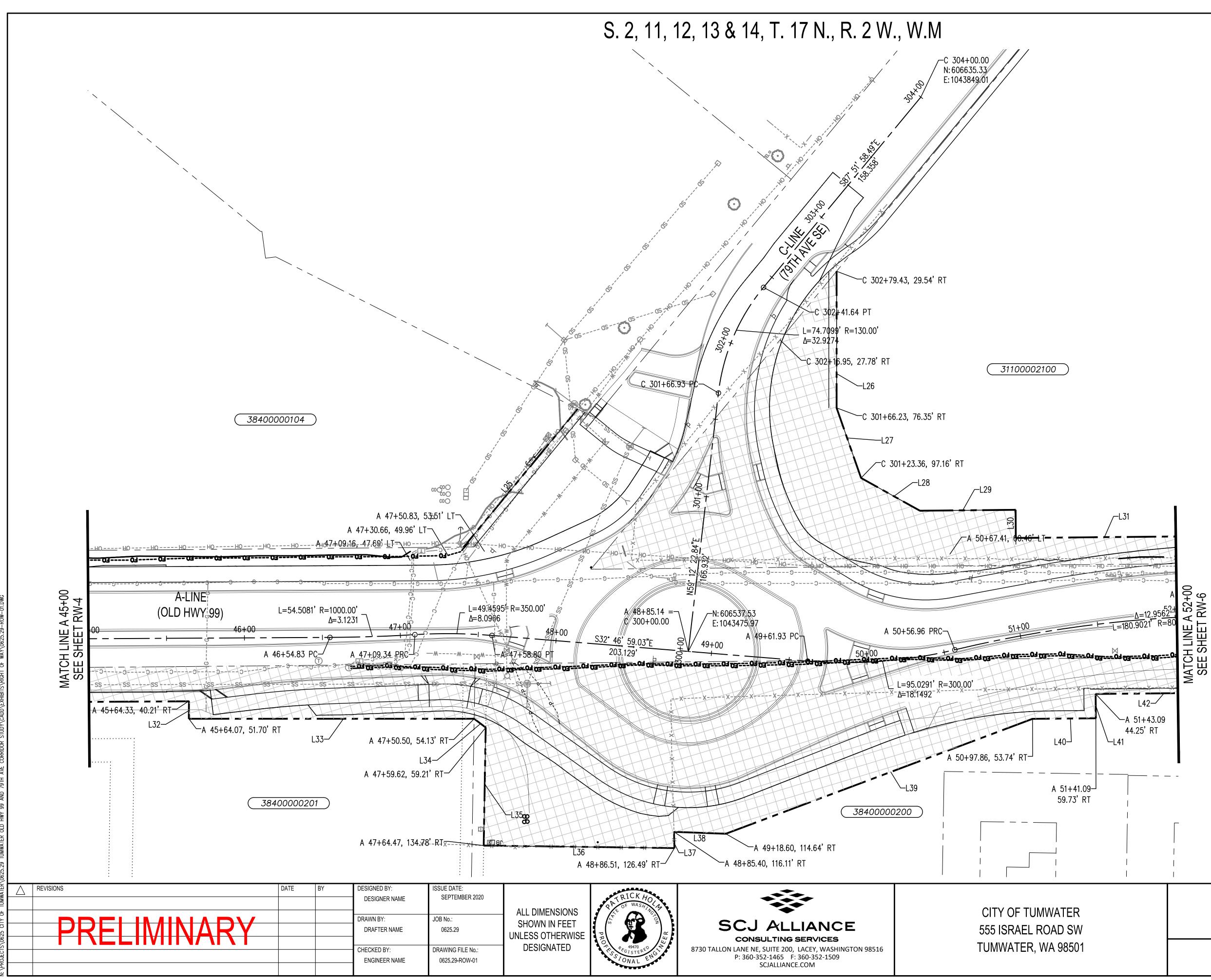
OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-2
	SHEET No.:
RIGHT-OF-WAY PLAN A 15+00 - A 29+00	2 of 14



PARCEL LINE AND CURVE TABLE			
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
L12	180.05	N52• 33' 55"E	
L13	112.15	S37° 26' 06"E	
L14	140.43	S37° 26' 24"E	
L15	110.03	S52 54 22"W	
L16	139.66	S37° 26' 24"E	
L17	98.90	N10° 37' 53"E	
L18	80.23	N47° 49' 30"W	
L19	168.30	N59° 38' 02"W	
L20	51.83	S41° 30' 40"E	
L21	776.72	S37° 26' 24"E	

OWNERSHIP TABLE			
PARCEL NO. R/W T		TCE	
12711120600	5,895 SF		
12711130100	7,671 SF		
12711130400	1,397 SF		

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-3
	SHEET No.:
RIGHT-OF-WAY PLAN A 29+00 - A 36+00	3 of 14

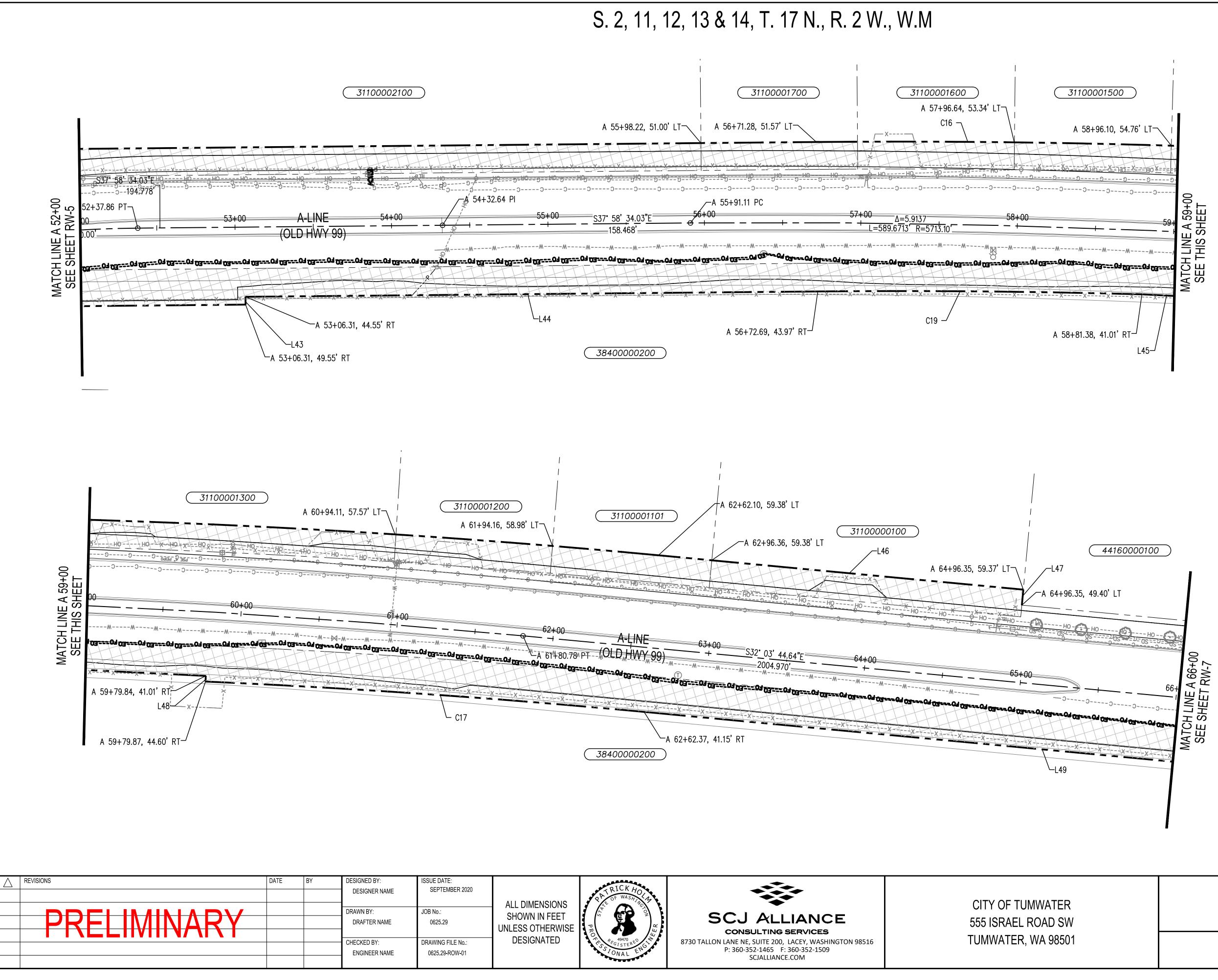

555 ISRAEL ROAD SW

I	
LEGE	ND
	EXISTING RIGHT-OF-WAY LINE
	EXISTING EASEMENT LINE
	SECTION LINE
	PROPOSED RIGHT-OF-WAY LINE
	PROPOSED CUT & FILL LINE
	PROPOSED RIGHT-OF-WAY
	TEMPORARY CONSTRUCTION EASEMENT (TCE)
	FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

PARCEL LINE AND CURVE TABLE			
LINE #/CURVE #	CURVE # LENGTH BEARING/DELTA RADIUS		
L22	526.46	S37° 26' 24"E	
L23	11.53	S37° 35' 54"E	
L24	420.86	S37° 45' 24"E	

OWNERSHIP TABLE			
PARCEL NO.	R/W	TCE	
38400000101	1,900 SF		
38400000102	1,999 SF		
38400000103	1,359 SF		
38400000104	4,078 SF		

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-4
RIGHT-OF-WAY PLAN A 36+00 - A 45+00	SHEET No.: 4 OF 14

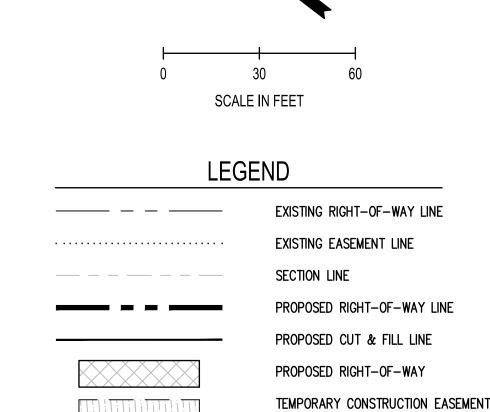

:t 28, 2022 10:02:37am – User david:rowland \PRO.FCTS\0625 CITY OF TI.IMWATER\0625 29 TI.IMWATER OID HWY 99 AND 79TH AVE CORRIDOR STI.IDY\CADD\EXHIBITS\RIGHT OF WAY\0625 29-ROW-

↓+	
0 30 SCALE II	
LEGE	ND
	EXISTING RIGHT-OF-WAY LINE
	EXISTING EASEMENT LINE
	SECTION LINE
	PROPOSED RIGHT-OF-WAY LINE
	PROPOSED CUT & FILL LINE
	PROPOSED RIGHT-OF-WAY
	TEMPORARY CONSTRUCTION EASEMENT (TCE)
	FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

PARCEL LINE AND CURVE TABLE			
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
L23	11.53	S37° 35' 54"E	
L24	420.86	S37° 45' 24"E	
L25	114.88	S87° 55' 25"E	
L26	87.61	N52 33' 36"E	
L27	47.66	N33 19' 30"E	
L28	43.19	N8°20'40"W	
L29	61.34	N37° 58' 34"W	
L30	18.06	N52 01 25"E	
L31	573.69	N37° 58' 34"W	
L32	11.20	S52° 54' 19"W	
L33	182.97	S37°26'23"E	
L34	9.30	S0° 14' 10"E	
L35	75.73	S53° 32' 37"W	
L36	122.32	S36° 40' 22"E	
L37	10.44	N51°01'28"E	
L38	33.25	S35• 18' 38"E	
L39	210.06	S57° 59' 09"E	
L40	40.61	S37° 58' 34"E	
L41	15.59	N52 01'26"E	
L42	157.77	S37° 58' 34"E	

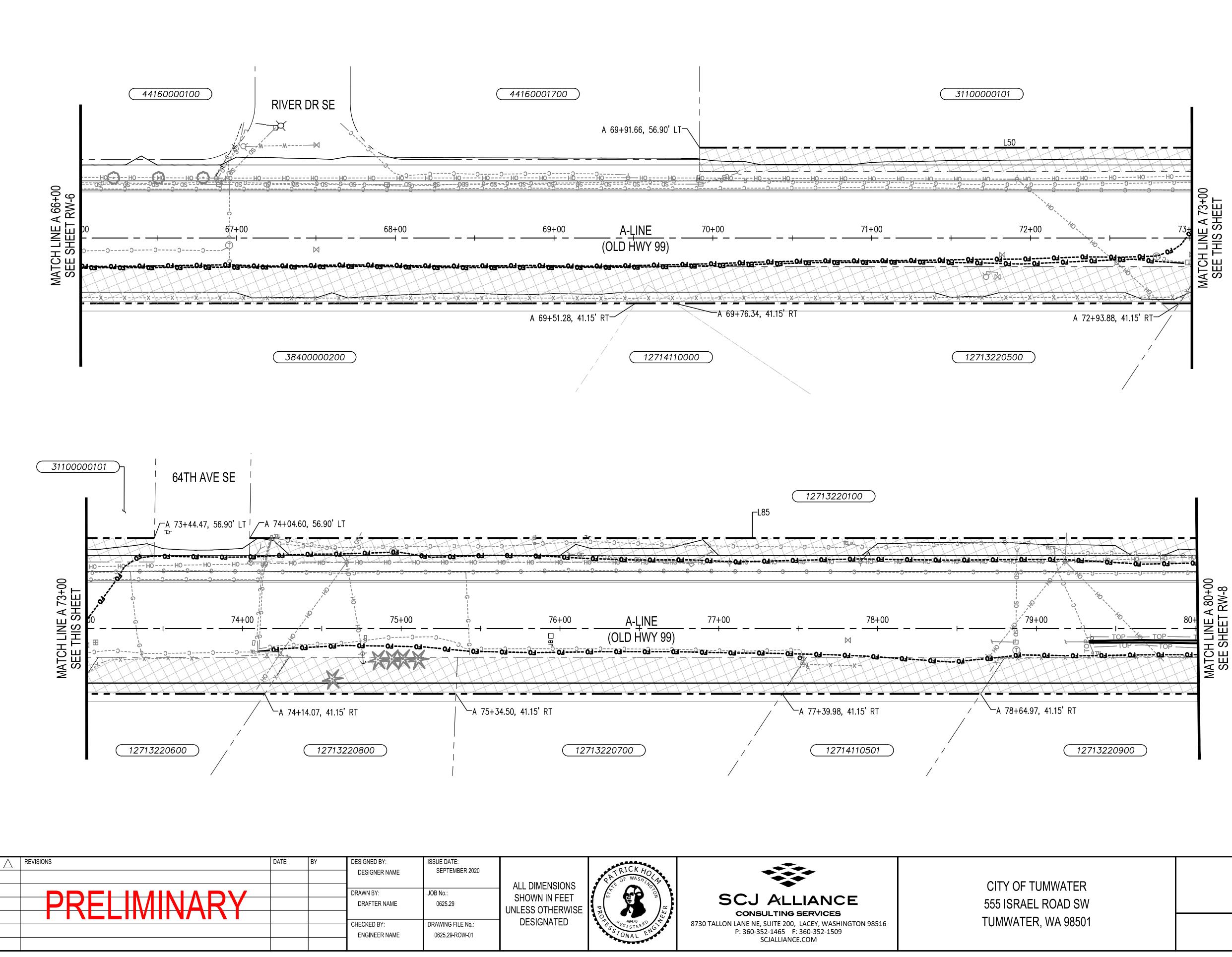
OWNERSHIP TABLE		
PARCEL NO.	R/W	TCE
31100002100	16,604 SF	
38400000201	9,182 SF	

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	RW-5
	SHEET No .:
RIGHT-OF-WAY PLAN A 45+00 - A 52+00	5 of 14

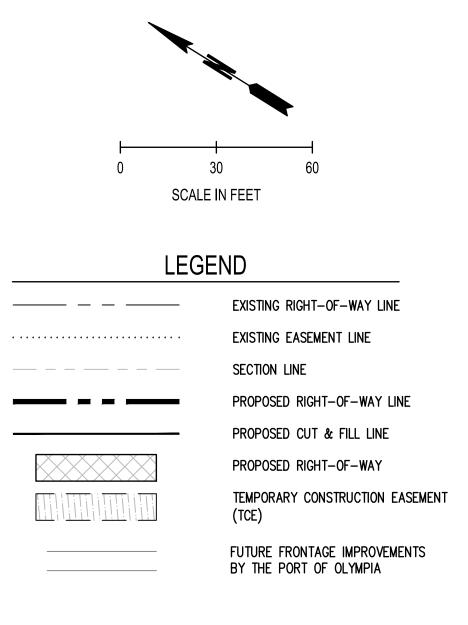


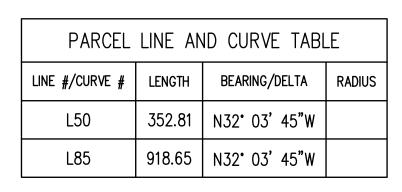
	31100000100	1,500 SF		
OLD HIGHWA	Y 99 CORRIDOR STU	ΟY	DRAWING No.:	
TUMWATER, WASHINGTON			RW-6	
			SHEET No .:	
	T-OF-WAY PLAN 2+00 - A 66+00		6 of 1	4

OWNERS	SHIP TABLE	
PARCEL NO.	R/W	TCE
31100001700	750 SF	
31100001600	750 SF	
31100001500	750 SF	
31100001300	1,501 SF	
31100001200	750	
31100001101	765 SF	
31100000100	1,500 SF	

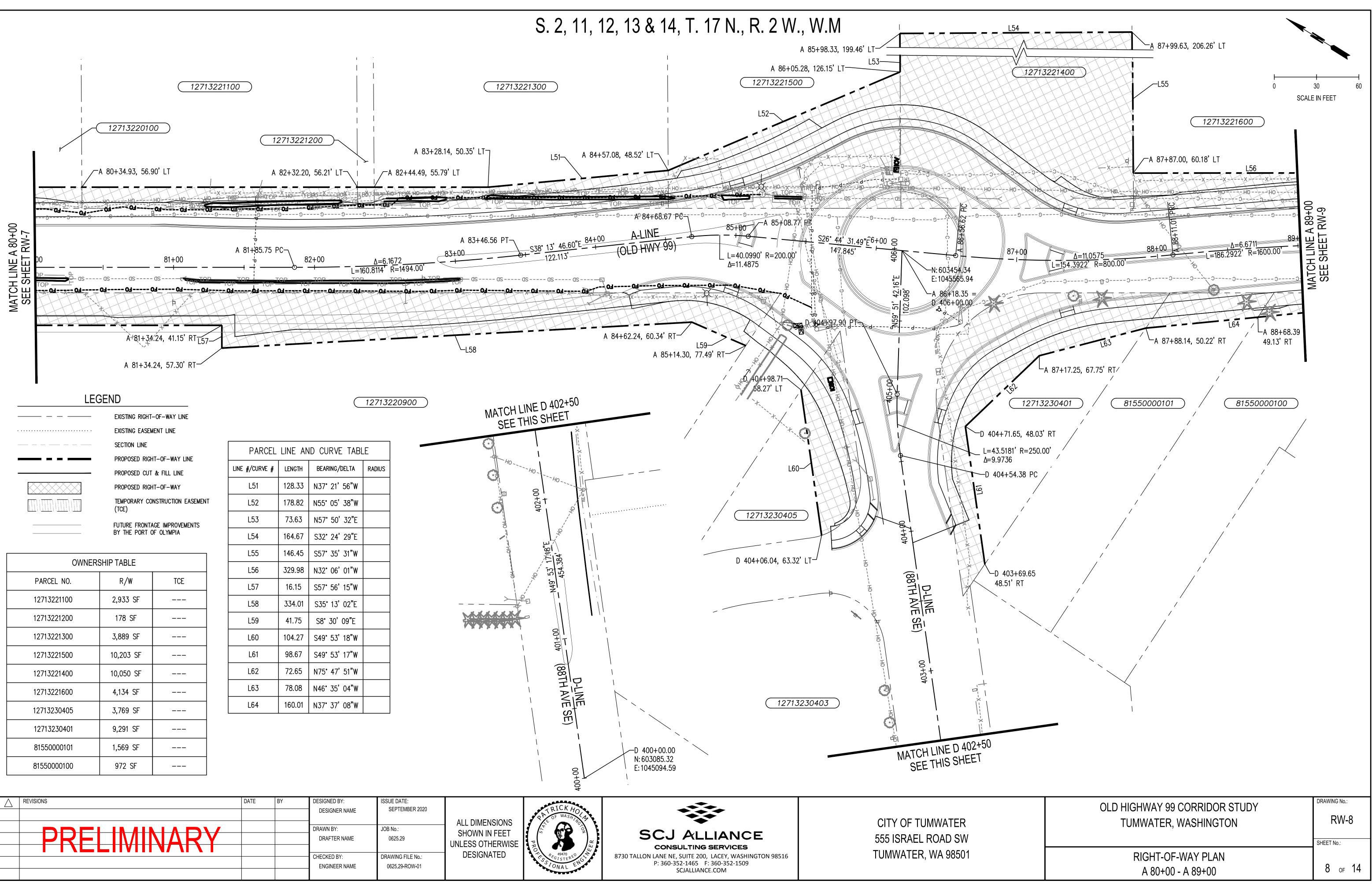

LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
C16	595.80	5° 54' 49"	5772.43
C17	281.00	2° 50' 15"	5673.93
C19	207.16	2°05'24"	5678.93
L43	5.00	N52 01'26"E	
L44	365.75	S37° 58' 34"E	
L45	97.75	S34° 34' 18"E	
L46	234.26	N32°03′44"W	
L47	240.03	N57 56'27"E	
L48	3.60	S55° 31' 52"W	
L49	1871.87	S32° 03' 45"E	

PARCEL LINE AND CURVE TABLE


(TCE)


FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

Oct 28, 2022 10:03:36am — User david.rowland N: \PROJECTS\0625 CITY OF TUMWATER\0625.29 TUMWATER OLD HWY 99 AND 79TH AVE CORRIDOR STUDY\CADD\EXHIBITS\RIGHT OF WAY\0625.29—ROW—01.DWC


S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

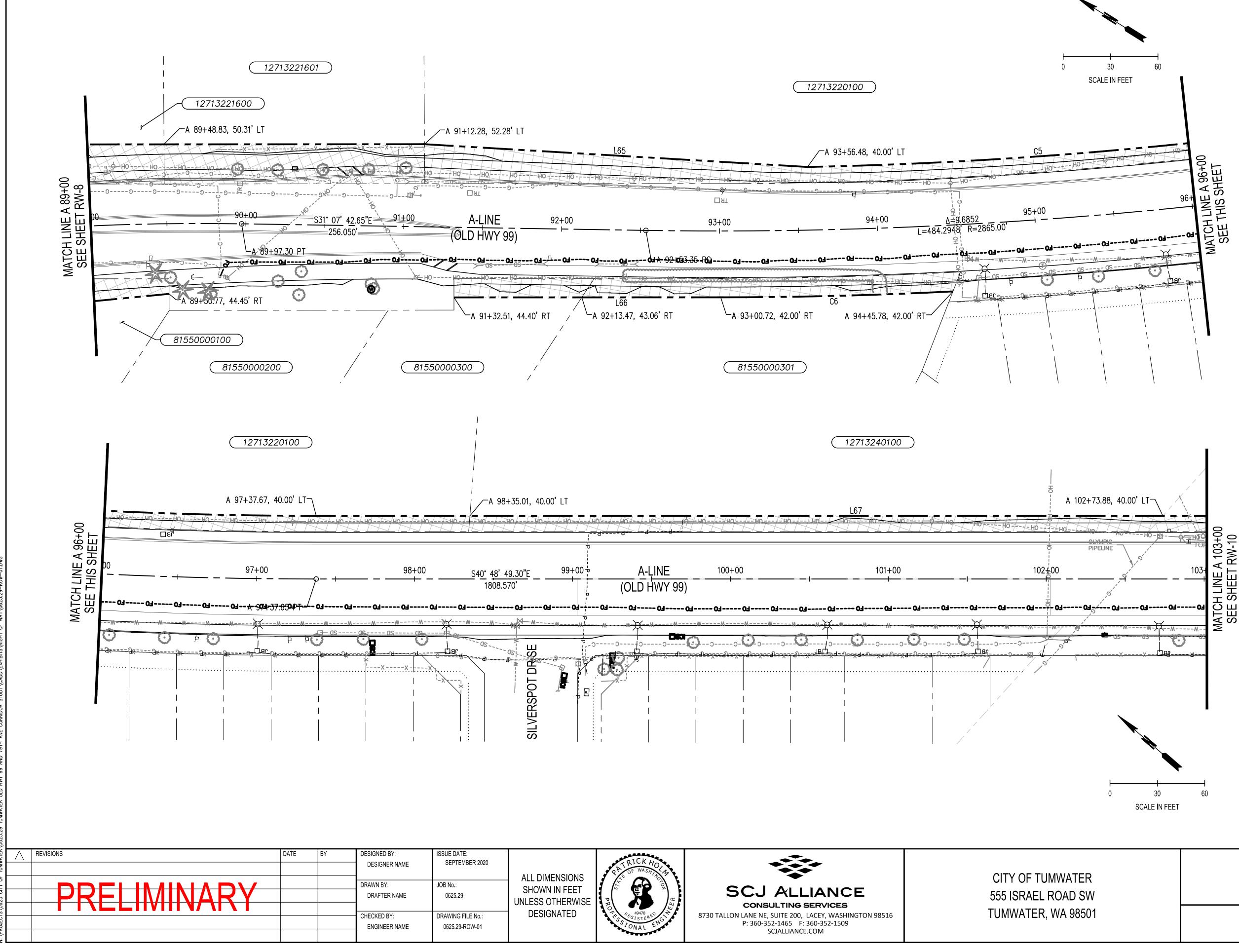
OWNERSHIP TABLE		
PARCEL NO.	R/W	TCE
31100000101	5,311 SF	
12714110000	145 SF	
12713220500	7,751 SF	
12713220100	9,458 SF	
12713220600	2,771 SF	
12713220800	2,610 SF	
12713220700	4,902 SF	
12714110501	2,881 SF	
12713220900	17,621 SF	

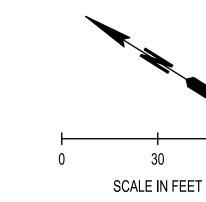
	OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING NO.: RW-7
L		SHEET No.:
	RIGHT-OF-WAY A 66+00 - A 80+00	7 of 14

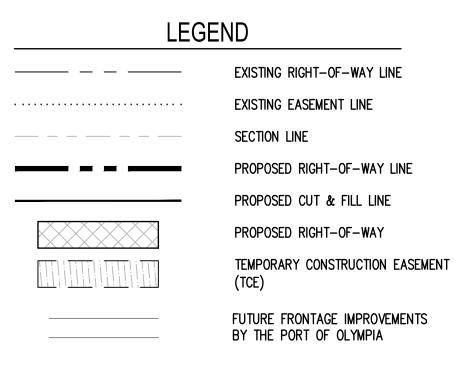
EXISTING RIGHT-OF-WAY LINE
EXISTING EASEMENT LINE
SECTION LINE
PROPOSED RIGHT-OF-WAY LINE
PROPOSED CUT & FILL LINE
PROPOSED RIGHT-OF-WAY
TEMPORARY CONSTRUCTION EASE (TCE)
FUTURE FRONTAGE IMPROVEMENT BY THE PORT OF OLYMPIA

	EXISTING R
	EXISTING E
	SECTION LI
-	PROPOSED
	PROPOSED
\sim	PROPOSED
	TEMPORARY (TCE)

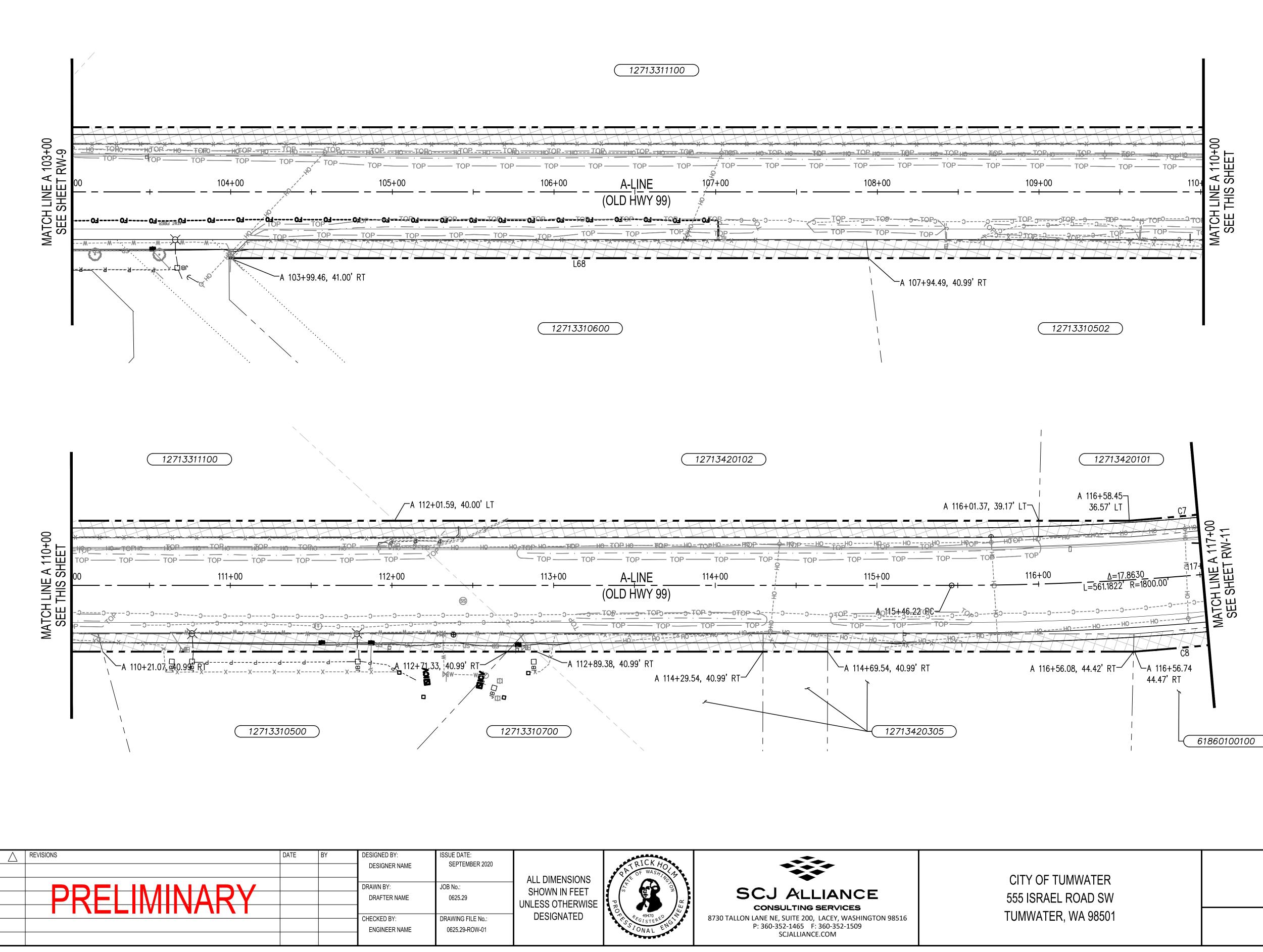
PROPOSED RIGHT-OF-WAY LINE
PROPOSED CUT & FILL LINE
PROPOSED RIGHT-OF-WAY
TEMPORARY CONSTRUCTION EASEMI (TCE)


TEMPORAR' (TCE)	Y CONSTRUCTION	EASEME
	ONTAGE IMPROVE	MENTS


PARCEL LINE AND CURVE TABL			
LINE #/CURVE #	LENGTH	BEARING/DELTA	RAD
L51	128.33	N37°21'56"W	
L52	178.82	N55°05'38"W	
L53	73.63	N57° 50' 32"E	
L54	164.67	S32° 24' 29"E	
L55	146.45	S57° 35' 31"W	
L56	329.98	N32°06'01"W	
L57	16.15	S57° 56' 15"W	
L58	334.01	S35° 13' 02"E	
L59	41.75	S8• 30' 09"E	
L60	104.27	S49° 53' 18"W	
L61	98.67	S49° 53' 17"W	
L62	72.65	N75° 47' 51"W	
L63	78.08	N46° 35' 04"W	
L64	160.01	N37° 37' 08"W	



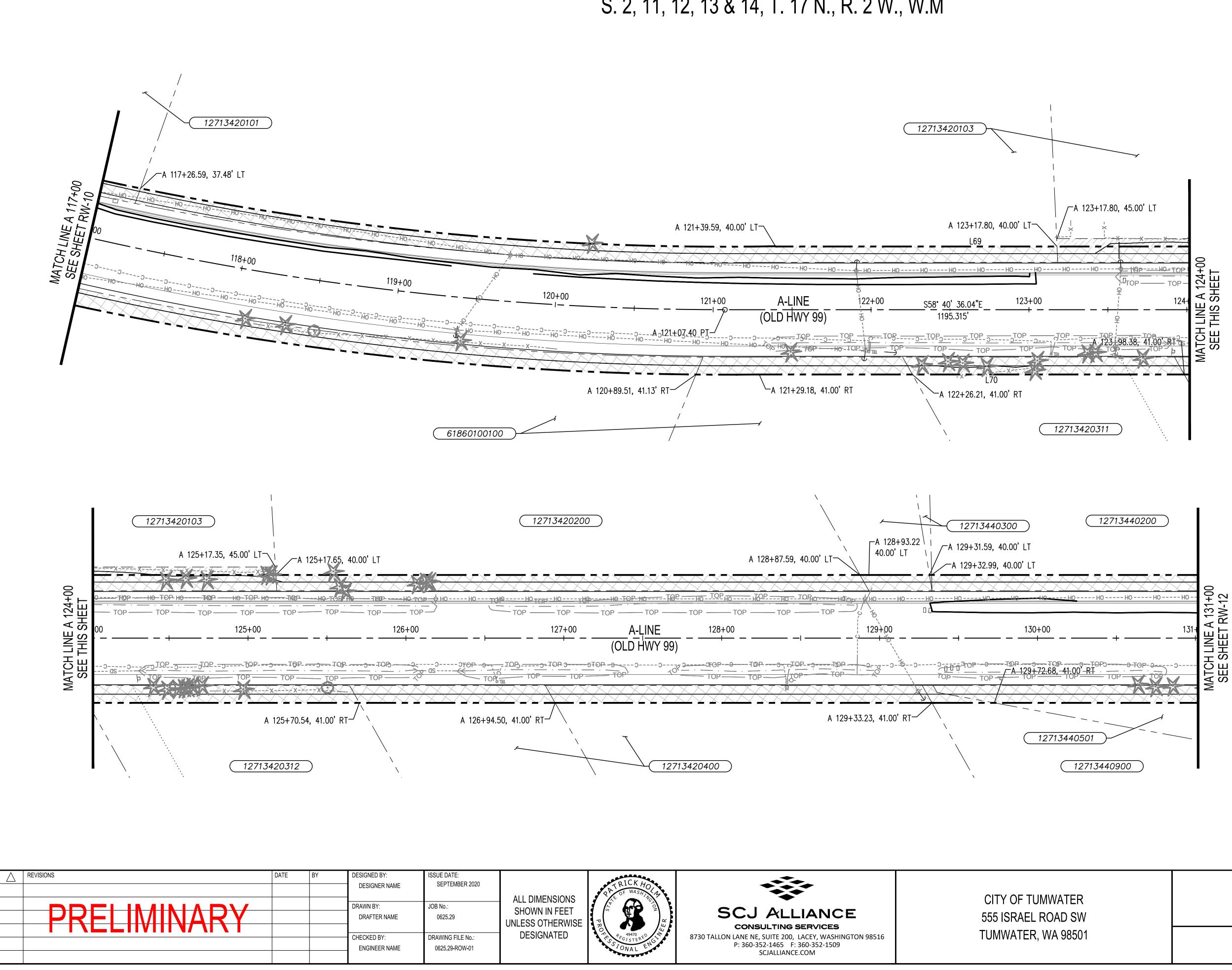
R\06:		1-14			
TUMWATER	DATE	BY	DESIGNED BY: DESIGNER NAME	ISSUE DATE: SEPTEMBER 2020	
0625 CITY OF			DRAWN BY: DRAFTER NAME	JOB No.: 0625.29	ALL DIMEN SHOWN IN UNLESS OTH
V: \PROJECTS\06			CHECKED BY: ENGINEER NAME	DRAWING FILE No.: 0625.29-ROW-01	DESIGNA



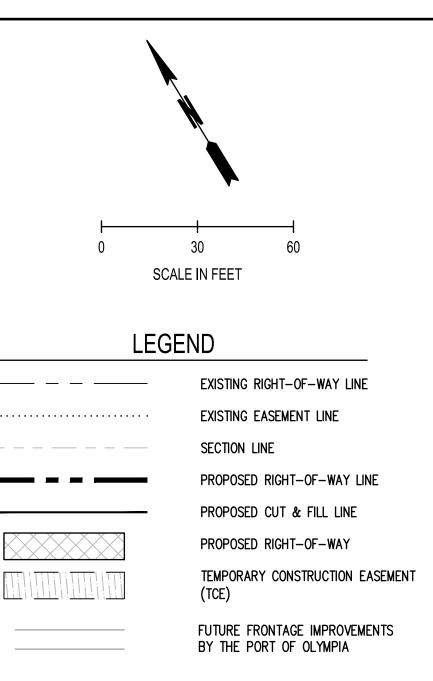
PARCEL LINE AND CURVE TABLE				
LINE #/CURVE #	LENGTH BEARING/DELTA		RADIUS	
C5	375.87	7° 37' 25"	2824.85	
C6	147.18	2• 54' 04"	2906.84	
L65	242.96	N28° 39' 45"W		
L66	168.93	N32°04'33"W		
L67	1918.42	N40° 48' 49"W		

OWNERSHIP TABLE				
PARCEL NO.	R/W	TCE		
12713221601	4,110 SF			
12713220100	9,034 SF			
81550000300	1,019 SF			
81550000301	2,803 SF			
12713240100	4,347 SF			

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-9
	SHEET No.:
RIGHT-OF-WAY PLAN A 89+00 - A 103+00	9 _{OF} 14

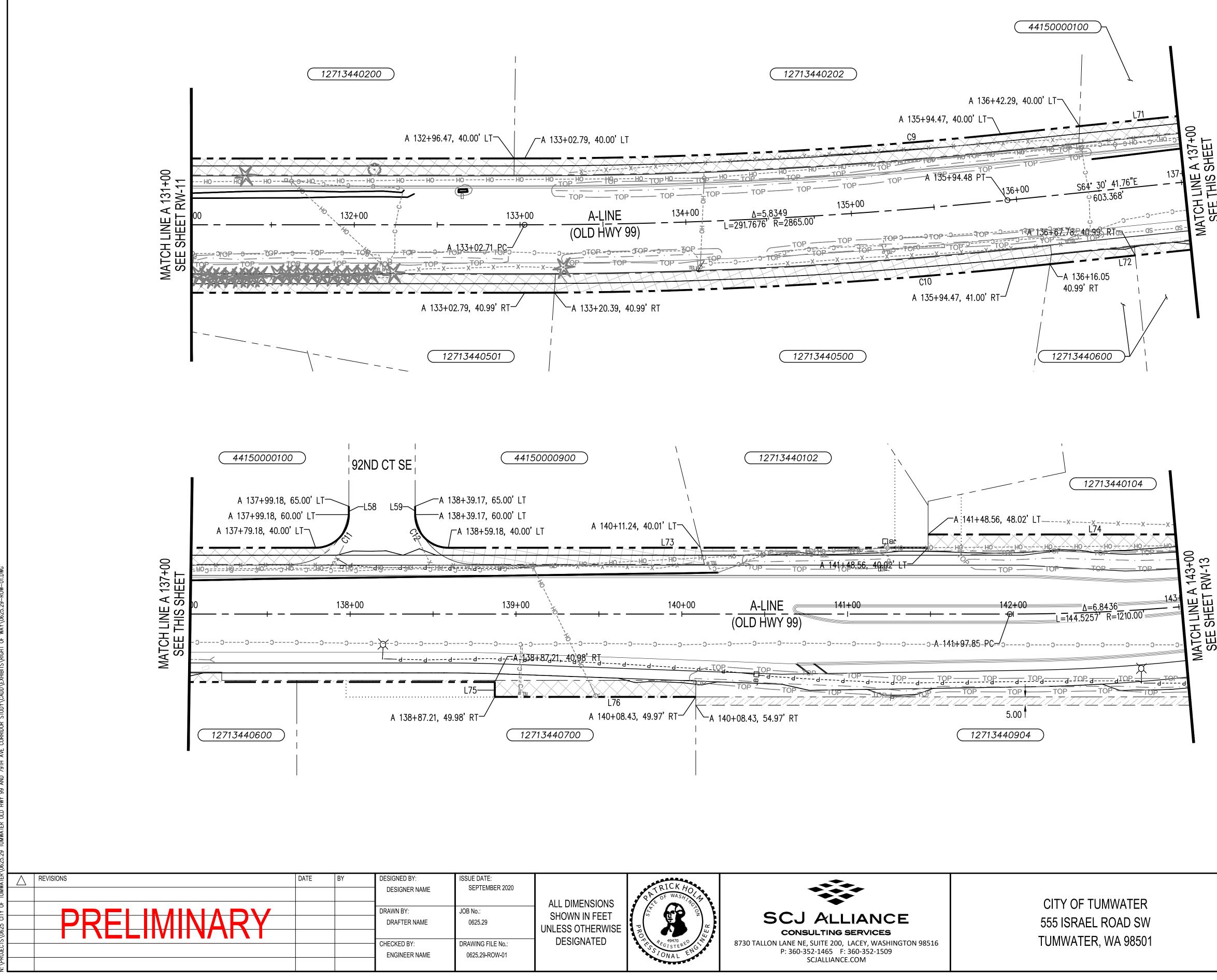

-	+
LEGE	ND
	EXISTING RIGHT-OF-WAY LINE
	EXISTING EASEMENT LINE
	SECTION LINE
	PROPOSED RIGHT-OF-WAY LINE
	PROPOSED CUT & FILL LINE
	PROPOSED RIGHT-OF-WAY
	TEMPORARY CONSTRUCTION EASEMENT (TCE)
	FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

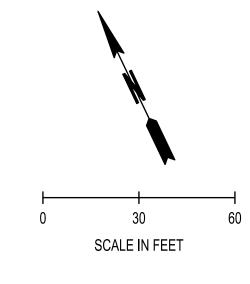
PARCEL LINE AND CURVE TABLE					
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS		
C7	471.50	14° 26' 51"	1869.89		
C8	483.04	14° 10' 58"	1951.41		
L68	1260.42	N40° 48' 50"W			

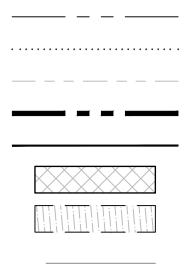

OWNERSHIP TABLE				
PARCEL NO.	R/W	TCE		
12713311100	9,376			
12713310600	4,278 SF			
12713310502	2,484 SF			
12713420102	3,930 SF			
12713420101	1,227 SF			
12713310500	2,821 SF			
12713310700	81 SF			
12713420305	4,126 SF			
61860100100	4,884 SF			

	0
<u>, topilo</u> Top —	ATCH LINE A 110+00 SEE THIS SHEET
	MATCH I SEE T

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-10
	SHEET No.:
RIGHT-OF-WAY PLAN A 103+00 - A 117+00	10 of 14

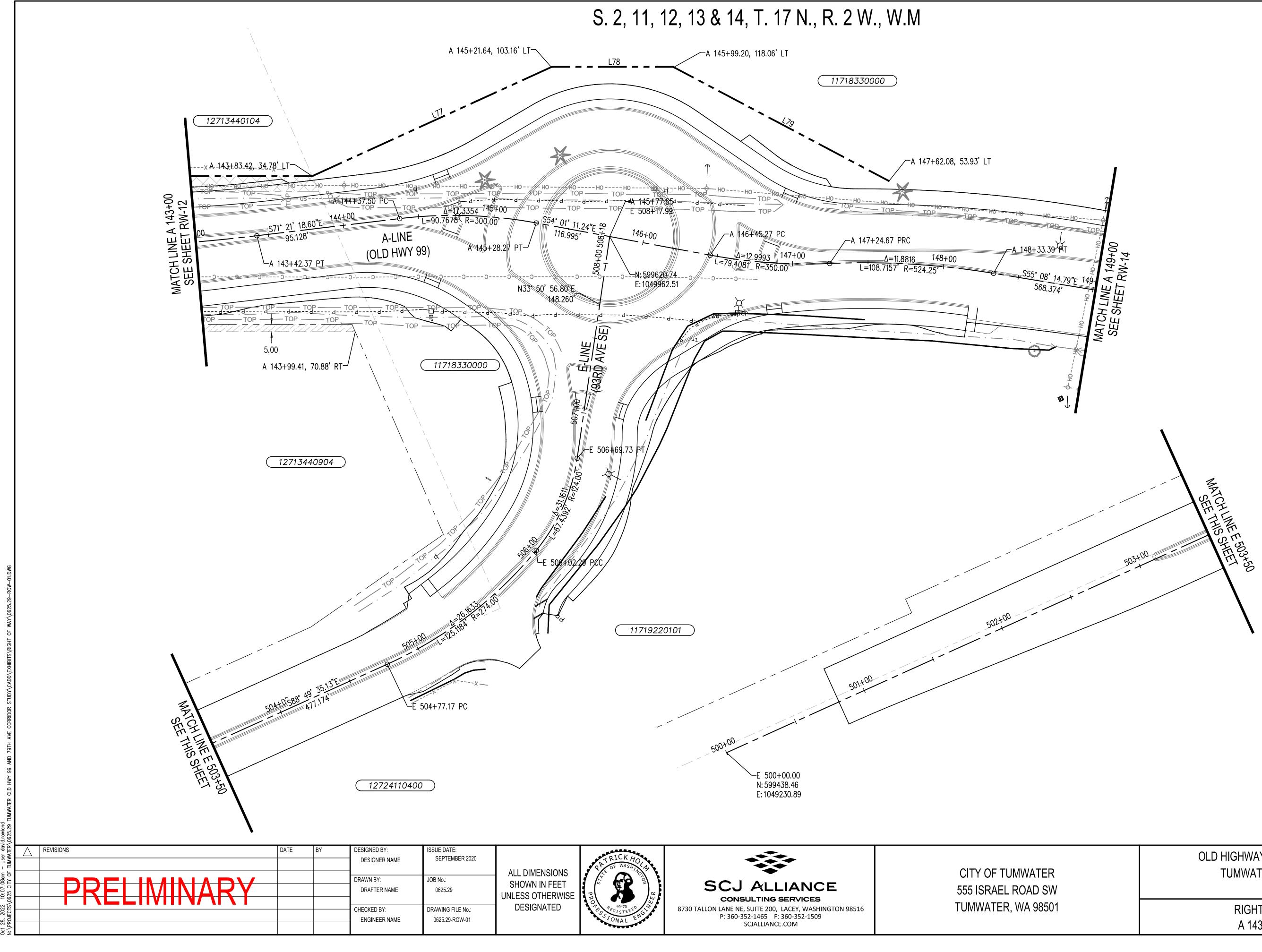


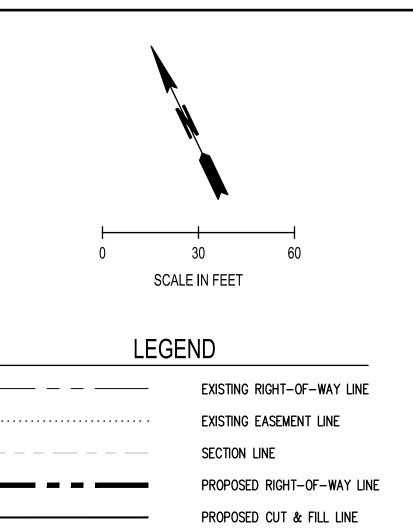

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-11
RIGHT-OF-WAY PLAN	SHEET No.: 11 OF 14


PARCEL	LINE AN	ID CURVE TABL	E
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
L69	753.63	N58° 40' 36"W	
L70	797.84	N58°40'36"W	

OWNERS	SHIP TABLE	
PARCEL NO.	R/W	TCE
12713420103	7,849 SF	999 SF
12713420311	1,894 SF	
12713420200	3,725 SF	
12713440300	427 SF	
12713440200	3,633 SF	
12713420312	1,894 SF	
12713420400	3,990 SF	
12713440900	184 SF	
12713440501	4,116 SF	

LEGEND




EXISTING RIGHT-OF-WAY LINE EXISTING EASEMENT LINE SECTION LINE PROPOSED RIGHT-OF-WAY LINE PROPOSED CUT & FILL LINE PROPOSED RIGHT-OF-WAY TEMPORARY CONSTRUCTION EASEMENT (TCE) FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

PARCEL	LINE A	ND CURVE TAE	BLE
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
C9	287.60	5° 50' 00"	2824.86
C10	295.85	5° 50' 00"	2905.87
C11	31.42	89° 59' 57"	20.00
C12	31.42	90°00'20"	20.00
L58	5.00	S25° 29' 22"W	
L59	5.00	N25° 29' 22"E	
L71	184.71	N64° 30' 42"W	
L72	269.60	S64° 30' 52"E	
L73	289.39	N64° 30' 59"W	
L74	230.08	N64° 30' 59"W	
L75	9.00	S25 29' 08"W	
L76	121.22	S64° 30' 52"E	

OWNERSHIP TABLE													
PARCEL NO.	R/W	TCE											
12713440202	3,416 SF												
44150000100	1,408 SF												
12713440500	3,297 SF												
12713440600	679 SF												
44150000900	1,565 SF												
12713440102	274 SF												
12713440104	2,323 SF												
12713440700	1,332 SF												
12713440904		1,988 SF											

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-12
RIGHT-OF-WAY PLAN A 131+00 - A 143+00	SHEET No.: 12 of 14

PROPOSED RIGHT-OF-WAY

(TCE)

PARCEL LINE AND CURVE TABLE

174.19 | S89° 01' 47"E

80.18 | S64° 30' 42"E

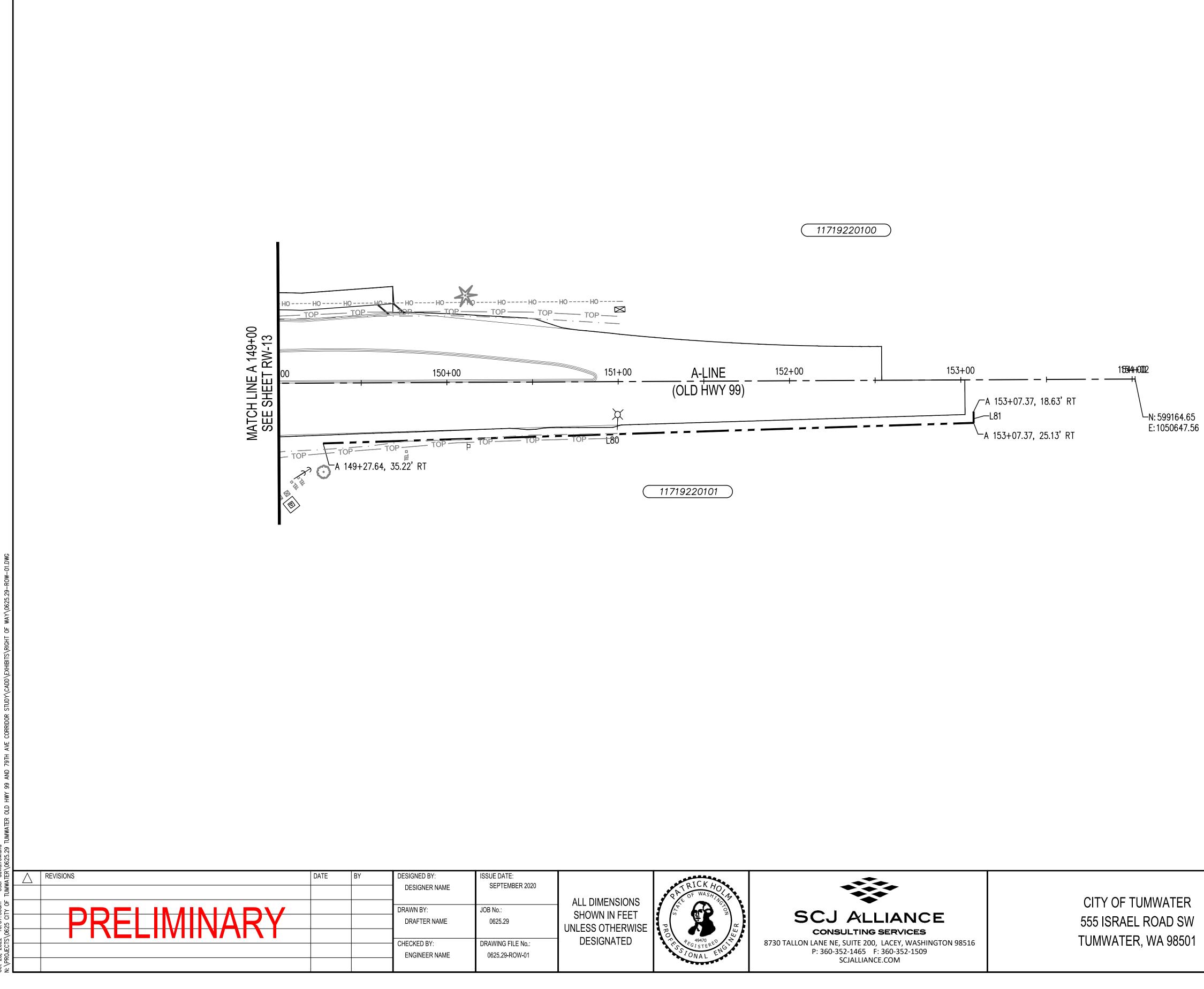
161.79 | S36° 38' 11"E

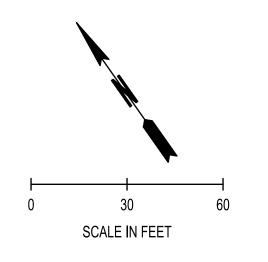
LENGTH

LINE #/CURVE #

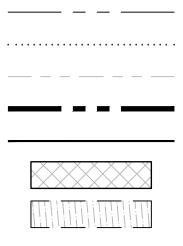
L77

L78


L79


TEMPORARY CONSTRUCTION EASEMENT

FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA


BEARING/DELTA RADIUS

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-13
	SHEET No.:
RIGHT-OF-WAY PLAN A 143+00 - A 149+00	13 o⊧ 14

LEGEND

EXISTING RIGHT-OF-WAY LINE EXISTING EASEMENT LINE SECTION LINE PROPOSED RIGHT-OF-WAY LINE PROPOSED CUT & FILL LINE PROPOSED RIGHT-OF-WAY TEMPORARY CONSTRUCTION EASEMENT (TCE) FUTURE FRONTAGE IMPROVEMENTS BY THE PORT OF OLYMPIA

PARCEL	LINE AN	ID CURVE TABI	E
LINE #/CURVE #	LENGTH	BEARING/DELTA	RADIUS
L80	379.87	S56° 39' 37"E	
L81	6.50	N34° 51' 45"E	

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: RW-14
	SHEET No.:
RIGHT-OF-WAY PLAN A 149+00 - A 154+00	14 o⊧ 14

Right-of-Way Acquistion Estimate

Phase 1 - 79th RAB

Assessor's No.	Owner	Lan	d Rights	Improvements	Damages	Con	npensation	Appraisal	R	Review	Neg	otiation	1	Γitle,	Prop.	Relocation	Relo.	s	ub-Total	Со	ndemn.	State	utory		Total
							(Offer)	Costs	(Costs	C	Costs	С	Costs	Management	Costs	Labor			Cost	ts @20%	Allow	ance	(Costs
38400000104	Kaufman Real Estate LLC	\$	33,000	\$ 20,000	\$ -	\$	53,000	\$ 4,000	\$	1,900	\$	7,500	\$	700	-	-	-	\$	67,100	\$	13,420	\$	750	\$	81,270
31100002100	Pick A Part Inc.	\$	231,420	\$ 87,000	\$ -	\$	318,420	\$ 4,000	\$	1,900	\$	7,500	\$	700	-	\$20,000	5,000	\$	357,520	\$	71,504	\$	750	\$	429,774
38400000200	Port of Olympia	\$	197,094	\$ 16,425	\$ 8,212	\$	221,731	\$ 4,000	\$	1,900	\$	7,500	\$	700	-	-	-	\$	235,831	\$	47,166	\$	750	\$	283,747
38400000201	Port of Olympia	\$	55,000	\$ 10,000	\$ -	\$	65,000	\$ 4,000	\$	1,900	\$	7,500	\$	700	-	-	-	\$	79,100	\$	15,820	\$	750	\$	95,670
																						То	tal:	\$	900,000

1. Multiplier is 1.5 for full parcel acquisitions and 2.0 for strip acquistions

Right-of-Way Acquistion Estimate

Phase 2 - Project start to 79th RAB

																														Total
Assessor's No.	Owner	Lan	d Rights	Im	provements	[Damages	Со	mpensation	Ар	praisal	Rev	iew	Neg	otiation		Title,	Prop		Relocation	R	elo.	Su	ıb-Total	С	ondemn.	Sta	atutory		
									(Offer)	C	Costs	Cos	sts	С	osts	(Costs	Manager	nent	Costs	La	abor			Со	sts @20%	Allo	wance		Costs
37000002500	DAC RE LLC	\$	1,400	\$	-	\$	-	\$,	\$	1,000		-	\$	7,500	\$	700		-	-		-	\$	10,600	\$	2,120	\$	750	\$	13,470
38400003100	Port of Olympia	\$	144,000	\$	-	\$	-	\$	144,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	158,100	\$	31,620	\$	750	\$	190,470
38400000200	Port of Olympia	\$	272,208	\$	22,684	\$	11,342	\$	306,234	\$	4,000	\$ 1	,900	\$	7,500		700		-	-		-	\$	320,334	\$	64,067		750	\$	385,151
12711210800	D & W Development LLC	\$	14,000	\$	-	\$	-	\$	14,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	28,100	\$	5,620	\$	750	\$	34,470
12711210900	J & S Old 99 LLC	\$	21,400	\$	-	\$	-	\$	21,400	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	35,500	\$	7,100	\$	750	\$	43,350
12711210901	Janette M. Witchey	\$	8,050	\$	5,000	\$	-	\$	13,050	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	27,150	\$	5,430	\$	750	\$	33,330
12711210902	Janette M. Witchey	\$	16,000	\$	5,000	\$	-	\$	21,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	35,100	\$	7,020	\$	750	\$	42,870
12711120100	Larry Skewis	\$	26,000	\$	15,000	\$	-	\$	41,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	55,100	\$	11,020	\$	750	\$	66,870
12711120200	Secure Storage Holdings LLC	\$	25,000	\$	10,000	\$	-	\$	35,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	49,100	\$	9,820	\$	750	\$	59,670
12711120300	Secure Storage Holdings LLC	\$	57,000	\$	20,000	\$	-	\$	77,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	91,100	\$	18,220	\$	750	\$	110,070
12711120400	included with 12711120300					\$	-												-	-		-	\$	-	\$	-			\$	-
12711120600	Ken Slater & Tina Louise- total	\$	159,600	\$	95,000	\$	152,000	\$	406,600	\$	4,000	\$ 1	,900	\$	7,500	\$	700	\$	-	\$-	\$	_	\$	420,700	\$	84,140	\$	750	\$	505,590
12711130100	H24 Inctotal	\$	230,000	\$	100,000	\$	1,170,000	\$	1,500,000	\$	7,500	\$ 2	,500	\$	7,500	\$	700	\$ 1	,000	\$ 150,000	\$ 3	30,000	\$ 1	,699,200	\$	339,840	\$	750	\$ 2	2,039,790
12711130400	Kaufman Holdings Inc	\$	16,000	\$	10,000	\$	_	\$	26,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	40,100	\$	8,020	\$	750	\$	48,870
38400000101	Airborne Properties Inc	\$	21,000	\$	10,000	\$	-	\$	31,000	\$	4,000	\$ 1	,900	\$	7,500		700		-	-		-	\$	45,100	\$	9,020		750	\$	54,870
38400000102	M Stream LLC	\$	22,000	\$	10,000	\$	-	\$	32,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	46,100	\$	9,220	\$	750	\$	56,070
38400000103	DHB Holdings LLC	\$	15,000	\$	20,000	\$	-	\$	35,000	\$	4,000	\$ 1	,900	\$	7,500	\$	700		-	-		-	\$	49,100	\$	9,820	\$	750	\$	59,670
																											Т	otal:	\$3	3,750,000

1. Multiplier is 1.5 for full parcel acquisitions and 2.0 for strip acquistions

Right-of-Way Acquistion Estimate

Phase 3 - 79th RAB to 88th RAB

Assessor's No.	Owner																									Total
		Lan	d Rights	Impr	rovements	Dai	mages	Comp	pensation	Appra	sal	Review	Neg	otiation	Title,	Prop.	Relocation	Relo.	S	Sub-Total	-	ndemn.	Stat	utory		
								(0	Offer)	Cost	s	Costs	C	osts	Costs	Management	Costs	Labor			Cost	s @20%	Allow	ance	(Costs
31100001700	Slater Enterprises Phase 1 LLC	\$	8,500	\$	5,000.00	\$	-	\$	13,500	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	27,600	\$	5,520	\$	750	\$	33,870
31100001600	Slater Ent. Phase 1 LLC	\$	8,500	\$	5,000.00	\$	-	\$	13,500	\$ 4,0	00 3	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	27,600	\$	5,520	\$	750	\$	33,870
31100001500	Slater Ent. Phase 1 (with 1300)																		\$	-	\$	-			\$	-
31100001300	Slater Enterprises Phase 1 LLC	\$	27,000	\$	20,000	\$	-	\$	47,000	\$ 4,0	000	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	61,100	\$	12,220	\$	750	\$	74,070
	Slater Ent. Phase 1 LLC(with 1300)																		\$	-	\$	-			\$	-
31100001101	Included with 31100001300																		\$	-	\$	-			\$	-
31100000100	Gary & Glenna George	\$	17,000	\$	15,000	\$	-	\$	32,000	\$ 4,0	00 \$	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	46,100	\$	9,220	\$	750	\$	56,070
31100000101	Liberty Leasing & Const Inc.	\$	37,000	\$	5,000	\$	-	\$	42,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	56,100.00	\$ 1 [·]	1,220.00	\$ 7	50.00	\$	68,070
38400000200	Port of Olympia	\$	172,698	\$	14,392	\$	7,196	\$	194,285	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	208,385	\$	41,677	\$	750	\$	250,812
12714110000	Port of Olympia	\$	1,000	\$	-	\$	-	\$	1,000	\$ 1,0	00 \$	\$-	\$	7,500	\$ 700	-	-	-	\$	10,200.00	\$ 2	2,040.00	\$ 7	50.00	\$	12,990
12713220500	Port of Olympia	\$	47,000	\$	-	\$	-	\$	47,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	61,100.00	\$ 12	2,220.00	\$ 7	50.00	\$	74,070
12713220100	Petrocard Inc.	\$	76,000	\$	-	\$	-	\$	76,000	\$ 4,0	00 3	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	90,100	\$	18,020	\$	750	\$	108,870
12713220600	Pacific NW Com. Proper Ties LLC	\$	42,000	\$	5,000	\$	-	\$	47,000	\$ 4,0	000	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	61,100	\$	12,220	\$	750	\$	74,070
12713220800	Pacific NW Com. Proper Ties LLC	\$	39,000	\$	5,000	\$	-	\$	44,000	\$ 4,0	000	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	58,100	\$	11,620	\$	750	\$	70,470
12713220700	Seoly 8421 LLC	\$	74,000	\$	25,000	\$	-	\$	99,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	113,100	\$	22,620	\$	750	\$	136,470
12714110501	Pritchett Family LLC	\$	18,000	\$	10,000	\$	-	\$	28,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	42,100	\$	8,420	\$	750	\$	51,270
12713220900	Craig S. & Roxanna M. Kinnaman	\$	106,000	\$	70,000	\$	25,000	\$	201,000	\$ 4,0	00 \$	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	215,100	\$	43,020	\$	750	\$	258,870
12713221100	Grant Enterprises LLC	\$	24,000	\$	20,000	\$	-	\$	44,000	\$ 4,0	00 3	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	58,100	\$	11,620	\$	750	\$	70,470
12713221200	KO Capital LLC	\$	2,000	\$	-	\$	-	\$	2,000	\$ 1,0	00 3	\$-	\$	7,500	\$ 700	-	-	-	\$	11,200	\$	2,240	\$	750	\$	14,190
12713221300	KO Capital LLC	\$	31,000	\$	50,000	\$	-	\$	81,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	95,100	\$	19,020	\$	750	\$	114,870
12713221400	Holiday Trust	\$	81,000	\$	-	\$ 25	5,000.00	\$	106,000	\$ 4,0	00 \$	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	120,100	\$	24,020	\$	750	\$	144,870
12713221600	Holday Trust	\$	34,000	\$	50,000	\$	-	\$	84,000	\$ 4,0	00		\$		\$ 700	-	-	-	\$	98,100	\$	19,620	\$	750	\$	118,470
12713230405	Thurston County	\$	30,000	\$	-	\$	-	\$	30,000	\$ 4,0	00		\$	7,500	\$ 700	-	-	-	\$		\$	8,820	\$	750	\$	53,670
12713230401	William T. & Tamara G. Walsh	\$	65,000	\$	25,000	\$	-	\$	90,000	\$ 4,0	00	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	104,100	\$	20,820	\$	750	\$	125,670
	William T. & Tamara G. Walsh	\$	11,000	\$	10,000	\$	-	\$	21,000	\$ 4,0	00 \$	\$ 1,900	\$	7,500	\$ 700	-	-	-	\$	35,100	\$	7,020	\$	750	\$	42,870

1. Multiplier is 1.5 for full parcel acquisitions and 2.0 for strip acquistions

Right-of-Way Acquistion Estimate

Phase 4 - 88th RAB to Wyatt Intersection

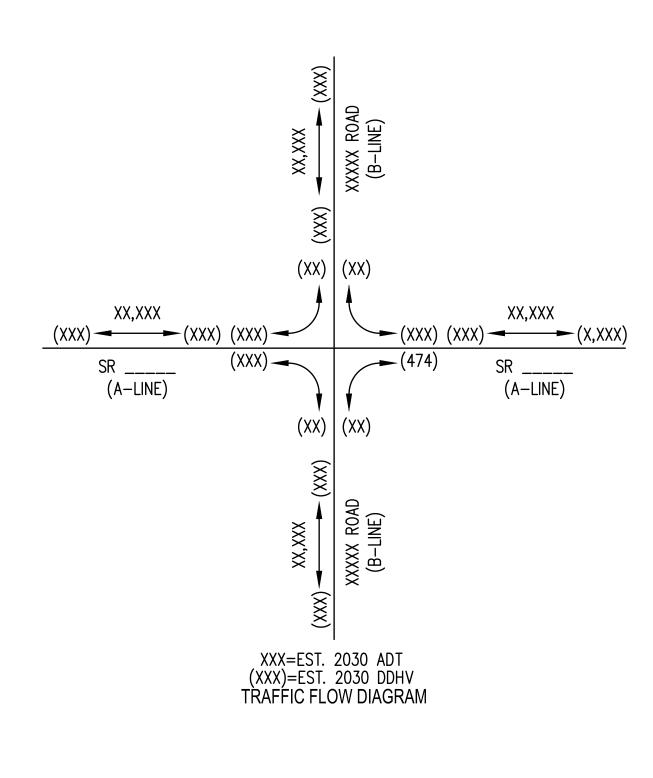
Assessor's No.	Owner	Lar	nd Rights	Im	provements	Damaç	jes	Compensation	Appr	raisal	Review	Neç	gotiation	Title,		Prop.	Relocation	Relo.	Su	b-Total	Condemn.	Statut	ory		Total
								(Offer)	Co	sts	Costs	(Costs	Costs	6	Management	Costs	Labor			Costs @20%	Allowa	nce	(Costs
81550000100	Raymond C. Evans	\$	7,000	\$	10,000	\$	-	\$ 17,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	31,100	\$ 6,220	\$	750	\$	38,070
12713221601	Holiday Trust	\$	33,000	\$	50,000	\$	-	\$ 83,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	97,100	\$ 19,420	\$	750	\$	117,270
81550000300	Jackson and Jessica Ewing	\$	8,200	\$	5,000	\$ 40,	000	\$ 53,200	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	67,300	\$ 13,460	\$	750	\$	81,510
81550000301	406 Properties LLC	\$	23,000	\$	10,000	\$	-	\$ 33,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	47,100	\$ 9,420	\$	750	\$	57,270
12713240100	Lakeside Industries	\$	26,000	\$	5,000	\$	-	\$ 31,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	45,100	\$ 9,020	\$	750	\$	54,870
12713311100	Lenora L. & Greg A. Hansen	\$	47,000	\$	30,000	\$	-	\$ 77,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	91,100	\$ 18,220	\$	750	\$	110,070
12713310600	Terrence N. Travis	\$	22,000	\$	20,000	\$	-	\$ 42,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	56,100	\$ 11,220	\$	750	\$	68,070
12713310502	Debra G. Gwinn	\$	13,000	\$	10,000	\$	-	\$ 23,000	\$ 4	4,000	\$ 1,900	\$	7,500	\$	700	-	-	-	\$	37,100	\$ 7,420	\$	750	\$	45,270
																						Tota	l:		\$580,000

1. Multiplier is 1.5 for full parcel acquisitions and 2.0 for strip acquistions

Right-of-Way Acquistion Estimate

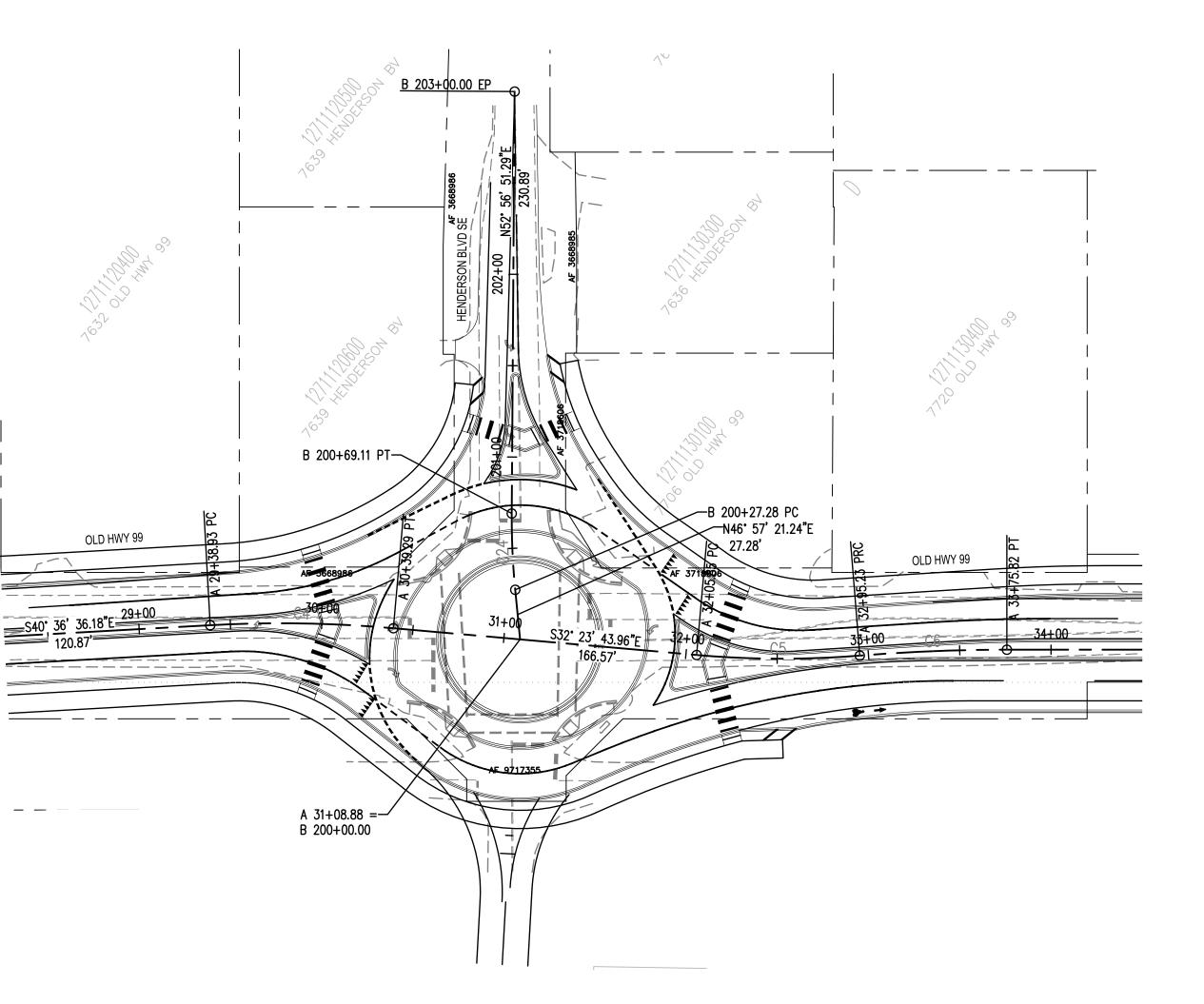
Phase 5 - Wyatt Intersection to project finish

																								Total
Assessor's No.	Owner	lan	d Rights	Imp	provements	Dam	nages	Compensatio		Appraisal	F	Review	Ner	gotiation	Title,	Prop.	Relocation	Relo.	Sub-Total	Condemn.	Sta	atutory		TOLAI
		Lan	urugnio			Dam	lagee	(Offer)	<u> </u>	Costs		Costs		Costs	Costs	Management	Costs	Labor	Cub rotur	Costs @20%	+	wance		Costs
12713420102	Evergreen Heights LLC	\$	20,000	\$	20,000	\$	-	\$ 40,00) \$		\$	1,900		7,500	700		-	-	\$ 54,100		\$	750	\$	65,670
12713420101	Brinley George Hanson	\$	8,600		-	\$	-	\$ 18,60		-	\$	1,900	\$	7,500	\$ 700	-	_	-	\$ 32,700		\$			39,990
36310000002	Bradbury Owners Association	\$	5,000.00	\$	-	\$	-	\$ 5,000.0	о \$		\$	-	\$	7,500	\$ 700	-	-	-	\$ 14,200	\$ 2,840	\$	750	\$	17,790
36310000004	Bradbury Owners Association	\$	5,000.00	\$	-	\$	-	\$ 5,000.0	о \$	1,000	\$	-	\$	7,500	\$ 700		-	-	\$ 14,200	\$ 2,840	\$	750	\$	17,790
12713420305	Villiage Freen Community LLC	\$	33,000		5,000	\$	-	\$ 38,00	\$	4,000	\$	1,900		7,500	700	-	-	-	\$ 52,100	\$ 10,420	\$	750	\$	63,270
61860100100	Melody Pines MHP LLC	\$	30,000	\$	10,000	\$5	50,000	\$ 90,00) \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 104,100	\$ 20,820	\$	750	\$	125,670
12713420103	Matthew & Tina Marie Keogh	\$	56,000	\$	10,000	\$	-	\$ 66,00	о \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 80,100	\$ 16,020	\$	750	\$	96,870
12713420311	Adrienne Cherry-total acquistion	\$	225,000		225,000	\$		\$ 450,00	4		\$	1,900	\$	7,500	700	\$ 1,000	\$ 150,000	\$ 30,000	\$ 645,100		\$	750		774,870
12713420200	Todd L. Bakke	\$	22,000		20,000	\$	-	\$ 42,00		.,	\$	1,900	\$,	700	-	-	-	\$ 56,100			750	-	68,070
12713440300	Ann Wasserman	\$	3,000		5,000	\$	-	\$ 8,00	_	4,000	\$	1,900		7,500	700	-	-	-	\$ 22,100		-	750		27,270
12713440200	Marty & Jessica L. Clark	\$	22,000		10,000	\$	-	\$ 32,00		4,000	\$	1,900		7,500	700	-	-	-	\$ 46,100	\$ 9,220	-	750		56,070
12713420312 12713420400	Robert George Miller Monty D. & Madeline C. Pfaff REVO Cable Living Trust	ծ \$	21,000 32,000	э \$	10,000 20,000	\$ \$	-	\$ 81,00 \$ 52,00				1,900 1,900		7,500	700		-		\$ 95,100 \$ 66,100		\$ \$	750 750	ъ \$	114,870 80,070
12713440900	Milton V. Brasher	\$	1,500	\$	3,000	\$	-	\$ 4,50	0\$	1,000		-	\$	7,500	\$ 700	-	-	-	\$ 13,700	\$ 2,740	\$	750	\$	17,190
12713440501	Gerald D. & Janet I. McCormick	\$	40,000		-,	\$	-	\$ 45,00	\$		\$	1,900	\$	7,500	700		-	-	\$ 59,100		\$	750		71,670
12713440202	Airborne Properties LLC	\$	21,000		20,000			\$ 41,00			\$	1,900	\$,	\$ 700	-	-	-	\$ 55,100			750		66,870
44150000100	Melanie G. Ballejo	\$	16,000	\$	10,000	\$3	80,000	\$ 56,00) \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 70,100	\$ 14,020	\$	750	\$	84,870
12713440500	Tumwater School Dist. #33	\$	20,000	\$	5,000	\$	-	\$ 25,00	о \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 39,100	\$ 7,820	\$	750	\$	47,670
12713440600	Tumwater School Dist. #33	\$	4,100		5,000	\$	-	\$ 9,10	\$,	•	-	\$	7,500	700	-	-	-	\$ 18,300	\$ 3,660	\$	750		22,710
44150000900	Marvin & Mary Ann Shively	\$	18,000	\$	10,000	\$	-	\$ 28,00) \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 42,100	\$ 8,420	\$	750	\$	51,270
12713440102	Richard G. & Sonja M. Winkelman	\$	1,500	\$	5,000	\$	-	\$ 6,50	D \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 20,600	\$ 4,120	\$	750	\$	25,470
12713440104	Todd C. & Jennifer J. Feiring	\$	12,000	\$	5,000	\$	-	\$ 17,00	о \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 31,100	\$ 6,220	\$	750	\$	38,070
12713440700	Tumwater School Dist. #33	\$	11,000	\$	-	\$	-	\$ 11,00	о \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 25,100	\$ 5,020	\$	750	\$	30,870
12713440904	Tumwater School Dist. #33	\$	2,000			\$	-	\$ 2,00	¢	.,		-	\$	7,500	700	-	-	-	\$ 11,200		\$	750		14,190
12713221500	KO Capital LLC	\$	82,000	\$	20,000	\$5	50,000	\$ 152,00	C \$	4,000	\$	1,900	\$	7,500	\$ 700	-	-	-	\$ 166,100	\$ 33,220	\$	750	\$	200,070

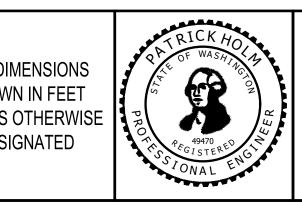

1. Multiplier is 1.5 for full parcel acquisitions and 2.0 for strip acquistions

APPENDIX F - PRELIMINARY DESIGN SUPPORTING DOCUMENTS

- **G1) INTERSECTION PLANS**
- **G2) FASTEST PATH EXHIBITS**
- **G3) TRUCK TURNING MOVEMENTS**
- **G4) SIGHT TRIANGLE EXHIBITS**
- **G5) UTILITY TECH MEMO**
- **G6) STORMWATER REPORTS**
- **G7) PRELIMINARY PLAN SET**
- **G8) BASIS OF DESIGN**

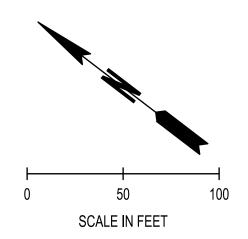

F1) INTERSECTION PLANS

DESIGN DATA	A FOR NHS ROL	JTE,
NON-INTERSTA	TE IMPROVEM	ENTS
ROADWAY	A-LINE (SR ###)	B–LINE (ROAD NAME)
SUMMARY OF DESIGN	MM/DD/YYYY	
INTERSECTION CONTROL TYPE	(UN)SIGNALIZED	STOP
FUNCTIONAL CLASSIFICATION	URBAN PRINCIPAL ARTERIAL	
ACCESS CONTROL	LIMITED ACCESS MODIFIED CONTROL	
TERRAIN CLASSIFICATION	ROLLING or LEVEL	
DESIGN SPEED	XX MPH	
POSTED SPEED	XX MPH	
DESIGN VEHICLE	WB-67	SU-30
PERCENT TRUCKS	X%	<x%< td=""></x%<>

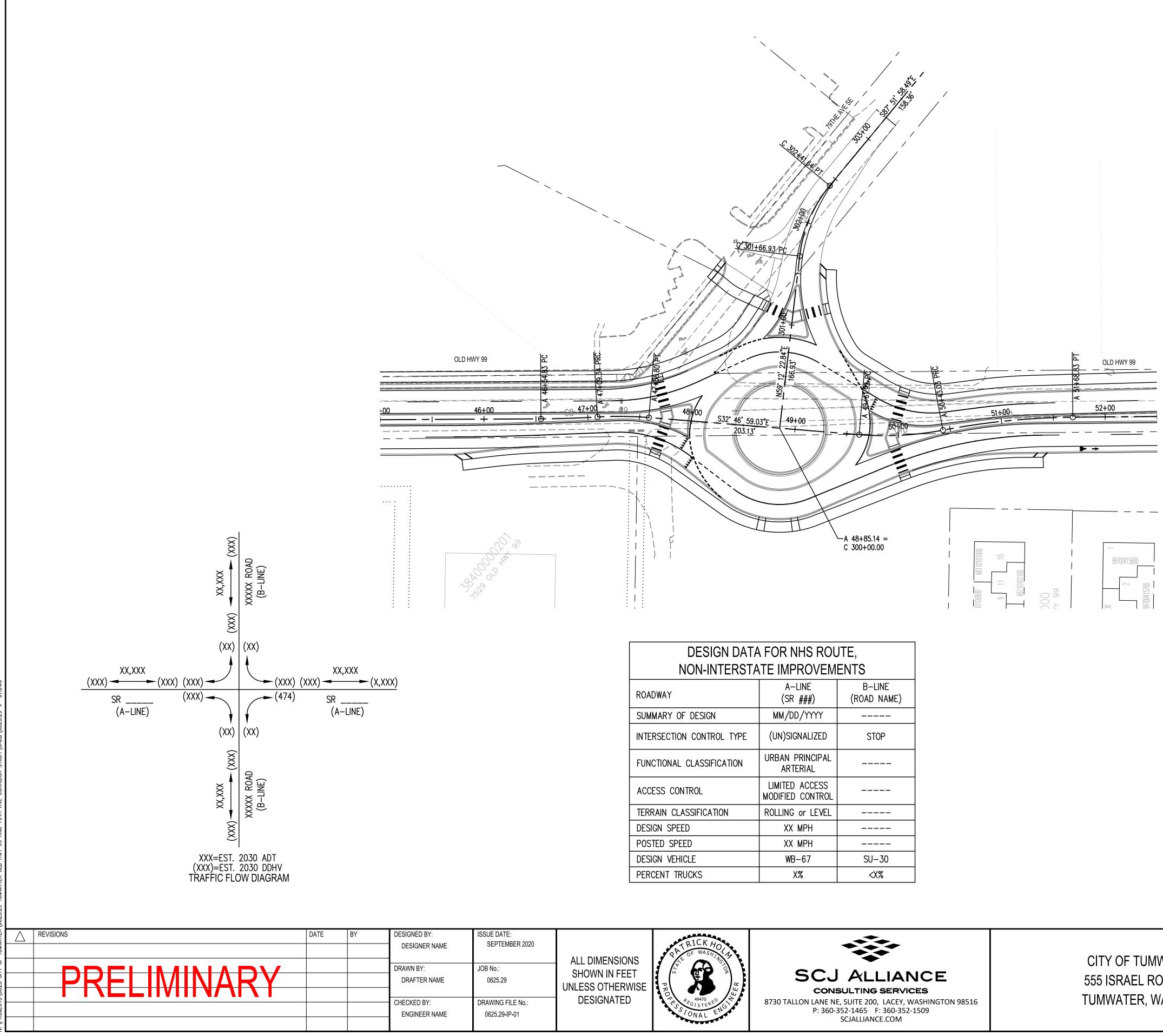


\triangle	REVISIONS	DATE	BY	DESIGNED BY: DESIGNER NAME	ISSUE DATE: SEPTEMBER 2020	
						ALL [
				DRAWN BY:	JOB No.:	SHC
				DRAFTER NAME	0625.29	UNLES
				CHECKED BY:	DRAWING FILE No.:	

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M



	CURVE DATA											
CURVE #	ALIGNMENT	P.I. STATION	DELTA	RADIUS	TANGENT	LENGTH						
C4	A	29+89.19	8 ° 12'52"	700.00	50.27	100.36						
C5	A	32+50.65	9 ° 39'43"	530.00	44.79	89.38						
C6	A	33+35.55	4 ° 37'03"	1000.00	40.32	80.59						
C24	В	200+48.22	5 ° 59'30"	400.00	20.93	41.83						



CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501

	RIGHT OF WAY
	PROPERTY LINE
	- EASEMENT
	EXISTING EDGE OF PAVEMENT
* * * * * *	YIELD LINE SYMBOL
	STOP LINE
	DOUBLE CENTERLINE
	CENTER STRIPE
	SKIP STRIPE
	EDGE LINE
	WIDE LANE LINE
	WIDE DOTTED LANE LINE
	EDGE OF GRAVEL
	EDGE OF PAVEMENT
	BARRIER
	CEMENT CONCRETE TRAFFIC CURB AND GUTTER
* *	TRAFFIC ARROWS


OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: IP-1
MP XX TO MP XX	SHEET No.:
INTERSECTION PLAN @ HENDERSON BLVD A 28+00 - A 34+50	of XX

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

	A FOR NHS ROL ATE IMPROVEM	,
ROADWAY	A-LINE (SR ###)	B-LINE (ROAD NAME)
SUMMARY OF DESIGN	MM/DD/YYYY	
INTERSECTION CONTROL TYPE	(UN)SIGNALIZED	STOP
FUNCTIONAL CLASSIFICATION	URBAN PRINCIPAL ARTERIAL	
ACCESS CONTROL	LIMITED ACCESS MODIFIED CONTROL	
TERRAIN CLASSIFICATION	ROLLING or LEVEL	
DESIGN SPEED	XX MPH	
POSTED SPEED	XX MPH	
DESIGN VEHICLE	WB-67	SU-30
PERCENT TRUCKS	X%	<x%< td=""></x%<>

CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501

	RIGHT OF WAY
	PROPERTY LINE
	EASEMENT
	EXISTING EDGE OF PAVEMENT
*****	YIELD LINE SYMBOL
	STOP LINE
	DOUBLE CENTERLINE
	CENTER STRIPE
	SKIP STRIPE
	EDGE LINE
	WIDE LANE LINE
	WIDE DOTTED LANE LINE
	EDGE OF GRAVEL
	EDGE OF PAVEMENT
	BARRIER
	CEMENT CONCRETE TRAFFIC CURB AND GUTTER
* ~	TRAFFIC ARROWS

	CURVE DATA											
CURVE #	ALIGNMENT	P.I. STATION	DELTA	RADIUS	TANGENT	LENGTH						
C8	A	46+82.09	3°07'23"	1000.00	27.26	54.51						
C9	A	47+34.11	8 ° 05'48"	350.00	24.77	49.46						
C10	A	50+02.73	15 ° 29'22"	300.00	40.80	81.10						
C11	A	51+06.10	10°17'47"	700.00	63.07	125.79						
C25	С	302+05.35	32 ° 55'39"	130.00	38.42	74.71						

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: IP-2
MP XX TO MP XX	SHEET No.:
INTERSECTION PLAN @ 79TH AVE A 47+00 - A 42+50	of XX

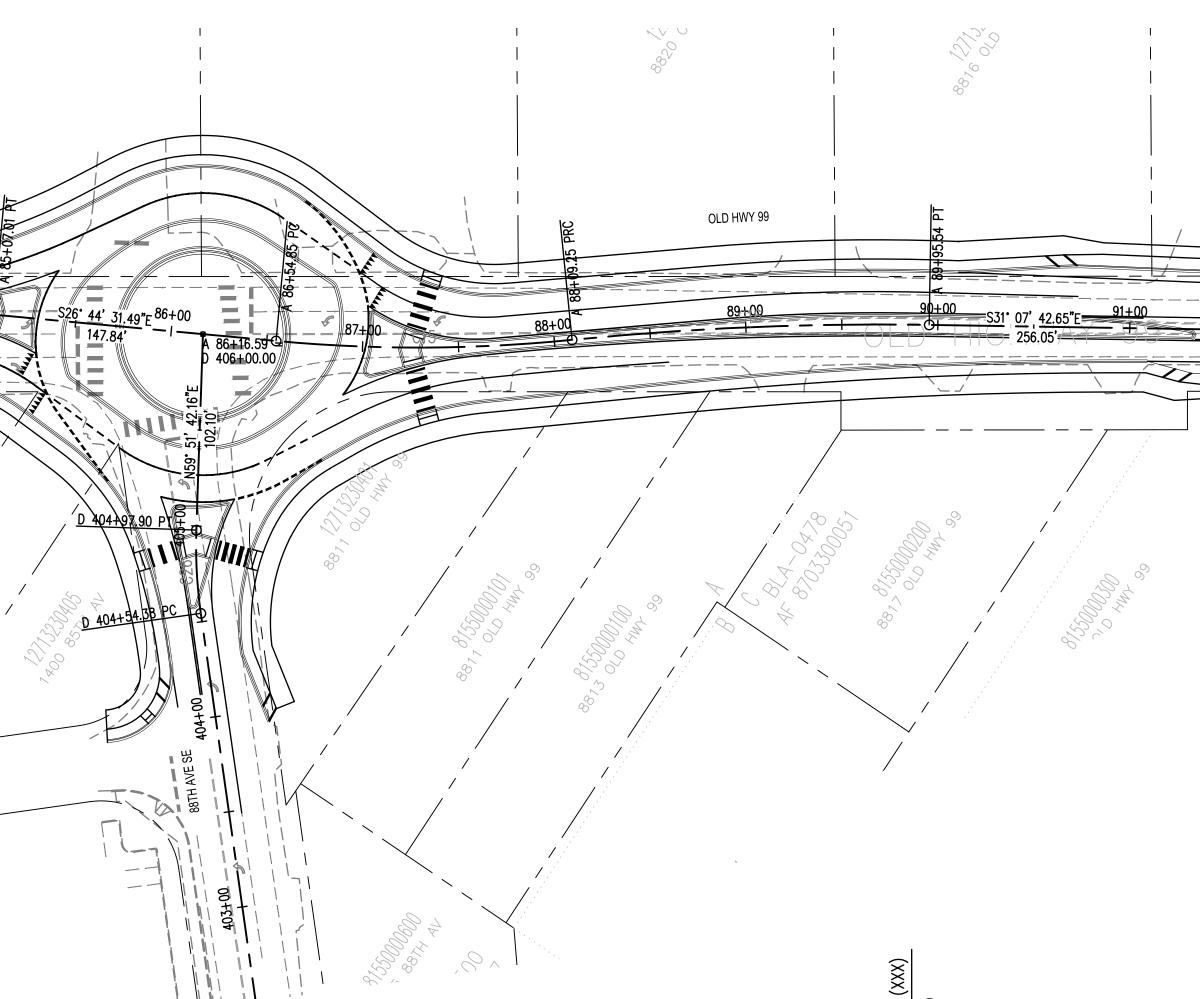
20 S I OLD HWY 99 S38° 13' 46.60"E-J 122.11'

	CURVE DATA										
CURVE #	ALIGNMENT	P.I. STATION	DELTA	RADIUS	TANGENT	LENGTH					
C14	A	84+87.03	11 ° 29'15"	200.00	20.12	40.10					
C15	A	87+32.29	11 ° 03'27"	800.00	77.44	154.39					
C16	A	89+02.50	6 ° 40'16"	1600.00	93.25	186.29					
C26	D	404+76.20	9 * 58'25"	250.00	21.81	43.52					

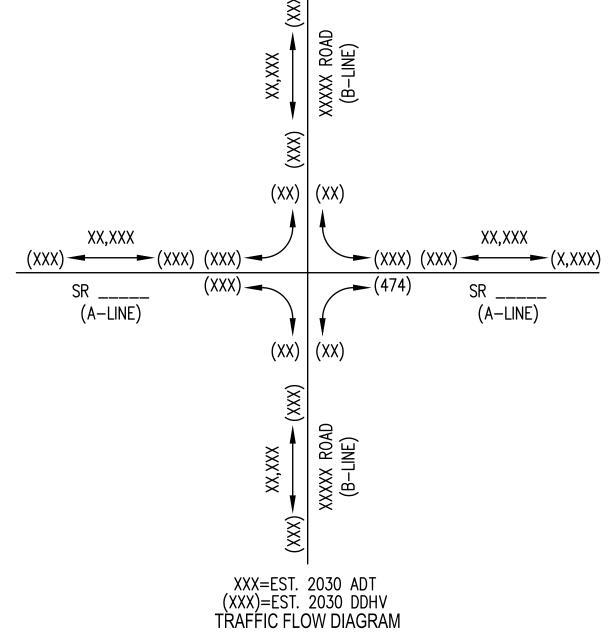
ROADW SUMMA

INTERSE

FUNCTI

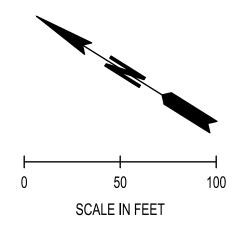

ACCESS TERRAI

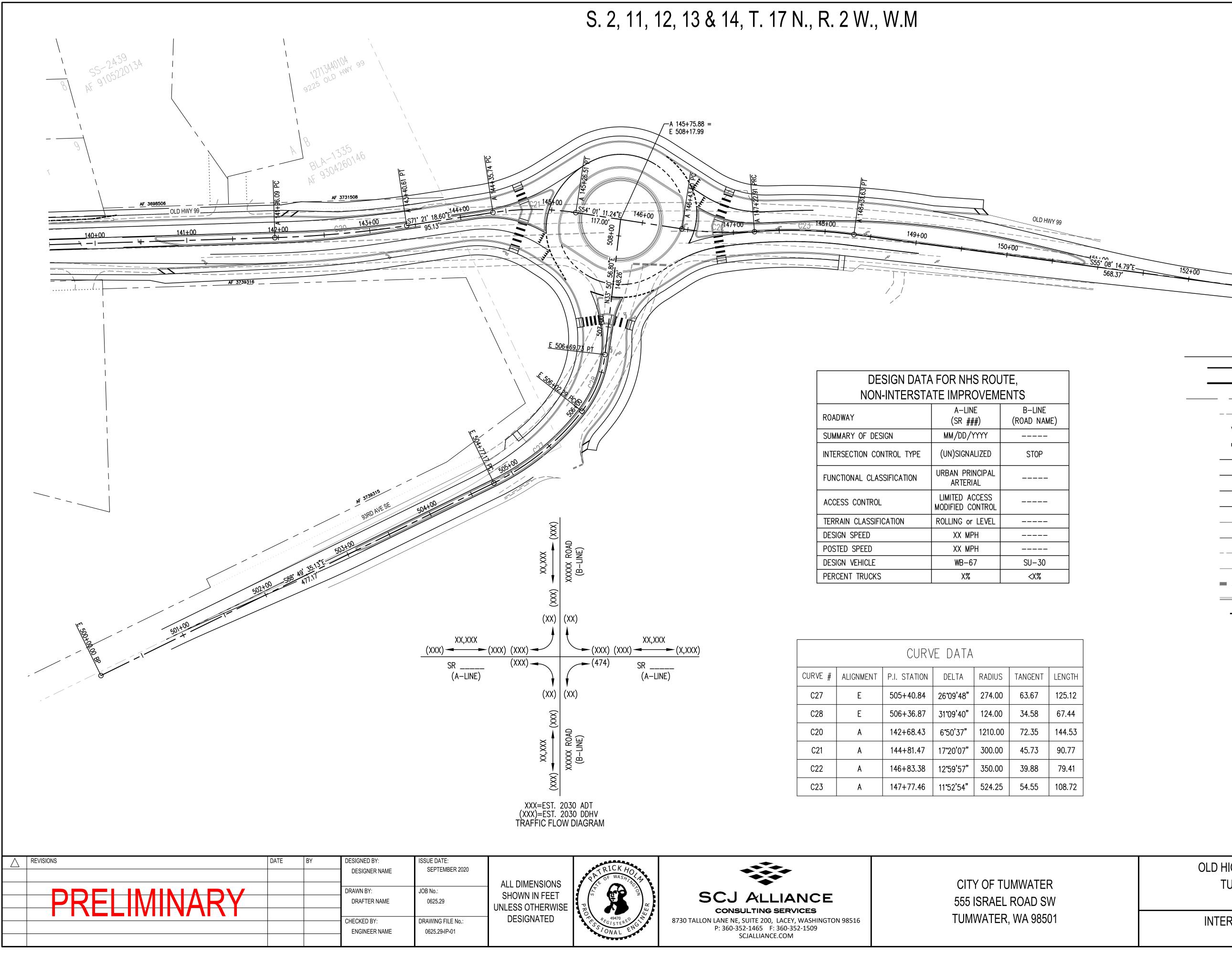
DESIGN


POSTED DESIGN PERCEN

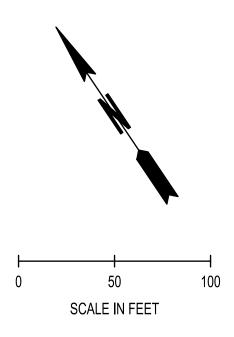
\triangle	REVISIONS	DATE	BY	DESIGNED BY:	ISSUE DATE: SEPTEMBER 2020	
				DESIGNER NAME		ALL DIMEN
	PRFI IMINARY			DRAWN BY: DRAFTER NAME	JOB No.: 0625.29	SHOWN IN UNLESS OTH
				CHECKED BY:	DRAWING FILE No.: 0625.29-IP-01	DESIGNA

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M


DESIGN DATA FOR NHS ROUTE,					
NON-INTERSTATE IMPROVEMENTS					
A–LINE (SR ###)	B-LINE (ROAD NAME)				
MM/DD/YYYY					
(UN)SIGNALIZED	STOP				
URBAN PRINCIPAL ARTERIAL					
LIMITED ACCESS MODIFIED CONTROL					
ROLLING or LEVEL					
XX MPH					
XX MPH					
WB-67	SU-30				
X%	<x%< td=""></x%<>				
	A-LINE (SR ###) MM/DD/YYYY (UN)SIGNALIZED URBAN PRINCIPAL ARTERIAL LIMITED ACCESS MODIFIED CONTROL ROLLING or LEVEL XX MPH XX MPH WB-67				

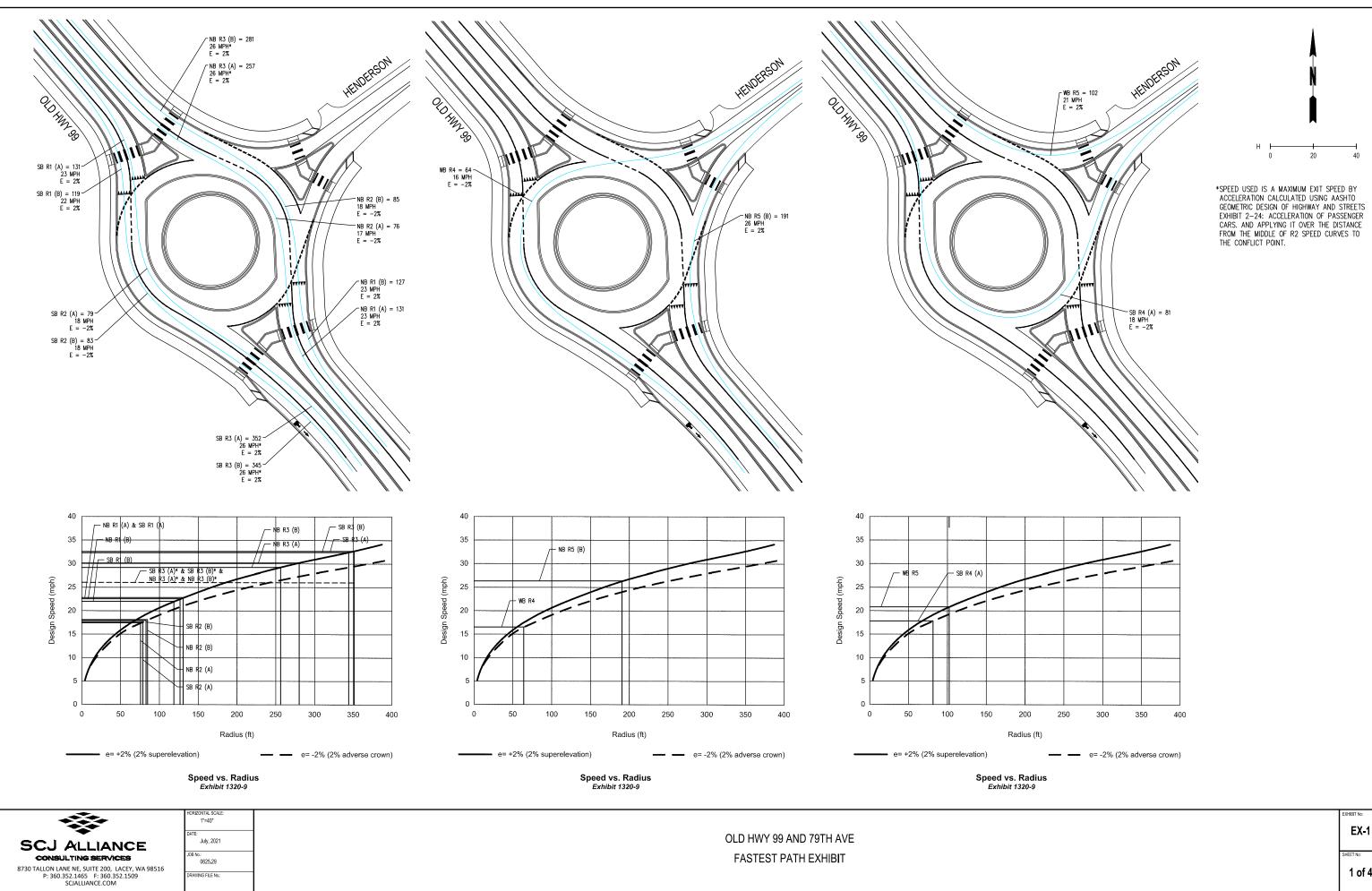


CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501


	RIGHT OF WAY
	PROPERTY LINE
	- EASEMENT
	EXISTING EDGE OF PAVEMENT
* * * * * *	YIELD LINE SYMBOL
	STOP LINE
	DOUBLE CENTERLINE
<u> </u>	CENTER STRIPE
	SKIP STRIPE
	EDGE LINE
	WIDE LANE LINE
	WIDE DOTTED LANE LINE
	EDGE OF GRAVEL
	EDGE OF PAVEMENT
	BARRIER
	CEMENT CONCRETE TRAFFIC CURB AND GUTTER
* *	TRAFFIC ARROWS

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: IP-3
MP XX TO MP XX	SHEET No.:
INTERSECTION PLAN @ 88TH AVE A 80+50 - A 91+00	of XX

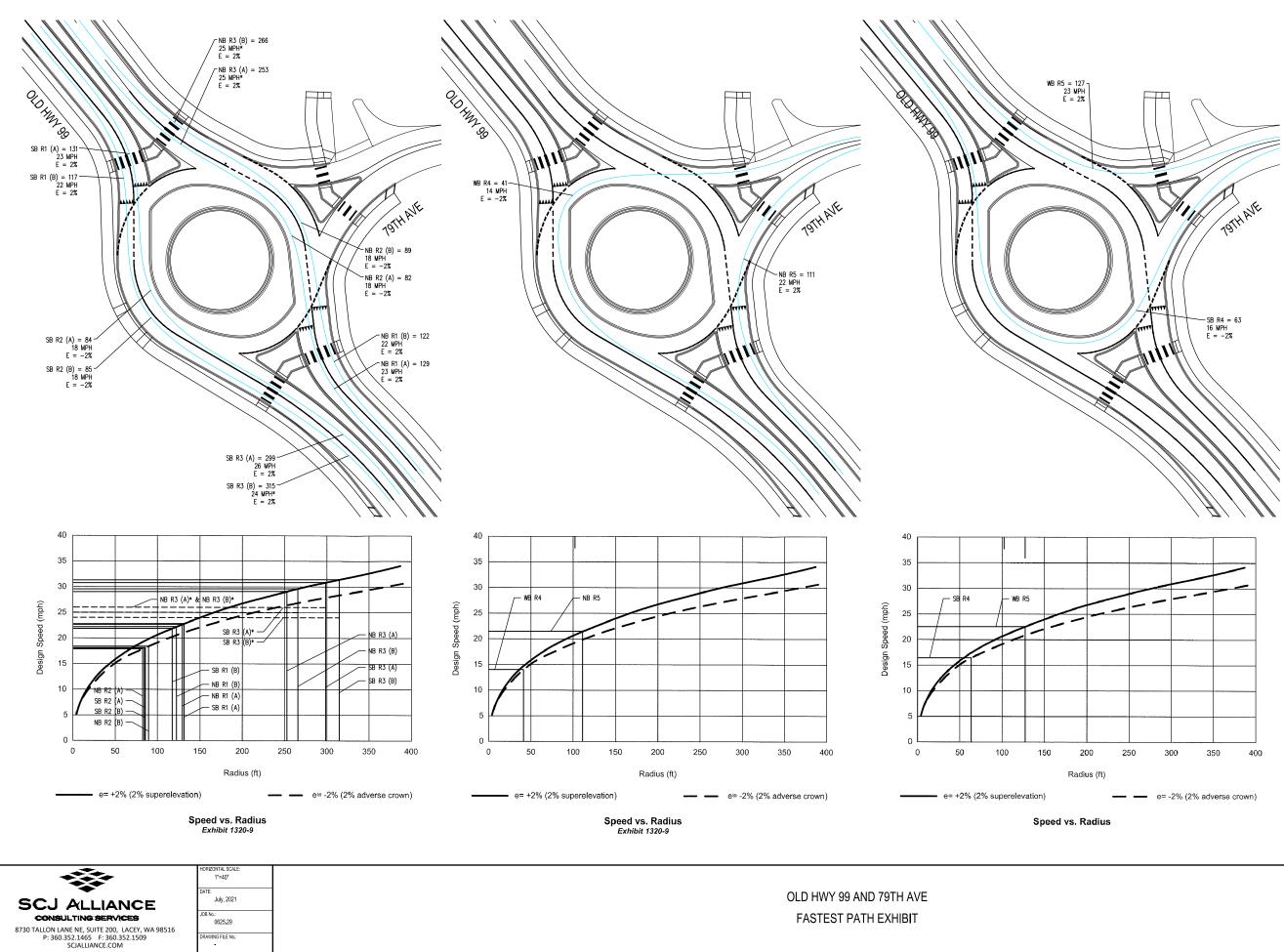
DEGIGIN DATAT OR INTO ROOTE,				
NON-INTERSTATE IMPROVEMENTS				
ROADWAY	A–LINE (SR ###)	B–LINE (ROAD NAME)		
SUMMARY OF DESIGN	MM/DD/YYYY			
INTERSECTION CONTROL TYPE	(UN)SIGNALIZED	STOP		
FUNCTIONAL CLASSIFICATION	URBAN PRINCIPAL ARTERIAL			
ACCESS CONTROL	LIMITED ACCESS MODIFIED CONTROL			
TERRAIN CLASSIFICATION	ROLLING or LEVEL			
DESIGN SPEED	XX MPH			
POSTED SPEED	XX MPH			
DESIGN VEHICLE	WB-67	SU-30		
PERCENT TRUCKS	X%	<x%< td=""></x%<>		

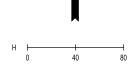

	CURVE DATA					
CURVE #	ALIGNMENT	P.I. STATION	DELTA	RADIUS	TANGENT	LENGTH
C27	E	505+40.84	26°09'48"	274.00	63.67	125.12
C28	E	506+36.87	31°09'40"	124.00	34.58	67.44
C20	A	142+68.43	6 • 50'37"	1210.00	72.35	144.53
C21	A	144+81.47	17 ° 20'07"	300.00	45.73	90.77
C22	A	146+83.38	12 ° 59'57"	350.00	39.88	79.41
C23	A	147+77.46	11 ° 52'54"	524.25	54.55	108.72

	RIGHT OF WAY
	PROPERTY LINE
	- EASEMENT
	EXISTING EDGE OF PAVEMENT
*****	YIELD LINE SYMBOL
	STOP LINE
	DOUBLE CENTERLINE
— —	CENTER STRIPE
	SKIP STRIPE
	EDGE LINE
	WIDE LANE LINE
	WIDE DOTTED LANE LINE
	EDGE OF GRAVEL
	EDGE OF PAVEMENT
	BARRIER
	CEMENT CONCRETE TRAFFIC CURB AND GUTTER
* *	TRAFFIC ARROWS

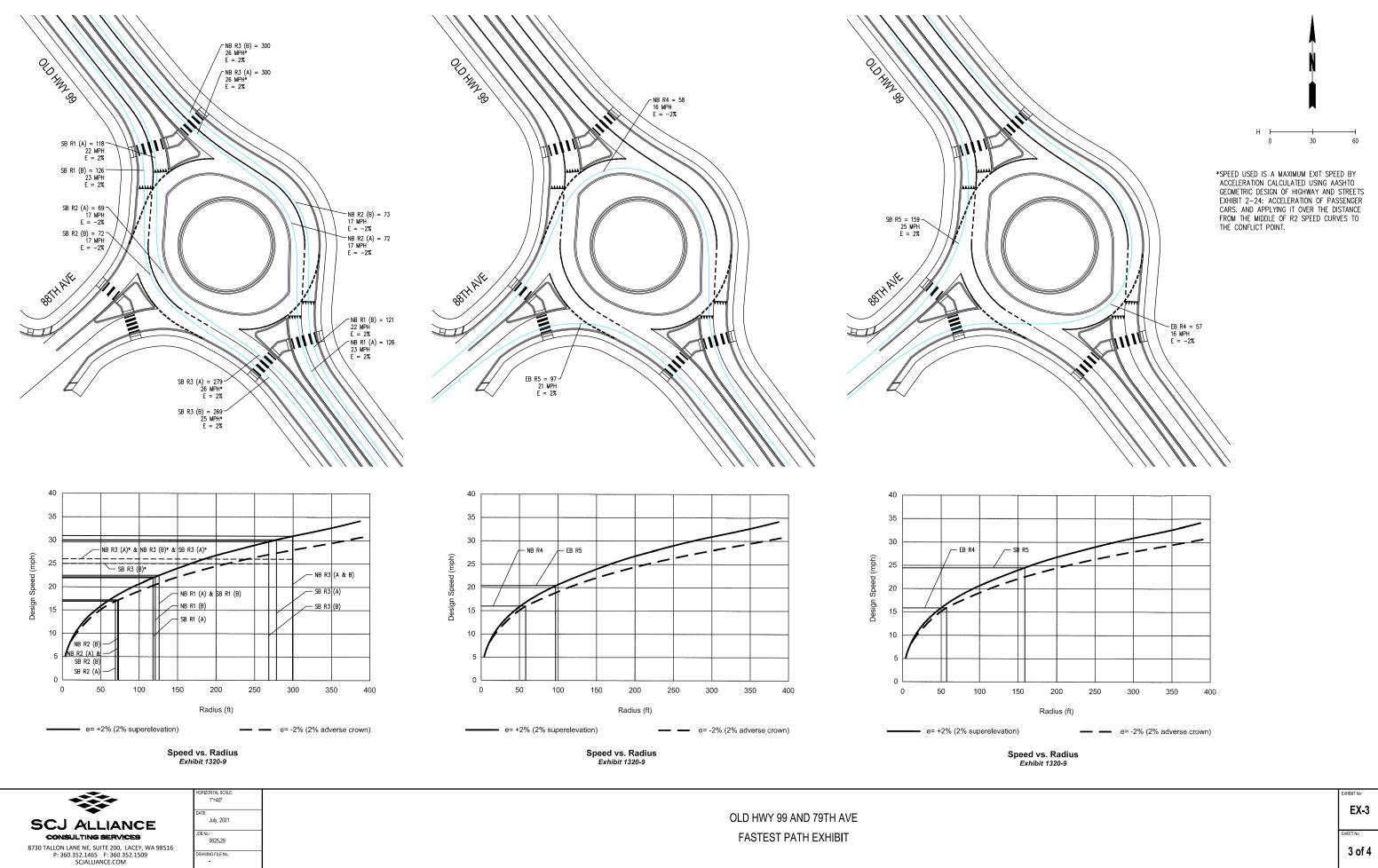
OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	IP-4
MP XX TO MP XX	SHEET No.:
INTERSECTION PLAN @ 93TH AVE	
A 139+50 - A 152+50	of XX

F2) FASTEST PATH EXHIBITS

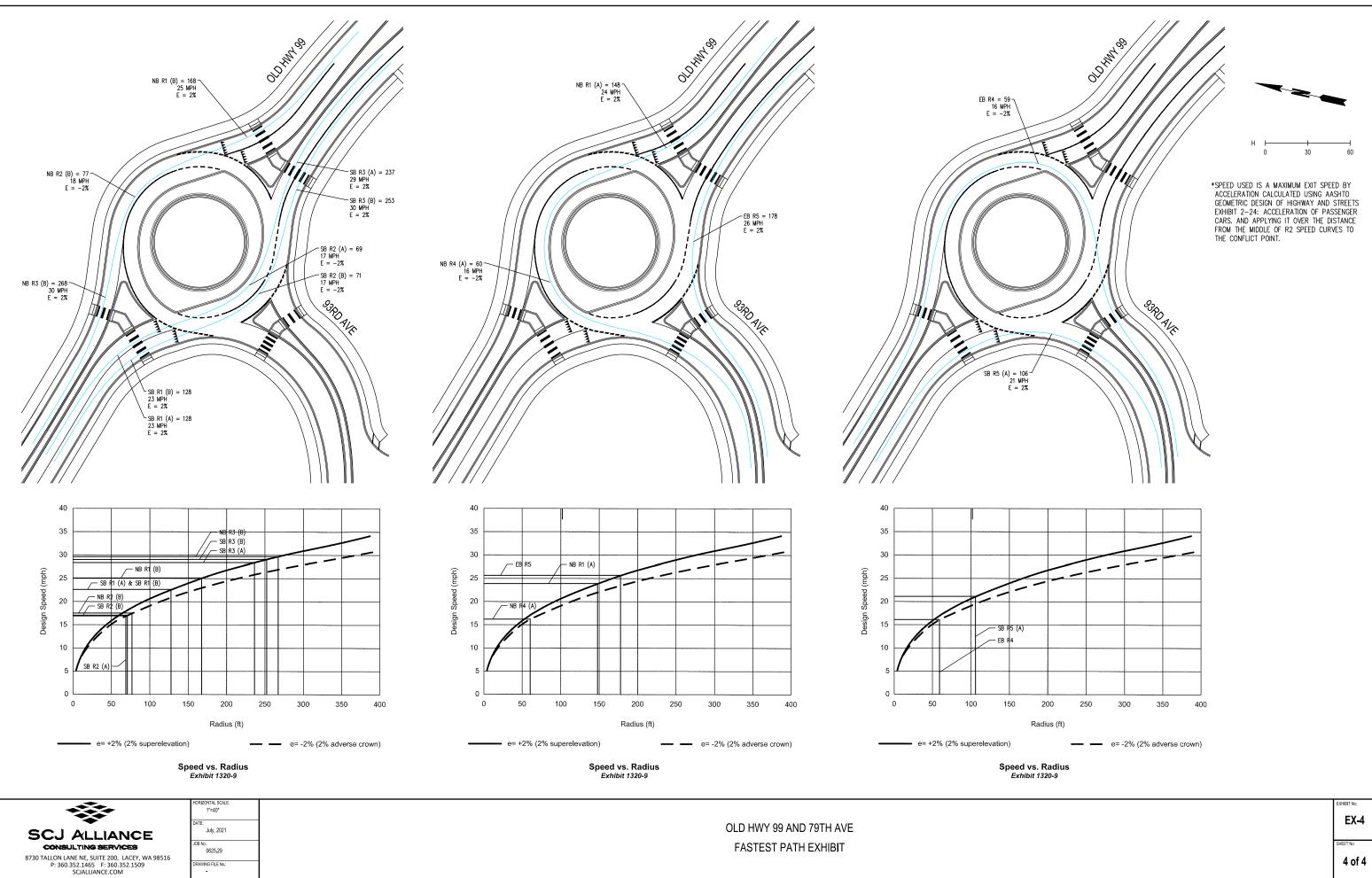

Jser J


3:11:18pm

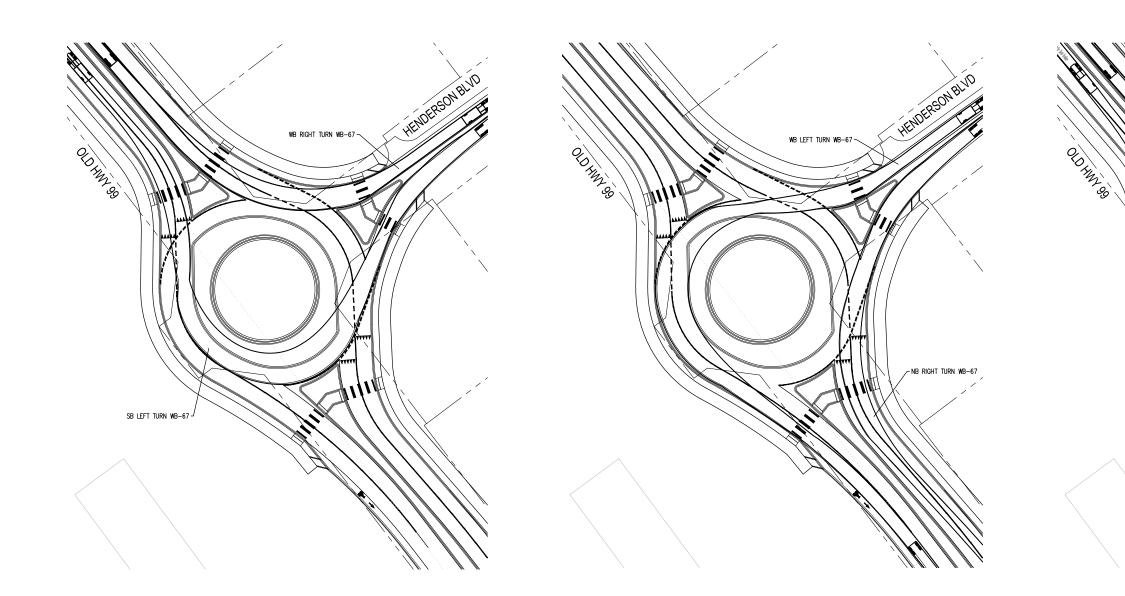
08, 2021 PROJECTS


40

*SPEED USED IS A MAXIMUM EXIT SPEED BY ACCELERATION CALCULATED USING AASHTO GEOMETRIC DESIGN OF HIGHWAY AND STREETS EXHIBIT 2-24: ACCELERATION OF PASSENGER CARS. AND APPLYING IT OVER THE DISTANCE FROM THE MIDDLE OF R2 SPEED CURVES TO THE CONFLICT POINT.

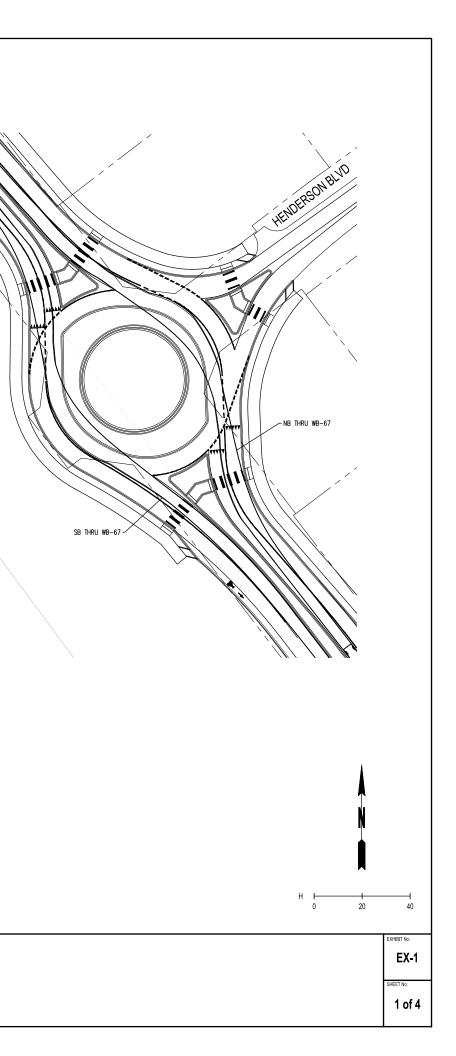

EXHIBIT No: EX-2

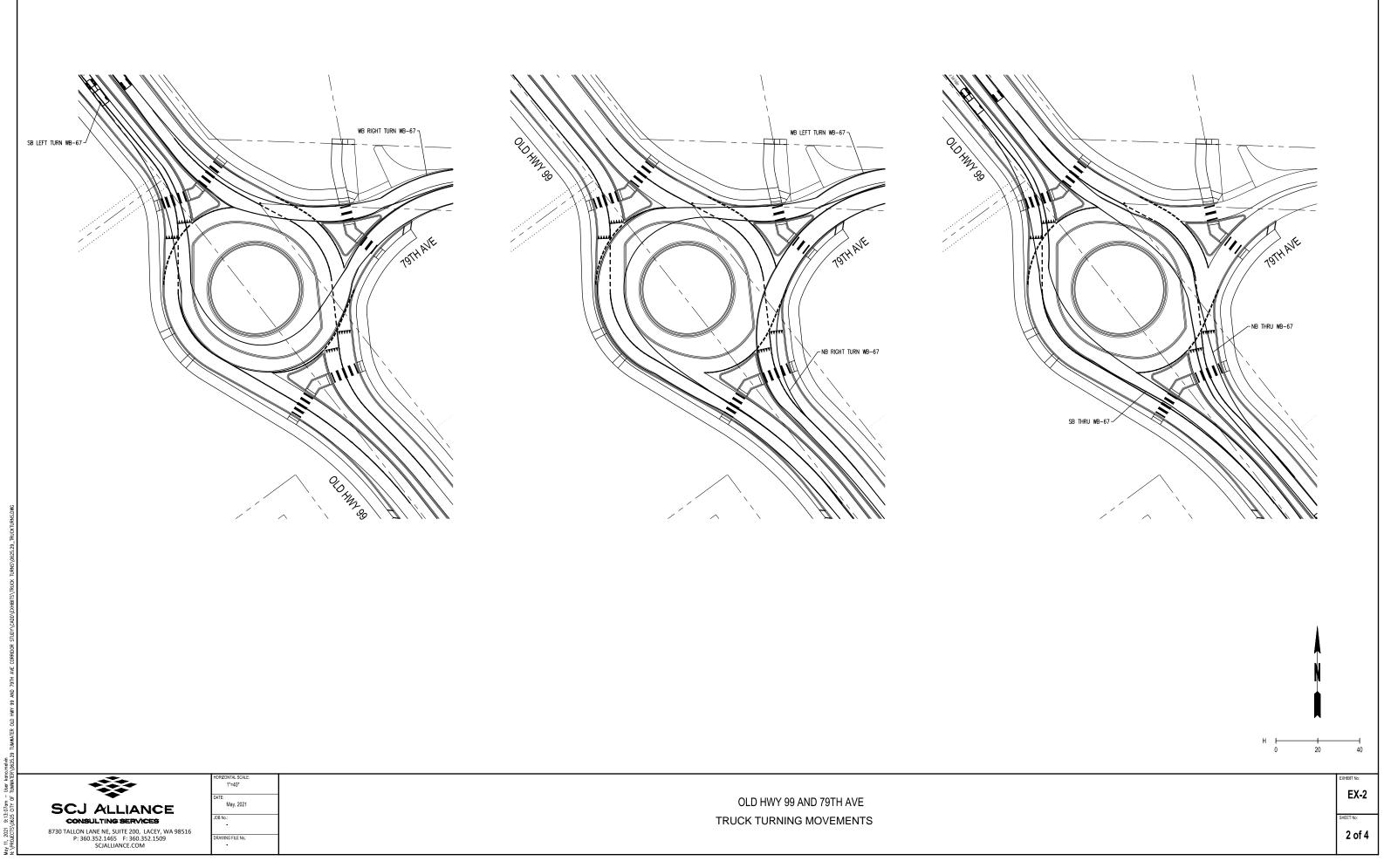
Ser

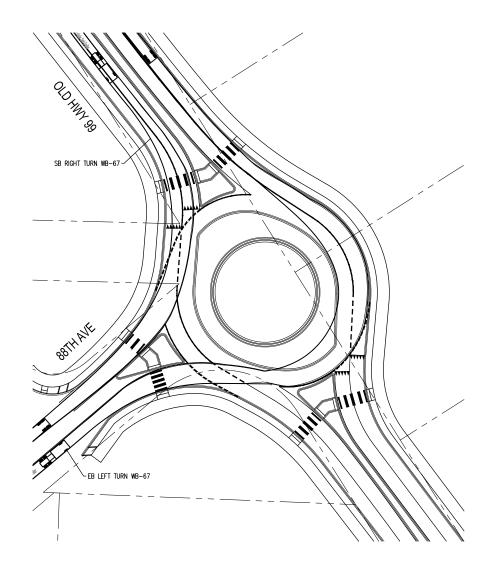

3:11:30pm \0625 CITY (

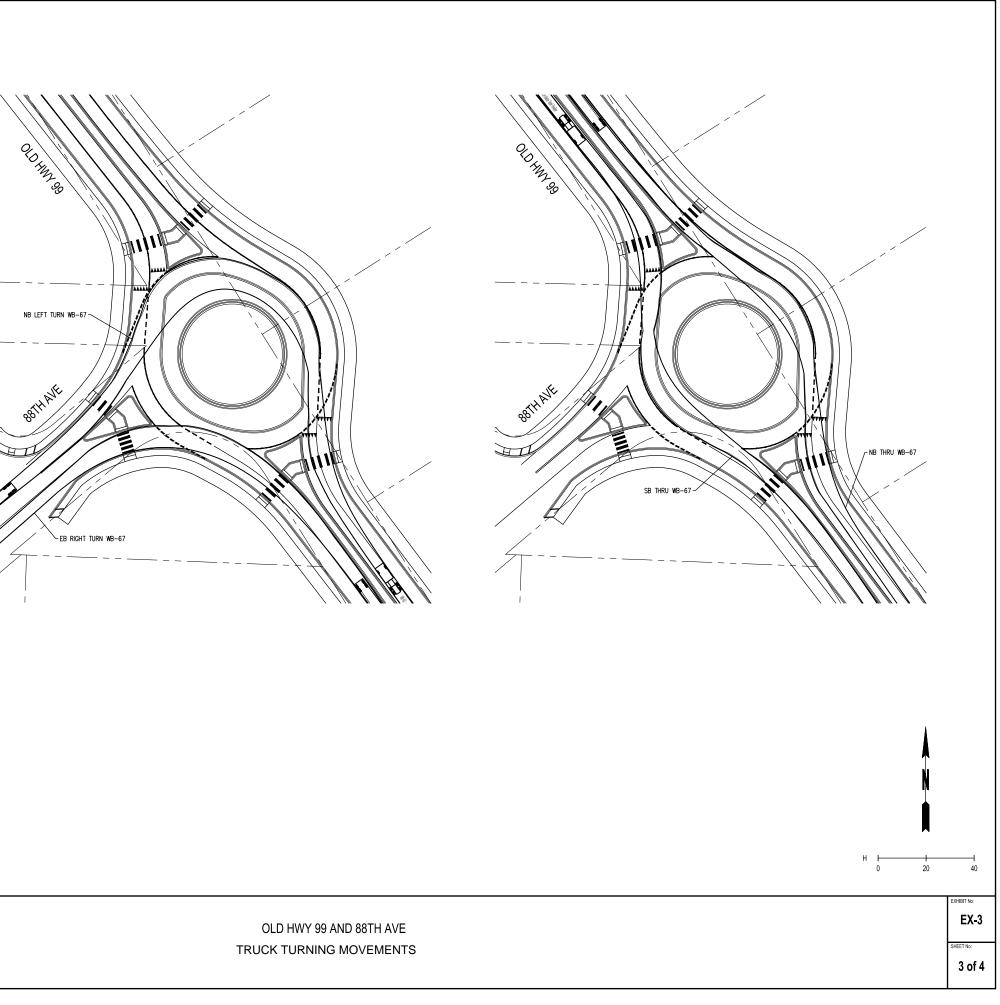
08, 2021 PROJECTS

Iser 3:11:35pm \0625_CITY_(08, 2021 PROJECTS

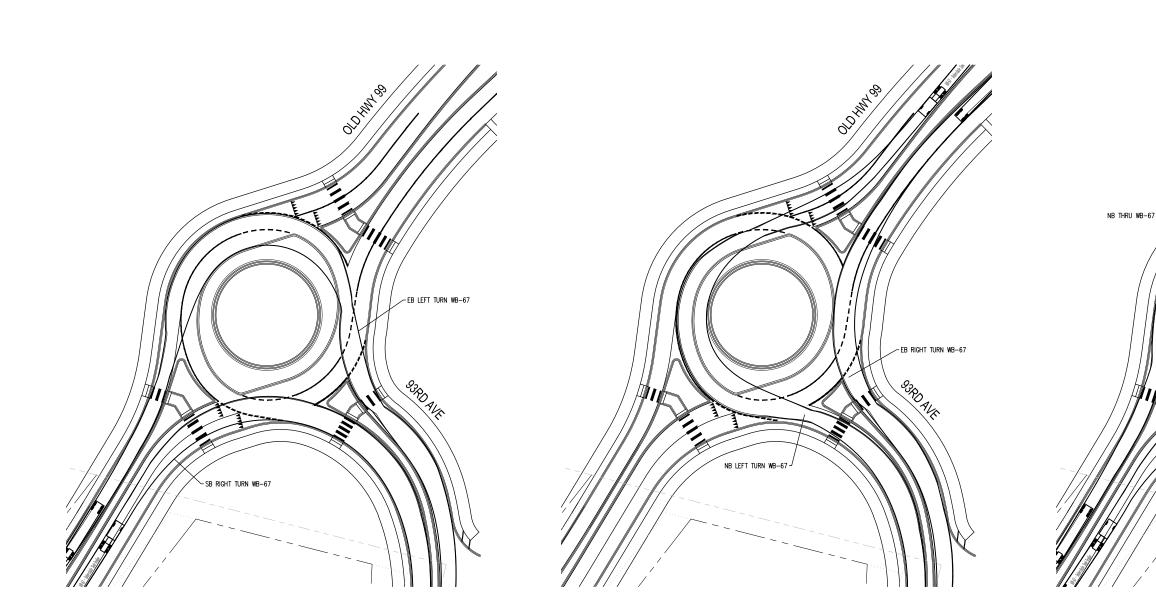

F3) TRUCK TURNING MOVEMENTS



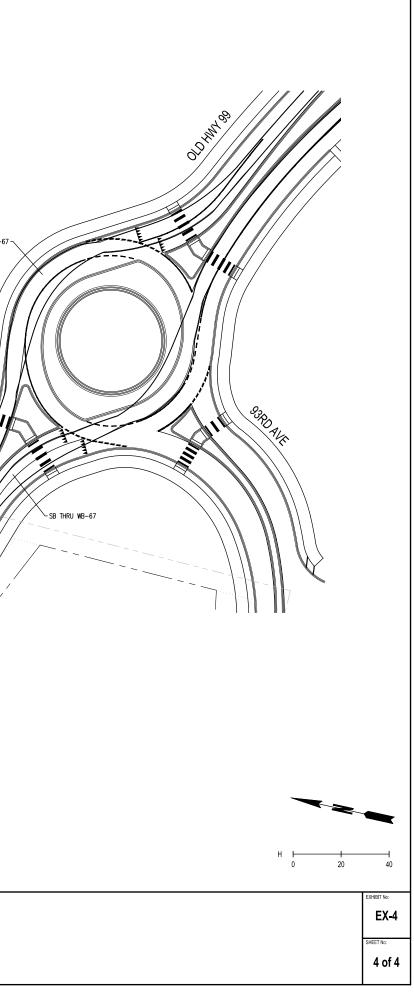

	1"=40"
	DATE: May, 2021
16	JOB No.:
10	DRAWING FILE No .:


OLD HWY 99 AND HENDERSON BLVD TRUCK TURNING MOVEMENTS

nelvin 0625



	HORIZONTAL SCALE: 1"=40"
	DATE:
	May, 2021
	JOB No.:
	-
16	
	DRAWING FILE No.:
	-


helvin

SCJ ALLIANCE CONSULTING SERVICES 8730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1450 F: 360.352.1509 SCIALLIANCE.COM

HORIZONTAL SCALE: 1"=40" DATE: May, 2021 JOB No.: DRAWING FILE No.

OLD HWY 99 AND 93RD AVE TRUCK TURNING MOVEMENTS

F4) SIGHT TRIANGLE EXHIBITS

Design Speed (mph)	Design Stopping Sight Distance (ft)	Kc	Ks	VCL _m (ft)
25	155	<u>12</u>	2 <u>6</u>	75
30	200	<u>19</u>	3 <u>7</u>	90
35	250	<u>29</u>	49	105
40	305	44	6 <u>4</u>	120
45	360	<u>61</u>	7 <u>9</u>	135
50	425	<u>84</u>	96	150
55	495	<u>114</u>	115	165
60	570	<u>151</u>	136	180
65	645	<u>193</u>	157	195
70	730	247	18 <u>1</u>	210
75	820	312	206	225
80	910	<u>384</u>	231	240

Design Stopping Sight Distance Exhibit 1260-1

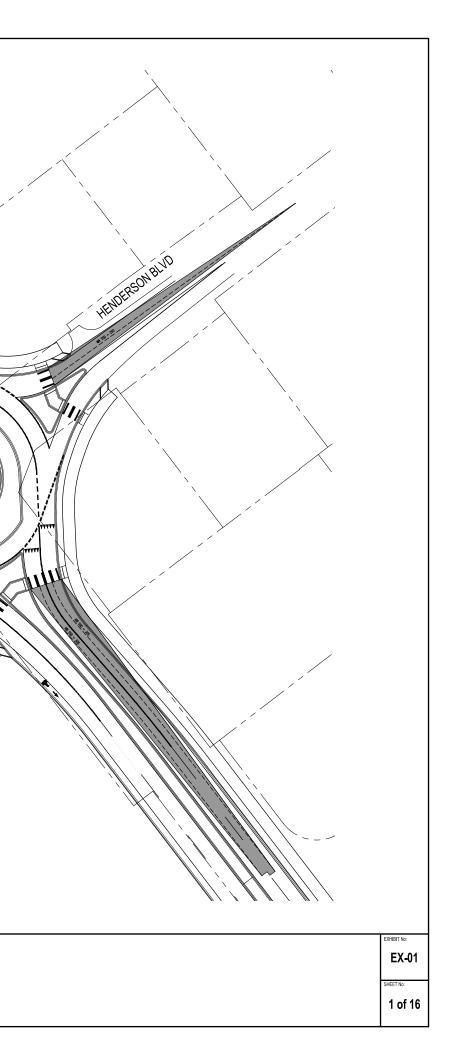
SB1 SSD = 305

SB2 SSD = 305

WB SSD = 250

NB1 SSD = 305

NB2 SSD = 305


07, 2021

à l

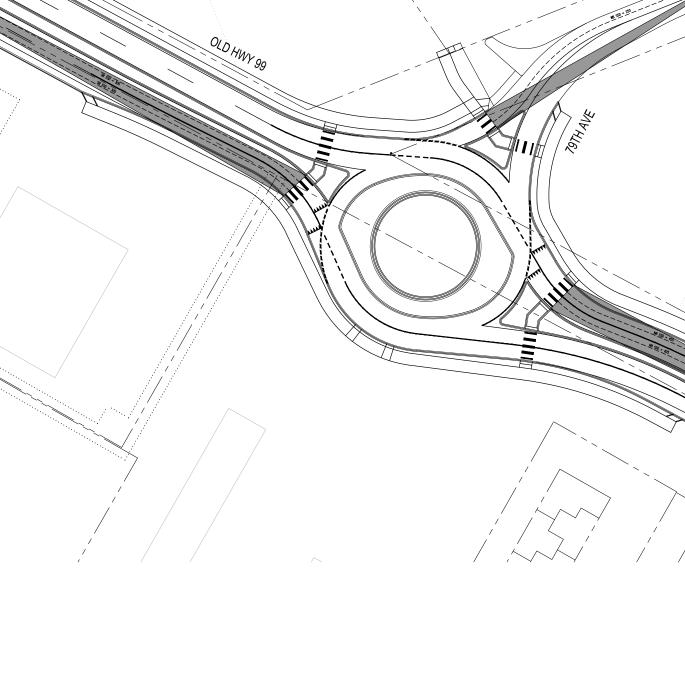
	1"=30"
	DATE:
	April, 2021
	JOB No.:
	-
3516	
	DRAWING FILE No.:
	-

V OLD HWY 99 AND HENDERSON BLVD APPROACH STOPPING SIGHT DISTANCE

OLD HIM 99

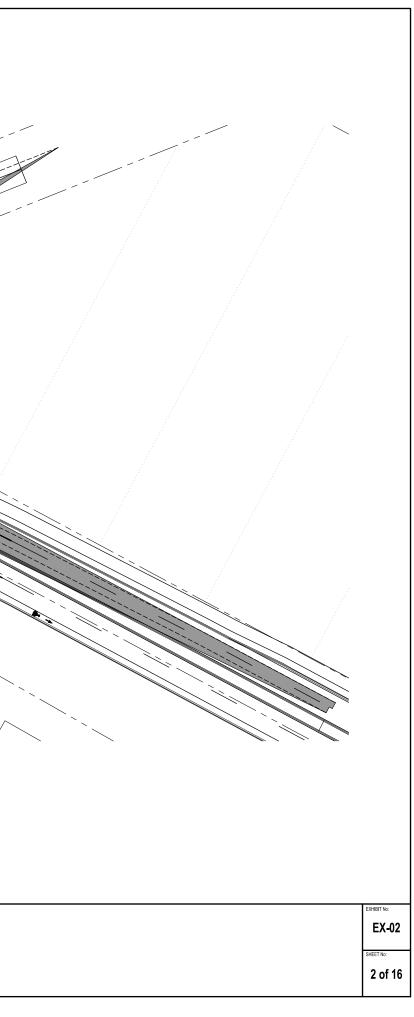
Design Speed (mph)	Design Stopping Sight Distance (ft)	Kc	Ks	VCL _m (ft)
25	155	<u>12</u>	2 <u>6</u>	75
30	200	<u>19</u>	3 <u>7</u>	90
35	250	<u>29</u>	49	105
40	305	44	6 <u>4</u>	120
45	360	<u>61</u>	7 <u>9</u>	135
50	425	<u>84</u>	96	150
55	495	<u>114</u>	115	165
60	570	<u>151</u>	136	180
65	645	<u>193</u>	157	195
70	730	247	18 <u>1</u>	210
75	820	<u>312</u>	206	225
80	910	<u>384</u>	231	240

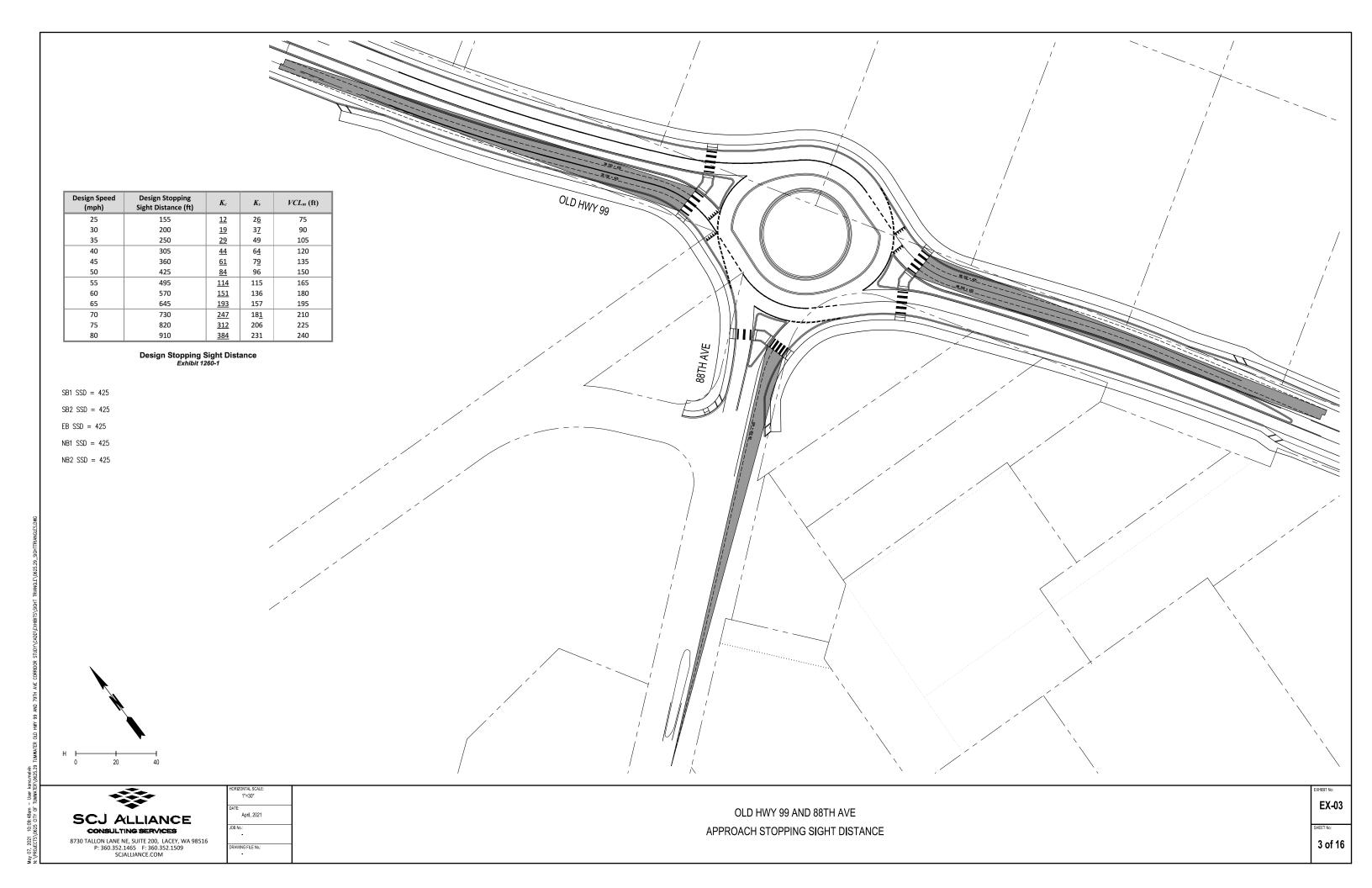
Design Stopping Sight Distance Exhibit 1260-1

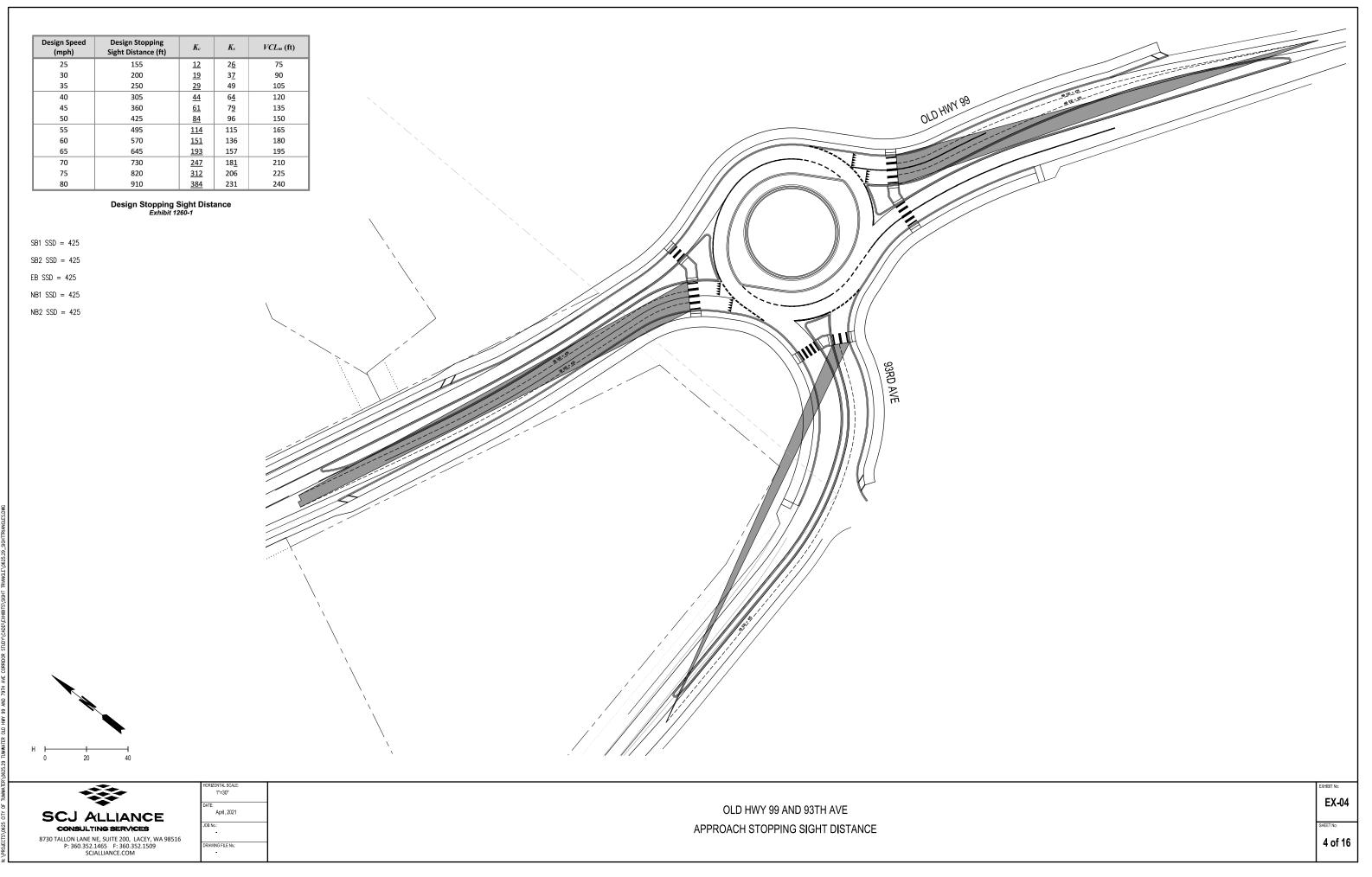

SB1	SSD	=	305

SB2 SSD = 305 WB SSD = 250

NB1 SSD = 425

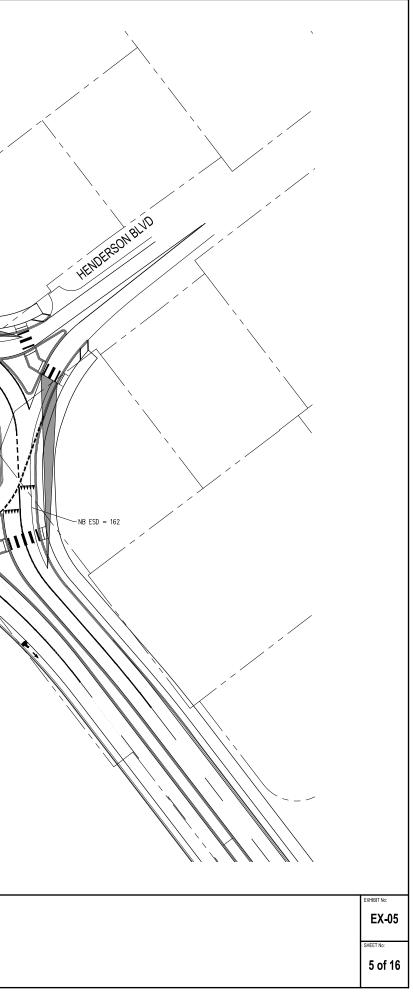

NB2 SSD = 425


***	HORIZONTAL SCALE: 1"=30"
SCJ ALLIANCE	April, 2021 JOB No.:
8730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1465 F: 360.352.1509 SCJALLIANCE.COM	DRAWING FILE No.:

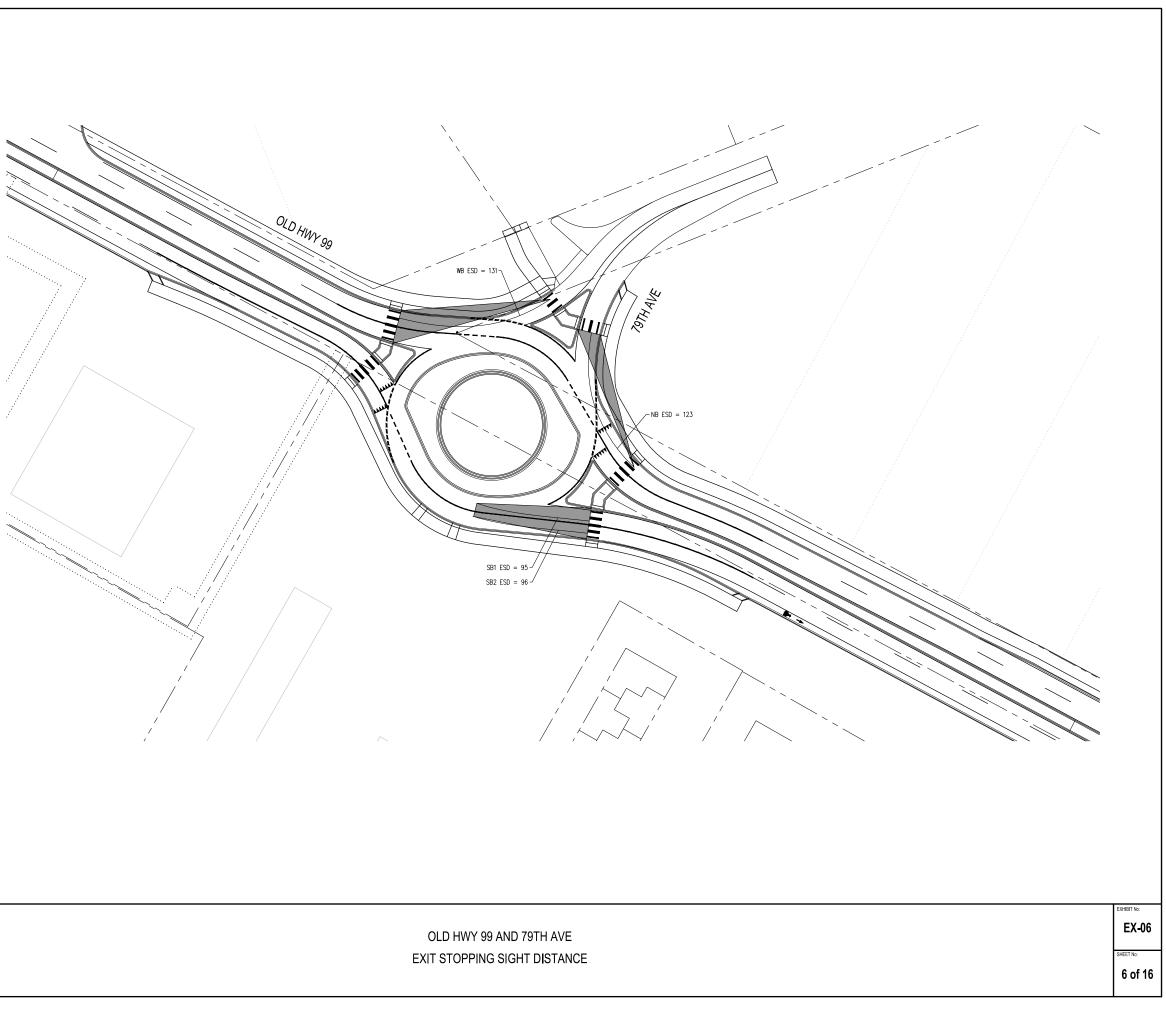


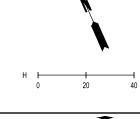
OLD HWY 99 AND 79TH AVE APPROACH STOPPING SIGHT DISTANCE

à l



$S = 1.477(2.5) + \frac{P^2}{30} \frac{(0.347826\pm \left(\frac{G}{100}\right))}{(0.347826\pm \left(\frac{G}{100}\right))}$ Where: S = 1.637(762) = 0.347826\pm (1)	
H 0 20 40 H 0 20 40 Date April, 2021 JOB No: - DRAWING FILE No: DRAWING FILE No: DRAWING FILE No:	OLD HWY 99 AND HENDERSON BLVD EXIT STOPPING SIGHT DISTANCE


10.melvin - User kand TUMWATER


May 07, 2021 10:09:58am N:\PROJECTS\0625 CITY 0F

b ≜1.	47 <i>V</i> (2.5)		Contraction.	1	(C N		
1.6.19 2.6		30	0.3478	26±	Sec. 1		
	10120210	10.000	ALL DE LE DE	Page 1	100 刀		
Lenne Printed	1999-1999	0397526	0150543130	isseratear	10000000000		
where:			1. 11.15	1400.00	11.691		
S = Sto	oping sigh	nt dista	ince on	grade	(ft) 🔆		
V = Des	ign speed	(moh	122201	6.010			
16-3092400	de (%)	111111		S. S. C. S.	Sec. Sec.		

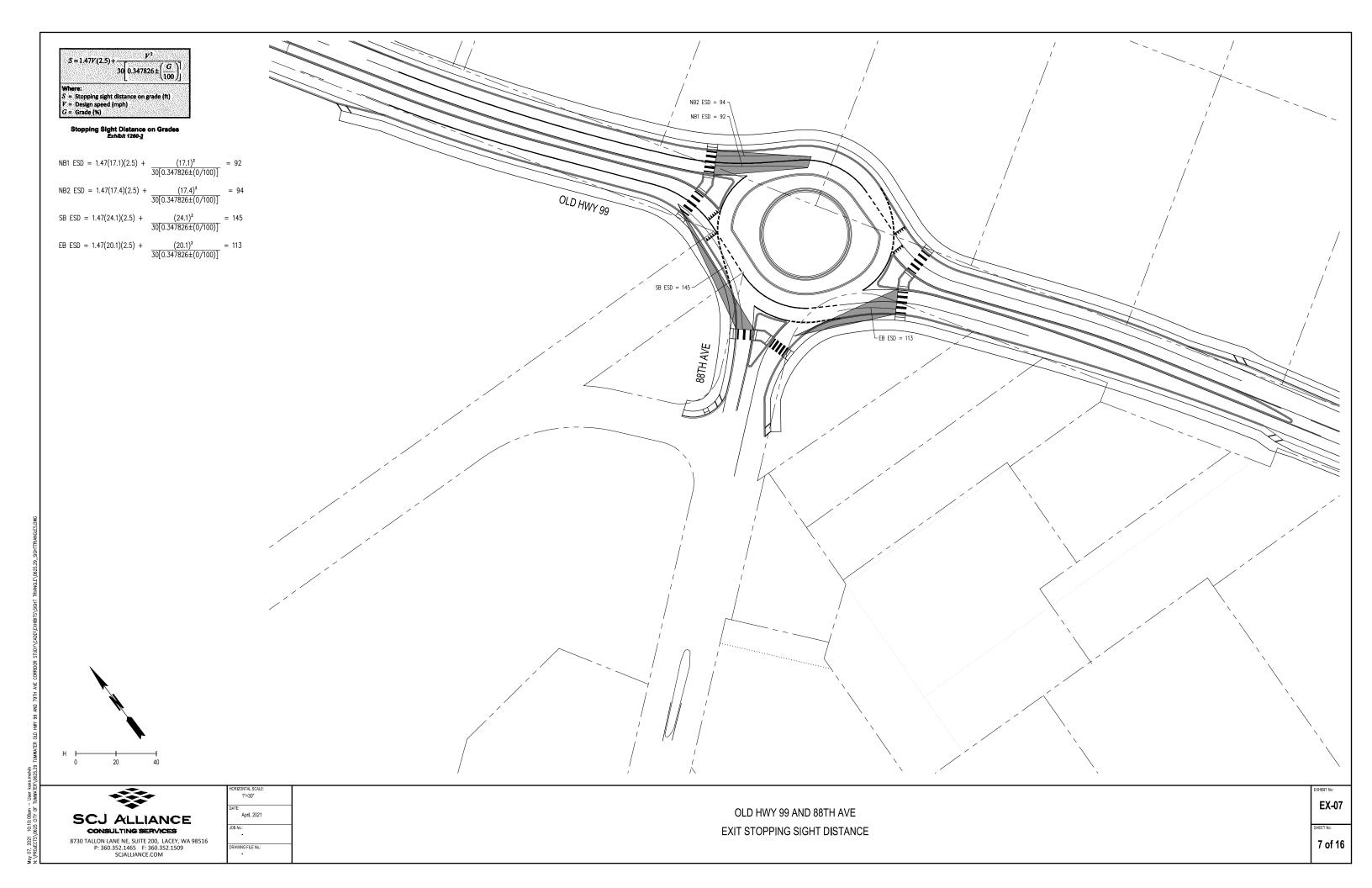
- $\frac{+(17.6)^2}{30[0.347826\pm(0/100)]}$ SB1 ESD = 1.47(17.6)(2.5) + = 95
- SB2 ESD = $1.47(17.7)(2.5) + \frac{(17.7)^2}{30[0.347826\pm(0/100)]}$ = 96
- NB ESD = $1.47(21.3)(2.5) + \frac{(21.3)^2}{30[0.347826\pm(0/100)]}$ = 123
- WB ESD = $1.47(22.3)(2.5) + \frac{(22.3)^2}{30[0.347826\pm(0/100)]}$ = 131

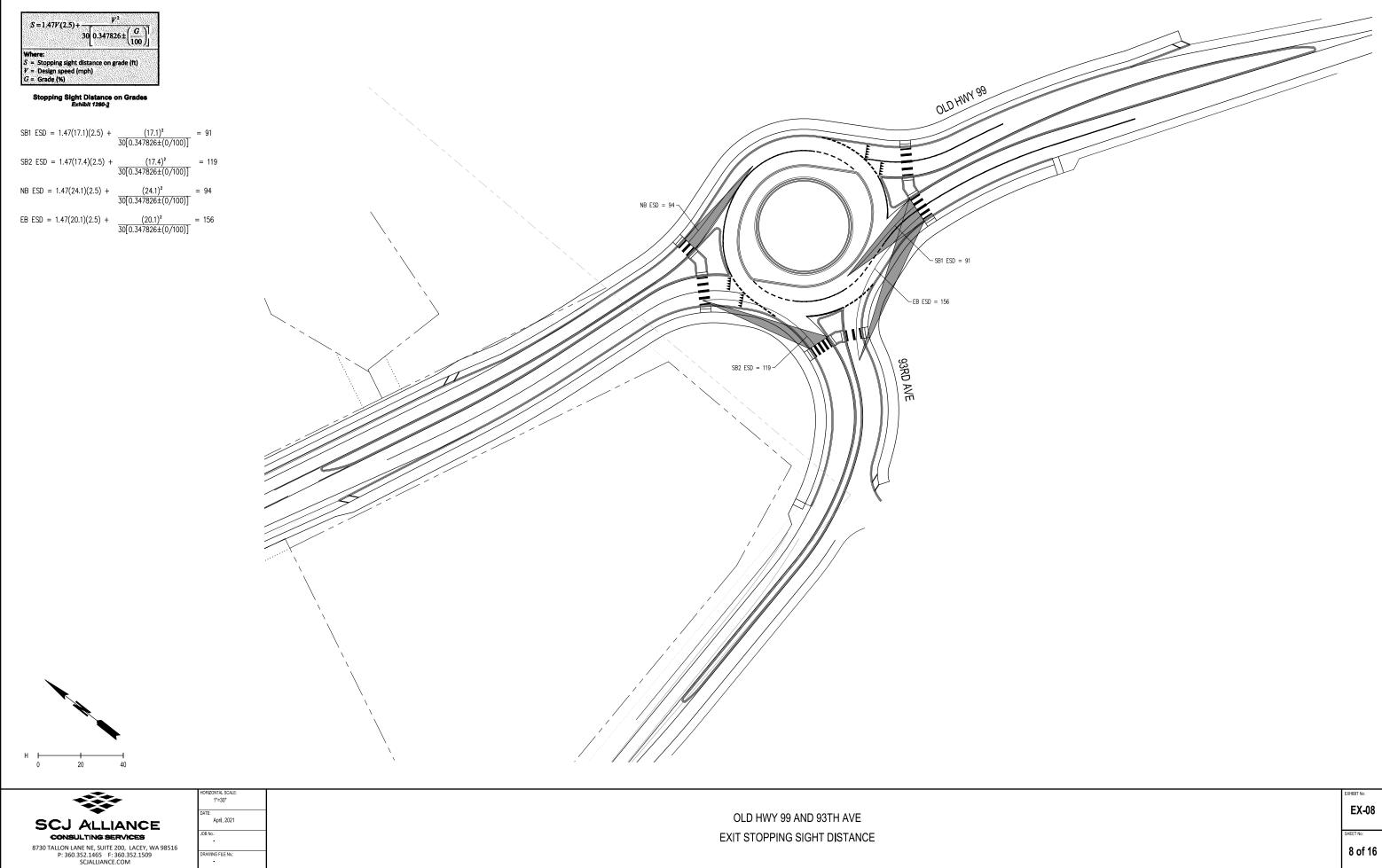
melvin 625.29

User UMWA

10:10:03am 0625.017Y_0F

07, 2021


ġ.


÷ SCJ ALLIANCE 8730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1465 F: 360.352.1509 SCJALLIANCE.COM DRIZONTAL SCALE: 1"=30"

April, 2021

RAWING FILE No.:

JOB No.:

kano.melvin VTER\0625.29

User IUMWA

10:10:13am -

2021 ECTC

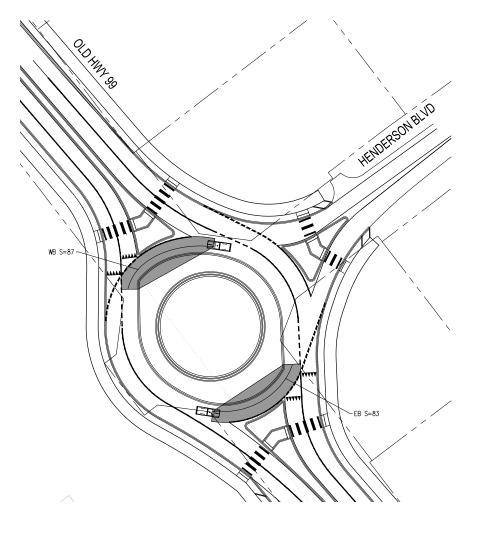

07,

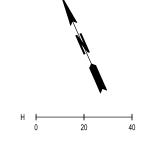
EXHIBIT No:
EX-08
SHEET No:
8 of 16

12	1.477 (4-277	992	0.25	989	(6	<u>الات</u>
			30	0.347	826:	ŧ(ī0	ōĴj
Where	:	NY ROLL	10000	1996		<u> (</u>	
	topping				n grad	le (ft)	
	esign sj rade (%		mph)	200	12.15		

WB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 87$ SB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 95$

EB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 83$


OLD HWY 99 AND HENDERSON BLVD CIRCULATING SIGHT DISTANCE


EX-09 Sheet No:
9 of 16

	47V (2.5	16:50	0202	913116	(G	\mathbf{N}
		30	0.347	826±	100	Ŀ
CONSCIENCT:		Section 20	. WS19859	SUSSIN ansessing	VYAK?	<u>/]</u>
Where:						
	pping sigi			n grade	e (ft)	156
V = Des	iign speed de (%)	i (mph	1.338		经新建建	

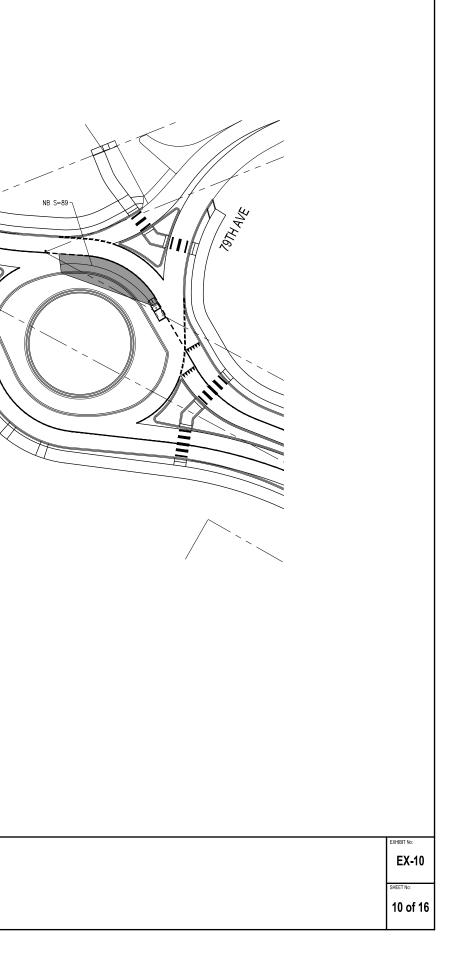
WB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 83$ NB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 89$

EB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 79$

kano.melvin
 ATER\0625.29

User

10:10:24am -0625 CITY OF

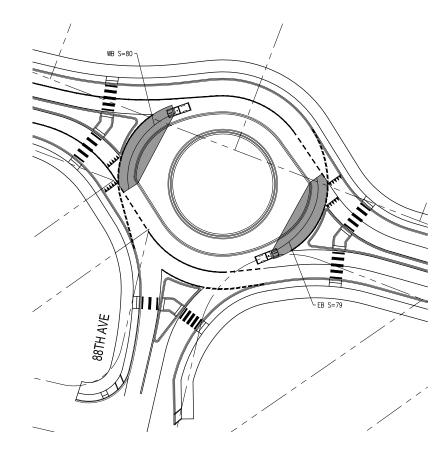

May 07, 2021

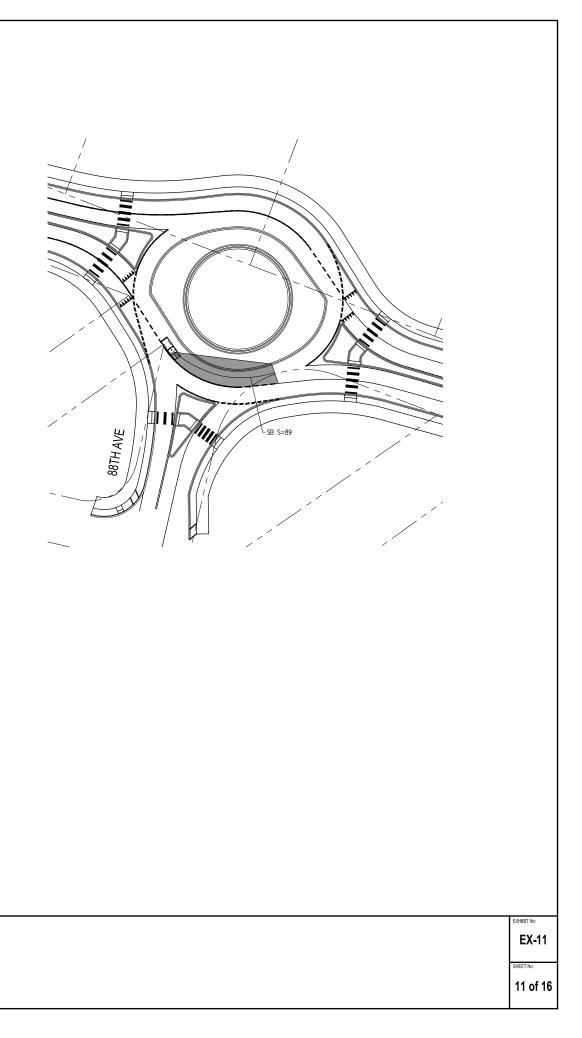
SCJ ALLIANCE CONSULTING SERVICES 8730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1465 F: 360.352.1509 SCIALLIANCE.COM

HORIZONTAL SCALE: 1"=30" DATE: April, 2021 JOB No.: DRAWING FILE No.:

OLD HWY 99 AND 79TH AVE CIRCULATING SIGHT DISTANCE

OLD HWY 99




12	1.477 (4-277	992	0.25	989	(6	<u>الات</u>
			30	0.347	826:	ŧ(ī0	ōĴj
Where	:	NY ROLL	10000	1996		<u> (</u>	
	topping				n grad	le (ft)	
	esign sj rade (%		mph)	200	12.15		

WB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 80$

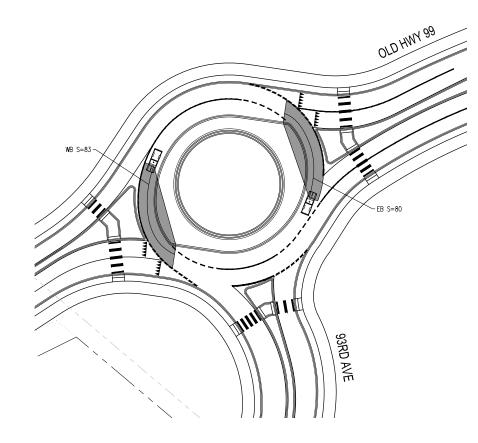
SB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 89$ EP S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 70$

EB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 79$

 User kano.melvin TUMWATER\0625.29

May 07, 2021 10:10:30am N:\PROJECTS\0625 CITY 0F SCJ ALLIANCE CONSULTING SERVICES B730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1509 SCIALLIANCE.COM

40


	HORIZONTAL SCALE: 1"=30"
	DATE: April, 2021
.6	JOB No.:
	DRAWING FILE No.:

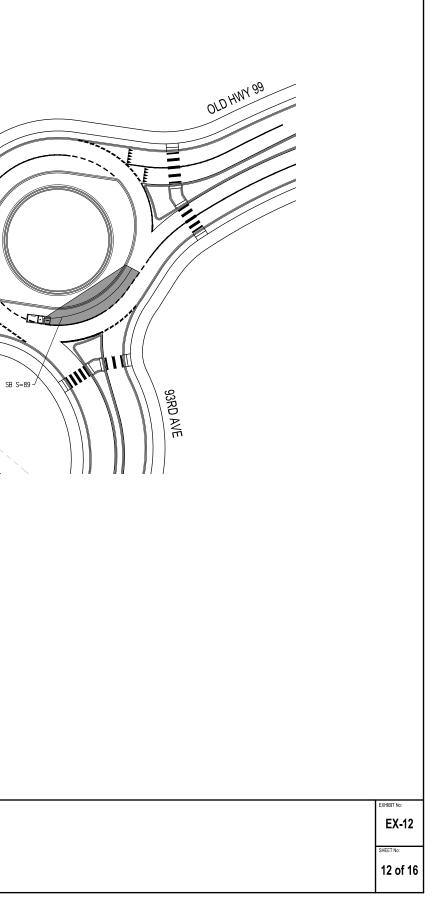
OLD HWY 99 AND 88TH AVE CIRCULATING SIGHT DISTANCE

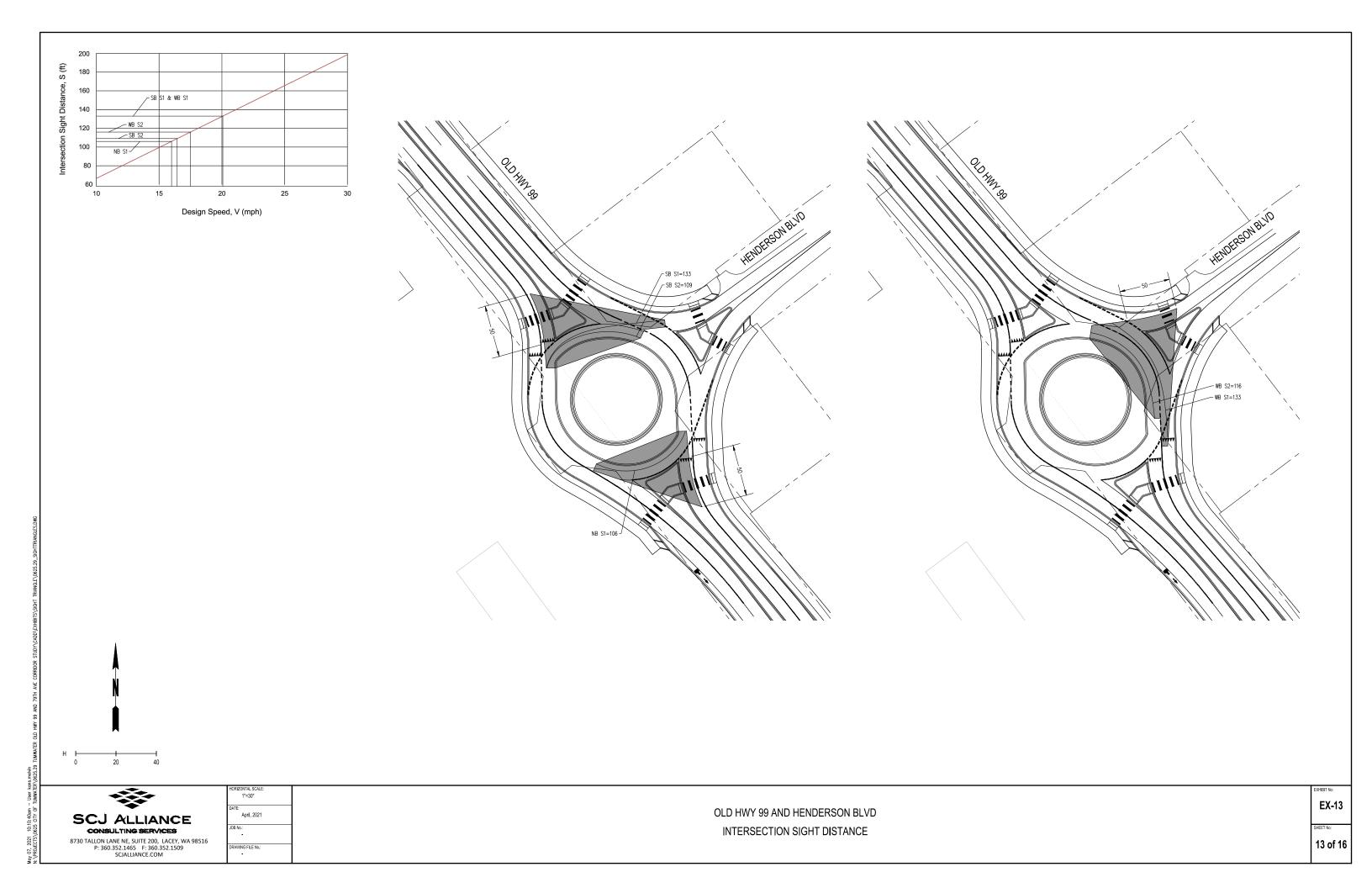
°	1.477 (2.JJT	98.05	SHORE!	(G	$\overline{\mathbf{N}}$
			30 0.3	47826	±(10	ъJ
Where	u) (1)			e de la come de la come Come de la come de la co		
	topping			on gra	de (ft)	
	esign sp rade (%		ipn)			1.92

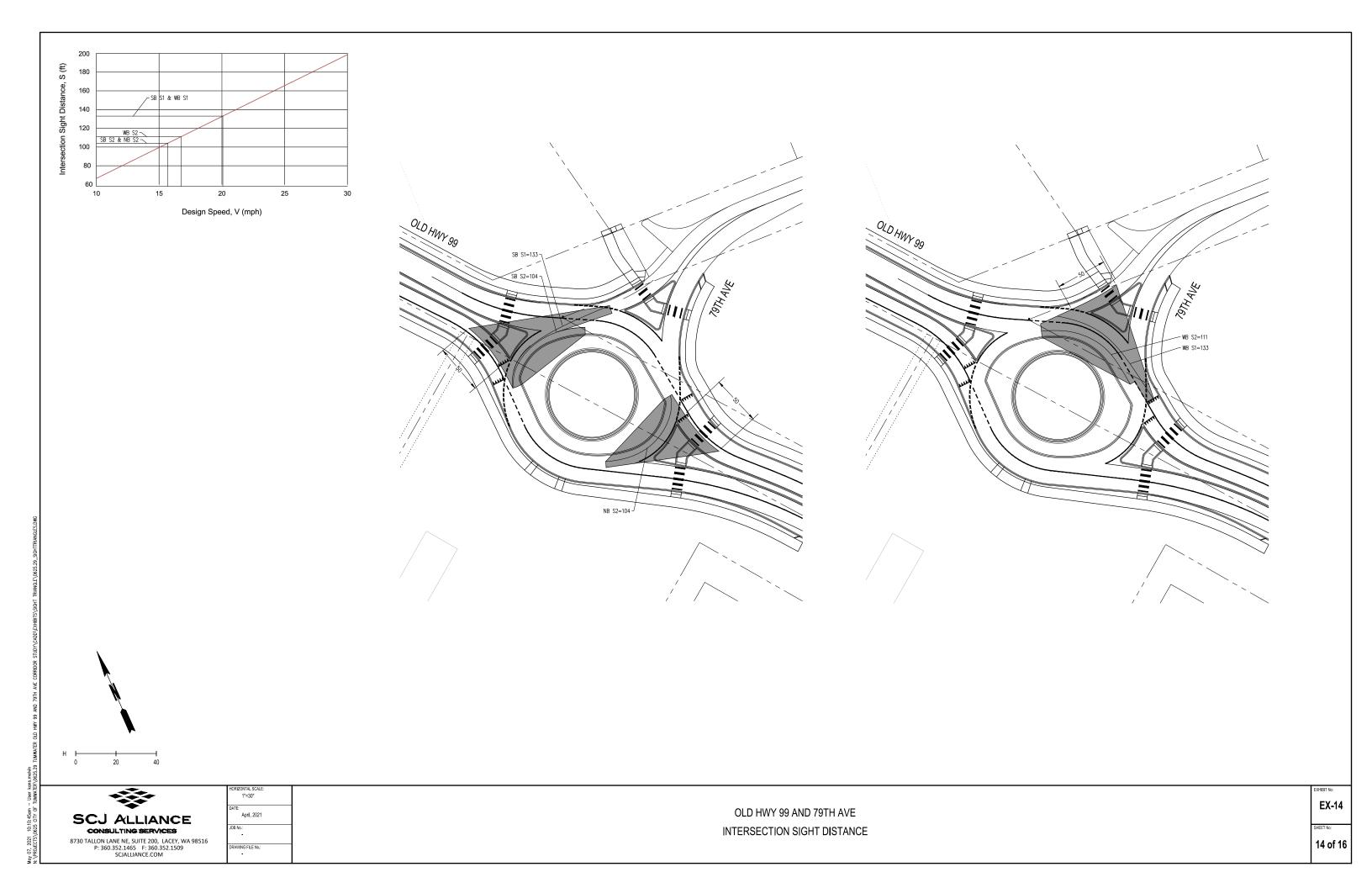
WB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 83$ SB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 89$

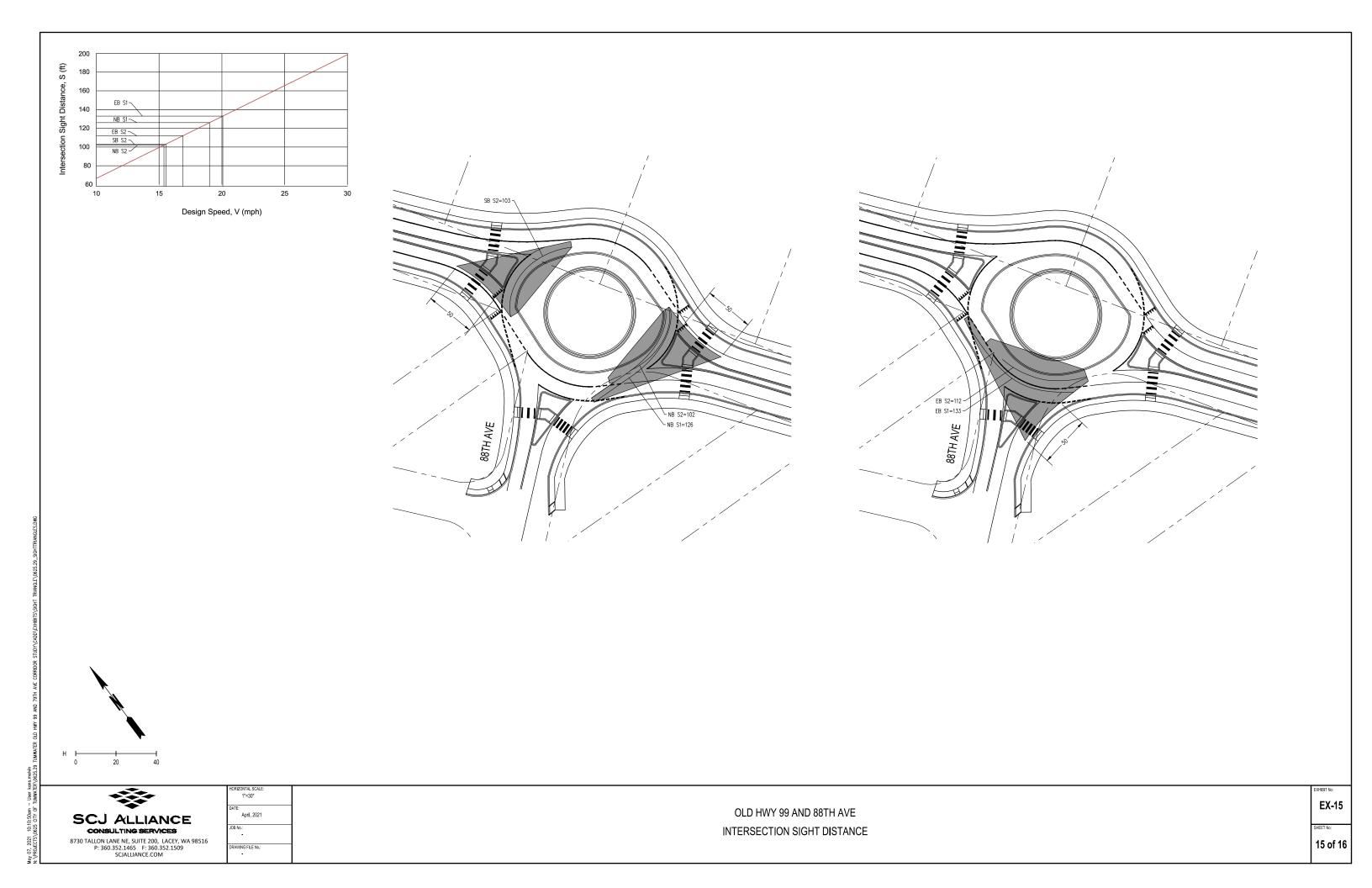
EB S = $1.47(16)(2.5) + \frac{(16)^2}{30[0.347826\pm(0/100)]} = 80$

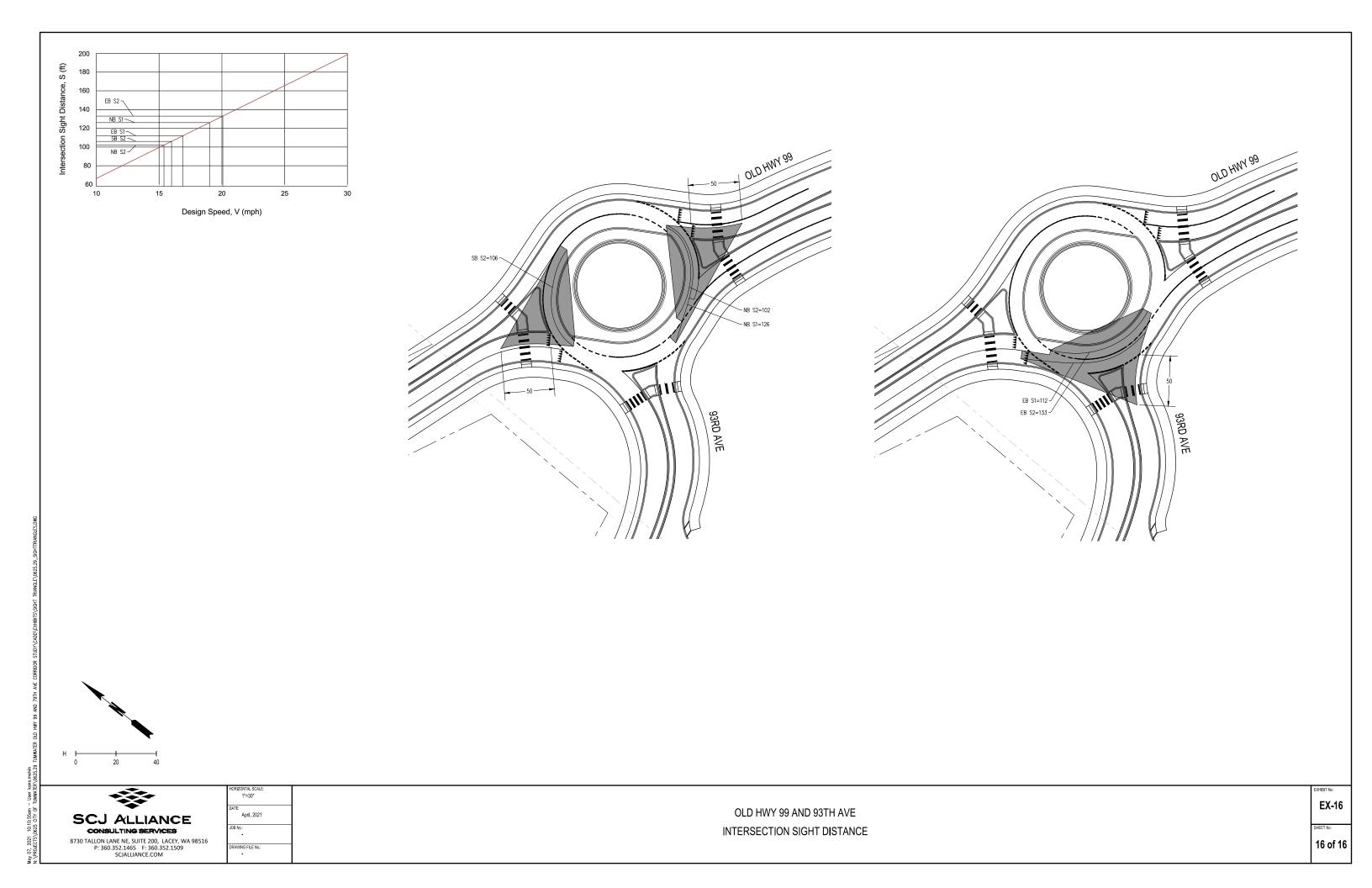
20


0


SCJ ALLIANCE CONSULTING SERVICES B730 TALLON LANE NE, SUITE 200, LACEY, WA 98516 P: 360.352.1509 SCIALLIANCE.COM


	1"=30"
	DATE:
	April, 2021
	JOB No.:
5	-
	DRAWING FILE No.:
	-


HORIZONTAL SCALE:


OLD HWY 99 AND 93TH AVE CIRCULATING SIGHT DISTANCE

F5) UTILITY TECH MEMO

Technical Memo

To City of Tumwater

From: David Rowland, PE

Date: September 8th, 2022

Project: 0625.29 – Old Highway 99 Corridor Study

Subject Utility Future Conflicts

Introduction

The Old Highway 99 Corridor Study starts at 73rd Avenue and continues until 93rd Avenue on Old Highway 99. This technical memorandum seeks to provide preliminary design recommendations for utility coordination prior to design for each phase.

Utility Conflicts

For each phase the final footprint of the biofiltration swales, CAVFS, and infiltration basins have not yet been established. Therefore, these elements will require coordination once the footprint and depth are established.

• Phase 1 – 79th Avenue Roundabout

Installation of signage and illumination poles as well as junction boxes will require the evaluation of the current utilities to prevent conflicts. Stormwater infiltration basins, catch basins and storm pipes near the roundabout at 79th Avenue will require the relocation and coordination of existing utilities with design installations. Biofiltration swales located on east side of the roadway will need to be evaluated to ensure that they do not conflict with existing utilities. Because this phase expands the footprint of the roadway, this will require the relocation of power poles, telephone boxes, storm pipes and structures, and a fire hydrant. Water valves and sewer manholes that are at existing grades, may need to be adjusted to match the new design.

• Phase 2 – 73rd Avenue to 79th Avenue

Installation of signage and illumination poles as well as junction boxes will require the evaluation of the current utilities to prevent conflicts. Stormwater infiltration basins, catch basins and storm pipes near the roundabout at Henderson Avenue will require the relocation and coordination of existing utilities with design installations. Biofiltration swales located on east side of the roadway will need to be evaluated to ensure that they do not conflict with existing utilities. Because this phase expands the

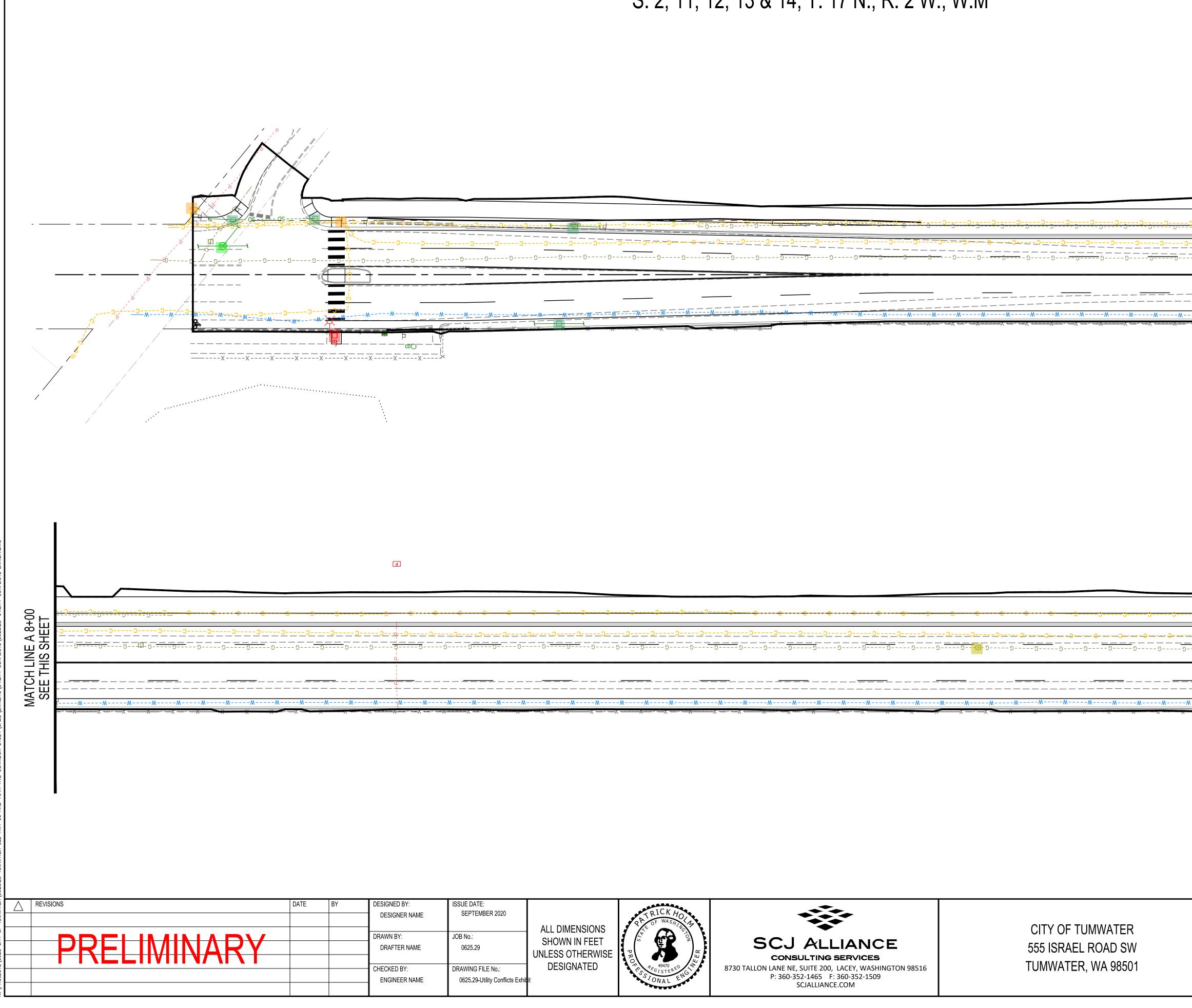
footprint of the roadway, this will require the relocation of power poles, illumination poles and junction boxes, telephone boxes, storm pipes and structures, and a fire hydrant. Water valves, gas valves, and sewer manholes that are at existing grades, may need to be adjusted to match the new design.

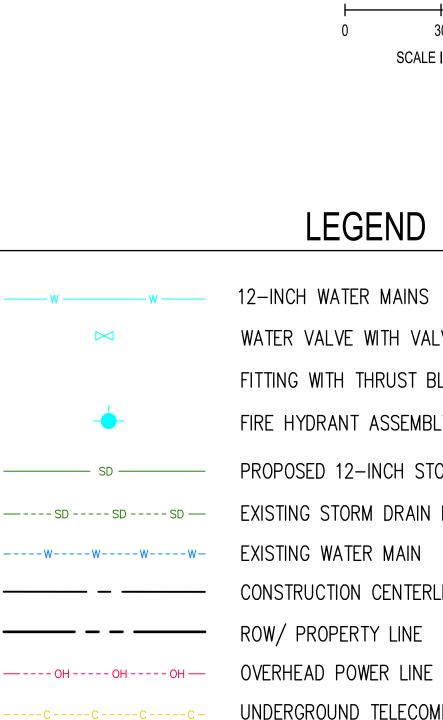
1.1. Phase 3 – 79th Avenue to 88th Avenue Roundabout

Installation of signage and illumination poles as well as junction boxes will require the evaluation of the current utilities to prevent conflicts. Stormwater infiltration basins, catch basins and storm pipes near the roundabout at 88th Avenue will require the relocation and coordination of existing utilities with design installations. Because this phase expands the footprint of the roadway, this will require the relocation of power poles, illumination poles and junction boxes, telephone boxes, storm pipes and structures, and a fire hydrant. Water valves, gas valves, and sewer manholes that are at existing grades, may need to be adjusted to match the new design grade.

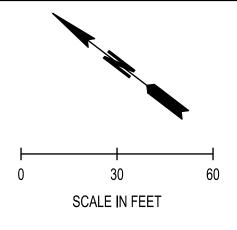
1.2. Phase 4 – 88th Avenue Roundabout to Wyatt Court

Installation of signage and illumination poles as well as junction boxes will require the evaluation of the current utilities to prevent conflicts. Biofiltration swales located on both sides of the roadway will need to be evaluated to ensure that they do not conflict with existing utilities. Because this phase expands the footprint of the roadway, this will require the relocation of power poles, illumination poles and junction boxes, telephone boxes, and storm pipes and structures. Water valves, gas valves, and sewer manholes that are at existing grades, may need to be adjusted to match the new design grade.


1.3. Phase 5 – Wyatt Court to 93rd Avenue Roundabout

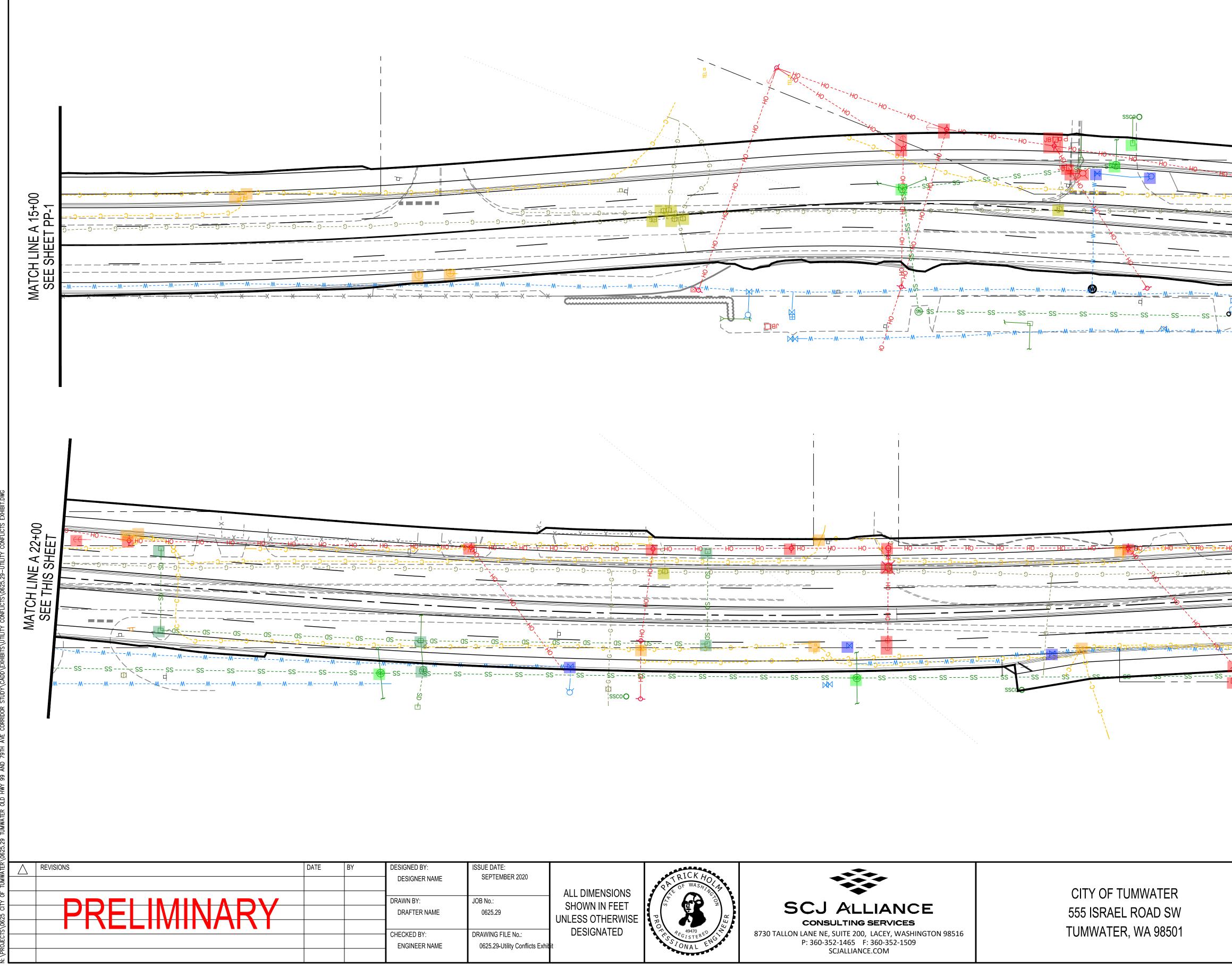

Installation of signage and illumination poles as well as junction boxes will require the evaluation of the current utilities to prevent conflicts. Biofiltration swales located on both sides of the roadway will need to be evaluated to ensure that they do not conflict with existing utilities. Stormwater infiltration basins, catch basins and storm pipes near the roundabout at 93rd Avenue will require the relocation and coordination of existing utilities with design installations. Because this phase expands the footprint of the roadway, this will require the relocation of power poles, illumination poles and junction boxes, telephone boxes, and storm pipes and structures. Water valves, gas valves, and sewer manholes that are at existing grades, may need to be adjusted to match the new design grade.

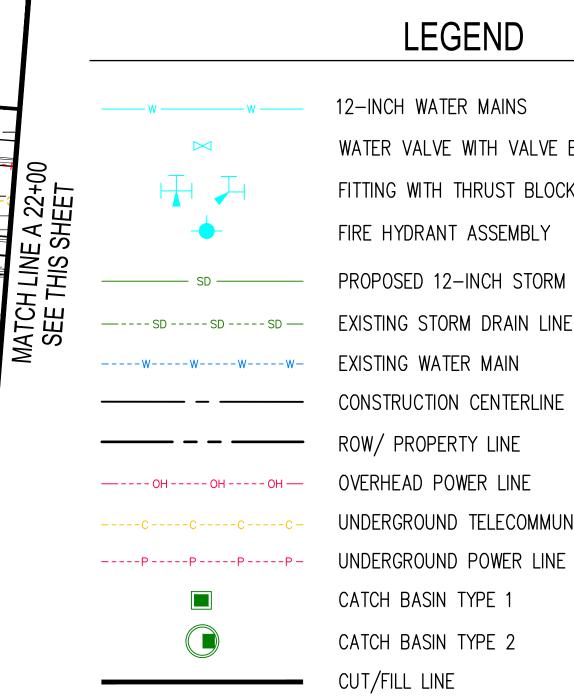
An exhibit showing the extents of the project from 79th Avenue to 93rd Avenue on Old Highway 99 is attached for reference in **Appendix A.**


APPENDIX A EXISTING UTILITIES PLAN

MATCH LINE A 8+00 SEE THIS SHEET

MATCH LINE A 15+00 SEE SHEET UT-2

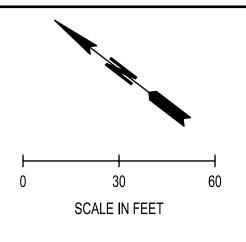



LEGEND

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-1
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 1+00 - A 15+00	of XX

+00

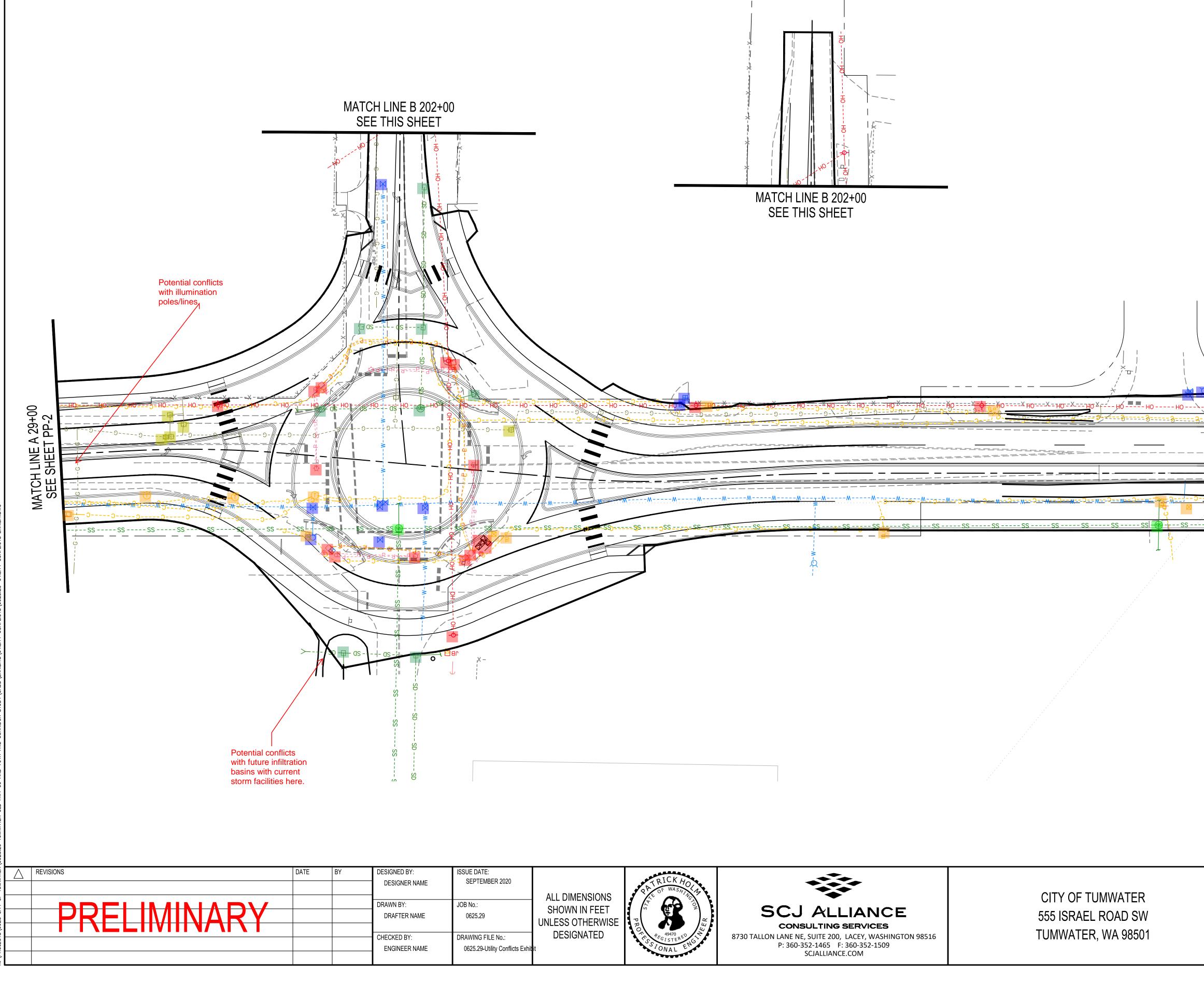

UT.

 \prec

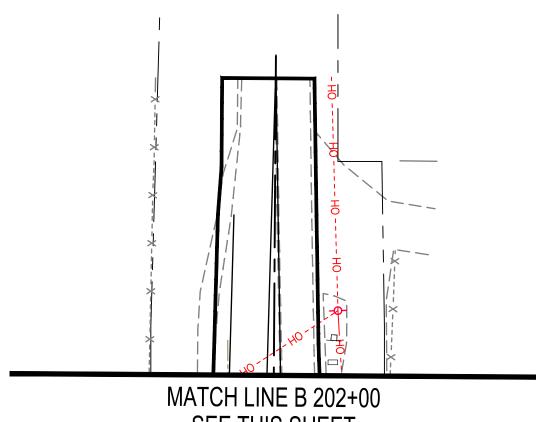
HLINE SHEE

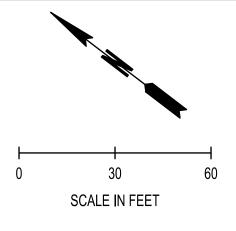
ひ王

MATC



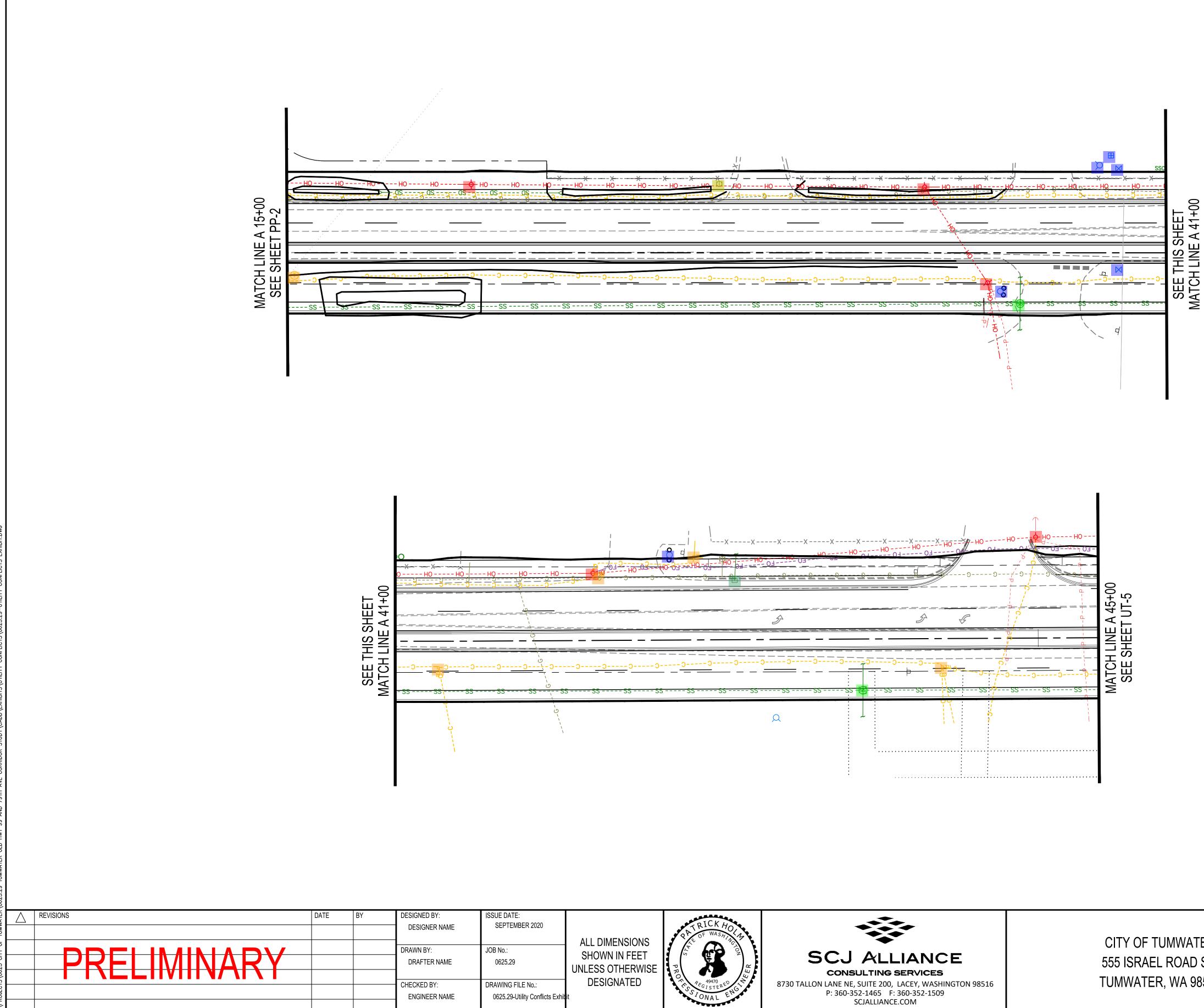
LEGEND

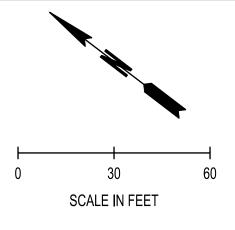

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

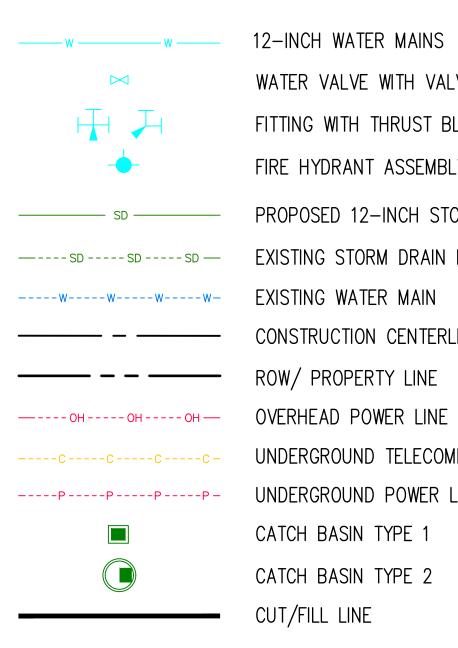


OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: UT-2
MP XX TO MP XX	SHEET No.:
UTILITY PLAN A 15+00 - A 29+00	of XX

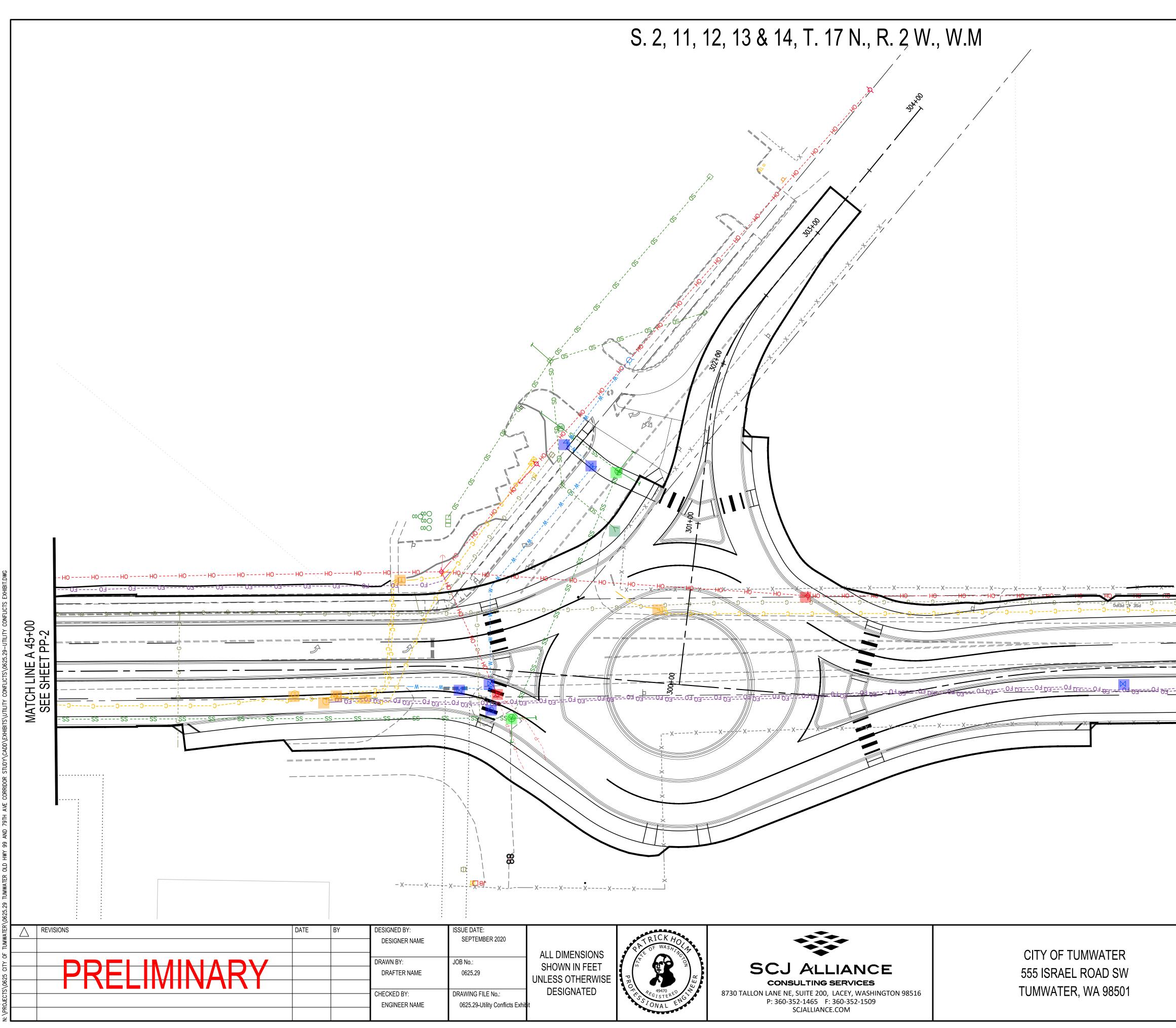
S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

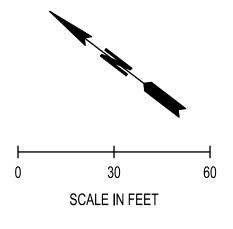

LEGEND


12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

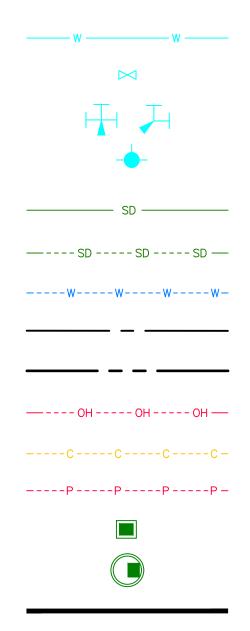

<u> </u>		
	OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
	TUMWATER, WASHINGTON	UT-3
	MP XX TO MP XX	SHEET No.:
	UTILITY PLAN	
	A 29+00 - A 41+00	of XX

CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501


LEGEND



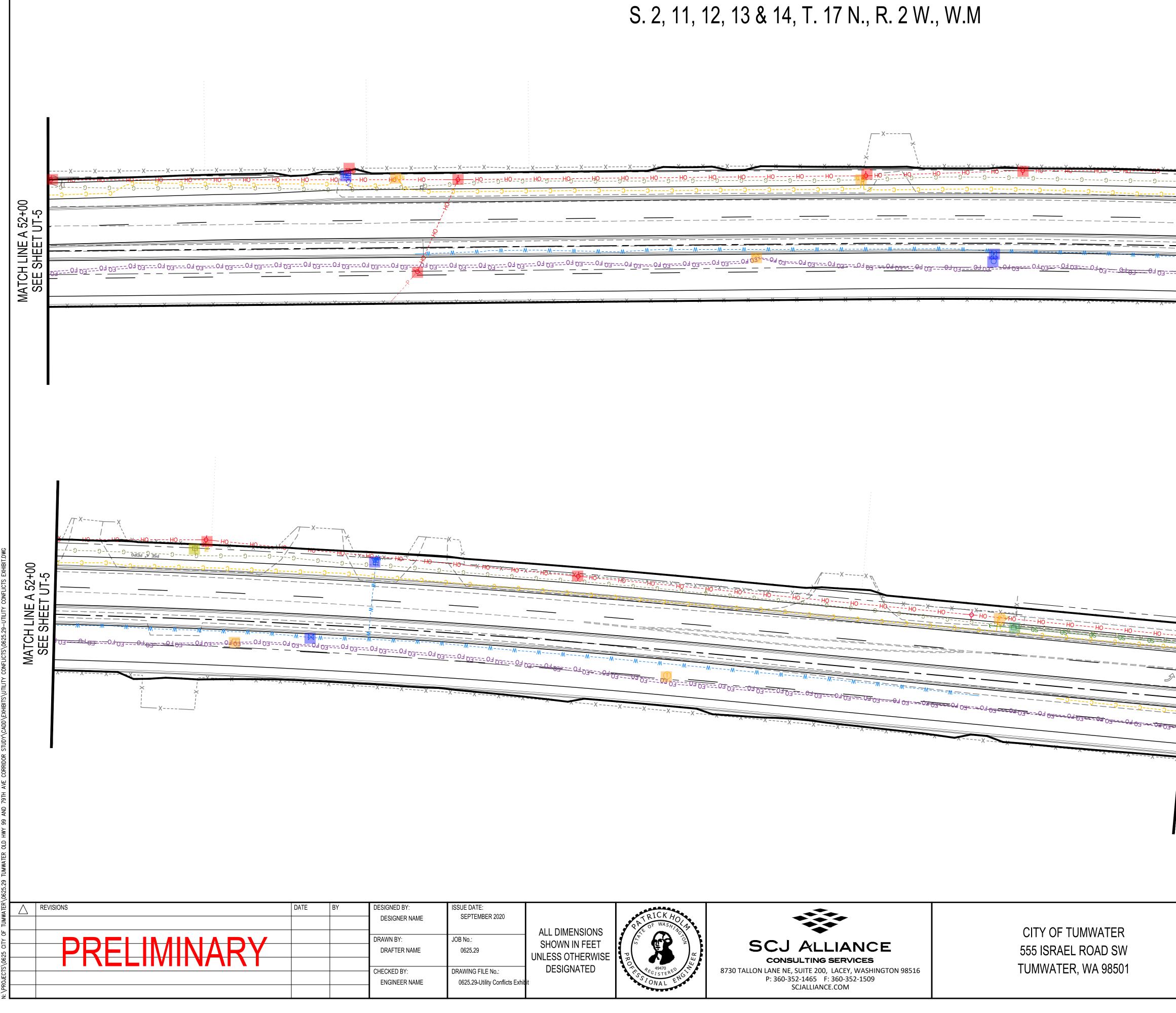
12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE



OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: UT-4
MP XX TO MP XX	SHEET No.:
UTILITY PLAN A 36+00 - A 45+00	of XX

LEGEND

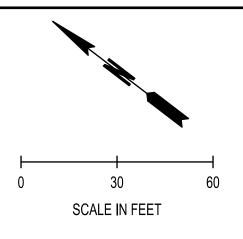
-00


T UT-

MATCH LINE / SEE SHEET

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE OVERHEAD POWER LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.: UT-5
TUMWATER, WASHINGTON MP XX TO MP XX	SHEET No.:
UTILITY PLAN A 45+00 - A 52+00	of XX

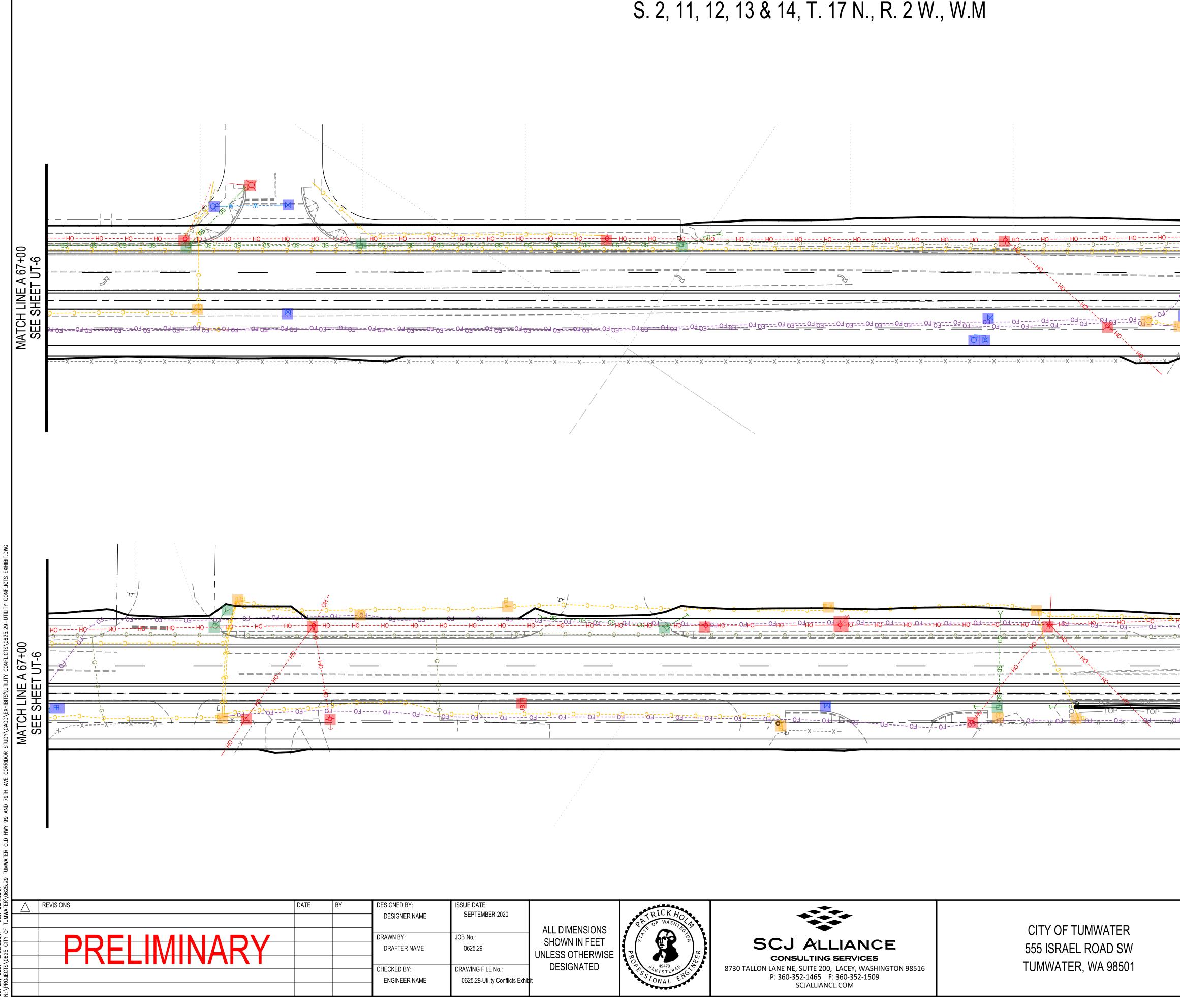

w
\bowtie
SD
SD SD SD
WWWWWW
——————————————————————————————————————
CCCCC
PPPPPP

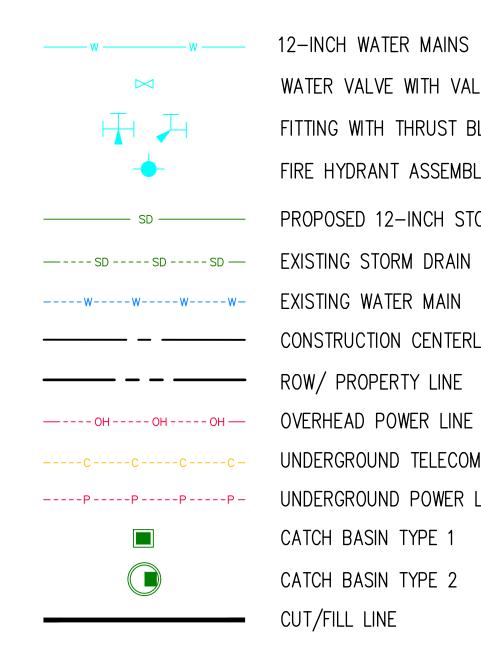
8

MATCH LINE A 66+0 SEE SHEET UT-7

H LINE A 66+(SHEET UT-7

IATCH SEE



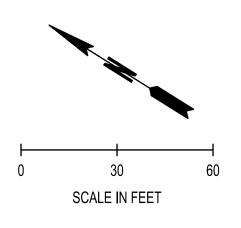

LEGEND

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE OVERHEAD POWER LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-6
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 52+00 - A 66+00	of XX

00+(-8

MATCH LINE A 80-SEE SHEET UT-

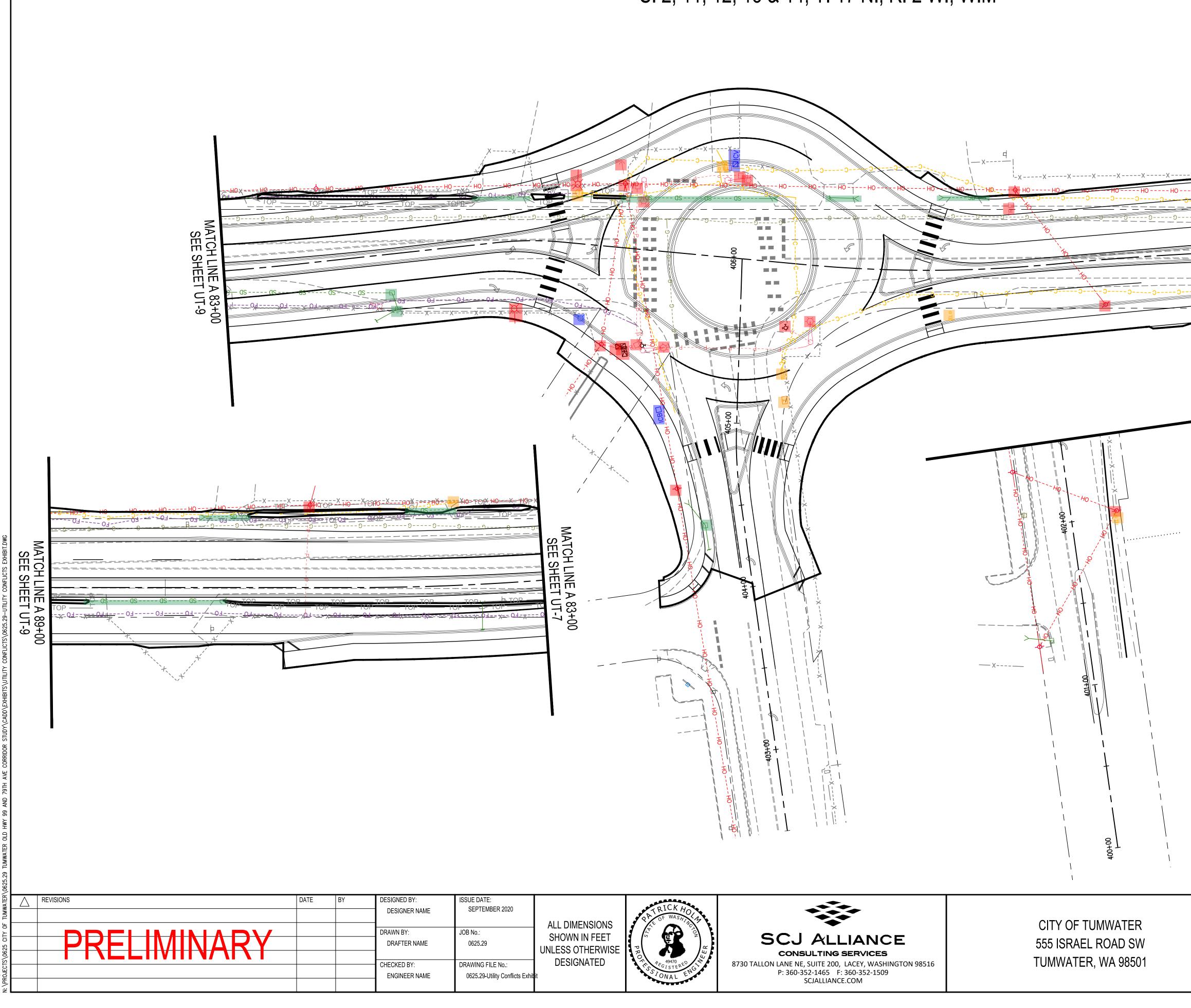

8

\ 80 UT-

∙ < ⊢

MATCH LINE / SEE SHEET

 ∞



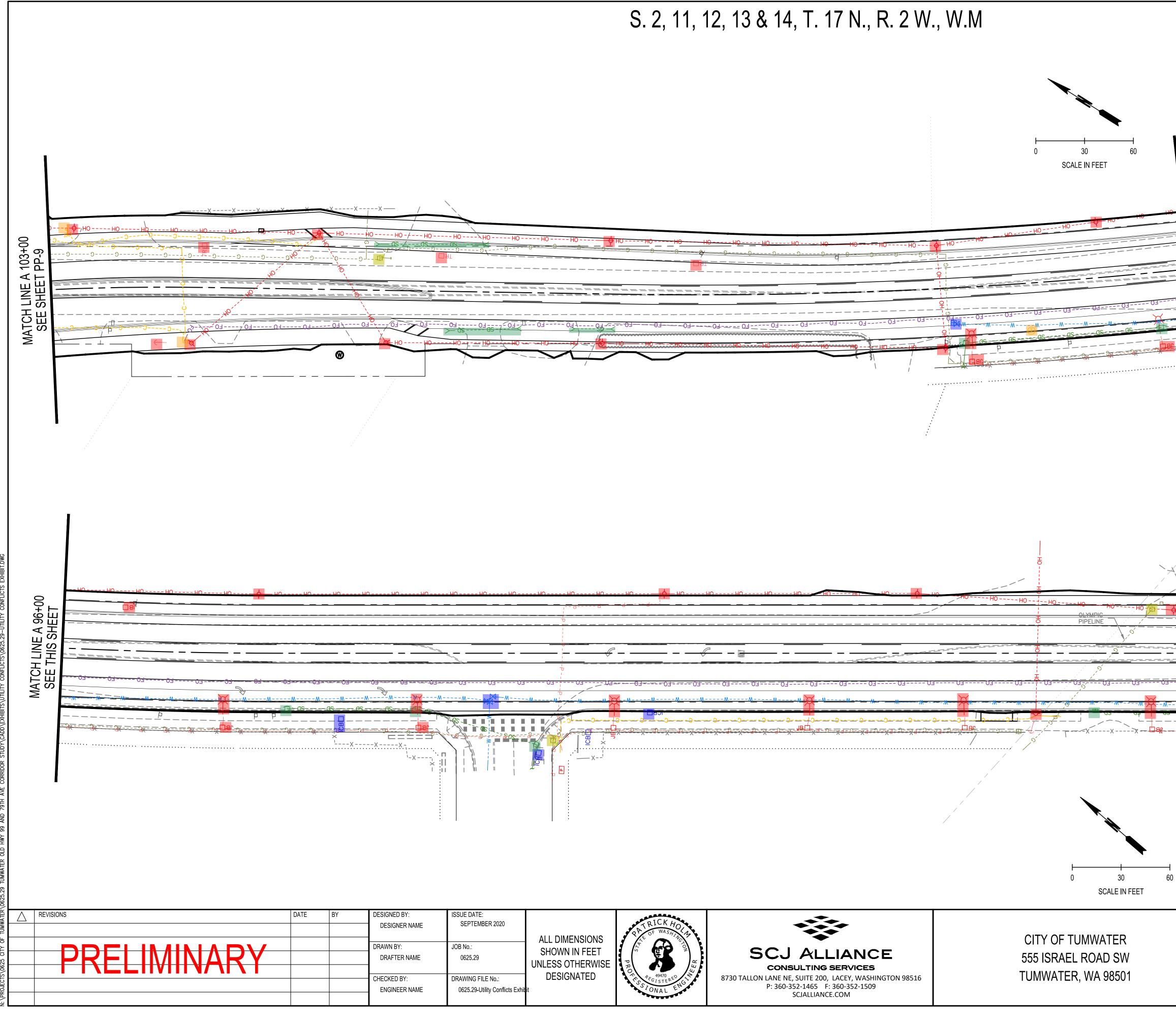
LEGEND

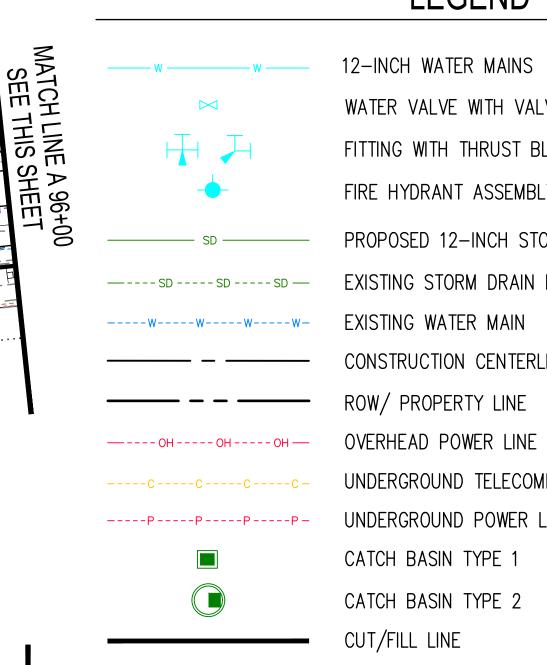
12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-7
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 67+00 - A 80+00	of XX

W	W
F	™ Ti Ti
	-
SD	— SD — SD — SD —
W	www-
OH	OH OH
C	CCC
P	PPP-

MATCH LINE A 89+00 SEE SHEET UT-9

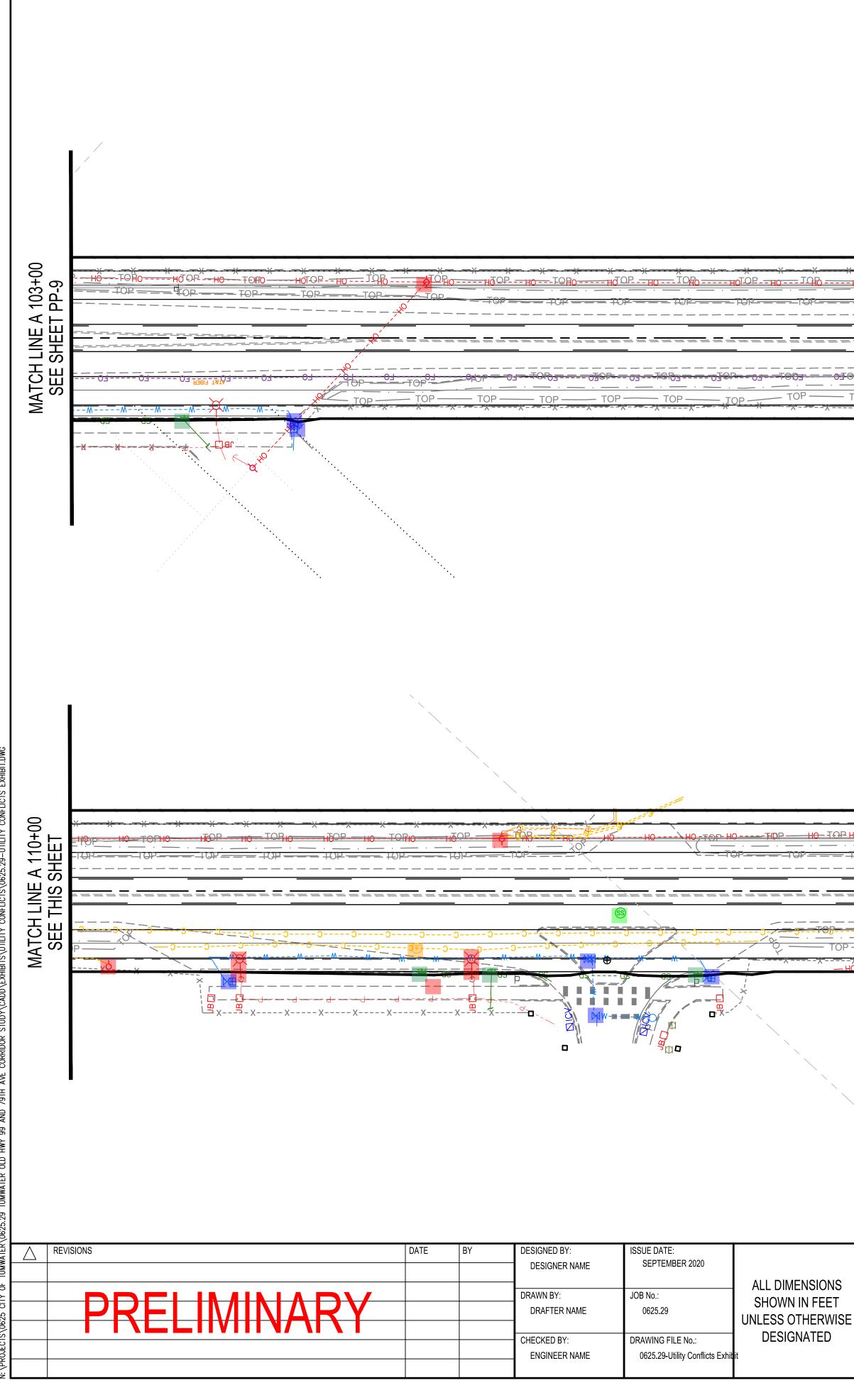

⊢ 0		
	SCALE IN FEET	


LEGEND

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE OVERHEAD POWER LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-8
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 80+00 - A 89+00	of XX

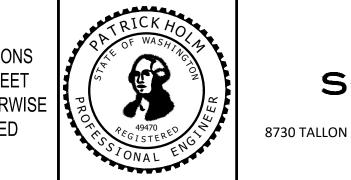
H LINE A 103+00 SHEET UT-10


ATCH

LEGEND

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 (CORRIDOR STUDY	DRAWING No.:
TUMWATER, V	VASHINGTON	UT-9
MP XX T	D MP XX	SHEET No.:
UTILITY	′ PLAN	
A 89+00 -	A 103+00	of XX

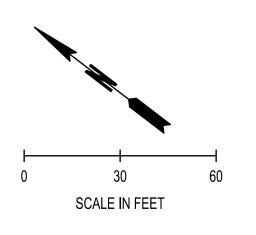

021 8:54:54am — User sam.dunn CTS\0625 CITY OF TUMWATER\0625.29 TUMWATER OLD HWY 99 AND 79TH AVE CORRIDOR STUDY\CADD\EXHIBITS\UTILITY CONFLICTS\0625.29-

Oct 20, 2021 8:54:

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

<u>= IQR ==</u> 	 	 <u></u>		· ·		<mark>X — — X — X = X </mark>
OP		TOP TOP		<u></u> -	- <u>5</u>	

	L -
IOP IOP	
	_
I I	
	НО У
- HO	

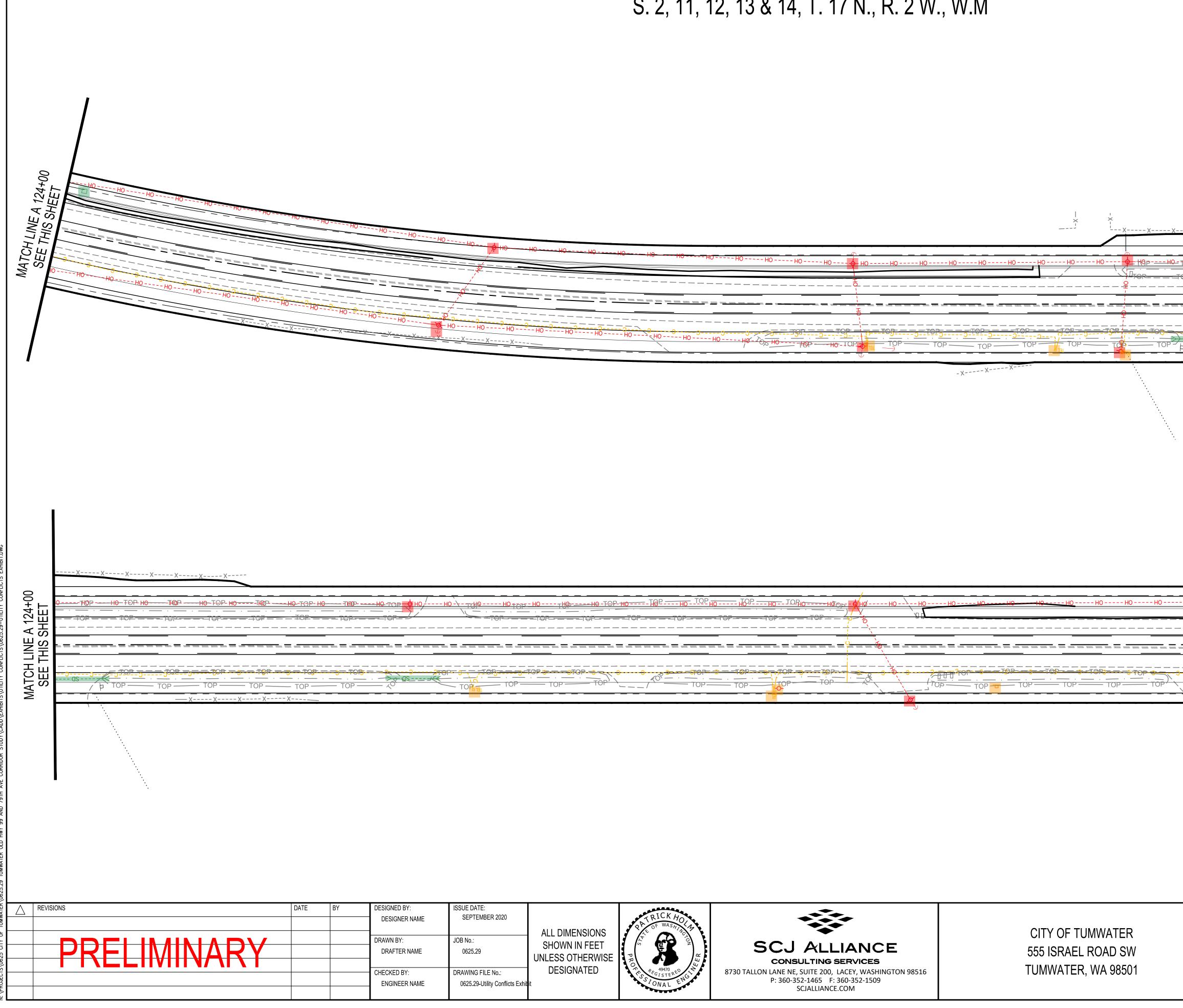

CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501

ww
SD
SD SD SD
WWWWWW
——————————————————————————————————————
CCCCC
PPPP-

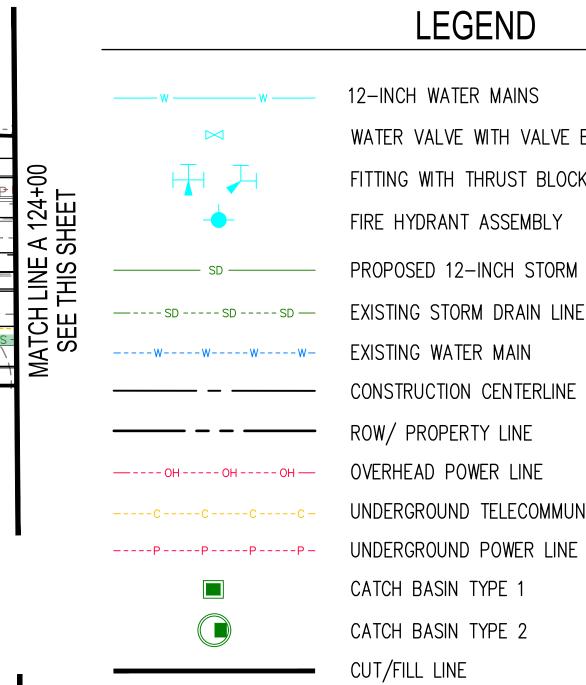
A 110+ SHEET

MATCH LIN SEE THI

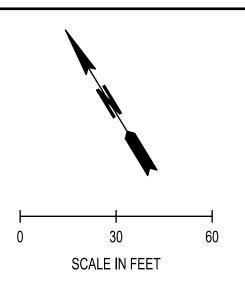
MATCH LINE A 117+00 SEE SHEET UT-11



LEGEND


12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE OVERHEAD POWER LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-10
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 103+00 - A 117+00	of XX

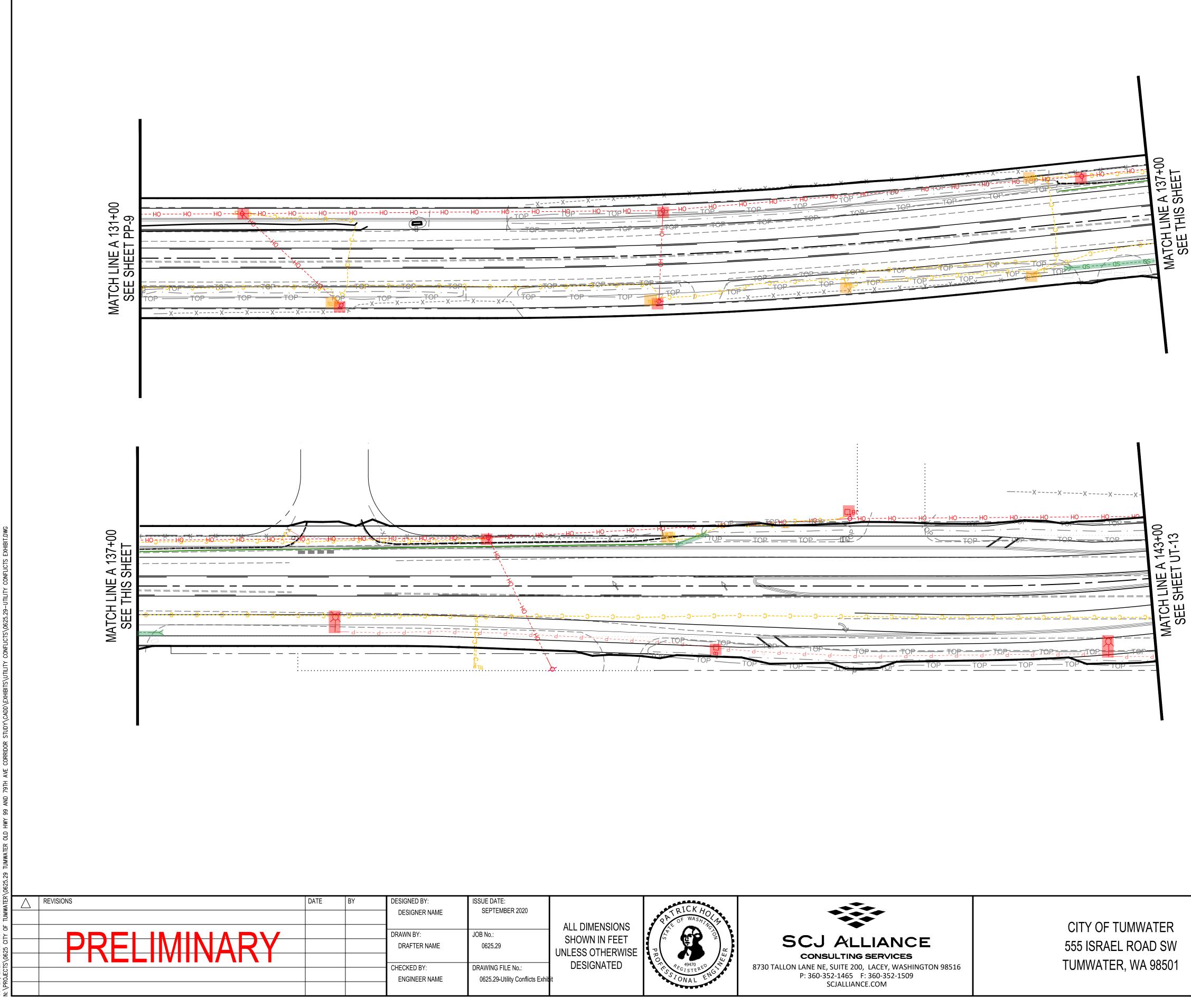


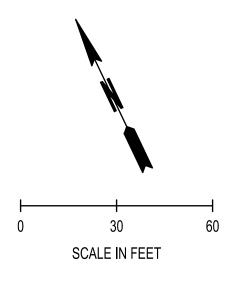
	<u> </u>		
<u>но</u> -тор- но -Тор- <u>-тор</u> - <u>Тор</u> ноно-	<u>ноЈОРноностфиф-</u>	<u> но но</u>	0 Н0 Н0 Н0
		Ч р	

	TOP TOP		
	Щ. Царана на селото н	X	

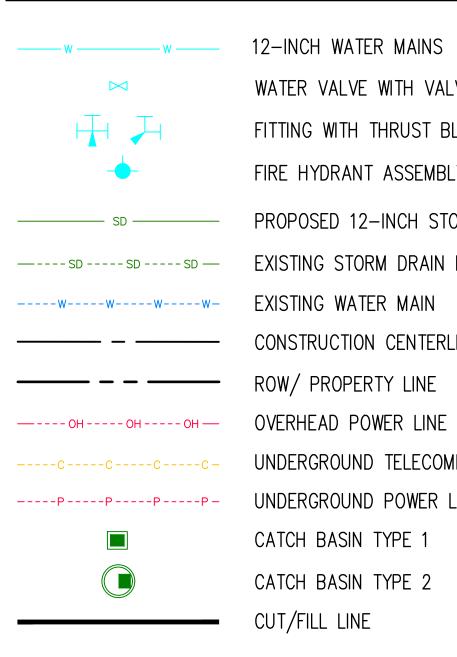
A 124+(SHEET

MATCH LINE / SEE THIS S

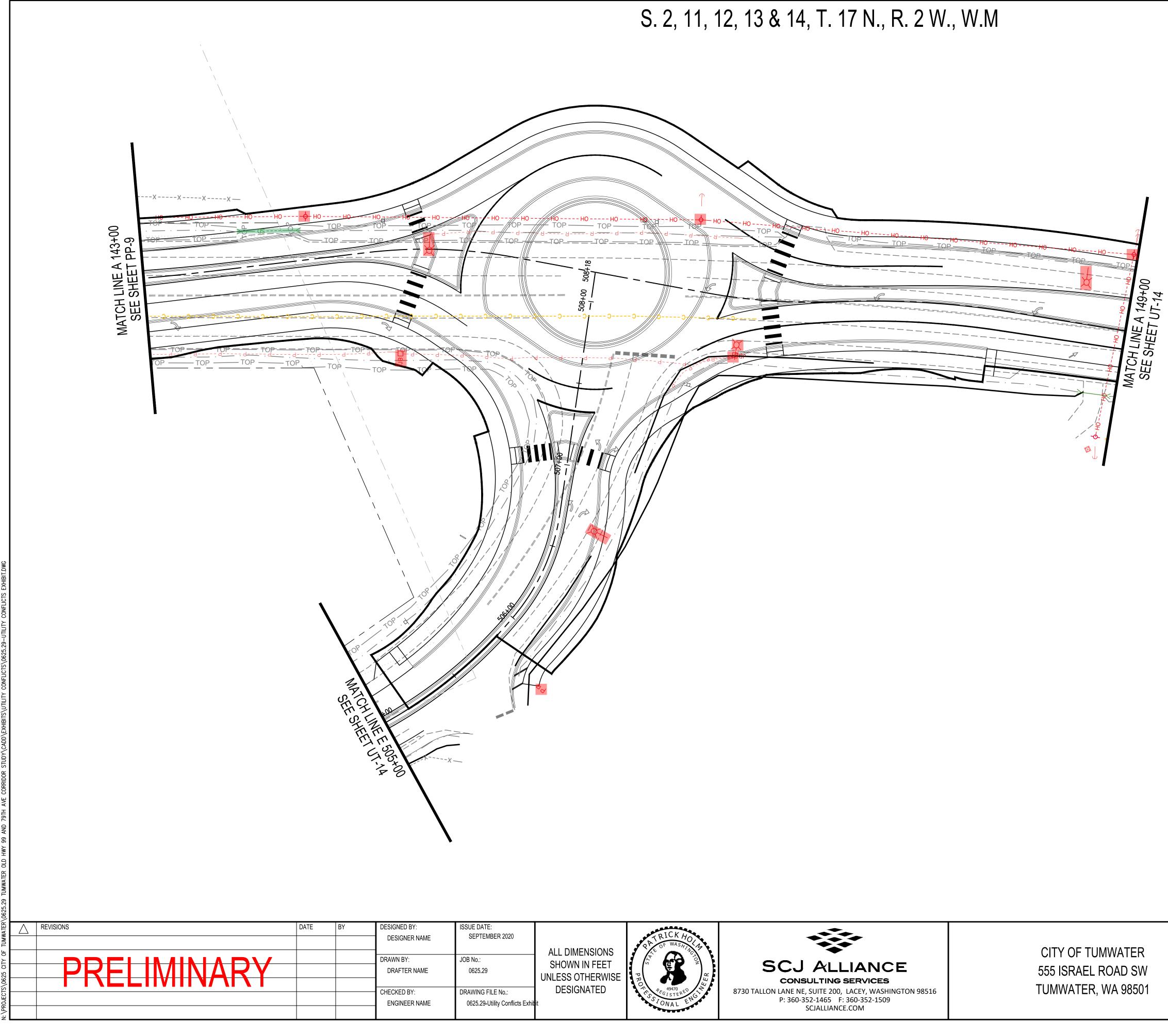


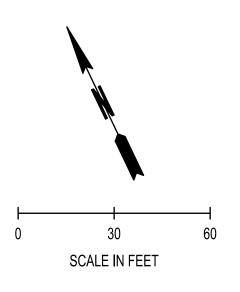

LEGEND

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

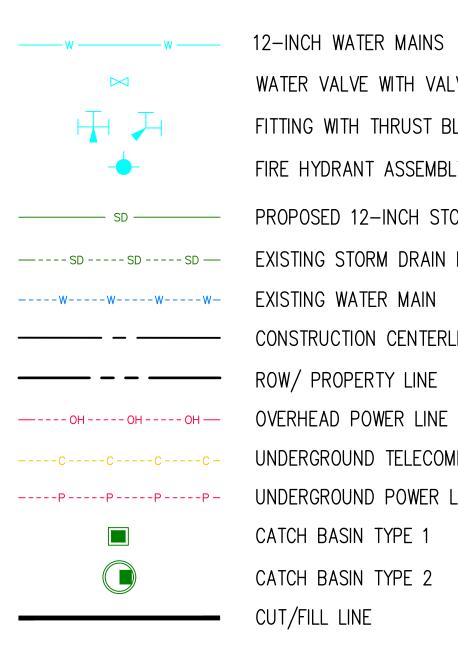


OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No .:
TUMWATER, WASHINGTON	UT-11
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
	of XX

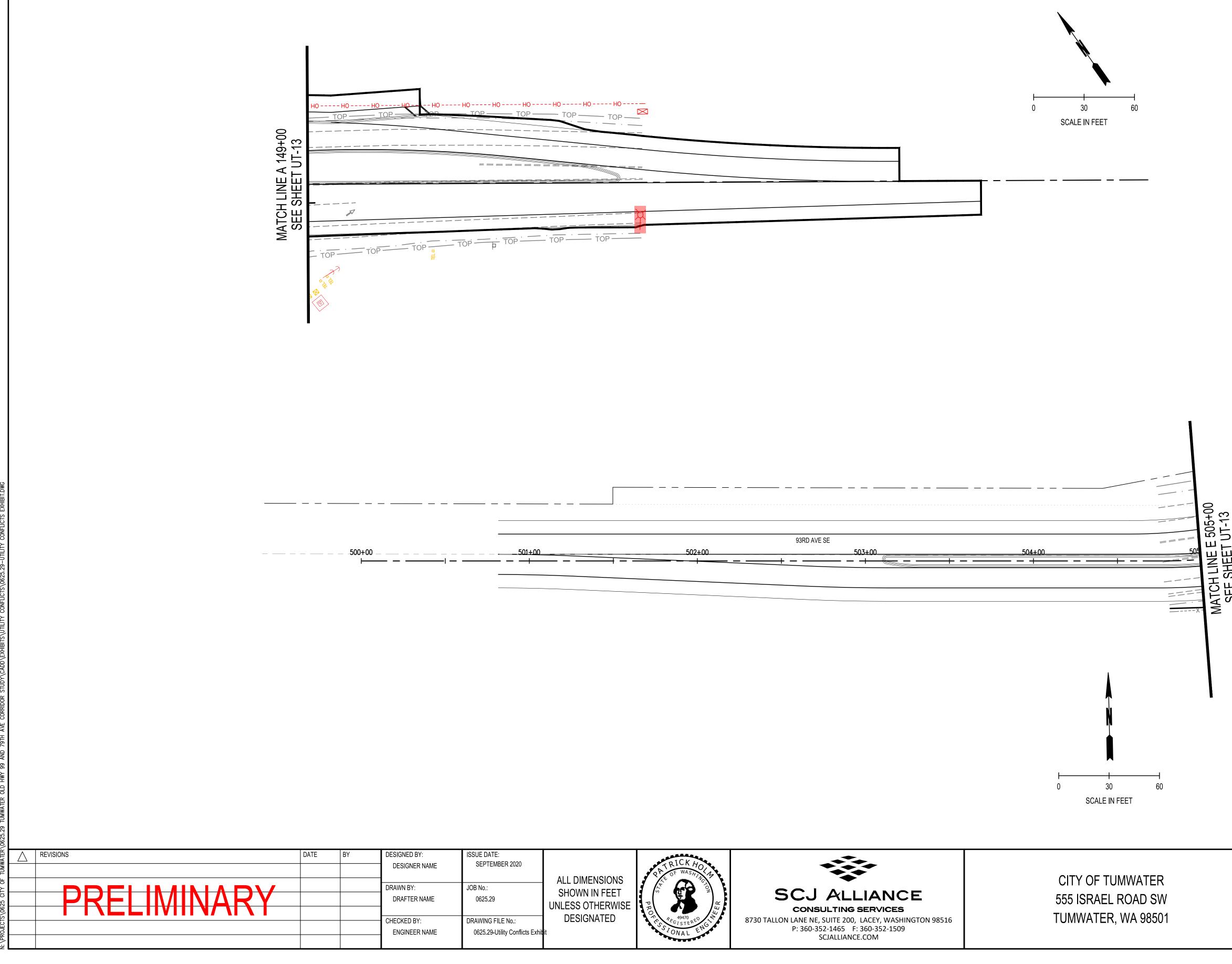

LEGEND

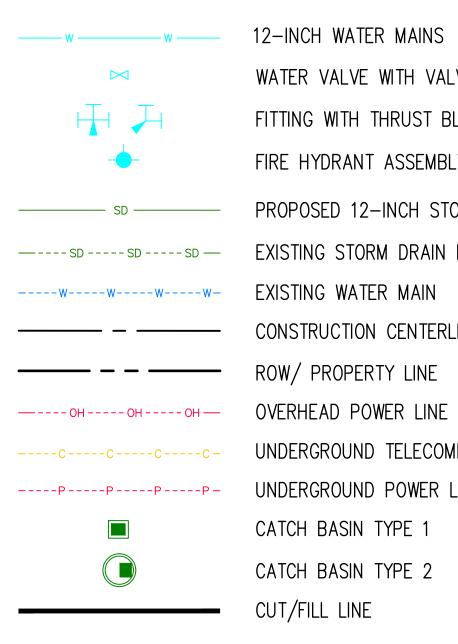


12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE --sd -----sd -----sd — EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE



i		DRAWING No.:
	OLD HIGHWAY 99 CORRIDOR STUDY	
	TUMWATER, WASHINGTON	UT-12
	MP XX TO MP XX	SHEET No.:
Γ	UTILITY PLAN	
	A 131+00 - A 143+00	of XX


LEGEND


12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-13
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 143+00 - A 149+00	of XX

12-INCH WATER MAINS WATER VALVE WITH VALVE BOX FITTING WITH THRUST BLOCKING FIRE HYDRANT ASSEMBLY PROPOSED 12-INCH STORM DRAIN LINE EXISTING STORM DRAIN LINE EXISTING WATER MAIN CONSTRUCTION CENTERLINE ROW/ PROPERTY LINE UNDERGROUND TELECOMMUNICATIONS LINE UNDERGROUND POWER LINE CATCH BASIN TYPE 1 CATCH BASIN TYPE 2 CUT/FILL LINE

OLD HIGHWAY 99 CORRIDOR STUDY	DRAWING No.:
TUMWATER, WASHINGTON	UT-14
MP XX TO MP XX	SHEET No.:
UTILITY PLAN	
A 149+00 - E 505+00	of XX

F6) STORMWATER TECH MEMO

Technical Memo

ToCity of TumwaterFrom:David Rowland, PEDate:November 1, 2022Project:0625.29 – Old Highway 99 Corridor StudySubjectStormwater Design

Introduction

The Old Highway 99 Corridor Study starts at 73rd Avenue and continues until 93rd Avenue on Old Highway 99. This technical memorandum seeks to provide preliminary design recommendations based on city storm water reports near the Old Highway 99 corridor and geotechnical borings in strategic locations on site. This project will comply with the Tumwater *2022 Drainage Design and Erosion Control Manual* (DDECM) effective July 2022 to manage stormwater runoff.

Due to the large extents of the project, the Old Highway 99 Corridor project was broken up into five different phases. Below are the five phases of the project that were evaluated stormwater solutions:

- Phase 1 79th Avenue Roundabout
- Phase 2 73rd Avenue to 79th Avenue
- Phase 3 79th Avenue to 88th Avenue Roundabout
- Phase 4 88th Avenue Roundabout to Wyatt Court
- Phase 5 Wyatt Court to 93rd Avenue Roundabout

This technical memorandum outlines basin areas, the stormwater management requirements, and the stormwater control plan for each phase of the project and takes the information provided by

Basin Areas

Appendix A contains exhibits for existing conditions and the basin areas. Below are the existing basin areas for all five phases:

PHASE 1 – 79 th Roundabout Predeveloped Conditions					
SURFACE	SF	ACRES			
PGIS =	82,230	1.888			
NPGIS =	3,000	0.069			
TOTAL IMPERVIOUS =	85,230	1.957			
NPGPS =	113,390	2.603			
TOTAL PERVIOUS =	113,390	2.603			
TOTAL =	198,620	4.560			

Existing Basins – Phase 1 to 5

PHASE 2 – 73 rd to 79 th Predeveloped Condition					
SURFACE	SF	ACRES			
PGIS =	205,190	4.711			
NPGIS =	2,650	0.061			
TOTAL IMPERVIOUS =	207,840	4.772			
NPGPS =	246,260	5.653			
TOTAL PERVIOUS =	246,260	5.653			
TOTAL =	454,100	10.425			

PHASE 3 – 79 th to 88 th Predeveloped Conditions					
SURFACE	ACRES				
PGIS =	175,330	4.025			
NPGIS =	3,250	0.075			
TOTAL IMPERVIOUS =	178,580	4.100			
NPGPS =	213,100	4.892			
TOTAL PERVIOUS =	213,100	4.892			
TOTAL =	391,680	8.992			

PHASE 4 – 88 th to Wyatt Predeveloped Conditions					
SURFACE	SF	ACRES			
PGIS =	122,420	2.810			
NPGIS =	5,060	0.116			
TOTAL IMPERVIOUS =	127,480	2.926			
NPGPS =	90,260	2.072			
TOTAL PERVIOUS =	90,260	2.072			
TOTAL =	217,740	4.999			

PHASE 5 – Wyatt to 93 rd – Predeveloped Condition					
SURFACE	SF	ACRES			
PGIS =	208,690	4.791			
NPGIS =	0	0			
TOTAL IMPERVIOUS =	208,690	4.791			
NPGPS =	206,190	4.733			
TOTAL PERVIOUS =	206,190	4.733			
TOTAL =	414,880	9.524			

Appendix B contains proposed conditions and sample areas used to model proposed stormwater systems. Below are the proposed basin areas for all five phases:

Phase 1 – 79 th Roundabout Developed Conditions					
SURFACE	SF	ACRES			
NEW PGIS =	98,990	2.272			
REPLACED PGIS =	82,230	1.888			
NEW NPGIS =	36,270	0.833			
REPLACED NPGIS =	3,000	0.069			
TOTAL IMPERVIOUS =	135,260	3.105			
NPGPS =	61,840	1.420			
TOTAL PERVIOUS =	61,840	1.420			
TOTAL =	197,100	4.525			

|--|

Phase 3 – 79 th to 88 th – Developed Conditions					
SURFACE	SF	ACRES			
NEW PGIS =	216,750	4.976			
REPLACED PGIS =	175,330	4.025			
NEW NPGIS =	62,330	1.431			
REPLACED NPGIS =	3,250	0.075			
TOTAL IMPERVIOUS =	279,080	6.407			
NPGPS =	112,600	2.585			
TOTAL PERVIOUS =	112,600	2.585			
TOTAL =	391,680	8.992			

Phase 5 – Wyatt to 93 rd – Developed Conditions					
SURFACE	SF	ACRES			
NEW PGIS =	218,710	5.02			
REPLACED PGIS =	208,690	4.791			
NEW NPGIS =	65,690	1.508			
REPLACED NPGIS =	0	0.000			
TOTAL IMPERVIOUS =	284,400	6.529			
NPGPS =	130,480	2.995			
TOTAL PERVIOUS =	130,480	2.995			
TOTAL =	414,880	9.524			

Phase 2 – 73 rd to 79 th Developed Conditions					
SURFACE	SF	ACRES			
NEW PGIS =	252,460	5.796			
REPLACED PGIS =	205,190	4.710			
NEW NPGIS =	72,040	1.654			
REPLACED NPGIS =	2,650	0.061			
TOTAL IMPERVIOUS =	324,500	7.450			
NPGPS =	129,600	2.975			
TOTAL PERVIOUS =	129,600	2.975			
TOTAL =	454,100	10.425			

Phase 4 – 88 th to Wyatt – Developed Conditions				
SURFACE	SF	ACRES		
NEW PGIS =	117,900	2.707		
REPLACED PGIS =	117,900	2.707		
NEW NPGIS =	32,030	0.735		
REPLACED NPGIS =	5,060	0.116		
TOTAL IMPERVIOUS =	149,930	3.442		
NPGPS =	67,810	1.557		
TOTAL PERVIOUS =	67,810	1.557		
TOTAL =	217,740	4.999		

Minimum Requirements

Based on the Tumwater 2022 DDECM, based in the Ecology Manual, all the project phases require application of Minimum Requirements 1-11 for all hard and pollution generating pervious surfaces, and converted vegetation areas.

See **Appendix C** for the Minimum Requirements Flow Charts.

Stormwater Control Plan

Each of the phases will require runoff treatment and flow control. Each system will be designed per the 2022 DDECM and modeled in WWHM2012. For all the phases the use of Bioretention and Compost Amended Vegetated Filter Strips (CAFVS) will be used for flow control. The following preliminary infiltration rates were used for modeling the CAVFs widths, bioretention swales, and infiltration basins:

- 1. 9.0 inches/hour was used from 73rd Avenue to Henderson Avenue
- 2. 3.8 inches/hour from Henderson Avenue to 79th Avenue
- 3. 4.2 inches/hour from 79th Ave to 93rd Avenue

Infiltration pits will need to be used to test the actual infiltration rate for each phase.

For each phase, to evaluate the storm flow control at a preliminary level, a sample portion of the typical section was evaluated to determine the CAVFs width and bioretention necessary for the corridor. Roundabouts were evaluated individually to determine the area needed for infiltration basins.

• Phase 1 – 79th Avenue Roundabout

This project includes the construction of a roundabout at the intersection of 79th Avenue and Henderson Avenue and three connecting legs into the roundabout. Each leg connecting to Old Highway 99 will have 2 travel lanes in both directions, 10-foot sidewalks, bike lanes that terminate prior to the roundabout. Stormwater from the roundabout will be captured in catch basins and conveyed to infiltration basins. These infiltration basins are planned to be located on the northwest, northeast, and southeast sides of the roundabout. Stormwater along the roadway on the eastside because of the curb will be captured with scuppers and conveyed to bioretention swales. If applicable, CAVFS will be located on the west side of Old Highway 99 and will capture stormwater running off the roadway where curbs and gutters are not present. Any overflow will be routed to the infiltration basins located at the roundabout for both the bioretention facilities and the CAVFS.

Based on the preliminary geotechnical information acquired from HWA Geotechnical borings, the anticipated infiltration rate is 3.8 inches per hour. This requires the CAFVs to have a width of 6 feet on the west side where a curb and gutter are not present, bioretention swales contained in the 6' planter strip will be able to handle and infiltrate storm water that is generated in areas where a curb and gutter are present. Infiltration basins for the 79th Avenue roundabout will require an area of 9,600 SF.

• Phase 2 – 73rd Avenue to 79th Avenue

This phase will include construction of a roundabout at Henderson Avenue and the widening of the road to accommodate 2 lanes in both directions. 10-foot sidewalks will be located on the east of the entire length of the road and 6-foot bicycle lanes will be on the edge of the west side. At the roundabout at Henderson bike lanes will terminate to connect to 10-foot sidewalks to accommodate pedestrians and bicyclists. Stormwater along the roadway on the eastside because of the curb will be captured with scuppers and conveyed to bioretention swales. CAVFS will be located on the west side of Old Highway 99 and will capture stormwater running off the roadway where curbs and gutters are not present. Any overflow will be routed to the infiltration basins located at the roundabout for both the bioretention facilities and the CAVFS.

Based on the preliminary geotechnical information acquired from HWA Geotechnical borings, the anticipated infiltration rate is 9 inches/hour from 73rd Avenue to Henderson Avenue and 3.8 incher/hour from Henderson Avenue to 79th Avenue. This requires the CAFVs to have a width of 4 feet on the west side where a curb and gutter are not present from 73rd Avenue to Henderson Avenue and 6 feet CAVFs from Henderson Avenue to 79th Avenue. Bioretention swales contained in the 6' planter strip will be able to handle and infiltrate storm water that is generated in areas where a curb and gutter are present. Infiltration basins for the Henderson Avenue roundabout stormwater will require an area of 9,600 SF.

• Phase 3 – 79th Avenue to 88th Avenue Roundabout

Following the roundabout at 79th Avenue, phase 3 includes widening to 2 travel lanes in both directions with medians, 10-foot sidewalk on east side, and 6-foot bike lane on west side and will terminate at the intersection of 88th Avenue and Old Highway 99 that will be improved with a roundabout. Stormwater draining in the roundabout will be captured with catch basins and conveyed to infiltration basins. Stormwater along the roadway on the eastside because of the curb will be captured with scuppers and conveyed to bioretention swales. CAVFS will be located on the west side of Old Highway 99 and will capture stormwater running off the roadway where curbs and gutters are not present. Any overflow will be routed to the infiltration basins located at the roundabout for both the bioretention facilities and the CAVFS.

Base on the preliminary geotechnical information acquired from HWA Geotechnical borings, the anticipated infiltration rate is 3.8 inches per hour. This requires the CAFVs to have a width of 6 feet on the west side where a curb and gutter are not present, bioretention swales contained in the 6' planter strip will be able to handle and infiltrate storm water that is generated in areas where a curb and gutter are present. Infiltration basins for the Henderson Avenue roundabout stormwater will require an area of 8500 SF.

• Phase 4 – 88th Avenue to Wyatt Court

After the roundabout at 88th Avenue there will be 1 lane of travel in both direction with a median. 6-foot sidewalks and 6-foot bicycle lanes will run along the west and east sides. Stormwater will be controlled through bioretention on both sides of the roadway. Any overflow from the bioretention swales will be conveyed to the infiltration basins at 88th Avenue.

Base on the preliminary geotechnical information acquired from HWA Geotechnical borings, the anticipated infiltration rate is 4.2 inches per hour. Bioretention swales contained in the 6' planter strip will be able to handle and infiltrate storm water that is generated in areas where a curb and gutter are present.

• Phase 5 – Wyatt Court to 93rd Avenue Roundabout

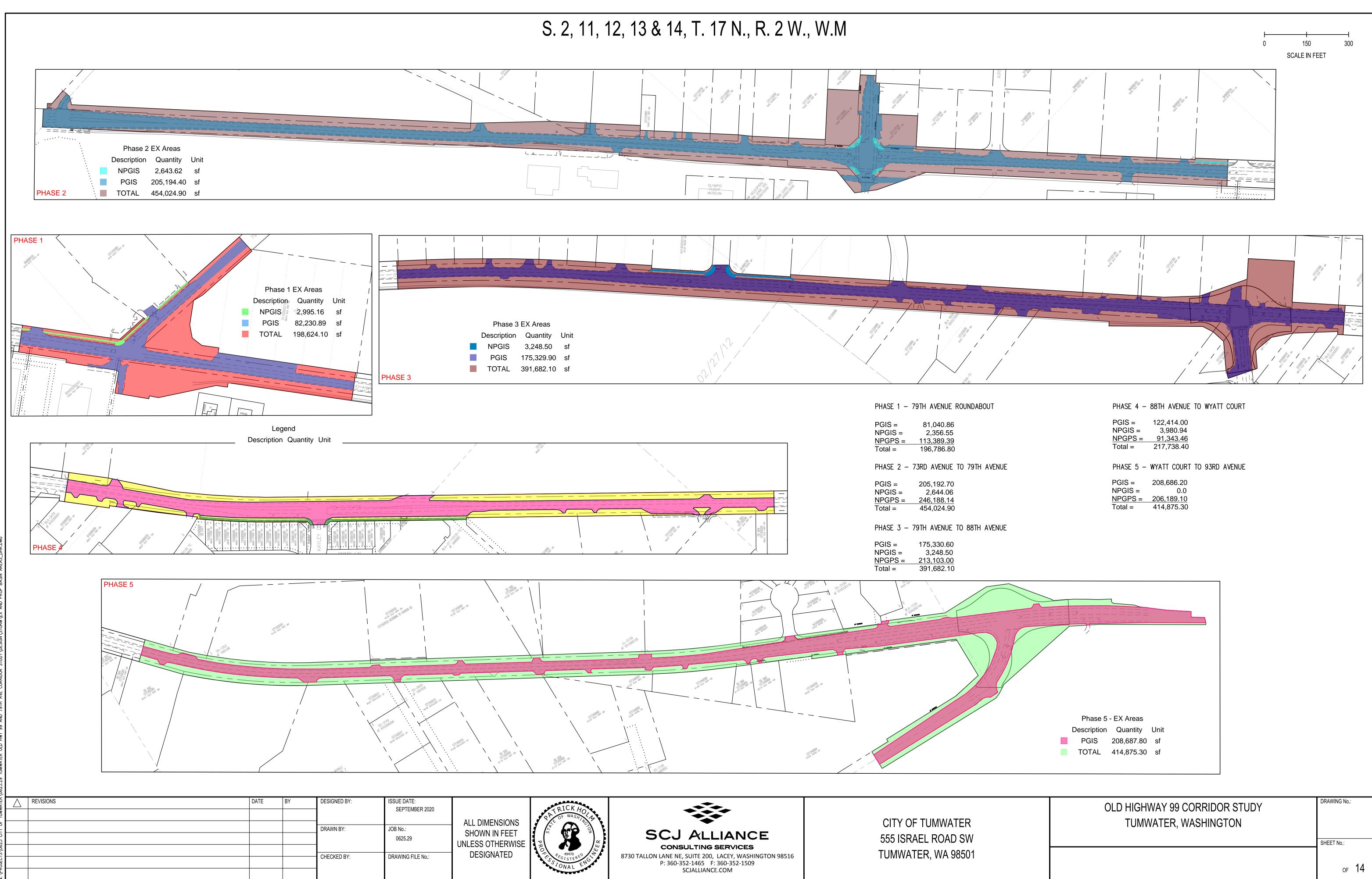
Phase 5 continues the same section from phase 4 and terminates with a single circulating lane roundabout. Stormwater along the roadway on the eastside because of the curb will be captured with scuppers and conveyed to bioretention swales. Overflow from bioretention swales will be conveyed to infiltration basins located at the roundabout at 93rd Avenue.

Base on the preliminary geotechnical information acquired from HWA Geotechnical borings, the anticipated infiltration rate is 4.2 inches per hour. Bioretention swales contained in the 6' planter strip will be able to handle and infiltrate storm water that is generated in areas where a curb and gutter are present. Infiltration basins for the 93rd Avenue roundabout stormwater will require an area of 8100 SF.

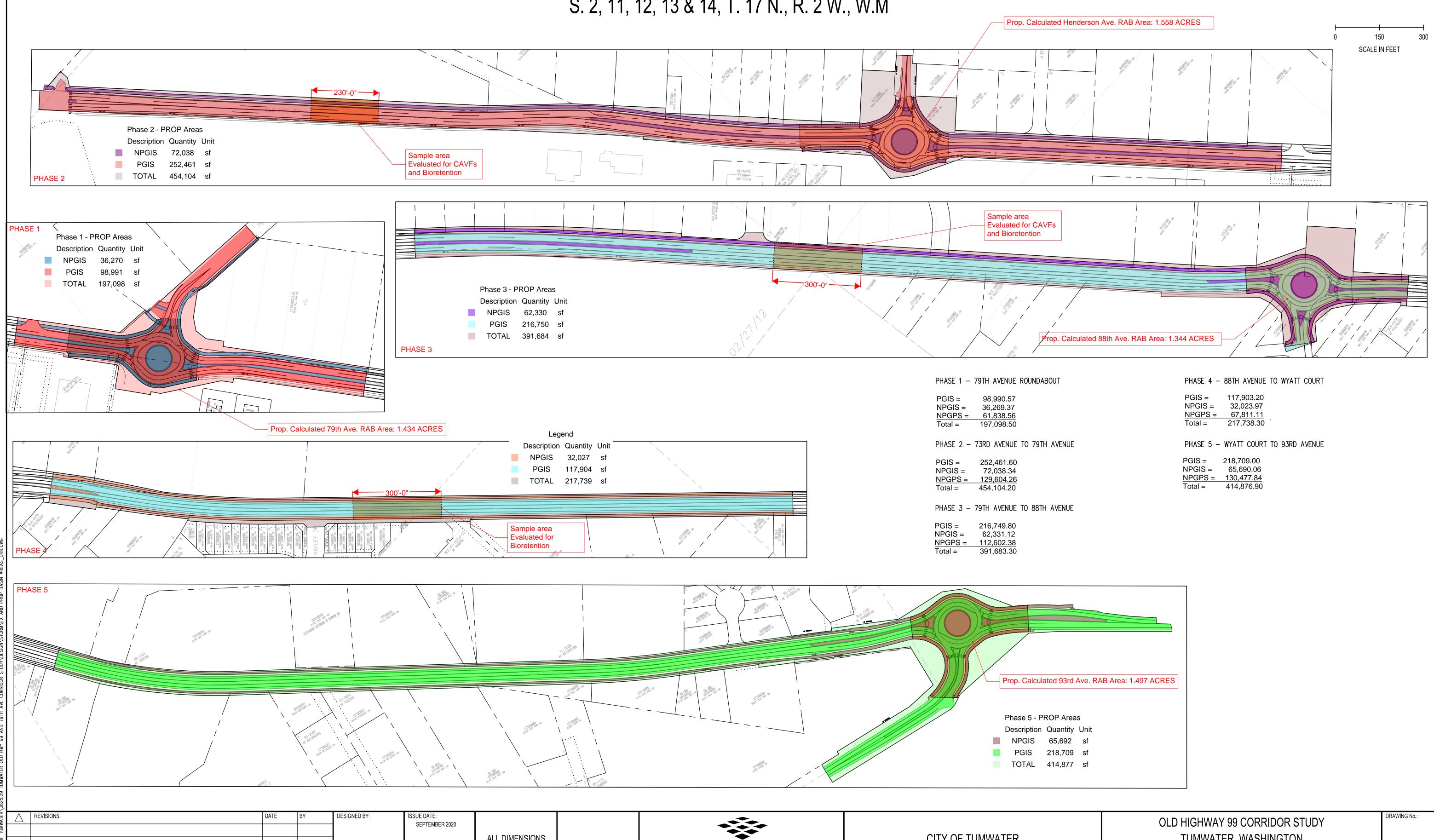
All values for stormwater control facilities will need to be re-evaluated upon design for construction and will require storm facility specific investigation to confirm design infiltration rates prior to final design.

LIST OF APPENDICES

Appendix A – Existing Basin Areas


Appendix B – Proposed Basin Areas

Appendix C – Stormwater Flow Charts


Appendix D – HWA Geotechnical Report

Appendix E – WWHM Model Reports

Appendix A – Existing Basin Areas

Appendix B – Proposed Basin Areas

VTER	\wedge	REVISIONS	DATE	BY	DESIGNED BY:	ISSUE DATE:	
TUMWATER						SEPTEMBER 2020	
OF TI							ALL DIMEN
CITY (DRAWN BY:	JOB No.:	SHOWN IN
						0625.29	UNLESS OTH
\PROJECTS\0625							
ECTS					CHECKED BY:	DRAWING FILE No .:	DESIGNA
ROJ							
N:/F							

THASE I	75111	AVLINUL	NO		001
PGIS =	98	,990.57			
NPGIS =	36	269.37			
NPGPS =	61	,838.56			
Total =	197	,098.50			
PHASE 2 –	73RD	AVENUE	TO	79TH	AVENU
PGIS =		2,461.60			
NPGIS =	72	,038.34			
<u>NPGPS =</u>	129	<u>,604.26</u>			
Total =	454	,104.20			
PHASE 3 –	79TH	AVENUE	TO	88TH	AVENU
				• • •	
PGIS =	216	,749.80			
NPGIS =		,331.12			
- • -		,			

ENSIONS IN FEET THERWISE NATED

CITY OF TUMWATER 555 ISRAEL ROAD SW TUMWATER, WA 98501

218,709.00
65,690.06
130,477.84
414,876.90

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.:
	SHEET No.:
PROPOSED BASINS - EXHIBIT	OF

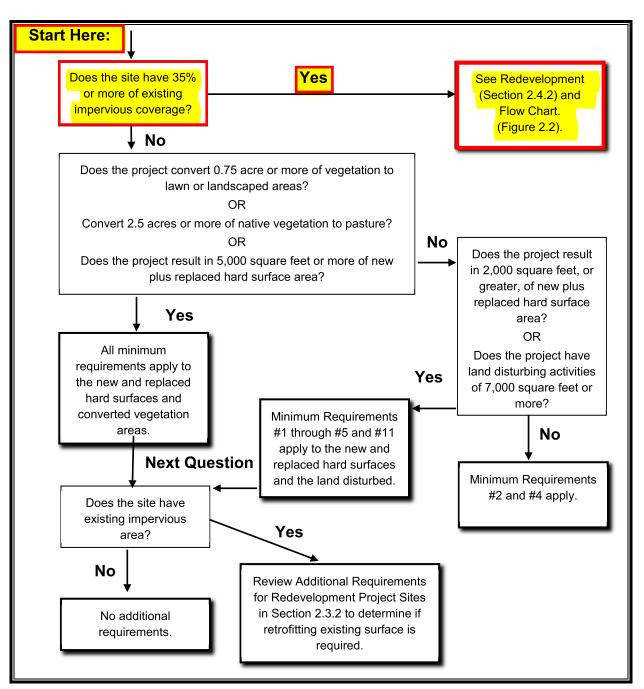


Figure 2.1. Flow Chart for Determining Requirements for New Development.

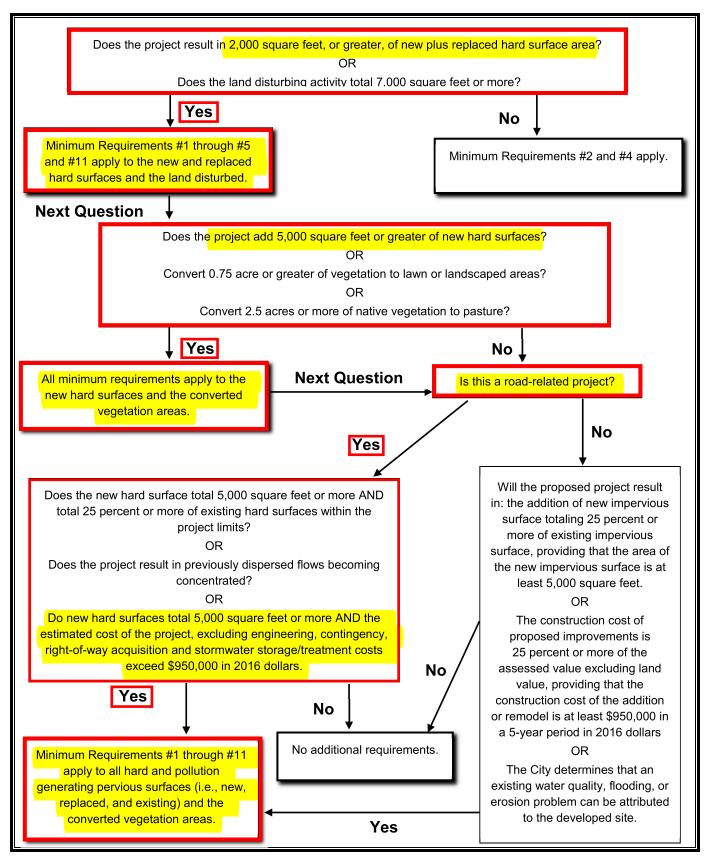


Figure 2.2. Flow Chart for Determining Requirements for Redevelopment.

FLOW CHART FOR ROADWAY WITH AND WITHOUT CURB AND GUTTERS

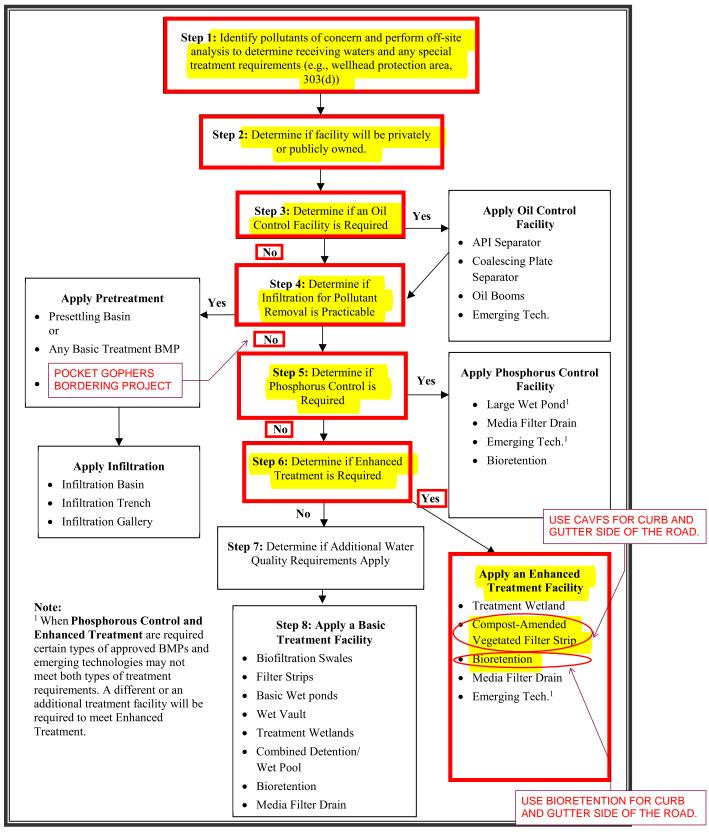


Figure 4.2. Treatment Facility Selection Flow Chart.

FLOW CHART FOR ROUNDABOUTS

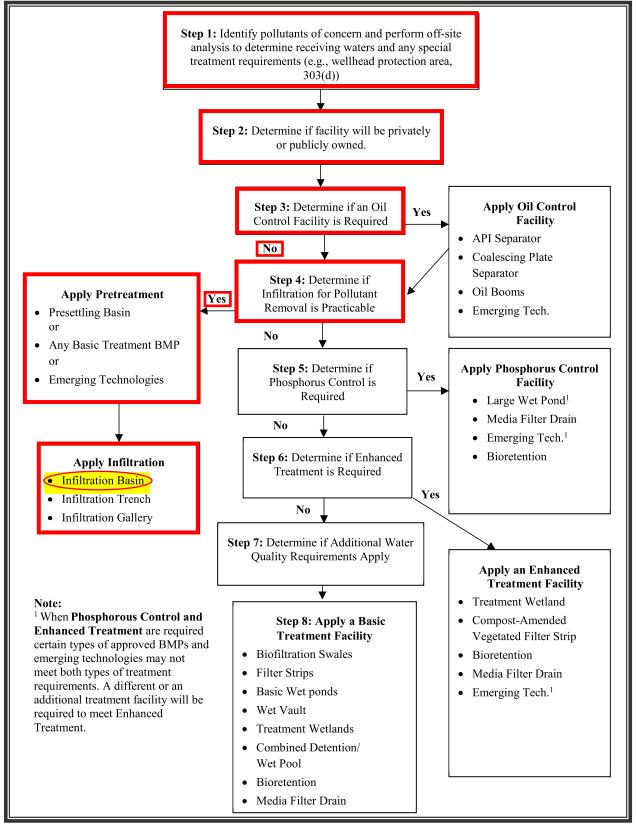


Figure 4.2. Treatment Facility Selection Flow Chart.

Appendix D – HWA Geotechnical Report

PRELIMINARY DRAFT GEOTECHNICAL REPORT Tumwater Old Hwy 99 and 79th Ave Corridor Study Tumwater, Washington

HWA Project No. 2019-183-21

Prepared for SCJ Alliance

October 12, 2022

GEOSCIENCES INC.

DBE/MWBE

Geotechnical Engineering Pavement Engineering Geoenvironmental Hydrogeology Inspection & Testing

SCJ Alliance 8730 Tallon Lane NE, Suite 200 Olympia, Washington 98516

Attn: Patrick Holm, P.E.

Subject: Preliminary Draft Geotechnical Report Tumwater Old Hwy 99 and 79th Ave Corridor Study Tumwater, Washington

Dear Patrick,

As requested, HWA GeoSciences Inc. (HWA) has completed a preliminary draft geotechnical report for the Old Hwy 99 and 79th Ave Corridor Study project in Tumwater, Washington. This report presents the results of our field explorations and laboratory testing along with our recommendations pertaining to luminaire foundations and infiltration feasibility.

We appreciate the opportunity to provide geotechnical engineering services on this project. If you have any questions regarding this report or require additional information or services, please contact the undersigned at your convenience.

Sincerely,

HWA GEOSCIENCES INC.

JoLyn Gillie, P.E. Principal Geotechnical Engineer

Goe Westerge

Joe Westergreen Geotechnical Engineer

TAE	BLE OF CONTENTS Pag	ge
1.0	INTRODUCTION	.1
	1.1 General	.1
	1.2 Project Understanding	.1
2.0	FIELD INVESTIGATION AND LABORATORY TESTING	.1
	2.1 SUBSURFACE EXPLORATIONS	.1
	2.3 LABORATORY TESTING	
3.0	SITE CONDITIONS	
	3.1 SITE TOPOGRAPHY AND SURFACE CONDITIONS	
	3.2 GENERAL GEOLOGIC CONDITIONS	
	3.3 SUBSURFACE SOIL CONDITIONS	
	3.4 GROUNDWATER	
4.0	CONCLUSIONS AND RECOMMENDATIONS	.4
	4.1 GENERAL	
	4.2 EVALUATION OF INFILTRATION POTENTIAL OF SITE SOILS	
	4.2.1 Feasibility of Using Infiltration	5
	4.2.2 Design Infiltration Rate	6
	4.2.3 Soil Suitability for Water Quality Treatment	
	4.2.4 Subgrade Preparation for Infiltration Facilities	
	4.3 LUMINAIRE FOUNDATION RECOMMENDATIONS	9
	4.4 CONSTRUCTION CONSIDERATIONS FOR LUMINAIRE FOUNDATIONS	
	4.5 RECOMMENDATIONS FOR EARTHWORK	.10
	4.5.1 Sidewalk and Road Subgrade Preparation	.10
	4.5.2 Structural Fill Materials and Compaction	
	4.5.3 Temporary Slopes and Excavations	
	4.5.4 Temporary Erosion Control	
	4.5.4 Wet Weather Earthwork	.12
5.0	CONDITIONS AND LIMITATIONS	.12
6.0	REFERENCES	.14

Table of Contents (Continued)

FIGURES

Figure 1	Site and Vicinity Map
Figures 2A – 2C	Site & Exploration Plans

APPENDICES

Appendix A:	Field Exploration
Figure A-1 Figures A-2 – A-4	Legend of Terms and Symbols Used on Exploration Log Logs of Borings BH-1 through BH-3
Appendix B:	Laboratory Testing
Figures B-1 – B-2 Figures B-3 – B-5	Summary of Material Properties Particle-Size Analysis of Soils
Appendix C:	Additional Laboratory Testing by Others

PRELIMINARY DRAFT GEOTECHNICAL REPORT TUMWATER OLD HWY 99 AND 79TH AVE CORRIDOR STUDY TUMWATER, WASHINGTON

1.0 INTRODUCTION

1.1 GENERAL

This report summarizes the results of a preliminary geotechnical engineering investigation performed by HWA GeoSciences, Inc. (HWA) for the Tumwater Old Highway 99 and 79th Avenue Corridor Study in Tumwater, Washington. The approximate location of the project site is shown on the Site and Vicinity Map, Figure 1, and on the Site and Exploration Plans, Figures 2A through 2C. Our field work included logging and drilling of three (3) boreholes to evaluate soil and groundwater conditions along the project corridor. Laboratory tests were conducted on select soil samples to estimate preliminary infiltration potential, water quality treatment potential, and to determine relevant engineering properties.

1.2 PROJECT UNDERSTANDING

It is our understanding that the project involves validating and building on the *Tumwater City Plan 2036, Transportation Master Plan November 2016*, and preparing a preliminary design for the Old Highway 99 corridor improvements from approximately 73rd Avenue SE to 93rd Avenue SE. We understand the project includes transportation and alternatives analysis to determine and recommend a roadway cross section and intersection improvements at Henderson Boulevard, 79th Avenue SE, 88th Avenue SE, and 93rd Avenue SE in context with the overall corridor improvements.

2.0 FIELD INVESTIGATION AND LABORATORY TESTING

2.1 SUBSURFACE EXPLORATIONS

HWA logged the drilling of three (3) machine-drilled geotechnical borings, designated BH-1 through BH-3, to assess subsurface conditions. The locations of the explorations are shown on the Site and Exploration Plans, Figures 2A through 2C. The borings were drilled by Holocene Drilling of Puyallup, Washington on August 12, 2022, under subcontract to HWA, using a Diedrich D-50 track-mounted drill rig equipped with hollow-stem augers. The boring depths varied from approximately 30.9 to 40.9 feet below ground surface (bgs).

In each boring, Standard Penetration Test (SPT) sampling was performed using a 2-inch outside diameter split-spoon sampler driven by a 140-pound automatic hammer. During the SPT, samples were obtained by driving the sampler 18 inches into the soil with the hammer free-falling 30 inches. The numbers of blows required for each 6 inches of penetration were recorded. The Standard Penetration Resistance ("N-value") of the soil is calculated as the number of blows required for the final 12 inches of penetration. This resistance, or N-value, provides an indication of relative density of granular soils and the relative consistency of cohesive soils; both indicators of soil strength.

A geotechnical engineer from HWA logged the explorations and recorded all pertinent information. Soil samples obtained from the borings were classified in the field and representative portions were sealed in plastic bags. Pertinent information including soil sample depths, stratigraphy, soil engineering characteristics, and groundwater occurrence was recorded. These soil samples were then taken to our Bothell, Washington, laboratory for further examination and testing.

The stratigraphic contacts shown on the individual exploration logs represent the approximate boundaries between soil types; actual transitions may be more gradual. The soil and groundwater conditions depicted are only for the specific date and location reported and, therefore, are not necessarily representative of other locations and times. A legend of the terms and symbols used on the exploration logs is presented in Appendix A, Figure A-1. Summary logs of the explorations are presented on Figures A-2 through A-4.

2.3 LABORATORY TESTING

Laboratory tests were conducted on selected samples retrieved from our explorations to characterize infiltration potential, water quality potential, and relevant engineering and index parameters of the soils encountered at the site. The tests included visual classifications, determination of natural moisture contents, grain size distribution analyses, and organic matter testing. In addition, select samples were sent to SoilTest Farm Consultants, Inc. in Moses Lake, Washington, for cation exchange capacity (CEC) and organic matter testing. The tests were conducted in general accordance with appropriate American Society for Testing and Materials (ASTM) standards. CEC tests were conducted in general accordance with Environmental Protection Agency (EPA) method 9081.

A brief description of laboratory test methodology is presented in Appendix B. The test results are presented in Appendix B and displayed on the boring logs in Appendix A, as appropriate. Test results from SoilTest Farm Consultants, Inc. are presented in Appendix C.

3.0 SITE CONDITIONS

3.1 SITE TOPOGRAPHY AND SURFACE CONDITIONS

The project area is relatively flat with elevation changes of approximately 35 feet over the approximate 2.7-mile-long project alignment. The roadway generally consists of one travel lane in each direction with occasional turn lanes. The northern portion of the alignment is generally bordered by the Olympia Regional Airport and commercial properties. The southern portion of the alignment is generally bordered by residential properties.

3.2 GENERAL GEOLOGIC CONDITIONS

The project alignment is located within the Puget Lowland. The Puget Lowland has repeatedly been occupied by a portion of the continental glaciers that developed during the ice ages of the Quaternary period. During at least four periods, portions of the ice sheet advanced south from British Columbia into the lowlands of western Washington. The southern extent of these glacial advances was near Olympia, Washington. Each major advance included numerous local advances and retreats, and each advance and retreat resulted in its own sequence of erosion and deposition of glacial lacustrine, outwash, till, and drift deposits. Between and following these glacial advances, sediments from the Olympic and Cascade Mountains accumulated in the Puget Sound Lowland.

Specific geologic information for the project area was obtained from the Geologic Map of the Maytown 7.5-minute Quadrangle, Thurston County, Washington (Logan et al., 2009). The map indicates the project area is generally underlain by deposits of recessional outwash, generally consisting of sand and silt with minor interbeds of gravel. This material is anticipated to be deposited in meltwater derived from stagnant ice and drainage from glacial lakes. The material is generally loose to medium dense.

3.3 SUBSURFACE SOIL CONDITIONS

Our explorations were drilled in lightly vegetated areas adjacent to Old Highway 99. At the surface we generally encountered a thin topsoil layer (less than 4 inches thick). Below the topsoil we generally encountered fill (except in BH-2), overlying recessional outwash, over glacial till or advance outwash. Brief descriptions of the soil units observed in our explorations are presented below in order of deposition, beginning with the most recently deposited.

<u>Fill:</u> Fill was encountered in borings BH-1 and BH-3 to approximately 1-foot bgs. The fill generally consisted of medium dense, slightly silty, slightly sandy, gravel.

Recessional Outwash: Recessional outwash was encountered in all borings below the surficial fill or ground surface to depths of approximately 25 to 40 feet bgs. The material generally consists of loose to medium dense, slightly silty to silty sand. In boring BH-3, intermittent layers of soft to stiff, sandy silt were observed between 15 and 25 feet bgs, and an approximate 1-foot-thick layer of stiff clay was encountered at approximately 30 feet bgs.

<u>Glacial Till</u> – Glacial till was encountered below the recessional outwash in BH-3 starting at 40 feet bgs and extending to the maximum depth explored of 40.9 feet bgs. Material consisted of very dense, gravelly, silty sand.

<u>Advance Outwash</u> – Advance outwash was encountered below the recessional outwash in BH-1 and BH-2 starting at depths of approximately 25 to 30 feet and extending the maximum depths explored of 30.9 to 36.5 feet bgs. The advance outwash generally consists of dense to very dense, slightly silty to silty sand.

3.4 GROUNDWATER

Groundwater was encountered during drilling on August 12, 2022, in all borings. Groundwater was encountered at approximately 13, 16, and 20 feet bgs, in borings BH-1, BH-2, and BH-3, respectively. Groundwater levels are anticipated to vary along the project alignment, and to vary seasonally with the highest levels in the wet winter months. If excavations extend below the groundwater table dewatering will be required.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 GENERAL

Based on our subsurface explorations the recessional outwash above the groundwater table is suitable for infiltration of stormwater, however the rates are highly variable. The design of the infiltration facility will depend on the type of facility, the proposed depth of the bottom of the facility, and the required separation between the base of the infiltration facility and the groundwater table. Once the facilities are selected, HWA should review to confirm that there is adequate separation and/or if additional testing/analyses are required to size the proposed facility.

The recessional outwash material is loose and does not meet the assumed lateral bearing pressure values for a City of Tumwater standard luminaire foundation design. We recommend that a non-standard foundation design be conducted to size the foundations for the project luminaires based on the data provided.

Our recommendations for infiltration suitability, luminaire foundations, and general earthwork are discussed in the subsequent sections.

4.2 EVALUATION OF INFILTRATION POTENTIAL OF SITE SOILS

4.2.1 Feasibility of Using Infiltration

We understand there is desire to infiltrate stormwater as part of the project improvements, if feasible. The feasibility of using infiltration as part of the stormwater management for this site was evaluated in accordance with the 2022 City of Tumwater Drainage Design and Erosion Control Manual (DDECM).

Groundwater was encountered in our explorations while drilling at depths between 13 and 20 feet bgs during drilling. We did not see signs of shallow groundwater during drilling, such as iron oxidation mottling. However, groundwater levels are anticipated to vary seasonally and along the project alignment. In addition, in BH-3, we observed a restrictive layer above the water table consisting of stiff sandy silt starting at 14.5 feet bgs.

Feasibility of using specific infiltration best management practices (BMPs) will depend on the type of facility used and their respective depths of separation required for design. Infiltration BMPs consist of facilities which each have a set of feasibility requirements. These can be grouped into two groups, one being infiltration basins, trenches, and galleries, and the other being bioretention, permeable pavement, and rain gardens.

Infiltration Basins, Trenches, and Galleries

Per the DDECM, infiltration basins, trenches, and galleries require 6 feet of separation between the bedrock, water table, or impermeable layer. This may be decreased to 3 feet with additional testing and performance of mounding analyses. The depth to the groundwater table applies to the highest seasonal groundwater level. At this time, we have the groundwater levels observed in borings completed during the summer, which may not indicate the highest groundwater depth. To account for this, we conclude that the base of the facilities would likely to be limited to about 4 feet bgs to provide the necessary separation without additional testing and analyses. If use of infiltration basins, trenches, or galleries are desired, HWA should review the proposed facilities to determine if additional testing would be needed to ascertain the highest groundwater levels and if mounding analyses would need to be performed.

Bioretention, Permeable Pavement, and Rain Gardens

Based on the requirements of the three BMPs bioretention, permeable pavement, and rain gardens, these infiltration BMPs allow lower depths of separation between the bottom of the facility and the underlying bedrock, water table, or impermeable layer. The bottom of the

facilities for these BMPs are generally within about 3 feet of the ground surface. The depths of separation range from 1 foot for permeable pavement and rain gardens, and some smaller bioretention facilities, to 3 feet for bioretention facilities servicing larger impervious areas. No mounding analyses are required, such that we conclude that bioretention, permeable pavement, and rain gardens are all feasible for this project site and could be used for stormwater management without further testing.

4.2.2 Design Infiltration Rate

The City of Tumwater DDECM indicates that soil infiltration rates can be determined by pilot infiltration tests (PITs) or soil grain size analysis (for sites underlain by Type A soils). Based on our explorations, mapped geology, and the United States Department of Agriculture (USDA) soils maps, the native soils encountered in our explorations above the groundwater table consist of recessional outwash soils consistent with Type A Soils.

We used grain size distributions as outlined in Method 2 in Appendix "A" of Volume V of the City of Tumwater DDECM to determine initial saturated hydraulic conductivity. This method is adopted from the WSDOT publication of *A Design Manual for Sizing Infiltration Ponds* (Massmann, 2003). Our grain size analysis results in estimated saturated hydraulic conductivity of the soils ranging from 4 in/hr to 30 in/hr within the recessional outwash encountered in our borings above the groundwater table. The correction factors used are based on the recommendations from the 2022 City of Tumwater DDECM and are summarized below:

- Test Method $(F_{testing}) 0.4$ for the grain-size analysis method
- Geometry $(F_{geometry}) 1.0$ based on estimated width of the infiltration facility (W) and depth (D) to groundwater table as provided in Appendix V-A.2.1 of the DDECM. This assumes the depth to width ratio (D/W) is greater than 0.25 and will need to be confirmed once the dimensions of the proposed facility are determined.
- Plugging $(P_{plugging}) 0.8$ for the fine sands and loamy sands observed in our explorations.

After applying the correction factors, the design infiltration rates ranged from 1 to 9 inches per hour. Table 1 presents preliminary design infiltration rates based on grain-size analysis for each sample tested. We understand that PITs will be completed at the locations of the proposed infiltration facilities to determine the final design infiltration rate for each facility.

Boring	USCS Classification	Sample Depth (feet)	D10 Value (mm)	D ₆₀ Value (mm)	D90 Value (mm)	% Fines	Combined Correction Factor	Design Infiltration Rate (in/hr)
BH-1	SM	2.5-4.0	0.01	0.11	0.22	49.8	0.32	1.2
BH-1	SP-SM	5.0-6.5	0.07	0.18	0.24	11.2	0.32	9.7
BH-1	SM	7.5-9.0	0.06	0.19	0.28	12.8	0.32	8.7
BH-2	SM	2.5-4.0	0.03	0.21	0.40	27.1	0.32	3.8
BH-2	SP-SM	5.0-6.5	0.01	0.10	0.17	39.9	0.32	1.9
BH-2	SM	7.5-9.0	0.05	0.19	0.29	13.5	0.32	7.9
BH-3	SM	2.5-4.0	0.02	0.15	0.27	23.8	0.32	4.2
BH-3	SP-SM	5.0-6.5	0.01	0.15	0.23	25.2	0.32	3.8
BH-3	SM	7.5-9.0	0.01	0.015	0.18	24.6	0.32	3.9

 Table 1. Preliminary Design Infiltration Rates (based on grain-size analysis)

4.2.3 Soil Suitability for Water Quality Treatment

To evaluate the potential of the existing soils to provide water quality treatment, laboratory tests were conducted on the upper 3 samples from each of our explorations to determine the cation exchange capacity (CEC) and organic matter content of the soil within anticipated potential infiltration depths. The laboratory test results are summarized in Table 2 below.

Boring	Sample	Depth (ft)	CEC (meq/100g)	Organic Matter (%)
BH-1	S-1	2.5-4	5.3	1.1
BH-1	S-2	5-6.5	5.5	1.2
BH-1	S-3	7.5-9	3.2	0.8
BH-2	S-1	2.5-4	5.3	1.6
BH-2	S-2	5-6.5	6.9	1.6
BH-2	S-3	7.5-9	7.3	1.1
BH-3	S-1	2.5-4	8.7	4.8
BH-3	S-2	5-6.5	7.8	2.1
BH-3	S-3	7.5-9	7.3	1.9

Table 2: Cation Exchange Capacity and Organic Matter Content

The 2022 City of Tumwater DDECM indicates that soil must have a CEC greater than or equal to 5 milliequivalents per 100 grams of dry soil, and an organic content great than 1 percent to provide adequate treatment.

Based on the laboratory test results, most of the material tested meets the water quality requirements, expect for the material in boring BH-1 at depth between 7.5 to 9 feet bgs. As this depth is anticipated to be much deeper than the base of the facility, we conclude that the site soils will meet the water quality treatment requirements.

4.2.4 Subgrade Preparation for Infiltration Facilities

Prior to installation of infiltration facilities, the subgrade should be cut to the base of the infiltration facility. Once the soil is cut to the base of the facility, the exposed soils should be verified by the geotechnical engineer, or their representative, to confirm that they are similar to materials tested for the infiltration analyses. Given the variability of site soils, the depth of the receptor soil may differ across the site. The existing subgrade under areas used for infiltration **should not** be compacted or subjected to excessive construction equipment traffic prior to installation. Where erosion of subgrade occurs during construction and has caused accumulation of fine materials and/or surface ponding, this material shall be removed with light equipment and

the underlying soils scarified to a minimum depth of 8 inches. Once prepared, the geotechnical engineer should inspect the subgrade to verify that it is suitable to provide the recommended infiltration rates.

4.3 LUMINAIRE FOUNDATION RECOMMENDATIONS

We understand that the project will include installation of new luminaires. We reviewed the City of Tumwater Standard Luminaire Foundation Plan (Plan No. ST-25). The standard foundation plan is designed for 2,000 pounds per square foot (psf) for average soil lateral bearing pressure.

Based on our explorations, the luminaire foundations will be installed within soils that provide lateral bearing pressures lower than those required by the applicable City of Tumwater standard plan. Based on Table 17-2 of the Washington State Department of Transportation Geotechnical Design Manual (WSDOT, 2022), we estimate the average allowable lateral bearing pressure for the upper 8 feet of 1,200 psf.

Based on the loose soil observed in our explorations, a non-standard design is recommended. Non-standard designs can be designed using Brom's method recommended in the *Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* (AASHTO, 2013). The estimated friction angle and passive pressure to assume when using the Brom's method are provided below in Table 3.

Table 3 – Recommended	D D	C. N. CA		· · · · · · · · · · · · · · · · · · ·
I able 3 – Recommended	Decion Parameters	tor Non-Ntg	ndard Lumu	191re Roundstions
	Design rarameters		inuai u Luinn	ian c r oundations

Ф (deg)	Кр	Moist Unit Weight (pcf)	Buoyant Unit Weight (pcf)	Factor of Safety
30	3.0	120	45.6	3

4.4 CONSTRUCTION CONSIDERATIONS FOR LUMINAIRE FOUNDATIONS

The loose sand and silty sand encountered in our explorations will be prone to caving. We recommend that temporary casing be used for the proposed shaft excavations to limit caving of the on-site material during construction. If shaft excavations extend below the groundwater table, the contractor should be prepared to flood the casing with water or suitable drilling fluid, should it become apparent that water infiltration into the casing will result in potential disturbance to the soils that can impact their ability to provide lateral resistance.

Drilled shaft bottoms should be cleaned to the extent practical using appropriate methods. If more than 12 inches of water are present in the shaft, concrete should be placed by the tremie method into the shafts. Temporary casing should be withdrawn such that the level of concrete is maintained above the bottom of the casing at all times and at such elevations to counteract any potential hydrostatic effects associated with groundwater conditions that may be present at the location of the work.

All luminaire shaft locations should also be evaluated to confirm that the proposed excavations do not conflict with existing utilities.

4.5 **RECOMMENDATIONS FOR EARTHWORK**

Earthwork is anticipated for the corridor improvements. General recommendations for earthwork are provided in the following sections.

4.5.1 Sidewalk and Road Subgrade Preparation

A geotechnical engineer, or qualified earthwork technician, should evaluate the subgrade soils for walkways and pavements to confirm that the exposed subgrade will provide adequate support for the proposed structure to be placed. Suitable soils are anticipated to be encountered at the base of the excavations for the improvements; however, if loose or soft soils are encountered, they should be removed and replaced with properly compacted structural fill.

In areas proposed to accommodate sidewalk or road shoulder, subgrade preparation should begin with the removal of all topsoil, deleterious material, and vegetation. Using a smooth bucket, the soils should be excavated to the proposed subgrade elevation. The Geotechnical Engineer, or their representative, should evaluate the exposed subgrade soils for the walls and walkway to confirm that the exposed subgrade will provide adequate support for the proposed structure to be placed. Suitable soils are anticipated to be encountered at the base of the excavations for the improvements; however, if loose or soft soils are encountered, they should be removed and replaced with properly compacted structural fill.

4.5.2 Structural Fill Materials and Compaction

Where structural fill is needed to replace unsuitable soils or to construct the pavement section it should consist of Crushed Surfacing Top Course (CSTC), or Crushed Surfacing Base Course (CSBC) as specified in Section 9-03.9(3) of the WSDOT Standard Specifications (WSDOT, 2022) and for the thicknesses provided by the project plans. Structural fill used to raise site grades, or backfill utility trench excavations, should consist of granular materials such as Gravel Borrow, meeting the requirements of Section 9-03.14(1) of the Standard Specifications (WSDOT, 2022). Structural fill soils for these uses should be moisture conditioned, placed in

loose horizontal lifts 8 inches thick or less, and compacted to at least 95% of the maximum dry density (MDD) as determined using test method ASTM D1557 (Modified Proctor).

Achievement of proper density of a compacted fill depends on the size and type of compaction equipment, the number of passes, thickness of the layer being compacted and soil moisturedensity properties. In areas where limited space restricts the use of heavy equipment, smaller equipment can be used, but the soil must be placed in thin enough layers to achieve the required relative compaction. Generally, loosely compacted soils result from poor construction technique and/or improper moisture content. Soils with high fines contents are particularly susceptible to becoming too wet, and coarse-grained materials easily become too dry for proper compaction.

A Geotechnical Engineer, or their representative, should perform full-time construction monitoring of all fill placement and compaction operations. If the on-site soils are placed either too wet or too dry of optimum moisture content, or if the soils are inadequately compacted, significant settlement should be anticipated.

4.5.3 Temporary Slopes and Excavations

Any temporary excavations deeper than 4 feet should be sloped or shored in accordance with Part N of the Washington Administrative Code (WAC) 296-155 or shored. The recessional outwash soils encountered classify as Type C soils. Temporary excavations in Type C soils may be no steeper than 1.5H:1V to meet safety requirements for worker access during construction. The recommended maximum allowable temporary cut slope inclinations are applicable to temporary excavations above the water table only. Flatter slopes may be required where groundwater seepage in present.

The contractor should monitor the stability of the temporary cut slopes and adjust the construction schedule and slope inclination accordingly. The contractor should be responsible for control of ground and surface water and should employ sloping, slope protection, ditching, sumps, dewatering, and other measures as necessary to prevent sloughing of soils. If temporary shoring is required instead, the design and implementation is the responsibility of the contractor.

4.5.4 Temporary Erosion Control

We recommend that temporary erosion control incorporate Best Management Practices (BMP's) to reduce the potential for erosion at the proposed site during construction. These measures include an erosion control plan that specifies methods for limiting activity during wet periods, placement of a silt retention system on the downslope side of the alignment, and proper disposal or recompaction of any materials that are disturbed on the site.

4.5.4 Wet Weather Earthwork

General recommendations relative to earthwork performed in wet weather or in wet conditions are presented below. These recommendations should be incorporated into the contract specifications.

- Earthwork should be performed in small areas to minimize exposure to wet weather. Excavation or the removal of unsuitable soil should be followed promptly by the placement and compaction of clean structural fill. The size and type of construction equipment used may have to be limited to prevent soil disturbance. Under some circumstances, it may be necessary to excavate soils with a backhoe to minimize subgrade disturbance that may be caused by equipment traffic.
- For wet weather conditions, material used as structural fill should consist of clean granular soil with less than 5 percent passing the U.S. Standard No. 200 sieve, based on wet sieving the fraction passing the ³/₄-inch sieve. The fine-grained portion of the structural fill soils should be non-plastic. It should be noted that this is an additional restriction on the structural fill materials specified.
- The ground surface within the construction area should be graded to promote run-off of surface water and to prevent the ponding of water.
- The ground surface within the construction area should be sealed on completion of each shift by a smooth drum vibratory roller, or equivalent, and under no circumstances should soil be left uncompacted and exposed to moisture.
- Bales of straw and/or geotextile silt fences should be strategically located to control erosion and the movement of soil.

5.0 CONDITIONS AND LIMITATIONS

We have prepared this report for SCJ Alliance and the City of Tumwater for use in design of this project. This report should be provided in its entirety to prospective contractors for bidding and estimating purposes; however, the conclusions and interpretations presented in this report should not be construed as a warranty of existing subsurface conditions. Experience has shown that soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between exploration locations and may not be detected by a geotechnical study of this nature. If, during future site operations, subsurface conditions are encountered which vary appreciably from those described herein, HWA should be notified for review of the recommendations of this report, and revision of such if necessary.

Sufficient geotechnical monitoring, testing, and consultation should be provided during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should conditions revealed during construction differ from those anticipated, and to verify that geotechnical aspects of construction comply with the contract plans and specifications.

Within the limitations of scope, schedule and budget, HWA attempted to execute these services in accordance with generally accepted professional principles and practices in the fields of geotechnical engineering and engineering geology in the area at the time the report was prepared. No warranty, express or implied, is made.

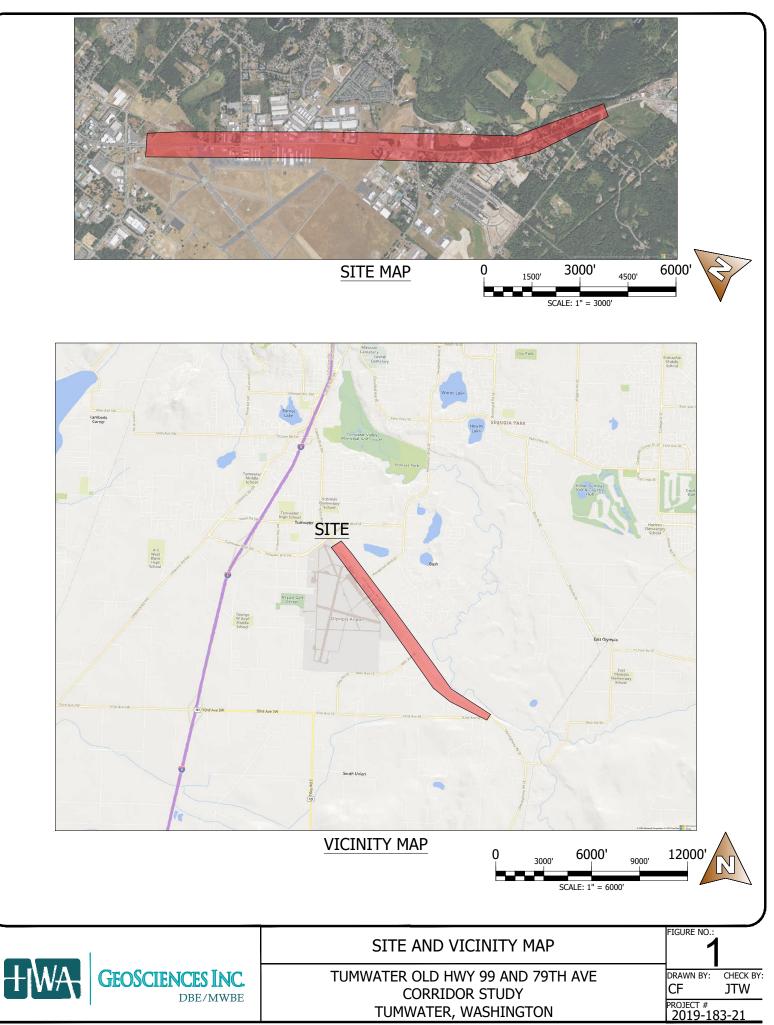
HWA does not practice or consult in the field of safety engineering. We do not direct the contractor's operations and cannot be responsible for the safety of personnel other than our own on the site. As such, the safety of others is the responsibility of the contractor. The contractor should notify the owner if any of the recommended actions presented herein are considered unsafe.

0.0

We appreciate the opportunity to be of service to you on this project.

Sincerely,

HWA GEOSCIENCES INC.


Joe Westergreen, P.E. Geotechnical Engineer JoLyn Gillie, P.E. Principal Geotechnical Engineer

6.0 REFERENCES

- AASHTO, 2013, Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals 6th Edition, Washington D.C.
- Logan, Robert L.; Walsh Timothy J.; Stanton, Benjamin W.; Sarikhan, Isabelle Y.; *Geologic Map of the Maytown 7.5-minute Quadrangle, Thurston County, Washington*, Washington State Department of Natural Resources, Geologic Map GM-72, scale 1:24,000. February 2009.
- Massmann, Joel W, *A Design Manual for Sizing Infiltration Ponds*, Washington State Transportation Commission, October 2003.
- Tumwater, 2022, *City of Tumwater Drainage Design and Erosion Control Manual Volume V Stormwater BMPs*, City of Tumwater, revised July 2022.

United States Department of Agriculture Natural Resources Conservation Services, Web Soil Survey: <u>https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</u>

- WSDOT, 2022, *Geotechnical Design Manual*, Washington State Department of Transportation, dated February 20, 2022.
- WSDOT, 2022, *Standard Specifications for Road, Bridge, and Municipal Construction, 2021* Washington State Department of Transportation. M 41-10.

C:\USERS\CFRY\DESKTOP\2019-183-21 TUMWATER SR 99_73RD TO 93RD AVENUE\2019-183-21 TUMWATER SR 99.DWG <1> Plotted: 9/22/2022 4:01 PM

EXPLORATION LEGEND

BASE MAP PROVIDED BY: BING

C:\USERS\CFRY\DESKTOP\2019-183-21 TUMWATER SR 99_73RD TO 93RD AVENUE\2019-183-21 TUMWATER SR 99.DWG <2A> Plotted: 9/16/2022 4:54 PM

EXPLORATION LEGEND

BASE MAP PROVIDED BY: BING

C:\USERS\CFRY\DESKTOP\2019-183-21 TUMWATER SR 99_73RD TO 93RD AVENUE\2019-183-21 TUMWATER SR 99.DWG <2B> Plotted: 9/16/2022 4:54 PM

APPENDIX A

FIELD EXPLORATIONS

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N-VALUE

	COHESIONLESS S	OILS	COHESIVE SOILS				
Density	N (blows/ft)	Approximate Relative Density(%)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)		
Very Loose	0 to 4	0 - 15	Very Soft	0 to 2	<250		
Loose	4 to 10	15 - 35	Soft	2 to 4	250 - 500		
Medium Dense	10 to 30	35 - 65	Medium Stiff	4 to 8	500 - 1000		
Dense	30 to 50	65 - 85	Stiff	8 to 15	1000 - 2000		
Very Dense	over 50	85 - 100	Very Stiff	15 to 30	2000 - 4000		
			Hard	over 30	>4000		

USCS SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS	GROUP DESCRIPTIONS			
Coarse Grained Soils	Gravel and Gravelly Soils	Clean Gravel (little or no fines)	GW GP	Well-graded GRAVEL Poorly-graded GRAVEL	
	More than 50% of Coarse Fraction Retained on No. 4 Sieve	Gravel with Fines (appreciable amount of fines)	GM GC	Silty GRAVEL Clayey GRAVEL	
More than	Sand and Sandy Soils	Clean Sand (little or no fines)	SW SP	Well-graded SAND Poorly-graded SAND	
50% Retained on No. 200 Sieve Size	50% or More of Coarse Fraction Passing No. 4 Sieve	Sand with Fines (appreciable amount of fines)	SM SC	Silty SAND Clayey SAND	
Fine Grained Soils	Silt and Clay	Liquid Limit Less than 50%	ML CL OL	SILT Lean CLAY Organic SILT/Organic CLAY	
50% or More Passing No. 200 Sieve Size	Silt and Clay	Liquid Limit 50% or More	мн Сн Он	Elastic SILT Fat CLAY Organic SILT/Organic CLAY	
	Highly Organic Soils		PT	PEAT	

TEST SYMBOLS

- Percent Fines
- AL Atterberg Limits: PL = Plastic Limit, LL = Liquid Limit
- CBR California Bearing Ratio
- CN Consolidation

%F

- DD Dry Density (pcf)
- DS Direct Shear
- GS Grain Size Distribution
- K Permeability
- MD Moisture/Density Relationship (Proctor)
- MR Resilient Modulus
- OC Organic Content pH of Soils
- PID Photoionization Device Reading
- PP Pocket Penetrometer (Approx. Comp. Strength, tsf)
- Res. Resistivity
- SG Specific Gravity
- CD Consolidated Drained Triaxial
- CU Consolidated Undrained Triaxial
- UU Unconsolidated Undrained Triaxial
- TV Torvane (Approx. Shear Strength, tsf) UC Unconfined Compression

SAMPLE TYPE SYMBOLS

- 2.0" OD Split Spoon (SPT)
- (140 lb. hammer with 30 in. drop)
- Shelby Tube

Non-standard Penetration Test

(3.0" OD Split Spoon with Brass Rings)

Small Bag Sample

Large Bag (Bulk) Sample

Core Run

3-1/4" OD Split Spoon

GROUNDWATER SYMBOLS

- Groundwater Level (measured at
- time of drilling) Groundwater Level (measured in well or

open hole after water level stabilized)

COMPONENT DEFINITIONS

COMPONENT	SIZE RANGE
Boulders	Larger than 12 in
Cobbles	3 in to 12 in
Gravel Coarse gravel Fine gravel	3 in to No 4 (4.5mm) 3 in to 3/4 in 3/4 in to No 4 (4.5mm)
Sand Coarse sand Medium sand Fine sand	No. 4 (4.5 mm) to No. 200 (0.074 mm) No. 4 (4.5 mm) to No. 10 (2.0 mm) No. 10 (2.0 mm) to No. 40 (0.42 mm) No. 40 (0.42 mm) to No. 200 (0.074 mm)
Silt and Clay	Smaller than No. 200 (0.074mm)

COMPONENT PROPORTIONS

PROPORTION RANGE	DESCRIPTIVE TERMS							
< 5%	Clean							
5 - 12%	Slightly (Clayey, Silty, Sandy)							
12 - 30%	Clayey, Silty, Sandy, Gravelly							
30 - 50%	Very (Clayey, Silty, Sandy, Gravelly)							
Components are arranged in order of increasing quantities.								

NOTES: Soil classifications presented on exploration logs are based on visual and laboratory observation. Soil descriptions are presented in the following general order:

Density/consistency, color, modifier (if any) GROUP NAME, additions to group name (if any), moisture content. Proportion, gradation, and angularity of constituents, additional comments. (GEOLOGIC INTERPRETATION)

Please refer to the discussion in the report text as well as the exploration logs for a more complete description of subsurface conditions.

Tumwater Old Hwy 99 and 79th Ave Corridor Study Tumwater, Washington

MOISTURE CONTENT

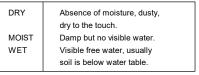
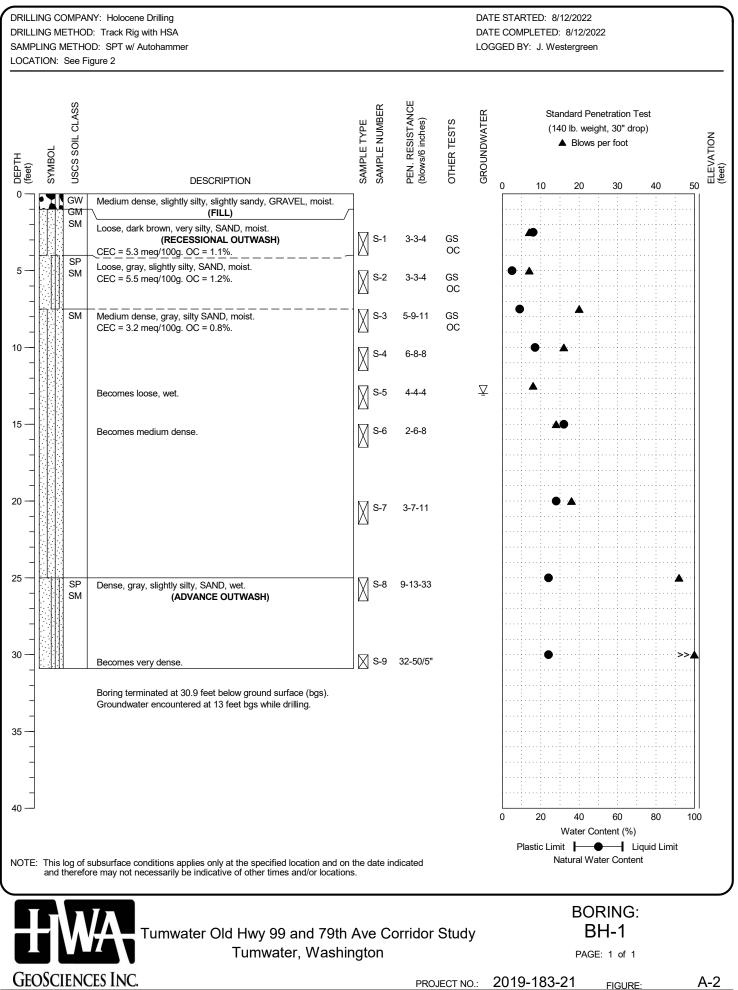
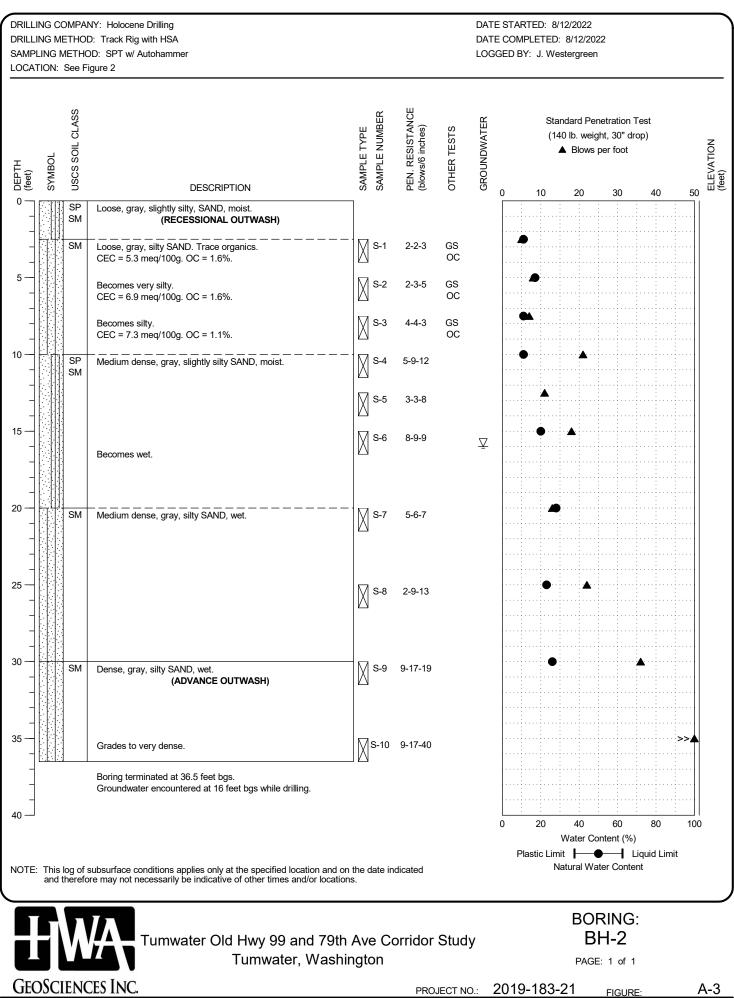
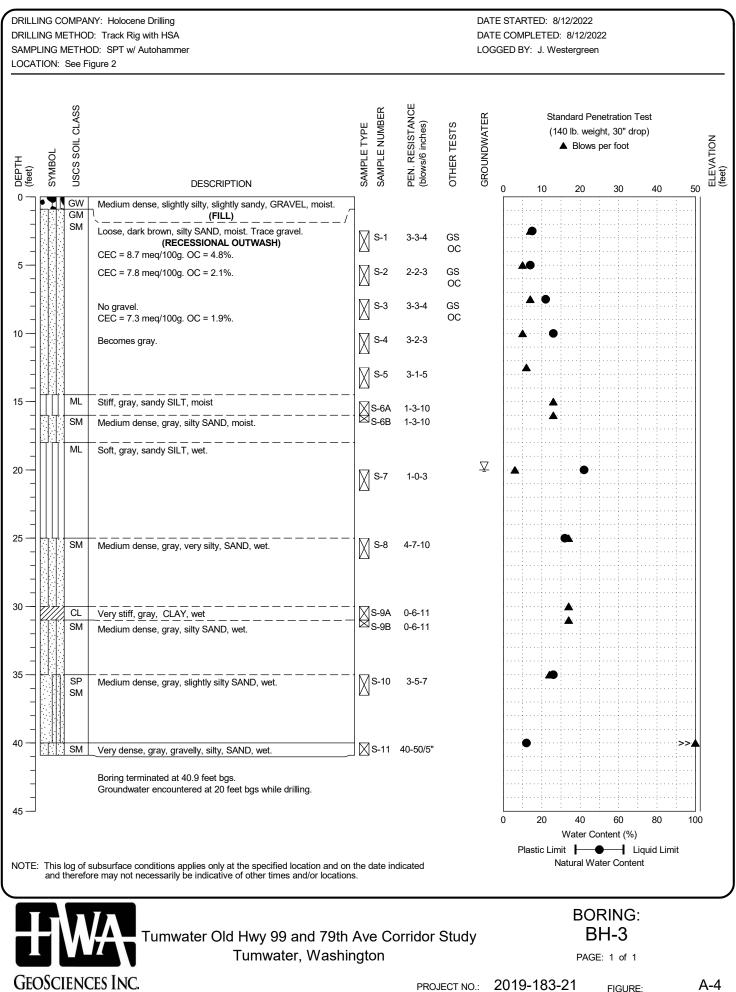



FIGURE:


LEGEND OF TERMS AND SYMBOLS USED ON EXPLORATION LOGS

PROJECT NO.: 2019-183-21

A-1



BORING-DSM 2019-183-21.GPJ 9/23/22

BORING-DSM 2019-183-21.GPJ 9/23/22

A-3

BORING-DSM 2019-183-21.GPJ 9/23/22

FIGURE:

A-4

APPENDIX B

LABORATORY TESTING

APPENDIX B

LABORATORY TESTING

Representative soil samples obtained from the explorations were placed in plastic bags to prevent loss of moisture and transported to our Bothell, Washington, laboratory for further examination and testing. Laboratory tests were conducted on selected soil samples to characterize relevant engineering and index properties of the site soils, as described below.

MOISTURE CONTENT OF SOIL: The moisture content of selected soil samples (percent by dry mass) was determined in general accordance with ASTM D 2216. The results are shown at the sampled intervals on the appropriate summary logs in Appendix A and on the Summary of Material Properties provided on Figures B-1 and B-2 in Appendix B.

MOISTURE CONTENT, ASH, AND ORGANIC MATTER: Selected samples were tested in general accordance with method ASTM D 2974, using moisture content method 'A' (oven dried at 105° C) and ash content method 'C' (burned at 440° C). The results are shown at the sampled intervals on the appropriate summary logs in Appendix A and on the Summary of Material Properties provided on Figures B-1 and B-2 in Appendix B. The results are percent by weight of dry soil.

PARTICLE SIZE ANALYSIS OF SOILS: Selected samples were tested to determine the particle (grain) size distribution of material in general accordance with ASTM D 6913. The results are summarized on the attached Particle Size Analysis of Soils reports, Figures B-3 through B-5, which also provide information regarding the classification of the sample, and the moisture content at the time of testing.

7 -		ГН)			ATTERBERG LIMITS (%)						
EXPLORATION DESIGNATION	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	CEC (meq/100g)	Hd	LL	PL	PI	% GRAVEL	% SAND	% FINES	ASTM SOIL CLASSIFICATION	SAMPLE DESCRIPTION
BH-1	2.5	4.0	15.6	1.1	5.3						50.1	49.9	SM	Dark yellowish-brown, silty SAND
BH-1	5.0	6.5	5.2	1.2	5.5						88.8	11.2	SP-SM	Light olive-brown, poorly graded SAND with silt
BH-1	7.5	9.0	8.6	0.8	3.2					0.1	87.0	12.8	SM	Olive-brown, silty SAND
BH-1	10.0	11.5	17.0										SM	Dark olive-brown, silty SAND
BH-1	15.0	16.5	32.4										SM	Dark olive-brown, silty SAND
BH-1	20.0	21.5	28.2										SM	Dark olive-brown, silty SAND
BH-1	25.0	26.5	23.6										SP-SM	Very dark brown, poorly graded SAND with silt
BH-1	30.0	30.9	23.8										SP-SM	Very dark brown, poorly graded SAND with silt
BH-2	2.5	4.0	11.2	1.6	5.3						72.9	27.1	SM	Olive-brown, silty SAND
BH-2	5.0	6.5	17.1	1.6	6.9						60.1	39.9	SM	Yellowish-brown, silty SAND
BH-2	7.5	9.0	10.8	1.1	7.3						86.5	13.5	SM	Very dark grayish-brown, silty SAND
BH-2	10.0	11.5	11.4										SP-SM	Dark brown, poorly graded SAND with silt
BH-2	15.0	16.5	20.1										SP-SM	Dark olive-brown, poorly graded SAND with silt
BH-2	20.0	21.5	27.6										SM	Very dark brown, silty SAND
BH-2	25.0	26.5	22.6										SM	Very dark brown, silty SAND
BH-2	30.0	31.5	25.9										SM	Very dark brown, silty SAND
BH-3	2.5	4.0	14.5	4.8	8.7					3.2	72.9	23.8	SM	Very dark brown, silty SAND
BH-3	5.0	6.5	14.3	2.1	7.8					2.6	72.2	25.2	SM	Very dark gray, silty SAND
BH-3	7.5	9.0	21.6	1.9	7.3						75.4	24.6	SM	Olive-brown, silty SAND
BH-3	10.0	11.5	26.0										SM	Light olive-brown, silty SAND
BH-3 Notes:	BH-3 10.0 11.5 26.0 Image: Control of the second se													

2. The classification of soils in this table is based on ASTM D2487 and D2488 as applicable.

Tumwater Old Hwy 99 and 79th Ave Corridor Study Tumwater, Washington

SUMMARY OF MATERIAL PROPERTIES

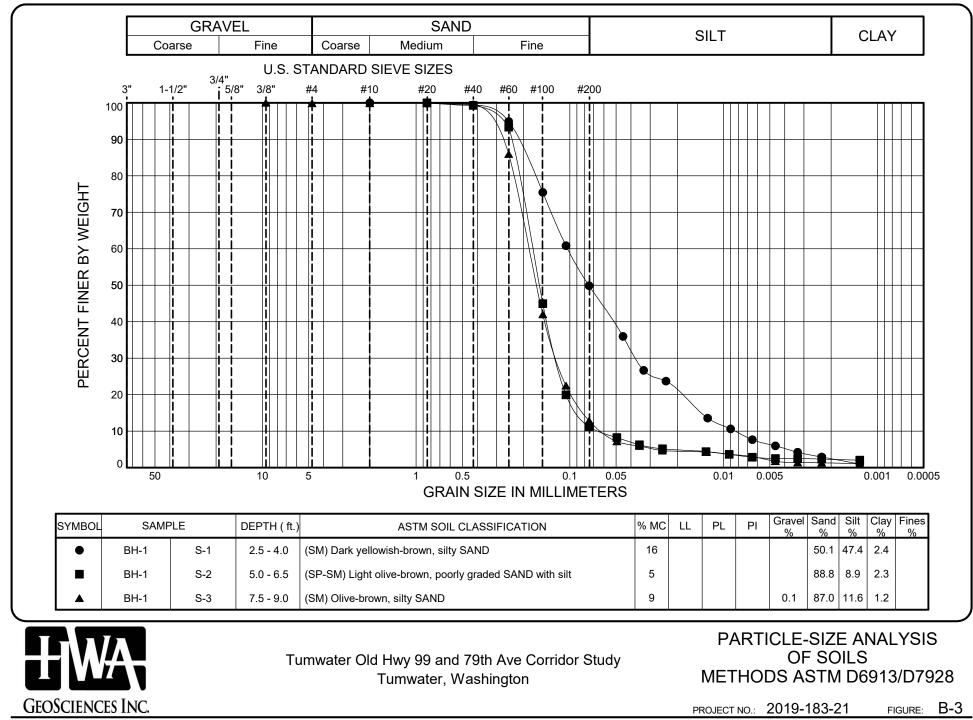
PAGE: 1 of 2

MATSUM ORG/PH/CEC_2 2019-183-21.GPJ 9/8/22

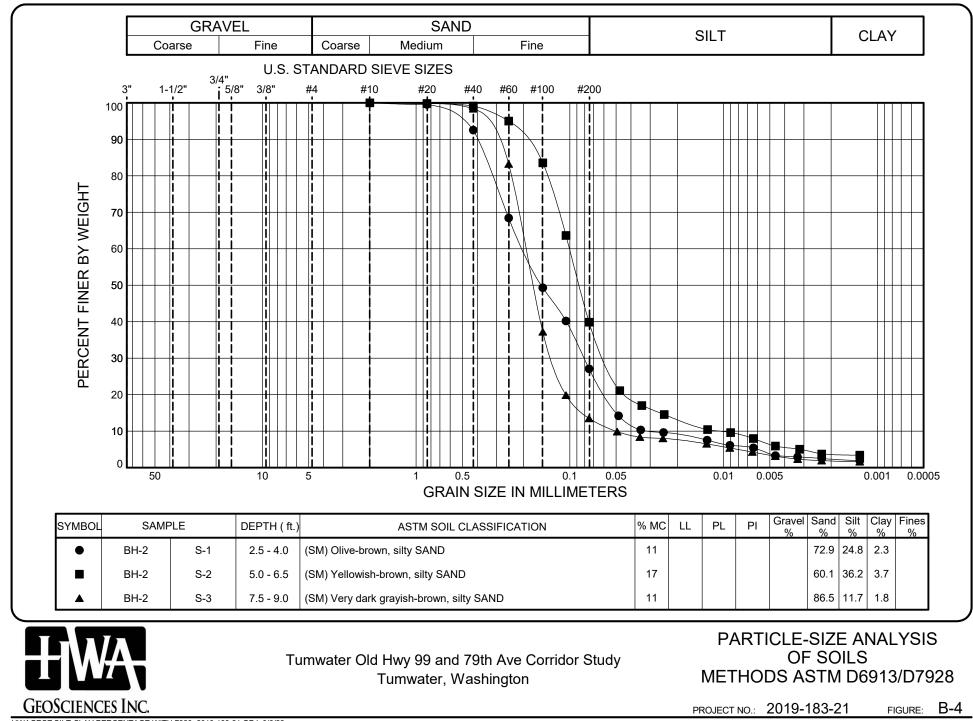
PROJECT NO.: 2019-183-21 FIGURE: B-1

		E						ATTERBERG LIMITS (%)				NO		
EXPLORATION DESIGNATION	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	CEC (meq/100g)	Hd	LL	PL	PI	% GRAVEL	% SAND	% FINES	ASTM SOIL CLASSIFICATION	SAMPLE DESCRIPTION
BH-3	20.0	21.5	41.9										ML	Light olive-brown, SILT with sand
BH-3	25.0	26.5	32.1										SM	Very dark brown, silty SAND
BH-3	35.0	36.5	26.4										SP-SM	Very dark brown, poorly graded SAND with silt
BH-3	40.0	41.5	12.1										SM	Dark olive-brown, silty SAND with gravel

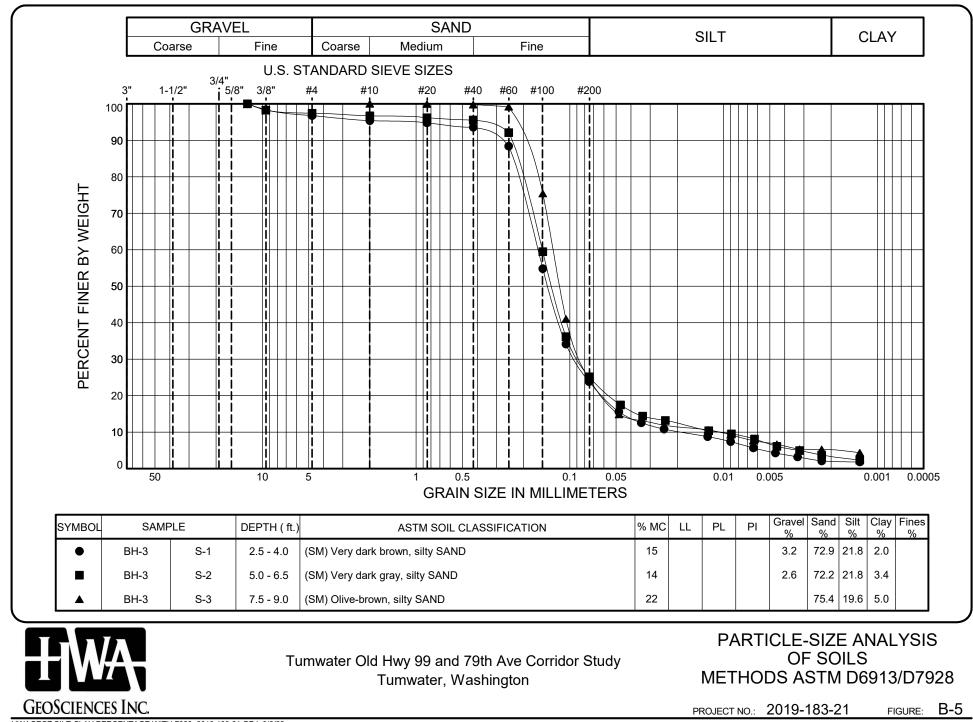
Notes: 1. This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs. 2. The classification of soils in this table is based on ASTM D2487 and D2488 as applicable.



Tumwater Old Hwy 99 and 79th Ave Corridor Study Tumwater, Washington SUMMARY OF MATERIAL PROPERTIES


PAGE: 2 of 2

PROJECT NO.: 2019-183-21 FIGURE: B-2


MATSUM ORG/PH/CEC_2 2019-183-21.GPJ 9/8/22

HWAGRSZ SILT-CLAY PERCENTAGE WITH 7928 2019-183-21.GPJ 9/8/22

HWAGRSZ SILT-CLAY PERCENTAGE WITH 7928 2019-183-21.GPJ 9/8/22

HWAGRSZ SILT-CLAY PERCENTAGE WITH 7928 2019-183-21.GPJ 9/8/22

APPENDIX C

ADDITIONAL LABORATORY TESTING BY OTHERS

2022 2925 Drig	oiltest m consultants, inc.
	Dete Dece

Office: (509)765-1622 - Fax:(509)765	-0314 - (800)764-1622	Laboratory	
	Date Received:	9/6/2022	
	Grower:	#2019-183	
	Field:	BH-1 S-1 AT 2.5FT	
Sampled By:			
	Customer Accou	int #:	
Soil Test Results	Customer Sample ID:		
5.3 pH 1:1			
E.C. 1:1	m.mhos/c	cm	
Est Sat Pa	aste E.C. m.mhos/c	m	
Effervesc	ence		
Ammonii	um - N mg/k	۶g	
	Soil Test Results 5.3 pH 1:1 E.C. 1:1 Est Sat Pa Effervesc	Grower: Field: Sampled By: Customer Accou 5.3 pH 1:1 E.C. 1:1 m.mhos/c Est Sat Paste E.C. m.mhos/c Effervescence	

Other Tests:

We make every effort to provide an accurate analysis of your sample. For reasonable cause we will repeat tests, but because of factors beyond our control in sampling procedures and the inherent variability of soil, our liability is limited to the price of the tests. Recommendations are to be used as general guides and should be modified for specific field conditions and situations. Note: "u" indicates that the element was analyzed for but not detected

Soil PAP NAPT 2022	soilteste soilteste farm consultants, inc.

	Office: (509)7	65-1622 - Fax:(509)765-03	14 - (800)764-1622	Laboratory	
HWA GEOSCIENCES			Date Received:	9/6/2022	
21312 30TH DRIVE SE, STE 110			Grower:	#2019-183	
			Field:	BH-1 S-2 AT 5.0FT	
BOTHELL, WA 98021			Sampled By:		
Laboratory #: S22-18531			Customer Account #:		
	Soil Te	est Results	Customer Sample ID:		
Cation Exchange CEC meq/100g	5.5	pH 1:1			
		E.C. 1:1	m.mhos/c	m	
		Est Sat Pas	te E.C. m.mhos/ci	m	
		Effervesce	nce		
		Ammoniur	m - N mg/k	g	
		Organic M	atter W.B. %		

Other Tests:

We make every effort to provide an accurate analysis of your sample. For reasonable cause we will repeat tests, but because of factors beyond our control in sampling procedures and the inherent variability of soil, our liability is limited to the price of the tests. Recommendations are to be used as general guides and should be modified for specific field conditions and situations. Note: "u" indicates that the element was analyzed for but not detected

	Office: (509)765-1622 - Fax:(509)765-0314 - (800)764-1622	Laboratory
HWA GEOSCIENCES		Date Received:	9/6/2022
21312 30TH DRIVE SE, STE 110		Grower:	#2019-183
		Field:	BH-1 S-3 AT 7.5FT
BOTHELL, WA 98021		Sampled By:	
Laboratory #: S22-18532		Customer Accou	unt #:
	Soil Test Result	s Customer Samp	le ID:
Cation Exchange CEC meq/100g	3.2 pH 1:2	L	
	E.C. 1:1	. m.mhos/	cm
	Est Sat	Paste E.C. m.mhos/c	m
	Efferve	scence	
	Ammo	nium - N mg/l	kg
	Organi	c Matter W.B. %	

NAPT 2022 Source State S	C.

	Office: (509)	765-1622 - Fax:(509)765-0	314 - (800)764-1622	Laboratory
HWA GEOSCIENCES			Date Received:	9/6/2022
21312 30TH DRIVE SE. STE 110			Grower:	#2019-183
			Field:	BH-2 S-1 AT 2.5FT
BOTHELL, WA 98021			Sampled By:	
Laboratory #: S22-18533			Customer Accou	nt #:
	Soil T	est Results	Customer Sampl	e ID:
Cation Exchange CEC meq/100g	5.3	pH 1:1		
		E.C. 1:1	m.mhos/c	m
		Est Sat Pas	ste E.C. m.mhos/c	m
		Effervesce	nce	
		Ammoniu	m - N mg/k	g
		Organic M	atter W.B. %	

Soil PAP NAPT 2022	soiltest soiltest farm consultants, inc.
	Office: (509)/65-1622 - Pax:(509)/65-0314 - (800)/64-1622

	Office: (509)765-1	522 - Fax:(509)765-0314	- (800)764-1622	Laboratory
HWA GEOSCIENCES			Date Received:	9/6/2022
21312 30TH DRIVE SE, STE 110			Grower:	#2019-183
			Field:	BH-2 S-2 AT 5.0FT
BOTHELL, WA 98021			Sampled By:	
Laboratory #: S22-18534			Customer Accour	nt #:
	Soil Test	Results	Customer Sample	e ID:
Cation Exchange CEC meq/100g	6.9	pH 1:1		
		E.C. 1:1	m.mhos/ci	m
		Est Sat Past	e E.C. m.mhos/cn	n
		Effervescen	се	
		Ammonium	- N mg/k	g
		Organic Ma	tter W.B. %	

Soil PAP NAPT 2022	soilteste soilteste farm consultants, inc.
	Cince. (503)105-1022 - 14x.(503)105-0514 - (500)104-1022

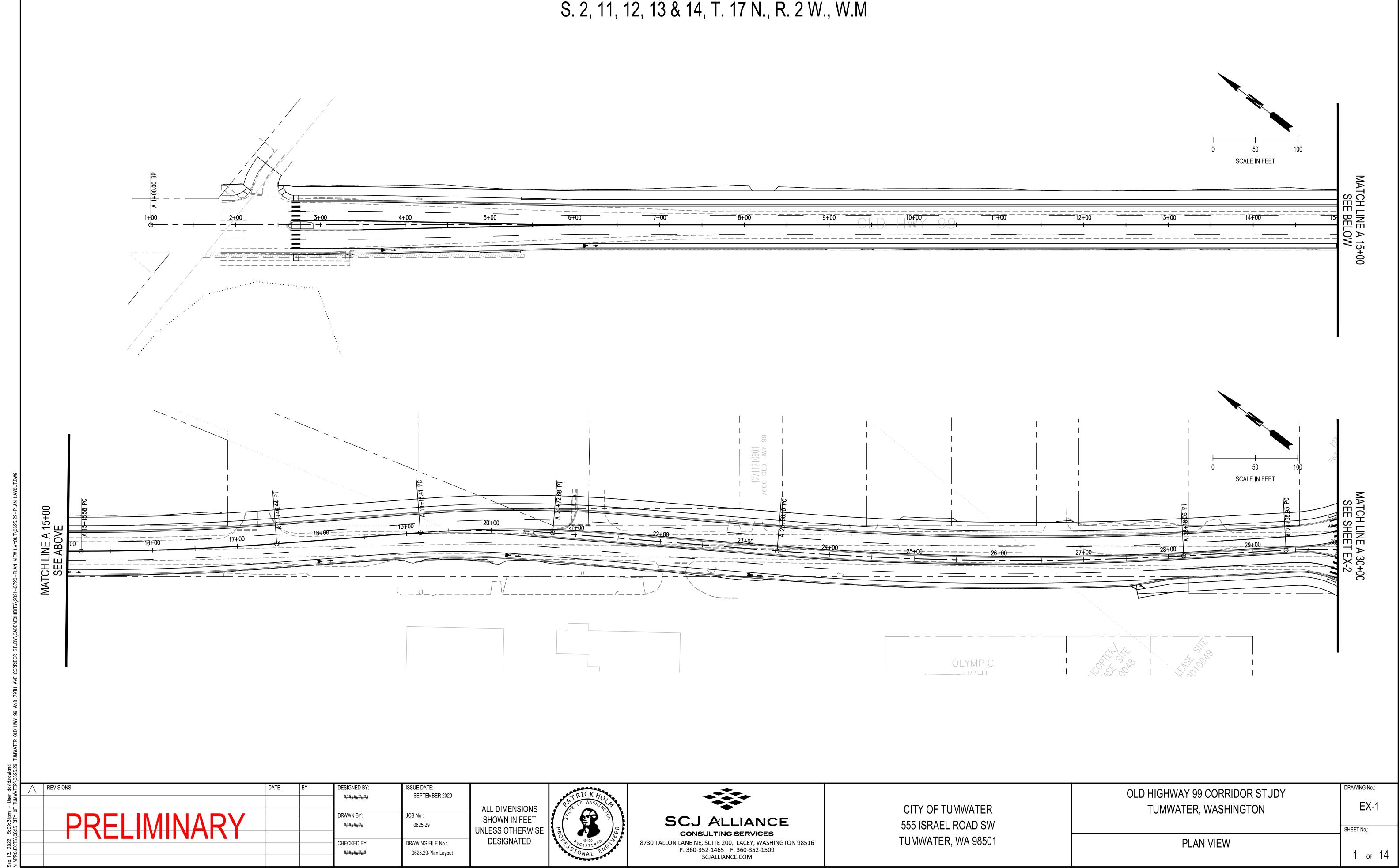
	Office: (509)765-1	522 - Fax:(509)765-0314	- (800)764-1622	Laboratory
HWA GEOSCIENCES			Date Received:	9/6/2022
21312 30TH DRIVE SE, STE 110			Grower:	#2019-183
			Field:	BH-2 S-3 AT 7.5FT
BOTHELL, WA 98021			Sampled By:	
Laboratory #: S22-18535			Customer Accourt	nt #:
	Soil Test	Results	Customer Sample	e ID:
Cation Exchange CEC meq/100g	7.3	pH 1:1		
		E.C. 1:1	m.mhos/ci	n
		Est Sat Past	e E.C. m.mhos/cn	n
		Effervescen	ce	
		Ammonium	- N mg/kg	5
		Organic Ma	tter W.B. %	

Soil PAP NAPT 2022	soiltest soiltest farm consultants, inc.
	Office: (509)/65-1622 - Pax:(509)/65-0314 - (800)/64-1622

	Office: (509)765-1622 - Fax:(509)76	5-0314 - (800)764-1622	Laboratory
HWA GEOSCIENCES		Date Received:	9/6/2022
21312 30TH DRIVE SE, STE 110		Grower:	#2019-183
		Field:	BH-3 S-1 AT 2.5FT
BOTHELL, WA 98021		Sampled By:	
Laboratory #: S22-18536		Customer Accou	int #:
	Soil Test Results	Customer Sampl	e ID:
Cation Exchange CEC meq/100g	8.7 pH 1:1		
	E.C. 1:1	m.mhos/a	cm
	Est Sat P	aste E.C. m.mhos/c	m
	Efferves	cence	
	Ammoni	um - N mg/ł	<g< td=""></g<>
	Organic	Matter W.B. %	

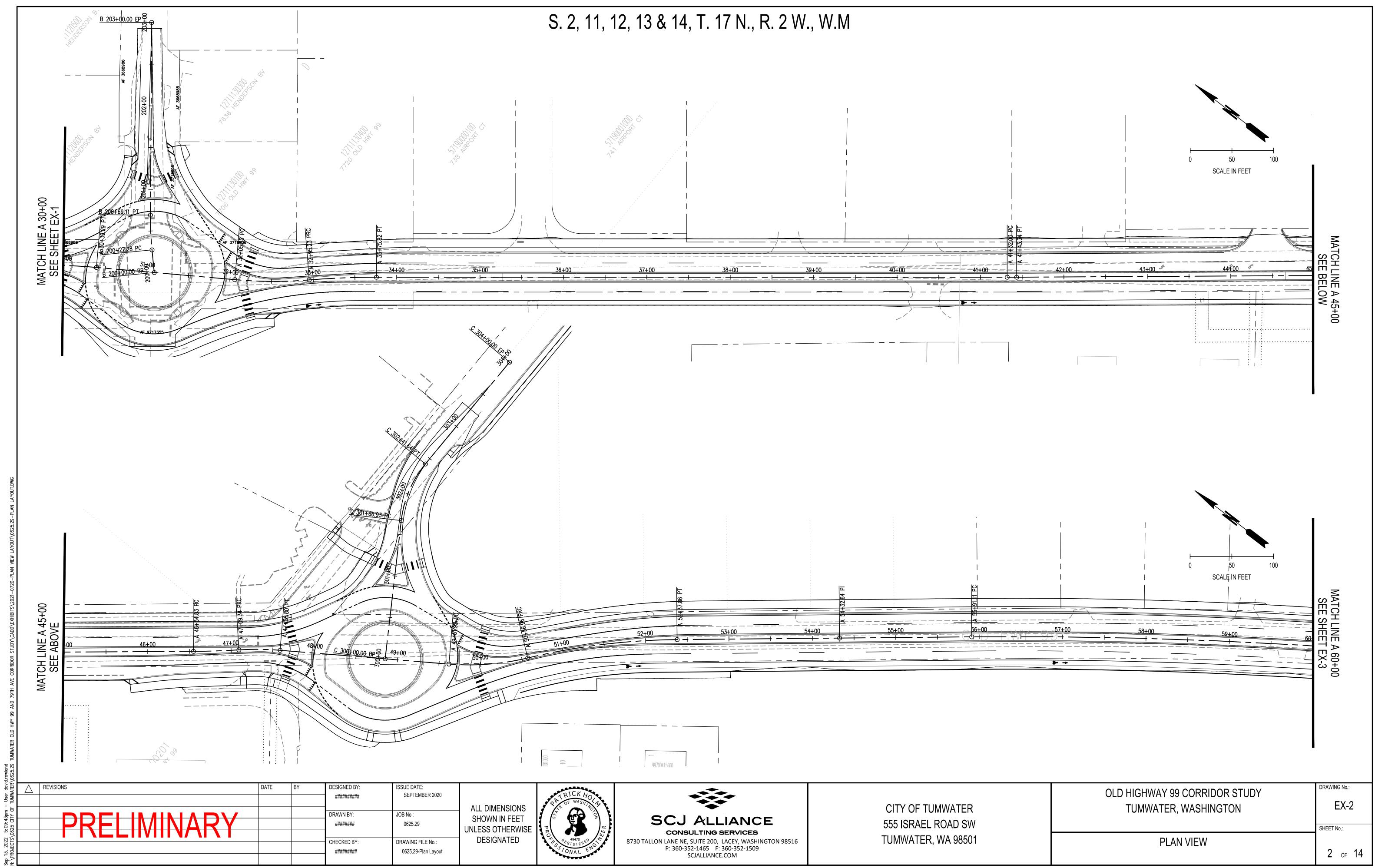
Soil PAP NAPT 2022	Solitestates Solitestatestates Solitestatestates Solitestatestatestates Solitestatestatestatestatestatestatestatest

	Office: (509)765-1	622 - Fax:(509)765-0314	- (800)764-1622	Laboratory
HWA GEOSCIENCES			Date Received:	9/6/2022
21312 30TH DRIVE SE, STE 110			Grower:	#2019-183
			Field:	BH-3 S-2 AT 5.0FT
BOTHELL, WA 98021			Sampled By:	
Laboratory #: S22-18537			Customer Accour	nt #:
	Soil Test	Results	Customer Sample	e ID:
Cation Exchange CEC meq/100g	7.8	pH 1:1		
		E.C. 1:1	m.mhos/cı	n
		Est Sat Past	e E.C. m.mhos/cn	n
		Effervescen	ce	
		Ammonium	- N mg/k	5
		Organic Ma	tter W.B. %	2.1


Office: (509)765-1622 - Fax:(509)765-03	14 - (800)764-1622	Laboratory
	Date Received:	9/6/2022
	Grower:	#2019-183
	Field:	BH-3 S-3 AT 7.5FT
	Sampled By:	
	Customer Accou	int #:
Soil Test Results	Customer Sampl	e ID:
7.3 pH 1:1		
E.C. 1:1	m.mhos/c	cm
Est Sat Pas	te E.C. m.mhos/c	m
Effervesce	nce	
Ammoniur	n - N mg/k	sg
Organic M	atter W.B. %	
	Soil Test Results 7.3 pH 1:1 E.C. 1:1 Est Sat Pas Effervesce Ammoniur	Grower: Field: Sampled By: Customer Accou Customer Sample 7.3 pH 1:1 E.C. 1:1 m.mhos/c Est Sat Paste E.C. m.mhos/c Effervescence Ammonium - N mg/k

Appendix E – WWHM Model Reports

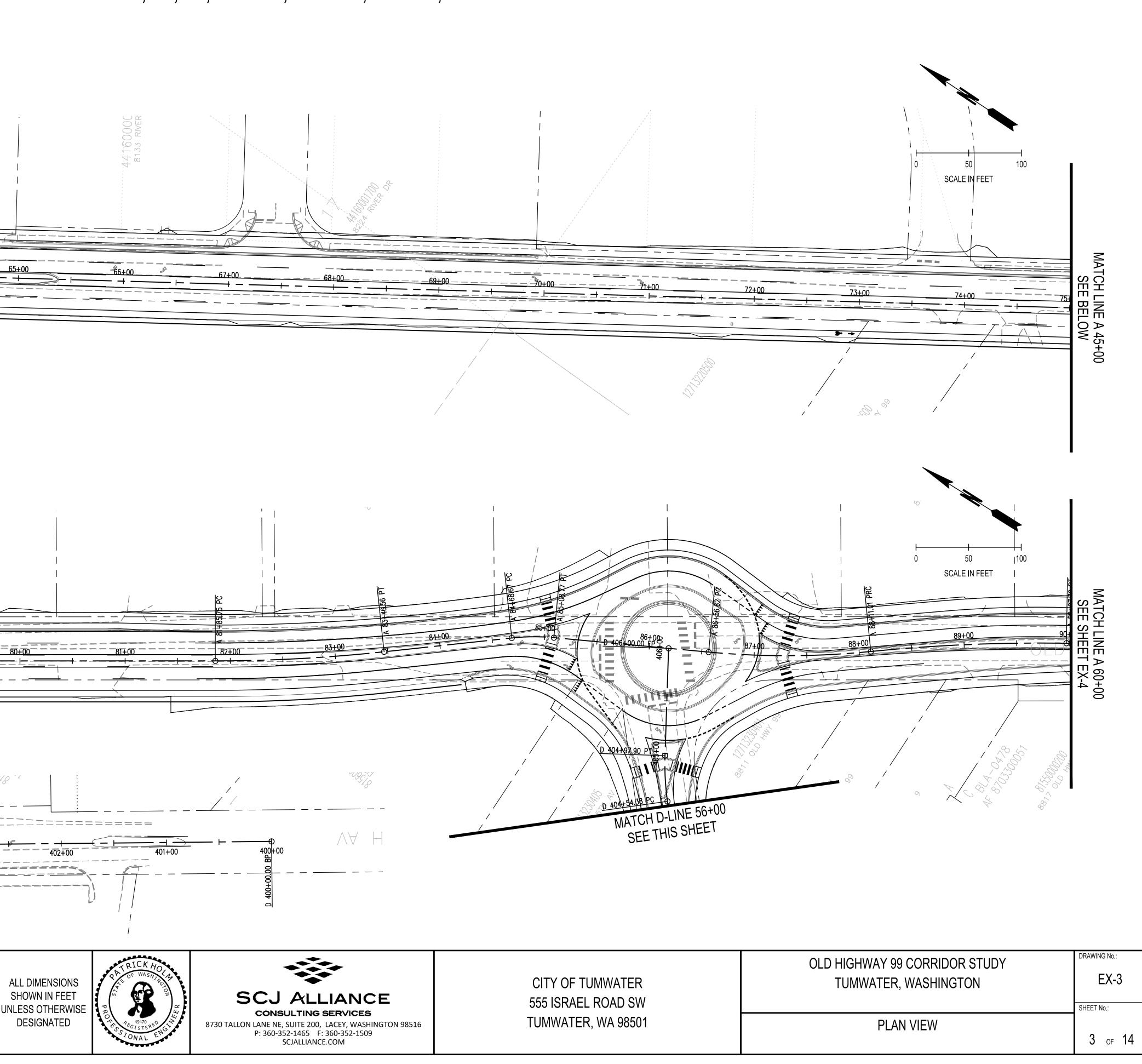
See Link:

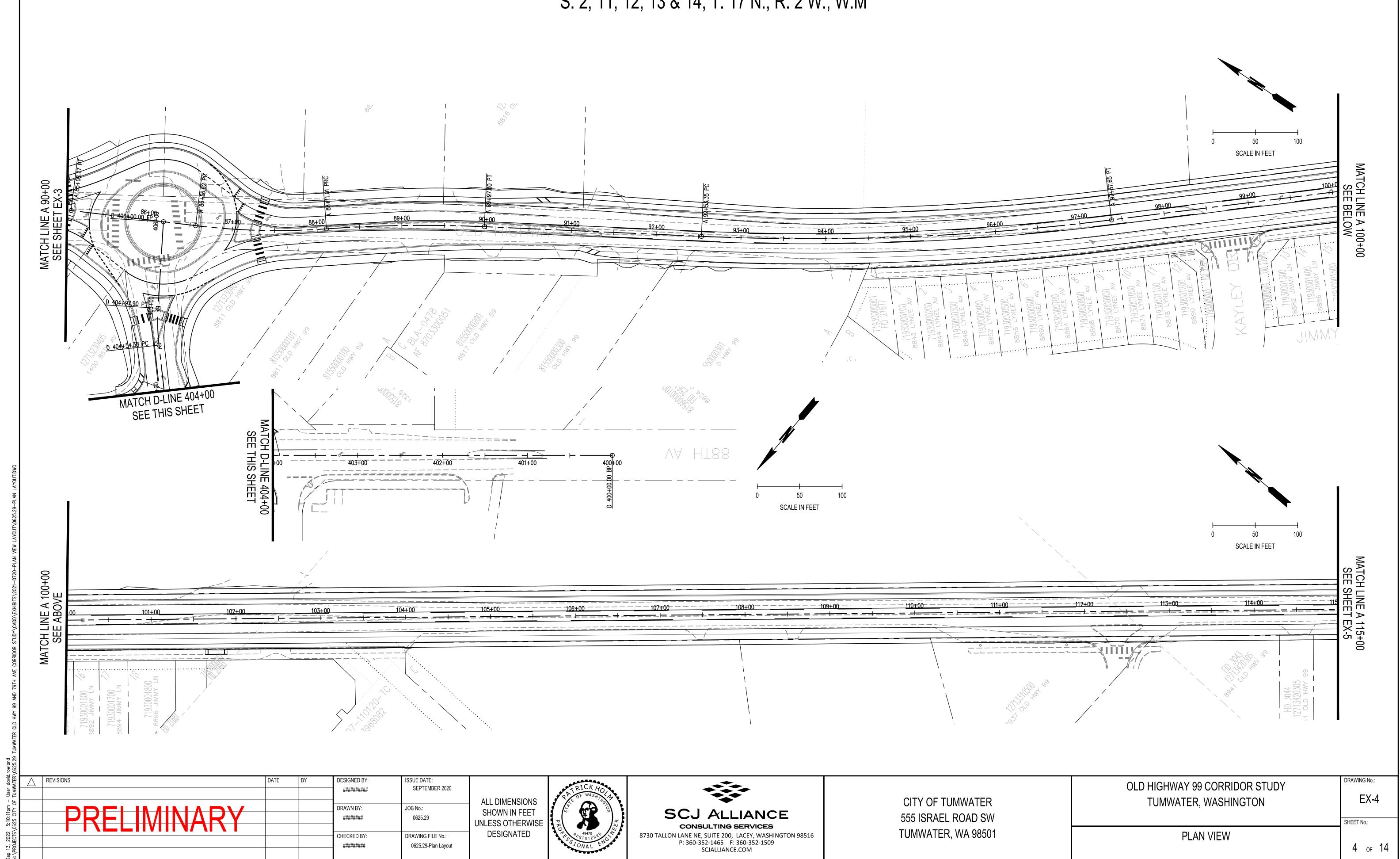

https://drive.google.com/file/d/1RKKfC8CVoSPVHpnUv1nXDBUiEN-CQP2P/view?usp=share_link

F7) PRELIMINARY PLAN SET

N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:09:24 PM, AutoCAD PDF (General Documentation).pc3

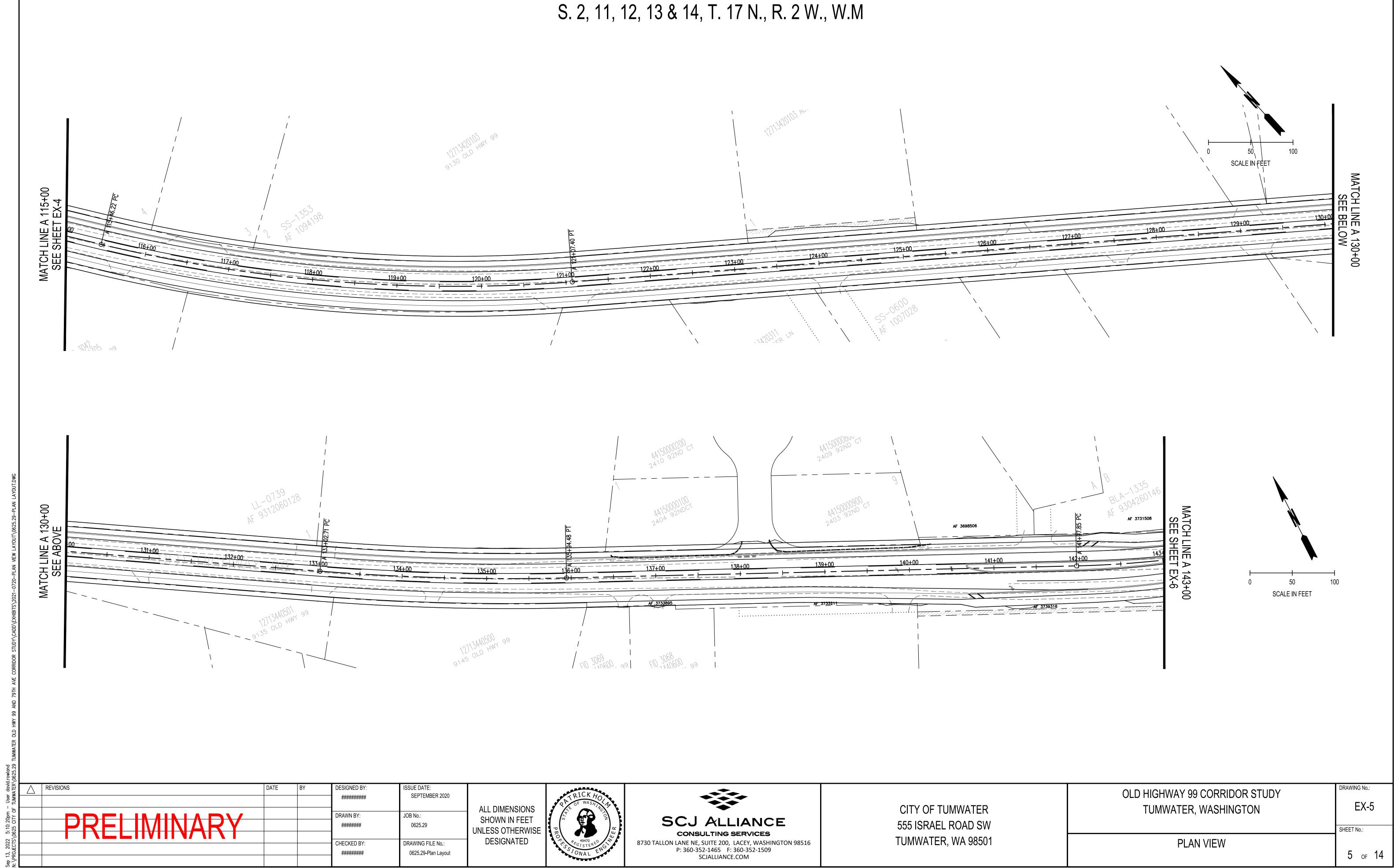
S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

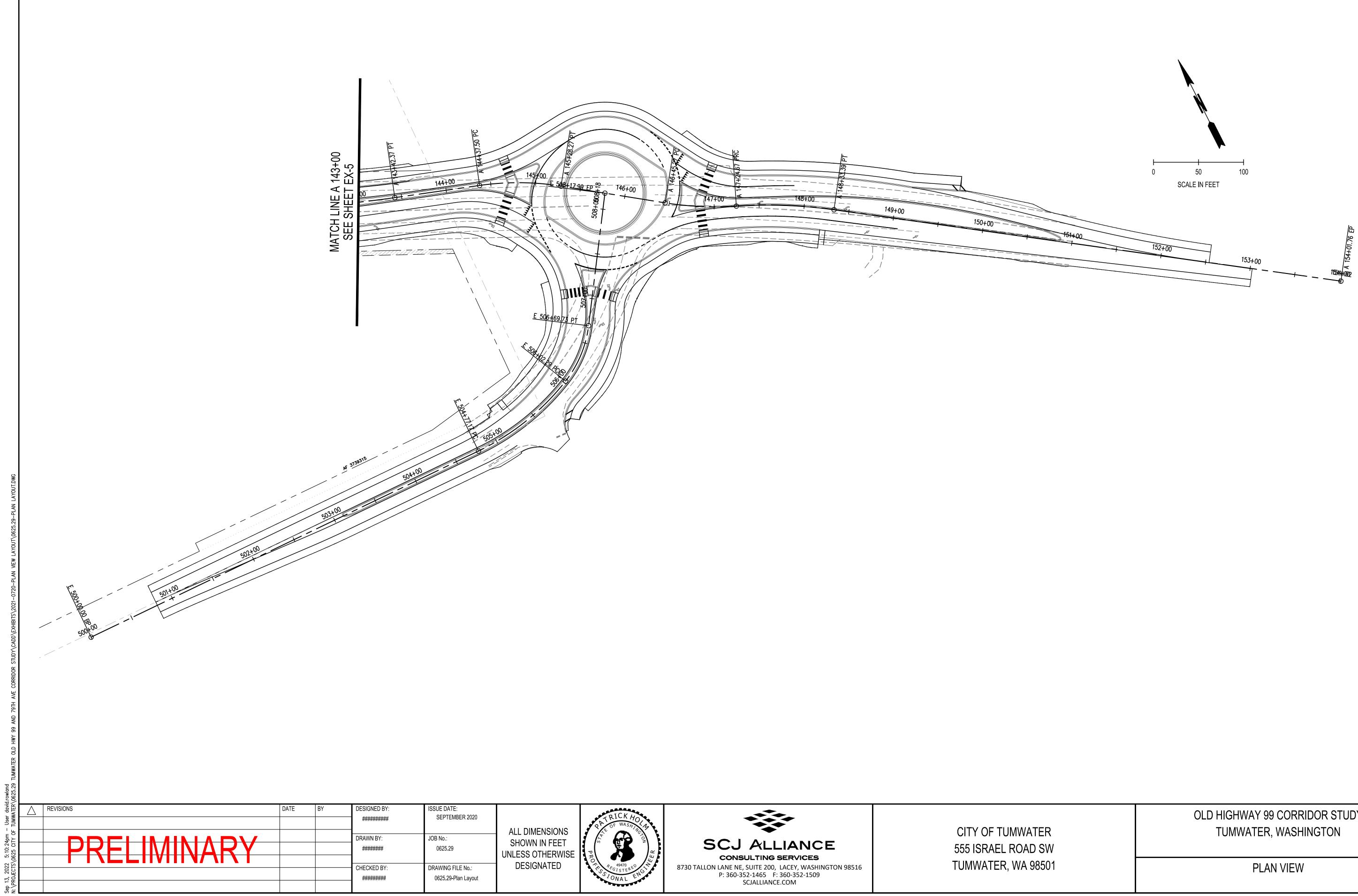



N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:09:37 PM, AutoCAD PDF (General Documentation).pc3

00+ 00 ШЦ Ц MATCH I SEE S 45+00 `F MATCH LINE A SEE ABOV \prec 710 56+00 IEET ATCH LINE D SEE THIS SHE ____ 50 100 SCALE IN FEET REVISIONS DESIGNED BY: SSUE DATE: DATE \wedge SEPTEMBER 2020 ############ JOB No.: DRAWN BY: RY PR 0625.29 ######### DRAWING FILE No .: CHECKED BY: 0625.29-Plan Layout ##########

N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:09:47 PM, AutoCAD PDF (General Documentation).pc3


S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M



N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:10:02 PM, AutoCAD PDF (General Documentation).pc3

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:10:16 PM, AutoCAD PDF (General Documentation).pc3

N:\Projects\0625 City of Tumwater\0625.29 Tumwater Old Hwy 99 and 79th Ave Corridor Study\CADD\Exhibits\2021-0720-Plan View Layout\0625.29-Plan Layout.dwg, 9/13/2022 5:10:21 PM, AutoCAD PDF (General Documentation).pc3

S. 2, 11, 12, 13 & 14, T. 17 N., R. 2 W., W.M

OLD HIGHWAY 99 CORRIDOR STUDY TUMWATER, WASHINGTON	DRAWING No.: EX-6
PLAN VIEW	SHEET No.: 6 OF 14

APPENDIX G - ENVIRONMENTAL TECH MEMO

Technical Memo

ToCity of TumwaterFrom:David Rowland, PEDate:September 13, 2022Project:0625.29 – Old Highway 99 Corridor StudySubjectEnvironmental Considerations

Introduction

Our Environmental assessment follows the premise laid out in Part 4 – Environmental Considerations from the NEPA CE Categorical Exclusion Documentation Form. Considerations include thirteen elements to identify impacts and the plan for mitigation when needed. Each of these elements are evaluated at a preliminary level to identify potential mitigation in the future and to inform where potential considerations will impact design.

1. Air Quality

Improvements to Old Highway 99 will increase capacity by adding additional lanes for the Old Highway 99 Corridor and the introduction of roundabouts at multiple intersections. Therefore, each of the phases of the project will be evaluated for the air quality impacts. Currently, no pollutants pose persistent air quality problems subject to the Clean Air Act currently. And while air quality mitigation is not anticipated, each phase of the project will have to be further evaluated prior to completion of design.

2. Critical Areas

Critical Areas for Old Highway 99 corridor improvements from 73rd avenue to 93rd avenue were evaluated for this study to determine if there were any potential mitigation needs moving forward.

Sole Source Aquifers

Looking at a map of Sole Source Aquifers from ESA ArcGIS Maps, it was determined that this project falls outside any sole source aquifers. No mitigation anticipated.

Species Habitat

Species that are impacted from the ESA list are Mazama Pocket Gopher and Streaked Horned Lark designated critical habitats or suitable habitats. Further investigation to how this project impacts these species will have to be evaluated for each phase of the project.

See Appendix A for Mazama Pocket Gopher Map.

Wetlands

No wetlands are present for the Old Highway 99 improvements and do not need to be considered for mitigation.

3. Cultural Resources/Historic Structures

For the Study, Cultural Resources and Historic Structures where considered. Two sites were identified as areas to be considered for the Old Highway 99 improvements.

Historic Oak Tree

Located adjacent to Old Highway 99 (formerly Pacific Highway), the garry oak tree stands between 70 and 100 feet high and is 16 feet in circumference. The Oregon white oak (Quercus garryana) or garry oak is the only native oak of Washington.

The tree is significant as a specimen tree of the garry oak species. This tree will be protected.

George Washington Bush Interpretive Site

The George Washington Bush Interpretive Site is a four-sided kiosk designed to be reminiscent of the gable of the W. O. Bush home. On the four sides are interpretative panels about the legacy of the Bush family. Two of the panels are replicas of the Jacob Lawrence George Bush Series of paintings.

This marker commemorates the legacy of the George and Isabella and William O and Mandana Bush Families. This land is part of the original Bush donation claim. The Bush family came with the first permanent American settlement to Tumwater in 1845, settling just east of this marker along the Deschutes River.

Property take will be necessary for this location due to its proximity to the proposed roundabout. There is opportunity to incorporate the interpretive site into the design of the roundabout to provide more accessibility to the site. Currently, the interpretive site is hard to access for pedestrians and bicycles because there are none accommodating facilities passing this site. Further evaluation of incorporating the design with the interpretive site will be required.

See Appendix B – Historic Properties Report for additional information regarding these sites.

4. Floodplains and Floodways

Evaluation of the 100-year flood revealed that improvements from 73rd Avenue to 93rd Avenue do not fall within the 100-year floodplain area. No mitigation anticipated. Refer to **Appendix C** – Flood Plan Exhibits for reference.

5. Hazardous and Problem Waste

Excavation Below Existing Ground

Roadway improvements will require the excavation of existing ground. Excavation could expose an abandoned underground storage tanks or a forgotten dump site. Known locations are near the roundabout intersections where we have stormwater bioretention facilities planned. Also, in any locations where catch basins and storm pipes are placed, this will require excavation of existing ground. In addition, illumination installation will require excavation for conduit and junction box installation. The City should consider where chemicals may have been historically used prior to enactment of modern environmental laws.

Groundwater

Thurston County's Geodata map was consulted to verify that no groundwater hazards are located on the project site. No mitigation anticipated. See **Appendix D** for High Ground Water Map.

Property Impacts

Property will have to be acquired as a part of the project to provide the amount of right of way necessary for the project. Property acquired and relocated will have to be evaluated in light of Environmental Justice as laid out in section 13.

Site Location with Respect to Development

None of the future improvements are in undeveloped areas including building, parking, storage areas, or agriculture.

Identified Sites by Department of Ecology Near Project

Upon investigation of the Department of Ecology data base, it was determined that there are three sites that fall within a ½ mile radius of the project that have a history of hazardous and problem waste. Below locations that have a history of hazardous and problem waste:

- Deschutes Animal Clinic Inc
- Pearson Air Inc.
- Gower Flying Service

All these sites have been marked complete for cleanup. There are no current hazardous and problem waste sites that border the project site limits.

Site Reconnaissance

At the intersection of 79th Avenue and Old Highway 99 there will be property impacted that is currently operates a gas station. This property potentially has hazardous or problem waste and will require a Phase 1 Environmental Site Assessment.

Also, the project may require the acquiring of property from a Pick-n-Pull site. This site also has potential for hazardous and problem waste and may require a Phase 1 Environmental Site Assessment.

6. Noise

Improvements to Old Highway 99 will increase capacity by adding additional lanes for the Old Highway 99 Corridor and the introduction of roundabouts at multiple intersections. Therefore, each of the phases of the project will be evaluated for the noise impacts and whether the widening moves traffic closer to noise receptors.

7. 4(f)/6(f) Resources

This project impacts part of the G.W. Bush Historic Site. Part of the anticipated roundabout will impact some of this historic site. And evaluation of how much impact and mitigation will need to take place will be created for this site.

Additionally, this project passes close to an historical oak tree discussed in section 6.1.3.1.

8. Agricultural Lands

Project limits will not extend into Agricultural Lands. No mitigation anticipated.

9. Rivers, Streams, or Tidal Waters

At the end of the project near Old Highway 99 and 93rd Avenue, the Deschutes River falls within 300 feet of the existing roadway. We do not anticipate that the Old Highway 99 future improvements will impact the nearby river. Buffer impacts will be evaluated during the design phase of that project.

See **Appendix F** for Rivers and Streams Exhibit.

10. Tribal Lands

Assessing the tribal lands in the area, the Old Highway 99 corridor improvements from 73rd Avenue to 93rd Avenue does not fall within tribal lands. See **Appendix G** for Tribal Lands Map.

11. Water Quality/Stormwater

Stormwater for the corridor improvements will be treated and follow guidelines provided by the 2022 *Drainage Design and Erosion Control Manual for Tumwater*. A stormwater evaluation was conducted for the Old Highway 99 Corridor Study.

12. Previous Environmental Commitments

There are no previous environmental commitments on or bordering the Old Highway 99 improvement project site.

13. Environmental Justice

The study used the EJSCREEN map provided by the Environmental Protection Agency (EPA) to determine the level of limited English proficiency, the population by race, and the number of low-income households. Further evaluation will have to be conducted as a part of each phase for meet the Environmental Justice requirements.

1.1.1.1 Limited English Proficiency

Information on race/ethnicity is useful in identifying populations with limited ability to understand English and the need for translation services. The U.S. Department of Justice recommends that agencies consider providing language translation services if an ethnic group with a primary language other than English comprises 5 percent, or 1,000 persons or more, of an area. For example, if 5 percent or more of an area's population is Hispanic, there is a strong possibility that individuals may be limited in their understanding of English, thereby limiting their ability to participate in the project decision-making process. In this case, translation and interpreter services should be provided.

The ACS Summary Report identifies that the population of the Environmental Justice Area has 1 percent of the population that "speak English less than well." According to the U.S. Department of Justice recommendations, translation services are not required. However, if during the proposal or project process a person is identified as a person who "speaks English less than well," interpretation services will be provided.

1.1.1.2 Population by Race

A determination of the presence of an EJ population was conducted using the EJSCREEN ACS Summary Report and the EJSCREEN Census 2015-2019 Summary Report. Table 6.1 summarizes the 2015-2019 census data for the area within ½ mile each side of centerline of the project.

Minority	Number of Persons	Percentage
White Alone	1567	80%
Hispanic or Latino (of any race)	170	9%
American Indian and Alaskan Native Alone or in Combination	7	0%
Black or African American Alone or in Combination	64	3%
Asian Alone or in Combination	37	2%
Native Hawaiian and Other Pacific Islander Alone or in Combination	13	1%
Some Other Race Alone or in Combination	104	5%

Table 6.1 Population by Race Along Old Highway 99

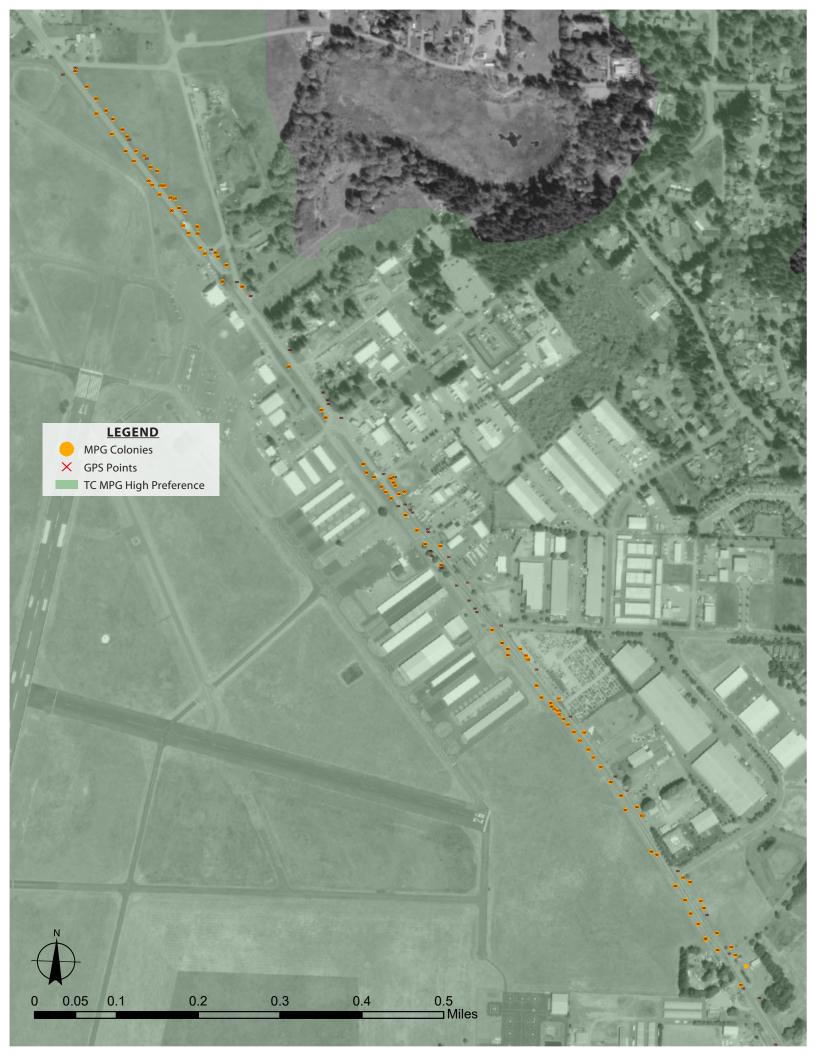
TOTAL POPULATION 1962 100%

The closest elementary school is East Olympia Elementary School. The school demographic data is shown in Table 2 and does verify the census data, in summary. Because the study area and the school district boundary do not fully overlap, these differences are likely due to a difference in geographical boundaries.

Minority	Number of Persons	Percentage
White Alone	339	65%
Hispanic or Latino (of any race)	110	21%
American Indian and Alaskan Native Alone or in Combination	1	0%
Black or African American Alone or in Combination	14	3%
Asian Alone or in Combination	18	4%
Native Hawaiian and Other Pacific Islander Alone or in Combination	1	0%
Some Other Race Alone or in Combination	36	7%
TOTAL POPULATION	519	100%

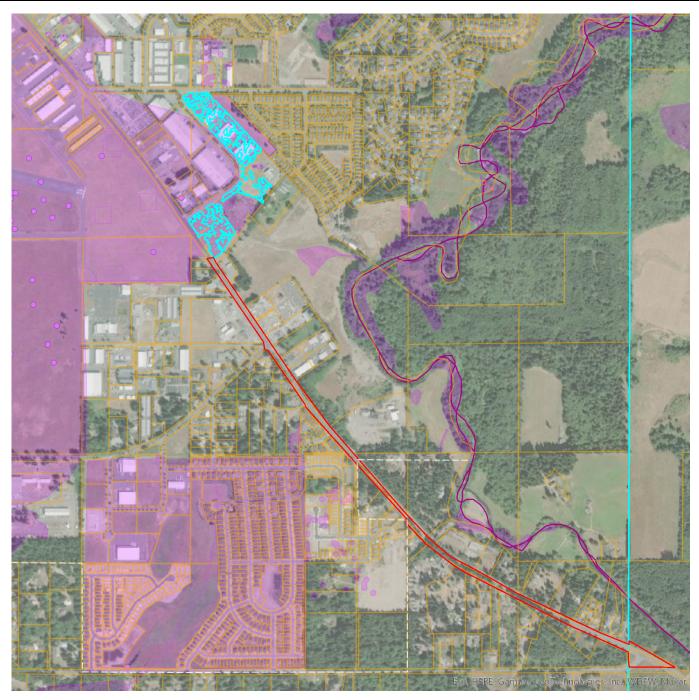
Table 6.2 Population by Race for East Olympia Elementary

1.1.1.3 Low Income Households


Additionally, the study area is made up of 193 low-income households (23 percent), of a total of 848 total households. This is less than Thurston County's rate of 30 percent of low-income households.

It has not been determined for the property acquisitions and relocations if they will require any EJ mitigation, and evaluation of the property and their owners will need to be conducted on each phase of the project where we have major parcel takes and relocations. For EJSCREEN ACS Summary Reports see **Appendix H.**

LIST OF APPENDICES


- Appendix A Mazama Pocket Gopher Map
- Appendix B Historic Properties Reports
- Appendix C Flood Plain Exhibits
- Appendix D High Groundwater Map
- Appendix E Agricultural Lands
- Appendix F Rivers and Streams
- Appendix G Tribal Lands Map
- Appendix H EJ Screen Reports

Appendix A - Mazama Pocket Gopher Map And Priority Habitat Species Report

Priority Habitats and Species on the Web

Report Date: 08/24/2022

User Comments/Notes:

Report spans from 84th Avenue to 93rd Avenue.

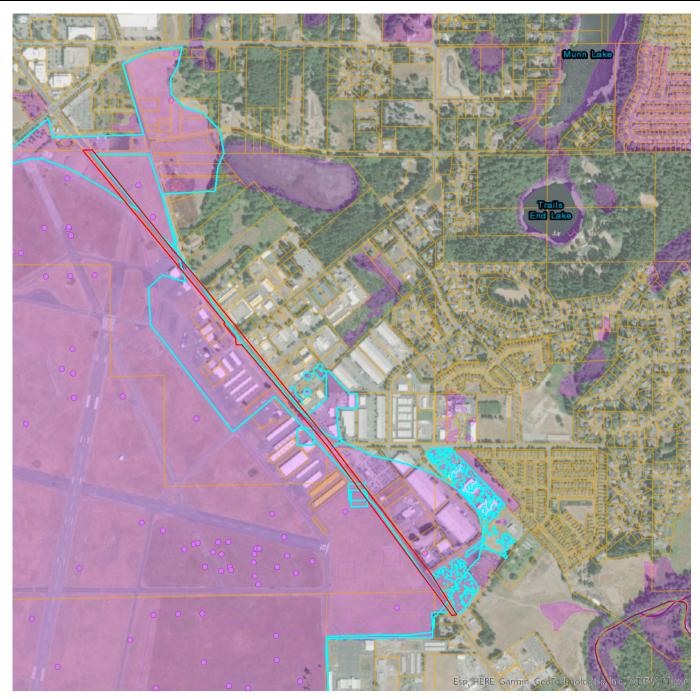
PHS Species/Habitats Overview:

Occurence Name	Federal Status	State Status	Sensitive Location
Mazama (Western) pocket gopher	Threatened	Threatened	No
Big brown bat	N/A	N/A	Yes
Townsend's Big-eared Bat	N/A	Candidate	Yes

PHS Species/Habitats Details:

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	DESCHUTES INDUSTRIAL
Accuracy	Map 1:12,000 <= 33 feet
Notes	MAZAMA POCKET GOPHER MOUND CONCENTRATION AREA. NO MOUND COUNT PROVIDED.
Source Record	4426
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	CAPELLI, C./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Big brown bat	
Scientific Name	Eptesicus fuscus
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS Listed Occurrence
Sensitive	Y
SGCN	Ν
Display Resolution	TOWNSHIP
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00605


Big brown bat	
Scientific Name	Eptesicus fuscus
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS Listed Occurrence
Sensitive	Y
SGCN	Ν
Display Resolution	TOWNSHIP
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00605

Townsend's Big-eared Bat			
Scientific Name	Corynorhinus townsendii		
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.		
Federal Status	N/A		
State Status	Candidate		
PHS Listing Status	PHS Listed Occurrence		
Sensitive	Y		
SGCN	Y		
Display Resolution	TOWNSHIP		
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00027		

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW biologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necessary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.

Priority Habitats and Species on the Web

Report Date: 08/24/2022

User Comments/Notes:

This report spans from 73rd Avenue to 84th Avenue SE.

PHS Species/Habitats Overview:

Occurence Name	Federal Status	State Status	Sensitive Location
Streaked horned lark	Threatened	Endangered	No
Oregon vesper sparrow	N/A	Candidate	No
Mazama (Western) pocket gopher	Threatened	Threatened	No
Big brown bat	N/A	N/A	Yes
Townsend's Big-eared Bat	N/A	Candidate	Yes

PHS Species/Habitats Details:

Streaked horned lark	
Scientific Name	Eremophila alpestris strigata
Priority Area	Breeding Area
Site Name	OLYMPIA AIRPORT
Accuracy	1 mile (Section)
Notes	STREAKED HORNED LARK NESTS ON OLYMPIA AIRPORT.
Source Record	912954
Source Dataset	PHSREGION
Source Name	MCALLISTER, KELLY
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Endangered
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00026
Geometry Type	Polygons

Pooecetes gramineus affinis
Breeding Area
OLYMPIA AIRPORT
1 mile (Section)
OREGON VESPER SPARROW NESTS ON OLYMPIA AIRPORT.
912962
PHSREGION
MCALLISTER, KELLY
WA Dept. of Fish and Wildlife
N/A
Candidate
PHS LISTED OCCURRENCE
Ν
Y
AS MAPPED
http://wdfw.wa.gov/publications/pub.php?id=00026
Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	OLYMPIA AIRPORT
Accuracy	GPS
Notes	MAZAMA POCKET GOPHER MOUND SYSTEMS (6,040 SURFACE MOUNDS) RECORDED OVER VIRTUALLY ALL OPEN GRASSLAND AREA AT OLYMPIA AIRPORT. POLYGON COVERS ALL 29 OCCUPIED PROJECT ZONES DELINEATED FOR SAMPLING AREA ID'S. DENSITIES DIFFER ACROSS ZONES.
Source Record	3555
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	CAPELLI, C./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Υ
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	PERF SOUND INVESTMENT
Accuracy	GPS
Notes	MAZAMA POCKET GOPHER MOUND CONCENTRATION
Source Record	3725
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	SCHMIDT, T/WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	OLYMPIA AIRPORT
Accuracy	Standard buffer
Notes	WESTERN POCKET GOPHER MOUND SYSTEM SCATTERED OVER ENTIRE AIRPORT AND SURROUNDING AREAS. MUCH PRAIRIE HAS BEEN CONVERTED TO GROWING CHRISTMAS TREES, GOPHERS EXIST AMONG THESE TREES AS WELL AS IN UNALTERED AREAS. 5 IO TRAPPED.
Source Record	3160
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	WALKER, M./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	N
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	OLYMPIA AIRPORT
Accuracy	Standard buffer
Notes	MAZAMA (WESTERN) POCKET GOPHER MOUND. LIVE CAPTURE AND RELEASE. AMINAL MARKED WITH RED NAIL POLISH
Source Record	3169
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	SCHMIDT, A/WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	N
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	OLYMPIA AIRPORT
Accuracy	Standard buffer
Notes	MAZAMA (WESTERN) POCKET GOPHER MOUND. LIVE CAPTURE AND RELEASE. AMINAL MARKED WITH RED NAIL POLISH
Source Record	3171
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	SCHMIDT, A/WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	DESCHUTES INDUSTRIAL
Accuracy	Map 1:12,000 <= 33 feet
Notes	MAZAMA POCKET GOPHER MOUND CONCENTRATION AREA. NO MOUND COUNT PROVIDED.
Source Record	4426
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	CAPELLI, C./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

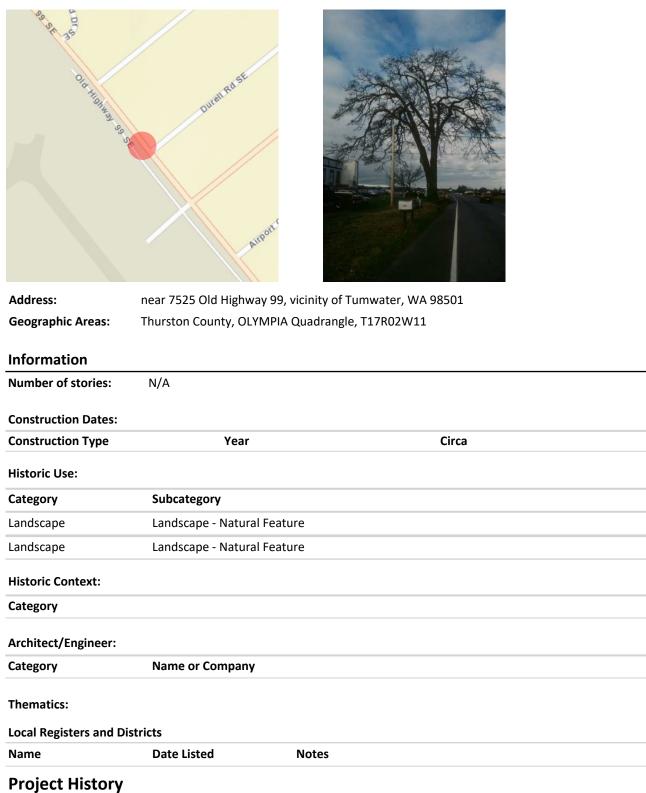
Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	79TH AVE SE
Accuracy	GPS
Notes	PARCEL BOUNDARY MAPPED. EXTENDED AT SOUTHERN POINT TO INCLUDE ADDITIONAL MOUND WAYPOINT.
Source Record	4738
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	CAPELLI, C./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Mazama (Western) pocket gopher	
Scientific Name	Thomomys mazama
Priority Area	Occurrence
Site Name	PORT OF OLYMPIA AIRPORT - BONNIEWOOD
Accuracy	GPS
Notes	MAZAMA (WESTERN) POCKET GOPHER MOUND CONCENTRATION. 2016: LOC UPDATED TO COUNTY GOPHER HAB PROTECTION AREA PER WDFW REVIEW.
Source Record	4317
Source Dataset	WS_OccurPolygon
Source Date	WS_OccurPolygon
Source Name	SCHMIDT, T/WDFW;OLSON, G./WDFW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	Threatened
State Status	Threatened
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	N
SGCN	Y
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=01175
Geometry Type	Polygons

Big brown bat	
Scientific Name	Eptesicus fuscus
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS Listed Occurrence
Sensitive	Y
SGCN	Ν
Display Resolution	TOWNSHIP
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00605

Townsend's Big-eared Bat	
Scientific Name	Corynorhinus townsendii
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.
Federal Status	N/A
State Status	Candidate
PHS Listing Status	PHS Listed Occurrence
Sensitive	Y
SGCN	Y
Display Resolution	TOWNSHIP
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00027

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW biologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necessary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.


Appendix B – Historic Properties Reports

Resource Name: Oak Tree

Property ID: 20170

Location

Resource Name: Oak Tree

Property ID: 20170

Project Number, Organization,	Resource Inventory	SHPO Determination	SHPO Determined By,
Project Name			Determined Date

Resource Name: Oak Tree

Property ID: 20170

Photos

Tree

Original HPI form(s)

Resource Name: Oak Tree

Property ID: 20170

Inventory Details - 1/1/1900

Common name:	Meeker Oak Tree (#34-169)
Date recorded:	1/1/1900
Field Recorder:	
Field Site number:	3465
SHPO Determination	

Resource Name: Oak Tree

Property ID: 20170

Inventory Details - 4/1/1998

Common name:	Meeker Oak Tree (#34-169)
Date recorded:	4/1/1998
Field Recorder:	Shanna Stevenson
Field Site number:	3465
SHPO Determination	

Detail Information

Surveyor Opinion

Significance narrative:	The tree is significant as a specimen tree of the garry oak species. Rob Kavanaugh an expert on Oregon white oak estimates the tree to be approximately 400 years old. Although coring has been attempted, the tree is too hard to permit examination. The tree also represents the ecology of the native peoples. Native peoples managed the landscape to provide for their food gathering needs. An 1853 survey of the area notes the it was widely burned and we know that the Bush family and others settled here because of the open prairie. This helped the oak tree by eliminating the over-canopy of fir trees for the sun-loving oak. The burning was done to open areas so that the prairie food plants, most notably camas, could thrive. This tree has stood over the centuries because of that land management.
	The acorns from oak trees such as this were a vital part of the native peoples diet. Del McBride notes:
	"The Squalli ate a lot of acorns. These acorns were cooked in the ground like camas, with hot rocks underneath, covered with dirt, fire on top. After the acorns were cooked, they were put into open-work baskets and these baskets were The acorns must be completely covered with water and mud. This mode of caching was never done without first cooking the acorns. When acorns were taken out of the water, they were ready to eat and not cooked again." Originally published in LURE LORE, Vol. X, No. 1 (Fall 1991) by the Nisqually Reach Nature Center.
	Cecelia Svinth Carpenter notes:
	" Acorns required more care. They contained a bitter taste which could be removed either by boiling or by burying them in the mud by a stream. Acorns were roasted in the embers of the cooking fire and ground into a meal that could be molded into patties or used to make a gruel or soup." in THE SEASONAL ROUND OF LIFE IN TRADITIONAL TIMES, published by the Washington State Capital Museum.
	Marian Smith describes the use of acorns:
	"Acorns were gathered wherever they could be found and salt water groups made special trips to prairie groves to obtain them. They were eaten raw or pit-baked. The baked nuts were eaten alone or sometimes with salmon eggs. They were also pounded up and boiled with fish, apparently in the same way as roots. After they were baked, they could be stored in baskets lined with leaves and submerged in still water." The Puyallup-Nisqually, page 251.

Resource Name: Oak Tree

	Oak was also used by native peoples for digging sticks for root foodstuff when an antler handle was attached. Other possible products were yellow face paint made from the decaying bark of the oak tree, hide scraping tools, braces for dip nets and firewood.
	The tree is also on the historic northern branch of the Oregon Trail, the Cowlitz Trail and undoubtedly has seen the progression of human habitation from native peoples, the Hudson's Bay Company and this area's earliest American settlers. The tree was undoubtedly of significant size 150 years ago to be noted by those who passed by and perhaps was a landmark on this part of the trail.
	The tree is part of the donation land claims of James and Samuel Dunlap who settled in the area in 1852. They are buried in the Bush/Union Cemetery. A smaller grove of garry oaks was removed from across the road from the tree in 1994, some of which were 100 years old and could have been the progeny of this tree.
	In 1984 a community effort saved the tree when the highway was being improved in this area and the right-of-way was re-routed and a barrier installed to insure its security. This signalled its landmark status to the community.
	Although various stories about its being the "Meeker Oak" have been circulated, no direct connection with Ezra Meeker has been established. When Meeker made his epic retracing of the Oregon Trail in 1906, he set a marker post in Tumwater and then took the train to Tenino, his next stop instead of driving his team on this section of the trail. Other stories about its being an Indian gathering site have not been verified.
Physical description:	Located adjacent to Old Highway 99 (formerly Pacific Highway), the garry oak tree stands between 70 and 100 feet high and is 16 feet in circumference. The Oregon white oak (Quercus garryana) or garry oak is the only native oak of Washington. It was named by David Douglas in 1820 after his friend Nicholas Garry of the Hudson Bay Company. The tree presents a broad canopy over Old Highway 99.
Bibliography:	 Kavanaugh, Rob, Washington Oak habitat: a plan for managing the oak forests of Washington State, Columbia Gorge Audubon Society, 1991 Correspondence from Jack Davis, 1987, 1994. Smith, Marian, The Puyallup-Nisqually, AMS Press, New York, reprint 1969. Carpenter, Cecelia Svinth, "The Seasonal Round of Life in Traditional Times," State Capital Museum, n.d. McBride, Del "When the Prairie Camas Bloom: Some Notes on edible Plants Among the Puget Sound Indians," Luhr Lore, Vol.X, No. 1 (Fall 1991), Nisqually Reach Nature Center. Information from 1853 Survey Notes, microfilm, Washington State Library. Telephone interviews, Rob Kavanaugh, Jack Davis and Joe Roush. Previous documentation on file (THPC)

Resource Name: Bush Interpretative Kiosk

Property ID: 19018

Location

Address:	, Olympia, WA 98501
Tax No/Parcel No:	12713230405
Plat/Block/Lot:	Metes and Bounds
Geographic Areas:	Thurston County, MAYTOWN Quadrangle, T17R02W13

Information

Number of stories:

N/A

Construction Dates:

Construction Type	Year	Circa
Built Date	1997	

Historic Use:

Category	Subcategory
Recreation and Culture	Recreation and Culture - Monument/Marker
Recreation and Culture	Recreation and Culture - Monument/Marker

Historic Context:

Category	
Ethnic Heritage	

Architect/Engineer:

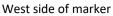
Category	Name or Company
Architect	Carlsson, Lars

Resource Name: Bush Interpretative Kiosk

Property ID: 19018

Thematics:

Name	Date Lis	ted N	otes	
Project History				
Project Number, Orga Project Name	nization,	Resource Inventory	SHPO Determination	SHPO Determined By Determined Date
2006-01-00006, , Thur 2002	ston County	1/1/1900	Not Determined	



Resource Name: Bush Interpretative Kiosk

Property ID: 19018

Photos

Resource Name: Bush Interpretative Kiosk

Property ID: 19018

Inventory Details - 1/1/1900

Common name:	Bush Interpretative Site (#34-350)
Date recorded:	1/1/1900
Field Recorder:	Shanna Stevenson
Field Site number:	126
SHPO Determination	

Detail Information

Surveyor Opinion

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Significance narrative:

This marker commemorates the legacy of the George and Isabella and William O and Mandana Bush Families. This land is part of the original Bush donation claim. The Bush family came with the first permanent American settlement to Tumwater in 1845, settling just east of this marker along the Deschutes River. George Bush was a mulatto who settled in Tumwater in 1845 with his wife Isabella and five sons as part of the first permanent American settlement on Puget Sound. He was a highly respected and expert farmer. He had come to the area north of the Columbia River to escape the restrictive land laws of Oregon against men of color. In fact it took an act of Congress, spurred by Washington legislative action, to grant him and his wife their land. Bush's family were also outstanding. His son, William Owen Bush was a member of the first state legislature and with his family grew world renown produce from what is now known as Bush Prairie. This produce was exhibited at several world's fairs and exhibitions.

As some of the earliest American settlers on Puget Sound in 1845, George and Isabella Bush with their family played a vital role in the beginnings of Washington Territory. Bush's story is even more remarkable because he was a mulatto who overcame prejudice and discrimination to succeed as one of the areas most beloved figures.

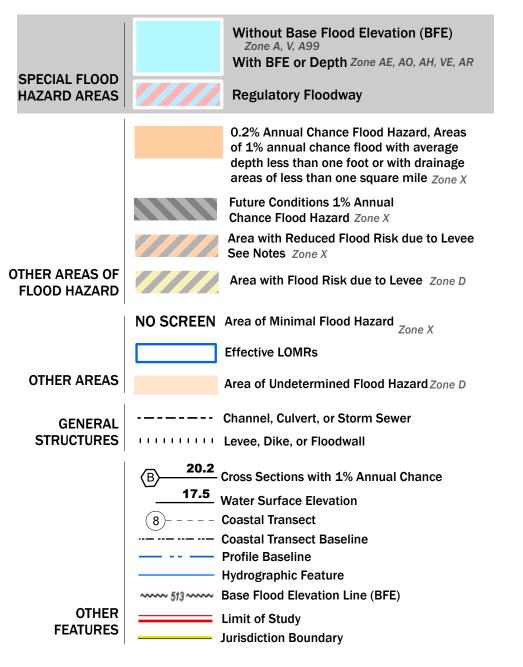
Little is known of Bush's early life. It is believed that he was the son of an East or West Indian who was married the Irish maid of a family in Pennsylvania. Their son, George traveled widely before making his way west in 1844. By some accounts he fought in the Black Hawk War, worked for a fur company and may have been at the Battle of New Orleans. It is known that he married Isabella James, an American of German ancestry on July 4, 1832, in Missouri. The became the parents of nine sons, six of whom survived to adulthood.

Feeling the pressures of prejudice in the slavery state of Missouri before the Civil War, Bush and his family joined the westward migration to the Oregon Country in 1844 with their friends and neighbors. Bush had been very successful in the cattle business and came west with excellent supplies as well has a cache of coins said to be \$2000. Bush and his party reached the Dalles in December, 1844 after a seven month journey. Bush took care of the stock at the Dalles over the while the other went on to Washougal on the Columbia River.

George Bush again met prejudice upon his arrival in the Oregon Country. This area was still under a joint occupation agreement between the U.S. and Great Britain with no formal government. However, the Oregon Provisional Government at Oregon City had passed in June, 1844 a law which excluded Negroes of all conditions from the Oregon

Resource Name: Bush Interpretative Kiosk

	 area. The sheriff, however, was not required to cross north of the Columbia to enforce the law. This provision coupled with the desire of the settlers to secure an American foothold north of the Columbia River drove Bush and his party of 30 Americans to Puget Sound where they arrived in November, 1845. By 1846, the Boundary line was settled and the Bush Party had established New Market, later Tumwater at the falls of the Deschutes River as it entered Puget Sound, now part of the United States. Bush, an accomplished farmer, and his family quickly established a fine farm which encompassed this site. Because of their hospitality and generosity the farm became a noted stopping off place on the Cowlitz Trail which brought settlers north to Puget Sound from the Oregon Trail. Bush was also instrumental in establishing the first mills at the falls of the Deschutes River. While other white settlers were entitled to free land under the provisions of the Donation Land Claim Law passed in 1850, it took an act of the U.S. Congress to grant George and Isabella Bush their land because of their color. Fifty-five members of the newly formed Washington Territorial Legislature petitioned Congress to grant them their land. Beloved by his neighbors and friends, Bush died in 1863 and was followed by his wife in 1866 but their legacy continued with their sons who continued to live on the land. The kiosk was constructed on donated land by the Thurston County Historic Commission with donations from many community groups.
Physical description:	Four sided kiosk designed to be reminiscent of the gable of the W. O. Bush home. On the four sides are interpretative panels about the legacy of the Bush family. Two of the panels are replicas of the Jacob Lawrence George Bush Series of paintings.
Bibliography:	Palmer, Gayle, ed. The River Remembers, City of Tumwater, 1995, article, George Bush of Tumwater, Washington by Dr. Darrell Milner.


Appendix C – Flood Plain Exhibits

122°52'29.62"W 46°58'N

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

NOTES TO USERS

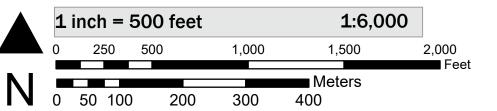
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

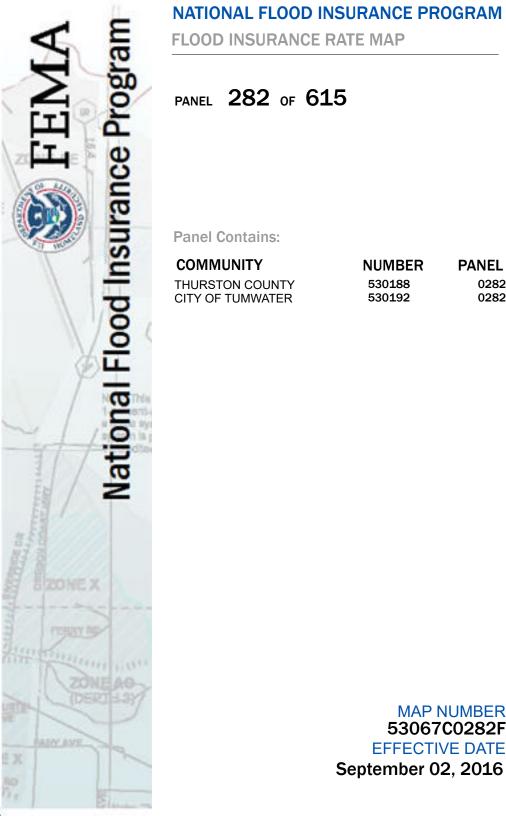
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS). The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.

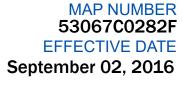

This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 8/25/2022 4:15 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88

For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov



Panel Contains:

COMMUNITY THURSTON COUNTY CITY OF TUMWATER NUMBER PANEL 530188 0282 530192

0282



122°52'29.62"W 46°56'8.44"N

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

NOTES TO USERS

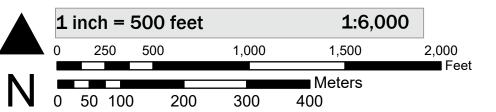
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS). The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.


This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 8/31/2022 12:58 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

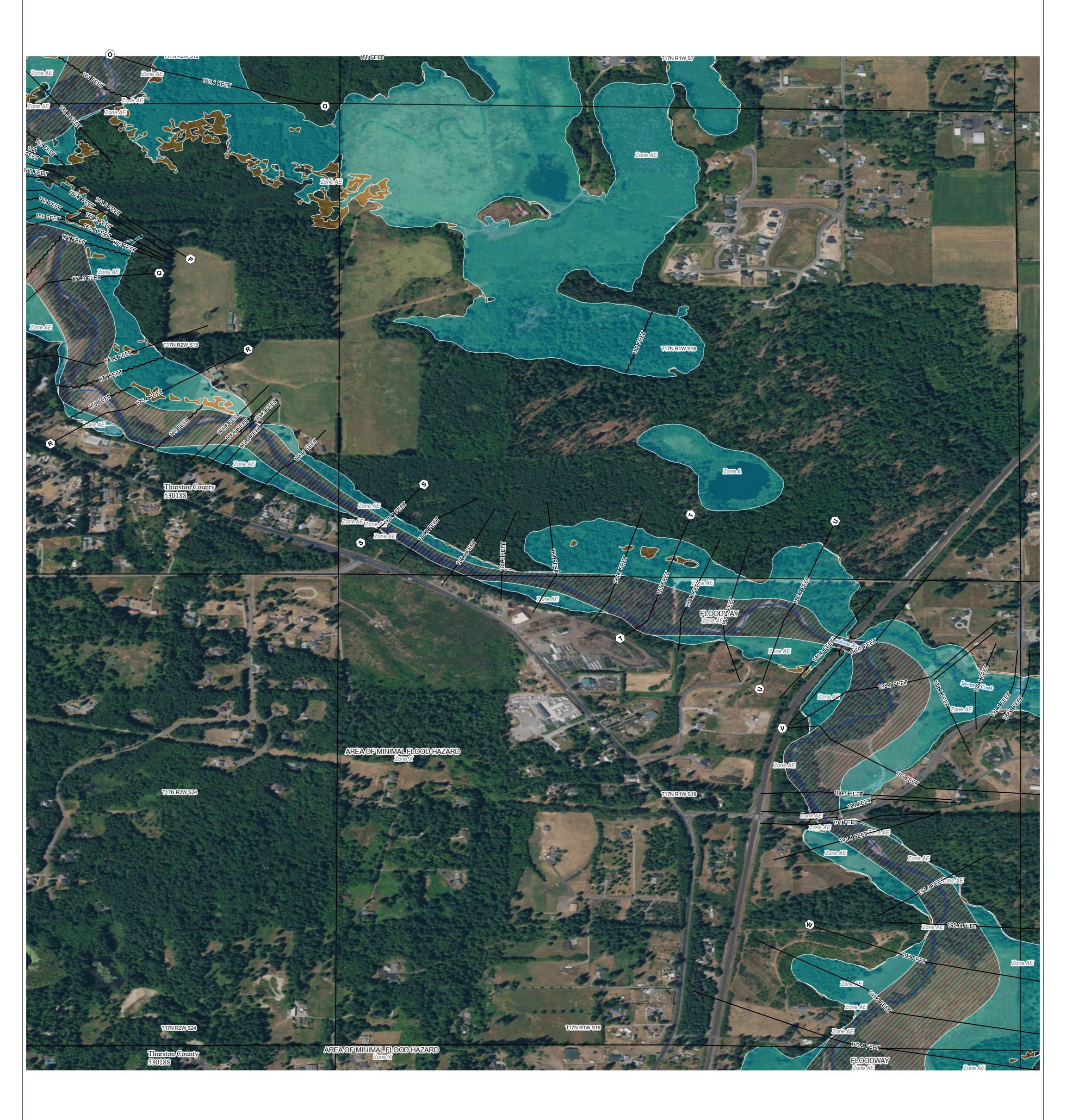
SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88

For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov

National Flood Insurance Program **FEMA** ----

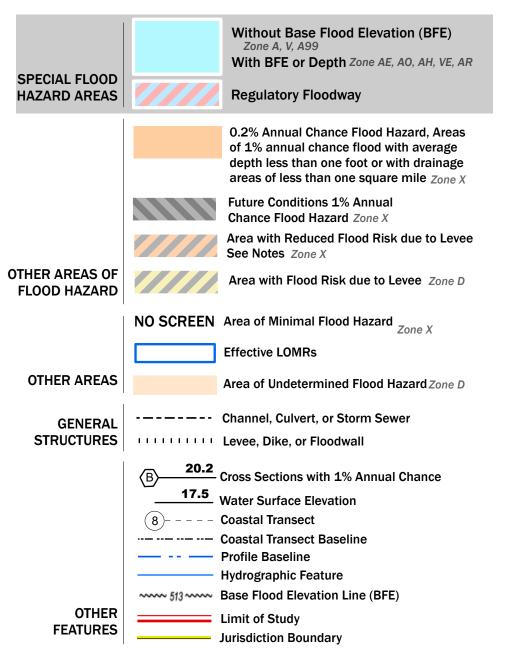
NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP



COMMUNITY CITY OF TUMWATER THURSTON COUNTY NUMBER PANEL 530192 530188

0284

0284


MAP NUMBER 53067C0284F EFFECTIVE DATE September 02, 2016

122°50'37.13"W 46°56'8.44"N

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

NOTES TO USERS

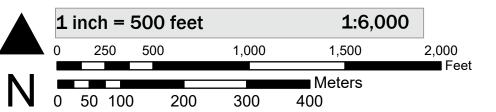
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

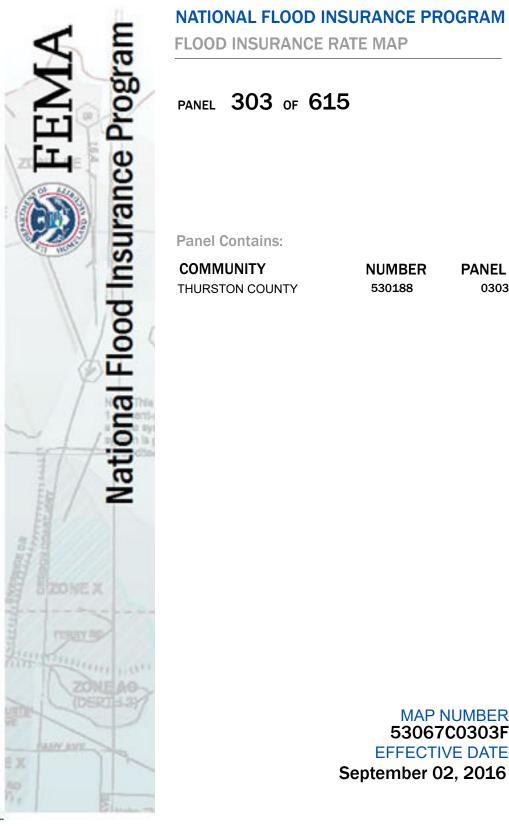
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS). The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.


This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 8/31/2022 12:56 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

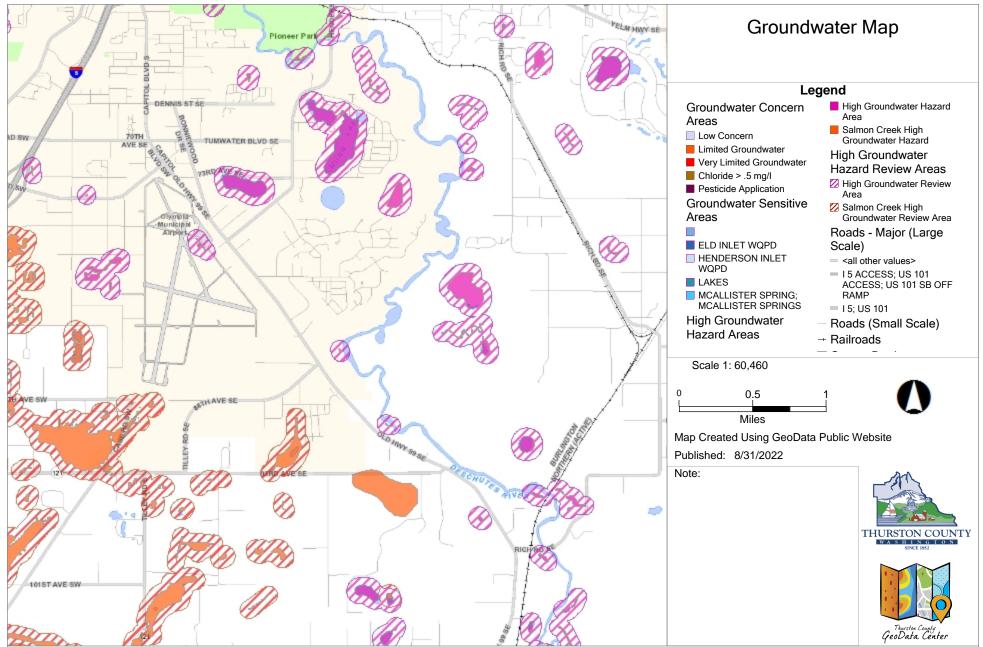
Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88

For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov

FLOOD INSURANCE RATE MAP PANEL 303 OF 615

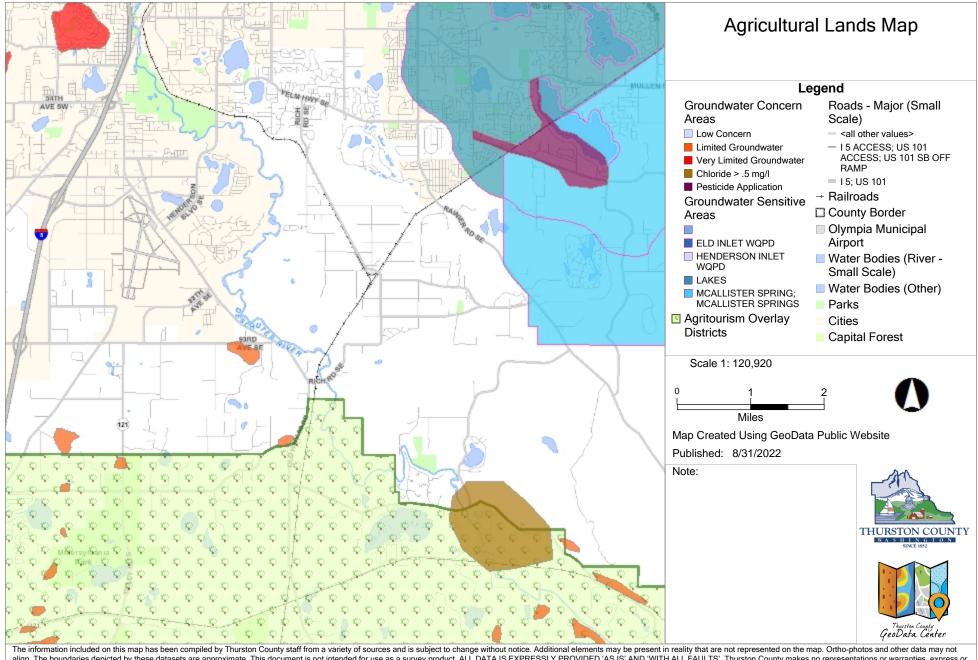
Panel Contains:

COMMUNITY THURSTON COUNTY

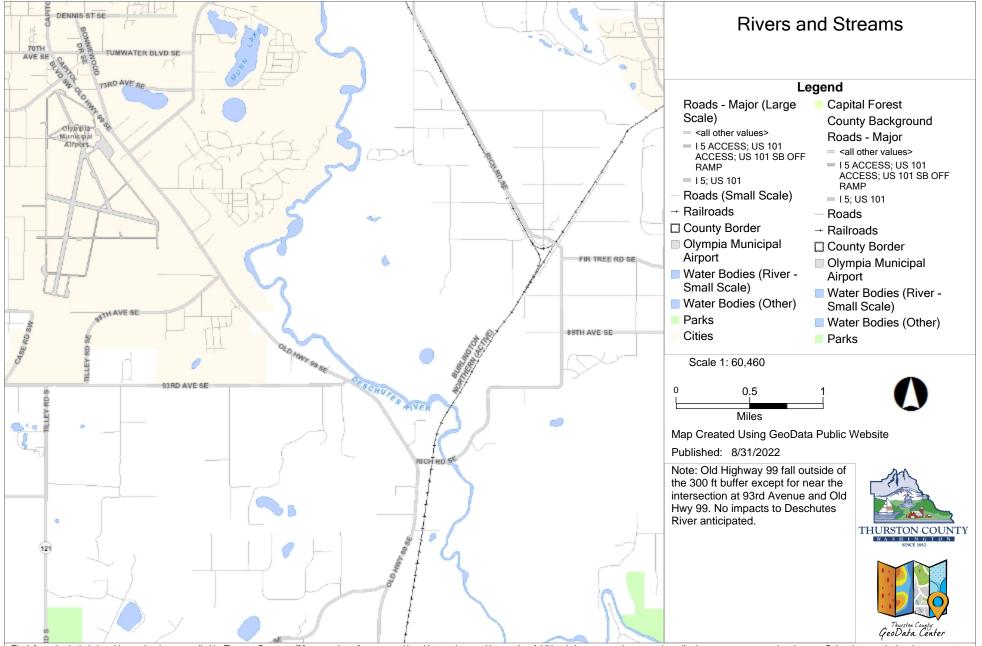

NUMBER 530188

PANEL

0303

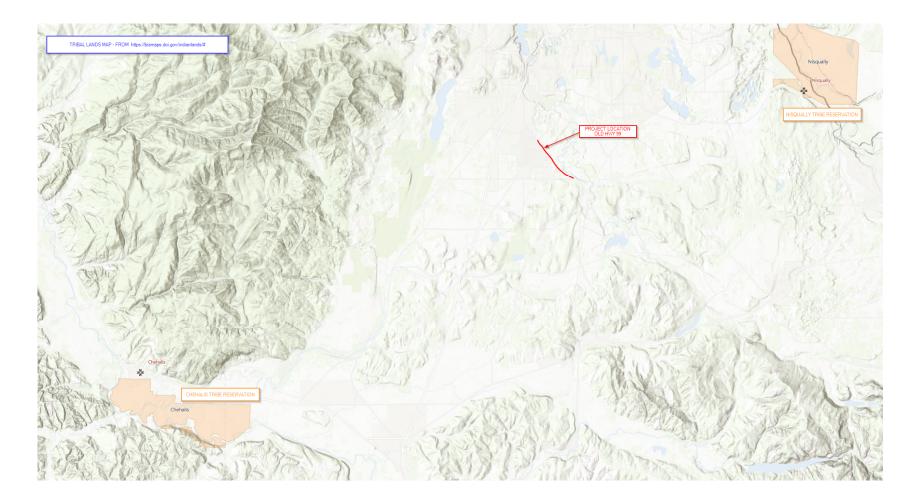

MAP NUMBER 53067C0303F EFFECTIVE DATE September 02, 2016

Appendix D – High Groundwater Map


The information included on this map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-photos and other data may not align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. Thurston County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, indirect, incidental, consequential, special, or tot damages of any kind, including, but not limited to lost revenues or lost profits, real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclamer is missing or altered, Thurston County reproduction for personal use only.

Appendix E – Agricultural Lands

The information included on this map has been compiled by information a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-protos and one rata may not align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. Thurston County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, incidental, consequential, special, or tort damages of any kind, including, but not limited to, lost revenues or lost profits, real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered, Thurston County reproduction for personal use only.


Appendix F – Rivers and Streams

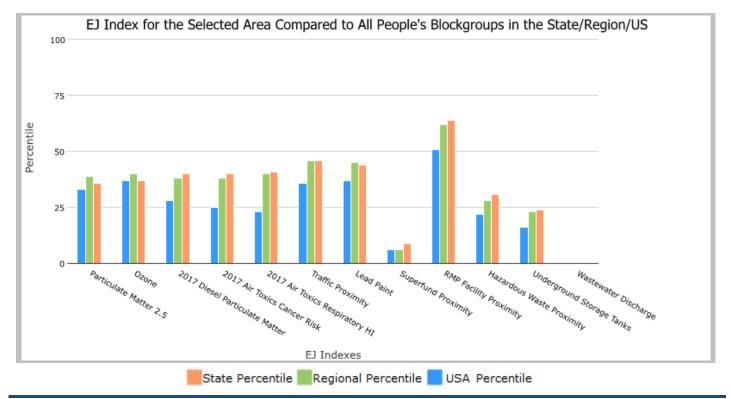
The information included on this map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-photos and other data may not align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. Thurston County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, indirect, indirect, indirect, incidental, consequential, special, or tort damages of any kind, including, but not limited to lost revenues or lost profits, real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered, Thurston County removes itself from all responsibility from the user is solely responsible for understanding the accuracy limitation ocntained in this map. Authorized for 3rd Party reproduction for personal use only.

Appendix G – Tribal Lands Map

Tribal Lands with Respect to the Project Site Exhibit

Appendix H – EJ Screen Reports

EJScreen Report (Version 2.0)


.5 miles Ring around the Corridor, WASHINGTON, EPA Region 10

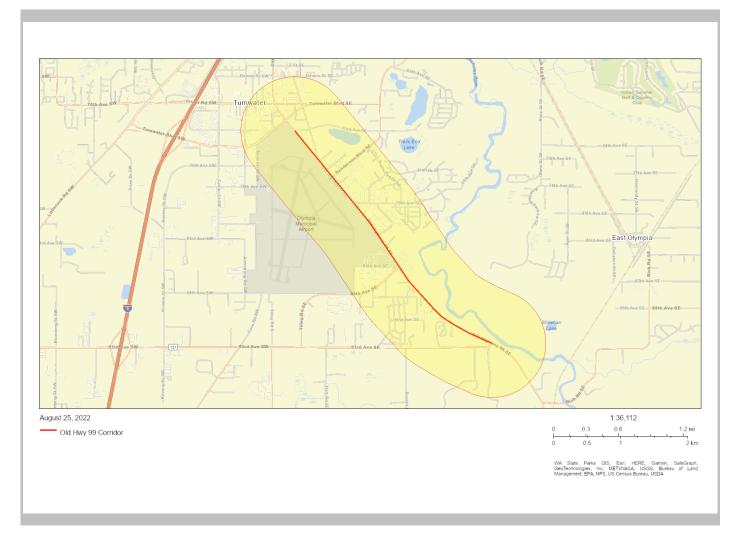
Approximate Population: 1,962

Input Area (sq. miles): 3.51

Old Hwy 99 Corridor

Selected Variables	State Percentile	EPA Region Percentile	USA Percentile		
Environmental Justice Indexes					
EJ Index for Particulate Matter 2.5	36	39	33		
EJ Index for Ozone	37	40	37		
EJ Index for 2017 Diesel Particulate Matter*	40	38	28		
EJ Index for 2017 Air Toxics Cancer Risk*	40	38	25		
EJ Index for 2017 Air Toxics Respiratory HI*	41	40	23		
EJ Index for Traffic Proximity	46	46	36		
EJ Index for Lead Paint	44	45	37		
EJ Index for Superfund Proximity	9	6	6		
EJ Index for RMP Facility Proximity	64	62	51		
EJ Index for Hazardous Waste Proximity	31	28	22		
EJ Index for Underground Storage Tanks	24	23	16		
EJ Index for Wastewater Discharge	N/A	N/A	N/A		

This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.



EJScreen Report (Version 2.0)

.5 miles Ring around the Corridor, WASHINGTON, EPA Region 10

Approximate Population: 1,962 Input Area (sq. miles): 3.51 Old Hwy 99 Corridor

Sites reporting to EPA				
Superfund NPL	0			
Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)	1			

EJScreen Report (Version 2.0)

.5 miles Ring around the Corridor, WASHINGTON, EPA Region 10

Approximate Population: 1,962

Input Area (sq. miles): 3.51

Old Hwy 99 Corridor

Selected Variables		State Avg.	%ile in State	EPA Region Avg.	%ile in EPA Region	USA Avg.	%ile in USA
Pollution and Sources							
Particulate Matter 2.5 (µg/m ³)	7.18	7.86	22	8.17	20	8.74	15
Ozone (ppb)	32	35.3	29	37.2	18	42.6	5
2017 Diesel Particulate Matter [*] (µg/m ³)	0.235	0.336	38	0.312	<50th	0.295	<50th
2017 Air Toxics Cancer Risk* (lifetime risk per million)	30	35	47	33	50-60th	29	80-90th
2017 Air Toxics Respiratory HI*	0.4	0.52	31	0.47	<50th	0.36	80-90th
Traffic Proximity (daily traffic count/distance to road)	190	710	44	600	48	710	46
Lead Paint (% Pre-1960 Housing)	0.05	0.22	29	0.22	30	0.28	28
Superfund Proximity (site count/km distance)	0.35	0.19	87	0.13	92	0.13	92
RMP Facility Proximity (facility count/km distance)	0.043	0.65	4	0.66	8	0.75	3
Hazardous Waste Proximity (facility count/km distance)	0.63	2.2	43	1.7	52	2.2	48
Underground Storage Tanks (count/km ²)	1.8	6.1	53	4.5	57	3.9	56
Wastewater Discharge (toxicity-weighted concentration/m distance)	N/A	0.021	N/A	0.53	N/A	12	N/A
Socioeconomic Indicators							
Demographic Index	25%	29%	51	28%	51	36%	42
People of Color	20%	31%	36	28%	43	40%	36
Low Income	31%	26%	67	28%	61	31%	55
Unemployment Rate	8%	5%	78	5%	77	5%	75
Linguistically Isolated	1%	4%	46	3%	51	5%	48
Less Than High School Education	7%	9%	51	9%	49	12%	39
Under Age 5	4%	6%	33	6%	33	6%	35
Over Age 64	15%	15%	58	16%	56	16%	55

*Diesel particular matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's 2017 Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data Update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

For additional information, see: www.epa.gov/environmentaljustice

EJScreen is a screening tool for pre-decisional use only. It can help identify areas that may warrant additional consideration, analysis, or outreach. It does not provide a basis for decision-making, but it may help identify potential areas of EJ concern. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJScreen documentation for discussion of these issues before using reports. This screening tool does not provide data on every environmental impact and demographic factor that may be relevant to a particular location. EJScreen outputs should be supplemented with additional information and local knowledge before taking any action to address potential EJ concerns.

EJSCREEN ACS Summary Report

Location: User-specified linear location

Ring (buffer): .5-miles radius

Description: Old Hwy 99 Corridor

Current of ACC Felimeter	2015 2010
Summary of ACS Estimates	2015 - 2019
Population	1,962
Population Density (per sq. mile)	954
People of Color Population	395
% People of Color Population	20%
Households	848
Housing Units	871
Housing Units Built Before 1950	28
Per Capita Income	34,234
Land Area (sq. miles) (Source: SF1)	2.06
% Land Area	97%
Water Area (sq. miles) (Source: SF1)	0.07
% Water Area	3%

	2015 - 2019 ACS Estimates	Percent	MOE (±)
Population by Race			
Total	1,962	100%	510
Population Reporting One Race	1,857	95%	964
White	1,670	85%	504
Black	64	3%	176
American Indian	18	1%	41
Asian	37	2%	85
Pacific Islander	14	1%	82
Some Other Race	54	3%	76
Population Reporting Two or More Races	106	5%	147
Total Hispanic Population	170	9%	115
Total Non-Hispanic Population	1,793		
White Alone	1,568	80%	496
Black Alone	64	3%	176
American Indian Alone	7	0%	41
Non-Hispanic Asian Alone	37	2%	85
Pacific Islander Alone	13	1%	80
Other Race Alone	5	0%	18
Two or More Races Alone	99	5%	141
Population by Sex			
Male	892	45%	253
Female	1,070	55%	321
Population by Age			
Age 0-4	85	4%	126
Age 0-17	437	22%	205
Age 18+	1,526	78%	284
Age 65+	301	15%	132

Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race. N/A means not available. **Source:** U.S. Census Bureau, American Community Survey (ACS) 2015 - 2019 -

EJSCREEN ACS Summary Report

Location: User-specified linear location Ring (buffer): .5-miles radius

Description: Old Hwy 99 Corridor

	2015 - 2019 ACS Estimates	Percent	MOE (±)
Population 25+ by Educational Attainment			
Total	1,433	100%	318
Less than 9th Grade	20	1%	48
9th - 12th Grade, No Diploma	74	5%	85
High School Graduate	275	19%	110
Some College, No Degree	425	30%	225
Associate Degree	204	14%	110
Bachelor's Degree or more	435	30%	174
Population Age 5+ Years by Ability to Speak English			
Гоtal	1,877	100%	435
Speak only English	1,760	94%	322
Non-English at Home ¹⁺²⁺³⁺⁴	117	6%	116
¹ Speak English "very well"	99	5%	114
² Speak English "well"	18	1%	45
³ Speak English "not well"	0	0%	12
⁴ Speak English "not at all"	0	0%	12
³⁺⁴ Speak English "less than well"	0	0%	12
²⁺³⁺⁴ Speak English "less than very well"	18	1%	45
Linguistically Isolated Households [*]			
Total	8	100%	23
Speak Spanish	8	100%	20
Speak Other Indo-European Languages	0	0%	12
Speak Asian-Pacific Island Languages	0	0%	12
Speak Other Languages	0	0%	12
Households by Household Income			
Household Income Base	848	100%	147
< \$15,000	83	10%	84
\$15,000 - \$25,000	110	13%	111
\$25,000 - \$50,000	139	16%	96
\$50,000 - \$75,000	155	18%	107
\$75,000 +	361	43%	149
Occupied Housing Units by Tenure			
Total	848	100%	147
Owner Occupied	534	63%	138
Renter Occupied	315	37%	131
mployed Population Age 16+ Years			
Fotal	1,598	100%	344
In Labor Force	973	61%	254
Civilian Unemployed in Labor Force	74	5%	82
Not In Labor Force	624	39%	215

DataNote:Datail may not sum to totals due to rounding.Hispanic population can be of anyrace.N/Ameans not available.Source:U.S. Census Bureau, American Community Survey (ACS)*Households in which no one 14 and over speaks English "very well" or speaks English only.

EJSCREEN ACS Summary Report

Location: User-specified linear location Ring (buffer): .5-miles radius Description: Old Hwy 99 Corridor

	2015 - 2019 ACS Estimates	Percent	MOE (±
pulation by Language Spoken at Home [*]			
tal (persons age 5 and above)	N/A	N/A	N/A
English	N/A	N/A	N/A
Spanish	N/A	N/A	N/A
French	N/A	N/A	N/A
French Creole	N/A	N/A	N/A
Italian	N/A	N/A	N/A
Portuguese	N/A	N/A	N/A
German	N/A	N/A	N//
Yiddish	N/A	N/A	N//
Other West Germanic	N/A	N/A	N//
Scandinavian	N/A	N/A	N//
Greek	N/A	N/A	N//
Russian	N/A	N/A	N//
Polish	N/A	N/A	N//
Serbo-Croatian	N/A	N/A	N//
Other Slavic	N/A	N/A	N/
Armenian	N/A	N/A	N/
Persian	N/A	N/A	N/
Gujarathi	N/A	N/A	N/
Hindi	N/A	N/A	N/
Urdu	N/A	N/A	N/
Other Indic	N/A	N/A	N/
Other Indo-European	N/A	N/A	N/
Chinese	N/A	N/A	N/
Japanese	N/A	N/A	N/
Korean	N/A	N/A	N/
Mon-Khmer, Cambodian	N/A	N/A	N/
Hmong	N/A	N/A	N/
Thai	N/A	N/A	N/
Laotian	N/A	N/A	N/
Vietnamese	N/A	N/A	N/
Other Asian	N/A	N/A	N/
Tagalog	N/A	N/A	N/
Other Pacific Island	N/A	N/A	N/
Navajo	N/A	N/A	N/
Other Native American	N/A	N/A	N/
Hungarian	N/A	N/A	N/
Arabic	N/A	N/A	N/
Hebrew	N/A	N/A	N/
African	N/A	N/A	N/
Other and non-specified	N/A	N/A	N/
Total Non-English	N/A	N/A	N/

Data Note: Detail may not sum to totals due to rounding. Hispanic popultion can be of any race. N/A meansnot available. **Source:** U.S. Census Bureau, American Community Survey (ACS) 2015 - 2019. *Population by Language Spoken at Home is available at the census tract summary level and up.

East Olympia Elementary 2021-22

Total Student Enrollment

Gender 52.6% Female 47.4% Male **Race/Ethnicity** American Indian/ Alaskan Native 0.2% 3.5% Asian 2.7% Black/ African American Hispanic/ Latino of any race(s) 21.2% Native Hawaiian/ Other Pacific Islander 0.2% Two or More Races 6.9% 65.3% White **Program and Characteristic** English Language Learners 6.0% 94.0% Non-English Language Learners 100.0% Non-Foster Care 28.3% Low-Income Non-Low Income 71.7% Mobile 3.3% Non Mobile 96.7% Highly Capable 3.3% 96.7% Non-Highly Capable 2.3% Homeless Non-Homeless 97.7% Non Migrant 100.0% 10.0% Military Parent 90.0% Non Military Parent Section 504 1.9% 98.1% Non Section 504 11.8% Students with Disabilities 88.2% Students without Disabilities