

140 Litton Drive Suite 240 Grass Valley, CA 95945 Tel: 530.272.5841 Fax: 530.272.5880 Gen'l Email: info@scopeinc.net Truckee: 530.582.4043

<u>Letter of Justification/Project Description</u> Village Car Wash - Gray's Crossing

Project Description

Gray's Crossing Investments, LLC is requesting a Development Permit for a carwash located within Lot T (43,295 sq.ft.), as shown in Book 9 of Final Maps, Page 26, Official Records of Nevada County (A.P.N. 043-070-010) and is located at the southwesterly region of the Gray's Crossing Village Property being westerly of Edwin Way, Easterly of Highway 89 and south of the recently approved residential 4-plex units. The site is designed for ease of access from Edwin Way and the primary entrance aligns with Jack Way. Additionally, a right turn only one-way access is provided at the southerly end of the site. Vehicles entering the site at the northern entrance will circulate through the two (2) lanes of stacking in a counterclockwise fashion and then are directed through the one-way car wash. Thirteen (13) parking stalls are provided for both employees (3+-) and customers. Ten (10) of the parking spaces provided will be equipped as potential vacuum stations. A bicycle rack is provided for three (3) spaces at the southerly end of the proposed building and storage interior space can be provided for lockable bike storage for employees as necessary in conformance with Town of Truckee Development Code.

The site is very conducive to development and construction with slopes considered mild with most of the necessary infrastructure (roadway, water, sewer, electrical) already fronting the project site. Water usage within the car wash is continually filtered, recycled and pumped back to be used for minimal loss through the cleaning cycles. Minimal grading is necessary for the site and minor berming and planting along Highway 89 and Edwin Way is proposed to reduce visibility from the Highway, or directly to residential units.

The proposed building provides a functional design. A major portion of the floor area is dedicated to the wash tunnel itself and equipment support area. There is a small customer service area at the main entrance of the building along with a restroom (accessible from the outside) as well as an employee break room, manager's office and vending area. Predominantly the actual operation of the facility from a customer point of view is for the most part automated. The small customer service area shown is for customers to interact with staff if there is an issue with the car wash service, or to purchase, or renew their wash subscription.

The car (vehicle) wash building is just under 30 feet tall and is designed with similar materials to the previously approved Village at Gray's Crossing development to be not the same, but to draw from a similar palette of both durable and quality materials. Building materials consist

Village at Gray's Crossing – Village Car Wash

March, 2022

of wood plank, wood trim and stone veneer wainscot and sill with a variation of vertical and horizontal elements. Additional accents include metal corrugated roof and aluminum framed awnings with cedar trim.

The proposed development is an allowed use per the Gray's Crossing Specific Plan and is consistent with the development of the village area collectively. It is anticipated that approximately 3 employees at one time would be present onsite. Typically, one employee guides vehicles into the tunnel while another assists with payment. Proposed hours of operation will be 7 A.M. to 9 P.M. daily and could vary dependent upon daylight hours and upon the season and weather conditions.

Mixed-Use Commercial Development

- 3,825 S.F. carwash
- 12 parking stalls (10 setup for vacuum usage)
- 1 ADA parking stall
- 3 bicycle stalls
- Berming and additional planting/screening along Hwy 89 and Edwin Way

<u>Findings – Development Permit</u>

- 1. The proposed development is:
 - A. Allowed by Article II (Zoning Districts and Allowable Land Uses) within the applicable zoning district with the approval of a Development Permit, and complies with all applicable provisions of the Truckee Development Code, Municipal Code, and Public Improvement and Engineering Standards; and
 - B. Consistent with the Town of Truckee General Plan, any applicable Specific Plan and/or Master Plan, the Trails Master Plan, the Truckee Tahoe Airport Land Use Compatibility Plan, and the Particulate Matter Air Quality Management Plan.

The adopted Gray's Crossing Specific Plan established zoning, land uses, standards and guidelines for development on this site. The proposed project is consistent with the Development Standards within the Gray's Crossing Specific Plan and the Town's Development Code.

2. The proposed development is consistent with the design guidelines, achieves the overall design objectives of the design guidelines, and would not impair the design and architectural integrity and character of the surrounding neighborhood.

The adopted Gray's Crossing Specific Plan has design guidelines specific to the Village Area, CN zoning district. The project design and architecture is consistent with those design guidelines and similar in character with the development in the surrounding area and the recently approved Village at Grays Crossing Development Permit.

Village at Gray's Crossing – Village Car Wash

March, 2022

3. The Development Permit approval is in compliance with the requirements of the California Environmental Quality Act (CEQA) and there would be no potentially significant adverse effects upon environmental quality and natural resources that would not be properly mitigated and monitored unless a Statement of Overriding Considerations is adopted.

The certified FEIR for the overall Specific Plan found that development on the site would not have a significant effect on the environment. Specific findings confirming such were adopted as part of the resolution approving the Specific Plan and certifying the FEIR and the recently approved Village at Gray's Crossing Development.

4. There are adequate provisions for public and emergency vehicle access, fire protection, sanitation, water, and public utilities and services to ensure that the proposed development would not be detrimental to public health and safety. Adequate provisions shall mean that distribution and collection facilities and other infrastructure are installed at the time of development and in operation prior to occupancy of buildings and the land, and all development fees have been paid prior to occupancy of buildings and the land.

As part of the Gray's Crossing Specific Plan approval process, Truckee Sanitary District (sewer), Truckee Donner Public Utility District (water & electrical), Truckee Fire Protection District, and Town Engineering reviewed the documents and confirmed existing and required infrastructure to ensure adequate provisions would be in place prior to building occupancy. Facilities fees for all agencies, including water, sewer, and fire are required prior to building permit issuance or Final Map recordation.

5. The subject site is:

- A. Physically suitable for the type and density/intensity of development being proposed;
- B. Adequate in size and shape to accommodate the use and all fences and walls, landscaping, loading, parking, yards and other features required by the Truckee Development Code; and
- C. Served by streets adequate in width and pavement type to carry the quantity and type of traffic generated by the proposed development.

The proposed development conforms to the adopted Gray's Crossing Specific Plan. That plan evaluated the site's physical capabilities and was validated by a certified Environmental Impact Report (EIR). The EIR concluded the site was physically suitable for the density and intensity being proposed.

Village at Gray's Crossing – Village Car Wash

March, 2022

The project is served by existing roadways that meet Town standards. Traffic studies have been conducted as part of the Gray's Crossing Specific Plan approval to determine specific road improvements needed to serve buildout of the Plan area and cumulative buildout of the Truckee General Plan. The off-site improvements recommended in the Traffic reports, Conditions of Project Approval and Mitigation Measure listed in the Projects FEIR have been constructed.

6. The proposed development is consistent with all applicable regulations of the Nevada County Department of Environmental Health and the Truckee Fire Protection District for the transport, use, and disposal of hazardous materials.

Not applicable.

BAY DOOR SOLUTIONS THAT PUT YOU IN CONTROL

11

- **Remote Access**
- **Vinyl Doors**
- **Polycarbonate Doors**
- Bay Banner

INTELLIWATCH PREMIUM OPERATING SYSTEM

BayWatch is the only company that keeps you in touch with your car wash bay at all times and provides alerts if the doors or heater ever fail. A car wash door that stays up or a heater failure can freeze your car wash equipment and can cost you thousands of dollars in

•	<i>Intelli</i> Warch
BayWatch Door Co	ettor Menu
Open Entry Deer an	Con-Open Exit Door any
	STOP
Class Entry Door	Cissa Esit Door an
Take In Open	District Test
and a set for the	1.01.04
Attive Alerma	

repairs. IntelliWatch puts those concerns to rest.

In addition to all of the advanced features found in the standard operating system, the IntelliWatch premium operating system provides:

- Single Thermostat Control Links doors, heaters and heat mats together with a single thermostat. This eliminates freeze-ups and unnecessary heat output due to tampering with temperature settings
- In-Store Monitoring Provides live status of the wash bay with an easy to read backlit display and the ability to operate doors without physically going out to the wash bay. An in-store alert sounds if the bay doors fail to close or the bay heat drops below its set temperature. This eliminates photo eye failures without your knowledge that leave the bay doors up and cause the wash to freeze
- Time / Temp Control Operates under automatic time or temperature. Temperature will automatically override time mode if the temperature drops below its set level
- Door Isolation Control Allows each door to operate individually, i.e. one door on time and one door on temperature control if desired
- Car Wash Interface Included Eliminates the need for the manufacturer car wash door interface kit, photo eyes and /or floor loop (saving you as much as \$4,000)

STANDARD OPERATING SYSTEM

The BayWatch standard operating system raises the bar in car wash door technology. In addition to the standard features found in our competitor's offering, the BayWatch standard operating system also provides:

- Programmable Adjustable Door Height Unlike the competition, the door height can be programmed to any height and does not require ordering an additional lift kit
- Variable Speed Drive Allows for high speed during normal door function. Also gives immediate reduced speed, when photo eye is broken, to prevent damage claims
- Manually Raise Door Door can be raised by hand if power were lost on site. This prevents trapping a customer in the wash bay

REMOTE ACCESS

PUTS YOU IN CONTROL

BayWatch now offers the ability to add remote monitoring to our premium operating system. It allows live access when you are away from your car wash site. Benefits include:

Increased Uptime

- Instant e-mail alerts to owner and/or service provider of any door or heater failures
- Service provider can diagnose remotely to reduce downtime and possibly avoid unecessary service calls
- Virtually eliminates bay freeze-ups and costly repairs

Bay Control

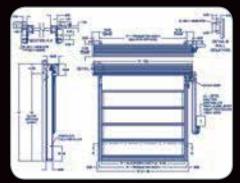
- The mobility to instantly make changes to your door and heater configuration
- Works with any laptop, tablet or smartphone

BAYWATCH QUALITY

Regardless of the door or operating system chosen, BayWatch engineers unparalleled quality into every product sold. We deliver a completely enclosed direct shaft driven operating system, to specifically withstand cold and wet environments, in all our door packages. The NEMA 4 rated, 1/2 hp waterproof gearbox and motor assembly gives consistent reliability

in the harshest car wash climates. Unlike air driven operators, BayWatch operators open and close in one smooth motion. Reversing the door at high speeds are done with ease, which can extend the life of your doors.

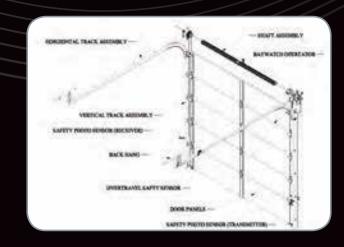
VINYL DOOR



The BayFlex door was developed specifically for harsh car wash environments. With corrosion-resistant materials and a Break-Away design, it is engineered for high-volume car wash applications that demand low-maintenance doors. The design eliminates pneumatics, cables, springs, hinges, belts, drums, pulleys and other parts for years of trouble-free operation.

Vinyl Roll-Up Car Wash Door

- Break-Away[™] Design
- Easy Individual Panel Replacement
- Heat Retention
- Corrosion Resistance
- Visibility and Light



Panel Colors

POLYCARBONATE DOOR

The BayWatch polycarbonate door provides the top level of security and heat retention. It's triple wall polycarbonate panels and anodized aluminum door panel frames give you the highest quality finish in the industry. Only the most durable and highest grade door parts, such as a stainless steel shaft and brackets, plastic hinges and stainless steel zerk bearings are used. Full vision panels, for optimal visibility, and custom doors for any bay size, are also available.

Polycarbonate Car Wash Door

- Greatest Security
- Highest Heat Retention
- Corrosion Resistance Hardware
- Visibility and Light

About Baywatch Enterprises, LLC

Baywatch Enterprises has been building "best-in-class" doors and monitoring systems for the car wash industry since 1995. We are a full-service manufacturer providing design, construction, installation and direct territory service to industry leaders such as BP, Circle K, ConocoPhillips, ExxonMobil, Speedway, Shell and Valero as well as distribution through all the major car wash manufacturers. Baywatch doors, widely known for superior design, construction and quality especially in harsh weather environments, can be found worldwide, including the United States, Canada and Russia.

CONTACT INFORMATION

For All Sales Information Please Contact Us At p: 888.235.0800 p: 303.400.3466 e: sales@baywatchdoors.com Denver, CO www.baywatchdoors.com

WWW.BAYWATCHDOORS.COM 888.235.0800


LED VACUUM AREA & CANOPY LIGHTING

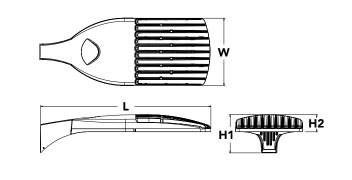
Lumen & Power Data

Length	Lumens	Wattage	Amps @120V	Amps @277V
ó-Foot Fixture	3600	27	0.225	0.097
8-Foot Fixture	4800	36	0.300	0.130

HALF PALM ARCH - LIGHT INSTALLATION W/ SHROUD

D-Series Size 1

Legacy LED Area Luminaire



Notes

d"series

Specifications 1 01 ft²

EPA:	(0.09 m ²)
Length:	33" (83.8 cm)
Width:	13" (33.0 cm)
Height H1:	7-1/2" (19.0 cm)
Height H2:	3-1/2"
Weight (max):	27 lbs (12.2 kg)

Туре

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

9

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Orde	ring Information		EXAMPLE: DSX	(1 LED P7 40	K T3M MV	OLT SPA NLTAIR2 PIRH	IN DDBXD G
DSX1 LEI	D						
Series	LEDs Color te	nperature	Distribution		Voltage	Mounting	
DSX1 LED	Forward optics 30K P1 P4 ¹ P7 ¹ P2 P5 ¹ P8 P3 P6 ¹ P9 ¹ Rotated optics P10 ² P12 ² P11 ² P13 ¹² P13 ¹²	3000 K 4000 K 5000 K	(Automotive) TSS Ty T2S Type II short TSM Ty T2M Type II medium TSW Ty T3S Type III short BLC B; T3M Type III medium LCCO Leco	pe V very short ³ pe V short ³ pe V medium ³ pe V wide ³ acklight control ⁴ eft corner cutoff ⁴ ght corner cutoff ⁴	MVOLT ³ XVOLT (277V-480V) ^{6,7,8} 120 ⁹ 208 ⁹ 240 ⁹ 277 ⁹ 347 ⁹ 480 ⁹		al mounting adaptor ¹¹ al mounting adaptor ⁹
Control opt	tions			Other options		Finish (required)	Generation (required)
Shipped in NLTAIR2 PIRHN PER PER5 PER7 DMG	nstalled nLight AIR generation 2 enabled ¹³ Network, high/low motion/ambient sensor ¹⁴ NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ Five-pin receptacle only (controls ordered separate) ^{15,16} Seven-pin receptacle only (controls ordered separate) ^{15,16} 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separatel) ¹⁷ Dual switching ^{18,19,20}	PIRH PIR1FC3V	High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor, 15–30' Bi-level, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,22}	DFDouble fuse (2L90Left rotated opR90Right rotatedHA50°C ambient	nield ²³ 20, 277, 347V) ⁹ 208, 240, 480V) ⁹ ptics ² optics ² : operations ¹ n) Act Compliant y	DDBXDDark bronzeDBLXDBlackDNAXDNatural aluminumDWHXDWhiteDDBTXDTextured dark bronzeDBLBXDTextured blackDNATXDTextured natural aluminumDWHGXDTextured white	G1 Generation 1

COMMERCIAL OUTDOOR

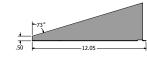
Ordering Information

Accessories

Order	red and shipped separately.
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) 25
DLL347F 1.5 CUL JU	Photocell - SSL twist-lock (347V) 25
DLL480F 1.5 CUL JU	Photocell - SSL twist-lock (480V) 25
DSHORT SBK U	Shorting cap 25
DSX1HS 30C G1 U	House-side shield for P1, P2, P3, P4 and P5 ²³
DSX1HS 40C G1 U	House-side shield for P6 and P7 ²³
DSX1HS 60C G1 U	House-side shield for P8, P9, P10, P11 and P12 ²³
PUMBA DDBXD G1 U*	Square and round pole universal mounting bracket (specify finish) ²⁶
KMA8 DDBXD U	Mast arm mounting bracket adaptor (specify finish) 12
DSX1EGS (FINISH) G1 U	External glare shield
For more contro	l options, visit DTL and ROAM online.

NOTES

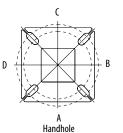

- HA not available with P4, P5, P6, P7, P9 and P13. P10, P11, P12 or P13 and rotated optics (L90, R90) only available together. 2
- Any Type 5 distribution with photocell, is not available Not available with HS. with WBA.
- MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
 XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13. 6 7


 - XVOLT works with any voltage between 277V and 480V. XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIR1FC3V, PIRH1FC3V.
- 9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF. 10 Suitable for mounting to round poles between 3.5" and 12" diameter.
- 11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8 12 Must order fixture with SPA option. KMA8 must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included). 13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.
- 14 Must be ordered with NLTAIR2. For more information on nLight Air 2 vis
- 15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included. 16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming. 17 DMG not available with PIRHN, PERS, PER7, PIR, PIRH, PIRHC3V or PIRH1FC3V, FAO.
- - 19 Provides 50/50fixture operation via (2) independent drivers. Not available with PER, PER5, PER7, PIR or PIRH. Not available P1, P2, P3, P4 or P5. 19 Requires (2) separately switched circuits.

 - 17 / Requires (2) separately simulately and characterized in the set of the set of
 - 24 Must be ordered with fixture for factory pre-drilling. 25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.
 - 26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield



Drilling

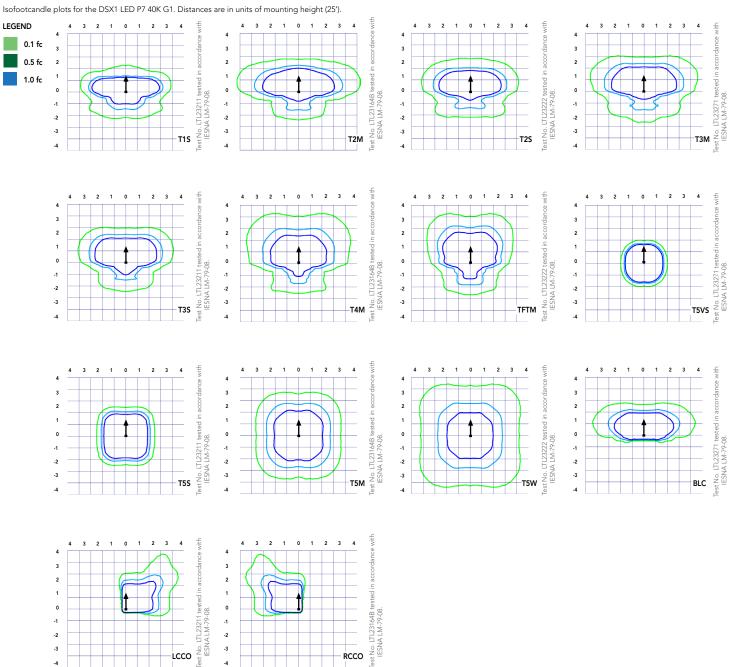
HANDHOLE ORIENTATION

Top of Pole Template #8 1.75" for aluminum poles 2.75" for other pole types 0.563* \oplus 1.325 0.400" (2 PLCS) 2.650

Tenon Mounting Slipfitter

Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4 @ 90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-8		۲.,	.		■ <mark>.</mark>
Mounting Option	Drilling Template	Single	2@180	2 @ 90	3 @ 90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS


DSX1 Area Luminaire - EPA

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type	-		T.	₽ [¶] ₽	¥	•╂•
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template	Minimum Acceptable Outside Pole Dimension					
SPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″
RPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″
SPUMBA	#5	2-7/8″	3″	4″	4″	3.5″	4″
RPUMBA	#5	2-7/8″	3.5″	5″	5″	3.5″	5″

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

-2

-3

-4

-2

-3

.4

LCCO

Photometric Diagrams

RCCO

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^\circ C$ (32-104 $^\circ F$).

Amt	pient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a **25°C ambient**, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

Motion Sensor Default Settings								
Option Dimmed High Level (when triggered) Operation Dwell Ramp-up Time Ramp-dov						Ramp-down Time		
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min		
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min		

					Current (A)							
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480		
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12		
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16		
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22		
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27		
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29		
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34		
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38		
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49		
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51		
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27		
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32		
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46		
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49		

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Electrical Load

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08.

10 10<	Forward Op	ptics																		
Conton Partial <		Drive	Power	System	Dist.		(2000													
30 510 P1 6.47 2 0 2 0 2 0 2 100 1	LED Count					Lumens			_	IPW	Lumens			G	LPW	Lumens		<u>K, 70 CRI</u>	G	LPW
30 51 52 61 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 74 74 75 74 75 74 75 74 75 74 75 <th75< th=""> 75 75 7</th75<>					T1S													0	2	130
10 10 0 10 0 2 100 0 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 100 2 100 100 2 100						6,483	1	0		120	6,984	2	0	2	129	7,072		0	2	131
10 11 6,70 2 10 6,76 2 2 10 6,76 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 10 2 10 10 2 10 10 2 10 10 2 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>								-							-			0	2	130
30 510 P1 540 1 0 2 10 0 2 10 0 2 00 00 10 0 2 00 00 10 0 20 00 10 0 20 00 10 10 0 10 0 10 00 10 10 00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10																		0	2	131
30 310 P 540 TTM 6.640 1 0.03 1 0 2 100 300 2 100 300 2 100 300 2 100 300 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>0</td><td>2</td><td>127 128</td></th<>															-		-	0	2	127 128
30 572 2 0 0 174 724 3 0 0 134 7234 3 0 0 134 7234 3 0 0 134 7234 3 0 0 134 7234 3 0 0 1 134 7234 3 0 1 0 0 1 <		53.0		- 011				-							-			0	2	131
10 10 10 11 13 0 1 14 7,23 3 0 1 134 7,23 3 0 1 14 7,23 3 0 1 143 7,23 3 0 1 135 7,23 1 0 2 136 7,23 7,30 14 0 2 136 7,33 7,30 1 0 2 7,30 4,246 1 0 2 7,90 4,300 1 0 2 0 2 118 8,801 2 0 2 117 4,300 1 0 1 11 <t< td=""><td>30</td><td>530</td><td>P1</td><td>54W</td><td></td><td></td><td>2</td><td>0</td><td>0</td><td>124</td><td></td><td>3</td><td>0</td><td>0</td><td>134</td><td></td><td>3</td><td>0</td><td>0</td><td>136</td></t<>	30	530	P1	54W			2	0	0	124		3	0	0	134		3	0	0	136
100 6.677 3 0 2 120 7.82 3 0 2 131 2.23 3 0 100 1 0 2 7.83 4.38 1 0 2 7.8 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 7.9 4.38 1 0 2 1 <th1< th=""> <th1< th=""> 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>1</td><td>136</td></th<></th1<></th1<>																		0	1	136
B B B C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>								-										0	2	136
100 100 </td <td></td> <td>-</td> <td>0</td> <td>2</td> <td>135 107</td>																	-	0	2	135 107
100 100 100 2 100 <															-			0	2	80
90 P2 P3 P3 P4 P3 P3 P4 P3								-					0		79			0	2	80
10 10								-										0	2	129
30 700 70 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0</td><td>2</td><td>129</td></th<>															-			0	2	129
10 17 18 8 10 2 10 2 00 2 10 10 2 10 10 2 10 10 2 10 10 2 10 10 2 10 <th10< th=""> 10 <th10< th=""></th10<></th10<>										-								0	2	128 129
30 700 P2 所40 8.88 2 0 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10								-							-			0	2	125
30 100 172 1700 172 1720 172 1720 172 1720 172 1720 <th170< th=""> <th1700< th=""> <th1700< th=""></th1700<></th1700<></th170<>															-			0	2	125
30 1050 1650<	30	700	P7	70W		8,257		-			8,896					9,008	2	0	2	129
1000 1000 <th< td=""><td>50</td><td>,</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>134</td></th<>	50	,		,														0	0	134
100 150 8,377 3 0 2 122 927 735 4 0 2 11 0.0 2 110 0.0 2 172 747 1 0 2 100 100 2 773 4 0 2 78 596 1 0 100 2 533 1 0 2 715 110 0 2 78 596 1 0 100 115 1161 2 0 2 115 11708 2 0 2 115 11708 11708 11708 11708 110 11212 110 1121 1121 110																		0	1	134 134
B B B C <thc< th=""> C C C</thc<>															-			0	2	134
100 100 100 10 2 2 5,47 1 0 2 78 5,496 1 0 0 115 11,61 2 0 2 114 12,62 3 0 3 123 12,77 2 0 120 11,78 2 0 2 115 12,282 3 0 3 123 12,77 2 0 135 11,699 2 0 2 115 12,284 3 0 3 121 12,495 2 0 3 121 12,495 3 0 3 121 12,495 3 0 3 111 12,495 3 0 3 112 12,496 3 0 1 122,45 3 1<14															-			0	2	106
30 1050 1650 175 175 176 180 176 176 176 180 176 180 176 180						5,038	1	0			5,427	1	0		78	5,496		0	2	79
30 P3 P4 P3 P4 P3 P4 P3 P4 P3 P4 P3 P4 P4 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0</td><td>2</td><td>79</td></th<>															-			0	2	79
30 1050 P3 1050 P4 107 107 107 107 107 107 107 107 107 107																	-	0	3	125 125
30 1050 P3 1051 115 115 1167 12 0 0 12 111 12 12 0 0 12 111 12 12 0 0 12 <p< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0</td><td>3</td><td>125</td></p<>															-			0	3	125
30 1050 P3 11 11,426 2 0 3 112 11,2375 2 0 3 121 12,465 2 0 11 11,673 2 0 2 0 3 0 1 112 12,575 2 0 3 0 1 128 12,244 3 0 155 12,150 3 0 1 119 13,069 3 0 1 128 13,244 3 0 155 12,150 3 0 1 10 2 109 13,066 4 0 3 10 1 0 2 128 13,244 3 0 150 12,040 4 0 3 108 13 0 3 10 3 10 14,473 3 0 3 116 14,467 3 0 3 105 14,073 3 0 3																		0	2	125
30 1050 P3 112/H 11,673 2 0 2 114 12,757 2 0 3 123 12,734 2 0 50 12,140 3 0 1 119 13,078 3 0 1 128 13,244 3 0 155 12,150 3 0 1 119 13,056 4 0 2 13,234 3 0 155 12,150 3 0 1 19 13,056 4 0 2 13,134 4 0 1000 12,119 4 0 2 119 13,056 4 0 3 172 13,144 4 0 1 10 3 75 7,768 1 0 1 10 1 10 1 10 13 10 14,473 3 0 3 116 14,640 3 0 1 11					T3M	11,338	2	0	2	111	12.214	3	0	3	120	12,369	3	0	3	121
30 1050 P3 102,W T5V6 12,140 3 0 1 119 13,078 3 0 1 128 13,244 3 0 T55 12,150 3 0 1 119 13,066 4 0 2 132,241 3 0 T55 12,150 3 0 1 119 13,066 4 0 2 13,134 4 0 T5W 12,040 4 0 3 118 12,070 4 0 3 12 13,134 4 0 LCC0 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 T2M 13,489 2 0 2 108 14,453 3 0 3 116 14,670 3 0 T2M 13,489 2 0 3 105 14,1452 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>3</td><td>122</td></td<>								-										0	3	122
30 125 12,150 3 0 1 119 13,089 3 0 1 128 13,254 3 0 15M 12,119 4 0 2 119 13,056 4 0 2 128 13,221 4 0 15W 12,404 4 0 2 118 12,707 4 0 3 70 7,671 1 0 3 75 7,768 1 0 15C0 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 12C0 7,121 1 0 3 70 7,671 1 0 3 16 14,670 3 0 3 16 14,670 3 0 3 16 14,670 3 0 3 116 14,670 3 0 3 116 14,670 3 0	30	1050	P3	102W													-	0	3	125
30 12.00 14 0 2 190 13.056 4 0 2 128 13.211 4 0 15W 12.040 4 0 3 118 12.070 4 0 3 127 13.144 4 0 15W 12.040 4 0 3 70 7.671 1 0 3 75 7.768 1 0 10C0 7,121 1 0 3 70 7.671 1 0 3 16 14.657 3 0 15 13.435 3 0 3 107 14.473 3 0 3 116 14.667 3 0 3 105 14.473 3 0 3 116 14.667 3 0 3 116 14.667 3 10 13.13 14.251 3 0 3 116 14.667 3 107 14.945 2																		0	1	130 130
BLC 9,570 1 0 2 94 10,310 1 0 2 101 10,440 1 0 LCO 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 N N 7,671 1 0 3 75 7,768 1 0 N </td <td></td> <td>0</td> <td>2</td> <td>130</td>																		0	2	130
100 100 100 110 100 130 700 7,671 1 00 3 75 7,768 1 0 100 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 115 13,453 3 0 3 107 14,473 3 0 3 116 14,670 3 0 1250 13,489 2 0 3 107 14,473 3 0 3 116 14,640 3 0 1250 13,489 2 0 3 105 14,497 3 0 3 116 14,640 3 0 3 105 14,497 3 0 3 113 14,251 3 0 113 13,457 2 0 3 116 14,62 2 0 3 116 14,62 2 120 11							4	0	3	118		4	0	3	127		4	0	3	129
30 100 100 100 3 70 7,671 1 0 3 75 7,768 1 0 1 1 1 1 1 0 3 0 3 0 3 0 3 116 14,657 3 0 0 3 116 14,657 3 0 3 116 14,657 3 0 3 116 14,640 3 0 3 116 14,640 3 0 3 116 14,640 3 0 3 113 14,261 3 0 3 113 14,261 3 0 3 113 14,261 3 0 3 113 14,262 2 0 3 103 14,072 13 14,072 1 14 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11																		0	2	102
30 1250 P4 115 13,435 3 0 3 107 14,473 3 0 3 116 14,657 3 0 30 1250 P4 1250 13,489 2 0 2 108 14,457 3 0 3 116 14,670 3 0 1250 13,490 3 0 3 107 14,457 3 0 3 116 14,680 2 0 1250 13,490 3 0 3 105 14,073 3 0 3 116 14,680 2 0 1250 144 13,165 2 0 3 105 14,073 3 0 3 113 14,262 2 0 1750 13,967 4 0 1 112 15,068 4 0 1 121 15,259 4 0 1550 13,987										-								0	3	76
30 1250 13,489 2 0 2 108 14,532 3 0 3 116 14,716 3 0 30 1250 P4 13,420 3 0 3 107 14,457 3 0 3 116 14,640 3 0 30 1250 P4 13,457 2 0 2 108 14,496 2 0 3 113 14,680 2 0 135 13,457 2 0 3 105 14,073 3 0 3 113 14,251 3 0 1400 P4 13,665 2 0 3 105 14,073 3 0 1 121 15,622 0 3 116 14,622 2 0 3 116 14,622 2 0 3 105 14,073 3 0 3 10 1321 15,523 4 <								-		-					-			0	3	76
30 1250 P4 13,420 3 0 3 107 14,457 3 0 3 116 14,640 3 0 30 1250 P4 13,457 2 0 2 108 14,496 2 0 2 116 14,600 2 0 30 1250 P4 13,616 2 0 3 105 14,073 3 0 3 113 14,250 2 0 1250 FTIM 13,499 2 0 3 105 14,073 3 0 3 116 14,672 2 0 1555 13,987 4 0 1 112 15,068 4 0 1 121 15,259 4 0 1555 13,987 4 0 2 112 15,042 4 0 2 120 15,233 4 0 1556 13,987															-			0	3	118
30 1250 P4 125W T3M 13,064 3 0 3 105 14,073 3 0 3 113 14,251 3 0 30 1250 P4 125W T4M 13,165 2 0 3 105 14,182 2 0 3 113 14,362 2 0 125W TFIM 13,449 2 0 3 108 14,488 2 0 3 116 14,672 2 0 125W 13,987 4 0 1 112 15,080 3 0 1 121 15,271 3 0 1 121 15,233 4 0 2 112 15,042 4 0 3 120 15,233 4 0 3 10 3 103 111 14,944 4 0 3 120 15,233 4 0 3 10 120								0	3	-		3	0		116			0	3	117
30 1250 P4 125W T4M 13,165 2 0 3 105 14,182 2 0 3 113 14,362 2 0 30 125W FFTM 13,449 2 0 3 108 14,488 2 0 3 116 14,672 2 0 15 13,999 3 0 1 112 15,068 4 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,068 4 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,068 4 0 2 120 15,233 4 0 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,133 4 0 16C0 8,205 1 <																		0	2	117
30 1250 P4 125W IFFM 13,449 2 0 3 108 14,488 2 0 3 116 14,672 2 0 30 15 15 13,987 4 0 1 112 15,068 4 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,080 3 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,080 3 0 1 121 15,271 3 0 156 13,872 4 0 2 110 14,944 4 0 2 153 4 0 160 11,027 1 0 2 88 11,879 1 0 3 11 14,914 3 0 3 15 16,014 3 10 11 <td></td> <td>0</td> <td>3</td> <td>114</td>																		0	3	114
30 1250 14 125W 13,987 4 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,080 3 0 1 121 15,259 4 0 155 13,999 3 0 1 112 15,080 3 0 1 121 15,271 3 0 0 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,333 4 0 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,333 4 0 15W 13,872 1 0 3 66 8,839 1 0 3 11 0 3 10 3 10 3 11 0 3 11 0 3 11 10 13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>3</td><td>115 117</td></td<>								-							-		-		3	115 117
30 1400 P5 138W 13,999 3 0 1 112 15,080 3 0 1 121 15,271 3 0 15M 13,963 4 0 2 112 15,042 4 0 2 120 15,233 4 0 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,333 4 0 BLC 11,027 1 0 2 88 11,879 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 66 8,839 1 0 3 15 16,014 3 0 11S 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 3 115 16,019 3 0 3 115 16,019<	30	1250	P4	125W				-										0	1	117
T5W 13,872 4 0 3 111 14,944 4 0 3 120 15,133 4 0 BLC 11,027 1 0 2 88 11,879 1 0 2 95 12,029 1 0 LCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 106 15,814 3 0 3 115 16,014 3 0 T1S 14,679 3 0 3 107 15,878 3 0 3 115 16,019 3 0 3 107 15,839 3 0 3 113 16,019 3 0 3										-								0	1	122
BLC 11,027 1 0 2 88 11,879 1 0 2 95 12,029 1 0 LCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 RCC0 8,205 1 0 3 106 15,814 3 0 3 115 16,014 3 0 T2S 14,739 3 0 3 106 15,786 3 0 3 115 16,014 3 0 T2M 14,663 3 0 3 107 15,839 3 0 3 <										-					-			0	2	122
Image: height of the system of the										-								0	3	121
Bit Mark RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 No 1 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 T1S 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 T2S 14,739 3 0 3 106 15,796 3 0 3 114 15,996 3 0 T2M 14,663 3 0 3 107 15,878 3 0 3 115 16,079 3 0 T3S 14,703 2 0 3 107 15,839 3 0 3 115 16,039 3 0 3 115 16,039 3 0 3 111 15,571										-			-		-			0	2	96 72
30 1400 P5 138W T1S 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 172S 14,739 3 0 3 107 15,878 3 0 3 115 16,079 3 0 172S 14,739 3 0 3 106 15,796 3 0 3 115 16,079 3 0 172M 14,663 3 0 3 106 15,796 3 0 3 115 16,079 3 0 173M 14,703 2 0 3 107 15,839 3 0 3 115 16,039 3 0 3 115 16,039 3 0 3 103 15,377 3 0 3 115 16,030 3 0 3 0 3 115 16,030 3 <															-			0	3	72
30 1400 P5 138W 132 14,739 3 0 3 107 15,878 3 0 3 115 16,079 3 0 12M 14,663 3 0 3 106 15,796 3 0 3 114 15,996 3 0 3 0 3 106 15,796 3 0 3 114 15,996 3 0 3 115 16,039 3 0 3 107 15,839 3 0 3 115 16,039 3 0 3 115 16,039 3 0 3 115 16,039 3 0 3 115 16,039 3 0 3 111 15,571 3 0 3 111 15,571 3 0 3 112 15,692 3 0 3 112 15,692 3 0 3 112 15,692 3 0										-							1	0	3	116
30 1400 P5 138W 14,703 2 0 3 107 15,839 3 0 3 115 16,039 3 0 30 1400 P5 138W 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 111 15,571 3 0 3 111 15,571 3 0 3 111 15,571 3 0 3 112 15,692 3 0 3 112 15,692 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 0 3 112 15,692 3 0 3 106 15,830 3 0 3 115 16,030 3 0 0 3 115 16,030 3 0 0 3 115 16,030 3 0 3 <td></td> <td></td> <td></td> <td></td> <td>T2S</td> <td>14,739</td> <td>3</td> <td>-</td> <td>3</td> <td>107</td> <td>15,878</td> <td>3</td> <td></td> <td></td> <td></td> <td>16,079</td> <td>3</td> <td>0</td> <td>3</td> <td>117</td>					T2S	14,739	3	-	3	107	15,878	3				16,079	3	0	3	117
30 1400 P5 T3M 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 30 1400 P5 138W 14,384 2 0 3 104 15,496 3 0 3 111 15,571 3 0 3 112 15,692 3 0 3 112 15,692 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 119 16,672 4 0 0 1 119 16,686 4 0 0 1 119 16,686 4 0 0 1 119 16,686 4 0 0 1 119 16,686 4 0 0 1 119 16,686 4 0 0 1 119 16,686 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>3</td> <td>116</td>										-								0	3	116
30 1400 P5 T4M 14,384 2 0 3 104 15,496 3 0 3 112 15,692 3 0 30 1400 15 1400 15 1400 15 111 14,695 2 0 3 106 15,830 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 115 16,030 3 0 3 111 16,464 4 0 1 119 16,672 4 0 155 15,295 3 0 1 111 16,477 4 0 1 119 16,686 4 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>3</td><td>116</td></t<>																		0	3	116
30 1400 P5 138W TFTM 14,695 2 0 3 106 15,830 3 0 3 115 16,030 3 0 30 138W T5VS 15,283 4 0 1 111 16,644 4 0 1 119 16,672 4 0 T5S 15,295 3 0 1 111 16,477 4 0 1 119 16,686 4 0 0																		0	3	113 114
30 1400 PS 158W T5VS 15,283 4 0 1 111 16,644 4 0 1 119 16,672 4 0 50 T5S 15,295 3 0 1 111 16,464 4 0 1 119 16,672 4 0 15 T5S 15,295 3 0 1 111 16,477 4 0 1 119 16,686 4 0	20	1400		12014						-								0	3	116
	30	1400	25	138W	T5VS	15,283			1		16,464						4	0	1	121
										-								0	1	121
					T5M	1			2					2			-	0	2	121
																		0	3	120 95
																		0	3	71
						1											-	0	3	71

COMMERCIAL OUTDOOR

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

		1	1																													
	Drive	Power	System	Dist.			30K) K, 70 CRI					40K K, 70 CRI	1				50K) K, 70 CRI)															
LED Count	Current	Package	Watts	Туре	Lumens	B	U U	G	LPW	Lumens	(4000 B	<u>K, 70 CNI</u>	G	LPW	Lumens	B	U	G	LPW													
				T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118													
				T2S	17,725	3	0	3	109	19,095	3	0	3	117	19,336	3	0	3	119													
				T2M	17,634	3	0	3	108	18,997	3	0	3	117	19,237	3	0	3	118													
				T3S	17,682	3	0	3	108	19,048	3	0	3	117	19,289	3	0	3	118													
				T3M	17,166	3	0	3	105	18,492	3	0	3	113	18,726	3	0	3	115													
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	116													
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4	118													
10	1250		10511	TSVS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	123													
				T5S	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123													
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123													
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122													
				BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97													
				LCCO RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72													
					10,781		0		66	11,614	1		3	-	11,761	2			72													
				T1S T2S	19,227 19,304	3	0	3	105 105	20,712 20,796	3	0	3	113 114	20,975 21,059	3	0	3	115 115													
				T2M	19,304	3	0	3	105	20,790	3	0	3	114	20,951	3	0	3	114													
				T3S	19,205	3	0	3	105	20,089	3	0	3	113	20,951	3	0	3	114													
				T3M	18,695	3	0	3	103	20,140	3	0	3	110	20,395	3	0	4	111													
				T4M	18,840	3	0	4	102	20,296	3	0	4	111	20,553	3	0	4	112													
				TFTM	19,246	3	0	4	105	20,734	3	0	4	113	20,996	3	0	4	115													
40	1400	P7	183W	T5VS	20,017	4	0	1	109	21,564	4	0	1	118	21,837	4	0	1	119													
				T5S	20,033	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119													
				T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	119													
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118													
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94													
				LCC0	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70													
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70													
				T15	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3	119													
																	T2S	22,581	3	0	3	109	24,326	3	0	3	118	24,634	3	0	3	119
																	T2M	22,465	3	0	4	109	24,201	3	0	4	117	24,507	3	0	4	119
				T3S	22,526	3	0	4	109	24,267	3	0	4	117	24,574	3	0	4	119													
				T3M	21,869	3	0	4	106	23,558	3	0	4	114	23,857	3	0	4	115													
				T4M	22,038	3	0	4	106	23,741	3	0	4	115	24,041	3	0	4	116													
60	1050	P8	207W	TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119													
				TSVS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123													
				TSS	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123													
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123													
				T5W	23,221	5	0	4	112 89	25,016 19,885	5	0	4	121	25,332	5	0	4	122													
				BLC LCCO	18,458 13,735	2	0	3	66	19,885	2	0	4	96 71	20,136	2	0	4	97 72													
				RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,965	2	0	4	72													
				T1S	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	116													
				T2S	25,678	3	0	3	100	27,663	3	0	3	115	28,013	3	0	3	116													
				T2M	25,547	3	0	4	107	27,521	3	0	4	114	27,869	3	0	4	116													
				T3S	25,616	3	0	4	100	26,791	3	0	4	111	27,945	3	0	4	116													
				T3M	24,868	3	0	4	103	27,597	3	0	4	115	27,129	3	0	4	113													
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113													
60	1250	BO	2/11/	TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116													
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121													
				T5S	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121													
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120													
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120													
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95													
				LCC0	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71													
				RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71													

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

LED Count	Drive	Power	System	Dist.			30K K, 70 CRI					40K K. 70 CRI				(5000	50K) K, 70 CRI)																				
LED COUNT	Current	Package	Watts	Туре	Lumens	B	U U	G	LPW	Lumens	(4000 B	U U	G	LPW	Lumens	B	U U	G	LP																		
				T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	1.																		
				T2S	13,200	3	0	3	125	14,220	3	0	3	134	14,400	3	0	3	1																		
				T2M	12,966	4	0	4	122	13,968	4	0	4	132	14,145	4	0	4	1																		
				T3S	13,193	4	0	4	124	14,212	4	0	4	134	14,392	4	0	4	1																		
				T3M	12,766	4	0	4	120	13,751	4	0	4	130	13,925	4	0	4	1																		
				T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	1																		
60	530	P10	106W	TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	1																		
				TSVS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	1																		
				T5S	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	-																		
				T5M T5W	13,256 13,137	4	0	2	125 124	14,281 14,153	4	0	2	135 134	14,462 14,332	4	0	2	1																		
				BLC	10,906	4	0	3	124	14,155	3	0	3	111		3	0	3	_																		
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	11,898 8,497	1	0	3	1																		
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4																			
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	-																		
				T2S	16,757	4	0	4	121	18,052	4	0	4	130	18,280	4	0	4																			
				T2M	16,460	4	0	4	122	17,732	4	0	4	132	17,956	4	0	4	-																		
				T3S	16,747	4	0	4	120	18,041	4	0	4	132	18,270	4	0	4	-																		
				T3M	16,204	4	0	4	118	17,456	4	0	4	127	17,677	4	0	4	-																		
				T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926	4	0	4																			
				TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4																			
60	700	P11	137W	T5VS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1																			
				T5S	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2	-																		
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2																			
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3																			
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3																			
				LCC0	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3																			
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4																			
																						T15	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	1
																								T2S	23,276	4	0	4	112	25,074	4	0	4	121	25,392	4	0
																	T2M	22,863	4	0	4	110	24,630	5	0	5	119	24,941	5	0	5	1					
				T3S	23,262	4	0	4	112	25,060	4	0	4	121	25,377	4	0	4																			
				T3M	22,508	4	0	4	109	24,247	5	0	5	121	24,554	5	0	5	1																		
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	1																		
60	1050	P12	207W	TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	1																		
				TSVS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1																			
				TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	1																		
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3																			
				T5W BLC	23,165	5	0	4	112 93	24,955	5	0	4	121 100	25,271	5	0	4																			
				LCCO	19,231 13,734	2	0	4	66	20,717 14,796	4	0	4	71	20,979 14,983	2	0	4																			
				RCCO	13,716	4	0	4	66	14,796	4	0	4	71	14,963	4	0	4	+																		
				T1S	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4																			
				T2S	25,709	4	0	4	111	27,695	4	0	4	120	28,046	4	0	4																			
				T2M	25,253	5	0	5	109	27,204	5	0	5	118	27,548	5	0	5																			
				T3S	25,694	5	0	5	111	27,679	5	0	5	120	28,029	5	0	5	1																		
				T3M	24,861	5	0	5	108	26,782	5	0	5	116	27,121	5	0	5																			
				T4M	25,210	5	0	5	100	27,158	5	0	5	118	27,502	5	0	5	1																		
	1250	D	224111	TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	· ·																		
60	1250	P13	231W	T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1																			
				T5S	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	-																		
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	1																		
				T5W	25,586	5	0	4	111	27,563	5	0	4	119	27,912	5	0	4																			
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4																			
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4																			
				RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5	1																		

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly[™] product, meaning it is consistent with the LEED[®] and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN ACT

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT regulations. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions

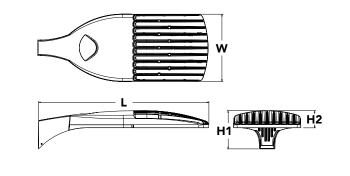
Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

D-Series Size 1

Legacy LED Area Luminaire


Notes

Туре

Specifications

d"series

1.01 ft ² (0.09 m ²)
33" (83.8 cm)
13" (33.0 cm)
7-1/2" (19.0 cm)
3-1/2"
27 lbs (12.2 kg)

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

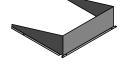
The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

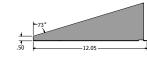
Orde	ring Information		EXAMPLE: DSX	1 LED P7 40K	T3M MV	OLT SPA NLTAIR2 PIRH	IN DDBXD G1
DSX1 LE	D						
Series	LEDs Color t	emperature	Distribution	Ve	'oltage	Mounting	
DSX1 LED	Forward optics 30K P1 P41 P71 40K P2 P51 P8 50K P3 P61 P91 600 700 Rotated optics 700 712 713 720 P102 P122 713 720 712 712	3000 K 4000 K 5000 K	(Automotive) TSS Ty T2S Type II short TSM Ty T2M Type II medium TSW Ty T3S Type III short BLC Bac T3M Type III medium LCCO Leco	pe V short ³ pe V endort ³ pe V medium ³ (pe V wide ³ acklight control ⁴ 2 eft corner cutoff ⁴ 2 ght corner cutoff ⁴ 2	MVOLT ⁵ XVOLT (277V-480V) ^{6,7,8} 120 ⁹ 208 ⁹ 240 ⁹ 277 ⁹ 347 ⁹ 480 ⁹	Shipped included SPA Square pole mountin RPA Round pole mountin WBA Wall bracket ³ SPUMBA Square pole universa RPUMBA Round pole universa Shipped separately KMA8 DDBXD U Mast arm mounting (specify finish) ¹²	g ¹⁰ I mounting adaptor ¹¹ I mounting adaptor ⁹
Control op	tions			Other options		Finish (required)	Generation (required)
Shipped i NLTAIR2 PIRHN PER PER5 PER7 DMG DS	nstalled nLight AIR generation 2 enabled ¹³ Network, high/low motion/ambient sensor ¹⁴ NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ Five-pin receptacle only (controls ordered separate) ^{15,16} Seven-pin receptacle only (controls ordered separate) ^{15,16} 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ Dual switching ^{18,19,20}	PIRH PIR1FC3V PIRH1EC3V	High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor, 8–15' mounting height, ambient sensor, 15–30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,22}	Shipped installed HS House-side shield SF Single fuse (120, DF Double fuse (208, L90 Left rotated optics R90 Right rotated optic HA 50°C ambient optic BAA Buy America(n) A Shipped separately BS BS Bird spikes ²⁴ EGS External glare ship	277, 347V) ⁹ 3, 240, 480V) ⁹ ;s ² rics ² verations ¹ Act Compliant	DDBXDDark bronzeDBLXDBlackDNAXDNatural aluminumDWHXDWhiteDDBTXDTextured dark bronzeDBLBXDTextured blackDNATXDTextured natural aluminumDWHGXDTextured white	G1 Generation 1

Ordering Information

Accessories

Order	red and shipped separately.
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) 25
DLL347F 1.5 CUL JU	Photocell - SSL twist-lock (347V) 25
DLL480F 1.5 CUL JU	Photocell - SSL twist-lock (480V) 25
DSHORT SBK U	Shorting cap 25
DSX1HS 30C G1 U	House-side shield for P1, P2, P3, P4 and P5 ²³
DSX1HS 40C G1 U	House-side shield for P6 and P7 ²³
DSX1HS 60C G1 U	House-side shield for P8, P9, P10, P11 and P12 ²³
PUMBA DDBXD G1 U*	Square and round pole universal mounting bracket (specify finish) ²⁶
KMA8 DDBXD U	Mast arm mounting bracket adaptor (specify finish) 12
DSX1EGS (FINISH) G1 U	External glare shield
For more contro	l options, visit DTL and ROAM online.

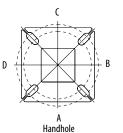

NOTES


- HA not available with P4, P5, P6, P7, P9 and P13. P10, P11, P12 or P13 and rotated optics (L90, R90) only available together. 2
- Any Type 5 distribution with photocell, is not available Not available with HS. with WBA.
- MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
 XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.
- 6 7
- XVOLT works with any voltage between 277V and 480V. XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIR1FC3V, PIRH1FC3V.
- 9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF. 10 Suitable for mounting to round poles between 3.5" and 12" diameter.
- 11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8 12 Must order fixture with SPA option. KMA8 must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included). 13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.
- 14 Must be ordered with NLTAIR2. For more information on nLight Air 2 vis
- 15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included. 16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming. 17 DMG not available with PIRHN, PERS, PER7, PIR, PIRH, PIRHC3V or PIRH1FC3V, FAO.
- 19 Provides 50/50fixture operation via (2) independent drivers. Not available with PER, PER5, PER7, PIR or PIRH. Not available P1, P2, P3, P4 or P5. 19 Requires (2) separately switched circuits.

- 17 / Requires (2) separately simulately and characterized in the set of the set of
- 24 Must be ordered with fixture for factory pre-drilling. 25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.
- 26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield



Drilling

HANDHOLE ORIENTATION

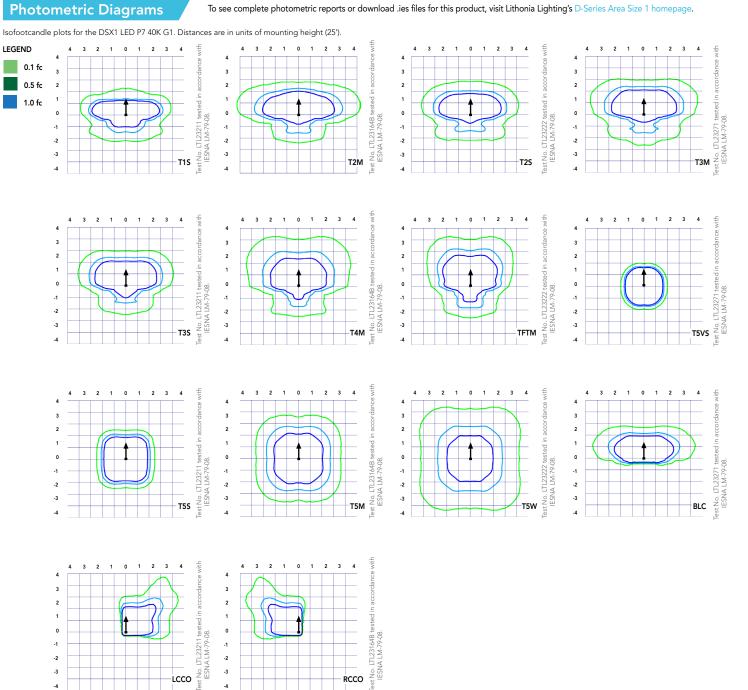
Top of Pole Template #8 1.75" for aluminum poles 2.75" for other pole types 0.563* \oplus 1.325 0.400" (2 PLCS) 2.650

Tenon Mounting Slipfitter

Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4 @ 90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-8		۲.,	.		■ ∔ ■
Mounting Option	Drilling Template	Single	2 @ 180	2 @ 90	3 @ 90	3 @ 120	4 @ 90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA


*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type	-8		Ľ,	∎ [¶] ∎	¥	•╂•
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template		Minimum Acceptable Outside Pole Dimension									
SPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″					
RPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″					
SPUMBA	#5	2-7/8″	3″	4″	4″	3.5″	4″					
RPUMBA	#5	2-7/8″	3.5″	5″	5″	3.5″	5″					

10

-2

-3

-4

-2

-3

.4

LCCO

RCCO

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^\circ C$ (32-104 $^\circ F$).

Amb	pient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a **25°C ambient**, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

		Motion Sen	sor Default S	ettings						
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time				
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min				
*PIR1FC3V or PIRH1FC3V 0utput 0utput Enabled@1FC 5 min 3 sec 5 min										
*for use when motion sensor is used as dusk to dawn control.										

						Current (A)						
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480		
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12		
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16		
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22		
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27		
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29		
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34		
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38		
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49		
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51		
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27		
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32		
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46		
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49		

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Electrical Load

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08.

Forward Op	ptics																																					
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)																					
	Current	Package	Watts	Туре	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW																			
				T1S	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130																			
				T2S	6,483	1	0	1	120	6,984	2	0	2	129	7,072	2	0	2	131																			
				T2M T3S	6,450 6,468	2	0	2	119 120	6,948 6,967	2	0	2	129 129	7,036	2	0	2	130 131																			
				T3M	6,279	2	0	2	116	6,764	2	0	2	125	6,849	2	0	2	127																			
				T4M	6,327	1	0	2	117	6,816	1	0	2	126	6,902	1	0	2	128																			
30	530	P1	54W	TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131																			
				T5VS T5S	6,722	2	0	0	124 125	7,242	3	0	0	134 134	7,334	3	0	0	136																			
				T5M	6,728 6,711	3	0	1	125	7,248	3	0	1	134	7,340 7,321	2	0	2	136 136																			
				T5W	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135																			
				BLC	5,299	1	0	1	98	5,709	1	0	2	106	5,781	1	0	2	107																			
				LCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80																			
				RCCO T1S	3,943 8,249	1	0	2	73 118	4,248 8,886	1	0	2	79 127	4,302 8,999	1	0	2	80 129																			
				T2S	8,249	2	0	2	118	8,923	2	0	2	127	9,035	2	0	2	129																			
				T2M	8,240	2	0	2	118	8,877	2	0	2	127	8,989	2	0	2	128																			
				T3S	8,262	2	0	2	118	8,901	2	0	2	127	9,013	2	0	2	129																			
				T3M	8,021	2	0	2	115	8,641	2	0	2	123	8,750	2	0	2	125																			
				T4M TFTM	8,083 8,257	2	0	2	115 118	8,708 8,896	2	0	2	124 127	8,818 9,008	2	0	2	126 129																			
30	700	P2	70W	T5VS	8,588	3	0	0	123	9,252	3	0	0	127	9,008	3	0	0	129																			
				T5S	8,595	3	0	1	123	9,259	3	0	1	132	9,376	3	0	1	134																			
				T5M	8,573	3	0	2	122	9,236	3	0	2	132	9,353	3	0	2	134																			
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	2	133																			
				BLC LCCO	6,770 5,038	1	0	2	97 72	7,293 5,427	1	0	2	104 78	7,386 5,496	1	0	2	106 79																			
				RCCO	5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79																			
				T1S	11,661	2	0	2	114	12,562	3	0	3	123	12,721	3	0	3	125																			
				T2S	11,708	2	0	2	115	12,612	2	0	2	124	12.772	2	0	2	125																			
				T2M T3S	11,648 11,679	2	0	2	114 115	12,548 12.582	3	0	3	123 123	12.707 12,741	3	0	3	125 125																			
				T3M	11,338	2	0	2	115	12.362	3	0	3	125	12,741	3	0	3	125																			
				T4M	11,426	2	0	3	112	12,309	2	0	3	121	12,465	2	0	3	122																			
30	1050	P3	P3 102W	102W	102W	TFTM	11,673	2	0	2	114	12,575	2	0	3	123	12,734	2	0	3	125																	
50	1050						10211	1021	10200	10200	102W	1027	IUZW					13211	13211							TSVS	12,140	3	0	1	119	13,078	3	0	1	128	13,244	3
				T5S T5M	12,150 12,119	3	0	1	119 119	13,089 13,056	3	0	1	128 128	13,254 13,221	3	0	1	130 130																			
				T5W	12,040	4	0	3	118	12,970	4	0	3	120	13,134	4	0	3	129																			
				BLC	9,570	1	0	2	94	10,310	1	0	2	101	10,440	1	0	2	102																			
				LCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76																			
				RCCO T1S	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76																			
				T2S	13,435 13,489	2	0	3	107	14,473 14,532	3	0	3	116	14,657 14,716	3	0	3	117																			
				T2M	13,420	3	0	3	100	14,457	3	0	3	116	14,640	3	0	3	117																			
				T3S	13,457	2	0	2	108	14,496	2	0	2	116	14,680	2	0	2	117																			
				T3M	13,064	3	0	3	105	14,073	3	0	3	113	14,251	3	0	3	114																			
				T4M TFTM	13,165 13,449	2	0	3	105 108	14,182 14,488	2	0	3	113 116	14,362 14,672	2	0	3	115 117																			
30	1250	P4	125W	T5VS	13,449	4	0	1	112	14,466	4	0	1	121	14,672	4	0	3 1	117																			
				T5S	13,999	3	0	1	112	15,080	3	0	1	121	15,271	3	0	1	122																			
				T5M	13,963	4	0	2	112	15,042	4	0	2	120	15,233	4	0	2	122																			
				T5W BLC	13,872	4	0	3	111 88	14,944	4	0	3	120	15,133	4	0	3	121																			
				BLC LCCO	11,027 8,205	1	0	2	88 66	11,879 8,839	1	0	2	95 71	12,029 8,951	1	0	2	96 72																			
				RCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72																			
				T1S	14,679	3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116																			
				T2S	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117																			
				T2M T3S	14,663 14,703	3	0	3	106 107	15,796 15,839	3	0	3	114 115	15,996 16,039	3	0	3	116 116																			
				T3M	14,703	3	0	3	107	15,839	3	0	3	111	15,571	3	0	3	113																			
				T4M	14,384	2	0	3	103	15,496	3	0	3	112	15,692	3	0	3	114																			
30	1400	P5	138W	TFTM	14,695	2	0	3	106	15,830	3	0	3	115	16,030	3	0	3	116																			
				T5VS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121																			
				T5S T5M	15,295 15,257	3	0	1	111	16,477 16,435	4	0	1	119 119	16,686 16,644	4	0	1	121 121																			
				T5W	15,257	4	0	3	110	16,328	4	0	3	118	16,534	4	0	3	121																			
				BLC	12,048	1	0	2	87	12,979	1	0	2	94	13,143	1	0	2	95																			
				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71																			
				RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71																			

COMMERCIAL OUTDOOR

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

	Drive	Power	System	Dist.		(2000	30K					40K					50K																														
ED Count	Current	Package	Watts	Туре	Lumens	(3000 B	U K, 70 CRI) G	LPW	Lumens	(4000 B	<u>K, 70 CRI</u> U	G	LPW	Lumens	(5000 B) K, 70 CRI) U	G	l u																												
				T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	1																												
				T2S	17,725	3	0	3	109	19,095	3	0	3	117	19,336	3	0	3	1																												
				T2M	17,634	3	0	3	108	18,997	3	0	3	117	19,237	3	0	3	1																												
				T3S	17,682	3	0	3	108	19,048	3	0	3	117	19,289	3	0	3	1																												
				T3M	17,166	3	0	3	105	18,492	3	0	3	113	18,726	3	0	3																													
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	-																												
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4																													
	1250			TSVS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	+																												
				TSS	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2																													
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	_																												
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	+																												
				BLC LCCO	14,489	2	0	2	89 66	15,609	2	0	3	96	15,806	2	0	3	+																												
				RCCO	10,781	1	0	3	66	11,614 11,614	1	0	3	71	11,761 11,761	2	0	3	+																												
				T1S	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3																													
				T2S	19,227	3	0	3	105	20,712	3	0	3	113	20,973	3	0	3	+																												
				T2M	19,205	3	0	3	105	20,790	3	0	3	113	20,951	3	0	3	+																												
				T3S	19,257	3	0	3	105	20,745	3	0	3	113	21,008	3	0	3	+																												
				T3M	18,695	3	0	3	102	20,140	3	0	3	110	20,395	3	0	4	t																												
				T4M	18,840	3	0	4	103	20,296	3	0	4	111	20,553	3	0	4	t																												
				TFTM	19,246	3	0	4	105	20,734	3	0	4	113	20,996	3	0	4	t																												
40	1400	P7	P7 183W	T5VS	20,017	4	0	1	109	21,564	4	0	1	118	21,837	4	0	1	T																												
				T5S	20,033	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	t																												
				T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	t																												
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3																													
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3																													
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3																													
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3																													
									T1S	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3																								
																																						T2S	22,581	3	0	3	109	24,326	3	0	3
				T2M	22,465	3	0	4	109	24,201	3	0	4	117	24,507	3	0	4																													
				T3S	22,526	3	0	4	109	24,267	3	0	4	117	24,574	3	0	4	+																												
				T3M	21,869	3	0	4	106	23,558	3	0	4	114	23,857	3	0	4	_																												
				T4M	22,038	3	0	4	106	23,741	3	0	4	115	24,041	3	0	4	_																												
60	1050	P8	207W	TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	-																												
				T5VS T5S	23,415 23,434	5	0	1	113 113	25,224 25,244	5	0	1	122 122	25,543 25,564	5	0	1	+																												
				T5M	23,454	5	0	3	113	25,244	5	0	3	122	25,364	5	0	3	+																												
				T5W	23,374	5	0	4	112	25,016	5	0	4	122	25,332	5	0	4	+																												
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	+																												
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	t																												
				RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	+																												
				T1S	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	Т																												
				T2S	25,678	3	0	3	107	27,663	3	0	3	115	28,013	3	0	3	1																												
				T2M	25,547	3	0	4	106	27,521	3	0	4	114	27,869	3	0	4	T																												
				T3S	25,616	3	0	4	106	26,791	3	0	4	111	27,945	3	0	4																													
				T3M	24,868	3	0	4	103	27,597	3	0	4	115	27,129	3	0	4																													
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4																													
60	1250	P9	241W	TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4																													
50	1250		2711	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1																													
				T5S	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	\perp																												
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	_																												
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	_																												
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	+																												
				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4																													

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

	Drive	Power	System	Dist.		(2000	30K					40K				(5000	50K																					
LED Count	Current	Package	Watts	Туре	Lumens	(3000 B	K, 70 CRI U) G	LPW	Lumens	(4000 B	K, 70 CRI) U	G	LPW	Lumens	(5000 B) K, 70 CRI) U	G	LP																			
				T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	13																			
				T2S	13,200	3	0	3	125	14,220	3	0	3	134	14,400	3	0	3	1																			
				T2M	12,966	4	0	4	122	13,968	4	0	4	132	14,145	4	0	4	1																			
				T3S	13,193	4	0	4	124	14,212	4	0	4	134	14,392	4	0	4	1																			
				T3M	12,766	4	0	4	120	13,751	4	0	4	130	13,925	4	0	4	1																			
				T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	1																			
60	530	P10	106W	TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	1																			
00	550	110	10011	T5VS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	1																			
				TSS	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	1																			
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	1																			
				T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	1																			
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	1																			
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3	8																			
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4																				
				T1S T2C	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	1																			
				T2S T2M	16,757	4	0	4	122 120	18,052 17,732	4	0	4	132 129	18,280	4	0	4	1																			
				T3S	16,460 16,747	4	0	4	120	17,732	4	0	4	129	17,956 18,270	4	0	4	1																			
				T3M	16,204	4	0	4	122	17,456	4	0	4	132	17,677	4	0	4	1																			
				T4M	16,432	4	0	4	120	17,450	4	0	4	127	17,926	4	0	4	1																			
				TFTM	16,857	4	0	4	120	18,159	4	0	4	133	18,389	4	0	4	1																			
60	700	P11	137W	T5VS	16,975	4	0	1	123	18,287	4	0	1	133	18,518	4	0	1	-																			
				TSS	16,832	4	0	1	123	18,133	4	0	2	133	18,362	4	0	2	1																			
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	1																			
				T5W	16,677	4	0	3	123	17,966	5	0	3	132	18,193	5	0	3	1																			
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	-																			
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3																				
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4																				
																							T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	1
																																					T2S	23,276
				T2M	22,863	4	0	4	110	24,630	5	0	5	119	24,941	5	0	5	1																			
				T3S	23,262	4	0	4	112	25,060	4	0	4	121	25,377	4	0	4	1																			
				T3M	22,508	4	0	4	109	24,247	5	0	5	121	24,554	5	0	5	1																			
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	1																			
60	1050	P12	207W	TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	1																			
00	1050	F12	207 1	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	1																			
				T5S	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	1																			
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3																				
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	-																			
				BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4																				
				LCCO	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	_																			
				RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4																				
				T1S	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	-																			
				T2S	25,709	4	0	4	111	27,695	4	0	4	120	28,046	4	0	4																				
				T2M	25,253	5	0	5	109	27,204	5	0	5	118	27,548	5	0	5																				
				T3S	25,694	5	0	5	111	27,679	5	0	5	120	28,029	5	0	5																				
				T3M	24,861	5	0	5	108	26,782	5	0	5	116	27,121	5	0	5	1																			
				Т4М	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	1																			
60	1250	P13	231W	TFTM TSVS	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5																				
				T5VS	26,043		0	2	113	28,056	5	0	1	121	28,411		0		+ .																			
				T5S T5M	25,824 25,818	4	0	3	112 112	27,819 27,813	5	0	2	120 120	28,172 28,165	5	0	2	_																			
				T5W	25,818	5	0	4	112	27,813	5	0	4	120	28,165	5	0	4	-																			
				BLC	23,360	4	0	4	92	27,505	4	0	4	99	27,912	4	0	4																				
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4	1																			
				RCCO	15,170	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5																				

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly[™] product, meaning it is consistent with the LEED[®] and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERIS[™] series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN ACT

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT regulations. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions

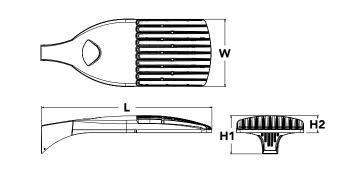
Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

D-Series Size 1

Legacy LED Area Luminaire



Notes

d"series

Specifications 1 01 42

EPA:	1.01 ft ² (0.09 m ²)
Length:	33" (83.8 cm)
Width:	13" (33.0 cm)
Height H1:	7-1/2" (19.0 cm)
Height H2:	3-1/2"
Weight (max):	27 lbs (12.2 kg)

Туре

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

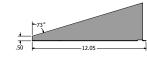
Orde	ring Information		EXAMPLE: DSX	1 LED P7 40	K T3M MV	OLT SPA NLTAIR2 PIRH	IN DDBXD G1
DSX1 LE	D						
Series	LEDs Color te	mperature	Distribution		Voltage	Mounting	
DSX1 LED	Forward optics 30K P1 P41 P71 40K P2 P51 P8 50K P3 P61 P91 50K Rotated optics P102 P122 101 P112 P1312 112 112	3000 K 4000 K 5000 K	(Automotive) T5S Ty T2S Type II short T5M Ty T2M Type II medium T5W Ty T3S Type III short BLC Bac T3M Type III medium LCCO Leco	pe V very short ³ pe V short ³ pe V medium ³ pe V wide ³ scklight control ⁴ ft corner cutoff ⁴ ght corner cutoff ⁴	MVOLT ³ XVOLT (277V-480V) ^{6,7,8} 120 ⁹ 208 ⁹ 240 ⁹ 277 ⁹ 347 ⁹ 480 ⁹		al mounting adaptor ¹¹ al mounting adaptor ⁹
Control op	tions			Other options		Finish (required)	Generation (required)
Shipped i NLTAIR2 PIRHN PER PER5 PER7 DMG DS	installed nLight AIR generation 2 enabled ¹³ Network, high/low motion/ambient sensor ¹⁴ NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ Five-pin receptacle only (controls ordered separate) ^{15,16} Seven-pin receptacle only (controls ordered separate) ^{15,16} O-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ Dual switching ^{18,19,20}	PIRH PIR1FC3V	High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 5fc ^{20,2T} High/low, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 5fc ^{20,2T} High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor, 8–15' Bi-level, motion/ambient sensor, 15–30' mounting height, ambient sensor, 15–30' mounting height, ambient sensor enabled at 1fc ^{20,2T} Field adjustable output ^{20,22}	DFDouble fuse (2)L90Left rotated opR90Right rotated oHA50°C ambient of	20, 277, 347V) ⁹ 208, 240, 480V) ⁹ vitics ² operations ¹ 1) Act Compliant	DDBXDDark bronzeDBLXDBlackDNAXDNatural aluminumDWHXDWhiteDDBTXDTextured dark bronzeDBLBXDTextured blackDNATXDTextured natural aluminumDWHGXDTextured white	G1 Generation 1

COMMERCIAL OUTDOOR

Ordering Information

Accessories

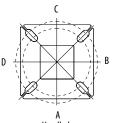
Order	Ordered and shipped separately.										
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) 25										
DLL347F 1.5 CUL JU	Photocell - SSL twist-lock (347V) 25										
DLL480F 1.5 CUL JU	Photocell - SSL twist-lock (480V) 25										
DSHORT SBK U	Shorting cap 25										
DSX1HS 30C G1 U	House-side shield for P1, P2, P3, P4 and P5 ²³										
DSX1HS 40C G1 U	House-side shield for P6 and P7 ²³										
DSX1HS 60C G1 U	House-side shield for P8, P9, P10, P11 and P12 ²³										
PUMBA DDBXD G1 U*	Square and round pole universal mounting bracket (specify finish) ²⁶										
KMA8 DDBXD U	Mast arm mounting bracket adaptor (specify finish) 12										
DSX1EGS (FINISH) G1 U	External glare shield										
For more contro	l options, visit DTL and ROAM online.										

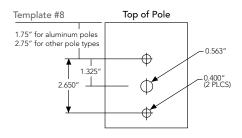

NOTES

- HA not available with P4, P5, P6, P7, P9 and P13. P10, P11, P12 or P13 and rotated optics (L90, R90) only available together. 2
- Any Type 5 distribution with photocell, is not available Not available with HS. with WBA.
- MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
 XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.
- 6 7
- XVOLT works with any voltage between 277V and 480V. XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIR1FC3V, PIRH1FC3V.
- 9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF. 10 Suitable for mounting to round poles between 3.5" and 12" diameter.
- 11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8 12 Must order fixture with SPA option. KMA8 must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included). 13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.
- 14 Must be ordered with NLTAIR2. For more information on nLight Air 2 vis
- 15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included. 16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming. 17 DMG not available with PIRHN, PERS, PER7, PIR, PIRH, PIRHC3V or PIRH1FC3V, FAO.
 - 19 Provides 50/50fixture operation via (2) independent drivers. Not available with PER, PER5, PER7, PIR or PIRH. Not available P1, P2, P3, P4 or P5. 19 Requires (2) separately switched circuits.
- 17 / Requires (2) separately simulately and characterized in the set of the set of
- 24 Must be ordered with fixture for factory pre-drilling. 25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.
- 26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield





Drilling

HANDHOLE ORIENTATION

Handhole

Tenon Mounting Slipfitter

Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4 @ 90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-8		۲.,	.		- <u>∓</u> -
Mounting Option	Drilling Template	Single	2 @ 180	2 @ 90	3 @ 90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type	-8		Ľ,	∎ [¶] ∎	¥	•╂•
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template		Mini	mum Acceptable (Outside Pole Dime	nsion	
SPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″
RPA	#8	2-7/8″	2-7/8″	3.5″	3.5″	3″	3.5″
SPUMBA	#5	2-7/8″	3″	4″	4″	3.5″	4″
RPUMBA	#5	2-7/8″	3.5″	5″	5″	3.5″	5″

Test No. LT/22271 tested in accorde

Test No. LT 23271 tested in ac IESNA LM-79-08.

Fest No. LTL23271 tested in accordance IESNA LM-79-08.

BLC

0

2

4 ÷

3 2

4

3

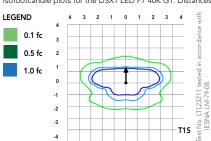
2

1

0

-1

-2


-3

-4

0

2

Isofootcandle plots for the DSX1 LED P7 40K G1. Distances are in units of mounting height (25').

Photometric Diagrams

4

3

2

1

0

-1

-2

-3

-4

4

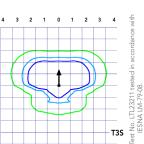
3

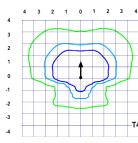
2

1

0

-1


-2


-3

-4

3 2 1 0 1 2 3

4

0

1

4 3 2

3

2

1

0

-1

-2

-3

-4

2 3

t No. LTL23164B te: IESNA LM-79-08.

est No. T5M

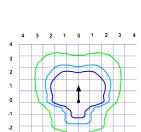
with

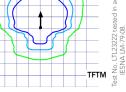
vith

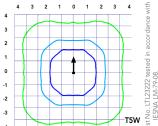
accor

Fest No. LTL23164B tested in IESNA LM-79-08.

4


T2M




-4

4

-4

vith

ed in

Fest No. LTL23222 tes IESNA LM-79-08.

vith

T2S

4

3

2

1

0

-1

-2

-3

-4

3

2

1

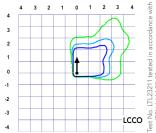
0

-1

-2

-3

-4


4

4 3 2 1 0 1 2 3 4 vith

4 3 2 1 0 1 2 3 4 ÷

t No. LTL23211 test IESNA LM-79-08.

dth

Fest No. LTL23211 test IESNA LM-79-08.

T5S

4

4 3 2 1 0 1 2 3 4

4

3

2

1

0

-1

-2

-3

-4

4

3 2 1

4

2 1 0 -1 -2 -3

0 1 2 3

Fest No. LTL23164B tested in accordance with IESNA LM-79-08. RCCO

4

LITHONIA LIGHTING COMMERCIAL OUTDOOR

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 °C (32-104 °F).

Aml	pient	Lumen Multiplier
0°C	32°F	1.04
5℃	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a **25°C ambient**, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

		Motion Sen	sor Default S	ettings		
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min
	•		to dawn control.			

							Curre	nt (A)		
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Electrical Load

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08.

Image Proof Proof <t< th=""><th>Forward Op</th><th>otics</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Forward Op	otics																		
0 met 0 holay 0 holay 0 holay 0 meter		Drive	Power	System	Dist.															
90 150 6407 2 0 2 0 2 0 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 10 2 10 <th10< th=""> 10 <</th10<>	LED Count					Lumonc				I DW	Lumons			_	1 D\M	Lumons				LPW
10 10 1 10 0 100 648 2 0 2 100 100 2 100 100 2 100 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100					T1S															130
10 105 4.00 1 0 2 100 2<						6,483	1	0	1	120	6,984	2	0	2	129	7,072	2	0	2	131
90 500 61 63 2 10 63 2 0 2 10 50 64 0 2 10 63 1 0 2 10 63 1 0 2 10 63 1 0 2 10 63 1 0 2 10 63 1 0 2 10 7 7 7 0 1 0 2 10 63 10 <th10< th=""> <th10< th=""> <th10< th=""> <</th10<></th10<></th10<>																				130
10 530 P1 530 F34 6.32 1 0 2 10 2 10 2 10 2 10 2 10 2 10 10 2 10 10 2 10 10 10 2 10																				131
10 5:00 10 0:0 <td></td> <td>-</td> <td></td> <td></td> <td>127 128</td>																	-			127 128
30 30 FI 500 FI 700																				131
100 100 6/10 3 0 1 124 7.20 3 0 2 10	30	530	P1	54W			2	0	0	124		3	0	0	134		3	0	0	136
19 6 6 0 1 9 7 3 0 2 10 5 10 1 0 2 10 5 10 1 0 2 10 5 10 1 0 2 100 348 1 0 2 0 438 1 0 2 10 438 1 0 2 10 438 1 0 2 10 438 1 0 2 10																				136
Bit Bit Bit Bit Bit Bit Bit Bit C <thc< th=""> <thc< th=""> <thc< th=""> <</thc<></thc<></thc<>																				136
10 10 100 <																	-			135 107
No. No. Str.0 3 3 0 2 7 0 2 7 0 2 7 0 2 7 0 2 1 1 0 2 1 1 0 2 1								-							-					80
90 100 100 100 20 <							1	0				1	0		79		1	0		80
10 110 6 2 110 6 0 2 100 2 <td></td> <td>129</td>																				129
30 700 P2 700 P3 700																				129
10 100 10 2 10 10 2 10 10 2 10 10 2 10 10 2 10 10 2 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>																	-			128 129
30 700 92 700 92 700 92 700 818 2 0 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 100 2 100 100 2 100																				125
30 7/0 F2 7/00 7/2 5/30 5 5/50 5/50 3 0 0 1 12 9/20 3 0 0 1 12 9/30 3 0 1 150 5/51 5/50 3 0 2 122 9/25 3 0 2 131 9/20 3 0 2 150 5/51 3 0 2 12 9/27 1 0 2 131 9/20 4 0 2 150 1601 2 72 5/47 1 0 2 73 5/46 1 0 2 1 0 2 73 5/46 1 0 2 1					T4M					115							2	-	2	126
1000 P3 0 0 10 12 9242 3 0 0 102 936 3 0 0 150 6.35 3 0 2 122 9249 3 0 1 123 9333 3 0 2 150 6.37 3 0 2 122 9249 3 0 2 133 933 3 0 2 160 6.77 1 0 2 71 1 0 2 73 566 1 0 2 73 566 1 0 2 73 566 1 0 2 10 2 73 547 1 0 2 0 3 122 1271 3 0 3 12 1271 3 0 3 12 1271 3 0 3 12 1271 3 0 3 12 1271 </td <td>30</td> <td>700</td> <td>P2</td> <td>70W</td> <td></td> <td>129</td>	30	700	P2	70W																129
30 15% 6,57 3 0 2 122 9,26 4 0 2 132 9,33 3 0 2 80 6.70 1 0 2 175 4 0 2 133 9,31 4 0 2 80 6.70 1 0 2 77 733 1 0 2 136 1.60 2 80 5.68 1 0 2 72 5.427 1 0 2 78 5.666 1 0 2 80 2 1175 11,68 2 0 2 117 12,62 3 0 3 12 12,214 3 0 3 12 12,214 3 0 3 12 12,239 3 0 1 12 12,324 3 0 1 12 12,34 3 0 1 12 12,34 3 </td <td></td> <td>134</td>																				134
30 91 91 4.0 92 917 4.0 0 2 917 4.0 0 2 100 2 917 1 0 2 917 1 0 2 10 10 2 10 10 10 10 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>134 134</td>										-		1					-			134 134
Bit Bit Bit G C F T D C D <thd< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>134</td></thd<>															-					134
B B																				106
30 1050 1160 1160 2 0 2 114 1252 3 0 3 123 123 1175 1176 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171 1175 1171																				79
An An																				79
30 1150 1160 1								-												125 125
90 1150 116 116 116 111 1282 2 0 2 1230 1230 2 00 2 1050 1057 1133 2 0 3 120 12309 2 0 3 120 12309 2 0 3 120 12309 2 0 3 120 12309 2 0 3 120 12309 2 0 3 120 13 130 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>125</td></th<>																				125
30 1050 P3 P3 P4 1140 11673 2 0 3 112 12,46 2 0 3 30 1059 12,140 3 0 1 119 13,078 3 0 1 128 13,244 3 0 1 155 12,140 3 0 1 119 13,078 3 0 1 128 13,244 3 0 1 155 12,119 4 0 2 119 13,056 3 0 1 128 13,244 4 0 2 155 12,119 4 0 3 18 12,970 4 0 3 10 13,44 4 0 3 1600 7,121 1 0 3 75 77,68 1 0 3 175 13,455 3 0 3 107 14,473 3																				125
30 1650 P3 102W 17FM 11,073 2 0 2 1 119 13,073 3 0 1 119 13,078 3 0 1 119 13,078 3 0 1 119 13,087 3 0 1 118 13,271 4 0 1 119 13,087 3 0 1 118 13,271 4 0 2 138 12,211 4 0 4 0 3 12 13,144 4 0 2 118 12,270 4 0 3 17 13,457 2 0 3 10 11,118 11 11 11 0 3 10 11 10 3 77 77 1 0 3 77 11 10 3 17 13,457 3 0 3 116 14,673 3 0 3 117 13,457 13																				121
30 1030 P3 1020 F3 1020 F30 10																				122
30 11 15 11 11 13 0 1 128 13 24 3 0 1 158 12,119 4 0 2 119 13,066 4 0 2 128 13,214 4 0 3 160 9,570 1 0 2 70 7671 1 0 3 75 7,768 1 0 3 170 71,11 0 3 70 7,671 1 0 3 75 7,768 1 0 3 171 13,420 3 0 3 107 7,471 1 0 3 116 14,670 3 0 3 116 14,640 3 0 3 116 14,640 3 0 3 113 14,251 3 0 3 113 14,251 3 0 3 113 14,251 3 0	30	1050	P3	102W													-			125 130
30 120 1400 12 190 13,056 4 0 2 128 13,211 4 0 2 15W 12,040 4 0 3 127 1 0 2 94 10,101 1 0 3 127 13,134 4 0 2 160 9,570 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 171 13,485 3 0 3 107 14,473 3 0 3 116 14,667 3 0 3 12 13,485 2 0 2 0 3 105 14,457 3 0 3 16 14,667 3 0 3 115 14,457 3 0 3 116 14,662 2 0 3 105 14,457 3 0 3 113 14,362																				130
BLC 9570 1 0 2 94 1030 1 0 2 101 10400 1 0 2 LC00 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 T15 13,455 3 0 3 107 14,473 3 0 3 116 14,657 3 0 3 T2N 13,402 3 0 3 107 14,457 3 0 3 116 14,660 3 0 3 13 14,257 3 0 3 113 14,257 3 0 3 116 14,660 2 0 3 116 14,660 2 0 3 113 14,251 3 0 3 113 14,352 2 0 3 116 14,660 2 105 14,073 3 0																				130
100 100 100 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 RC00 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 RC00 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 0 3 116 14,673 3 0 3 116 14,640 3 0 3 107 14,473 3 0 3 116 14,640 3 0 3 105 14,073 3 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 116 14,627 2 16 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>129</td></t<>																				129
1000 1000 1000 7,121 1 0 3 70 7,671 1 0 3 75 7,768 1 0 3 115 13,435 3 0 3 107 14,473 3 0 3 116 14,476 3 0 3 115 13,420 3 0 2 108 14,497 3 0 3 116 14,476 3 0 3 10 3 116 14,476 3 0 3 10 3 116 14,640 3 0 3 117 14,37 3 0 3 116 14,640 3 0 3 11 14,362 2 0 3 105 14,497 3 0 3 113 14,221 2 0 3 11 14,362 2 0 3 117 14,482 2 0 3 112 15,423																				102
30 1250 P4 115 13,435 3 0 3 107 14,473 3 0 3 116 14,657 3 0 3 30 125 13,489 2 0 2 108 14,522 3 0 3 116 14,640 3 0 3 135 13,420 3 0 3 107 14,477 3 0 3 116 14,640 3 0 3 135 13,420 3 0 3 105 14,473 3 0 3 116 14,640 3 0 3 1400 1250 1343 165 2 0 3 105 14,473 3 0 3 113 14,261 3 0 3 11 14,473 3 0 1 121 15,259 4 0 3 116 14,672 14 0 3										-					-					76 76
30 1250 P4 125 13,489 2 0 2 108 14,532 3 0 3 116 14,716 3 0 3 30 1250 P4 13,420 3 0 2 0 2 0 2 0 3 116 14,716 3 0 3 0 3 0 3 116 14,640 3 0 3 0 3 116 14,640 2 0 2 0 3 113 14,251 3 0 3 115 14,672 2 0 3 116 14,672 2 0 3 116 14,672 2 0 3 0 1 112 15,088 4 0 1 112 15,086 4 0 1 121 15,279 4 0 3 0 1 121 15,273 4 0 3 10 1																				117
30 1250 P4 135 13,457 2 0 2 108 14,496 2 0 2 116 14,680 2 0 2 30 1250 P4 13,064 3 0 3 105 14,073 3 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 113 14,362 2 0 3 114 14,488 2 0 3 116 14,672 2 0 3 11 112 15,259 4 0 1 112 15,271 3 0 1 12 15,271 3 0 2 16 121 15,271 3 0 3 11 14,379 3 1 10 3 10																				118
30 1250 P4 13M 13,064 3 0 3 105 14,073 3 0 3 113 14,251 3 0 3 30 1250 P4 13,165 2 0 3 105 14,182 2 0 3 113 14,362 2 0 3 1250 P4 13,1849 2 0 3 116 14,672 2 0 3 155 13,999 3 0 1 112 15,080 3 0 1 121 15,271 3 0 1 155 13,999 3 0 1 112 15,080 3 0 1 0 3 0 3 0 1 0 3 0 1 0 3 10 0 3 10 15,33 4 0 3 150 14,077 1 0 2											14,457									117
30 1250 P4 125W T4M 13,165 2 0 3 105 14,182 2 0 3 113 14,362 2 0 3 30 1250 P4 125W 115W 13,349 2 0 3 108 14,488 2 0 3 116 14,672 2 0 3 155 13,999 3 0 1 112 15,080 3 0 1 121 15,271 3 0 1 15W 13,872 4 0 2 112 15,042 4 0 2 10 15,271 3 0 1 0 2 10 2,292 1 0 2 10 13,163 4 0 3 11 0 3 1 0 3 11 0 2 16 0 3 10 3 10 3 10 3																				117
30 1250 P4 125W TFIM 13,449 2 0 3 108 14,488 2 0 3 116 14,672 2 0 3 30 1250 1250 13,987 4 0 1 112 15,068 4 0 1 121 15,259 4 0 1 155 13,999 3 0 1 112 15,042 4 0 2 120 15,233 4 0 2 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,133 4 0 2 15W 13,872 4 0 3 66 8,839 1 0 3 71 8,951 1 0 3 16(00 8,205 1 0 3 106 15,814 3 0 3 115 16,014 3 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>114 115</td>							-					1	-							114 115
30 1230 P4 125W T5VS 13,987 4 0 1 112 15,068 4 0 1 121 15,259 4 0 1 T5S 13,999 3 0 1 112 15,080 3 0 1 121 15,237 4 0 2 T5W 13,872 4 0 2 112 15,042 4 0 2 15,333 4 0 2 BLC 11,027 1 0 2 88 11,879 1 0 2 95 12,029 1 0 3 BLC 11,027 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 RCO 8,205 1 0 3 107 15,878 3 0 3 115 16,079 3 0 3 TCS						,				-	,				-					115
30 1400 P5 13,963 4 0 2 112 15,042 4 0 2 120 15,233 4 0 2 15W 13,872 4 0 3 111 14,944 4 0 3 120 15,133 4 0 3 BLC 11,027 1 0 2 88 11,879 1 0 3 71 8,951 1 0 3 ICCO 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 T15 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 3 T25 14,739 3 0 3 107 15,878 3 0 3 115 16,079 3 0 3 T25 14,739	30	1250	P4	125W	T5VS															122
30 1400 P5 13 14 13,872 4 0 3 111 14,944 4 0 3 120 15,133 4 00 3 BLC 11,027 1 0 2 88 11,879 1 0 2 95 12,029 1 0 2 BLC 11,027 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 TIS 14,679 3 0 3 106 15,784 3 0 3 115 16,014 3 0 3 TIM 14,663 3 0 3 107 15,839 3 0 3 115 16,039 3 0 3 3 3										-					-					122
BLC 11,027 1 0 2 88 11,879 1 0 2 95 12,029 1 0 2 LCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 RCC0 8,205 1 0 3 106 15,814 3 0 3 115 16,014 3 0 3 T25 14,703 3 0 3 106 15,876 3 0 3 115 16,079 3 0 3 T2M 14,663 3 0 3 106 15,879 3 0 3 113 16,079 3 0 3 T2M 14,703 2 0																				122
Barry 1 Image: ba											i				-		-			121 96
Base RCC0 8,205 1 0 3 66 8,839 1 0 3 71 8,951 1 0 3 30 1 1 14,679 3 0 3 106 15,814 3 0 3 115 16,014 3 0 3 10 14,679 3 0 3 107 15,878 3 0 3 115 16,014 3 0 3 12M 14,679 3 0 3 107 15,878 3 0 3 114 15,969 3 0 3 13M 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 10 3 114 15,992 3 0 3 16 15,377 3 0 3 111 15,571 3 0 3 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>72</td></td<>																				72
30 1400 P5 138W T2S 14,739 3 0 3 107 15,878 3 0 3 115 16,079 3 0 3 30 1400 P5 14,633 3 0 3 106 15,796 3 0 3 114 15,996 3 0 3 30 1400 P5 14,703 2 0 3 103 15,377 3 0 3 111 15,571 3 0 3 0 3 0 3 106 15,496 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 0 3 103 15,377 3 0 3 103 15,496 3 0 3 103 15,496 3 0 3 103 15,577 3 0 3 115 16,030 3 0																				72
30 1400 P5 12M 14,663 3 0 3 106 15,796 3 0 3 114 15,996 3 0 3 30 1400 P5 138W 14,703 2 0 3 107 15,839 3 0 3 115 16,039 3 0 3 30 1400 P5 138W 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 0 3 0 3 104 15,496 3 0 3 10 3 112 15,692 3 0 3 0 3 0 3 105 15,692 3 0 3 10 15,830 3 0 3 10 3 105 15,692 3 0 3 10 3 15,555 15,295 15,295 10 1												-								116
30 1400 P5 138W 14,703 2 0 3 107 15,839 3 0 3 115 16,039 3 0 3 30 1400 P5 138W 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 1400 P5 138W 14,274 3 0 3 104 15,476 3 0 3 111 15,571 3 0 3 1400 P5 150 15,283 4 0 1 111 16,464 4 0 1 119 16,672 4 0 1 1555 15,283 4 0 1 111 16,477 4 0 1 119 16,672 4 0 1 1555 15,283 4 0 2 111 16,437 4 0																				117
30 1400 P5 T3M 14,274 3 0 3 103 15,377 3 0 3 111 15,571 3 0 3 30 1400 P5 T4M 14,384 2 0 3 104 15,496 3 0 3 112 15,692 3 0 3 1500 TFIM 14,695 2 0 3 106 15,830 3 0 3 115 16,030 3 0 3 1500 15,283 4 0 1 111 16,464 4 0 1 119 16,672 4 0 1 1550 15,283 4 0 1 111 16,477 4 0 1 119 16,672 4 0 1 1555 15,257 3 0 2 111 16,435 4 0 2 119 16,664 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>116 116</td></td<>								-												116 116
30 1400 P5 T4M 14,384 2 0 3 104 15,496 3 0 3 112 15,692 3 0 3 30 11400 FF 14,695 2 0 3 106 15,830 3 0 3 115 16,030 3 0 3 155 15,283 4 0 1 111 16,644 4 0 1 119 16,672 4 0 1 155 15,257 3 0 2 111 16,474 4 0 1 119 16,684 4 0 1 155 15,257 4 0 2 111 16,435 4 0 2 119 16,684 4 0 2 155 15,257 4 0 3 10 16,328 4 0 2 119 16,644 4 0 2												-								113
30 1400 PS 158W T5VS 15,283 4 0 1 111 16,644 4 0 1 119 16,672 4 0 1 T5S 15,295 3 0 1 111 16,477 4 0 1 119 16,686 4 0 1 T5M 15,257 4 0 2 111 16,435 4 0 2 119 16,644 4 0 2 T5W 15,157 4 0 3 110 16,328 4 0 3 118 16,534 4 0 3 BLC 12,048 1 0 2 87 12,979 1 0 2 94 13,143 1 0 2																				114
15VS 15,283 4 0 1 111 16,464 4 0 1 119 16,672 4 0 1 T5S 15,285 3 0 1 111 16,477 4 0 1 119 16,686 4 0 1 T5M 15,257 4 0 2 111 16,435 4 0 2 119 16,684 4 0 2 T5M 15,257 4 0 3 110 16,328 4 0 2 119 16,644 4 0 2 T5W 15,157 4 0 3 110 16,328 4 0 3 118 16,634 4 0 3 BLC 12,048 1 0 2 87 12,979 1 0 2 94 13,143 1 0 2	30	1400	P5	138W											-		-			116
T5M 15,257 4 0 2 111 16,435 4 0 2 119 16,644 4 0 2 T5W 15,157 4 0 3 110 16,328 4 0 3 118 16,534 4 0 3 BLC 12,048 1 0 2 87 12,979 1 0 2 94 13,143 1 0 2	50	1100		15011																121
T5W 15,157 4 0 3 110 16,328 4 0 3 118 16,534 4 0 3 BLC 12,048 1 0 2 87 12,979 1 0 2 94 13,143 1 0 2								-							-					121 121
BLC 12,048 1 0 2 87 12,979 1 0 2 94 13,143 1 0 2															-					121
																				95
							1				9,657	1		3					3	71
RCCO 8,965 1 0 3 65 9,657 1 0 3 70 9,780 1 0 3					RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71

COMMERCIAL OUTDOOR

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

	Drive	Power	System	Dist.		(2000	30K K. 70 CRI					40K					50K		
ED Count	Current	Package	Watts	Туре	Lumens	(3000 B	U U	G	LPW	Lumens	(4000 B	K, 70 CRI) U	G	LPW	Lumens	(5000 B) K, 70 CRI) U	G	L
				T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	1
				T25	17,725	3	0	3	109	19,095	3	0	3	117	19,336	3	0	3	1
				T2M	17,634	3	0	3	108	18,997	3	0	3	117	19,237	3	0	3	· ·
				T3S	17,682	3	0	3	108	19,048	3	0	3	117	19,289	3	0	3	
				T3M	17,166	3	0	3	105	18,492	3	0	3	113	18,726	3	0	3	
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4	
10	1250		10511	TSVS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	
				TSS	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	-
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	_
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	+
				BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	+
				LCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	+
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	+
				T1S T2C	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	+
				T2S	19,304	3	0	3	105	20,796	3	0	3	114	21,059	3		3	+
				T2M T35	19,205 19,257	3	0	3	105 105	20,689 20,745	3	0	3	113 113	20,951 21,008	3	0	3	+
				T3M	19,237	3	0	3	105	20,745	3	0	3	110	20,395	3	0	4	+
				T4M	18,840	3	0	4	102	20,140	3	0	4	111	20,553	3	0	4	+
				TFTM	19,246	3	0	4	105	20,290	3	0	4	113	20,333	3	0	4	+
40	1400	P7	183W	T5VS	20,017	4	0	1	105	20,754	4	0	1	118	21,837	4	0	1	+
				TSS	20,017	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	+
				T5M	19,983	4	0	2	109	21,507	5	0	3	118	21,094	5	0	3	+
				T5W	19,852	5	0	3	105	21,386	5	0	3	117	21,656	5	0	3	+
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	+
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	+
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	t
				T1S	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3	T
				T25	22,581	3	0	3	109	24,326	3	0	3	118	24,634	3	0	3	T
				T2M	22,465	3	0	4	109	24,201	3	0	4	117	24,507	3	0	4	
				T3S	22,526	3	0	4	109	24,267	3	0	4	117	24,574	3	0	4	
				T3M	21,869	3	0	4	106	23,558	3	0	4	114	23,857	3	0	4	
				T4M	22,038	3	0	4	106	23,741	3	0	4	115	24,041	3	0	4	
60	1050	P8	207W	TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	
00	1030	ro	207 W	T5VS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	
				T5S	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	
				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	1
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	+
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	+
				RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	+
				TIS	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	_
				T2S	25,678	3	0	3	107	27,663	3	0	3	115	28,013	3	0	3	+
				T2M	25,547	3	0	4	106	27,521	3	0	4	114	27,869	3	0	4	+
				T3S T3M	25,616	3	0	4	106 103	26,791	3	0	4	111 115	27,945	3	0	4	+
					24,868		-			27,597		-			27,129				+
				T4M TFTM	25,061 25,602	3	0	4	104	26,997 27,580	3	0	4	112	27,339 27,929	3	0	4	+
60	1250	P9	241W	TSVS	25,602	5	0	4	110	27,580	5	0	4	114	27,929	5	0	4	+
				T5S	26,628	4	0	2	111	28,707	5	0	2	119	29,047	5	0	2	+
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	29,070	5	0	3	+
				T5W	26,406	5	0	4	110	28,033	5	0	4	119	28,897	5	0	4	+
				BLC	20,400	2	0	3	87	20,447	2	0	3	94	22,898	2	0	3	+
				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	+
			1		1 13,012		· · ·		0.5	10,023		· · ·		1 10	1,050				

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

	Drive	Power	System	Dist.			30K					40K					50K																									
LED Count	Current	Package	Watts	Туре	1	(3000 B	K, 70 CRI U	G	LPW	1	(4000 B	K, 70 CRI) U		LPW	1	(5000 B	K, 70 CRI		LP																							
				T1S	Lumens 13,042	3	0	3	123	Lumens 14,050	3	0	G 3	133	Lumens 14,228	3	0	G 3	1																							
				T2S	13,200	3	0	3	125	14,220	3	0	3	135	14,400	3	0	3	1																							
				T2M	12,966	4	0	4	123	13,968	4	0	4	131	14,145	4	0	4	1																							
				T3S	13,193	4	0	4	122	14,212	4	0	4	132	14,392	4	0	4	1																							
				T3M	12,766	4	0	4	120	13,751	4	0	4	130	13,925	4	0	4	1																							
				T4M	12,944	4	0	4	122	13,945	4	0	4	130	14,121	4	0	4	1																							
				TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	1																							
60	530	P10	106W	T5VS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	1																							
				TSS	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	1																							
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	1																							
				T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	1																							
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	1																							
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3																								
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4																								
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	1																							
				T2S	16,757	4	0	4	122	18,052	4	0	4	132	18,280	4	0	4	· ·																							
				T2M	16,460	4	0	4	120	17,732	4	0	4	129	17,956	4	0	4	-																							
				T3S	16,747	4	0	4	120	18,041	4	0	4	132	18,270	4	0	4	<u> </u>																							
				T3M	16,204	4	0	4	118	17,456	4	0	4	127	17,677	4	0	4																								
				T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926	4	0	4																								
				TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4																								
60	700	P11	137W	T5VS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1	-																							
				T5S	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2																								
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	-																							
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	-																							
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3																								
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3																								
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	-																							
				T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	1																							
				T2S	23,276	4	0	4	112	25,074	4	0	4	121	25,392	4	0	4	†																							
																											T2M	22,863	4	0	4	110	24,630	5	0	5	119	24,941	5	0	5	1
				T3S	23,262	4	0	4	112	25,060	4	0	4	121	25,377	4	0	4	-																							
				T3M	22,508	4	0	4	109	24,247	5	0	5	121	24,554	5	0	5	.																							
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	<u> </u>																							
				TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	-																							
60	1050	P12	207W	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	1																							
				T5S	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	-																							
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3																								
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	<u> </u>																							
				BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	-																							
				LCC0	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	1																							
				RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4																								
				T1S	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4																								
				T2S	25,709	4	0	4	111	27,695	4	0	4	120	28,046	4	0	4																								
				T2M	25,253	5	0	5	109	27,204	5	0	5	118	27,548	5	0	5																								
				T3S	25,694	5	0	5	111	27,679	5	0	5	120	28,029	5	0	5	-																							
				T3M	24,861	5	0	5	108	26,782	5	0	5	116	27,121	5	0	5	- ·																							
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	1																							
(0)	1250	Dra	22414	TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	1																							
60	1250	P13	231W	T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	1																							
				T5S	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	-																							
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	1																							
				T5W	25,586	5	0	4	111	27,563	5	0	4	119	27,912	5	0	4																								
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4	·																							
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4																								
				RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5	+																							

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly[™] product, meaning it is consistent with the LEED[®] and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN ACT

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT regulations. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

Date

Project

Low-Profile, Driverless Linkable IP67 LED Linear Luminaire

Product Features

Maintenance-Free Driverless Design

Connects directly to AC line voltage without an LED driver or electrolytic capacitors, for extreme reliability and lifetime. Requires zero maintenance.

Easy to Install Quick-Connect Cabling

Convenient push-and-click connectors and cabling make GPX Series fixtures easy to install and daisy chain.

Coextruded Copolyester/Aluminum Housing

Our patented process combines copolyester and aluminum together, with no seals or gaskets. The result is a single piece enclosure with excellent heatsinking characteristics for long lifetime.

Superior Chemical & UV Resistance

Seamless polymeric outer shell provides IP67 ingress protection and is specialized for superior chemical resistance. An additional protective coating is available which integrates a UV inhibitor and UV blocker for outdoor applications.

Ordering Information

Performance Summary

Delivered Light Output: Up to 8,000 Lumens

Efficacy: 130 LPW

CRI: Typical 85 CRI

CCT: 5000K & 4000K

Lifetime: Designed to last 100,000 Hours at 25°C

Warranty: 5 Years (See ggled.net for Terms)

Mounting: Ceiling or Wall

Protection Class: IP67

Voltage: 120 VAC or 277 VAC Input

Maximum Run Length: Refer to the Table on Page 2

Ambient Temperature: -40°C to 55°C

Product Length	Lumen Output	Color Temp.	Lens Diffusion	UV Protection	Through Wired	Voltage
GPX	- ·	-	-			-
2 2-Foot	SO Standard Output	50K (standard) 5000 Kelvin	Blank (standard) Chemical Resistant Clear Lens	Blank (standard) No Coating, Rated for Indoor Use	Blank (standard) Connectors on Input & Output for	120V 120 VAC Input
4	600 Lumens/Ft	40K*	GC (glare control)	UVO	ability to Daisy Chain fixtures	277V
4-Foot	HO*	4000 Kelvin	Chemical Resistant Lens with	Outdoor-Rated with UV-Blocking	SE (Single-Ended)	277 VAC Input
6	High Output 1000 Lumens/Ft	*N/A in 2' HO	Added Diffusion Sheet	Coating	Connector on Input Only, No Daisy Chain, for Standalone Install	
6-Foot	*Available in 2′, 4′	& 8' only				
8		,				
8-Foot						

Power & Connection Accessories

25ft

Cable	Туре	Length	Wire	Mounting Hardware	Description	
*No Jumper Cable Required on End-to-End Connection			nd Connection	GPX-MNT-NM	Non-Metalic Quick Latch	
GPX-JMP-1	Jumper	1ft	18 AWG SJTW	GPX-MNT-SS	Stainless Steel Bolt Latch	
GPX-JMP-2	Jumper	2ft	18 AWG SJTW			
GPX-JMP-4	Jumper	4ft	18 AWG SJTW			
GPX-JMP-8	Jumper	8ft	18 AWG SJTW	*For serviceability and expansion/contraction considerations G&G limits the nu luminaires connected end-to-end (without a jumper cable) to a maximum of 4.		
GPX-LDR-10	Leader Cable	10ft	18 AWG SJTW	annihaires connected end-to-end (without a jumper cable) to a maximum of 4.		

Rev Date 22 1108

STRONG.

Leader Cable

GPX-LDR-25

18 AWG SJTW

Low-Profile, Driverless Linkable IP67 LED Linear Luminaire

Product Specifications

Construction & Materials

Convenient push-and-click connectors let you easily and rapidly install Leader Cables and Jumper Cables. Multiple cable lengths support a variety of layouts.

Integrated aluminum heat spreader.

Seamless polymeric outer shell provides IP67 ingress protection and is specialized for superior chemical resistance. An additional protective coating is available which integrates a UV inhibitor and UV blocker for outdoor applications.

All G&G luminaires and components (with the exception of our LED boards and drivers) are proudly manufactured and assembled in the USA.

Electrical System

Power Factor: 0.9 nominal.

Input Power: Stays consistent over life.

Temperature Rating: Designed to operate in temperatures -40°C to 55°C.

Total Harmonic Distortion: < 20%

Regulatory Qualifications

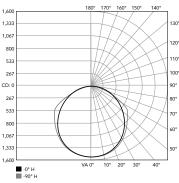
cULus Listed UL Listed for Wet Locations NEMA 4X Rated

Lumen & Power Data

Length & Output	Lumens	Wattage	Amps @120V	Amps @277V
GPX2-SO	1200	9	0.075	0.032
GPX4-SO	2400	18	0.150	0.065
GPX6-SO	3600	27	0.225	0.097
GPX8-SO	4800	36	0.300	0.130
GPX2-HO	2000	16	0.130	0.060
GPX4-HO	4000	31 (36 @ 277V)	0.258	0.112
GPX8-HO	8000	62 (72 @ 277V)	0.517	0.224

Maximum Fixture Run

	Maximum Fixture Run (Per 1 Leader Cable): 120VAC										
	GPX2-SO (9W) GPX4-SO (18W) GPX4-HO (31W) GPX6-SO (27W) GPX8-SO (36W) GPX8-HO (62W)										
JMP1 (1FT)	66 (198')	37 (185')	23 (115')	26 (182')	20 (180')	12 (108')					
JMP2 (2FT)	59 (236')	34 (204')	21 (126')	24 (192')	19 (190')	12 (120')					
JMP4 (4FT)	50 (300')	31 (248')	19 (152')	22 (220')	17 (204')	10 (120')					
JMP8 (8FT)	40 (400')	26 (312')	16 192')	19 (266')	15 (240')	9 (144')					
		Maximum Fixture F	Run (Per 1 Leader Cab	ole): 277VAC							
	GPX2-SO (9W)	GPX4-SO (18W)	GPX4-HO (36W)	GPX6-SO (27W)	GPX8-SO (36W)	GPX8-HO (72W)					
JMP1 (1FT)	157 (471')	89 (445')	58 (290')	63 (441')	48 (432')	30 (270')					
JMP2 (2FT)	2 (2FT) 141 (564') 83 (498')			59 (472')	46 (460')	30 (300')					
JMP4 (4FT)	119 (714')	73 (584')	48 (384')	54 (540')	42 (504')	27 (324')					
JMP8 (8FT)	95 (950')	61 (732')	40 (480')	46 (644')	37 (592')	24 (384')					


Photometry

GPX Series

Based on DTC Report Test #: 14404-T

Fixture photometry has been conducted by a NVLAP accredited testing laboratory in accordance with IESNA LM-79-08. IESNA LM-79-08 specifies the entire luminaire as the source resulting in a fixture efficiency of 100%.

Polar Candela Distribution

Zonal Lumen Summary

Zone	Luminaire
0-30	26.2%
0-40	43.2%
0-60	77.4%
0-90	98.5%
0-180	100%

Dimensions

Model	Fixture	Fixture	Length	Mounted		
Widder	Diameter	Thru Wire	Single End	Width	Height	
GPX2	1.0″	25.15"	24.00"	1.25″	1.75″	
GPX4	1.0″	47.15"	46.00"	1.25"	1.75″	
GPX6	1.0″	69.15"	68.00"	1.25"	1.75″	
GPX8	1.0″	91.15″	90.00″	1.25″	1.75″	

	_	_		_
ST	R	Ο	N	G.

SIMPLE.

DRAINAGE REPORT

Car Wash- Preliminary

Truckee, CA

Prepared For:

Matthew Abbate

140 Heron Way Merced, CA 95340 Phone: (209) 628-3658 matthew@aliacorp.net Prepared By:

SCO PLANNING & ENGINEERING, INC.

140 Litton Drive, Suite 240 Grass Valley, CA 95945 Phone: (530) 272-5841 Fax: (530) 272-5880

September 2023

PLANNING ENGINEERING SURVEYING 140 LITTON DRIVE, SUITE 240 GRASS VALLEY, CA 95945 530.272.5841 / www.scopeinc.net

Table of Contents

1. Project Description	1
2. Existing Conditions	1
2.1 Existing Land Uses	1
2.2 Existing Site Drainage	1
2.3 Existing Soils Data	1
2.4 Groundwater	1
3. Proposed Conditions	2
3.1 Proposed Land Uses	2
3.2 Proposed Site Drainage	2
4. Hydrologic and Hydraulic Modeling	2
4.1 Methodology	2
4.2 Existing and Proposed Conditions Modeling and Results	3
5. Water Quality Management	3
6. Limitations	4
7. References	5

List of Tables

Table 1 -	Analysis Rainfall Depth	. 2
	Existing and Proposed Conditions Model Results	

Appendices

- Appendix A Project Location Map
- Appendix B Pre-Development Drainage Map
- Appendix C Post Development Drainage Map
- Appendix D Hydrology Basin Model
- Appendix E Pre-Development Hydrology Report
- Appendix F Post-Development Hydrology Report
- Appendix G Summary of Peak Flows
- Appendix H Rainfall Intensity Report
- Appendix I Stage-Storage Report
- Appendix J Town of Truckee Calculator

1. Project Description

The project site consists of approximately one acre in Truckee, California. The property is undeveloped except for infrastructure associated with Edwin Way. Proposed development includes construction of a commercial car wash

The purpose of this document is to:

- 1) Describe the existing watershed characteristics of the Project area;
- 2) Evaluate pre- and post-development hydrology for the 10-year and 100-year storm events to meet Town of Truckee flood control requirements; and
- Provide documentation for design and sizing of water-quality treatment and hydromodification management features to meet requirements of the Phase II Municipal Separate Storm System (MS4) Permit.

2. Existing Conditions

2.1 Existing Land Uses

The project site is currently undeveloped except for Edwin Way that connects to Henness Road to the south and Prosser Dam Road to the north with associated utilities.

2.2 Existing Site Drainage

Surface water drainage across the undeveloped portion of the site consists of overland sheet flow east towards Edwin Way and an existing drainage course to the south. Runoff is collected in the road gutter is conveyed to existing subsurface drainage and ultimately discharges to Prosser Creek below Prosser Creek Reservoir. Existing Drainage Management Areas (DMAs) are shown on Plate 1.

2.3 Existing Soils Data

A geotechnical investigation prepared by NV5 and dated January 16th, 2020 concluded the top 6 to 12 inches of soil consisted of loose silty sand containing organic material. Medium dense to very sense silty sand and sandy gravel with varying amounts of cobbles were observed between 2 and 14 feet. Essential refusal was encountered on very dense soil approximately 3 to 7 feet depths.

2.4 Groundwater

No groundwater was encountered during subsurface investigations by NV5.

3. Proposed Conditions

3.1 Proposed Land Uses

This project site is proposed to have drive-thru car wash with parking for cleaning and employees.

3.2 Proposed Site Drainage

The proposed drainage utilizes and expands on the exiting drainage facilities located within Edwin Road and discharges at two locations as shown in Plate 2. Runoff from the roof is treated by a bioretention pond which outfalls to a drainage ditch returning to flow at the southern side of the property. The western portion of the property is conveyed by concrete gutters to inlets, where it is treated by underground infiltration chambers before being routed to an existing inlet structure at Edwin Road.

4. Hydrologic and Hydraulic Modeling

4.1 Methodology

The hydrology and hydraulics of the storm drainage for the project site was modeled using Hydrology Studio Software. Rainfall to runoff calculations were completed according to USDA Soil Conservation Service (SCS) Methods outlined in Technical Release 55. The SCS curve numbers were assigned per Town of Truckee Standards (SD#65). A composite curve number was applied to each basin representative of the land use. A snow coverage adjustment was applied to the curve number representing the reduced infiltration from the potential of frozen ground.

The average annual precipitation in the watershed is 32 inches per Truckee Standards Precipitation Map (SD#63). NOAA Atlas 14 were used for the 2-, 10-, and 100-year rainfall depths and are presented in Table 1. The time of concentration was calculated per the TR-55 guidelines and the time used was 0.1 hours (6 minutes). Hydrology Studio allows for a large variety of design storms to calculate pre and post flows. The model was run using a Type IA 24-hr unit hydrograph.

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active			×			~			~
SCS Storms	> SCS Dir	nensionless S	storms						
SCS 6hr		1.07	1.24	0	1.50	1.73	2.08	2.39	2.73
Type I, 24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.67
Type IA, 24-hr	~	2.28	2.92	0	3.75	4.42	5.31	5.99	6.67

Table 1 - Analysis Rainfall Depth

4.2 Existing and Proposed Conditions Modeling and Results

The existing condition model was configured to determine the runoff to outlets locations 1 and 2 to provide equitable comparison to post-development runoff and are presented in Table 2.

The modeling for the proposed condition accounts for the increase in impervious areas of the proposed road improvements and associated developments. The proposed development redistributes shed area discharge towards outlet 2. As a result, no peak flow attenuation is required for runoff to outlet 1.

Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)							
No.	o. Type Nar	Name	1-yr	2-yr	3-уг	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Pre dma 1		0.123			0.233			0.405
2	NRCS Runoff	Pre dma 2		0.261			0.495			0.861
3	NRCS Runoff	Post dma 1.1		0.061			0.107			0.175
4	NRCS Runoff	Post dma 1.2		0.142			0.219			0.332
5	NRCS Runoff	Post dma 1.3		0.038			0.073			0.127
6	NRCS Runoff	Post dma 2.1		0.132			0.226			0.365
7	NRCS Runoff	Post dma 2.2		0.107			0.204			0.354
8	Junction	junction 1		0.203			0.325			0.507
9	Pond Route	Post chamber 1		0.041			0.164			0.260
10	Junction	Post dma 1 outfall		0.054			0.225			0.368
11	Pond Route	Post pond 1		0.129			0.226			0.365
12	Junction	Post dma 2 outfall		0.235			0.430			0.720

Table 2 - Existing and Proposed Conditions Model Results

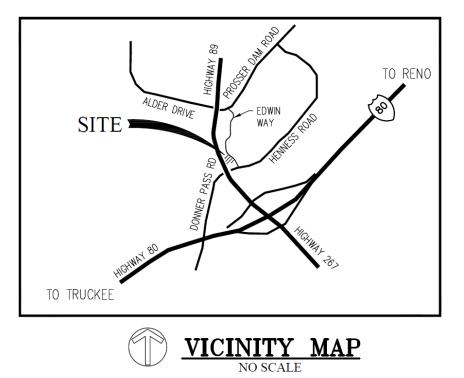
5. Water Quality Management

Water Quality requirements are met using a bioretention basin and infiltration chambers and are to be finalized during final design. Preliminary Town of Truckee Storm Water BMP calculator results shown in appendix. Infiltration chambers are a dual system for both water quality and flood attenuation. The Town of Truckee calculator shows the entire volume of the system. However, in practice an orifice plate is located within chambers to allow for outflow after the required water quality volume. See stage storage report appendix I.

6. Limitations

This report was prepared on a preliminary level and in general accordance with the accepted standards of practice existing in Northern California for projects of similar size. No warranties, express or implied, are made.

Findings in this report are intended for the exclusive use of the project specified, and the design shown. Use beyond the specified could lead to environmental/structural damage, and noncompliance with regulatory requirements.


Readers should recognize that evaluation and study of hydrologic systems is an inexact art. Conclusions and recommendations are generally made with incomplete knowledge and assumptions. More extensive studies can reduce, but not eliminate the uncertainties associated with hydrologic design. Standard information, such as rainfall data, topographic mapping, and soils data, without verification or modification has been used. New information or regulations could fundamentally influence design. As the project is finalized or as additional information becomes available this report may require change.

Readers and, or reviewers who have additional information that is pertinent to this design or have noted material errors should contact us at the earliest opportunity, to facilitate timely changes.

7. References

- California Stormwater Quality Association (CASQA), 2003, Stormwater best management practices handbook, new development and redevelopment
- State Water Resources Control Board, 2013, Water quality order no. 2013-0001-DWQ, National pollutant discharge elimination system (NPDES) general permit no.
 CAS000004, Waste discharge requirements (WDRs) for storm water discharges from small municipal separate storm sewer systems (MS4s) (General Permit)
- Town of Truckee, 2003, Town of Truckee Public Improvement and Engineering Standards
- US Department of Agriculture (USDA), 1986, Urban hydrology for small watershed TR-55, for the Natural Resources Conservation Service and Conservation Engineering Division,

APPENDIX A

APPENDIX B

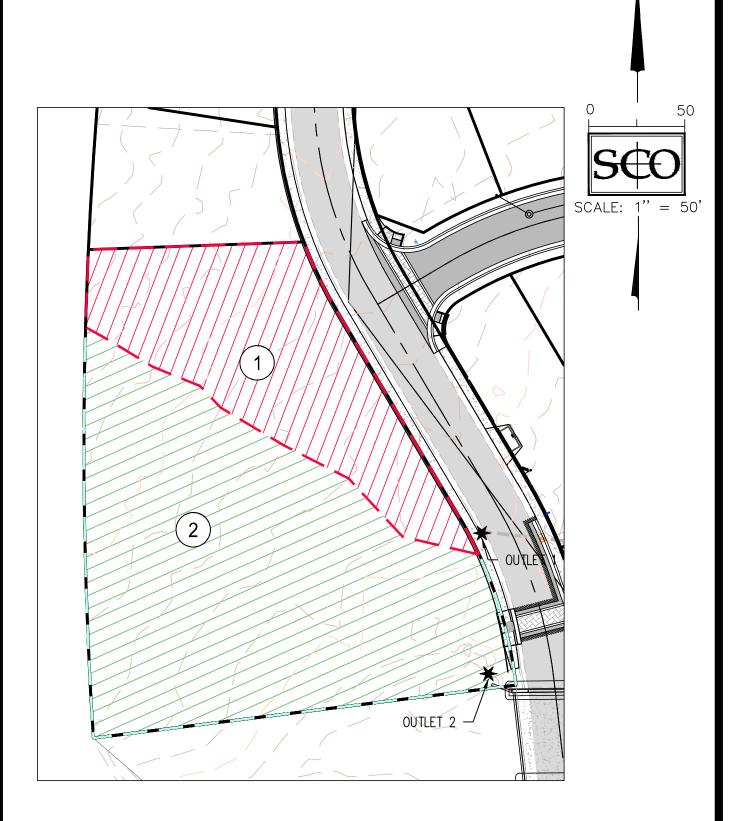
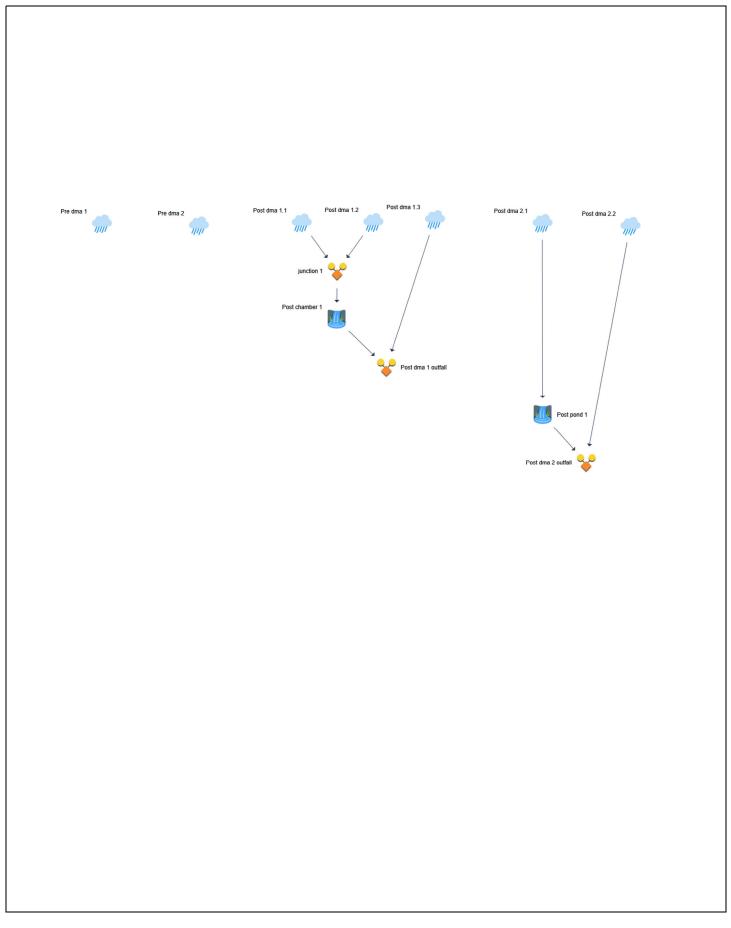


PLATE 1

APPENDIX C

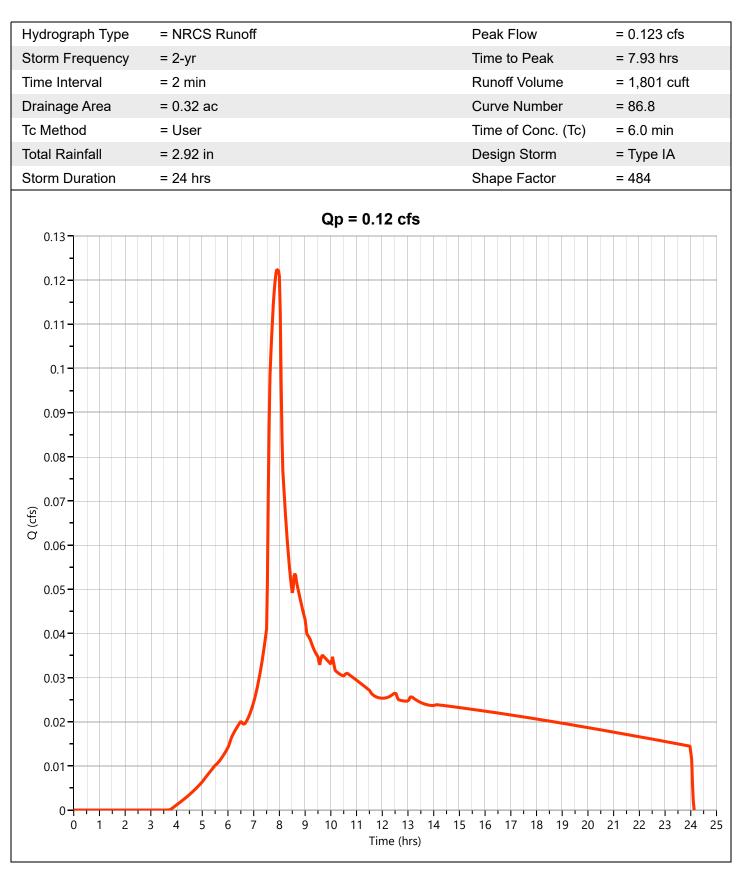

PLATE 2

APPENDIX D

Basin Model

Hydrology Studio v 3.0.0.27

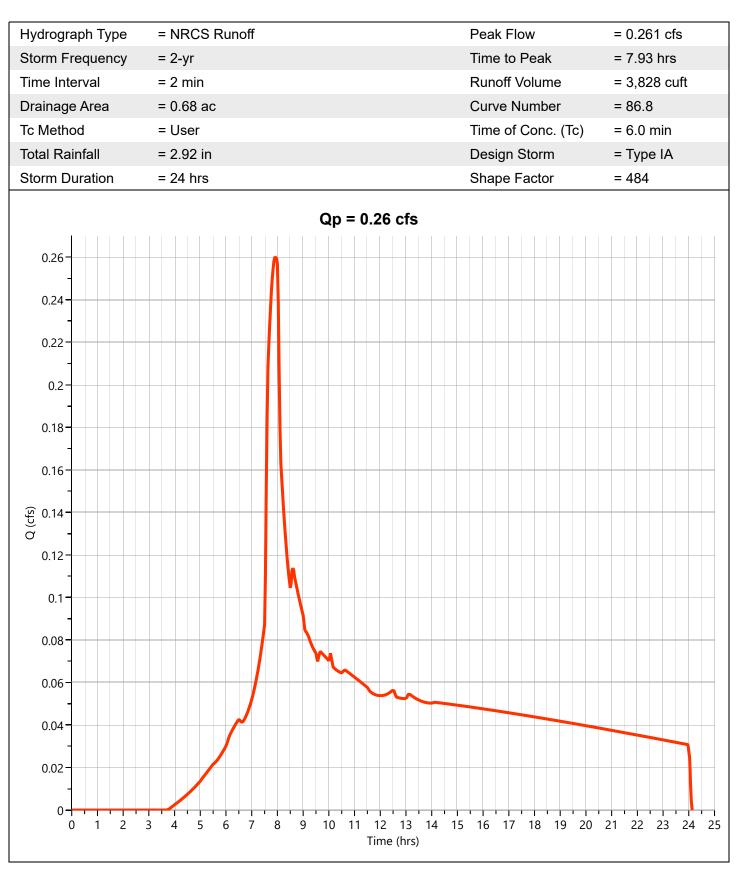
09-25-2023



APPENDIX E

Hydrology Studio v 3.0.0.27

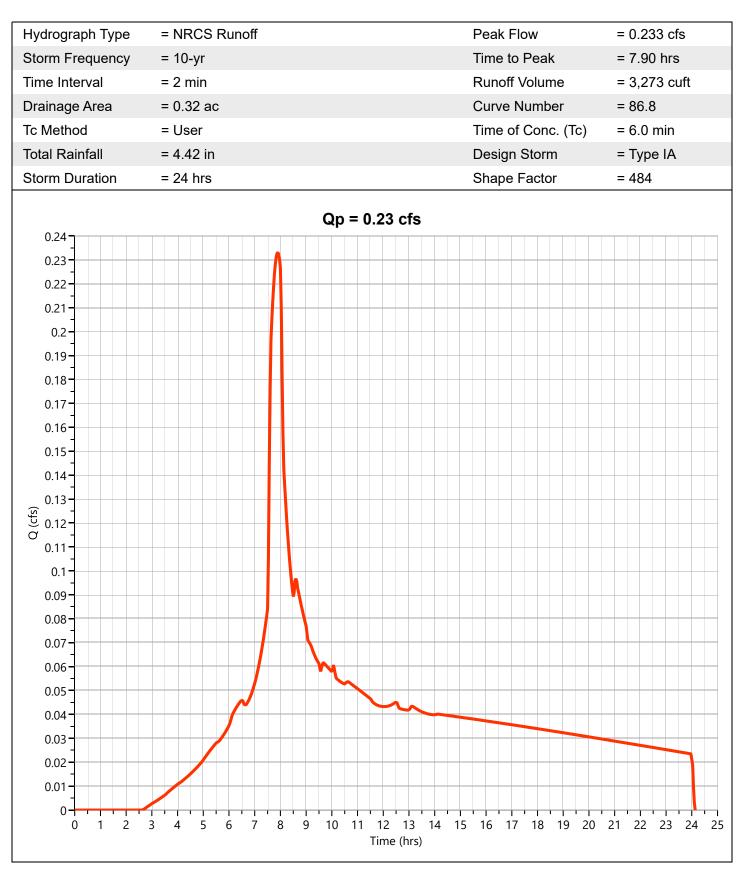
Pre dma 1


09-25-2023

Hydrology Studio v 3.0.0.27

Pre dma 2

09-25-2023

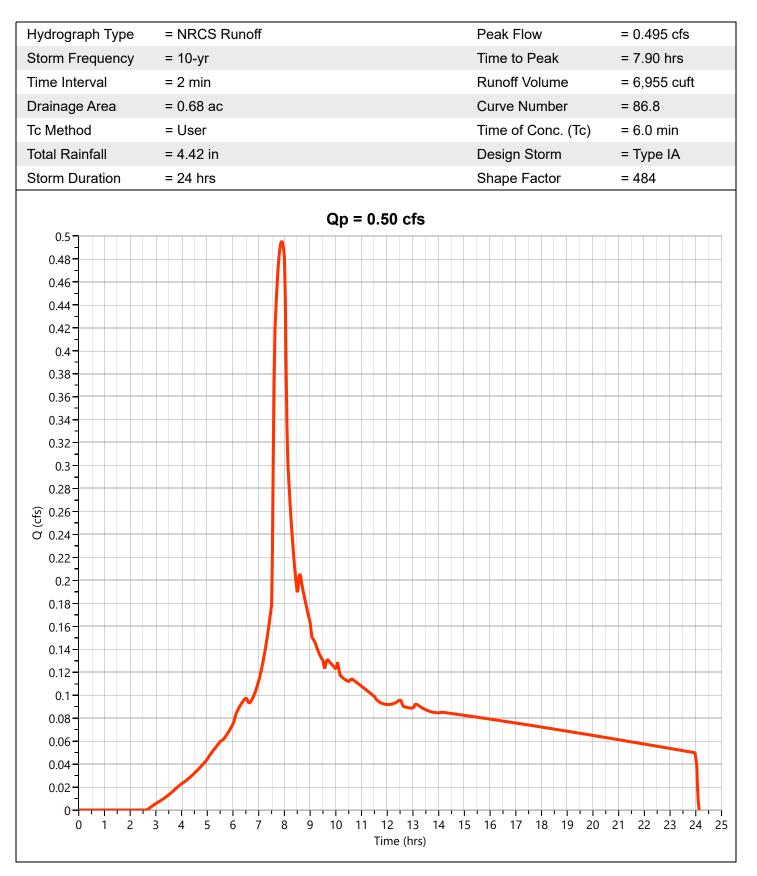


Hydrology Studio v 3.0.0.27

Pre dma 1

09-25-2023

Project Name:

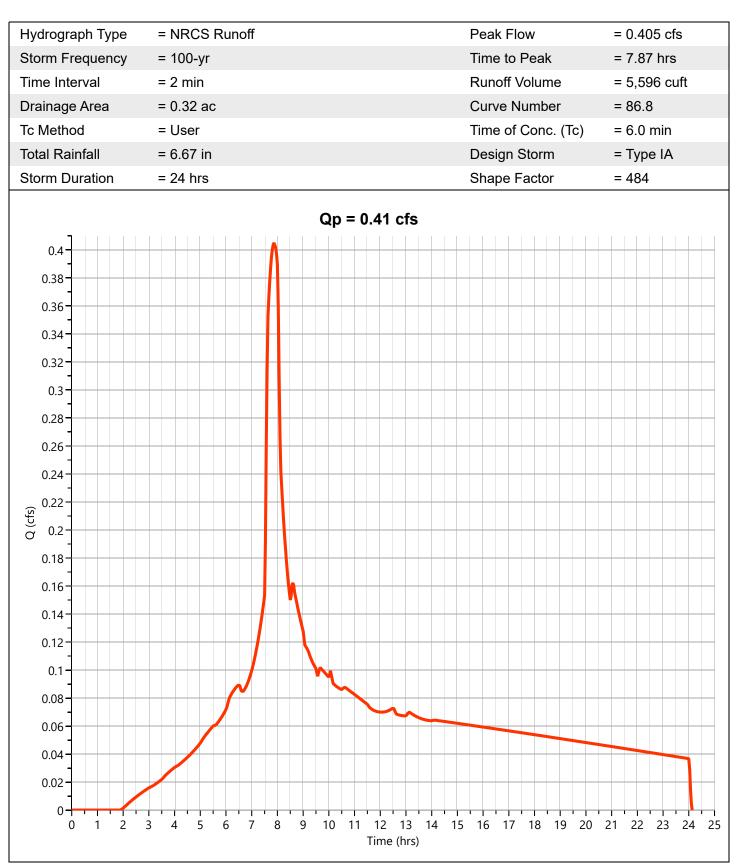


Hydrology Studio v 3.0.0.27

Pre dma 2

09-25-2023

Project Name:

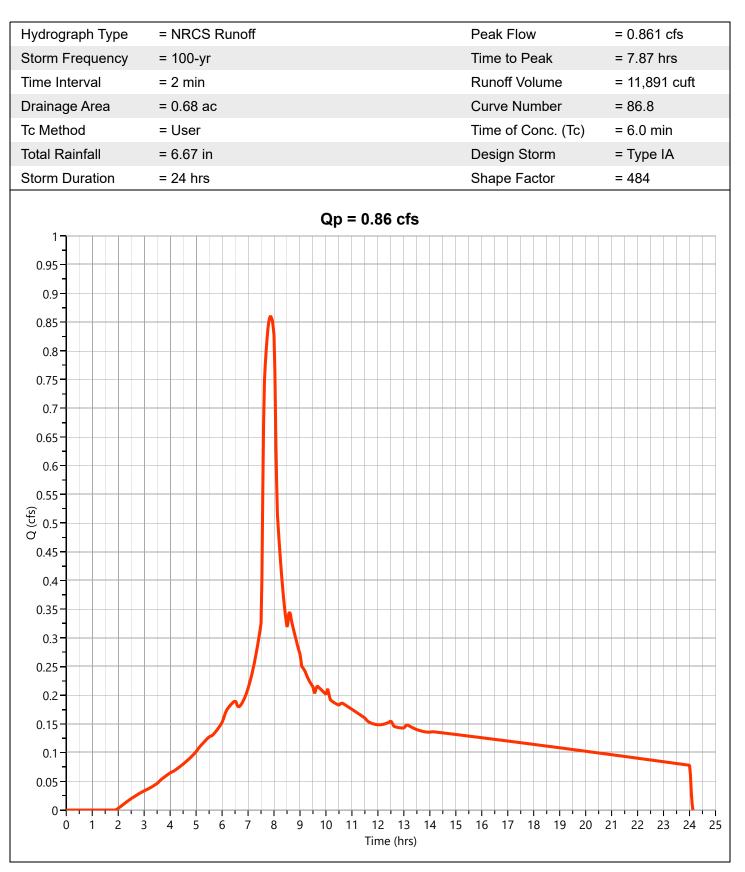


Hydrology Studio v 3.0.0.27

Pre dma 1

09-25-2023

Project Name:

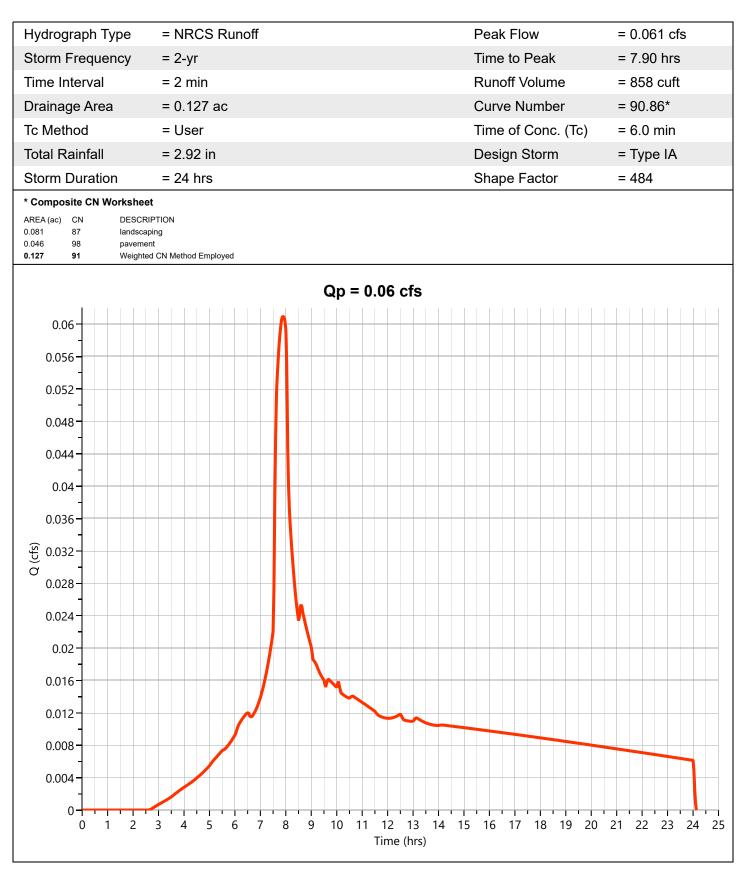


Hydrology Studio v 3.0.0.27

Pre dma 2

09-25-2023

Project Name:

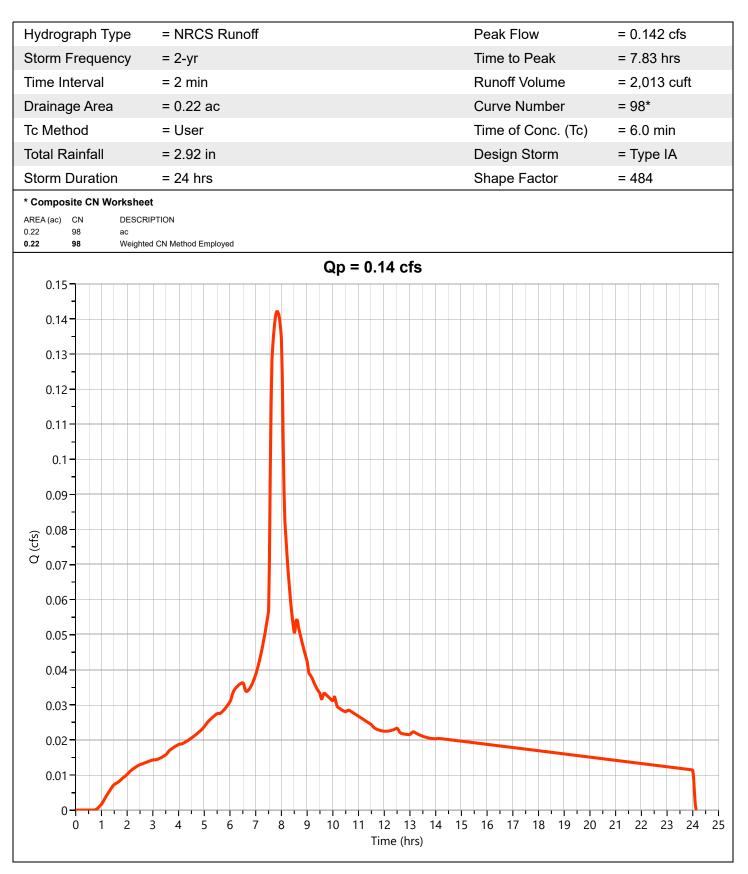

APPENDIX F

Hydrology Studio v 3.0.0.27

Post dma 1.1

09-25-2023

Project Name:

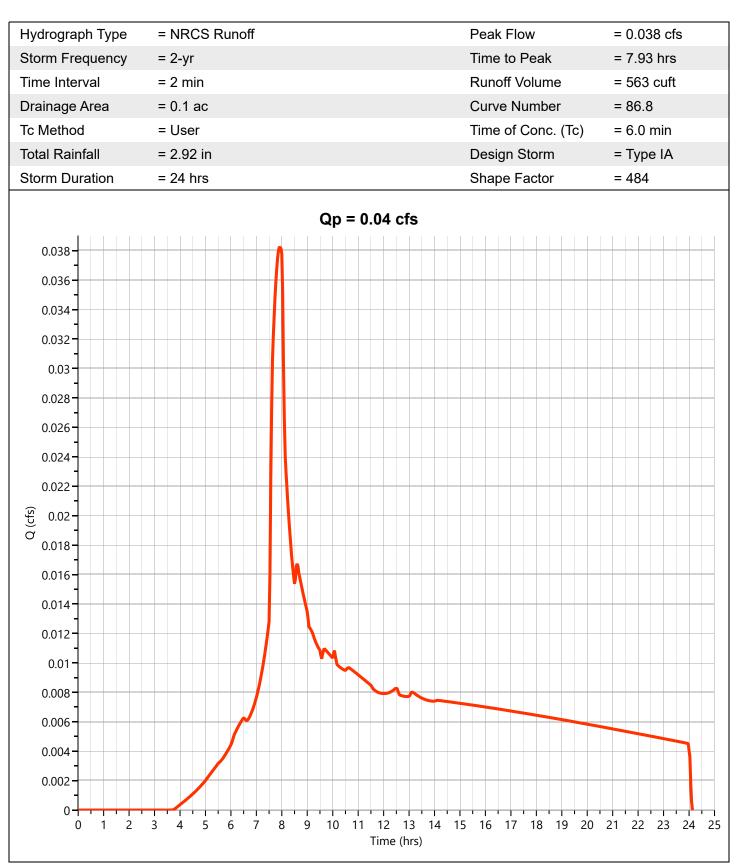


Hydrology Studio v 3.0.0.27

Post dma 1.2

Project Name:

09-25-2023

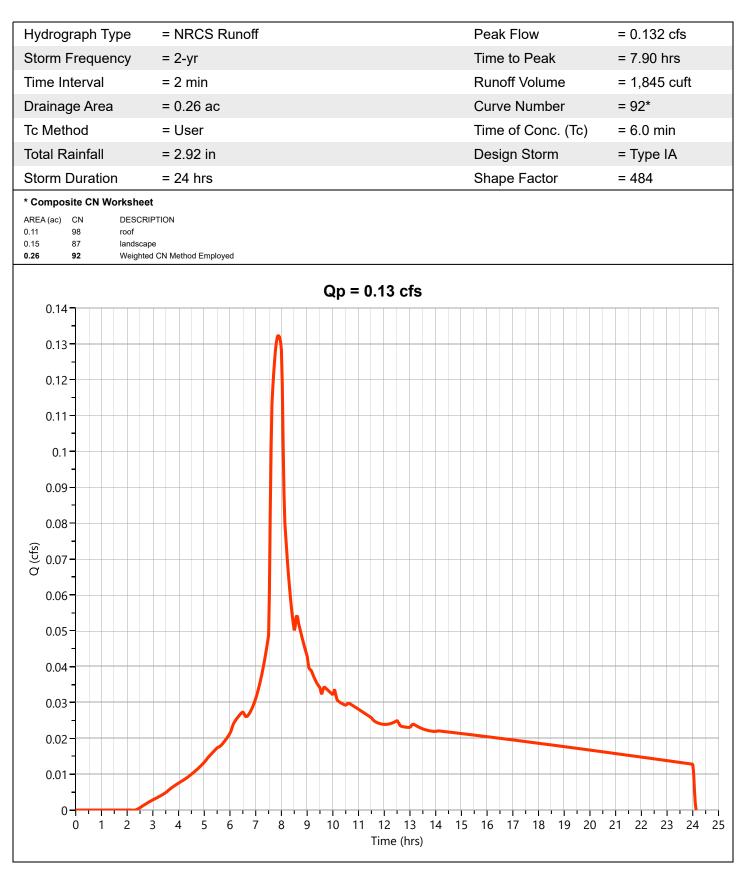


Hydrology Studio v 3.0.0.27

Post dma 1.3

09-25-2023

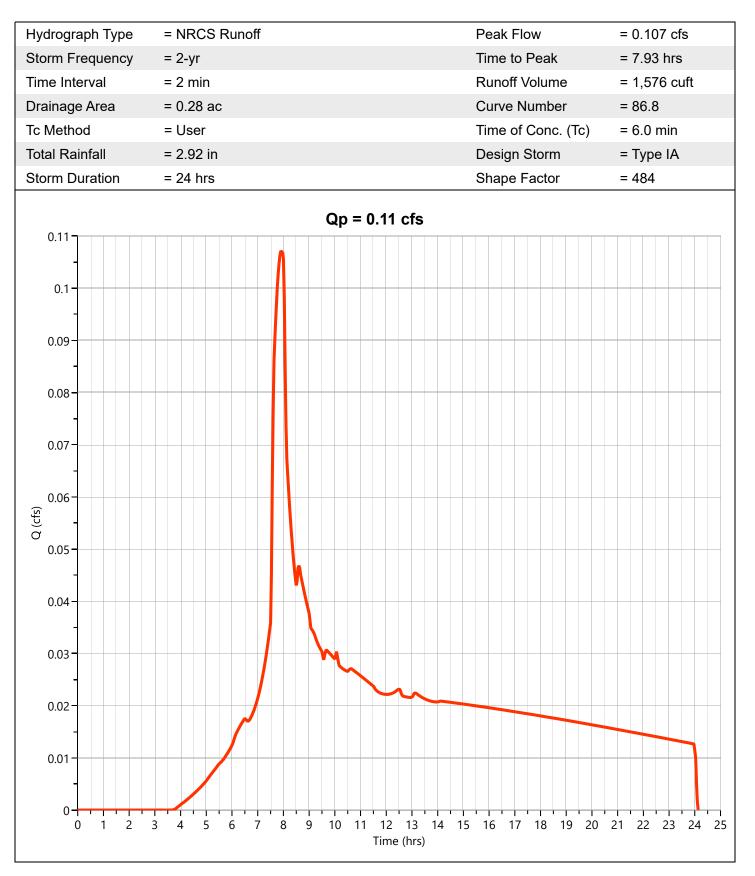
Project Name:



Hydrology Studio v 3.0.0.27

Post dma 2.1

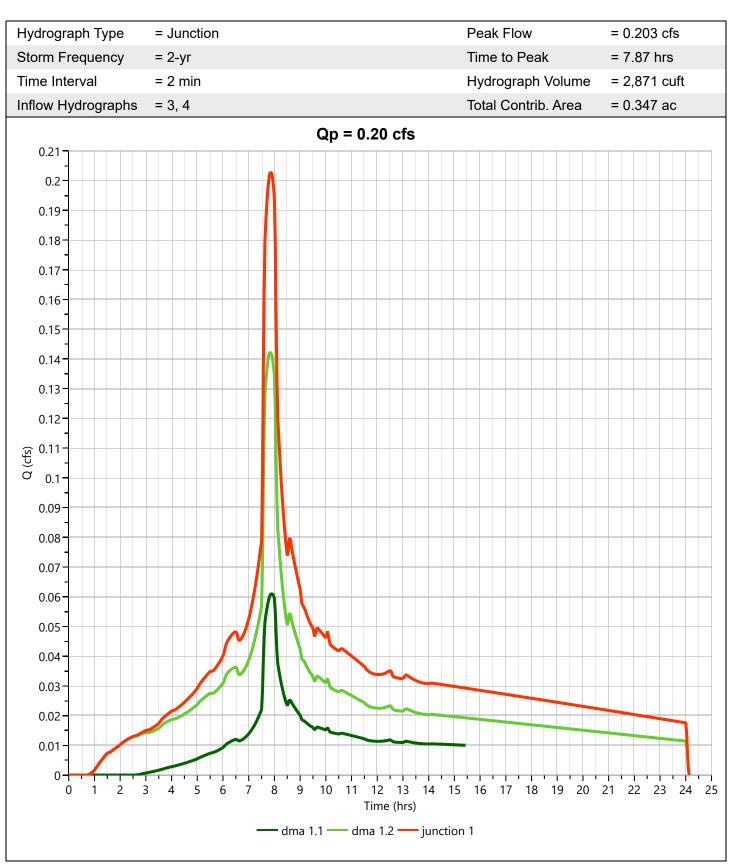
Project Name:


09-25-2023

Hydrology Studio v 3.0.0.27

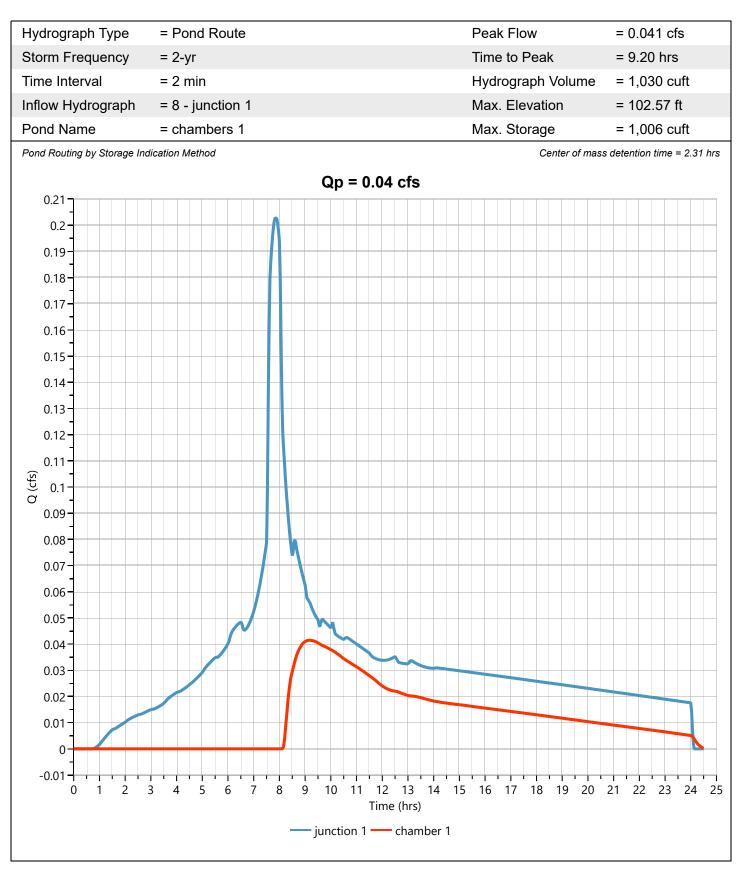
Post dma 2.2

09-25-2023


Hydrology Studio v 3.0.0.27

junction 1

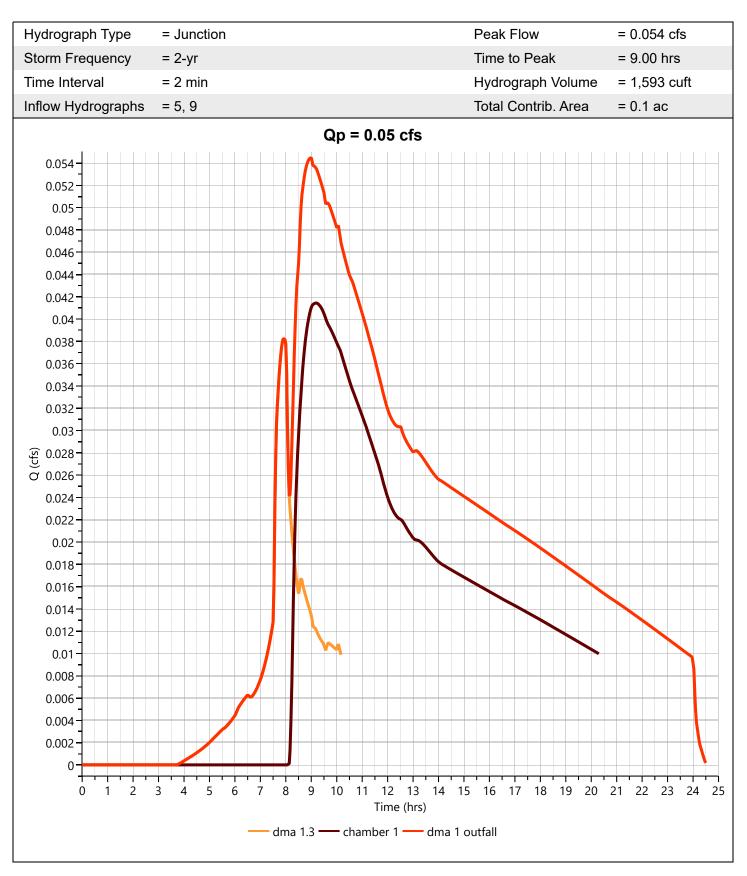
Hyd. No. 8


Project Name:

Hydrology Studio v 3.0.0.27

Post chamber 1

09-25-2023

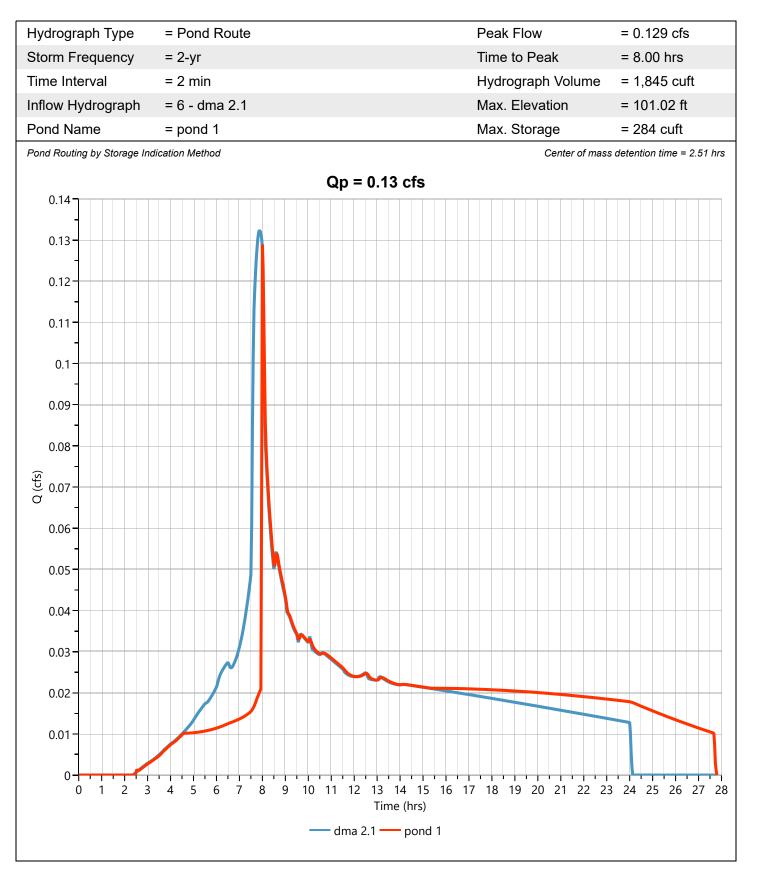


Hydrology Studio v 3.0.0.27

Post dma 1 outfall

Project Name:

09-25-2023

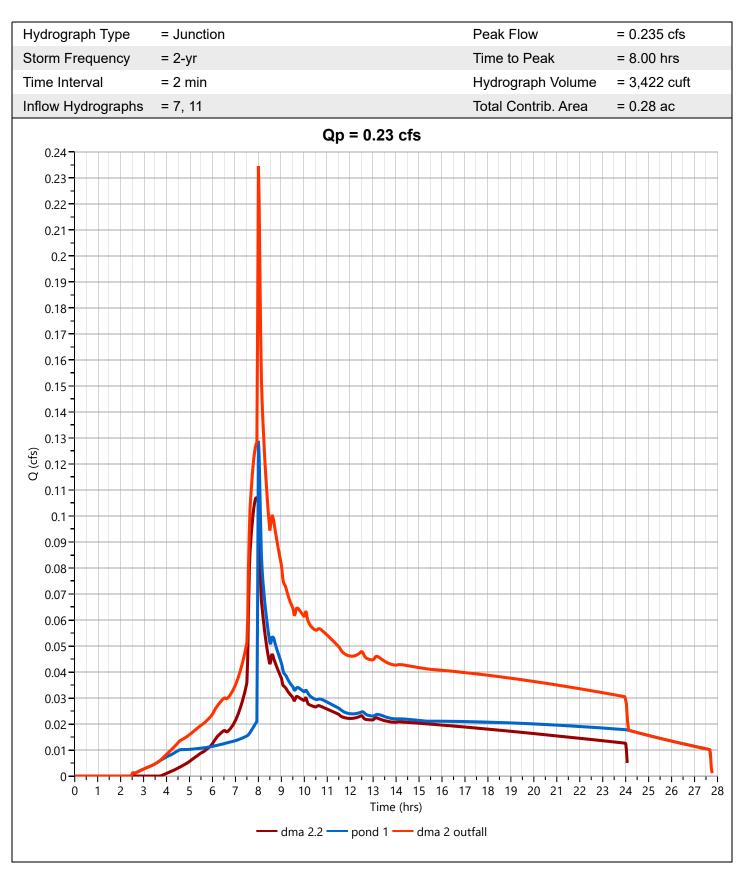


Hydrology Studio v 3.0.0.27

Post pond 1

09-25-2023

Project Name:



Hydrology Studio v 3.0.0.27

Post dma 2 outfall

09-25-2023

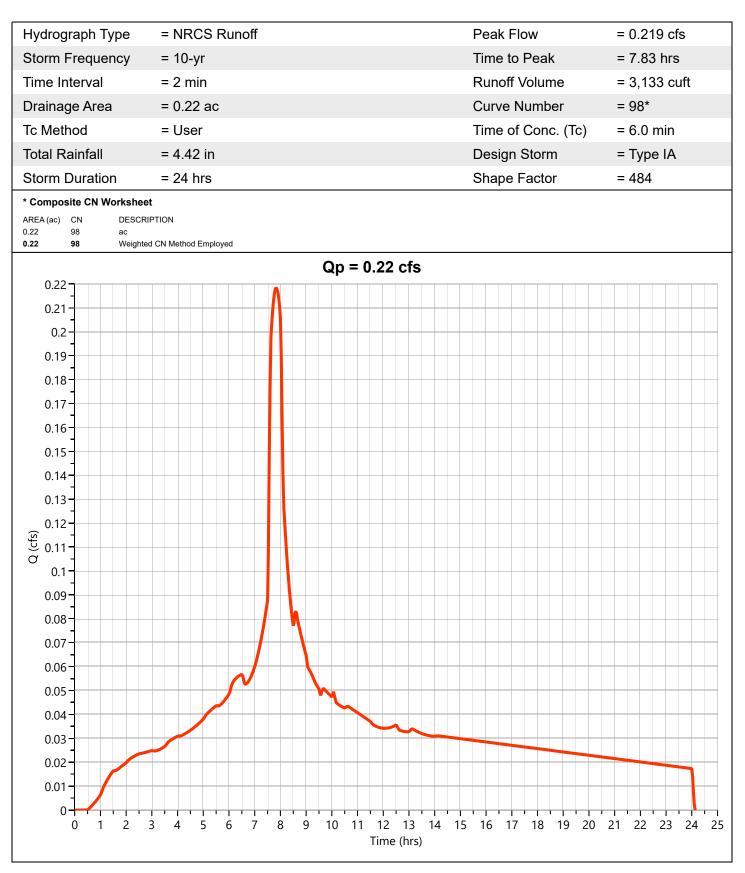
Project Name:

Hydrology Studio v 3.0.0.27

Post dma 1.1

Project Name:

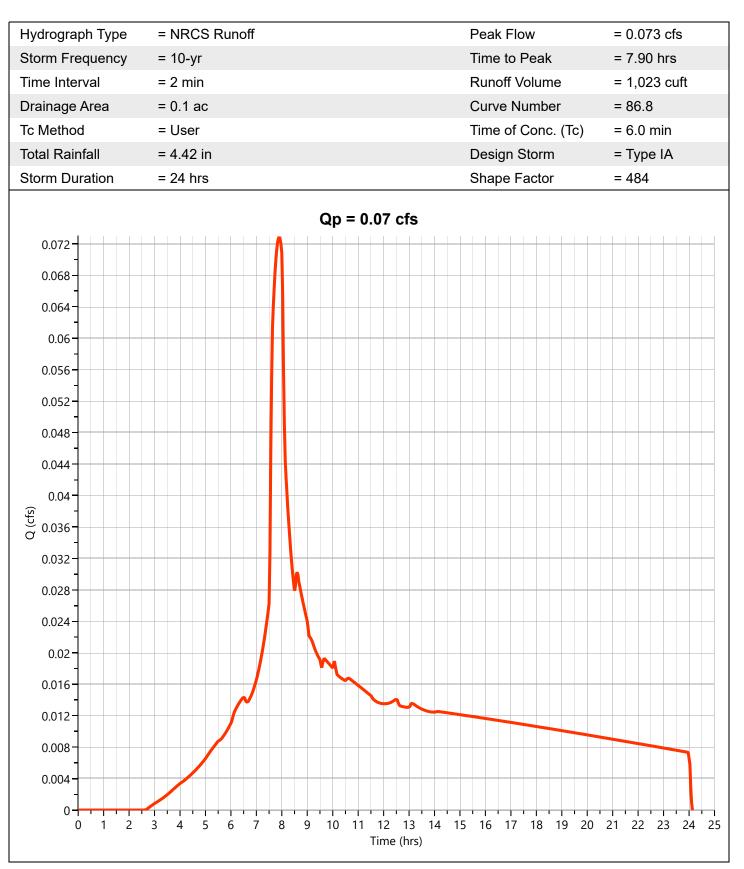
09-25-2023


-Iydrograph Type	= NRCS Runoff	Peak Flow	= 0.107 cfs	
Storm Frequency	= 10-yr	Time to Peak	= 7.87 hrs	
Time Interval	= 2 min	Runoff Volume	= 1,472 cuft = 90.86*	
Drainage Area	= 0.127 ac	Curve Number		
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min	
Total Rainfall	= 4.42 in	Design Storm	= Type IA	
Storm Duration	= 24 hrs	Shape Factor	= 484	
Composite CN WorksheetNREA (ac)CNDESCR0.08187landsca0.04698paveme0.12791Weighter	IPTION bing			
	Qp = 0.11 cfs			
0.11				
0.1				
0.09-				
0.08-				
0.07-				
0.06 (jj) 0 0.05 0.05				
0.04				
0.03				
0.02				
0.01				
0 1 2	3 4 5 6 7 8 9 10 11 12 13 14 1 Time (hrs)	5 16 17 18 19 20		

Hydrology Studio v 3.0.0.27

Post dma 1.2

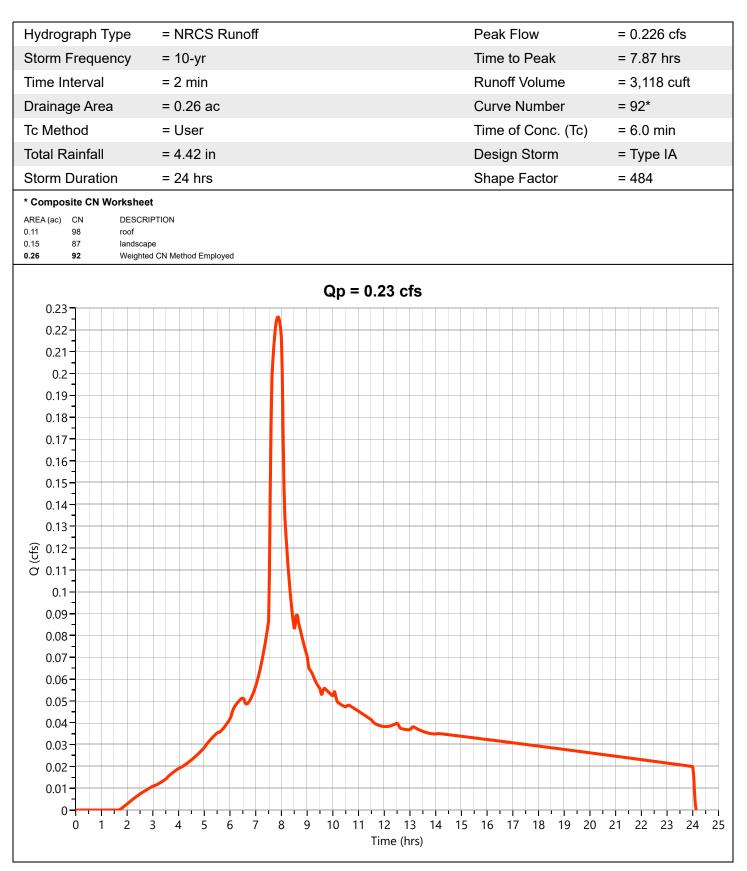
Project Name:


09-25-2023

Hydrology Studio v 3.0.0.27

Post dma 1.3

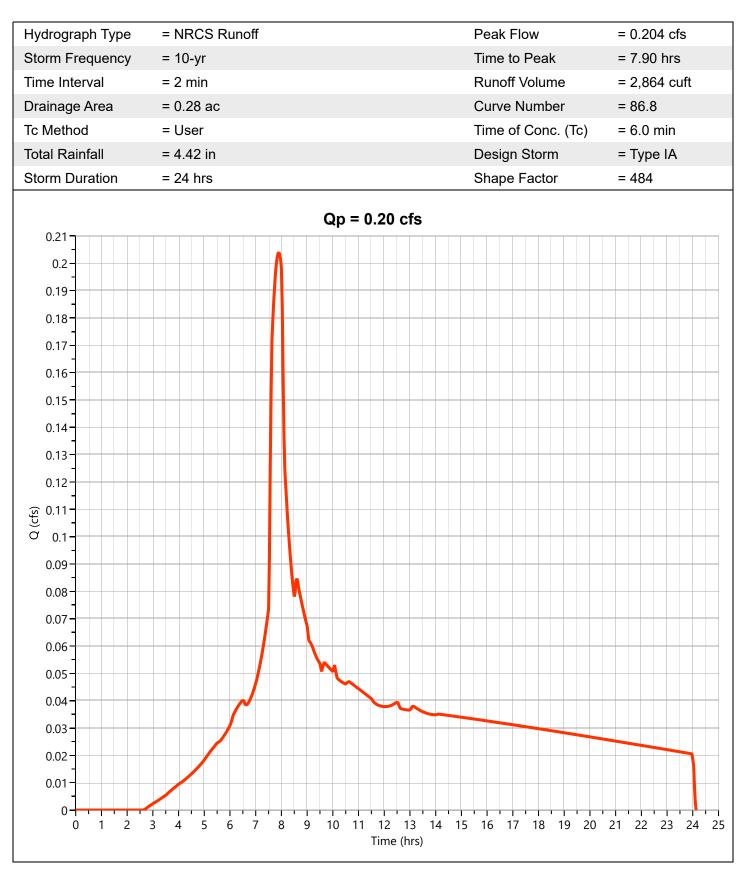
09-25-2023



Hydrology Studio v 3.0.0.27

Post dma 2.1

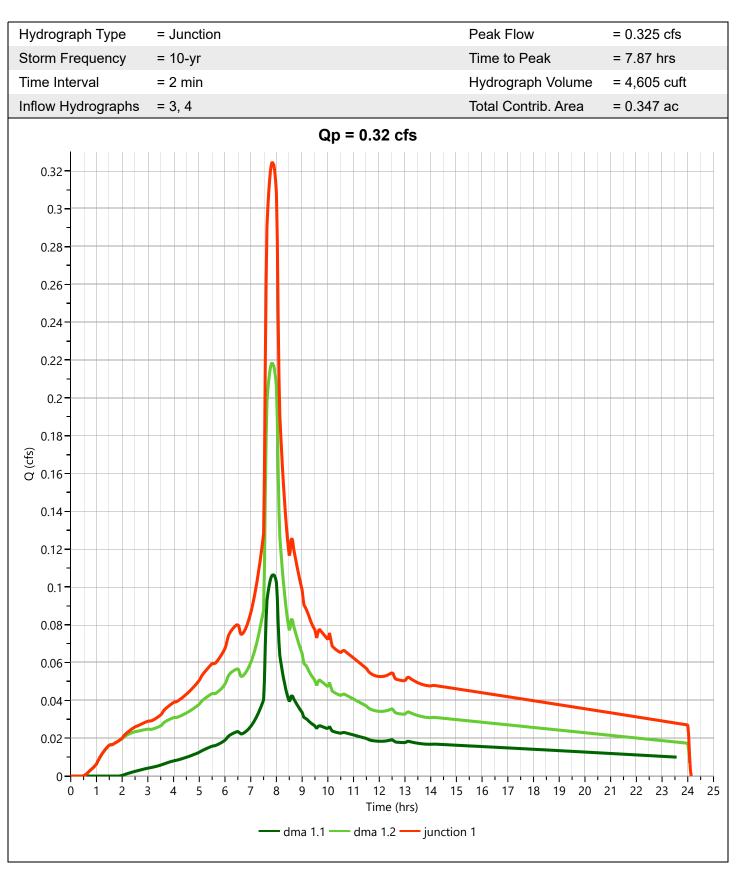
Project Name:


09-25-2023

Hydrology Studio v 3.0.0.27

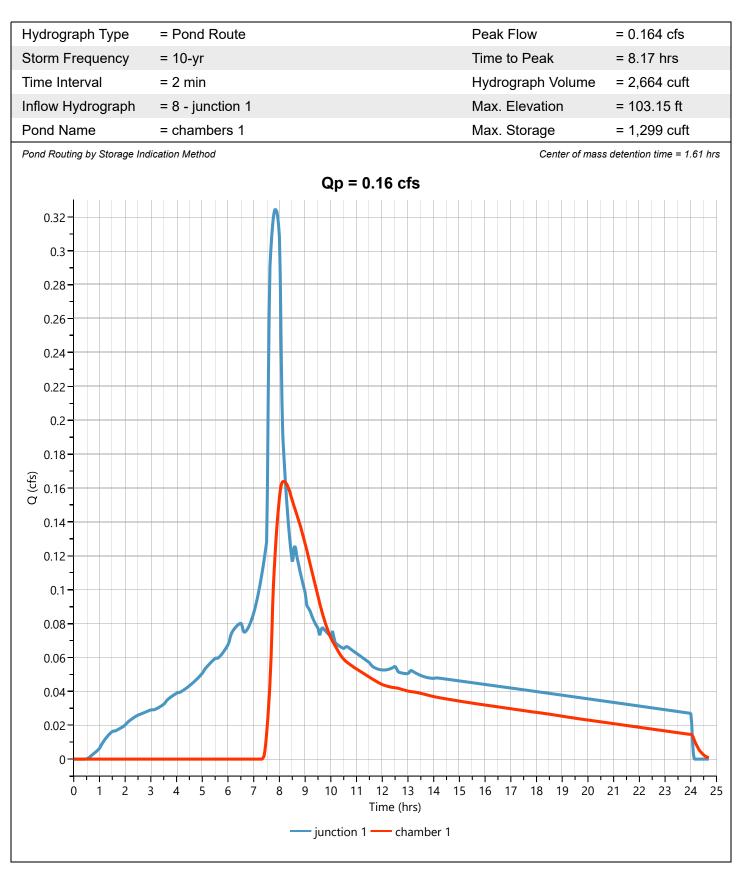
Post dma 2.2

09-25-2023



Hydrology Studio v 3.0.0.27

junction 1


Project Name:

Hydrology Studio v 3.0.0.27

Post chamber 1

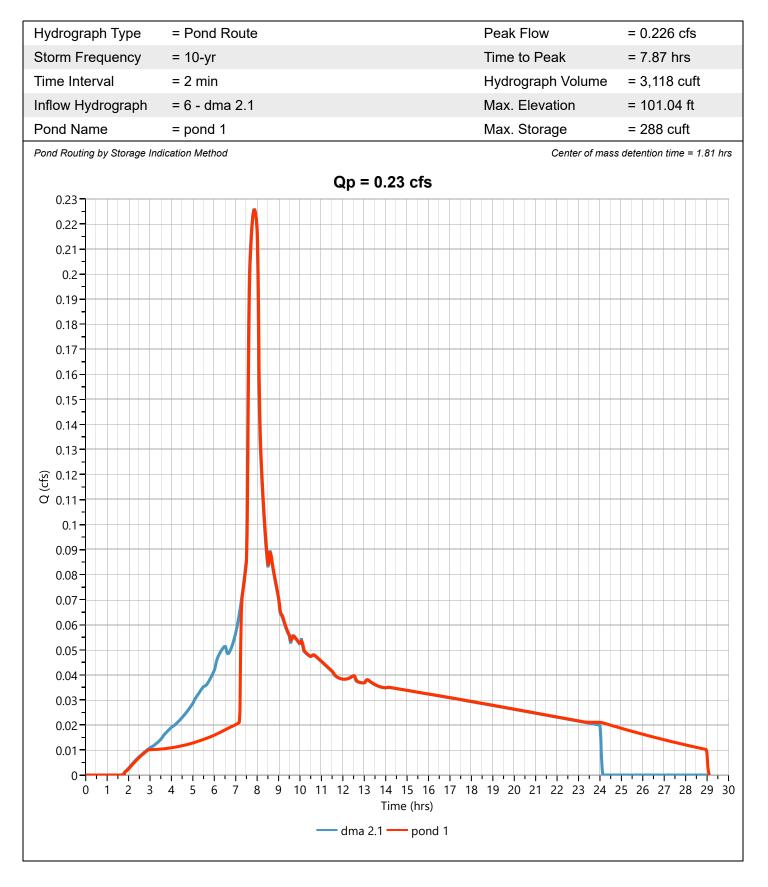
09-25-2023



Hydrology Studio v 3.0.0.27

Post dma 1 outfall

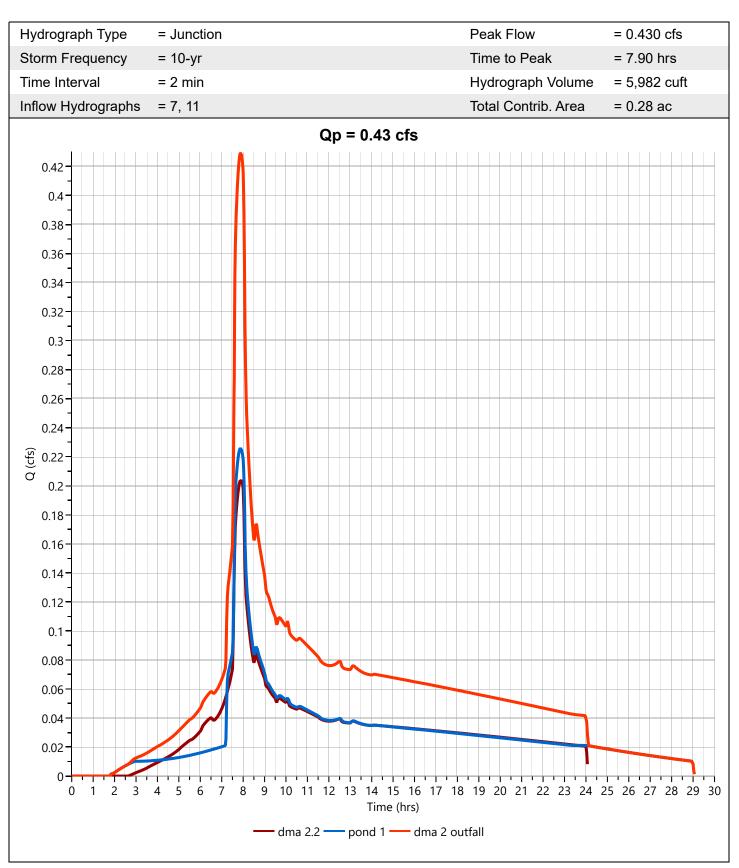
Project Name:


09-25-2023

Hydrology Studio v 3.0.0.27

Post pond 1

09-25-2023

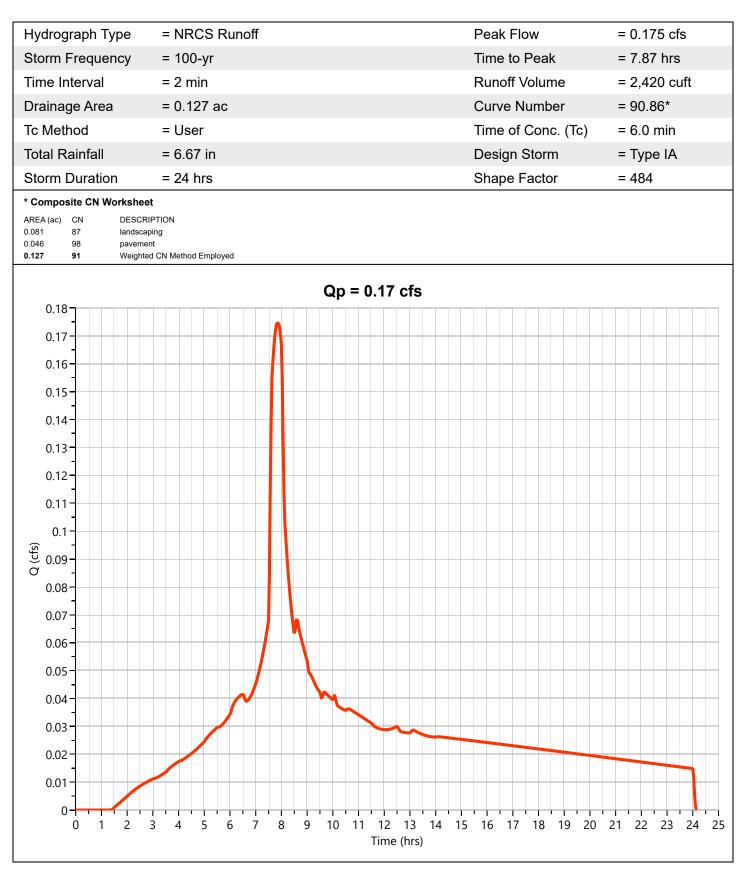


Hydrology Studio v 3.0.0.27

Post dma 2 outfall

09-25-2023

Project Name:

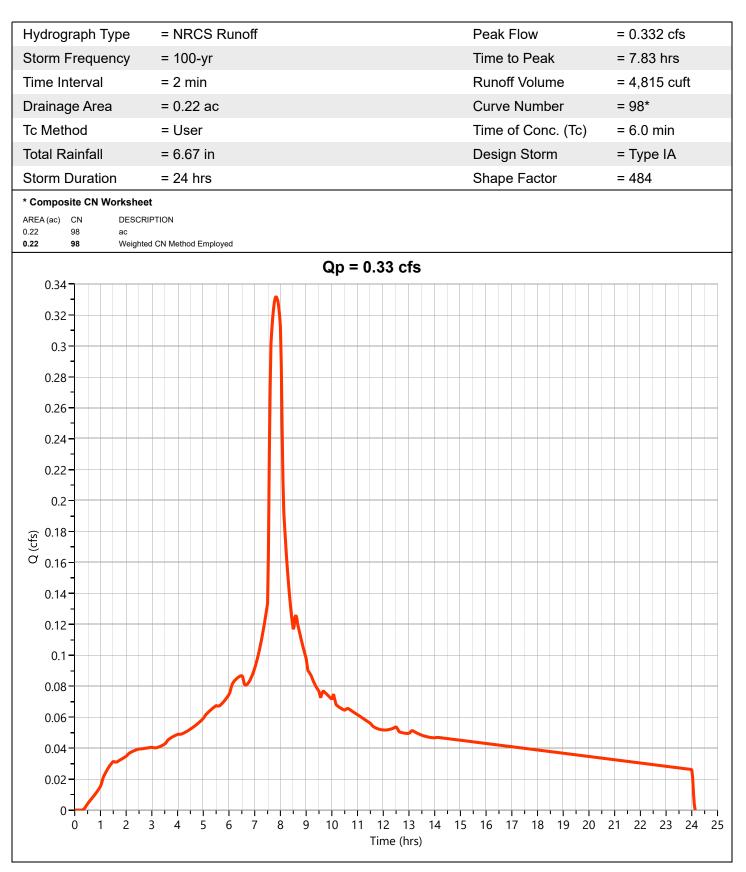


Hydrology Studio v 3.0.0.27

Post dma 1.1

Project Name:

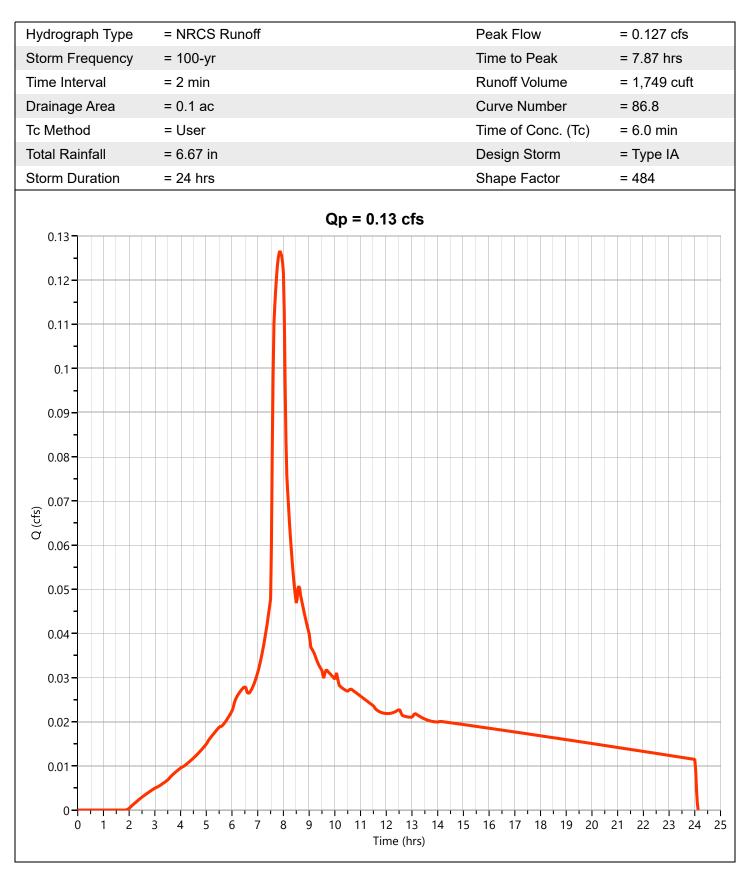
09-25-2023



Hydrology Studio v 3.0.0.27

Post dma 1.2

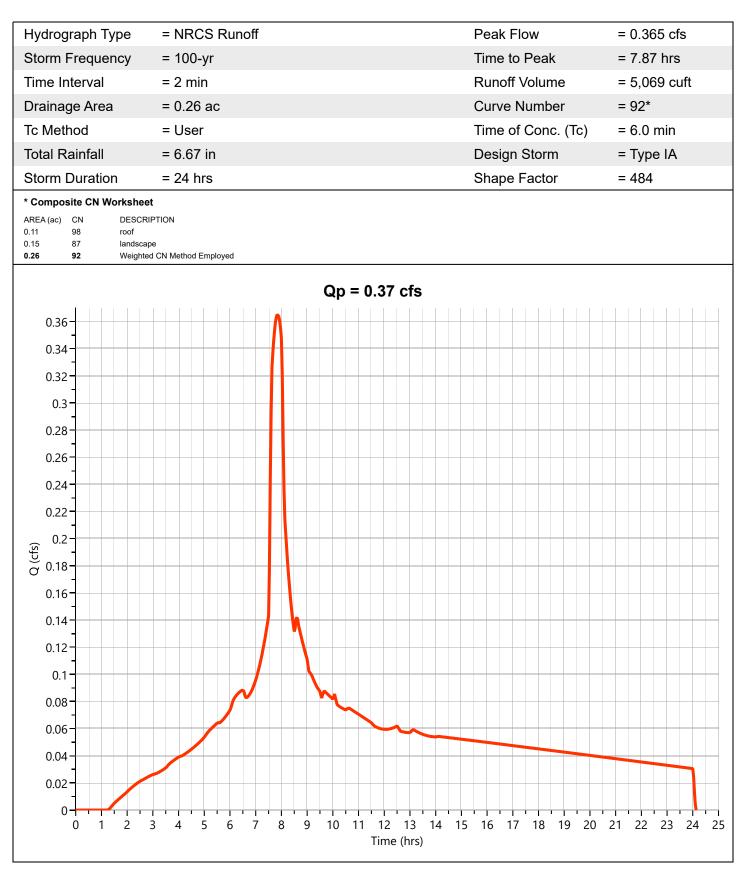
Project Name:


09-25-2023

Hydrology Studio v 3.0.0.27

Post dma 1.3

09-25-2023



Hydrology Studio v 3.0.0.27

Post dma 2.1

Project Name:

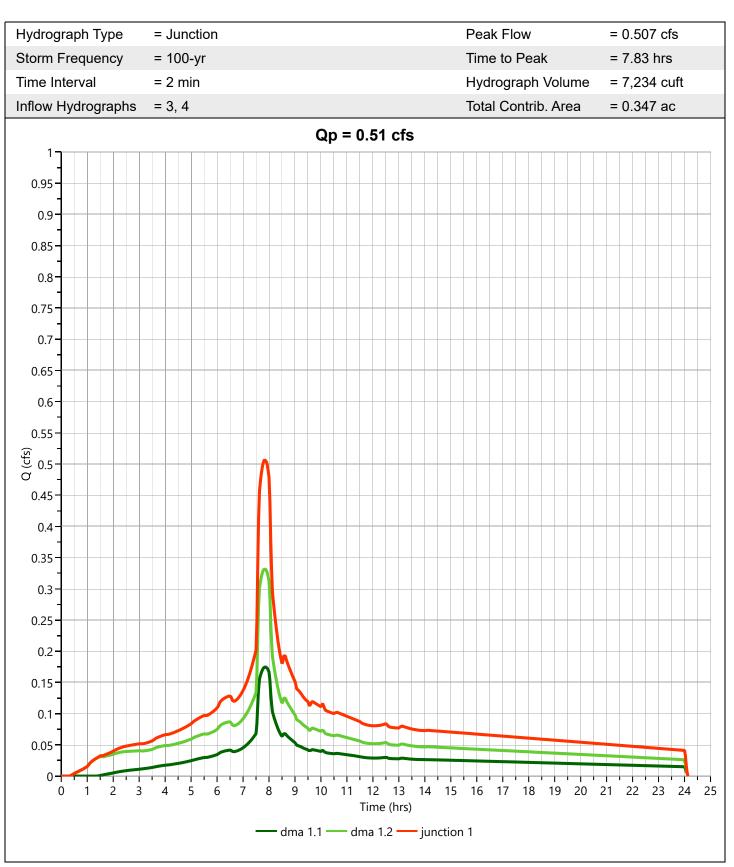
09-25-2023

Hydrology Studio v 3.0.0.27

Post dma 2.2

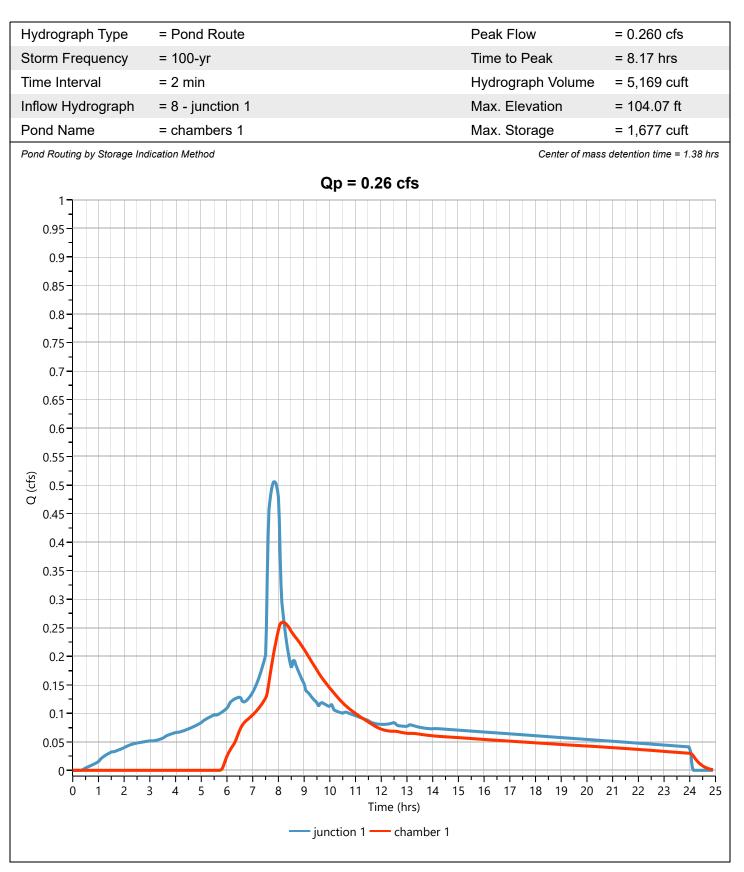
09-25-2023

Project Name:



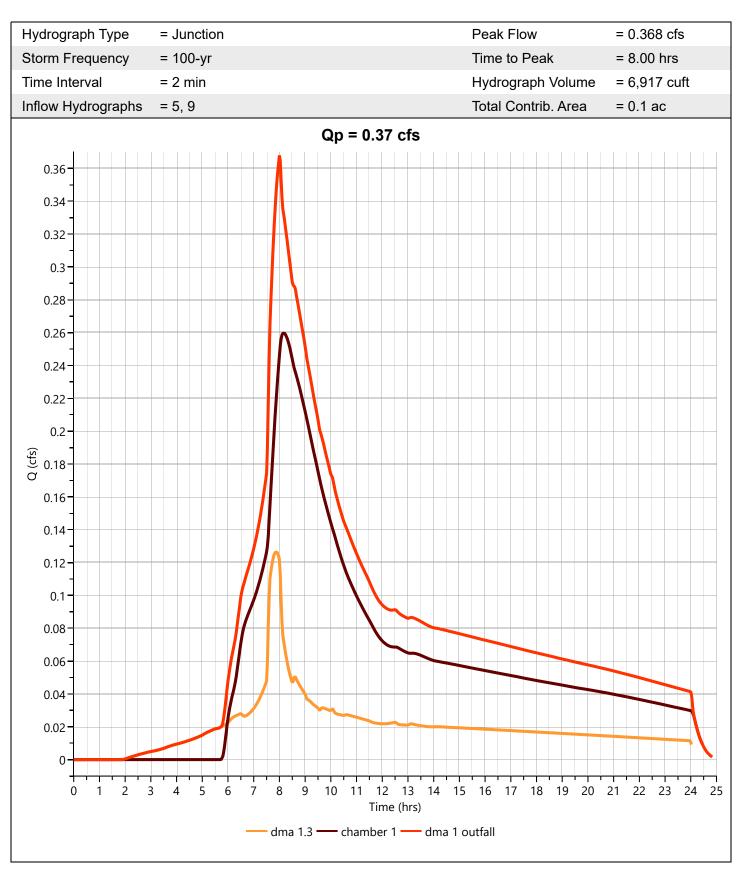
Hydrology Studio v 3.0.0.27

junction 1


Project Name:

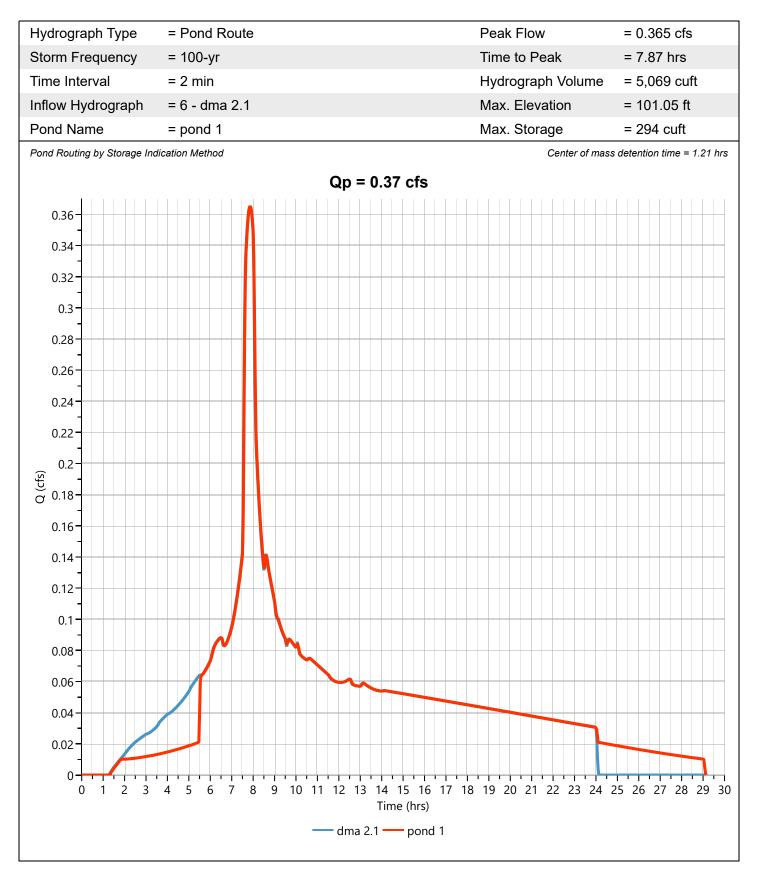
Hydrology Studio v 3.0.0.27

Post chamber 1

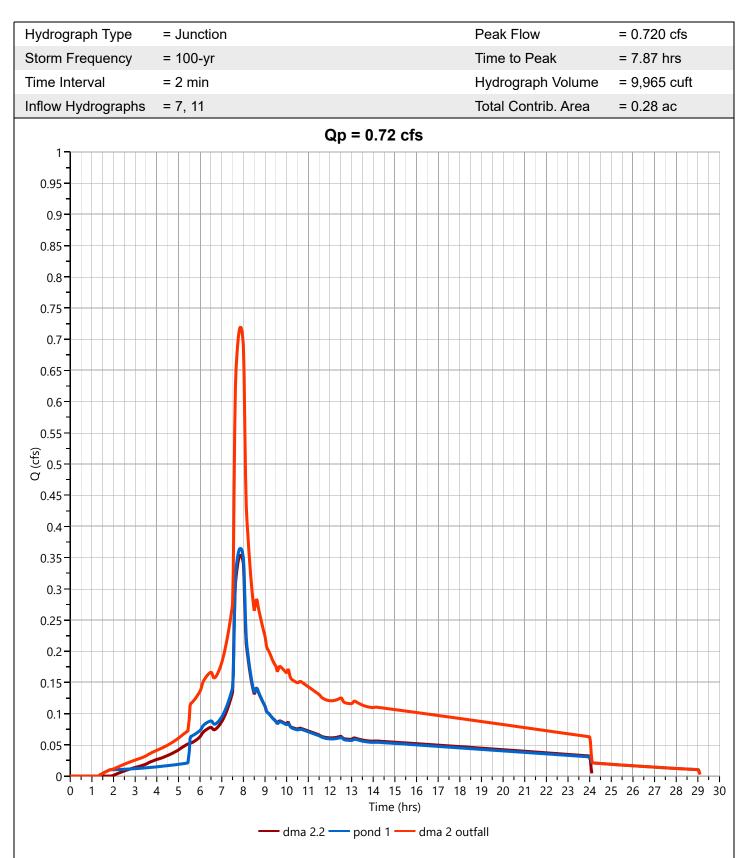

09-25-2023

Hydrology Studio v 3.0.0.27

Post dma 1 outfall


09-25-2023

Hydrology Studio v 3.0.0.27


Post pond 1

09-25-2023

Hydrology Studio v 3.0.0.27

Post dma 2 outfall

09-25-2023

APPENDIX G

Hydrograph by Return Period

09-25-2023

lyd.	Hydrograph	Hydrograph				Peak Out	flow (cfs)			
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Pre dma 1		0.123			0.233			0.405
2	NRCS Runoff	Pre dma 2		0.261			0.495			0.861
3	NRCS Runoff	Post dma 1.1		0.061			0.107			0.175
4	NRCS Runoff	Post dma 1.2		0.142			0.219			0.332
5	NRCS Runoff	Post dma 1.3		0.038			0.073			0.127
6	NRCS Runoff	Post dma 2.1		0.132			0.226			0.365
7	NRCS Runoff	Post dma 2.2		0.107			0.204			0.354
8	Junction	junction 1		0.203			0.325			0.507
9	Pond Route	Post chamber 1		0.041			0.164			0.26
10	Junction	Post dma 1 outfall		0.054			0.225			0.368
11	Pond Route	Post pond 1		0.129			0.226			0.36
12	Junction	Post dma 2 outfall		0.235			0.430			0.72

Hydrograph 2-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Pre dma 1	0.123	7.93	1,801			
2	NRCS Runoff	Pre dma 2	0.261	7.93	3,828			
3	NRCS Runoff	Post dma 1.1	0.061	7.90	858			
4	NRCS Runoff	Post dma 1.2	0.142	7.83	2,013			
5	NRCS Runoff	Post dma 1.3	0.038	7.93	563			
6	NRCS Runoff	Post dma 2.1	0.132	7.90	1,845			
7	NRCS Runoff	Post dma 2.2	0.107	7.93	1,576			
8	Junction	junction 1	0.203	7.87	2,871	3, 4		
9	Pond Route	Post chamber 1	0.041	9.20	1,030	8	102.57	1,006
10	Junction	Post dma 1 outfall	0.054	9.00	1,593	5, 9		
11	Pond Route	Post pond 1	0.129	8.00	1,845	6	101.02	284
12	Junction	Post dma 2 outfall	0.235	8.00	3,422	7, 11		

Project Name:

Hydrograph 10-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Pre dma 1	0.233	7.90	3,273		()	
2	NRCS Runoff	Pre dma 2	0.495	7.90	6,955			
3	NRCS Runoff	Post dma 1.1	0.107	7.87	1,472			
4	NRCS Runoff	Post dma 1.2	0.219	7.83	3,133			
5	NRCS Runoff	Post dma 1.3	0.073	7.90	1,023			
6	NRCS Runoff	Post dma 2.1	0.226	7.87	3,118			
7	NRCS Runoff	Post dma 2.2	0.204	7.90	2,864			
8	Junction	junction 1	0.325	7.87	4,605	3, 4		
9	Pond Route	Post chamber 1	0.164	8.17	2,664	8	103.15	1,299
10	Junction	Post dma 1 outfall	0.225	8.00	3,687	5, 9		
11	Pond Route	Post pond 1	0.226	7.87	3,118	6	101.04	288
12	Junction	Post dma 2 outfall	0.430	7.90	5,982	7, 11		

Project Name:

Hydrograph 100-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Pre dma 1	0.405	7.87	5,596			
2	NRCS Runoff	Pre dma 2	0.861	7.87	11,891			
3	NRCS Runoff	Post dma 1.1	0.175	7.87	2,420			
4	NRCS Runoff	Post dma 1.2	0.332	7.83	4,815			
5	NRCS Runoff	Post dma 1.3	0.127	7.87	1,749			
6	NRCS Runoff	Post dma 2.1	0.365	7.87	5,069			
7	NRCS Runoff	Post dma 2.2	0.354	7.87	4,896			
8	Junction	junction 1	0.507	7.83	7,234	3, 4		
9	Pond Route	Post chamber 1	0.260	8.17	5,169	8	104.07	1,677
10	Junction	Post dma 1 outfall	0.368	8.00	6,917	5, 9		
11	Pond Route	Post pond 1	0.365	7.87	5,069	6	101.05	294
12	Junction	Post dma 2 outfall	0.720	7.87	9,965	7, 11		

Project Name:

APPENDIX H

0.2-

0.

0

2

0.2

09-25-2023

Storm Distribution: NRCS/SCS - Type IA, 24-hr

Storm	Total Rainfall Volume (in)										
Duration	1-yr	✔ 2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
24 hrs	2.28	2.92	0.00	3.75	4.42	5.31	5.99	6.67			

	Incremental Rainfall Distribution, 2-yr										
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)		
6.80	0.006022	7.17	0.007488	7.53	0.019920	7.90	0.022876	8.27	0.010342		
6.83	0.006108	7.20	0.007678	7.57	0.020882	7.93	0.022443	8.30	0.009875		
6.87	0.006203	7.23	0.007878	7.60	0.021599	7.97	0.021894	8.33	0.009447		
6.90	0.006307	7.27	0.008087	7.63	0.022201	8.00	0.021231	8.37	0.009058		
6.93	0.006422	7.30	0.008306	7.67	0.022689	8.03	0.014798	8.40	0.008707		
6.97	0.006545	7.33	0.008535	7.70	0.023061	8.07	0.013963	8.43	0.008396		
7.00	0.006679	7.37	0.008772	7.73	0.023318	8.10	0.013262	8.47	0.008123		
7.03	0.006821	7.40	0.009020	7.77	0.023459	8.13	0.012600	8.50	0.007889		
7.07	0.006974	7.43	0.009277	7.80	0.023486	8.17	0.011977	8.53	0.009634		
7.10	0.007136	7.47	0.009543	7.83	0.023398	8.20	0.011394	8.57	0.008798		
7.13	0.007307	7.50	0.009819	7.87	0.023195	8.23	0.010848	8.60	0.008611		
2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1.2 1 0.8 0.6 0.4									2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4		

10

. 12

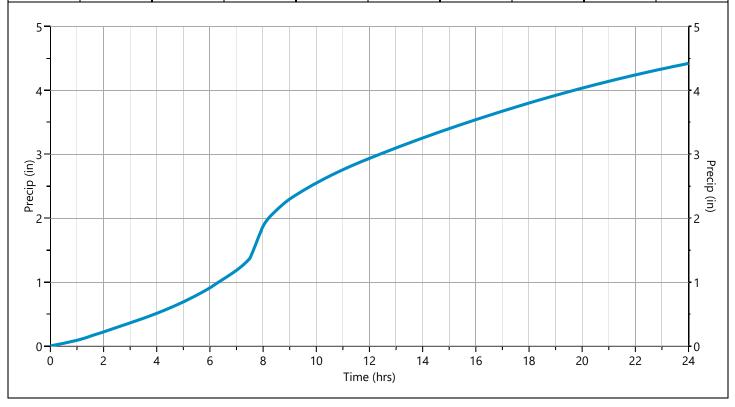
Time (hrs)

. 14 16

. 18 20

22

8

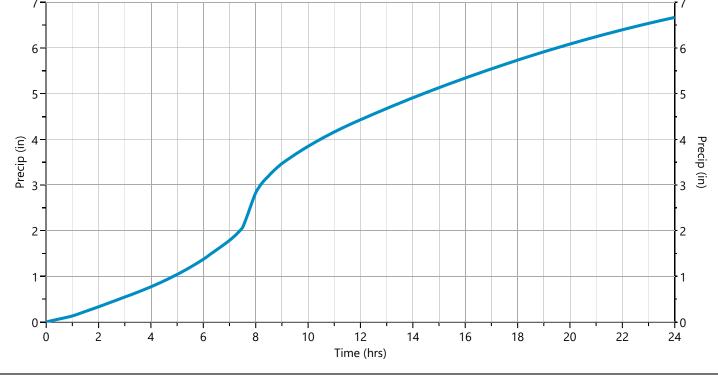

6

09-25-2023

Storm Distribution: NRCS/SCS - Type IA, 24-hr

Storm	Total Rainfall Volume (in)										
Duration	1-yr	2-yr	3-yr	5-yr	✔ 10-yr	25-yr	50-yr	100-yr			
24 hrs	2.28	2.92	0.00	3.75	4.42	5.31	5.99	6.67			

			Incre	mental Rainfa	II Distribution,	10-yr			
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)
6.80	0.009115	7.17	0.011334	7.53	0.030153	7.90	0.034628	8.27	0.015655
6.83	0.009245	7.20	0.011622	7.57	0.031609	7.93	0.033972	8.30	0.014948
6.87	0.009389	7.23	0.011925	7.60	0.032695	7.97	0.033141	8.33	0.014300
6.90	0.009548	7.27	0.012242	7.63	0.033606	8.00	0.032137	8.37	0.013710
6.93	0.009720	7.30	0.012573	7.67	0.034344	8.03	0.022399	8.40	0.013180
6.97	0.009908	7.33	0.012919	7.70	0.034907	8.07	0.021136	8.43	0.012708
7.00	0.010110	7.37	0.013279	7.73	0.035296	8.10	0.020075	8.47	0.012296
7.03	0.010326	7.40	0.013653	7.77	0.035510	8.13	0.019073	8.50	0.011942
7.07	0.010556	7.43	0.014042	7.80	0.035551	8.17	0.018130	8.53	0.014583
7.10	0.010801	7.47	0.014446	7.83	0.035417	8.20	0.017246	8.57	0.013317
7.13	0.011060	7.50	0.014863	7.87	0.035110	8.23	0.016421	8.60	0.013035

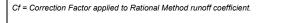


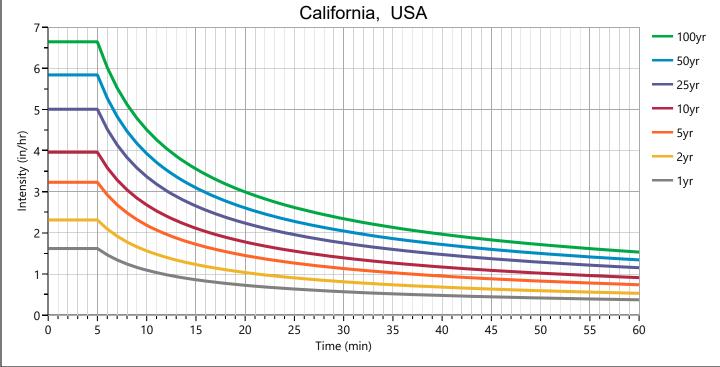
09-25-2023

Storm Distribution: NRCS/SCS - Type IA, 24-hr

Storm Total Rainfall Volume (in)										
Dura	ation	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	✔ 100-yr	
24	4 hrs	2.28	2.92	0.00	3.75	4.42	5.31	5.99	6.67	

			Incren	nental Rainfa	II Distribution,	100-yr			
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)
6.80	0.013756	7.17	0.017104	7.53	0.045502	7.90	0.052255	8.27	0.02362
6.83	0.013951	7.20	0.017538	7.57	0.047700	7.93	0.051265	8.30	0.02255
6.87	0.014169	7.23	0.017995	7.60	0.049338	7.97	0.050012	8.33	0.02157
6.90	0.014408	7.27	0.018473	7.63	0.050714	8.00	0.048496	8.37	0.02068
6.93	0.014669	7.30	0.018973	7.67	0.051826	8.03	0.033801	8.40	0.01988
6.97	0.014951	7.33	0.019495	7.70	0.052676	8.07	0.031895	8.43	0.01917
7.00	0.015256	7.37	0.020038	7.73	0.053263	8.10	0.030294	8.47	0.01855
7.03	0.015582	7.40	0.020604	7.77	0.053587	8.13	0.028782	8.50	0.01802
7.07	0.015930	7.43	0.021191	7.80	0.053648	8.17	0.027359	8.53	0.02200
7.10	0.016299	7.47	0.021799	7.83	0.053447	8.20	0.026026	8.57	0.02009
7.13	0.016691	7.50	0.022430	7.87	0.052982	8.23	0.024780	8.60	0.01967


IDF Report Hydrology Studio v 3.0.0.27


09-25-2023

Equation		Intensity = B / (Tc + D)^E (in/hr)											
Coefficients	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
В	4.6908	6.8485	0.0000	9.7396	11.6724	14.2205	16.6123	19.9160					
D	0.6000	0.7000	0.0000	0.8000	0.7000	0.5000	0.5000	0.8000					
E	0.6182	0.6241	0.0000	0.6284	0.6214	0.6130	0.6136	0.6248					

Minimum Tc = 5 minutes

Тс				Intensity Va	alues (in/hr)			
(min)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Cf	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	1.62	2.31	0	3.23	3.96	5.00	5.84	6.64
10	1.09	1.56	0	2.18	2.68	3.36	3.92	4.50
15	0.86	1.23	0	1.72	2.11	2.65	3.09	3.55
20	0.72	1.03	0	1.45	1.78	2.23	2.60	2.99
25	0.63	0.90	0	1.26	1.55	1.95	2.28	2.61
30	0.57	0.81	0	1.13	1.39	1.75	2.04	2.34
35	0.52	0.74	0	1.03	1.27	1.59	1.86	2.13
40	0.48	0.68	0	0.95	1.17	1.47	1.71	1.96
45	0.44	0.63	0	0.88	1.09	1.37	1.60	1.83
50	0.41	0.59	0	0.83	1.02	1.28	1.50	1.71
55	0.39	0.56	0	0.78	0.96	1.21	1.41	1.61
60	0.37	0.53	0	0.74	0.91	1.15	1.34	1.53

Precipitation Report

Hydrology Studio v 3.0.0.27 (Rainfall totals in Inches)

Precipitation filename: Precip.pcp

09-25-2023

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-у				
Active			~			~			~				
SCS Storms	> SCS Dimensionless Storms												
SCS 6hr		1.07	1.24	0	1.50	1.73	2.08	2.39	2.73				
Type I, 24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.67				
Type IA, 24-hr	~	2.28	2.92	0	3.75	4.42	5.31	5.99	6.67				
Type II, 24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.67				
Type II FL, 24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.67				
Type III, 24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.67				
Synthetic Storms	> IDF-Base	ed Synthetic	Storms										
1-hr		0.37	0.53	0	0.74	0.91	1.15	1.34	1.53				
2-hr		0.48	0.69	0	0.96	1.19	1.51	1.76	1.99				
3-hr		0.57	0.80	0	1.11	1.39	1.77	2.06	2.32				
6-hr		0.74	1.04	0	1.44	1.80	2.31	2.69	3.02				
12-hr		0.96	1.35	0	1.87	2.35	3.02	3.52	3.92				
24-hr		1.26	1.76	0	2.42	3.05	3.95	4.60	5.08				
Huff Distribution	> 1st Quartile (0 to 6 hrs)												
1-hr		0.37	0.53	0	0.74	0.91	1.15	1.34	1.5				
2-hr		0.54	0.69	0	0.90	1.08	1.34	1.56	1.79				
3-hr		0.69	0.84	0	1.06	1.25	1.53	1.77	2.0				
6-hr		1.07	1.24	0	1.50	1.73	2.08	2.39	2.73				
Huff Distribution	> 2nd Qua	rtile (>6 to 12	hrs)										
8-hr		0	0	0	0	0	0	0	0				
12-hr		1.62	1.93	0	2.37	2.74	3.28	3.71	4.1				
Huff Distribution	> 3rd Quar	tile (>12 to 2	4 hrs)										
18-hr		0	0	0	0	0	0	0	0				
24-hr		2.28	2.92	0	3.75	4.42	5.31	5.99	6.6				
Custom Storms	> Custom	Storm Distrik	outions										
My Custom Storm 1		0	0	0	0	0	0	0	0				
My Custom Storm 2		0	0	0	0	0	0	0	0				
My Custom Storm 3		0	0	0	0	0	0	0	0				
My Custom Storm 4		0	0	0	0	0	0	0	0				
My Custom Storm 5		0	0	0	0	0	0	0	0				
My Custom Storm 6		0	0	0	0	0	0	0	0				
My Custom Storm 7		0	0	0	0	0	0	0	0				
My Custom Storm 8		0	0	0	0	0	0	0	0				
My Custom Storm 9		0	0	0	0	0	0	0	0				
My Custom Storm 10		0	0	0	0	0	0	0	0				

APPENDIX I

Hydrology Studio v 3.0.0.27

chambers 1

101 -

100-

0

-

200

400

600

800

1000

Total Storage (cuft) – UG Chambers —— Top of Pond —— Top of Chamber —— Invert of Chamber —— Top Stone —— Bottom Stone

1200

1400

1600

Project Name:

09-25-2023

1

0

1800

Stage-Storage

StormTech® SC-740™ Ch	amber	Stage / Storage Table										
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storag (cuft)						
Chamber Height, in	30	0.0	100.00	705	0.000	0.000						
Chamber Shape	Arch	0.0	100.00 100.23	725 725	0.000 65.3	0.000 65.3						
· · · · · · · · · · · · · · · · · · ·		5.4	100.25	725	65.3	131						
Chamber Width, in	51	8.1	100.40	725	65.3	196						
Installed Length, ft	7.12	10.8	100.90	725	65.3	261						
No. Chambers	18	13.5	101.13	725	65.3	326						
	-	16.2	101.35	725	65.3	392						
Bare Chamber Stor, cuft	826	18.9	101.58	725	83.7	475						
No. Rows	3	21.6	101.80	725	122	597						
	2	24.3	102.03	725	121	718						
Space Between Rows, in	6	27.0	102.25	725	120	839						
Stone Above, in	6	29.7	102.48	725	119	957						
Stone Below, in	18	32.4	102.70	725	116	1,073						
Stone Below, In	10	35.1	102.93	725	114	1,187						
Stone Sides, in	12	37.8	103.15	725	110	1,297						
Stone Ends, in	12	40.5			105	1,402						
		43.2	103.60	725	99.6	1,502						
Encasement Voids, %	40.00	45.9	103.83	725	91.5	1,594						
Encasement Bottom Elevation, ft	100.00	48.6	104.05	725	77.2	1,671						
,		51.3	104.28	725	65.3	1,736						
		54.0	104.50	725	65.3	1,801						
105 –		Stage-S	Storage			- 5						
104-						4						
103						3						

Hydrology Studio v 3.0.0.27

chambers 1

09-25-2023

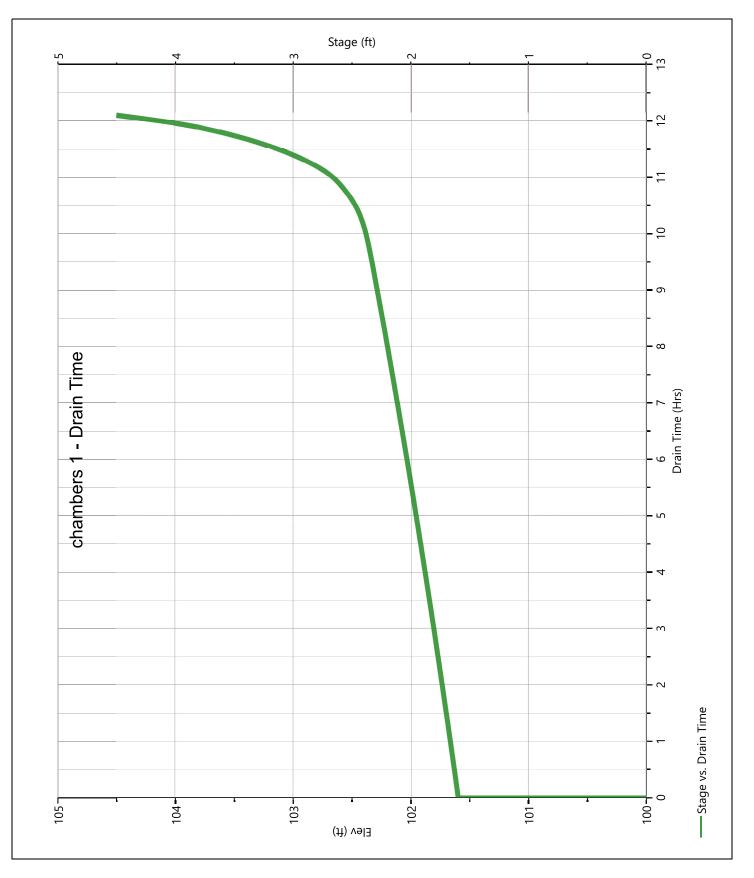
Stage-Discharge

				• • • •				
Culvert / Orifices	Culvert	1*	2*	3	Perforated R	Riser		
Rise, in	15	2	2		Hole Diameter, in			
Span, in	15	2	2		No. holes			
No. Barrels	1	1	1	1	Invert Elevation, ft			
Invert Elevation, ft	100.00	102.33	102.58	103.00	Height, ft			
Orifice Coefficient, Co	0.60	0.60	0.60	0.60	Orifice Coefficient, Co			
Length, ft	50							
Barrel Slope, %	1							
N-Value, n	0.013							
M/o :#0	Riser*		Weirs		Ancillan			
Weirs	Riser	1	2	3	Ancillary			
Shape / Type					Exfiltration, in/hr	0.17*		
Crest Elevation, ft								
Crest Length, ft								
Angle, deg								
Weir Coefficient, Cw	outflow hydrograph. Rate		<u>.</u> Discharge					
	outflow hydrograph. Rate					1 i 4		
ites through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i i i i i i i i		
tes through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i i 		
tes through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i i i i i i i i i i i		
tes through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i i i i i i i i i i i		
tes through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i i i i i i i i i i i		
tes through Culvert. **Exfiltration extracted from	outflow hydrograph. Rate					i i		
tes through Culvert. **Exfiltration extracted from		Stage-I	Discharge			i i i i i i i		

Hydrology Studio v 3.0.0.27

chambers 1

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	;	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	2 3		(cfs)	(cfs)	(cfs)
0.00	100.00	0.000	0.000	0.000	0.000							0.000		0.000
0.23	100.23	65.3	0.000	0.000	0.000							0.004		0.004
0.45	100.45	131	0.000	0.000	0.000							0.005		0.005
0.68	100.68	196	0.000	0.000	0.000							0.006		0.006
0.90	100.90	261	0.000	0.000	0.000							0.007		0.007
1.13	101.13	326	0.000	0.000	0.000							0.008		0.008
1.35	101.35	392	0.000	0.000	0.000							0.009		0.009
1.58	101.58	475	0.000	0.000	0.000							0.010		0.010
1.80	101.80	597	0.000	0.000	0.000							0.011		0.011
2.03	102.03	718	0.000	0.000	0.000							0.012		0.012
2.25	102.25	839	0.000	0.000	0.000							0.013		0.013
2.48	102.48	957	0.026 ic	0.026	0.000							0.014		0.040
2.70	102.70	1,073	0.076 ic	0.056	0.020							0.015		0.091
2.93	102.93	1,187	0.129 ic	0.075	0.054							0.016		0.145
3.15	103.15	1,297	0.163 ic	0.090	0.073							0.017		0.180
3.38	103.38	1,402	0.192 ic	0.103	0.089							0.018		0.209
3.60	103.60	1,502	0.216 ic	0.114	0.102							0.019		0.235
3.82	103.83	1,594	0.238 ic	0.125	0.113							0.020		0.258
4.05	104.05	1,671	0.258 ic	0.134	0.124							0.021		0.279
4.27	104.28	1,736	0.277 ic	0.143	0.133							0.022		0.299
4.50	104.50	1,801	0.294 ic	0.152	0.142							0.023		0.317

09-25-2023

Hydrology Studio v 3.0.0.27

chambers 1

09-25-2023

Hydrology Studio v 3.0.0.27

pond 1

09-25-2023

Stage-Storage

Trapezoid			Stage / Storage Table								
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)					
Bottom Elevation, ft	100.00		100.00	181	0.000						
Bottom Length, ft	15.28	0.00 0.08	100.00	181	14.1	0.000					
-		0.08	100.08	207	14.1	29.1					
Bottom Width, ft	11.87	0.13	100.13	220	16.0	45.1					
Side Slope, H:1	3.00	0.30	100.20	233	17.0	62.1					
Tatal Dauth #	4 50	0.38	100.38	248	18.0	80.1					
Total Depth, ft	1.50	0.45	100.45	262	19.1	99.2					
Voids (%)	100.00	0.53	100.53	277	20.2	119					
		0.60	100.60	292	21.3	141					
		0.68	100.68	308	22.5	163					
		0.75	100.75	324	23.7	187					
		0.82	100.83	340	24.9	212					
		0.90	100.90	357	26.2	238					
		0.97	100.98	374	27.4	265					
		1.05	101.05	392	28.7	294					
		1.13	101.13	410 429	30.1	324					
		1.20	101.20		31.5	356					
		1.28	101.28	448	32.9	389					
		1.35	101.35	467	34.3	423					
		1.43	101.43	487	35.8	459					
		1.50	101.50	507	37.2	496					
101.4 101.3 101.2 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 101.1 100.9 100.8 100.7 100.6 100.5 100.4 100.3						1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2					
100.0						0.2					
100.2						<u> </u>					
	150		250 30 prage (cuft)	0 350	400 450	<u> </u>					

Culvert / Orifices

Rise, in

Span, in

No. Barrels

Length, ft

Invert Elevation, ft

Orifice Coefficient, Co

Culvert

15

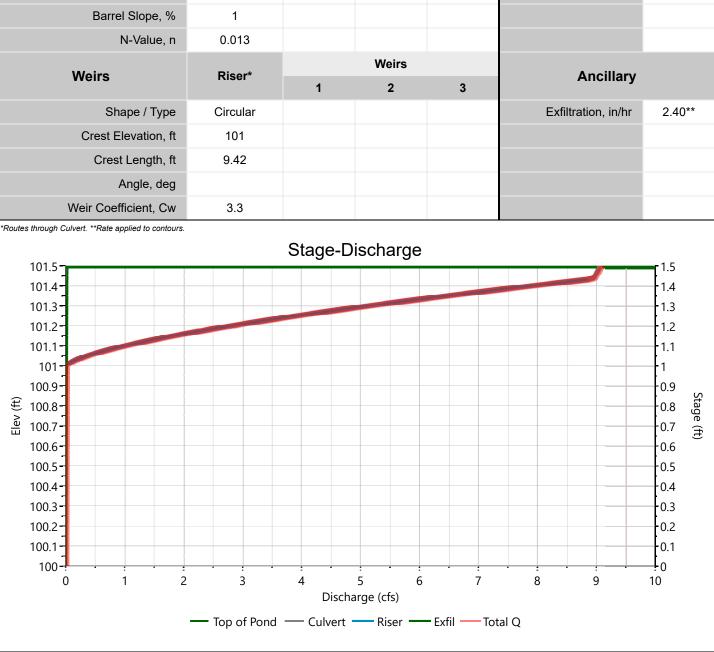
15

1

98.50

0.60

50


Hydrology Studio v 3.0.0.27

pond 1

Stage-Discharge

09-25-2023

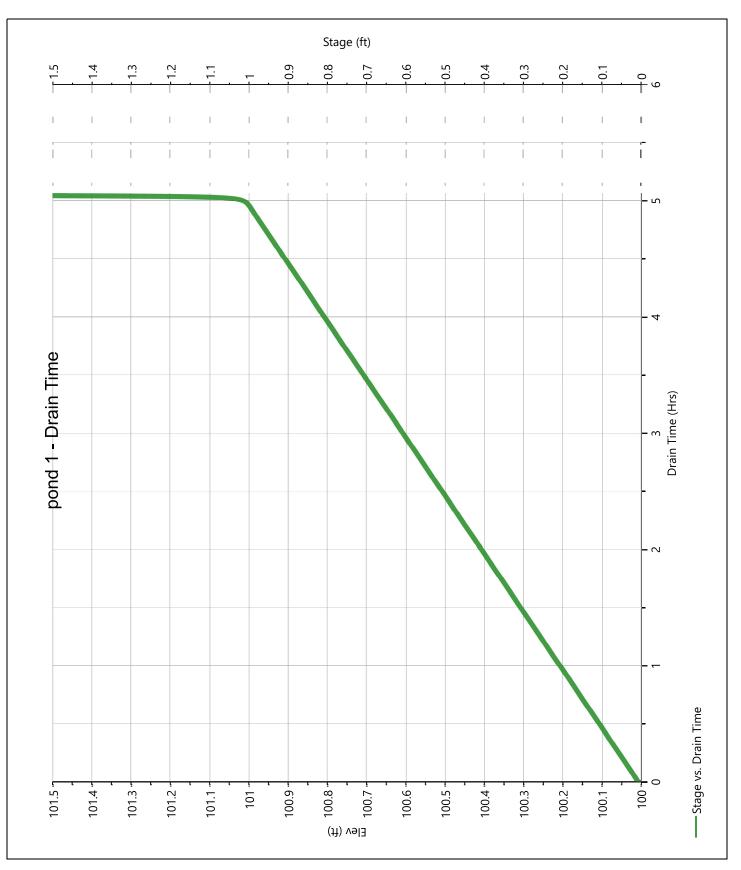
Orifices **Orifice Plate** 2 1 3 Orifice Dia, in No. Orifices Invert Elevation, ft Height, ft Orifice Coefficient, Co Weirs Ancillary 2 1 3 Exfiltration, in/hr 2.40** Stage-Discharge 1.5 1.4 1.3 1.2 -1.1 ·1 -0.9 -0.8 0.7

Hydrology Studio v 3.0.0.27

pond 1

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	c	Drifices, cf	5	Riser				Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	100.00	0.000	0.000				0.000					0.000		0.000
0.08	100.08	14.1	0.000 oc				0.000					0.011		0.011
0.15	100.15	29.1	0.000 oc				0.000					0.011		0.011
0.23	100.23	45.1	0.000 oc				0.000					0.012		0.012
0.30	100.30	62.1	0.000 oc				0.000					0.013		0.013
0.38	100.38	80.1	0.000 oc				0.000					0.014		0.014
0.45	100.45	99.2	0.000 oc				0.000					0.015		0.015
0.53	100.53	119	0.000 oc				0.000					0.015		0.015
0.60	100.60	141	0.000 oc				0.000					0.016		0.016
0.68	100.68	163	0.000 oc				0.000					0.017		0.017
0.75	100.75	187	0.000 oc				0.000					0.018		0.018
0.82	100.83	212	0.000 oc				0.000					0.019		0.019
0.90	100.90	238	0.000 oc				0.000					0.020		0.020
0.97	100.98	265	0.000 oc				0.000					0.021		0.021
1.05	101.05	294	0.348 oc				0.348					0.022		0.369
1.13	101.13	324	1.374 oc				1.374					0.023		1.397
1.20	101.20	356	2.780 oc				2.780					0.024		2.804
1.28	101.28	389	4.483 oc				4.483					0.025		4.508
1.35	101.35	423	6.437 oc				6.437					0.026		6.463
1.43	101.43	459	8.613 oc				8.613					0.027		8.640
1.50	101.50	496	9.071 oc				0.000					0.028		9.099


09-25-2023

Pond Report

Hydrology Studio v 3.0.0.27

pond 1

09-25-2023

APPENDIX J

Project Info

village	carwash
043-070-005	UNKNOWN ADDRESS
2.22837	0.9

Drainage Management Areas (DMAs)

DMA #	(A _{imp}) Impervious Area (sf)	(V _{ret}) Storm Volume (cf)	Volume Check
1	11718.23	878	
2	4791.6	359	

Infiltration Trenches (IT), Dry Wells & Subsurface Retention

Associated DMA # (V _v) Void Volume (0.4 = 40%)		(L) Length (ft)	(W) Width (ft)	(D) Depth (ft)	(V _{ret}) Retention Volume (cf)
1 •	.66	52.5	11.5	4.5	1934

Infiltration Basins

Associated DMA #	(V _{ret}) Retention Volume (cf)
2	360

Environmental Noise Assessment

Village Car Wash

Truckee, California

BAC Job # 2022-145

Prepared For:

SCO Planning & Engineering, Inc.

Attn: Martin D. Wood 140 Litton Drive, Suite 240 Grass Valley, CA 95945

Prepared By:

Bollard Acoustical Consultants, Inc.

ario /

Dario Gotchet, Principal Consultant

September 20, 2023

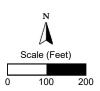
Introduction

The proposed Village Car Wash (project) is located at the northeast intersection of State Route 89 (SR 89) and Henness Road in the Town of Truckee, California. The project proposes a car wash tunnel and vacuum system within the Village Development. The project site location with aerial imagery is shown in Figure 1. The Village Development site plan is presented in Figure 2. The site plan for the car wash component is provided in Figure 3.

Due to the proximity of the proposed project to existing and future noise-sensitive uses (residential), Bollard Acoustical Consultants, Inc. (BAC) was retained to prepare an assessment of potential noise impacts associated with the project. Specifically, the purposes of this assessment are to quantify noise levels associated with proposed car wash and vacuum system operations, to assess the state of compliance of those noise levels with applicable Town of Truckee noise criteria, and if necessary, to recommend measures to reduce those noise levels to acceptable limits at the nearest noise-sensitive uses.

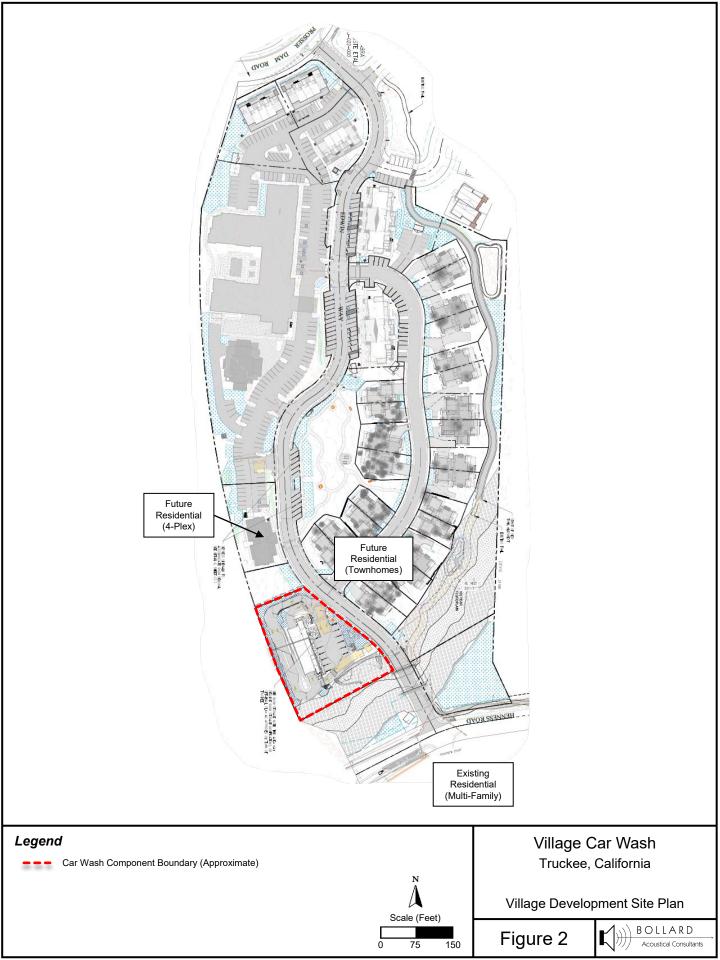
It should be noted that a convenience store (c-store) / gas station component was previously proposed at the same location as the proposed car wash. At the request of the Town of Truckee planning staff, this report includes a comparison of noise level exposure associated with the car wash and c-store / gas station components at nearby existing and future residential uses.

Noise Fundamentals and Terminology


Noise is often described as unwanted sound. Sound is defined as any pressure variation in air that the human ear can detect. If the pressure variations occur frequently enough (at least 20 times per second), they can be heard, and thus are called sound. Measuring sound directly in terms of pressure would require a very large and awkward range of numbers. To avoid this, the decibel scale was devised. The decibel scale allows a million-fold increase in pressure to be expressed as 120 dB. Another useful aspect of the decibel scale is that changes in levels (dB) correspond closely to human perception of relative loudness. Appendix A contains definitions of Acoustical Terminology. Figure 4 shows common noise levels associated with various sources.

The perceived loudness of sounds is dependent upon many factors, including sound pressure level and frequency content. However, within the usual range of environmental noise levels, perception of loudness is relatively predictable, and can be approximated by weighing the frequency response of a sound level meter by means of the standardized A-weighing network. All noise levels reported in this section are in terms of A-weighted levels in decibels. Community noise is commonly described in terms of the "ambient" noise level, which is defined as the all-encompassing noise level associated with a given noise environment. A common statistical tool to measure the ambient noise level is the average, or equivalent, sound level (Leq) over a given time period (usually one hour). The Leq is the foundation of the Day-Night Average Level noise descriptor, DNL or Ldn, and shows very good correlation with community response to noise.

2017 Long-Term Ambient Noise Survey Sites



Truckee, California

Project Area

Figure 1

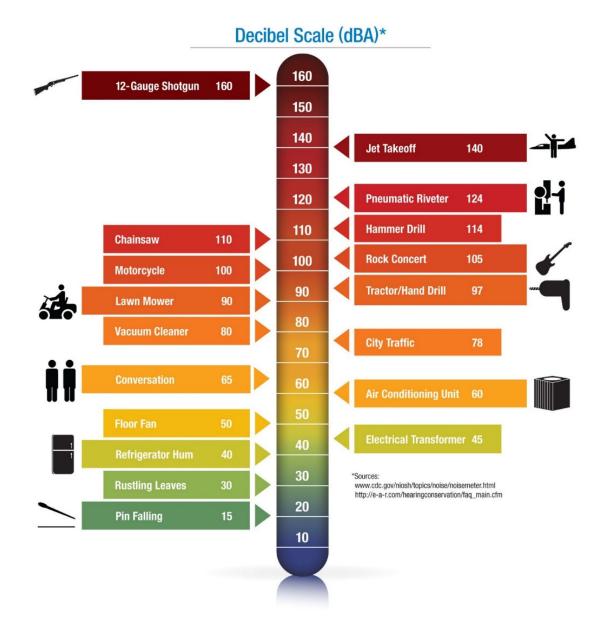


Figure 4 Typical A-Weighted Sound Levels of Common Noise Sources

The Day-Night Average Level (DNL or L_{dn}) is based upon the average noise level over a 24hour day, with a +10-decibel weighting applied to noise occurring during nighttime (10:00 p.m. to 7:00 a.m.) hours. The nighttime penalty is based upon the assumption that people react to nighttime noise exposures as though they were twice as loud as daytime exposures. Because DNL represents a 24-hour average, it tends to disguise short-term variations in the noise environment. DNL-based noise standards are commonly used to assess noise impacts associated with traffic, railroad, and aircraft noise sources.

Existing Ambient Noise Environment within the Project Vicinity

The existing ambient noise environment at the project site is primarily defined by traffic on State Route 89, and to a lesser extent by traffic on Prosser Dam Road, Henness Road, and Interstate 80. To generally quantify the existing ambient noise environment in the immediate project vicinity, BAC utilized the results from a long-term (72-hour) noise level survey conducted May 2-4, 2017, at three locations located within the Village Development. The 2017 noise survey locations are identified in Figure 1.

Larson-Davis Laboratories (LDL) Model 820 precision integrating sound level meters were used to complete the noise level surveys. The meters were calibrated before and after use with an LDL Model CAL200 acoustical calibrator to ensure the accuracy off the measurements. The equipment used meets all pertinent specifications of the American National Standards Institute for Type 1 sound level meters (ANSI S1.4). The results of the long-term ambient noise survey are shown numerically and graphically in Appendices B and C (respectively) and are summarized below in Table 1.

	Daytime ³ (7 a.m. to 10 p.m.)			Nighttime ³ (10 p.m. to 7 a.m.)			DNL	
Date	L _{eq}	L ₅₀	L _{max}	L _{eq}	L ₅₀	L _{max}	(dB)	
Site 1 – Approxim	Site 1 – Approximately 115' from centerline of Highway 89							
May 2, 2017	61 (59-64)	59 (52-63)	78 (73-87)	54 (47-61)	48 (44-58)	78 (73-87)	63	
May 3, 2017	61 (56-64)	59 (52-63)	77 (72-84)	55 (48-61)	49 (45-59)	70 (64-77)	63	
May 4, 2017	62 (57-64)	59 (52-63)	77 (72-83)	55 (48-61)	49 (46-59)	70 (67-75)	63	
Site 2 – Approxim	ately 305' fror	n centerline of	Highway 89					
May 2, 2017	52 (50-55)	48 (47-52)	72 (67-78)	50 (47-54)	48 (46-53)	61 (56-71)	57	
May 3, 2017	53 (50-54)	50 (47-54)	70 (64-74)	51 (47-55)	49 (46-54)	64 (57-72)	57	
May 4, 2017	54 (50-56)	52 (48-55)	70 (63-77)	51 (47-55)	49 (46-54)	60 (55-71)	58	
Site 3 – Approxim	ately 85' from	centerline of I	Henness Road	1				
May 2, 2017	51 (49-53)	47 (44-50)	72 (62-81)	50 (47-53)	48 (46-52)	61 (54-70)	57	
May 3, 2017	52 (48-56)	49 (45-52)	72 (64-87)	52 (47-55)	49 (46-54)	66 (58-84)	58	
May 4, 2017	54 (51-56)	51 (46-55)	71 (63-77)	51 (48-56)	49 (47-53)	61 (56-68)	58	
² Detailed long-te	¹ Long-term ambient noise monitoring locations are identified in Figure 1.							

Table 1
Summary of 2017 BAC Long-Term Ambient Noise Monitoring Results ^{1,2}

Source: BAC 2017.

Criteria for Acceptable Noise Exposure

The Town of Truckee Municipal Code

Chapter 18.44 of the Town of Truckee Municipal Code (Noise) contains codes and ordinances which are pertinent to the evaluation of project on-site commercial operations noise sources. The applicable criteria are reproduced and summarized as follows:

18.44.040 – Exterior Noise Standards

It shall be unlawful for any person, at any location within the Town, to create any noise or to allow the creation of any noise on property leased, occupied, owned, or otherwise controlled by the person which does not comply with the provisions of this Section, unless the provisions of either Sections 18.44.050 (Residential Interior Noise Standards) or 18.44.070 (Exceptions), below, have been met.

- A. Exterior levels. Exterior noise levels, when measured at any receiving church, commercial property, public library, residential or school property, do not conform to the provisions of this Section when they exceed the noise level standards established by (Municipal Code) Table 2 (Municipal Code Table 3-7).
- **B. Ambient noise level adjustment.** In the event the measured ambient noise level exceeds the applicable noise level standard in any category above, the applicable standards shall be adjusted to equal the ambient noise level. For example, if the applicable noise level standard is 60 dB(A) and the ambient noise level is 63 dB(A), the applicable noise level standard would be adjusted to 63 dB(A). In these cases, a use would not exceed the applicable noise level standard if it did not increase the ambient noise level by more than 3.0 dB(A) when the ambient noise level is between 60 and 65 dB(A) or by more than 1.5 dB(A) when the ambient noise level is greater than 65 dB(A).

Duration	Statistical	Noise Level (dB)			
Exceeded, Min.	Descriptor	Daytime (7 a.m10 p.m.)	Nighttime (10 p.m7 a.m.)		
30 ¹	L ₅₀	55	50		
15	L ₂₅	60	55		
5	L ₈	65	60		
1	L ₂	70	65		
0	L _{max}	75	70		
¹ For example, this means the measured noise level may not exceed 55 dB for more than 30 minutes out of any one-hour time period.					

 Table 2

 Summary of Town of Truckee Municipal Code Exterior Noise Level Standards

 Receiving Land Use – Residential Uses

Source: Town of Truckee Municipal Code, Chapter 18.44, Table 3-7.

Noise Standards Applied to the Project

The Town of Truckee Municipal Code noise level standards shown in Table 2 depend on what time of day the noise occurs and the duration of operation each given noise source during a given hour. The project applicant has indicated that the car wash and vacuum hours of operation will be limited to daytime hours, 7:00 a.m. to 9:00 p.m. In addition, car wash operations could potentially exceed 30 minutes during a given busy hour. Based on the provided project operations information, the Town's daytime median (L₅₀) noise level standard of 55 dB was applied to project car wash and vacuum system operational noise levels and assessed at the nearest existing and future residential uses. Satisfaction of the Town's noise level limit at existing and future residential uses located farther away.

Evaluation of Project Car Wash Operations Noise Levels

Noise generated by project car wash operations were quantified through a combination of manufacturer reference noise level data, application of accepted noise modeling techniques, and utilization of the provided site plans. The most significant noise sources associated with proposed car wash operations have been identified as the car wash drying assembly (used for drying vehicles at the end of the wash cycle) and the vacuum system equipment. The proposed locations of the car wash tunnel and vacuum areas are shown in Figure 3. Predicted noise levels resulting from those sources at the nearest existing and future residential uses are evaluated in the following sections.

Car Wash Drying Assembly

Based on the experience of Bollard Acoustical Consultants, noise levels generated by car washes are primarily due to the drying portion of the operation. It is the understanding of BAC that the project proposes the installation of four (4) Sonny's Enterprises blower arch assemblies, Part # BL1-45HP-1. According to manufacturer's noise specification data sheet in Appendix D, each blower arch assembly generates a maximum noise level of 79 dB L_{max} at 50 feet. The combined noise level from the simultaneous operation of all four blower arch assemblies is calculated to be 85 dB L_{max} at 50 feet.

Based on BAC's experience with noise level data collection at various existing car washes, the noise level generation of car wash drying assemblies vary depending on the orientation of the measurement position relative to the tunnel opening. Worst-case drying assembly noise levels occur at a position directly facing the car wash exit, considered to be 0 degrees off-axis. For car wash tunnels that are 100 feet or more in length, drying assembly noise levels at the car wash entrance are approximately 10 dB lower than those at the exit. At off-axis positions, the building facade provides varying degrees of noise level reduction. At positions 45 degrees off-axis relative to the facade of the car wash exit and entrance, drying assembly noise levels are approximately 6 dB lower. At 90 degrees off-axis, drying assembly noise levels are approximately 15 dB lower.

According to a car wash system representative, the car wash cycle is approximately 1.5 minutes in duration, and that the drying assembly would be in operation during the last 30 seconds (or 0.5 minutes) of the cycle. Based on this information, the car wash is calculated to go through 40 full cycles (60 minutes \div 1.5 minutes per cycle) and the dryer would operate for approximately 20 minutes (40 car wash cycles x 0.5 minutes of drying) during a busy hour of operations. However, the project's emissions assessment states that approximately 45 cars are expected to be generated during a maximum peak hour for the car wash. Assuming 45 car wash cycles per hour, approximately 22 minutes of drying assembly operation is calculated. Based on 22 minutes of dryer operations per hour, the resulting median (L₅₀) drying assembly noise level is calculated to be approximately 5 dB lower than the equipment's reference maximum (L_{max}) noise levels presented in Appendix D.

Finally, it is the understanding of BAC that the car wash tunnel entrance and exit will be equipped with polycarbonate doors manufactured by BayWatch. It is our further understanding that the doors will remain closed during each car wash cycle. According to the equipment manufacturer measurement data (provided as Appendix E), this specific door provides approximately 14 dB of dryer noise reduction. Based on this information, an adjustment of -14 dB was applied to drying assembly noise level exposure at the nearest existing and future residential uses.

Car wash drying assembly noise level exposure was calculated based on the orientation to tunnel entrance/exit, as discussed above. Noise attenuation due to distance was calculated based on standard spherical spreading loss from a point source (-6 dB per doubling of distance). Car wash drying assembly noise exposure was calculated at the property lines of the nearest existing and future residential uses and the results of those calculations relative to the applicable Town of Truckee Municipal Code noise level criterion are presented in Table 3.

Receiver ¹	Direction	Distance (ft) ²	Predicted Noise Level, L ₅₀ (dB) ^{3,4}		
Future Residential (Townhomes)	Northeast	220	38		
Future Residential (4-Plex)	North	255	52		
Existing Residential (Multi-Family)	South	290	51		
Municipal Code Daytime Noise Level Standard, L ₅₀ (dB) 55					
¹ Receiver locations shown in Figure 1.					
² Distances scaled from car wash dryers to property lines using the provided site plans.					
³ Predicted noise levels include offsets for orientation to tunnel entrance/exit, as discussed in this report.					
⁴ Predicted noise levels include consideration of proposed entrance and exit doors in closed position during					
drver operations, as discussed in this rep	port.				

Table 3
Predicted Car Wash Drying Assembly Noise Levels at Nearest Residential Uses

Source: BAC 2023.

As indicated in Table 3, car wash drying assembly equipment noise levels are predicted satisfy the Town of Truckee Municipal Code 55 dB L_{50} daytime noise level standard at the nearest

existing and future residential uses. As a result, no further consideration of car wash drying assembly noise mitigation measures would be warranted for the project.

Vacuum Station Equipment

It is our understanding that the project proposes the installation of a 16-hose central dry vacuum system with palm arches offered by Vacutech. The project site plan indicates that there will be two vacuum areas, which are shown in Figure 3.

It is our understanding that the central vacuum piping system will be powered by one (1) 40 HP direct drive vacuum producer. According to the provided plans, the noise-generating vacuum turbine producer will be contained within a fully-enclosed equipment enclosure. The location of the vacuum producer enclosure is shown in Figure 3. The site plans further indicate that the vacuum enclosure walls will be constructed of 8-inch-thick CMU block and have a combination plywood/corrugated metal roof. Further, it is our understanding that the vacuum producer will be equipped with a muffler kit containing a silencer. After a review of the provided vacuum enclosure construction plans and based on BAC's experience and field observations with similarly configured car washes and equipment enclosures, noise impacts due to the operation of the vacuum turbine producer are not expected due to the significant transmission loss that would be provided by the proposed vacuum motor enclosure. As a result, no further analysis would be warranted for the vacuum system turbine producer.

Based on noise level measurements conducted by BAC staff at recently completed car wash projects, the primary noise-generating aspects of central vacuum piping systems are use of the suction nozzles located at each of the stalls – specifically, noise associated with active suction nozzles hanging off nozzle hangers. Reference sound level data obtained from the proposed vacuum system manufacturer (Vacutech) is provided as Appendix F. The sound level data provided in Appendix F show measured and projected sound levels from 19 vacuum hoses off their respective nozzle hangers at distances ranging from 45 to 85 feet.

For the purposes of this analysis, it was conservatively assumed that all 16 proposed vacuum suction nozzles would be in concurrent operation (worst-case noise exposure). Based on the manufacturer sound level data in Appendix F, the operations assumptions above, and assuming standard spherical spreading loss (-6 dB per doubling of distance from a stationary source), worst-case project vacuum equipment noise exposure was calculated at the property lines of the nearest existing and future residential uses. The results of those calculations relative to the applicable Town of Truckee Municipal Code noise level criterion are presented in Table 4.

Receiver ¹	Direction	Distance (ft) ²	Predicted Noise Level, L₅₀ (dB)³		
Future Residential (Townhome)	Northeast	160	44		
Future Residential (4-Plex)	North	235	40		
Existing Residential (Multi-Family)	South	290	38		
Municipal Code Daytime Noise Level Standard, L ₅₀ (dB) 55					
 Receiver locations shown in Figure 1. Distances scaled from effective noise center of vacuum areas to property lines using the provided site plans. Predicted combined noise level from operation of all proposed vacuum nozzles concurrently (worst-case). 					

 Table 4

 Predicted Worst-Case Vacuum Nozzle Noise Levels at Nearest Residential Uses

Source: BAC 2023.

The Table 4 data indicate that worst-case vacuum nozzle noise levels are predicted to satisfy the Town of Truckee Municipal Code 55 dB L_{50} daytime noise level standard at the nearest existing and future residential uses. As a result, no further consideration of vacuum system equipment noise mitigation measures would be warranted for the project.

Car Wash Building HVAC Equipment

Heating, ventilating, and air conditioning (HVAC) requirements for the car wash building would most likely be met using packaged roof-mounted system. According to BAC reference file data, HVAC systems for similar uses (12.5-ton packaged unit system) are expected to have a reference noise level of 45 dB L₅₀ at a distance of 100 feet.

Based on the sound power data above, and assuming standard spherical spreading loss (-6 dB per doubling of distance), car wash building HVAC equipment noise exposure was calculated at the property lines of the nearest existing and future residential uses. The results of those calculations relative to the applicable Town of Truckee Municipal Code noise level criterion are presented in Table 5.

Receiver ¹	Direction	Distance (ft) ²	Predicted Noise Level, L₅₀ (dB)		
Future Residential (Townhome)	Northeast	160	41		
Future Residential (4-Plex)	North	175	40		
Existing Residential (Multi-Family)	South	280	36		
Municipal Code Da	ytime Noise Lev	el Standard, L50 (dB)	55		
 ¹ Receiver locations shown in Figure 1. ² Distances scaled from car wash building rooftop to property lines using the provided site plans. 					

 Table 5

 Predicted HVAC Equipment Noise Levels at Nearest Residential Uses

Source: BAC 2023.

As shown in Table 5, car wash building HVAC equipment noise levels are predicted satisfy the Town of Truckee Municipal Code 55 dB L_{50} daytime noise level standard at the nearest existing and future residential uses. As a result, no further consideration of car wash building HVAC equipment noise mitigation measures would be warranted for the project.

Combined Project Car Wash Component Noise Generation

The preceding analyses consisted of the noise-generation associated with car wash drying assembly, vacuum system, and building HVAC equipment independently. Because it is likely that the noise sources will operate simultaneously, an analysis of cumulative (combined) noise-generation was also conducted for the project. The calculated combined noise generation of project car wash dryers, vacuum system, and building HVAC equipment at the property lines of the nearest existing and future residential uses was calculated and the results of those calculations relative to the applicable Town of Truckee Municipal Code noise level criterion is presented in Table 6.

It should be noted that due to the logarithmic nature of the decibel scale, the sum of two noise values which differ by 10 dB equates to an overall increase in noise levels of 0.4 dB. When the noise sources are equivalent, the sum would result in an overall increase in noise levels of 3 dB.

	Predicted N	Calculated		
Receiver	Car Wash Dryers	Vacuums	HVAC	Combined, L ₅₀ ²
Future Residential (Townhome)	38	44	41	46
Future Residential (4-Plex)	52	40	40	52
Existing Residential (Multi-Family)	51	38	36	51
Munici	55			
¹ Predicted equipment noise levels				
² Calculated combined equipment n				

 Table 6

 Predicted Combined Equipment Noise Levels at Nearest Residential Uses

Source: BAC 2023.

As shown in Table 6, calculated combined equipment noise level exposure would comply with Town of Truckee 55 dB L_{50} daytime noise level standard at the nearest existing and future residential uses. As a result, additional consideration of car wash component equipment noise mitigation measures would not be warranted for the project.

Comparison of Car Wash & C-Store / Gas Station Operations Noise

As mentioned previously, a c-store / gas station was previously proposed at the same location as the car wash. At the request of the Town of Truckee planning staff, the following section includes a comparison of predicted noise level exposure associated with car wash and c-store / gas station operations at nearby existing and future residential uses. The most significant noise sources associated with c-store / gas station operations have been identified as mechanical

equipment (HVAC), parking lot movements, and truck deliveries (i.e., deliveries of product to c-store and fueling tankers), and on-site truck circulation.

C-Store / Gas Station Component Mechanical Equipment (HVAC)

Heating, ventilating, and air conditioning (HVAC) requirements for the proposed convenience store will most likely be met using packaged roof-mounted systems. As a means of determining potential noise exposure due to rooftop mechanical equipment, BAC utilized reference file data collected for previous studies. BAC reference file data for HVAC systems indicate that a 12.5-ton packaged unit can be expected to generate an A-weighted sound power level of 85 dB, or equivalent to approximately 45 dB L₅₀ at a distance of 100 feet. When projected from the c-store building to the nearest future residential use to the northeast located approximately 225 away, median HVAC noise level exposure is calculated to be 38 dB L₅₀. When projected from the c-store building to the nearest future residential use to the north located approximately 230 away, median HVAC noise level exposure is calculated to be 38 dB L₅₀. Finally, when projected to the nearest existing residential use to the south located approximately 300 feet away, median HVAC noise level exposure is calculated to be 35 dB L₅₀.

C-Store / Gas Station Component Parking Lot Movements

As a means of determining potential noise exposure due to project parking lot activities, Bollard Acoustical Consultants, Inc. utilized specific parking lot noise level measurements conducted by BAC. Specifically, a series of individual noise measurements were conducted of multiple vehicle types arriving and departing a parking area, including engines starting and stopping, car doors opening and closing, and persons conversing as they entered and exited the vehicles. The results of those measurements revealed that individual parking lot movements generated mean noise levels of 65 dB SEL at a distance of 50 feet.

According to the project site plans, the c-store / gas station would have approximately 10 parking spaces and 8 gas pumps. Conservatively assuming each vehicle spends five minutes in the parking lot, this would result in a total of 216 vehicle trips to and from the site per hour at maximum capacity. Peak hour parking and gas pump area noise exposure was determined using the following equation:

Peak Hour Leq/L50= 65+10*log (N) - 35.6

Where 65 is the SEL for a single automobile parking operation, N is the number of parking area operations in a peak hour (216 in this case), and 35.6 is 10 times the logarithm of the number of seconds in an hour. Given the equation above, the reference median noise level is calculated to be 53 dB L₅₀ at a distance of 50 feet. When projected from the c-store / gas station parking area to the nearest future residential use to the northeast located approximately 200 feet away, median parking lot noise level exposure is calculated to be 41 dB L₅₀. When projected from the parking area to the nearest future residential use to the north, also located approximately 200 feet away, median parking lot noise level exposure is calculated to be 41 dB L₅₀. Finally, when projected to the nearest existing residential use to the south located approximately 315 away, median parking area noise level exposure is calculated to be 37 dB L₅₀.

C-Store / Gas Station Component Truck Deliveries

It is the experience of BAC that deliveries of product to c-stores occur at the front of the store with medium-duty vendor trucks/vans. The primary noise sources associated with delivery activities are trucks stopping (air brakes), trucks backing into position (back-up alarms), and pulling away from the delivery area (revving engines).

For a conservative assessment of daily truck delivery noise levels at c-store / gas station component, it was assumed that 4 medium duty trucks/vans would have deliveries on a typical busy day. For the purposes of comparison against the Town's median (L_{50}) noise level standard, it was assumed that 2 medium duty trucks/vans could have deliveries to the site during the same worst-case hour.

BAC file data indicate that noise level exposure associated with medium-duty truck deliveries (including side-step vans) is approximately 76 dB SEL at a distance of 100 feet. Based on 2 medium duty truck deliveries during a worst-case busy hour and an SEL of 76 dB, the median noise level computes to 43 dB L₅₀ at a reference distance of 100 feet during the worst-case hour of deliveries. When projected from the c-store delivery area to the nearest future residential use to the northeast located approximately 200 feet away, median truck delivery area to the nearest future residential use to the north located approximately 250 feet away, median truck delivery activity noise level activity noise level exposure is calculated to be 35 dB L₅₀. Finally, when projected to the nearest existing residential use to the south located approximately 300 feet away, median truck delivery activity noise level exposure is calculated to be 34 dB L₅₀.

C-Store / Gas Station Component On-Site Truck Circulation

As mentioned above, it is the experience of BAC that deliveries of product to c-stores occur at the front of the store with medium-duty vendor trucks/vans. However, the gas station would also receive deliveries from heavy fueling trucks for the purposes of refiling the underground fuel storage tanks.

On-site truck passbys are expected to be relatively brief and will occur at low speeds. To predict noise levels generated by on-site truck circulation, BAC utilized file data obtained from measurements conducted by BAC of heavy and medium duty truck passbys. According to BAC file data, single-event heavy truck passby noise levels are approximately 83 dB SEL at a reference distance of 50 feet. BAC file data also indicate that single-event medium truck passby noise levels are approximately 76 SEL at a reference distance of 50 feet.

For the purposes of comparison against the Town's median (L_{50}) noise level standard, it was assumed that 1 heavy fueling truck and 2 medium duty trucks/vans could have deliveries to the site during the same worst-case hour. Given the aforementioned worst-case hour of deliveries, the median noise level computes to 49 dB L_{50} at a reference distance of 50 feet from the passby route. When projected from the on-site truck passby route to the nearest future residential use to the northeast located approximately 100 feet away, median on-site truck circulation noise level exposure is calculated to be 43 dB L_{50} . When projected from the on-site truck passby

route to the nearest future residential use to the north located approximately 175 feet away, median on-site truck circulation noise level exposure is calculated to be 38 dB L_{50} . Finally, when projected to the nearest existing residential use to the south located approximately 300 away, on-site truck circulation noise level exposure is calculated to be 33 dB L_{50} .

Comparison of Car Wash vs. C-Store / Gas Station Operations Noise

Predicted noise levels associated with car wash and c-store / gas station operations are summarized below in Tables 7 and 8, respectively.

Combined Car Wash Component Noise Exposure at Nearest Residential Uses	
Predicted Noise Levels, L ₅₀ (dB)	

Table 7

	Predicted Noise L	Calculated	
Receiver	Drying Assembly	Vacuums	Combined
Future Residential (Townhome)	47	44	49
Future Residential (4-Plex)	53	41	53
Existing Residential (Multi-Family)	51	38	51

Source: BAC 2023.

 Table 8

 Combined C-Store / Gas Station Component Noise Exposure at Nearest Residential Uses

	Pre	Predicted Noise Levels, L ₅₀ (dB)					
Receiver	HVAC	Parking	Truck Deliveries	Truck Circ.	Calculated Combined		
Future Residential (Townhome)	38	41	37	43	46		
Future Residential (4-Plex)	38	41	35	38	44		
Existing Residential (Multi-Family)	35	37	34	33	41		

Source: BAC 2023.

Based on the data provided in Tables 7 and 8, combined noise levels associated with the car wash component are calculated to be higher than those associated with a c-store / gas station component. Nonetheless, noise exposure from the development of either component is predicted to comply with the Town's 55 dB L_{50} daytime noise level standard at the closest existing and future residential uses.

Conclusions

Based on the analysis and results presented in this report, noise level exposure from the Village Car Wash is predicted to satisfy the Town of Truckee 55 dB L_{50} daytime noise level standard at the nearest existing and future residential uses.

At the request of the Town of Truckee planning staff, this report includes a comparison of noise level exposure associated with car wash and c-store / gas station operations at nearby existing and future residential uses. Based on the analysis and results presented in this report,

combined noise levels associated with the car wash component are calculated to be higher than those associated with a c-store / gas station component. Nonetheless, the results presented in this report indicate that noise exposure from the development of either component is predicted to comply with the Town's 55 dB L₅₀ daytime noise level standard at the closest existing and future residential uses.

These conclusions are based on the provided site plans, equipment manufacturer noise level data, BAC file data and field observations, and equipment operations assumptions cited herein. Deviations from the resources or assumptions cited above could cause actual noise levels to differ from those predicted in this assessment.

This concludes BAC's noise assessment for the Village Car Wash in Truckee, California. Please contact BAC at (530) 537-2328 or <u>dariog@bacnoise.com</u> with any questions regarding this assessment.

Appendix A Acoustical Terminology

Acoustics	The science of sound.
Ambient Noise	The distinctive acoustical characteristics of a given space consisting of all noise source audible at that location. In many cases, the term ambient is used to describe an existing or pre-project condition such as the setting in an environmental noise study.
Attenuation	The reduction of an acoustic signal.
A-Weighting	A frequency-response adjustment of a sound level meter that conditions the output signal to approximate human response.
Decibel or dB	Fundamental unit of sound. A Bell is defined as the logarithm of the ratio of the sound pressure squared over the reference pressure squared. A Decibel is one-tenth of a Bell.
CNEL	Community Noise Equivalent Level. Defined as the 24-hour average noise level with noise occurring during evening hours (7 - 10 p.m.) weighted by a factor of three and nighttime hours weighted by a factor of 10 prior to averaging.
Frequency	The measure of the rapidity of alterations of a periodic signal, expressed in cycles per second or hertz.
IIC	Impact Insulation Class (IIC): A single-number representation of a floor/ceiling partitio impact generated noise insulation performance. The field-measured version of this number is the FIIC.
Ldn	Day/Night Average Sound Level. Similar to CNEL but with no evening weighting.
Leq	Equivalent or energy-averaged sound level.
Lmax	The highest root-mean-square (RMS) sound level measured over a given period of til
Loudness	A subjective term for the sensation of the magnitude of sound.
Masking	The amount (or the process) by which the threshold of audibility is for one sound is raised by the presence of another (masking) sound.
Noise	Unwanted sound.
Peak Noise	The level corresponding to the highest (not RMS) sound pressure measured over a given period of time. This term is often confused with the "Maximum" level, which is the highest RMS level.
RT ₆₀	The time it takes reverberant sound to decay by 60 dB once the source has been removed.
STC	Sound Transmission Class (STC): A single-number representation of a partition's noisi insulation performance. This number is based on laboratory-measured, 16-band (1/3-octave) transmission loss (TL) data of the subject partition. The field-measured version of this number is the FSTC.
	tical Consultants

Appendix B-1 Village at Grays Crossing Ambient Noise Monitoring Results - Site 1 Tuesday, May 02, 2017

Hour	Leq	Lmax	L50	L90
0:00	50	68	45	41
1:00	47	66	44	41
2:00	48	66	46	42
3:00	49	67	45	42
4:00	52	74	48	44
5:00	56	77	49	45
6:00	61	73	58	51
7:00	64	82	63	54
8:00	62	73	61	53
9:00	62	78	60	49
10:00	60	73	57	47
11:00	61	75	58	47
12:00	61	77	58	48
13:00	61	75	58	48
14:00	62	77	60	50
15:00	62	76	60	51
16:00	62	77	61	53
17:00	62	76	61	53
18:00	61	84	58	50
19:00	60	77	57	49
20:00	61	87	54	48
21:00	59	86	52	48
22:00	54	68	50	47
23:00	52	69	49	45

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	64	59	61	61	47	54
Lmax (Maximum)	87	73	78	77	66	70
L50 (Median)	63	52	59	58	44	48
L90 (Background)	54	47	50	51	41	44

Computed Ldn, dB	63
% Daytime Energy	89%
% Nighttime Energy	11%

Appendix B-2 Village at Grays Crossing Ambient Noise Monitoring Results - Site 1 Wednesday, May 03, 2017

Hour	Leq	Lmax	L50	L90
0:00	51	68	48	44
1:00	49	71	45	41
2:00	50	69	46	42
3:00	48	64	46	41
4:00	51	69	48	45
5:00	56	77	51	47
6:00	61	72	59	52
7:00	64	74	63	56
8:00	63	75	61	52
9:00	61	77	59	47
10:00	61	75	57	46
11:00	60	73	57	45
12:00	61	82	59	51
13:00	61	78	59	52
14:00	62	76	60	52
15:00	61	73	59	50
16:00	62	77	61	52
17:00	62	83	61	51
18:00	61	76	59	50
19:00	59	74	57	51
20:00	61	84	54	50
21:00	56	72	52	48
22:00	54	69	50	47
23:00	54	72	49	45

	Statistical Summary					
	Daytim	Daytime (7 a.m 10 p.m.)			ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	64	56	61	61	48	55
Lmax (Maximum)	84	72	77	77	64	70
L50 (Median)	63	52	59	59	45	49
L90 (Background)	56	45	50	52	41	45

Computed Ldn, dB	63
% Daytime Energy	88%
% Nighttime Energy	12%

Appendix B-3 Village at Grays Crossing Ambient Noise Monitoring Results - Site 1 Thursday, May 04, 2017

Hour	Leq	Lmax	L50	L90
0:00	50	69	46	41
1:00	49	71	46	41
2:00	50	69	47	43
3:00	48	67	46	42
4:00	51	67	48	44
5:00	57	75	50	47
6:00	61	73	59	53
7:00	64	75	63	56
8:00	63	78	62	54
9:00	62	75	60	50
10:00	61	79	58	48
11:00	61	74	59	51
12:00	62	77	60	52
13:00	62	79	60	53
14:00	63	76	61	54
15:00	63	80	61	54
16:00	63	79	62	55
17:00	62	74	61	54
18:00	61	83	59	51
19:00	60	74	57	50
20:00	60	81	54	48
21:00	57	72	52	47
22:00	55	70	50	47
23:00	53	68	50	46

	Statistical Summary					
	Daytim	Daytime (7 a.m 10 p.m.)			ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	64	57	62	61	48	55
Lmax (Maximum)	83	72	77	75	67	70
L50 (Median)	63	52	59	59	46	49
L90 (Background)	56	47	52	53	41	45

Computed Ldn, dB	63
% Daytime Energy	89%
% Nighttime Energy	11%

Appendix B-4 Village at Grays Crossing Ambient Noise Monitoring Results - Site 2 Tuesday, May 02, 2017

Hour	Leq	Lmax	L50	L90
0:00	47	57	46	42
1:00	48	64	46	42
2:00	48	56	46	43
3:00	47	56	46	42
4:00	49	62	49	45
5:00	49	61	48	46
6:00	54	71	53	51
7:00	55	74	52	49
8:00	53	72	49	47
9:00	51	74	48	45
10:00	50	68	47	44
11:00	51	72	47	44
12:00	55	78	48	45
13:00	51	72	48	45
14:00	52	72	48	46
15:00	52	73	48	44
16:00	50	70	48	46
17:00	51	67	49	46
18:00	52	77	47	45
19:00	50	71	48	45
20:00	50	69	49	47
21:00	51	67	50	48
22:00	51	65	50	47
23:00	50	59	49	46

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	55	50	52	54	47	50
Lmax (Maximum)	78	67	72	71	56	61
L50 (Median)	52	47	48	53	46	48
L90 (Background)	49	44	46	51	42	45

Computed Ldn, dB	57
% Daytime Energy	72%
% Nighttime Energy	28%

Appendix B-5 Village at Grays Crossing Ambient Noise Monitoring Results - Site 2 Wednesday, May 03, 2017

Hour	Leq	Lmax	L50	L90
0:00	49	58	48	45
1:00	47	57	46	42
2:00	49	64	48	43
3:00	48	62	47	42
4:00	50	69	49	46
5:00	52	61	51	48
6:00	55	72	54	52
7:00	54	70	53	50
8:00	52	71	50	47
9:00	50	64	48	45
10:00	51	72	47	44
11:00	50	65	47	44
12:00	54	73	53	50
13:00	54	69	54	51
14:00	54	73	53	50
15:00	54	74	50	47
16:00	52	74	49	47
17:00	50	67	49	46
18:00	51	67	48	45
19:00	54	67	53	50
20:00	52	72	51	49
21:00	52	71	50	48
22:00	50	61	50	47
23:00	50	68	49	45

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	54	50	53	55	47	51
Lmax (Maximum)	74	64	70	72	57	64
L50 (Median)	54	47	50	54	46	49
L90 (Background)	51	44	47	52	42	46

Computed Ldn, dB	57
% Daytime Energy	72%
% Nighttime Energy	28%

Appendix B-6 Village at Grays Crossing Ambient Noise Monitoring Results - Site 2 Thursday, May 04, 2017

Hour	Leq	Lmax	L50	L90
0:00	48	57	46	40
1:00	47	58	46	42
2:00	49	65	47	44
3:00	48	55	47	42
4:00	50	58	49	45
5:00	50	61	49	47
6:00	55	71	54	52
7:00	55	72	54	51
8:00	53	71	51	48
9:00	50	63	49	46
10:00	51	69	48	45
11:00	54	73	53	50
12:00	55	77	54	52
13:00	55	70	54	52
14:00	56	73	54	52
15:00	56	69	55	53
16:00	55	71	54	52
17:00	54	63	53	51
18:00	53	77	51	49
19:00	52	70	51	48
20:00	51	66	50	48
21:00	52	72	50	47
22:00	50	59	50	47
23:00	51	59	50	47

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	56	50	54	55	47	51
Lmax (Maximum)	77	63	70	71	55	60
L50 (Median)	55	48	52	54	46	49
L90 (Background)	53	45	50	52	40	45

Computed Ldn, dB	58
% Daytime Energy	78%
% Nighttime Energy	22%

BOLLARD

Acoustical Consultants

Appendix B-7 Village at Grays Crossing Ambient Noise Monitoring Results - Site 3 Tuesday, May 02, 2017

Hour	Leq	Lmax	L50	L90
0:00	48	61	46	41
1:00	49	58	47	43
2:00	48	57	46	42
3:00	50	60	48	45
4:00	47	54	47	44
5:00	53	62	52	50
6:00	53	70	50	46
7:00	52	72	47	44
8:00	52	80	45	43
9:00	51	71	44	42
10:00	49	68	45	43
11:00	53	77	46	43
12:00	50	67	46	43
13:00	50	73	46	43
14:00	50	71	46	42
15:00	49	63	47	44
16:00	49	67	47	44
17:00	53	81	46	43
18:00	51	75	47	44
19:00	50	62	49	46
20:00	52	76	50	47
21:00	51	72	50	47
22:00	51	62	50	46
23:00	50	63	49	44

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	53	49	51	53	47	50
Lmax (Maximum)	81	62	72	70	54	61
L50 (Median)	50	44	47	52	46	48
L90 (Background)	47	42	44	50	41	45

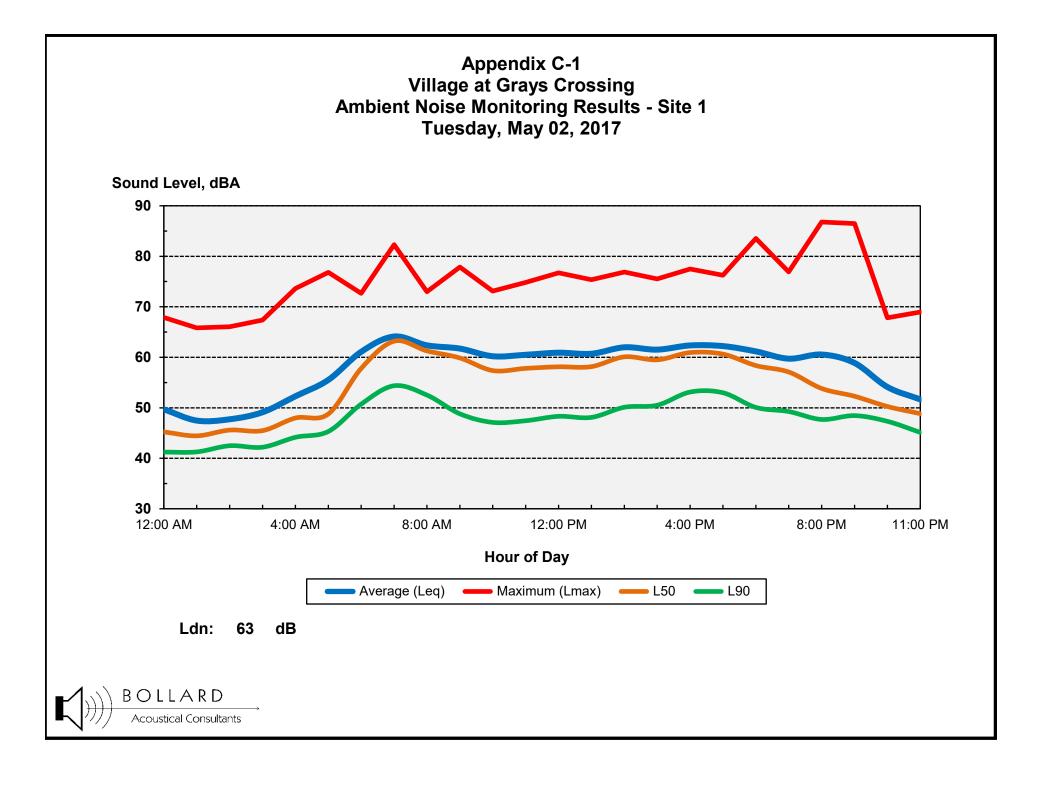
Computed Ldn, dB	57
% Daytime Energy	67%
% Nighttime Energy	33%

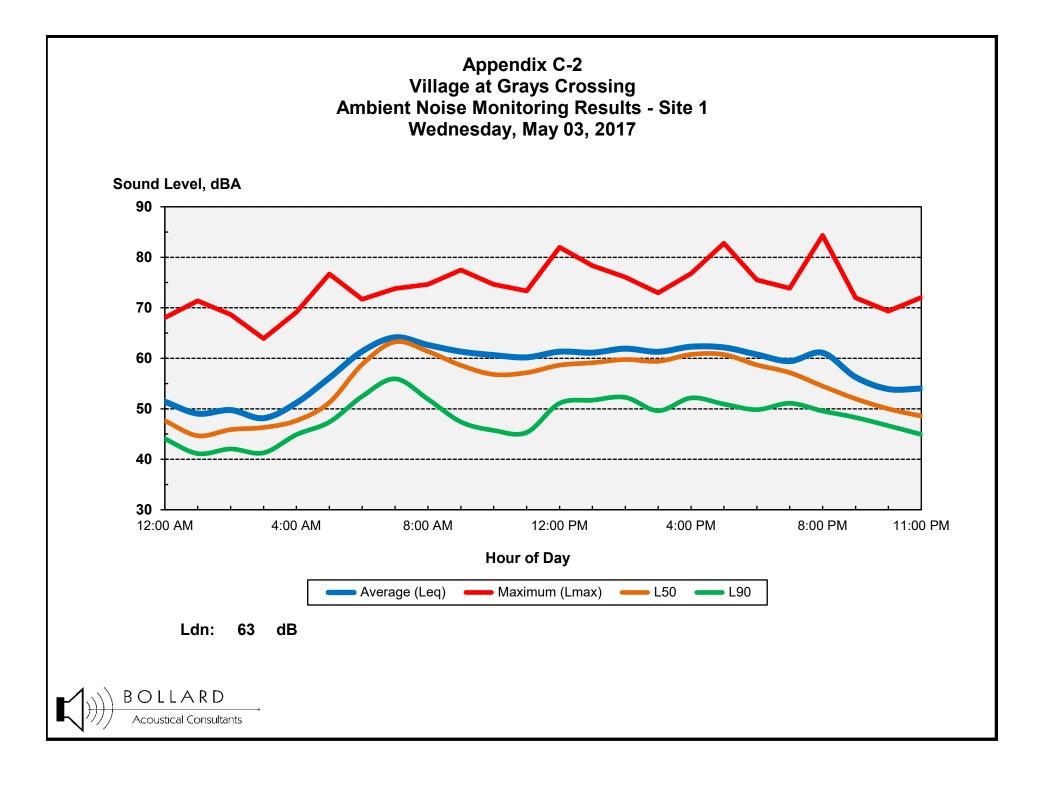
Appendix B-8 Village at Grays Crossing Ambient Noise Monitoring Results - Site 3 Wednesday, May 03, 2017

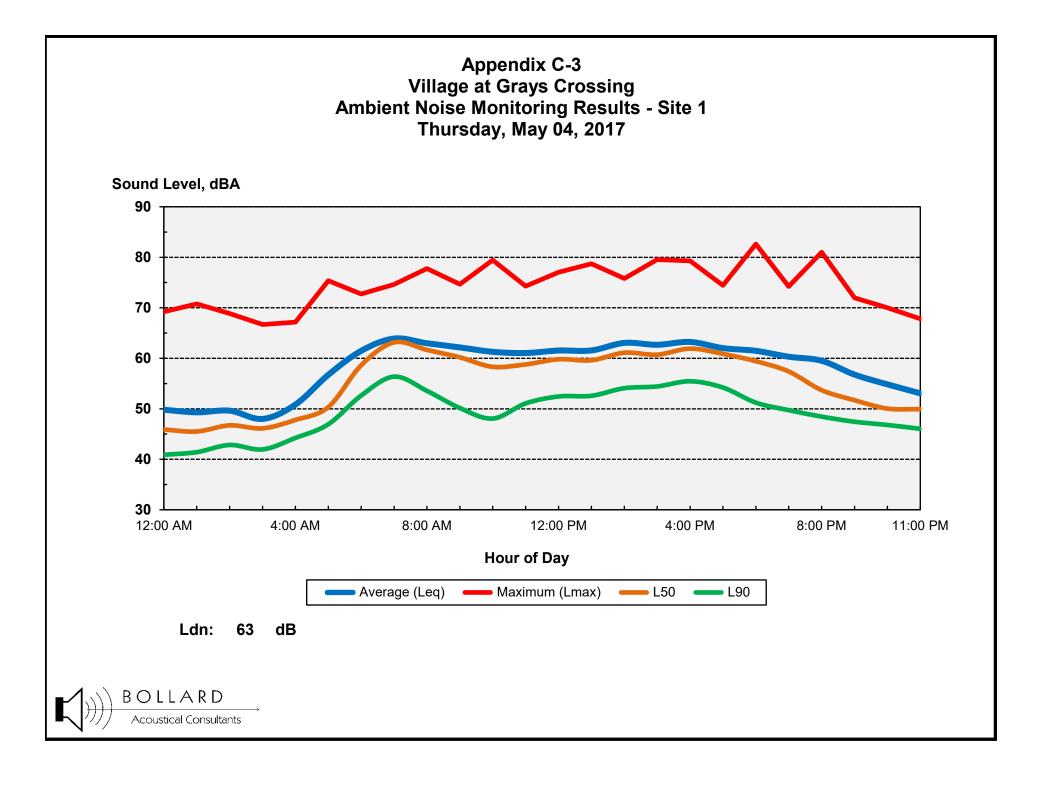
Hour	Leq	Lmax	L50	L90
0:00	47	58	46	42
1:00	50	64	48	43
2:00	50	66	48	42
3:00	51	65	50	46
4:00	51	59	51	47
5:00	55	66	54	51
6:00	53	68	51	48
7:00	50	68	47	44
8:00	48	65	46	43
9:00	52	74	45	43
10:00	48	68	45	42
11:00	53	67	51	48
12:00	53	69	52	49
13:00	53	75	50	47
14:00	52	72	48	44
15:00	50	65	48	44
16:00	50	76	47	44
17:00	51	70	47	44
18:00	54	79	52	49
19:00	56	87	52	49
20:00	54	78	51	48
21:00	52	64	51	48
22:00	55	84	50	46
23:00	49	61	48	41

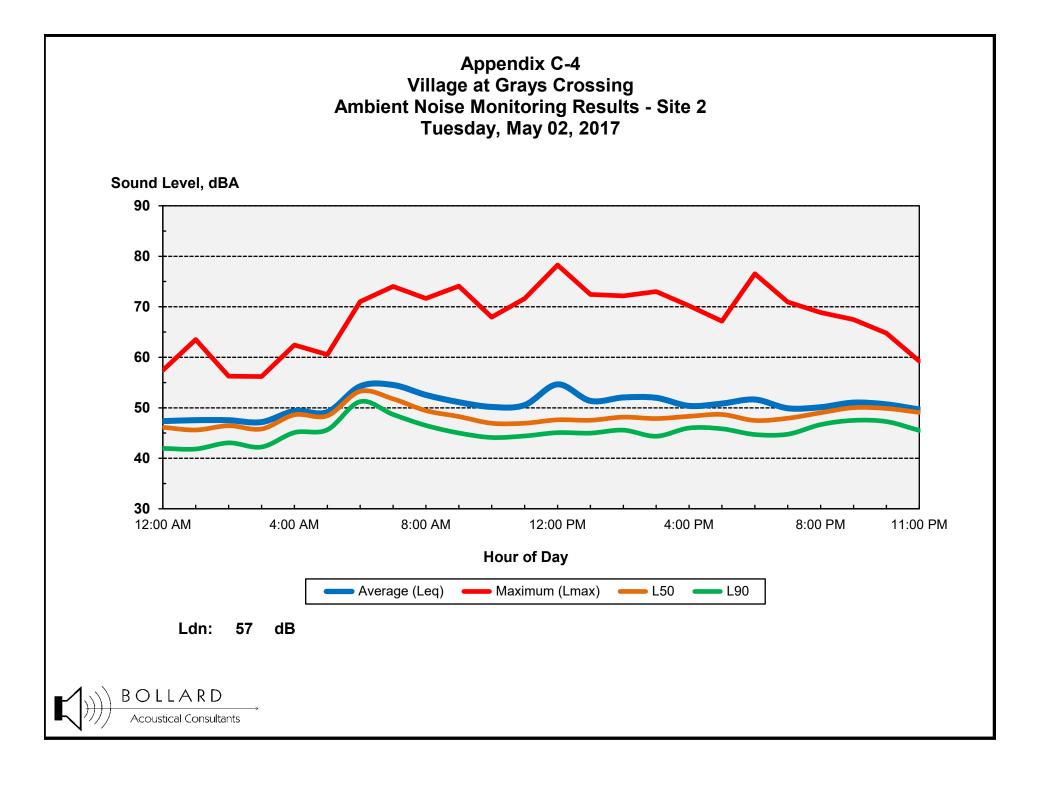
	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	56	48	52	55	47	52
Lmax (Maximum)	87	64	72	84	58	66
L50 (Median)	52	45	49	54	46	49
L90 (Background)	49	42	46	51	41	45

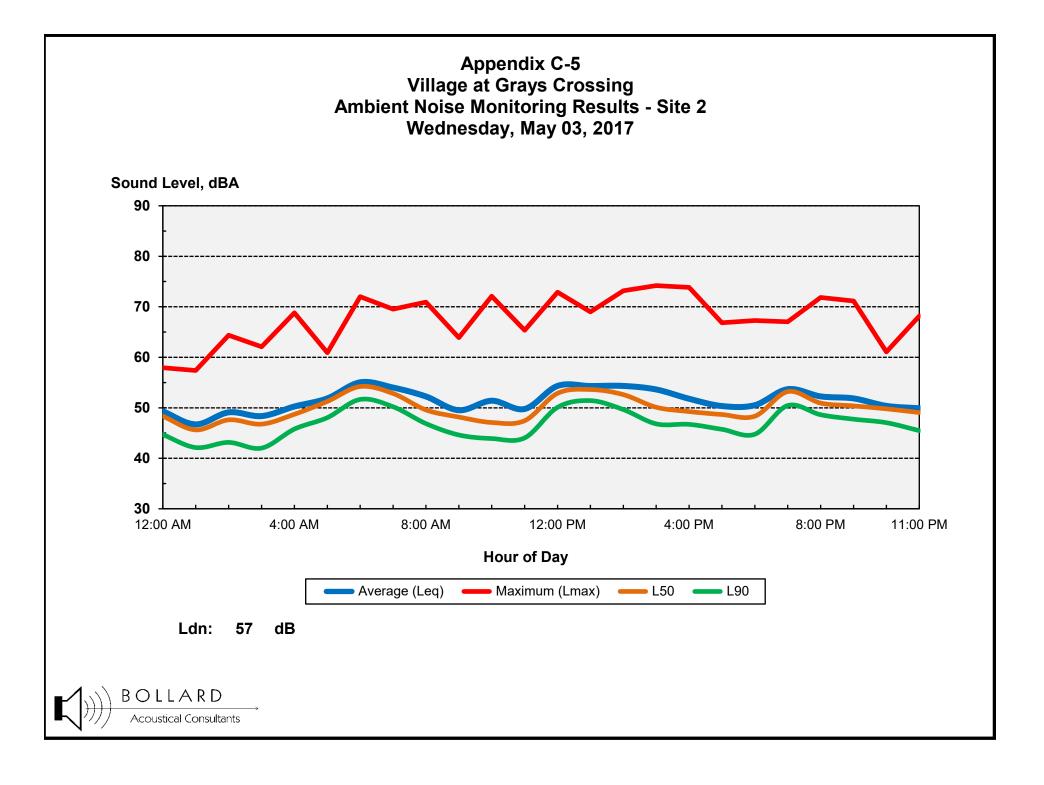
Computed Ldn, dB	58
% Daytime Energy	65%
% Nighttime Energy	35%

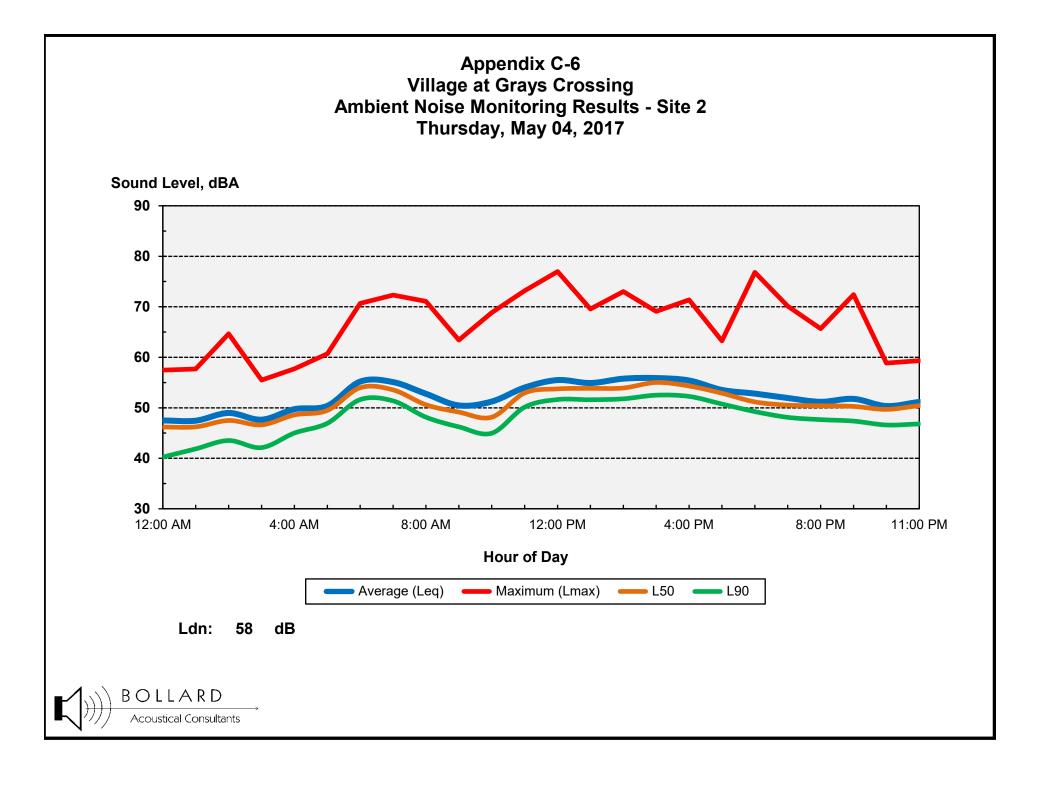

Appendix B-9 Village at Grays Crossing Ambient Noise Monitoring Results - Site 3 Thursday, May 04, 2017

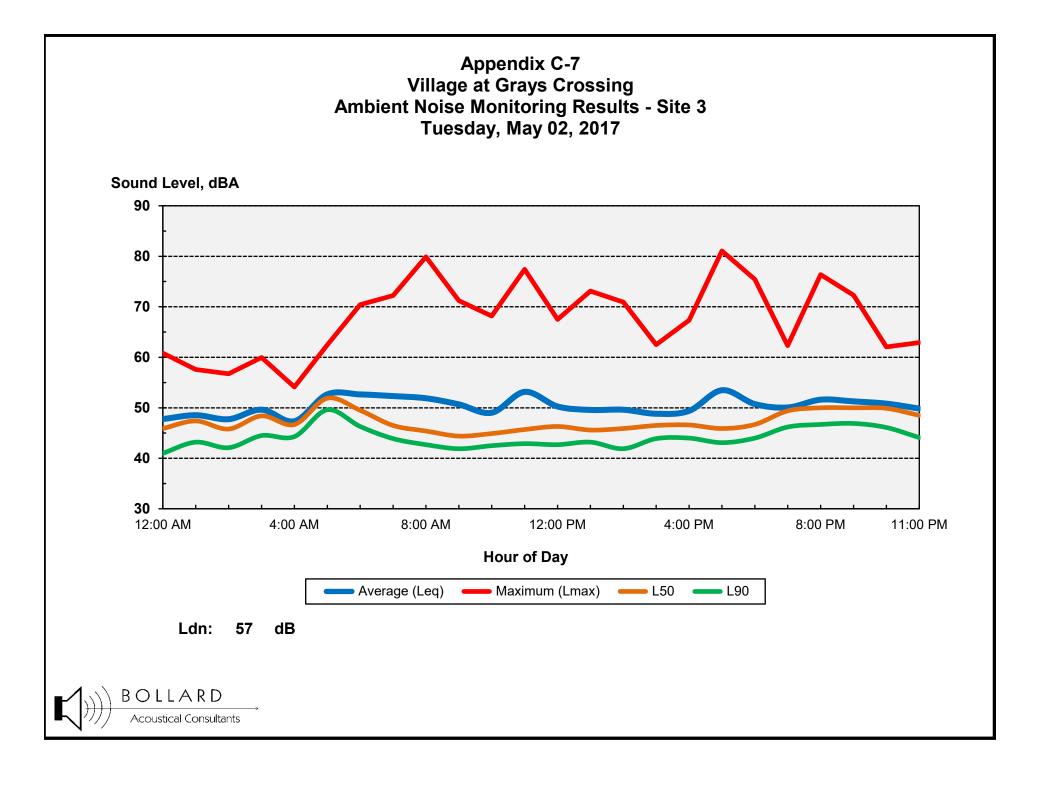

Hour	Leq	Lmax	L50	L90
0:00	49	58	48	43
1:00	50	64	48	44
2:00	48	56	47	41
3:00	50	59	49	44
4:00	50	58	50	47
5:00	54	67	53	50
6:00	56	68	53	51
7:00	52	73	49	47
8:00	51	73	47	44
9:00	51	67	46	42
10:00	54	74	52	49
11:00	55	76	54	51
12:00	55	67	54	51
13:00	55	73	54	51
14:00	56	67	55	52
15:00	56	72	54	52
16:00	54	66	53	50
17:00	54	77	51	48
18:00	54	74	52	49
19:00	52	63	51	48
20:00	53	77	51	47
21:00	51	63	50	47
22:00	52	60	51	47
23:00	48	62	47	43

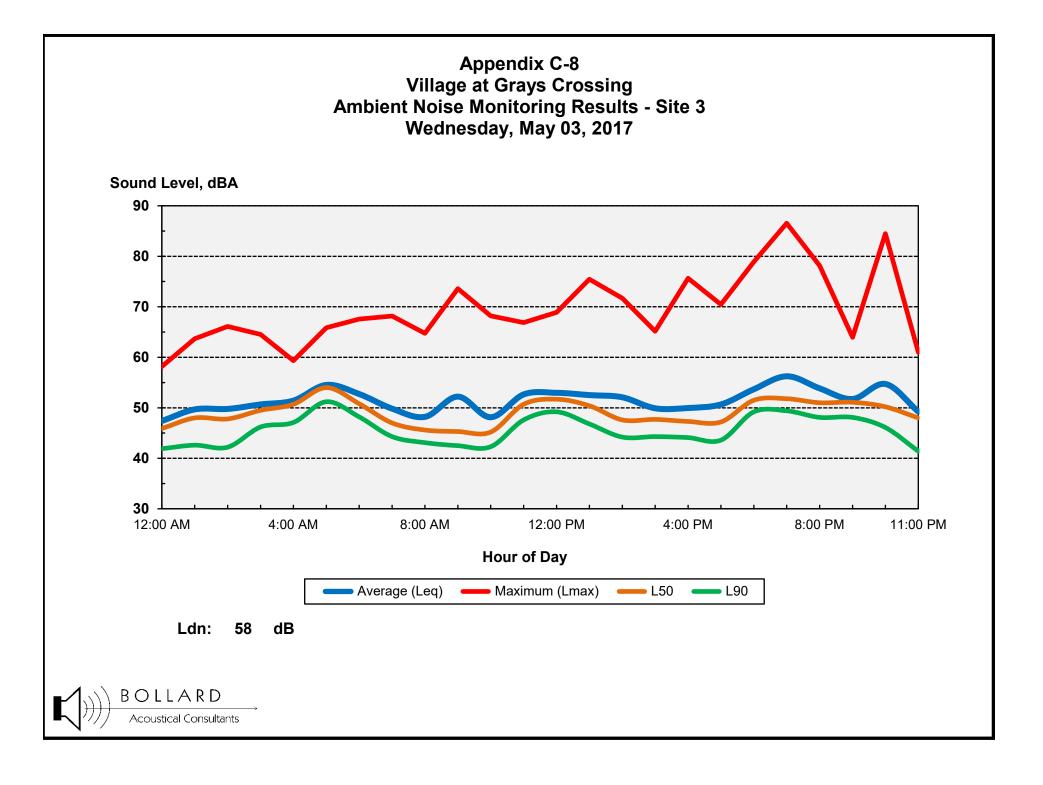

	Statistical Summary					
	Daytime (7 a.m 10 p.m.)			Nighttim	ne (10 p.m. ·	- 7 a.m.)
	High	Low	Average	High	Low	Average
Leq (Average)	56	51	54	56	48	51
Lmax (Maximum)	77	63	71	68	56	61
L50 (Median)	55	46	51	53	47	49
L90 (Background)	52	42	49	51	41	46

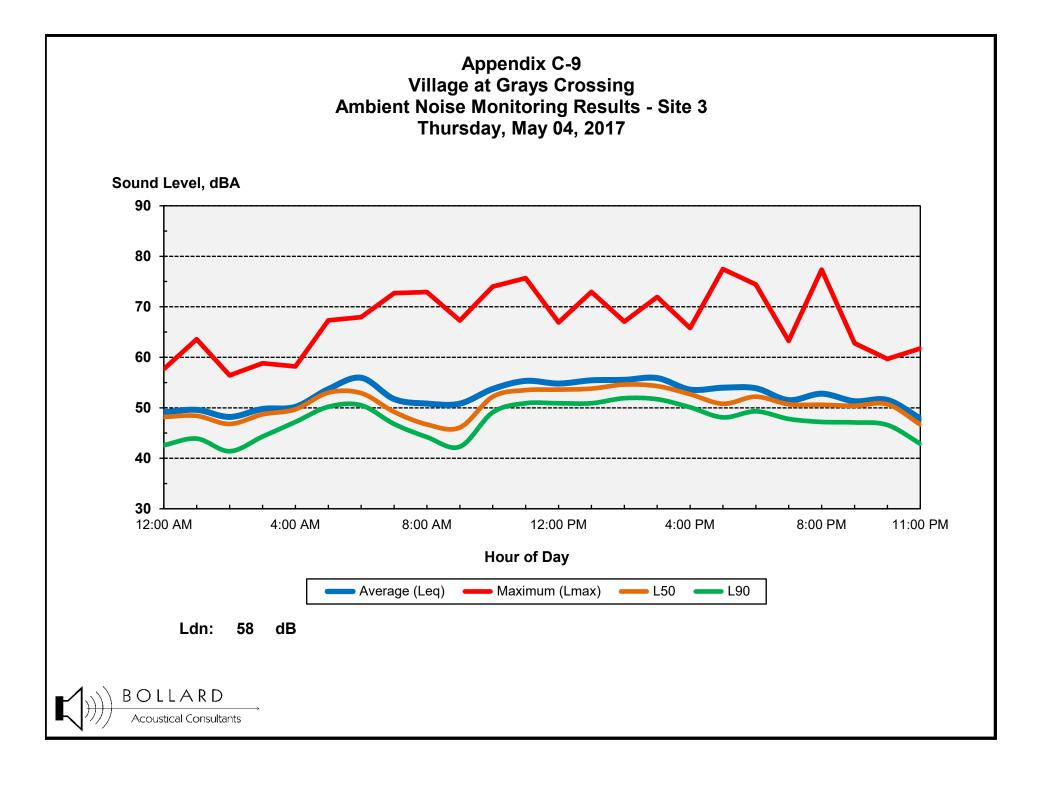

Computed Ldn, dB	58
% Daytime Energy	74%
% Nighttime Energy	26%

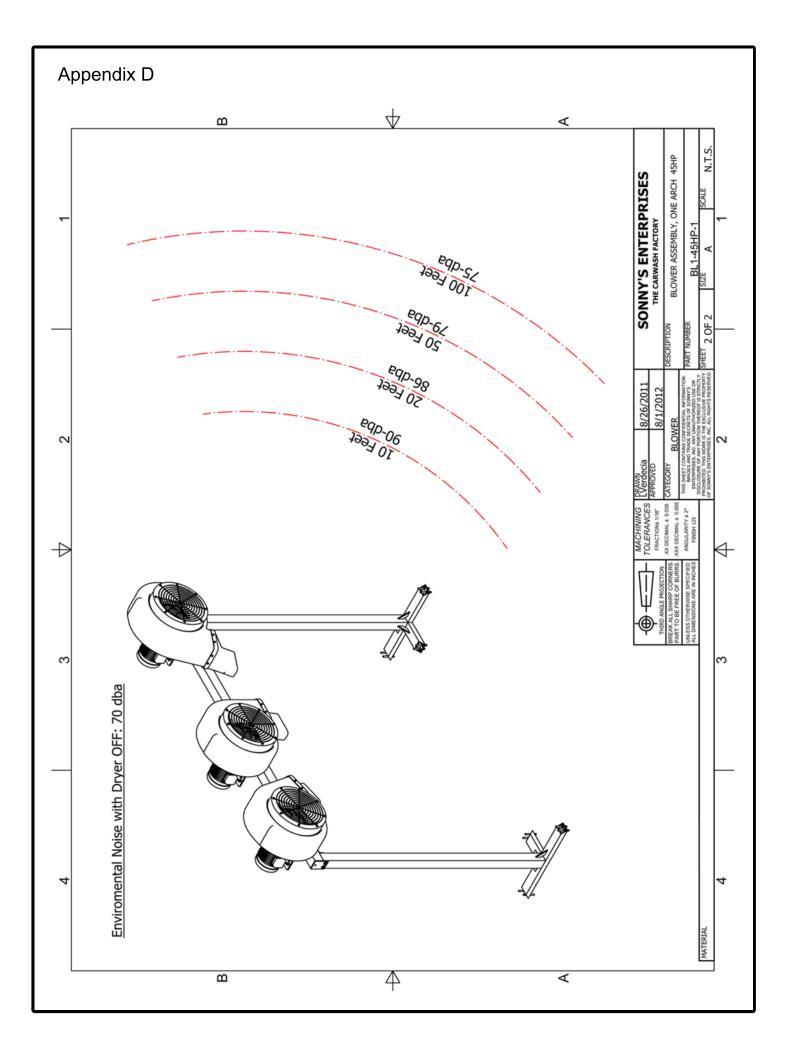












Appendix E Polycarbonate Door Effectiveness

Sound Level Measurements for BayWatch Polycarbonate Doors With Mark VII AquaJet XT

Car Wash w/ On-Board Dryer (30hp)

Feet From Door	Entry Door Open	Entry Door Closed
10'	93 db	80 db
20'	90 db	76 db
25'	88 db	74 db
30'	85 db	71 db
50'	80 db	66 db

Appendix F Vacuum Hose Noise Data

February 10th, 2016

Re: Vacutech Sound Study Projections for Bella Terra Car Wash in Huntington Beach, CA

To: Chase Russell - Owner of Bella Terra Car Wash 16061 Beach Blvd. Huntington Beach, CA

The chart below shows a cumulative average of that data taken from express car washes of this type and size. It is presented in an incremental form based on the worst case scenario of the vacuum hoses being off the hook, so to speak. Based on the collective average of the 45' reading to the 85' reading and is presented in the chart below:

Vacutech Noise Study Projections									
Average of all 19 hoses off									
and in use									
Average @ 45'	52.3 db								
Average @ 55'	54.6 db								
Average @ 65'	52.1 db								
Average @ 75'	49.2 db								
Average @ 85'	49.0 db								

SOUND LEVEL METER USED: SIMPSON MODEL #40003 – MSHA APPROVED. MEETS OSHA AND WALSH-HEALY REQUIREMENTS FOR NOISE CONTROL. CONFORMS TO ANSI S1.4 1983, IEC 651 SPECS FOR METER TYPE.

NOTE: Typical outside vacuum system with $1.5'' \times 15'$ vacuum nozzles (4" wide by $\frac{3}{4}$ " opening) in use with customer vacuuming.

LSC Transportation Consultants, Inc.

2690 Lake Forest Road, Suite C P.O. Box 5875 Tahoe City, CA 96145 530-583-4053 FAX: 530-583-5966 info@lsctrans.com www.lsctrans.com

November 1, 2022

Scott Mathot Town of Truckee 10183 Truckee Airport Road Truckee, CA 96161

RE: Truckee Village at Gray's Crossing Car Wash Limited Transportation Analysis

Dear Mr. Mathot:

Per your request, LSC Transportation Consultants, Inc. is pleased to present our limited transportation analysis for the proposed car wash project located at 10012 Edwin Way in Truckee, California. This project consists of an automated car wash and 10 vacuum stations. This report is a qualitative analysis to determine if the proposed car wash would impact intersection level of service at Henness Road/Edwin Way or Prosser Dam Road/Edwin Way.

This analysis focuses on a 'Future Buildout of the Town's General Plan' traffic scenario during the Town's design period of peak summer conditions. Traffic volumes along Henness Road and Prosser Dam Road near Edwin Way were estimated based on Town's TransCAD Traffic Model and existing counts. The growth in traffic volumes was then distributed along Edwin Way or past Edwin along Henness Road and Prosser Dam Road. Based on the Gray's Crossing Specific Plan (January 2004), most of the commercial growth will occur along Edwin Way and the proposed car wash would be included within the planned growth. Additional growth in residential lots is expected to generate traffic along Posser Dam Road and Henness Road past Edwin Way.

Standard trip generation rates from the Institute of Transportation Engineers (ITE) *Trip Generation Manual, 11th Edition* (2021) were used estimate the number of new trips associated with the car wash. The estimated PM peak hour trip generation would range from 45 to roughly 120 trips depending on how the car wash uses are classified. Using the 'worst case' scenario of 120 trips, 50 percent were assumed to be entering in the peak hour and 90 percent were assumed to access the site from the south via Henness Road. Using the estimated traffic volumes and the worst-case scenario trip generation, level of service (LOS) calculations were conducted based on standard *Highway Capacity Manual 7th Edition (HCM)* methodology. All resulting intersection LOS were acceptable with LOS B or better for the worst movement on both Henness Road/Edwin Way and Prosser Dam Road/Edwin Way

Therefore, in conclusion, LSC expects that there would be no LOS issues at either Henness Road/Edwin Way and Prosser Dam Road/Edwin Way with the addition of the proposed car wash.

Respectfully Submitted,

LSC TRANSPORTATION CONSULTANTS, INC.

Lesti Aun Βv

Leslie Suen, PE, Associate Engineer LSC Transportation Consultants, Inc.

May 5, 2023

Via: email to ydahn@townoftruckee.com

Re: <u>Emissions Comparison – Village at Grays Crossing</u> <u>Gas Station/Convenience Store Vs. Car Wash</u>

The following memorandum is provided for a vehicular emissions comparison of a eight (8) fueling position gas station with convenience store which was included in the adopted village at Gray's Crossing Specific Plan and analyzed in the Environmental Impact Report (EIR) versus the currently proposed full-service car wash.

The EIR determined 2,604 Average Daily trips for the proposed gas station and convenience store utilizing ITE Manual Land Use Code 843. (See attached Table 6.2-A).

Utilizing the Adopted Town of Truckee Air Quality Mitigation Calculations, the proposed gas station and convenience store would potentially generate 9,114 weekly trips and 39,190.2 weekly miles traveled which would total 3,575 g = (.00394 tons) emissions. See calculation table below:

Comparatively, a proposed car wash per LSC's memorandum dated November 1, 2022 identifies standard trip generation rates from the Institute of Transportation (ITE) Trip Generation Manual, 11^{th} edition (2021) with a PM peak hour of roughly 45 to 120 trips and assumes 50%, or 60 trips entering the site during the peak hour. Additionally, the applicant assumes an average operating day to include approximately 300 car washes and average daily trips. Utilizing the Adopted Town of Truckee Air Quality Mitigation Calculations, the proposed car wash would potentially generate 2,100 weekly trips and 9,030 weekly miles traveled which would total 824 g = (.0009083 tons) emissions, or only about 23.0% of the emissions from a gas station / convenience store. See calculation table below:

	TRIP EM	ISSIONS
	Car Wash	Gas Station
Daily Cars	300	1302
Total per Week	2100	9114
Miles per trip	4.3	4.3
Daily Miles	1290	5599
Weekly Miles	9030	39190
Miles per year	469560	2037890
Kilograms / Ton	907	907
Kilogram/Gram	0.001	0.001
Grams Emissions/Mile	0.091206	0.091206
Grams of Weekly Emissions	824	3574
Tons of Weekly Emissions	0.0009	0.0039
Yearly Grams of Emissons	42827	185868
Yearly Emissions - Tons	0.047218	0.204926

Percentage Comparison 23.0%

Idling time does generate additional emissions and is expected to be greater with a car wash, but during peak hours at a gas station/convenience store, idling cars are also commonplace while waiting for a pump to open up and on occasion where a passenger goes into the convenience store, while the driver waits in a parking stall at idle. Comparatively, it is assumed that the average consumer takes 45 seconds to select a wash and use a credit card to purchase a car wash and the average car wash takes about 90 seconds (1 minute – 30 seconds) to go through the "wash tunnel". If we first look at the max. peak hour of the car wash, we expect 45 cars, or 1 car every 90 seconds entering the site. As the first cars enter and select/purchase a wash, and begin the wash, the normal idling time would equate to approximately 2 minutes 15 seconds. Once the "wash tunnel" is at max. capacity, selection/purchase time is irrelevant as customers are waiting for their time to approach/enter the tunnel and can use that time for selection/purchase. During this peak hour of 45 customers, the access isle would continue to slowly back up beginning with a 2 minutes 15 second idling time and once the access isle is full (up to 13 cars), idle times could be up to 30 minutes assuming last car in line and 1 min.- 30 seconds through the "wash tunnel". Assuming an average during this peak hour of 16 minutes the peak hour would result in the equivalent of 172 miles driven. The remaining 255 cars of the average day would likely see idling times of 2 minutes - 15 seconds which would equate to the equivalent of 137 miles for a total average day idling equivalent of 308 miles. The cumulative result is an average day of 300 cars with their trip to the car wash and associated idling time would equate to 1,598 miles traveled and a weekly total of 11,186 miles.

As per the Adopted Town of Truckee Air Quality Mitigation Calculations, the proposed car wash would potentially generate 2,100 weekly trips totaling 9,030 weekly miles traveled together with 2,156 equivalent miles of idling which would equate to 1,020 g = (.0011 ton) emissions, or about 28.6% of a gas station / convenience store. See calculation table below:

	EQU	IVALENT IDLING EMISS	SIONS	
	Normal	Average Peak	Total	
# of cars	255	45	300	
Average Idle Time (Min)	2.25	16		
Average Idle Time (Hours)	0.038	0.267	0.304	
Miles per trip	4.3	4.3		
ldle gas use (gph)	0.65	0.65		
Average Fuel Efficiency (mpg)	22	22		COMBINED
Miles per hour	14.3	14.3		Total (Idle + Trip)
Equivalent Miles Driven	137	172	308	1598
Weekly Equivalent Miles	957	1201	2158	11188
Miles per year	49775	62462	112237	581797
Kilograms / Ton	907	907	1814	907
Kilogram/Gram	0.001	0.001	0.002	0.001
Grams Emissions/Mile	0.091206	0.091206	0.182412	0.091206
Grams of Weekly Emissions	87	110	197	1020
Tons of Weekly Emissions	0.0001	0.0001	0.0002	0.0011251
Yearly Grams of Emissions	4540	5697	10237	53063
Yearly Emissions - Tons	0.00501	0.00628	0.01129	0.05850

To Summarize, a full-service car wash has some additional attributed idling time as compared to a gas station/convenience store; however, the volume of overall emissions/air quality impact is approximately 14.3% of a gas station which is significantly below what was evaluated with the previous EIR. Items not taken into account include customers that turn off their car during the wash cycle or waiting to move forward while approaching the wash tunnel, newer cars that automatically shut off while the brake is depressed at stop and electric/ev vehicles that wash their car just as regularly as non-ev vehicles.

Table 6.2-A

Gray's Crossing Weekday Trip Generation - Increased Development Alternative

				Unadjusted Trip				Total Project Generated						Project Generated				Reduction In	Project Generated			
	ITE	1 1			Generation Rates			Vehicle Irips			Percent	Percent Trips	External New Vehicle Trips				Internal Trips Due	Int		ehicle Tri	-	
	Land	Number	1	Average	PM Peak-Hour		lour	Average	P	M Peak-H	our	Pass-By	Remaining	Average P		PM Peak-Hour		To Pedestrian	Average	P	M Peak-	-
Land Use Use Code of Units Ur	Units	Daily	In	Out	Total	Daily	In	Out	Total	Trips	Internal to the Site	Daily	In	Out	Total	Access	Daily	ln_	Out	Toto		
Summer Weekday																						
					E.				18													
Planning Area 1	210	120	DU	6.49	0.39	0.26	0.65	779	47	31	78	0%	15%	662	10	24	66	0%	117	7	5	12
Single-Family Detached	210	80	DU	6.49	0.39	0.26	0.65	519	31	21	52	0%	15%	441	40 26	26 18	44	0%	78	5	3	8
Cottage	560	17.5	KSF	9.11	0.36	0.20	0.66	159	6	5	11	0%	14%	137	5	4	9	0%	22	1	1	2
Church	200	17.5	K3F	7.11	0.36	0.30	Subtotal	1,457	84	57	141	0%	14/0	1,240	5 71	4 48	119	0% Subtotal	217	13	9	22
Planning Area 2							6															
Single-Family Detached	210	137	DU	6.49	0.39	0.26	0.65	889	53	36	89	0%	15%	756	45	31	76	10%	120	7	5	12
Planning Area 3																54						
Single-Family Detached	210	58	DU	6.49	0.39	0.26	0.65	376	23	15	38	0%	15%	320	20	13	32	10%	51	3	2	5
Planning Area 4								1														
Single-Family Detached	210	32	DU	6.49	0.39	0.26	0.65	208	12	8	20	0%	15%	177	10	7	17	10%	28	2	1	3
Planning Area 5																						
Golf Course	430	18	Hole	35.74	1.21	1.53	2.74	643	22	28	50	0%	75%	161	6	7	13	0%	482	17	21	38
Fitness Center	493	5.0	KSF	42.59	2.62	1.68	4.30	213	13	8	21	0%	75%	53	3 9	2	5	0%	160	10	6	16
Planning Area 6							Subtotal	856	35	36	71			214	9	9	18	Subtotal	670	29	28	54
Single-Family Detached	210	42	DU	6.49	0.39	0.26	0.65	273	16	11	27	0%	15%	232	14	9	23	10%	37	2	1	4
Planning Area 7										т.								8- -				
Single-Family Detached	210	29	DU	6.49	0.39	0.26	0.65	188	11	8	19	0%	15%	160	9	7	16	10%	25	1	1	3
Planning Area 8																						Ð
Apartment	220	112	DU	6.63	0.42	0.20	0.62	743	47	22	69	0%	15%	632	40	19	59	10%	100	6	3	9
Lofts	220	23	DU 🔅	6.63	0.42	0.20	0.62	152	10	5	15	0%	15%	129	9	4	13	10%	21	1	1	2
Specialty Retail	814	34.8	KSF	40.67	1.11	1.48	2.59	1,415	39	52	91	0%	14%	1,217	34	45	78	0%	198	5	7	13
Office	710	4.1	KSF	11.01	0.25	1.24	1.49	45	1	5	6	0%	14%	39	1	4	5	0%	6	0	1	1
Gas Station with Convenience Store	843	16	FP	162.78	6.69	6.69	13.38	2,604	107	107	214	35%	14%	1,456	60	60	120	0%	365	15	15	30
Lodge	330	120	Room	3.45	0.18	0.24	0.42	414	22	29	51	0%	15%	352	19	25	43	0%	62	3 `	4	8
Church	560	15.0	KSF	9.11	0.36	0.30	0.66	137	5	5	10	0%	14%	118	4	4	9	0%	19	1	1	1
Community Center	495	7.2	KSF	22.88	0.60	1.15	1.75 Subtotal	165 5,675	4 235	8 233	12 468	0%	75%	41 3,984	1 168	2 163	3 330	0% Subtotal	124 895	3 34	6 38	9 73
							50210101	0,0,0	200		.50											
Planning Area 9								100	~ ~				1.577	525	20	10	10	1007	05	-	2	0
Multi-Family	230	120	DU	5.24	0.29	0.18	0.47	629	35	22	57	0%	15%	535	30	19	48	10%	85	5	3	8
							Total	10,551	504	426	930			7,618	376	306	679	Total	2,128	96	88	184

Note: DU = dwelling unit, KSF = 1,000 square feet of floor area, Hole = golf hole, FP = fueling positions Shading indicates areas where changes were made.