Source Test Report

TEICHERT AGGREGATES Truckee, CA

Asphalt Batch Plant NOx, CO, TOG and PM₁₀, Emission Results Permit# 88-36-08

Test Date: August 17, 2022

Report Date: September 16, 2022

Performed and Reported by:

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479

Prepared For:

Teichert Aggregates 3500 American River Drive Sacramento, CA 95851 Attn: Mr. Nicholas Armstrong

For Submittal To:

Northern Sierra AQMD 200 Litton Drive., Suite 320 Grass Valley, CA 95945 Attn: Mr. Sam Longmire

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

Suhail Joston

Suhail Asfour Sr. Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

Ben

Basim (Bobby) Asfour Principal

TABLE of CONTENTS

SECTION	1. II	NTRODUCTION	1
1.1.	TEST PU	RPOSE	1
1.2.	TEST LO	CATION	1
1.3.	TEST DA	TE(S)	1
1.4.	TEST PA	RAMETERS AND METHODS	1
1.5.	SAMPLIN	IG AND OBSERVING PERSONNEL	1
SECTION	2. S	UMMARY OF RESULTS	2
2.1.	EMISSIO	N RESULTS	2
2.2.	ALLOWA	BLE EMISSIONS	2
2.3.	COMMEN	NTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	2
SECTION	3. S	OURCE OPERATION	3
3.1.	PROCESS	DESCRIPTION	3
3.2.	PROCESS	AND CONTROL OPERATING PARAMETERS DURING TESTING	3
3.3.	NORMAL	OPERATING PARAMETERS	3
3.4.	TESTING	OR PROCESS INTERRUPTIONS AND CHANGES	3
SECTION	4. S.	AMPLING AND ANALYSIS PROCEDURES	4
4.1.	PORT LO	CATION	4
4.2.	POINT DI	ESCRIPTION/LABELING – PORTS/STACK	4
4.3.	METHOD	DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC	4
TABLE 1	NOX, C	O AND TOG RESULTS	7
TABLE 2	TSP RE	SULTS	8
	ICEC		
APPEND	ICES		
	A. C	alculations & Nomenclature	.A-1
	B. L	aboratory Reports	.B-1
	C. F	ield Data Sheets	.C-1
	D. St	trip Charts Records	.D-1
	E. C	alibration Gas Certificates	.E-1
	F. E	quipment Calibration Records	.F-1
	G. Si	tack Diagrams	.G-l
	H. Sa	ampling System Diagrams	.H-1
	I. So	ource Test Plan	I-l
	J. P	ermit to Operate	J-1

Source Test Information

Source	Owner:
0000000	0

Source Location:

Teichert Aggregates 3500 American River Drive Sacramento, CA 95851

Teichert Aggregates Martis Valley Facility 13879 Joerger Road Truckee, California.

One Hot Mix Asphalt Plant with Rotary Dryer and Baghouse

Source Description:

Permit:

Test Parameters & Limits:	Average Test Results
NOx: 10.85 tons/year	6.79 tons/year
CO: 70.70 tons/year	14.49 tons/year
TOG: 17.85 tons/year	17.85 tons/year
TSP: 0.04 gr/dscf	0.027 gr/dscf
TSP 0.1gr/DSCF @ 12% CO ₂	0.10 gr/dscf
TSP: 6.27 tons/year	0.115 tons/year

Source Testing Firm:

Phone: Fax: Email: Contact:

Testing Date(s):

Analytical Laboratories:

Permit #88-36-08

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 (925) 455-9474 (925) 455-9479 bestair@best-enviro.com **Bobby Asfour**

August 17, 2022

Best Environmental (Particulate) 339 Stealth Court Livermore, CA 94551

SECTION 1. INTRODUCTION

1.1. Test Purpose

Best Environmental (BE) was contracted by Teichert Aggregates to perform NOx, CO, TOG and PM₁₀ emissions testing on one natural gas fired Asphalt Batch Plant to comply with NSAQMD and the Permit to Operate (PTO) #88-36-08. The test parameters were Total Suspended Particulate (TSP), Oxide of Nitrogen (NOx), Carbon Monoxide (CO), Total Organic Gases (TOG), Oxygen (O₂) and Carbon Dioxide (CO₂). TSP is commonly referred to as Particulate Matter. A copy of the permit is included in the appendices.

1.2. Test Location

The testing was conducted at the baghouse exhaust outlet, which is located at the Teichert Aggregates, Martis Valley Facility, 13879 Joerger Road, Truckee, California.

1.3. Test Date

Testing was conducted on August 17, 2022

1.4. Test Parameters and Methods

The following emission parameters were measured:

Parameter	Monitoring & Analytical Protocols
NOx, CO, & O ₂	EPA Methods 7E, 10 & 3A
TOG EPA Method 18	
Volumetric Flow Rate	CARB Methods 1-4
TSP	CARB Method 5

1.5. Sampling and Observing Personnel

Sampling was performed by Suhail Asfour and Burt Kusich of BE. Although notified of the test date the Northern Sierra Air Quality Management District (NSAQMD) was not present during the test.

SECTION 2. SUMMARY OF RESULTS

2.1. Average Test Results

Table 2.1 summarizes the Baghouse Average Test Results. Triplicate 67.5-minute runs were performed for the particulate matter test. Triplicate 30-minute runs were performed for the gaseous emissions test parameters. Testing was conducted according to approved CARB and Environmental Protection Agency (EPA) test methods. Individual particulate matter and gaseous test results are presented in Tables 1 and 2 respectively on pages 7 & 8.

Parameter	Average	Permit Limits
NOx, tons/year	6.79	10.85
CO, tons/year	14.49	70.70
TOG, tons/year	< 0.12	17.85
TSP. gr/DSCF	0.027	0.04
TSP, gr/DSCF @ 12% CO ₂)	0.10	0.1
TSP, tons/year	0.115	6.27

Table 2.1.: Average Test Results Baghouse Permit 88-36-08

2.2. Allowable Emissions

See Table 2.1 above. The test results show that all emissions are with-in the emission limits shown in the Permit to Operate.

2.3. Comments: Discussion of Quality Assurance and Errors

Quality assurance procedures listed in the above referenced test methods and referenced in the Source Test Plan are performed and documented. The QA/QC procedures are described in Section 4.3 of the report. Documentation of the QA/QC is provided in Appendix A, B, E & F.

TOG is defined as non-methane, non-ethane organic compounds. TSP is defined as total particulate (particulate collected in the front and back half of the sample train).

The tons/year emission rates were calculated based on 2000 hours of yearly production.

SECTION 3. SOURCE OPERATION

3.1. Process Description

The Asphalt Batch Plant is equipped with a 135 MMBtu/hr Natural gas burner. As the plant demands product, rock is injected into the drum/dryer mixer to begin the asphalt production process. The air and emissions are filtered and pulled into the bag house where vacuum-style bags filter out the particulate. The emissions were then drawn through a fan, which draws a negative static all the way back to the burner and exits the stack.

3.2. Process and Control Operating Parameters

The plant produced an average of ~270 tons per hour of asphalt during the test program. Tons per hour readings were taken from a digital read-out in the control room. The dryer burner was operated at ~44% of rated capacity. The product produced during the testing was 1/2" and 3/4" aggregate fiber asphalt using PG 64-28 asphalt oil.

3.3. Normal Operating Parameters

The asphalt plant produces product on demand normally 12 hours per day for up to 2000 hours per year.

3.4. Testing or Process Interruptions and Changes

There were no delay or interruptions during testing.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Emissions from the baghouse were sampled through three 4-inch ports on the rectangular stack; the ports are located 5 stack diameters downstream and <1 stack diameter upstream from the stack silencer.

The dimensional cross section of the stack is 36.25 X 53.75-inches (Area SQFT =13.531)

4.2. Point Description/Labeling – Ports/Stack

The CEM and particulate testing was performed using three ports with nine sample points per port.

4.3. Method Description, Equipment, Sampling, Analysis, and QA/QC

Sampling and analytical procedures of the performed sample methods were followed as published in the CARB Stationary Source Test Methods Volume I and the EPA "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

	-	-		
Parameter	Location	Method(s)	Duration	# of Runs
NO_x , CO, CO ₂ & O ₂	Exhaust	EPA Methods 7E, 10 & 3A	40 mins	3
TOG	Exhaust	EPA Method 18	40 mins	3
Flow Rate, DSCFM	Exhaust	CARB Methods 1-4	67.5 mins	3
РМ	Exhaust	CARB Method 5	67.5mins	3

The following is an overview of the Testing Performed

EPA Method 7E, 10 & 3A were used to monitor O₂, CO, and NOx, respectively. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers. The sampling system consists of a stainless steel sample probe, Teflon[®] sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, Teflon[®] sample transfer tubing, diaphragm pump and a stainless steel/Teflon[®] manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program.

The BE sampling and analytical system was checked for linearity with zero, mid and high span calibrations, and was checked for system bias at the beginning and end of the test day. System bias was determined by pulling calibration gas through the entire sampling system. Individual test run calibrations were performed externally to eliminate bias corrections, and they used the calibration gas that most closely matches the stack gas effluent. The calibration gases were selected to fall approximately within the following instrument ranges; 80 to 90 percent for the high

calibration, 40-60 percent for the mid range and zero. Zero, calibration and bias drift values are determined for each test and the results are corrected for analyzer drift.

EPA Methods 7E, 10 & 3A met the following QA/QC method requirements:

System Criteria	
Instrument Linearity	$\leq 2\%$ Calibration Span or ± 0.5 diff.
Instrument Bias	\leq 5% Calibration Span or \pm 0.5 diff.
NO ₂ Converter Efficiency	≥90%
System Response Time	≤2 minutes
Test Criteria	
Instrument Zero Drift	\leq 3% Calibration Span or \pm 0.5 diff.
Instrument Span Drift	\leq 3% Calibration Span or ±0.5 diff.

The following reference method continuous monitoring analyzers were used:

<u>Parameter</u>	<u>Make</u>	Model	Principle
O_2	CAI	200	Paramagnetic
CO_2	CAI	200	Paramagnetic
NO _x	CAI	600CLD	Chemiluminescence
CO	TECO	48i	NDIR

All BE calibration gases are EPA Protocol #1. The analyzer data recording system consists of a computer data acquisition system (DAS) and a strip chart recorder. A NO_x converter efficiency test showed that the converter was >90% efficient.

EPA Method 18 is used to determine carbon speciated compounds (C_1 to C_6+) emissions by gas chromatograph / Flame Ionization Detection (GC/FID). Gaseous emissions are drawn through a Teflon sample line to a tedlar bag located in a rigid leak proof bag container. Sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The bag samples are taken to a laboratory and analyzed within 72 hours. The results are reported as methane with a detection limit of 0.5 ppm for non-methane non-ethane organic compounds.

CARB Method 1 This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements. The point selection is made based on the type of test (particulate or velocity), the stack diameter and port location distance from flow disturbance.

CARB Method 2 is used to determine stack gas velocity using a standard or S-type pitot tube and inclined manometer or magnahelic. Temperature is monitored using a K-type thermocouple and calibrated Omega temperature meter. Leak checks are performed before and after each traverse to validate the results. Thermometer calibrations are performed using an Omega

Model CL-300 calibrator. Geometric calibrations of S-type pitots are performed and records are submitted with the report.

CARB Method 3 is used to determine the molecular weight of the stack gas. The $%O_2$ and $%CO_2$ concentrations are used and are measured with EPA Method 3A.

CARB Method 4 is used to determine the moisture content in the gas stream by extracting a sample and condensing the moisture in the impingers and the silica gel trap of the Method 5 sample trains. The moisture gained is determined volumetrically and gravimetrically. Results are recorded on the field data sheet. A sample is pulled using a leak tight pump. Volume is measured with a calibrated dry gas meter. Pre-and post-test leak checks are performed for each run.

CARB Method 5 is used to determine the filterable and condensable Particulate emissions. The sampling equipment consists of a stainless steal nozzle, a BE constructed heated stainless steal probe w/stainless steal liner, heated filter box and filter holder with glass fiber filter, followed by a Teflon line and umbilical to four Greenburg-Smith impingers, a pump and a meter control module. The first and second impingers are filled with 100 mL of DI water. A third impinger is left empty and the fourth impinger contains silica gel desiccant to dry the gas before the pump and gas meter. The entire system must be leak free before pulling stack gas though at a rate suitable for the stack flow rate. Following sampling, the filters are collected and sent to the BE laboratory for analysis. Filterable particulate is determined gravimetrically from the probe/nozzle acetone rinse and filter, following evaporation and desiccation of these fractions. Condensable gaseous particulate emissions that pass through the filter (rated at 99.95% efficient for 0.3µm particulates) are collected and recovered from the sample line and back-half of the filter holder and from the first two impingers containing de-ionized water. The organic condensable particulate fraction is separated using a dichloromethane rinse, which is evaporated desiccated and weighed. The remaining aqueous fraction is also evaporated, desiccated, and weighed to determine the inorganic condensable particulate fraction.

Sampling QA/QC: consists of pitot leak checks per CARB Method 2. Sampling system leak checks are performed before and after each test run. The sampling system leak checks are performed per CARB Method 4. The impingers are kept in ice to maintain the temperature of the gas exiting the last impinger to below 68°F. The dry gas meter, pitot, thermocouples, gauges, and nozzles are all calibrated according to the methods and with a frequency of between 6 to 12 months as specified in CARB QA/QC Volume VI, Table 3. Nozzles are calibrated to within 0.001" diameter and are inspected for damage prior to each test. Reagent blanks are collected using the same lot reagents, same proportions and techniques as the test samples. <u>Analytical QA/QC</u> consisted of a reagent blank. All gravimetric work is performed on calibrated analytical balances.

TABLE #1

Teichert Aggregate - Truckee NOx, CO and TNMHC Emissions Results Asphalt Batch Plant-Baghouse Outlet PTO #88-36-08

TEST	1	2	3	AVERAGE	LIMIT
Test Date	08/17/22	08/17/22	08/17/22		
Test Start Time	0725-0808	0948-1036	1141-1225		
Standard Temp., °F	68	68	68		
Asphalt Production, tons/hr	250	280	280	270	
Production Limit, hrs/year	2,000	2,000	2,000		
Production Limit, tons/year	700,000	700,000	700,000		
Flow Rate, DSCFM (Method 5)	38,223	36,123	37,468	37,272	
	Dutlet Emis	sions			
O ₂ , %	15.41	14.67	15.35	15.14	
CO ₂ , %	2.73	3.74	3.44	3.30	
NOx, ppm	20.85	29.35	25.05	25.08	
NOx, lbs/hr	5.80	7.72	6.84	6.79	
NOx, lbs/day	69.63	92.66	82.03	81.44	
NOx, lbs/ton	0.023	0.028	0.024	0.025	
NOx, lbs/MMBtu	0.082	0.102	0.098	0.094	
NOx, Tons/year	5.80	7.72	6.84	6.79	10.85
CO, ppm	57.85	108.87	97.68	88.13	
CO, lbs/hr	9.80	17.43	16.22	14.49	
CO, lbs/day	117.62	209.18	194.69	173.83	
CO, lbs/ton	0.039	0.062	0.058	0.053	
CO, lbs/MMBtu	0.139	0.231	0.232	0.201	
CO, Tons/year	9.80	17.43	16.22	14.49	70.70
TOG, ppm	<1.00	<1.00	1.90	<1.30	
TOG, lbs/hr	< 0.10	< 0.09	0.18	< 0.12	
TOG, lbs/day	<1.16	<1.10	2.16	<1.47	
TOG, lbs/ton	< 0.0004	< 0.0003	< 0.0006	< 0.0005	
TOG, lbs/MMBtu	< 0.001	< 0.001	< 0.003	< 0.002	
TOG, Tons/year	< 0.10	< 0.09	0.18	<0.12	17.85

Note: lbs/day is based on a 12 hour day

MW = Molecular Weightlbs/hr =DSCFM = Dry Standard Cubic Feet Per Minutelbs/day =ppm = Parts Per Million Concentrationlbs/ton =lbs/hr = Pound Per Hour Emission Ratetons/yeaCO = Carbon Monoxide (MW = 28)NOx = Oxides of Nitrogen as NO2 (MW = 46)TOG = Total Non-Methane, non-ethane organic compounds (MW = 16)lbs/MMBtu = Pounds per million BTU

CALCULATIONS:

 $\begin{array}{l} Emission \ Rate, \ lbs/hr = ppm * MW * DSCFM * 60 / 379E6 \\ Emission \ Factor, \ lbs/ton = (lbs/hr) / (tons/hr) \\ Emission \ Rate, \ tons/year = [(lbs/hr) * (hrs/year limit)] / 2000 \\ Emission \ Rate, \ lbs/day = lbs/hr * 12 \\ lbs/MMBtu = Fd * M.W.* \ ppm * 2.59E-9 * (20.9 / 20.9-\%O_2)) \\ Fd = \ 8710 \end{array}$

lbs/hr = pounds per hour lbs/day = pounds per 12 hour day lbs/ton = pounds per ton of asphalt produced tons/year = tons per year

TABLE #2

Tiechiert Truckee Baghouse TSP Emissions Results

PTO #88-36-08

RUN #	1	2	3	AVERAGE	LIMITS
TEST DATE	08/17/22	08/17/22	08/17/22		
TEST TIME	740-856	948-1059	1134-1250		
PRODUCTION LIMIT, TPY	7,000	7,000	7,000		
PRODUCTION RATE, TPH	250	280	280	270	
SAMPLE VOLUME (DSCF)	43.163	43.008	42.134	42.769	
ISOKINETIC (%)	101.7	107.2	101.3	103.4	
DUCT TEMP., (°F)	191.0	191.0	191.0	191.0	
VELOCITY (ft/sec)	95.45	95.37	95.63	95.48	
FLOW RATE (ACFM)	77,494	77,429	77,637	77,520	
FLOW RATE (DSCFM)	38,223	36,123	37,468	37,272	
H ₂ O (volume %)	25.39	29.43	27.00	27.27	
O ₂ (volume %)	15.41	14.67	15.35	15.14	
CO ₂ (volume %)	2.73	3.74	3.44	3.30	
TS	SP Emissior	ıs			
Total F.H. Particulate Conc. (gr/DSCF)	0.028	0.022	0.020	0.023	
Total F.H. Particulate Emissions (Lbs/hr)	9.254	6.745	6.542	7.514	
Organic Particulate Conc. (gr/DSCF)	0.0007	0.0010	0.0008	0.0008	
Organic Particulate Emissions (Lbs/hr)	0.238	0.322	0.248	0.269	
Inorganic Particulate Conc. (gr/DSCF)	0.0029	0.0029	0.0035	0.0031	
Inorganic Particulate Emissions (Lbs/hr)	0.944	0.911	1.119	0.991	
Tot. Particulate Conc. (gr/DSCF)	0.032	0.026	0.025	0.027	0.04
Tot. Particulate Conc.(gr/DSCF)@12%CO ₂	0.14	0.08	0.09	0.10	0.1
Tot. Particulate Conc. (mg/DSCM)	72.90	58.97	56.36	62.74	
Tot. Particulate Emissions (Lbs/hr)	10.436	7.978	7.909	8.774	
Tot. Particulate Emissions (Lbs/day)	104.36	79.78	79.09	87.74	
Tot. Particulate Emissions (tons/year)	0.146	0.100	0.099	0.115	6.27
Tot. Particulate Emission Factor (Lbs/ton)	0.042	0.028	0.028	0.033	

WHERE

DSCF = Sample Volume in Dry Standard Cubic Feet ACFM = Actual Cubic Feet per Minute DSCFM = Dry Standard Cubic Feet per Minute H₂O, volume % = Stack gas percent water vapor gr/DSCF = Particulate concentration in grains per DSCF F.H. Particulate = Filterable Particulates Organic Particulate = Condensible Organic Particulate (solvent extract) Inorganic Particulate = Condensible Inorganic Particulate (Acids & Sulfates) TPH = Tons per Hour

CALCULATIONS

Lbs/hr Emission Rate = 0.00857 * gr/DSCF * DSCFM Lbs/ton Emission Factor = lbs/hr / TPH Tot. Particulate Concentration (@ 12% CO2) = gr/DSCF * 12/Co2% Emission Rate, lbs/day = lbs/hr * 12 Emission Rate, tons/year = [(lbs/ton) * (tons/year limit)] / 2000

APPENDICES

APPENDIX A – CALCULATIONS & NOMENCLATURE APPENDIX B - LABORATORY REPORTS APPENDIX C - FIELD DATA SHEETS APPENDIX D - STRIP CHART RECORDS APPENDIX E – CALIBRATION GAS CERTIFICATES APPENDIX F – EQUIPMENT CALIBRATION RECORDS APPENDIX G – STACK DIAGRAMS APPENDIX H – SAMPLING SYSTEM DIAGRAMS APPENDIX I – SOURCE TEST PLAN APPENDIX J – PERMIT TO OPERATE

APPENDIX A CALCULATIONS & NOMENCLATURE

Standard Abbreviations for Reports					
Unit	Abbreviation	Unit	Abbreviation		
		microgram	ug		
Brake horsepower	bhp	milligram	mg		
Brake horsepower hour	bhp-hr	milliliter	ml		
British Thermal Unit	Btu	million	MM		
capture efficiency	CE	minute	min		
destruction efficiency	DE	Molecular Weight	Μ		
Dry Standard Cubic Feet	DSCF	nanogram	ng		
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb		
Dry Standard Cubic Meter	DSCM	Parts per Million	ppm		
grains per dry standard cubic foot	gr/DSCF	pound	lb		
gram	g	pounds per hour	lbs/hr		
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu		
kilowatt	kW	second	sec		
liter	1	Specific Volume, ft ³ /lb-mole	SV		
Megawatts	MW	Thousand	K		

Common Conversions / Calculations / Constants

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45 @ 68°F

Correction Multiplier for Standard Temperature = $(460 + T_{std}. ^{\circ}F) / 528$

F factor: dscf / MMBTU @ $60^{\circ}F = 8579$, @ $68^{\circ}F = 8710$. @ $70^{\circ}F = 8743$ for natural gas

Btu/ft3: 1040

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

lbs/hr = ppm * dscfm * MW * 0.00008223 / (Std Temp + 460)

Correction to 12% CO₂ = gr/dscf * 12% / stack CO₂%; **EPA Method 5**

Correction to $3\% O_2 = ppm * 17.9 / (20.9 - stack O_2 \%)$; CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O_2 %); EPA Method 19

Lb/MMBtu @ 60°F = Fd * M * ppm * 2.64E-9 * 20.9 / (20.9 - stack O₂ %);

0 68°F = Fd * M * ppm * 2.59E-9 * 20.9 /(20.9 - stack O₂ %);

 $@70F = Fd * M * ppm * 2.58-9 * 20.9 / (20.9 - stack O_2 %)$

	Standard Temperatures by District					
EPA	68 ºF	NSAPCD - Northern Sonoma	68 °F			
CARB	68 °F	PCAPCD - Placer	68 °F			
BAAQMD - Bay Area	70 °F	SLOCAPCD - San Luis Obispo	60 °F			
SJVUAPCD - San Joaquin	60 °F	SMAQMD - Sacramento	68°F de facto			
SCAQMD - South Coast	60 °F	SCAQMD - Shasta County	68 °F			
MBUAPCD - Monterey Bay	68 °F	YSAPCD - Yolo-Solano	68 °F			
FRAQMD – Feather River	68 ºF	AADBAPC - Amador County	68 °F			

CEM BIAS SYSTEM TEST SUMMARY SHEET (EPA)

Facility:	Teichert Aggr	egate - Truckee		Date:	8/17/2022 Personn	Personnel:	SA/BK
Location:	Baghouse Out	let					
	O ₂	CO2	NOx	CO			Comments
Analyzer	200	200	600	48i			Drift Calcs.
Range	21.01	12.04	95.30	468.40			Per EPA Method 7E
Zero Value (N2)	0.00	0.00	0.00	0.00			
Cal Value (mid)	8.94	6.98	44.6	264.3			
Cyl. #	DT45735	CC90096	CC99627	CC193527			
Exp Date	6/6/30	7/19/29	1/27/25	1/31/30			
Cal Value (Hi)	21.01	12.04	95.3	468.4			
Cyl. #	CC90096	DT45735	CC181599	SA17431			
Exp Date	7/19/29	6/6/30	9/7/29	8/30/29			1

CALIBRATION ERROR CHECK

Zero cal (int)	0.01	-0.02	0.04	0.08	
% Linearity	0.0	-0.2	0.0	0.0	2% or +/- 0.5 diff.
mid cal (int)	8.93	6.83	44.60	263.39	
% Linearity	0.0	-1.3	0.0	-0.2	<2% or +/- 0.5 diff.
high cal (int)	20.97	12.12	94.22	465.89	
% Linearity	-0.2	0.6	-1.1	-0.5	<2% or +/- 0.5 diff.

SYSTEM BIAS & DRIFT								
Zero (int)	0.01	-0.02	0.04	0.08				
Zero (ext)(i)	0.15	0.06	0.02	-0.33				
bias, % High Cal	0.68	0.62	-0.02	-0.09	Limit (±5%)			
Cal (int)	20.97	6.83	44.60	263.39				
Cal (ext) 1(i)	21.01	6.94	45.02	261.88				
bias, % High Cal	-0.20	-0.90	-0.45	0.32	Limit (±5%)			
Zero (ext) 1(f)	0.14	0.08	0.05	-0.51	0725-0808			
Cal (ext) 1(f)	21.05	6.93	44.19	263.70	Run 1			
Zero % Drift	-0.1	0.2	0.0	0.0	Limit (±3%) or +/-0.5diff.			
Cal % Drift	0.2	-0.1	-0.9	0.4	Limit (±3%) or +/-0.5diff.			
Zero % Bias	0.6	0.8	0.0	-0.1	Limit (±5%) or +/-0.5diff.			
Cal % Bias	0.4	0.8	-0.4	0.1	Limit (±5%) or +/-0.5diff.			
Average	15.47	2.75	20.87	57.19				
Corr. Average	15.41	2.73	20.85	57.85				
Zero (ext) 2(f)	0.12	0.18	0.06	-1.16	0948-1036			
Cal (ext) 2(f)	20.83	6.87	44.34	263.07	Run 2			
Zero % Drift	-0.1	0.9	0.0	-0.1	Limit (±3%) or +/-0.5diff.			
Cal % Drift	-1.1	-0.5	0.2	-0.1	Limit (±3%) or +/-0.5diff.			
Zero % Bias	0.5	1.7	0.0	-0.3	Limit (±5%) or +/-0.5diff.			
Cal % Bias	-0.6	0.3	-0.3	-0.1	Limit (±5%) or +/-0.5diff.			
Average	14.66	3.75	29.15	108.00				
Corr. Average	14.67	3.74	29.35	108.87				
Zero (ext) 3(f)	0.13	0.13	0.05	-0.29	1141-1225			
Cal (ext) 3(f)	20.91	6.96	44.16	261.78	Run 3			
Zero % Drift	0.0	-0.4	0.0	0.2	Limit (±3%) or +/-0.5diff.			
Cal % Drift	0.4	0.7	-0.2	-0.3	Limit (±3%) or +/-0.5diff.			
Zero % Bias	0.6	1.3	0.0	-0.1	Limit (±5%) or +/-0.5diff.			
Cal % Bias	-0.3	1.1	-0.5	-0.3	Limit (±5%) or +/-0.5diff.			
Average	15.28	3.48	24.88	96.53				
Corr. Average	15.35	3.44	25.05	97.68				

SYSTEM RESPONSE TIME = 60 SEC

System Drift (Limit ± 3%) = 100 * <u>External final cal - External Initial cal</u> Calibration Span

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u> Calibration Span

% Linearity (Limit ± 2%) = 100 * <u>Span Value - Internal cal</u> Calibration Span

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

NO₂ Converter Test

NO2 Cal Gas	NO ₂ Value	% of Efficiency	Cyl. #	Cyl. Exp. Date
6.585	5.97	90.68%	CC500632	07/08/24

FAC	CILITY:	Tiechiert Tru	ckee	DATE:	8/17/2022		METER BOX NO.:	LSI 1	
	II:	250 TPH		TEST NO	1		NOZZLE NO.:	25	
COI	dillon.	250 1111							
Pito	t Factor,	C _p	0.84	Meter Temp., °F	T _m	72	Total H ₂ O Condensed,	V _w	312.0
Baro	ometric Press., "Hg	Pb	24.35	Meter Press.,"H ₂ O	ΔH	2.100	F.H. Particulate Rinse,	mg	6.13
Stat	ic Pressure, "H ₂ O	P _{stat}	0.50	Average $\sqrt{\Delta P}$., "H ₂ O	√∆P	1.318	F.H. Particulate Filter,	mg	72.90
Stac	k Pressure, "Hg	P _s	24.39	Stack Area, Ft [~]		13.531	B.H. Organics,	mg	2.03
Stac	k Temp., °F	• T _s	191	Nozzle Dia., Inches	D _n	0.202	B.H. Inorganics,	mg	8,06
Sam	ple Time, mins	Θ	67.5	Meter Factor,	Y _d	0.9650	Stack Gas O _{2,}	O ₂ %	15.41
Std.	Temp., °F	T _{std}	68	Sample Volume, Ft'	V _m	55.028	Stack Gas CO _{2,}	CO ₂ %	2.73
							Stack Gas N _{2,}	N ₂ %	81.9
A)	Gas Volume $(V_m)_{std} = (T_{std} + 460) * V_m * Y_d * (P_b + \Delta H / 13.6) / ((T_m + 460) * 29.92) =$								DSCF
B)	Volume H ₂ O colle	ected $(V_w)_{std} = 8$	8.9148E-5*	$(T_{std} + 460) * V_w =$				14.686	SCF
C)	Total Sample Volu	time $(V_t)_{std} = (V_t)_{std}$	$V_{\rm m}$) _{std} + (V _v	v) _{std} =				57.849	SCF
D)	Moisture Content	$(\%H_2O) = 100$	* $(V_w)_{std}$ /	$(V_t)_{std} =$				25.386	%
E)	E) Stack Gas Velocity (Vs) = 85.49 C _p $\sqrt{(\Delta P)}$ (T _s + 460/MW _s P _s) =							95.452	ft/sec
F)	F) Stack Gas Molecular Wt.= $((CO_2\%*0.44+O_2\%*0.32+N_2\%*0.28)(1-H_2O\%/100))+18(H_2O\%/100) =$							26.247	g/g-mole
G)	G) % Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =							101.71	%
H)	H) $ACFM = (V_s)(A_s)60 =$							77,494	ACFM
I)	Stack Gas Vol. Fl	ow Rate, DSCI	$FM = (V_s)($	$A_s)((T_{std}+460)/(T_s+460))$)))(P _s)(1-%H ₂ C	/100)*2.00:	5 =	38,223	DSCFM
J)	F.H. Particulate C	oncentration (g	r/DSCF) =	mg/Vmstd * 0.01543	=			0.0022	gr/DSCF
K)	F.H. Particulate E	mission Rate =	0.00857 *	gr/DSCF * DSCFM =				0.718	Lbs/hr
L)	F.H. Particulate C	oncentration (g	r/DSCF) =	mg/Vmstd * 0.01543	-			0.0261	gr/DSCF
M)	F.H. Particulate E	mission Rate =	0.00857 *	gr/DSCF * DSCFM =	:			8.537	Lbs/hr
N)	B.H. Organics Co	ncentration (gr.	/DSCF) = 1	$mg/(V_m)_{std} * 0.01543 =$:			0.0007	gr/DSCF
0)	B.H. Organics En	ission Rate = ().00857 * g	gr/DSCF * DSCFM =				0.238	Lbs/hr
P)	B.H. Inorganic Co	oncentration (g	/DSCF) =	mg/(V _m) _{std} * 0.01543 =	=			0.0029	gr/DSCF
Q)	B.H. Inorganic Er	nission Rate =	0.00857 *	gr/DSCF* DSCFM =				0.944	Lbs/hr
R)	Tot. Particulate C	oncentration (g	r/dscf) = rr	$ng/(V_m)_{std} * 0.01543 =$				0.0319	gr/DSCF
S)	Tot. Particulate C	oncentration (@))) 12% CO	$_{2}) = gr/DSCF * 12 / CO$	D₂% =			0.1402	gr/DSCF
T)	T) Tot. Particulate Emission Rate = 0.00857 * gr/DSCF * DSCFM =								Lbs/hr

FAC	ILITY:	Tiechiert Tru	ickee	DATE:	8/17/2022		METER BOX NO.:	LSI 1	
UNI		Bagnouse		TEST NO .	948-1039		NOZZI E NO ·	25	
CON	IDITION:	280 IPH		IESI NU.:	<u> </u>		TIVELE INU.	4.5	
Pitot	Factor.	C.	0.84	Meter Temp., °F	T _m	72	Total H ₂ O Condensed,	V"	381.0
Baro	metric Press., "Hg	P	24.35	Meter Press.,"H ₂ O	ΔH	2.100	F.H. Particulate Rinse,	mg	6.83
Stati	c Pressure, "H ₂ O	P _{stat}	0.50	Average $\sqrt{\Delta P}$., "H ₂ O	√∆P	1.308	F.H. Particulate Filter,	mg	53.90
Stac	k Pressure, "Hg	P _s	24.39	Stack Area, Ft ²	A _s	13.531	B.H. Organics,	mg	2.90
Stac	k Temp., °F	Ts	191	Nozzle Dia., Inches	D _n	0.202	B.H. Inorganics,	mg	8.20
Sam	ple Time, mins	Θ	67.5	Meter Factor,	Y _d	0.9650	Stack Gas O _{2,}	O ₂ %	14.67
Std.	Temp., °F	T _{std}	68	Sample Volume, Ft ³	V _m	54.830	Stack Gas CO _{2,}	CO ₂ %	3.74
							Stack Gas N _{2,}	N ₂ %	81.6
A)	Gas Volume (V _m) _s	$_{\rm td} = (T_{\rm std} + 460)$	*V _m *Y _d *(]	P _b +ΔH/13.6)/((T _m +460))*29.92) =			43.008	DSCF
B)	Volume H ₂ O colle	cted $(V_w)_{std} =$	8.9148E-5	*(T _{std} +460)*V _w =				17.934	SCF
C)	Total Sample Volu	time $(V_t)_{std} = (V_t)_{std}$	$(V_m)_{std} + (V_m)_{std}$	w) _{std} =				60.942	SCF
D)	Moisture Content ($(\%H_2O) = 100$	* (V _w) _{std} /	$(V_t)_{std} =$				29.428	%
E)	E) Stack Gas Velocity (Vs) = 85.49 C _p $\sqrt{(\Delta P)}$ (T _s + 460/MW _s P _s) =								ft/sec
F)	F) Stack Gas Molecular Wt.= $((CO_2\%*0.44+O_2\%*0.32+N_2\%*0.28)(1-H_2O\%/100))+18(H_2O\%/100) =$								g/g-mole
G)	G) % Isokinetic (I) = 9142.88(V _t)(T _s +460)/((D _n ²)(Θ)(P _s)(V _s)(T _{std} +460)) =								%
H)	$ACFM = (V_s)(A_s)$	50 =						77,429	ACFM
I)	Stack Gas Vol. Flo	ow Rate, DSCI	$FM = (V_s)($	A _s)((T _{std} +460)/(T _s +460	0))(P _s)(1 -% H ₂ (D/100)*2.00	5 =	36,123	DSCFM
J)	F.H. Particulate Co	oncentration (g	gr/DSCF) =	= mg/Vmstd * 0.01543	-			0.0025	gr/DSCF
K)	F.H. Particulate Er	mission Rate =	0.00857 *	gr/DSCF * DSCFM =	=			0.759	Lbs/hr
L)	F.H. Particulate Co	oncentration (g	gr/DSCF) =	mg/Vmstd * 0.01543	-			0.0193	gr/DSCF
M)	F.H. Particulate E	mission Rate =	• 0.00857 *	gr/DSCF * DSCFM =	=			5.986	Lbs/hr
N)	B.H. Organics Con	ncentration (gr	/DSCF) =	$mg/(V_m)_{std} * 0.01543 =$	=			0.0010	gr/DSCF
0)	B.H. Organics Em	ission Rate = (0.00857 * į	gr/DSCF * DSCFM =				0.322	Lbs/hr
P)	B.H. Inorganic Co	ncentration (g	r/DSCF) =	mg/(V _m) _{std} * 0.01543 =				0.0029	gr/DSCF
Q)	B.H. Inorganic En	nission Rate =	0.00857 *	gr/DSCF* DSCFM =				0.911	Lbs/hr
R)	Tot. Particulate Co	oncentration (g	pr/dscf) = n	$ng/(V_m)_{std} * 0.01543 =$				0.0258	gr/DSCF
S)	Tot. Particulate Co	oncentration ((@ 12% CO	$_{2}) = gr/DSCF * 12 / CO$	O ₂ % =			0.0828	gr/DSCF
T)	T) Tot. Particulate Emission Rate = 0.00857 * gr/DSCF * DSCFM = 7.9								Lbs/hr

FAC	ULITY:	Tiechiert True	ckee	DATE:	8/17/2022		METER BOX NO.:	LSI 1	
CON	1: IDITION:	280 TPH		TEST NO	3		NOZZLE NO.:	18	
COP	DITION.	200 1111							
Pitot	Factor,	Cp	0.84	Meter Temp., °F	T _m	72	Total H ₂ O Condensed,	V _w	331.0
Baro	metric Press., "Hg	Pb	24.35	Meter Press.,"H ₂ O	ΔH	2.100	F.H. Particulate Rinse,	mg	1.53
Stati	c Pressure, "H ₂ O	P _{stat}	0.50	Average √∆P., "H ₂ O	√∆P	1.318	F.H. Particulate Filter,	mg	54.10
Stac	k Pressure, "Hg	Ps	24.39	Stack Area, Ft ²	A _s	13.531	B.H. Organics,	mg	2.11
Stac	k Temp., °F	Ts	191	Nozzle Dia., Inches	D _n	0.202	B.H. Inorganics,	mg	9.52
Sam	ple Time, mins	Θ	67.5	Meter Factor,	Y _d	0.9650	Stack Gas O _{2,}	O ₂ %	15.35
Std.	Temp., °F	T _{std}	68	Sample Volume, Ft ³	V _m	53.716	Stack Gas CO _{2,}	CO ₂ %	3.44
							Stack Gas N _{2,}	N ₂ %	81.2
A)	Gas Volume (V _m)	$_{\rm std} = (T_{\rm std} + 460)^*$	V _m *Y _d *(I	P _b +ΔH/13.6)/((T _m +460)*29.92) =			42.134	DSCF
B)	Volume H ₂ O colle	ected $(V_w)_{std} = 8$.9148E-5*	$(T_{std} + 460) * V_w =$				15.580	SCF
C)	Total Sample Vol	ume $(V_t)_{std} = (V$	_m) _{std} + (V _v	v) _{std} =				57.715	SCF
D)	Moisture Content	$(\%H_2O) = 100$	* (V _w) _{std} /	$(V_t)_{std} =$				26.995	%
E)	E) Stack Gas Velocity (Vs) = 85.49 C _p $\sqrt{(\Delta P)}$ (T _s + 460/MW _s P _s) =							95.628	ft/sec
F)	F) Stack Gas Molecular Wt.= $((CO_2\%*0.44+O_2\%*0.32+N_2\%*0.28)(1-H_2O\%/100))+18(H_2O\%/100) =$							26.150	g/g-mole
G)	G) % Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =							101.29	%
H)	$ACFM = (V_s)(A_s)$	60 =						77,637	ACFM
I)	Stack Gas Vol. Fl	ow Rate, DSCF	$M = (V_s)($	A _s)((T _{std} +460)/(T _s +460	0))(P _s)(1-%H ₂ C	0/100)*2.00	5 =	37,468	DSCFM
J)	F.H. Particulate C	oncentration (g	r/DSCF) =	mg/Vmstd * 0.01543	=			0.0006	gr/DSCF
K)	F.H. Particulate E	mission Rate =	0.00857 *	gr/DSCF * DSCFM =	-			0.180	Lbs/hr
L)	F.H. Particulate C	concentration (g	r/DSCF) =	- mg/Vmstd * 0.01543				0.0198	gr/DSCF
M)	F.H. Particulate E	mission Rate =	0.00857 *	gr/DSCF * DSCFM =	:			6.362	Lbs/hr
N)	B.H. Organics Co	ncentration (gr/	DSCF) =	$mg/(V_m)_{std} * 0.01543 =$:			<0.0008	gr/DSCF
0)	B.H. Organics En	nission Rate = 0	.00857 * g	gr/DSCF * DSCFM =				<0.2481	Lbs/hr
P)	B.H. Inorganic Co	oncentration (gr	/DSCF) =	mg/(V _m) _{std} * 0.01543 =	=			0.0035	gr/DSCF
Q)	B.H. Inorganic E	mission Rate $= 0$).00857 *	gr/DSCF* DSCFM =				1.119	Lbs/hr
R)	Tot. Particulate C	oncentration (g	/dscf) = n	$ng/(V_m)_{std} * 0.01543 =$				0.0246	gr/DSCF
S)	Tot. Particulate C	oncentration (@)) 12% CO	$_{2}) = \text{gr/DSCF} * 12 / CO$	O ₂ % =			0.0860) gr/DSCF
T)	Tot. Particulate Emission Rate = 0.00857 * gr/DSCF * DSCFM = 7.909 Lbs/hr								Lbs/hr

.

APPENDIX B LAB REPORTS

BEST ENVIRONMENTAL

339 Stealth Court Livermore, California 94551 (925) 455-9474 FAX (925) 455-9479 bestair@best-enviro.com

September 10, 2022

Subject: On August 17, 2022 Best Environmental collected three outlet samples from the Teichert Martis Valley Source Test.

CLIENT:Teichert AggregatesPROJECT NAME:Teichert Martis Valley Source TestBE PROJECT NO:333ANALYSIS DATE:8/19/22

Sample ID	Lab Sample Number
Run 1 Outlet	9567
Run 2 Outlet	9568
Run 3 Outlet	9569

The samples were analyzed in accordance with EPA Method 18 (CH₄ & VOC).

The following pages present the outlet VOC analytical results. A chain of custody can also be found in this report. This lab report contains a total of 4 pages.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

If you have any questions concerning these results, or if Best Environmental can be of any further assistance, please contact me at (925) 455-9474 x 103.

1

Submitted by,

Bobby Asfour Lab Director

EPA Method 18

Facility: Teichert Martis Valley

Lab Personnel: BA

Project #: 333

Source: HMA

Test Date: 8/17/22

Analysis Date: 8/19/22

		CH4 & VOC	Analysis (M1	18)					
		Outlet	ppm	ppm	ppm				
Lab ID	Time	Run #	CH4	C2 as CH4	VOC		Dup.		
9567	725	Run 1	9.1	2.9	ND	(8.8)	(3.1)	ND	
9568	948	Run 2	4.4	3.0	ND	3.4	-8.8	NA	<1ppm or 15%
9569	1141	Run 3	4.5	7.1	1.9				

All concentrations reported as C1-carbon.

ND=	DL		
	CH4	<1	ppm/%
	C2	<1	ppm
	C3+ as methane	<1	ppm

GC/FID/FPD/TCD: SRI 8610C

Column: 3 foot Haysep D, 60M capillary, 12' 13x Packed column Chromatic integration: Peak444 Peaksimple by SRI Gas Standards: C1-C6 n-alkane in N2 & Propane in air

BEST ENVIRONMENTAL

Gas Chromotography QA/QC Results

Facility:	Teichert Martis Valley	Source:	HMA
Test Date:	8/17/22	Lab Personnel:	BA

Analysis Date: 8/19/22

Cal Curve Date: 8/3/22

	Daily Blank	(& R.T.		limit
	C1/CH4	C2/ethane	C3+/NMNEHC	DL
He Gas	ND	ND	ND	
C1-C6 gas	2.96	4.46	5.75	
1	1 . 1			

* C1-C6 gas used to determine retention times

	initial c	al propane	as methane	
conc.	92.1	867	8970	
area ct.	20.3	200.1	2013.5	

	3 point Cal-	-3 injections	each (area ct)	limit
	20.3	200.1	2013.5	
	20.9	201.5	2010.3	
	21			
average	20.73	201.60	2013.33	
Deviation	0.38	1.55	2.95	
% diff	1.83	0.77	0.15	<5

	post cal-Mid	limit
	867	
	861	
% diff	0.69	<15%

i

Be	t Environn	lental						Ph (925) 455-9474; Fx	(925) 455-9479
			Turrelisse / Backbarros Outlet	VID A JUNYS	JU AO NI	ISTONV	RF PDOTFCT MAN	VACER.	A S
	Project ID Analyical 1	: Teichert - Lab: Best E	l ruckee / Baghouse Outlet nvironmental	SAMPLE CHA	ALN UF CL	IUUISU	BE FRUJEUI MA	NAGEK:	ЧĊ
#	DATE	TIME	SAMPLE ID Run#/Method/Fraction/Source	CONTAINER size / type	Volume	Storage Temp °F	SAMPLE DESCRIPTION	ANALYSIS	TAT
1	8/17/22	7:25	Run 1 / Outlet 9567	5L/Tedlar		Amb.	Outlet Gas	M-18	Normal
m 1	<i>CC/L</i> 1/8	9-48	Run 27 Outlet 95% &	51./Tedlar		Amb.	Outlet Gas	M-18	Normal
4			The second in the second of the						
ŝ	8/17/22	11:41	Run 3 / Outlet 9569	5L/Tedlar		Amb.	Outlet Gas	M-18	Normal
9									
7									
8									
6									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
SP	ECIAL INS	TRUCTIO	NS: Record & Report all liquid sample	volumes.					
						2		7	
						5			
Sul	bmit Result	s to: Attn:	Suhail Asfour	BE	ST ENVIR	tONMENT.	AL 339 STEALTH COURT. LI	IVERMORE CA. 94551	
	Relinquish	ed by:		Received by:	I Coll		Dat	te: Time:	
	Relinquish	ed by:		_Received by:			Dat	te: Time:	
В	Relinquish	ed by:		Received by:			Dat	te: Time:	
-D	SAMPLE	CONDITIO	IN AS RECEIVED: OK or not OK						

...*

Vizena-w2k/users/reports/sal/coc/zalco-m18-inlet.xis - 5/22/2013

BEST ENVIRONMENTAL

Method 5(CARB) for Particulate Analytical report

Job Name:Teichert - TruckeeSample Date:8/17/2022Request by:S. AsfourDate of Analysis:8/25/22 to 9/7/22Source:Baghouse Outlet

Analyst: **B**. Mariano Signature: Manam

Lab ID Number	Sample	Aliquot	Net Weight	Tot. Sample wt.
	(ml)	(ml)	gain, (mg)	(mg)
			a	
R1M5 (Probe/Nozzle rinse)	60.0ml	60.0ml	6.20mg	6.13mg
R1M5 (Filter)	N/A	N/A	72.90mg	72.90mg
R1M5 (H ₂ O fraction)	500.0ml	220.0ml	3.9mg	8.06mg
R1M5 (Organic fraction)	500.0ml	220.0ml	1.2mg	2.03mg
R2M5 (Probe/Nozzle rinse)	60.0ml	60.0ml	6.90mg	6.83mg
R2M5 (Filter)	N/A	N/A	53.90mg	53.90mg
R2M5 (H ₂ O fraction)	566.0ml	220.0ml	· 3.5mg	8.20mg
R2M5 (Organic fraction)	566.0ml	220.0ml	1.4mg	2.90mg
R3M5 (Probe/Nozzle rinse)	60.0ml	60.0ml	1.60mg	1.53mg
R3M5 (Filter)	N/A	N/A	54.10mg	54.10mg
R3M5 (H_2O fraction)	516.0ml	220.0ml	4.4mg	9.52mg
R3M5 (Organic fraction)	516.0ml	220.0ml	1.2mg	2.11mg
R4M5 (Acetone blank)	86.0ml	86.0ml	0.10mg	
R4M5 (Filter blank)	N/A	N/A	0.00mg	
R4M5 (DI H ₂ O blank),(Мьн ₂ о)	200.0ml	200.0ml	0.8mg	
R4M5 (Meth. Chlor. blank),(Mb _{org})	150.0ml	150.0ml	0.7mg	

Comments: <0.5 mg = Not detected

% Acetone residue =	0.0001%	
% DI water residue =	0.0004%	
% Meth. Chloride residue =	0.0003%	
Blank Correction is on the Gra	avimetric Sample Worksheet.	

Calculations:

Blank corrected Probe/Nozzle rinse = Net weight - ((acetone blank wt./(vol. actone blank)*vol. acetone catch) %Acetone residue = (Net weight gain mg) /(Density of acetone mg/ml * Total sample volume ml)*100 %DI Water residue = (Net weight gain mg)/(Density of water mg/ml * Total sample volume ml)*100 %Meth. Chloride residue = (Net weight gain mg)/(Density of Meth. Chloride mg/ml * Total extraction volume ml)*100

Tolerance Limits:

% Acetone residue = 0.001% wt.

% DI Water residue = 0.001% wt.

% Meth. Chloride residue = 0.001% wt.

Particulate weight = 1% of net wt., ± 0.5 mg or ± 0.2 mg depending upon precision

GRAVIMETRIC SAMPLE WORKSHEET

Project/Client Test Date(s)	Teichert 8/17/	- Truckee /2022	An	Source alysis Date(s)		Baghouse Outlet 8/25/22 to 9/7/22	
			Probe/Nozz	le Weights			
Run #	Tin #	Net Wt. gain (mg)	Sample Vol. (ml) Vaw	Acetone Blank Wt. (mg) Ma	Acetone Blank Vol. (ml) Va	Acetone Blank Correction Wt. (mg) Wa	Tot. Sample Wt. (mg)
R1	16	6.20	60.0	0.10	86.00	0.07	6.13
R2	17	6.90	60.0	0.10	86.00	0.07	6.83
R3	18	1.60	60.0	0.10	86.00	0.07	1.53
R4	19	0.10	86.0				

Acetone Blank Correction Wt. Wa = Ma * Vaw / Va

Tot. Sample Wt. (mg) = Net Wt. gain (mg) - Blank Correction Wt.

Filter Weights

Run #	Filter #	Tare Wt. (g)	Gross Wt. (g)	Net Wt. gain (mg)
R 1	Q178	0.4682	0.5411	72.9
R 2	Q179	0.4709	0.5248	53.9
R 3	Q180	0.4711	0.5252	54.1

Back-Half (H₂O) Condensible Fraction

Run #	Container Type/#	Total Sample Volume (ml) Vt	Aliquot Volume (ml) Va	Aliquot Dry Wt. (mg) Mal	Calculated Total Sample Dry Wt. (mg) Ms	Blank Correction Wt. (mg) Mb	Tot. Sample Wt. (mg)
R 1	105	500	220	3.90	8.86	0.80	8.06
R 2	110	566	220	3.50	9.00	0.80	8.20
R 3	111	516	220	4.40	10.32	0.80	9.52
R 4	112	200	200	0.80			

Total Sample Dry Weight (Ms) = (Vt/Va) * Mal Blank Correction Wt. (Mb) Tot. Sample Wt. = Ms - Mb

Back-Half (Organic) Condensible Fraction

Run #	Container Type/#	Total Sample Volume (ml) Vt	Aliquot Volume (ml) Va	Aliquot Dry Wt. (mg) Mal	Calculated 1 otal Sample Dry Wt. (mg) Ms	Blank Correction Wt. (mg) Mb	Tot. sample Wt. (mg)
R 1	101	500	220	1.20	2.73	0.70	2.03
R 2	102	566	220	1.40	3.60	0.70	2.90
<u>R 3</u>	103	516	220	1.20	2.81	0.70	2.11
R 4	104	150	150	0.70			

Total Sample Dry Weight (Ms) = (Vt/Va) * Mal Blank Correction Wt. (Mb) Tot. Sample Wt. = Ms - Mb

Z:\reports\RM\2022\teichert - truckee\m5-ws 081722

GRAVIMETRIC SAMPLE RECORD

Project/Client <u>TEICHERT-TRUCKEE</u> Test Date(s) <u>8-17-22</u> Analysis Date(s) <u>8-25-22 10 9-7-22</u>

Source BAGHOUSE OUTLET Method M5

	Lab Container	Tarc W1. (g) from				Net Wt.	
Project Sample ID	· Турс/#	Tare Sheet	Gross W1. (g)	Date	Time	gain (mg)	Initial
RIMS F.H.		Date	2.2381	8-30-20	1537		RM
	TIN	2-7-22	2.2382	8-31-20	16:10		RM
	016						·····
		Wt.					
		(2. 2320)	2.2382	2		6.2	
RZM5-F.H.	2	Date	2.2363	8-30-22	1543		RM
	TIN	5-7-22	2.2362	8-31-20	16:16		RM
. <u>.</u>	817				'		
		Wt.					,
		(Z 2293)	2.2362	2		6.9	
R3M5-FH		Date	2.2208	8-30-22	15:49		RM
	TIN	35-7-22	2.2207	8-31-22	16:22		·RM
	018						
· · · · · · · · · · · · · · · · · · ·		Wt.	1				
		<u> (z. 2197)</u>	KS.22081]		1.6	
R4M5-F-H		Date	2-22-49	8-30-22	22721		PM
	TIN	2-7-22	5.22.48	8-31-22	16:28	•	Rin
BLANK	019						
•	*	Wt.					
	<u> </u>	2 2248	K22249	<u> </u>		0.1	-
RIMS-FILTER	······	Date /	0.54/2	8-29-22	1531	<u> </u>	RM
		p-26-21	0:5410	8-30-20	16:12		RM
•	R178						
		Wt.					
	<u> </u>	104680	0.5411	<u>P</u>		15.7	
RZM-FILTER	······································	Date /	0.5248	8-2922	15:37		RM
		10-28-21	0.5247	8 3022	-16:18		RM
	K119						
		Wt.	0	Į		F2 0	
		<u>U7109</u>	0.5248	1		53.7	
K3M5-FULTER	• • • • • • • • • • • • • • • • • • • •	Date /	0.5253	8-2922	15:43		RM
	Ø 101	10-12-28-21	0.5251	8-30-22	16.24		PM
	K 180	XX7/					
		Wt.	0 = 2 = 3		. <u>.</u>	6-117	
	<u> </u>	$\left(\frac{1}{2} \right)$	0.5250		11110	54.1	
KIM5-BH		Date /	28.7155	9-1-22	16:20		RM
URGANIC FRACTUR	<u>501111</u>	1+1-5-2	68.1154	7-2-02	16:32		
	BEAKER	<u> </u>	· · · · · · · · · · · · · · · · · · ·				•
	10	VY L.	727155	>		1.7	
	Q	CC 1172/	CO.1122/			100	

TARE to $0.00001 \pm 5\Delta$

Final Wt. to either \pm 0.00005 \triangle or 0.0005 \triangle or \pm 4% \triangle of Net Wt. g

B-8

GRAVIMETRIC SAMPLE RECORD

Project/Client TEICHERT - TRUCKEE Test Date(s) 8-17-22 Analysis Date(s) 8-25-22 70 9-7-22

Method M5

Source BAGHOUSE OUTLET

	Lab Container	Tarc Wl. (g) from				Net Wt.	
Project Sample D	· Турс/#	Tare Sheet	Gross Wi. (g)	Date	Time	gain (mg)	Initial
RZM5-B-H.		Date	29.0996	9-1-22	16:26		RUA
PRGANIC FRACTION	1. 50ml	7-1-22	29.0995	9-2-2-2	- 16:38		RUA
	BEAKER		,				- vi
	102	Wt.					
		2909827	(29.0996)	}		1.4	
R3M5-B41.	2	Date	29,0171	9-1-22	16:32		RM
ORGANIC FRACTION	2 50ml	7-1-22	29.0169	9-2-22	16:44	•	Rah
	BEAKER						
	103 .	Wt.	/				• .
		(29.0158)	(29.0170)	ł		1. Z	
RIMS-B.H.	•	Date /	28.7699	91-22	16:38		RRI
ORGANIC FRACTICO	1 50ml	7-1-22	28.7699	9-2-22	16:50		· RM
	BEAKER						
BLANK	104	Wt					
	_ · _ ((28.7692)	(28.7699)	}		0.7	1
RIM5-BH.		Date	29.2978	9-2-22	18:30		RM
HZO FRACTION	50m1	25-1-72	29,2980	9622	18:12		RM
	BEAKER .						_
•	10'5	Wt					
		(29.2940)	29.29797	1		3.9	
RZMS-BH.		Date	28:6979	9-2-22	18:36		RM
HZO FRACTION	50m/	7-6-22	28.6978	9-6-22	18:18		RM
•	BEAKER						
, ·	110	Wt.					
		(28.6944)	K 28.6979	2		3.5	
R3M5-B-H.		Date	29.3680	9-2-22	18:42		RM
HZO FRACITON	50ml	7-4-22	29.3678	9-6-22	18:24		RAI
	BEAKER				,		
	111	Wt.					
		(29.3635)	(29.3679)	}		4.4	
R&MS-B-H.	-	Date	290841	9-2-22	18:48		RM
HZO FRACTION	50m1	7622	29,0840	9-6-22	18:30		RAA
, `	BEAKER				, , , , , , , , , , , , , , , , , , , ,		
BLANK	112	Wt.					
1	4	201 0835	×29.08417	2		0.8	
		Date	· · ·				
		W/L					
				•			

TARE to $0.00001 \pm 5\Delta$ Final Wt. to either \pm 0.00005 \triangle or 0.0005 \triangle or \pm 4% \triangle of Net Wt. g **B-9**

•

Bes	t Environm	ental						Ph (925) 455-9474; Fx	925) 455-9479
	Project ID:	: Teichert-T	Tuckee/ Baghouse Outlet	SAMPLE CHA	IN OF CUST	rody	BE PROJECT MANAG	SER: SA	
#	DATE	TIME	RVR OULIFELTA SAMPLE ID Run#/Method/Fraction/Source	CONTAINER size / type	Volume Te	torage emp °F	SAMPLE DESCRIPTION	ANALYSIS	TAT
-	08/17/22	7:40	Run 1 M 5 F.H/ NOZZLE RINSE	250 ML/ Glass	60001		D.I. WATER RINSE	P.M.	NORMAL
2	08/17/22	7:40	Run 1 M 5 F.H/ FILTER #	Q178	(ganarisano) and		QUARTZ FILTER	P.M.	NORMAL
æ	08/17/22	7:40	Run 1 M 5 B.H/ IMPINGER CATCH	500 ML/HDPE	500 ML		D.I. WATER	P.M.	NORMAL
4									NORMAL
Ŷ					0				
9	08/17/22	9:48	Run 2 M 5 F.H/ NOZZLE RINSE	250 ML/ Glass	60ml		D.I. WATER RINSE	P.M.	NORMAL
7	08/17/22	9:48	Run 2 M 5 F.H/ FILTER #	Q179	the second s		QUARTZ FILTER	P.M.	NORMAL
90	08/17/22	9:48	Run 2 M 5 B.H/ IMPINGER CATCH	500 ML/HDPE	566 ML		D.I. WATER	P.M.	NORMAL
6									
10									
11	08/17/22	11:34	Run 3 M 5 F.H/ NOZZLE RINSE	250 ML/ Glass	60ml		D.I. WATER RINSE	P.M.	NORMAL
12	08/17/22	11:34	Run 3 M 5 F.H/ FILTER #	Q180	Charantee and an and a second		QUARTZ FILTER	P.M.	NORMAL
13	08/17/22	11:34	Run 3 M 5 B.H/ IMPINGER CATCH	500 ML/HDPE	516 ML		D.I. WATER	P.M.	NORMAL
14									
15					,				
16					Sparl		ACEDONE BLANK		
17	08/17/22		R4/ BLANK			9	QUARTZ FILTER	P.M.	
18	08/17/22		R4/ BLANK	500 ML/HDPE	141202		D.I. WATER	P.M.	
19									
20	1								
21									
dS	ECIAL INS	TRUCTIO	NS: Record & Report all liquid sample volumes.						
į					niror th		ENTAL 330 STEAL TH CALIET LIVERN	MORE CA 94551	
Nu	omit Kesult	s to: Attn: 2	sunail Astour	4	BENI EL	MINIONITAN	ENTAL 333 STEALTH COUNT. LIVEN		
	Relinquishe	d by: Sult	Leil 7-17-22 Received by.	dla	(Sre)		Date: & 23~2 Time: 3	Was!:s	
	Relinquishe	d by:	Received by:				Date: Time:	And other states of the states	
	Relinquishe	d by:	Received by:				Date: Time:		

Ph (925) 455-9474; Fx (925) 455-9479

SAMPLE CONDITION AS RECEIVED: OK or not OK

B-10

f:\forms\field\coc.xls - 6/4/99

APPENDIX C FIELD DATA SHEETS

BEST ENVIRONMENTAL

Livermore, CA (925) 455-9474

Hard Trees

DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility:	Teichert Aggregate - Truckee	Run #:	CEC	Date:	08/17/22	
Location:	Baghouse Outlet	Barometric:	24.35	Leak 🖌 :	ОК	
Observers:		Personnel:	SA/BK	Strat.♥ :	ОК	
Expected R	un Time = 40 min	Std. Temp:	68			
Cylinder #s	•					

Analyte		02	CO2	NOx	CO	
Analyzer		200	200	600	48i	
Range		21.01	15	95.30	468.40	
Span Value		21.01	6.98	44.60	264.30	
	Time					Comments:
	6:28	0.01	-0.03	0.05	-0.20	
	6:29	0.01	-0.02	0.05	0.15	Unit #
	6:30	0.01	-0.02	0.04	0.08	
	6:31	0.85	0.96	0.08	2.32	
	6:32	8.86	12.00	0.05	39.32	Operating Conditions
	6:33	8.96	12.09	0.03	43.27	
	6:34	8.96	12.10	0.02	43.22	
	6:35	8.93	12.12	0.11	42.17	Fuel
	6:36	19.56	6.49	0.05	18.76	
	6:37	20.95	6.96	0.02	15.83	
	6:38	20.96	6.86	0.01	12.03	·····
	0:39	20.97	6.83	0.01	15.32	
	6:40	13.83	4.36	0.06	107.64	
	6:41	1.57	0.23	0.01	254.58	
	0:42	1.52	0.10	0.01	261.69	
	0:43	0.72	0.13	0.01	201.81	
	0:44	0.40	0.21	0.05	419.04	
	0:45	1.17	0.18	0.01	418.94	
	0:40	0.12	0.09	0.02	403.17	
	0:47	0.12	0.08	0.02	403.32	
	6.40	0.11	0.07	0.01	405.01	
	6:50	0.12	0.07	32.08	180.25	
	6.51	0.25	0.08	44 67	-0.23	
•	6.52	0.19	0.07	44.67	-0.23	
	6.53	0.19	0.00	44.60	-0.28	
	6:54	0.40	0.19	35.58	81.64	
	6:55	0.12	0.07	94.80	0.84	
	6:56	0.12	0.06	94.22	-0.65	
	6:57	0.12	0.06	94.22	-0.28	
	6:58	0.15	0.06	87.40	-0.46	
	6:59	0.19	0.05	44.28	-1.17	
	7:00	0.19	0.04	44.73	-0.50	
	7:01	0.19	0.05	44.79	-1.91	
	7:02	0.31	0.05	29.15	-0.41	
	7:03	0.25	0.04	5.96	3.32	
	7:04	0.25	0.05	5.97	41.60	NOx Converter

DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility:	Teichert Aggregate - Truckee	Run #:	1	Date:	08/17/22	_
Location:	Baghouse Outlet	Barometric:	24.35	Leak 🗸 :	OK	_
Observers:		Personnel:	SA/BK	Strat. :	ОК	_
Expected R	un Time = 40 min	Std. Temp:	68			
Cylinder #s	•					

Analyte		02	CO2	NOx	CO	THC	SO2	Timer		· · · · · · · · · · · · · · · · · · ·
Analyzer		200	200	600	48i					
Range		21.01	12.04	95.30	468.40					
Span Value		21.01	6.98	44.60	264.30					
	Time									Comments:
	7:25	15.17	3.02	22.61	49.55					
	7:26	15.17	3.01	22.56	49.21			ļ	ļ	Unit #
	7:27	15.18	3.00	22.47	47.87			<u> </u>	ļ	
	7:28	15.18	2.99	22.41	48.18			ļÌ		Oncerting Constitution
	7:29	15.17	2.99	22.57	48.38				ļ	Operating Conditions
ļl	1:50	15.16	2.98	22.72	48.03			+	<u> </u>	
└──── ₽	7.22	15.15	2.98	22.80	4/.01		ļ		 	Fuol
┝₽	7.32	15.14	2.98	22.92	40.01			+	<u> </u>	a H C A
	7.33	15.18	2.99	22.30	-+0.01 57 48					
-	7.34	15.42	2.04	21.02	60 00		<u> </u>	+	<u> </u>	
	7.36	15.50	2.00	20.75	64 67		 	1	<u> </u>	
I	7:37	15 46	2.70	20.98	66.36			1		
 	7:38	15.46	2.79	20.94	65.77		<u> </u>	1	<u> </u>	
1	7:39	16.59	2.29	17.33	52.87			1		
	7:40	15.49	2.75	20.52	87.97	l				
	7:41	15.45	2.74	20.36	102.56					
	7:42	15.44	2.78	20.59	84.68					
	7:43	15.46	2.76	20.84	55.03					
	7:44	15.46	2.76	20.76	62.30					
	7:45	15.45	2.75	20.63	60.31			ļ	ļ	
	7:46	15.46	2.74	20.53	58.07				_	
	7:47	15.47	2.70	20.71	57.07		_	<u>_</u>	L	
	7:48	15.47	2.69	20.81	57.55		<u> </u>		 	
	7:49	15.45	2.69	20.86	58.52		 	+	<u> </u>	
	1:30	15.45	2.69	20.81	57.10	 	 	+		
	7:52	10.45	2.69	20.69	56 70		+	+		
	7.52	13.40	∠.08 2.15	20.73	42 21		+	+	+	
	7.51	10.//	2.13	20.61	42.21		+		+	
	7.55	15.49	2.00	20.04	56.42	<u> </u>	+	+	+	+
	7:56	15.40	2.07	20.70	55 00	<u> </u>	1	+	1	
	7:57	15 55	2.08	20.03	54.81	<u> </u>	†	-	1	
	7:58	15 49	2.67	20.58	55.30	t	1	1	<u> </u>	
	7:59	15.49	2.67	20.60	52.16	<u> </u>	1	-		
	8:00	15.46	2.68	20.59	52.48					
	8:01	15.48	2.67	20.43	53.14					
	8:02	15.48	2.67	20.41	53.41					
	8:03	15.49	2.67	20.45	54.06					
	8:04	15.50	2.66	20.38	53.68					
	8:05	15.51	2.66	20.20	54.62			1		
	8:06	15.51	2.66	20.25	54.14				· · ·	
	8:07	15.50	2.68	20.21	56.14	ļ				
ZERO I	7:17	0.15	0.06	0.02	-0.33	ļ			<u></u>	
SPAN I	7:19	21.01	6.94	45.02	261.88	<u> </u>	<u> </u>	<u> </u>		-
Aver	age	15.47	2.75	20.87	3/.19	<u> </u>	<u></u>			-
ZERO f	8:17	0.14	0.08	0.05	-0.51			-	+	
SPANT	0:18	21.03	0.93	44.19	<u>203./0</u>	+	+		+	
Lero Drift %	/0 1/2	-0.1%	0.2%	0.0%	0.0%	+	+		+	
Span Drift	70 Ava	0.2%	-0.1%	-0.9%	57.85	+	+			+
L Corr.	Avg.	13.41	4.73	1 20.03	1 37.03	<u> </u>	<u> </u>		1	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]Zero Drift % = 100 * (Zf - Zi)/Intrument Range Span Drift % = 100 * (Sf - Si)/Instrument Range

DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility: Teichert Aggregate - Truckee	Run #:	2	Date:	08/17/22
Location: Baghouse Outlet	Barometric:	24.35	Leak 🗸 :	ОК
Observers:	Personnel:	SA/BK	Strat. :	OK
Expected Run Time = 40 min	Std. Temp:	68		
Cylinder #s:				

Analyte	02	CO2	NOx	CO	THC	SO2	Timer		
Analyzer	200	200	600	48i					
Range	21.01	12.04	95.30	468.40					
Span Value	21.01	6.98	44.60	264.30					
Time									Comments:
9:48	14.83	3.62	28.73	93.95					
9:49	14.83	3.61	28.82	96.17					Unit #
9:50	14.82	3.61	29.01	97.04					
9:51	14.82	3.63	29.03	97.37					
9:52	14.91	3.56	28.71	90.76		ļ			Operating Conditions
9:53	14.61	3.73	29.04	152.10		<u> </u>	<u> </u>		
9:54	14.50	3.13	29.19	151.90					Final
9:55	14.55	3.77	29.00	171.01		1			The second
9.50	14.00	3.70	20.75	43 71					
9.57	14.51	3.78	29.25	60.42					
9:59	14.51	3.77	29.28	197.80		<u> </u>	1		
10:00	14.48	3.79	29.19	138.13			1		
10:01	14.41	3.83	28.93	93.41					
10:02	14.53	3.75	27.96	104.40					
10:03	14.35	3.85	27.95	131.32					
10:04	14.27	3.90	28.38	132.13					
10:05	14.27	3.91	28.40	129.00					
10:06	14.27	3.92	28.43	135.06		<u> </u>		<u> </u>	
10:07	14.28	3.93	28.65	123.60				<u> </u>	
10:08	14./4	2 87	20.93	97.41					
10:09	14.39	3.0/	29.30	73 33			-		
10.10	14.43	3.87	29.33	62.57			+	<u> </u>	-
10:12	14.64	3.79	29.83	51.42					
10:12	14.69	3.73	29.83	46.03		1		1	
10:14	14.80	3.68	29.66	72.10		1			
10:15	14.79	3.68	29.75	90.98					
10:16	14.78	3.68	29.77	93.50					
10:17	14.80	3.68	29.68	95.03				<u> </u>	
10:18	14.80	3.71	29.65	92.73				ļ	
10:19	14.81	3.73	29.51	95.18					
10:20	14.73	3.74	29.46	117.89					
10:21	14.72	3.75	29.36	107 20					
10:22	13.08	3.38	21.00	112 22		+			
10.25	14.03	3.09	20.07	130.25					*******
10.24	14 63	3.87	29.45	130.16		1		1	
10:25	14.64	3.83	29.60	123.12			+		
10:27	14.68	3.80	29.80	113.33					
10:28	14.76	3.79	29.69	102.38					
10:29	14.83	3.78	29.42	86.95					
10:30	14.83	3.74	29.43	87.71					
10:31	14.83	3.72	29.60	94.66				ļ	
10:32	14.83	3.72	29.58	99.39				l	
10:33	14.83	3.73	29.57	100.35				ļ	
10:34	14.83	3.72	29.51	101.19				+	
7FPO1 0.17	14.84	3./1	29.33	102.98					· · · · · · · · · · · · · · · · · · ·
SPANI 8.18	21.05	6.08	<u><u> </u></u>	263 70		+			
Average	14.66	3.75	29.15	108.00		1		1	······································
ZERO f 10.46	0.12	0.18	0.06	-1.16			-		-
SPAN f 10:47	20.83	6.87	44.34	263.07				1	
Zero Drift %	-0.1%	0.9%	0.0%	-0.1%	l	1			
Span Drift %	-1.1%	-0.5%	0.2%	-0.1%					
Corr Avg	14.67	3.74	29.35	108.87	I				

Corrected Average = [Test Avg. - ((Zi+Zf) / 2)] * Span Gas Value / [((Si+Sf) / 2)-((Zi+Zf) / 2)]Zero Drift % = 100 * (Zf - Zi)/Intrument RangeSpan Drift % = 100 * (Sf - Si)/Instrument Range

BEST ENVIRONMENTAL

DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility: Teichert Aggregate - Truckee	Run #:	3	Date:	08/17/22
Location: Baghouse Outlet	Barometric:	24.35	Leak 🖌 :	ОК
Observers:	Personnel:	SA/BK	Strat.▼ :	OK
Expected Run Time = 40 min	Std. Temp:	68	*******	
Cylinder #s:				

Analyte		02	CO2	NOx	CO	THC	SO2	Timer	
Analyzer		200	200	600	<u>48i</u>			1 mici	
Range		21.01	12.04	95.30	468.40				 · · · · ·
Span Value		21.01	6.98	44.60	264.30				
	Time						L	I	 Comments:
	11:41	15.35	3.42	24.45	115.50		T	Γ	 T
	11:42	15.21	3.49	24.67	149.76				 Unit #
	11:43	15.20	3.53	24.83	140.67				
	11:44	15.11	3.54	24.88	156.80				
	11:45	15.05	3.56	24.93	161.67				 Operating Conditions
	11:46	15.03	3.57	25.12	155.95				
	11:47	15.00	3.59	25.43	155.38				
	11:48	15.18	3.50	25.14	119.89				 Fuel
	11:49	15.26	3.47	25.04	108.16				
	11:50	15.26	3.47	24.96	103.40				
	11:51	15.31	3.45	24.84	101.20				
	11:52	15.59	3.30	24.26	74.92				
	11:53	15.72	3.21	23.92	60.61				
	11:54	15.35	3.41	24.87	82.75				
	11:55	15.11	3.55	25.36	110.88				
	11:56	15.36	3.40	24.30	96.41	·····			
	11:57	15.16	3.50	25.00	92.52				
	11:58	15.02	3.38	25.71	93.05				
	11:39	14.97	3.62	25.91	84.33				
	12:00	14.95	3.03	25.80	/9.31				
	12.01	14.90	2.60	25.09	78.43				
	12.02	14.90	3.09	25.05	68 22				
· ·	12.03	14.20	3.00	26.23	18 68				
	12.04	15.15	3.55	20.12	40.00				
	12:05	15.10	3.55	25.90	43.47				
	12.00	15.15	3 54	25.95	45.63				
	12:08	15.15	3.54	25.65	49 17				
	12:09	15.42	3.41	24.89	45.99				
	12:10	15.78	3.23	23.38	42.82				
	12:11	15.36	3.48	24.80	54.94		·····		
	12:12	15.57	3.35	23.79	80.42				
	12:13	15.72	3.35	22.72	113.78				
	12:14	15.67	3.27	23.12	102.14				
	12:15	15.49	3.40	24.27	102.38				
	12:16	15.37	3.45	24.78	113.16				
	12:17	15.39	3.47	24.93	116.96				
	12:18	15.40	3.48	24.74	110.64				
	12:19	15.41	3.47	24.36	114.67				
	12:20	15.41	3.50	24.42	121.45				
	12:21	15.42	3.55	24.35	117.68				
	12:22	15.41	3.44	24.38	108.31				
	12:23	15.39	3.50	24.35	99.53				
	12:24	15.39	3.47	24.43	102.74				
ZERU I	10:40	0.12	0.18	0.06	-1.10				
SPAN I	10:47	20.83	0.0/	44.34	203.07				
ZEDO f	age 112.20	13.20	J.40	44.00	90.33				
SPAN F	12:39	20.01	0.15	0.03	-0.29				
Zero Drift 0	/2.70	AU.71 0 00/	0.90	44.10	<u>401.70</u>				
Snan Drift	26	0.070	-0.4 %	-0.2%	-0.2%				
Corr.	Avg.	15.35	3.44	25.05	97.68				

 $\frac{1}{1} \frac{1}{1} \frac{1}$

C-6

WINTS Check or Record Data PROCEDURE UNTTS Leak Check CEM system (set sample to 6 PSI then close off all but one rotameter and watch drop to zero) Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Linearity Check - set internal zero (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas C Bias Check - external zero (Cib) and cal gas (Ca) closest to stack gas, then check other cal gas C Bias Check - external zero (Cib) and cal gas (Ca) closest to stack gas - no analyzer adjustments allowed secs CO Response Time (RT) Check (time from ext zero to ext cal 95% response for slowest analyzer) Perform NOx Converter Check Y2 Y2 "Hg 24(3.5) Barometric Press Barometric Pressure Time 67! 2.5 Start Run #1 '2.5 c Y0 LTS 12.0 Sapply Voltage to the Van '2.5 c °F 4 Amolent Temp <60°F or 20°F less than ambient ' °F 4 Amolent Temp <60°F or 20°F less than ambient ' °F 53 Amolent Temp <60°F or 20°F less than ambient ' °F 54 Amolent Temp <60°F or 20°F less than ambient ' °F 63 Amolent	DATE: 8-1	7.22	FACILITY: Toichart - Truckee UNIT: Roushouse suffet
Check or Becord Data PROCEDURE PROCEDURE Letak Check CEM system (set sample to 6 PSI then close off all but one rotameter and watch drop to zero) Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Will be apply to the set of the traver (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas secs Start Run #1 V2 Perform NOx Converter Check Will I 2 O Supply Voltage to the Van VOLTS I 2 O Supply Voltage to the Van 2.5 E T PH VOLTS I 2 O Supply Voltage to the Van 2.6 Head Line Term P> 248%F Secs/of Fuel meter - seconds/revolution %F G %F G %F Fuel Temp %F Fuel Temp %F Fuel Temp %F	DATE: U * I		
Nets PROCEDURE PROCEDURE Leak Check CEM system (set sample to 6 PSI then close off all but one rotameter and watch drop to zero) Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Linearity Check - set internal zero (Ca) and cal gas (Ca) closest to stack gas. then check other cal gas Chiss Check - external zero (Cib) and cal gas (Ca) closest to stack gas. then one check other cal gas CB Response Time (RT) Check (Time from set zero to ext cal 95% response for slowest analyzer) Perform NOx Converter Check V/2 Perform NOx Converter Check V/2 "Hg 24(33) Barometric Press Barometric Pressure V/4 "Hg 24(35) Barometric Press Barometric Pressure V/2 "Hg 24(35) Barometric Press Barometric Pressure V/2 "Hg 24(35) Barometric Press Barometric Pressure V/2 "F 48 Knock-Out exit Temp >248°F 3 *1 W . C Start Run #1 "F 53 Ambient Temp (Ta) 1/2 "F 63 Ambient Temp (Ta) 2.60 "F F		Check or	
UNTS PROCEDURE PROCEDURE PROCEDURE PROCEDURE PROCEDURE PROCEDURE Procedure in the system (set sample to 6 PSI then close off all but one rotameter and watch drop to zero) Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Problem (RT) Check (time from ext zero to ext cal 95% response for alustments allowed secs Perform NOX Converter Check Perform Perform Perform Perform Perform Perform Perform		Record	
Leak Check CEM system (set sample to 6 PSI then close of fall but one rotameter and watch drop to zero) Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe Linearity Check - set internal zero (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas Bias Check - external zero (Cb) and cal gas (Ca) closest to stack gas, then check other cal gas secs Bias Check - external zero (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas Werther Check The Check (time from ext zero to ext cal 95% response for slowest analyzer) Perform NOX Converter Check With 3/4/1 (Start Run #1 C2 Start Run #1 VOLTS I Co Supply Voltage to the Van Start Run #1 VOLTS I Co Supply Voltage to the Van Start Run #1 VOLTS I Co Supply Voltage to the Van Start Run #1 VOLTS I Co Supply Voltage to the Van C °F G3 Ambient Temp (7a) I //2 // 2 // 4 // 4 PG G4 rescolef Fuel meter - seconds/revolution °F Fuel Temp °F Fuel Temp Start Run #2	UNITS	Data	PROCEDURE
Image: Construction of the second system		1	Leak Check CEM system (set sample to 6 PSI then close off all but one rotameter and watch drop to zero)
// Linearity Check - set internal zero (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas // Bias Check - external zero (Cib) and cal gas (Cib) closest to stack gas - no analyzer adjustments allowed secs @ O Perform NOx Converter Check (time from ext zero to ext cal 95% response for slowest analyzer) // Perform NOx Converter Check // // // // // // // // // // // // //		U	Determine Traverse Points (4, 6, or 8 per diameter use Figure 1-2 in CARB 1) & mark the CEM Probe
Bias Check - external zero (Cib) and cal gas (Cib) closest to stack gas - no analyzer adjustments allowed secs Seconse Time (RT) Check (time from ext zero to ext cal 95% response for slowest analyzer) Perform NOx Converter Check Image: Advised start analyzer) "Hg 24(35) Barometric Press Barometric Pressure Time 72 Start Run #1 VOLTS I 2 O Supply Voltage to the Van 3/1/1/1/4 °F 2.6 C Heated Line Temp >248°F 3/1/1/1/4 °F 4/2 Knock-Out exit Temp <60°F or 20°F less than ambient			Linearity Check - set internal zero (Ca) and cal gas (Ca) closest to stack gas, then check other cal gas
secs P O Response Time (RT) Check (time from ext car 05% response for slowest analyzer) Perform NOx Converter Check Perform P		10	Bias Check - external zero (Cib) and cal gas (Cib) closest to stack gas - no analyzer adjustments allowed
Perform NOx Converter Check 1^{12} Perform NOx Converter Check 1^{12} 1^{12} 3^{14} <t< td=""><td>secs</td><td>00</td><td>Response Time (RT) Check (time from ext zero to ext cal 95% response for slowest analyzer)</td></t<>	secs	00	Response Time (RT) Check (time from ext zero to ext cal 95% response for slowest analyzer)
"Hg 24.35 Barometric Press Barometric Pressure $2.5 \circ T \rho H$ Time $7.25 \circ T \rho H$ VOLTS 120 Supply Voltage to the Van ?F 2.65 Heated Line Temp >248°F ?F 2.65 Heated Line Temp >248°F ?F 4.8 Knock-Out exit Temp <60°F or 20°F less than ambient $?F$ 6.3 Ambient Temp (Ta) $1/2^{\prime\prime} d \cdot 24^{\prime\prime} \rho G - 64^{\prime} - 2.8$ secs/cf Fuel meter - seconds/revolution ?F Fuel Temp $63^{\prime} \circ 6$ End Run #1 ?F 6.2 Start Run #2 ?F Fuel Temp ?F Fuel Temp ?		1/	Perform NOx Converter Check
"Hg 24.35 Barometric Press Barometric Pressure 379 12.6 Time 67.25 Start Run #1 2.5 c 794 VOLTS 12.05 Supply Voltage to the Van 374 $V.C$ °F 2.5 c Heated Line Temp >248°F 374 $W.C$ °F 2.5 c Heated Line Temp >248°F 374 $W.C$ °F 6.3 Ambient Temp (Ta) $1/2/2'/2'/4'/2'/2'/4'/2'/2'/2'/2'/2'/2'/2'/2'/2'/2'/2'/2'/2'$			12 (B 7/1." V.V.V.
Time 67:25 Start Run #1 VOLTS 120 Supply Voltage to the Van °F 265 Heated Line Temp >248°F °F 978 Knock-Out exit Temp <60°F or 20°F less than ambient °F 63 Ambient Temp (Ta) 1/2// 82/4// PG-64-28 secs/cf Fuel meter - seconds/revolution °F Fuel Temp °F Fuel Temp °F Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp °F Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp °F Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp °F Fuel Temp °F Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp °F	"Hg	2435	Barometric Press Barometric Pressure
Time $67?25$ Start Run #1 $25 c$ $7PH$ VOLTS 120 Supply Voltage to the Van 31 $W.C$ $^{\circ}F$ 265 Heated Line Temp >248°F 31 $W.C$ $^{\circ}F$ 455 Knock-Out exit Temp <60°F or 20°F less than ambient			
VOLTS $12 \circ$ Supply Voltage to the Van °F 265 Heated Line Temp >248°F $3"$ W C °F 98 Knock-Out exit Temp <60°F or 20°F less than ambient	Time	07:25	Start Run #1 250 TPH
$^{\circ}F$ 265 Heated Line Temp >248°F $5^{\circ}I$ $W.C$ $^{\circ}F$ 98 Knock-Out exit Temp <60°F or 20°F less than ambient	VOLTS	120	Supply Voltage to the Van
°F Y8 Knock-Out exit Temp <60°F or 20°F less than ambient °F 63 Ambient Temp (Ta) 1/2/ (B 2 / 4 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	°F	265	Heated Line Temp >248°F 3 " W, C
°F 63 Ambient Temp (Ta) 1/2// 0.24// PG-64-28 secs/cf Fuel meter - seconds/revolution PG-64-28 °F Fuel Temp Start Run #1 Time ?F Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 10'S End Run #2 3.1 W.r. C Time 17:41 Start Run #3 V/W secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure ?F Fuel Temp ?F Fuel Run #3 <td>°F</td> <td>48</td> <td>Knock-Out exit Temp <60°F or 20°F less than ambient</td>	°F	48	Knock-Out exit Temp <60°F or 20°F less than ambient
secs/cf Fuel meter - seconds/revolution Conversion PSI A or G Fuel Pressure °F Fuel Temp Cold End Run #1 Time \$7.72 Start Run #2 secs/cf Fuel Pressure °F Fuel Pressure ?F Fuel meter - seconds/revolution PSI A or G Fuel Pressure ?F Fuel Temp ?F Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel Pressure ?F Fuel Pressure ?F Fuel Temp ?F Fuel Temp	°F	63	Ambient Temp (Ta) $1/2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$
PSI A or G Fuel Pressure °F Fuel Temp 63' c % End Run #1 Time 63' N % Start Run #2 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp °F Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp	secs/cf		Fuel meter - seconds/revolution
°F Fuel Temp 63' C 8 End Run #1 Time 9' 8 Start Run #2 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 28 C TPH Market Start Run #2 3.1 W - C Time 11' 9' 11' 11' 11' 11' 11' 11' 11' 11' 1	PSI A or G		Fuel Pressure
68' c% End Run #1 Time 9'.4% Start Run #2 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 10'.5'6 End Run #2 3.1 W.r <c< td=""> Time 11'.41 Start Run #3 V/22 Secs/cf Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp V/22 Start Run #3 Secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp V/22 TPH-1</c<>	°F		Fuel Temp
Time 97.4% Start Run #2 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Temp °F Fuel Temp Image: Comparison of G Fuel Temp Time II?YI Start Run #3 V/22 Secs/cf Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp V/22 Start Run #3 Secs/cf Fuel Temp V V/22		68:08	End Run #1
Time 91.48 Start Run #2 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Temp 2.3.0 TPH 0°F Fuel Temp 3.1 W.r. C Time Time Fuel meter - seconds/revolution PSI A or G Fuel meter - seconds/revolution PSI A or G Fuel Temp 0°F Fuel meter - seconds/revolution PSI A or G Fuel Pressure 2.507744 0°F Fuel Temp 0°F Fuel Temp 0°F Fuel Temp			
secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure 220 TPH °F Fuel Temp 230 TPH Image: Time Image: Time Image: Time Time Image: Time Start Run #3 secs/cf Fuel meter - seconds/revolution Yes PSI A or G Fuel Pressure ZED TPH °F Fuel Temp Image: Temp °F Fuel Temp ZED TPH	Time	09:48	Start Run #2
PSI A or G Fuel Pressure 220 TPH °F Fuel Temp 220 TPH Image: Image	secs/cf		Fuel meter - seconds/revolution
°F Fuel Temp Z G G PT1 Image:	PSI A or G		Fuel Pressure
Image:	°F		Fuel Temp 200 / / / /
Time Image: Start Run #3 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 2007774		10:56	End Run #2 3.1 W. C
Time III Start Run #3 secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 20774			1/04
secs/cf Fuel meter - seconds/revolution PSI A or G Fuel Pressure °F Fuel Temp 207774	Time	11.41	Start Run #3 VV
PSI A or G Fuel Pressure °F Fuel Temp 2507PH	secs/cf	1	Fuel meter - seconds/revolution
°F Fuel Temp LOU / P/ 1	PSI A or G		Fuel Pressure
loto #End Run #3	°F		Fuel Temp LDU / Y / V
		12:25	TEnd Run #3

	O ₂	CO ₂	NOx	CO	THC	NO2
Analyzer	200	200	600	48		
Range	21.01	15	95.3	468.4		
Span Value (low)	0	0	. 0	ð		
Cal Value (low)						
Cyl. #						
Exp Date						
Cal Value (mid)	8.94	6.98	44.6	264.3		
Cyl.# DT	45735 (K9'0096	CC99627	CC19352	7	
Exp Date	6-6-20	7-19-29	1-27-25	1-31-30		
Cal Value (Hi)	21.01	12.04	95.3	1968 y		6.585
Cyl. # 🤇	\$90096	XYS735	CC181599	SA17431		xc500632
Exp Date	7-19-29	6-6-30	9-7.29	8-30-29		7.8-24
EVETEM DESPON	EF TIME (coop)	60	160			

T FIAT 1 :5)

ł

BEST ENVIRONMENTAL

Livermore, CA 925-455-9474

		Isok	inetic	Sampl	ing Daf	a Shee	et (Metl	10d	5	_) `					
Facil	itv: 7	Traheat	TTUL	ie I	Date: 🔗 -	-17 -	W	Run #:	/ Р	erson	nnel:	BK	SA		
	I	Facility Informat	ion	T		Equipm	ent Inform	ation		Sa	mplin	g In	forma	tion	
I	location:	Juplieur Out	e i	1	Meter	τ#: <u>Δ</u> ζι	Pitot	: #: 11157			РЪ	ar:	24.	35	
Ē	ort Dia.: _	3 Dep	th: <u>6.5/5</u>	135		Yd: 23	-0.965 (Cp: <u>84</u>			Pstat	ic:	<u>.s</u>	,	
a.	Fitting:	Leng	th: _/		ΔH	@: <u>_4</u>	f23 Noz	#: 25	— h	1 - TZ	% (// ~ (2 <u>2</u> :	15	¥/	
	Port Heigh	nt from deck	ļi	_	Filter Boz	c#: <u>8</u>		D _n : _ 0 ,20	02	⊢ '¥) ₂ : 	20	1	
S	tack Dia	6.25×35 AT	ea: <u>135</u> .	<u>31</u>	Filte	r#: <u>[28</u>	<u> Mag</u>	. #	$\leq $	-	% H ₂	.0:	27	2	
	Upstream	n from disturban	ce:		Prob	e #: <u>\$ QIG</u>	<u>7</u> Uml	b. # 🚄	- 1	R	un M:	T sur	5/.5		
D	ownstream	n from disturban	ice:		Pyromete	с <i>#</i> :							· · ·		i
Б	iitial LC:	063		Final	LC: <u>6</u>	DB			I	Pitot I	LC:		\checkmark		
	CFM @	20 "	Hg	CFM	í @ 🗕 💋	3	"Hg	Сус	lonic Flov	w Che	eck _		V		
		Ges Mater	Meter Te		Stack	٨P	AH	Meter	SORT	Te	ump, °F	Ţ	Vac	Notes	1 .
Point	i me	Vol. Pr ³	In	Out	Temp, °F	_		ACFM	Δ₽	Probe	Filter]	Imp.	"Hg		
7	740	8017050	63	602	197	20	241	87	KUM \$	2304	205 4	Ø	5		
5	7.5	- ut.	65	64	191	1,9	2.31	80	1.378	1	1	1	51		
3	5	850.5	66	64	191	18	2,14	.841	1.342			\square	5		1
2	2.5		671	64	190	1175	2.14	. 43.	1.323		$\downarrow \downarrow$	\square	8		4
	10	854.6	68	64	190	15	2.08	_8(1384			_ _	5		4
6	125	9.566	69	65	140	15	2.08	- 82	1:304			\square	S		4
ĨŽ.	15	8587	7]	65	189	1.0	1.97	.74	1.2.65		++	\rightarrow	S.		4
18	175	860.7	72	65	188	1.5	1.85		1.225		\rightarrow	+	4		4
4	20	462-7	73	66	188	I.Y	1.80	-71	1,213			+	7		-
SA-	275	869,635			1.6 T	2.45	2.11	0.6	1414	Soe	1765	12	1		-
14	Stor-	869635	-/5	61	14.15	R HS	2140	î.C.C	1 25/4	100	2009		6		1
13		000-1	-15	19	141	19	2.24	. 27	1.70 2			\uparrow	6		
1	17.1	8717-	7.6	61	114	3 7	210	. 1/2	1.304			•	6		1
H	10	073.2	76	68	140	1.7	210	.82	1.384				6.		
1 1	125	075.3	71	68	190	1:5	2,10	r	1.304			1	6]
1	1.5	877.3	28	69'	140	1.1	211	.83	1.304	$ \rangle$			6		
a	125	82. 5	79	69	190	17	211	8	1,304		\square	4	6		
9	7,0	881.5	80	20	190	66	hag	,40	1263	\sum		/	55	d.	_
4	- 2NS	483556	-	~	<u>, e</u>	1 Y	~		-			21-			-
	Ø	883.536	77	71	181	1.4	223	85	1342	1230	Es 1	<u>s</u>	8		-
LÅ	25	885 1	78	71	142	14	12.23		1.342		-7	+	15		4
<u></u>	1 3	887.6	19	72	142	12	2.11	153	1,304	1/-	$\left \left(- \right) \right $		10	· · · ·	-
	25	889, 1	80	71	199	<u> </u>	2.10	1.85	1204	++	\uparrow		e le	· · · · ·	
e e		891 4	81	15	199		2.11	02	1.300	+			5		1
-4		30329	81	701	144	148	2.11	1 4	12.92	++-		H	5		
H	17,5	876-0	84	74	195	11)	2.11	83	1354	$\uparrow \uparrow$	1	\square	5		
	24	990/2/	001	25	197	1.6	1.98	141	1215	17	1	T+	3	1	
	5005	902 1078				1									
	2.06	55,028	17	2	191		2,10		1.318						
	<u>0.3 ¢</u>	Moist	ire Data'	· · · ·			tack Inform	nation	14ª N. 143	Fie	ld Ca	lcula	tions		. .
<u> </u>		Initial	Final	Net	Rinse	Electric	ity YE	S NO	Sample	Vol.,	dscf:				1
· 1	inger #1	100	3841	284	1	Probe S	tand YE	s no	l î	%	H ₂ O:				1
Im	pinger #2	100	116	116		Port Th	reads YE	S NO		1	MWs:				
Im	pinger(s) #	£ 1000				Platform	a Ht	*]						
I.m	pinger(s) #	ŧ				1			Stac	k Ve	L, ft/s:				_
Sit	ica Gel:	234	1746	12		4			Flow	rate,	actm:				47
		Total N	et / Rinse:	312		-1			Flow I	rate, d				L	471
L_		Total Sampl	e volume	1					70.	ISORI	TOTICS:	<u> </u>			_ _ _
							Ч.д.	n Mol Class							
BEST ENVIRONMENTAL

Livermore, CA 925-455-9474

e ⁻	Isok	inetic S	Sampli	ing Dat	ta Shee	et (Metl	10d	5)				1	
Facility: +ill	Chever	tout	e I	Date: 👸	14	27	Run #:	2 Р	erson	nel:	B	K S	W.	
Facilit	y Informat	ion			Equipm	ent Inform	ation		San	npling	g Ini	forma	tion	
Location: Dat	ter	(Meter	r#: <i>∐\$[</i> ;;	# Pitot	:#: P214	7		РЪа	ur: 🎽	24,	3.5	
Port Dia.: 🔭	Dep	th: <u>515/5</u>	BJ	Yd: 7065 Cp: ,84					Pstatic: S					
Fitting:	Leng	th:	<u> </u>	$\frac{\Delta H@: 2.30}{E:1+a} \text{ Noz #: } \frac{25}{222}$					70 U2				1.17	
Port Height from	n deck			Filter Box #: S D_n : 202					- 3. H-0: 2.				01	
Stack Dia: 3625	<u>(3</u> 18 AT	ea: <u>1353</u>		Filte	I#: <u>]/</u> °		. #. - #	$\leq \mid$	'D	70 II2' m Mi	U	19	<u>s</u>	
Upstream from	i disturban disturban	ce:	-	Pyrromete	e#: <u>re/7</u>		5. #	[<u>Ku</u>			61-3		1
Downstream from			I	1 910111010	<u>а п.</u>							·····		1
Initial LC: 🔪 🖉	00		Final I	LC: <u>02</u>	2		_	. F	ritot L	,C:	<u></u>			
CFM @	""	Hg	CFM		<u>}</u>	"Hg	Сус	clonic Floy	v Che					
Point Time Ga	is Meter	Meter Ter	np, °F	Stack	ΔP	ΔĦ	Meter	SQRT	Ten	np, °F		Vac.,	Notes]. ·
· · · · · ·	ol, Fr	In	Out	Temp, "F			ACFM,	<u>ک</u> ۳ ۱	Probe F	ilter lı	mp.	"Hg		
1 9:42 907	1.803	81	84	199	1.9	2.20	. 55	1378	25 4	25 4	52	2		4
2.25 90	î.8	82	8(201	19	8.20	- 83	10578	$\rightarrow +$	$\rightarrow +$	Ţŀ	5		4
3 8 912	D	83	89	202	1.8	Z.08	.\$3	1.542		++	++	T		-
4 78 900	1./	KA	81	202	18	2.09	.83	1.342	++	++	+	2		4
5 10 96	62	87	81	202	111	1.98	.81	1724	++	++	+	X	<u> </u>	4
8 120 94	8.4		81	7 5.1	17	100	101 VI	1,200	++	++	+	5		1
7 15 720	2	40	20	209	1. 1 1. C	1.98	70	1245	++	$\uparrow \uparrow$	++			1
9 20 92		87	¥ ?	205	1.1.	286	.79	1.265	\mathbf{T}	71	t			
45 715 92	6264	~	-							-		-		
1 0 92	6.268	93	86	205	1.9	222	. 86	1.378	7zek	25 4	60	5	-	
2 28 92	82	92	80	205	1.9	2.22	.86	(378		(5	5		
3 8 93.	0.4	93	86	204	6.8	11.5	. 84	1.342	-+		$\left \right $	5		·
4 75 93	25	13	87	204	1.7	1.29	92	1.304				4		-
8 10 93	4.5	45	87	203	1.7	200	, 83	1,304	-	/}	+	5	-	4
6 125 93	6.5	16	87	203	1.2	6.00	,82	1.304		- $+$ +	+	ری است		-
7 15 75	8.8	41	88	204	$\left \begin{array}{c} 1.6 \\ 1 \end{array} \right $	1 10	50	1205	· ·	-++	+	9		-
9 113 19	0-4	14	<u>87</u> \$9	204	16	1.49	- 20	1245		-++		5		-1 ·
W 222 64	14.942	$\frac{n}{2}$	-07		1.0	-				- +	5			1
1 109 94	0 747	96	ND	782	1.9	Z24	:87	1.378	726	aut	ζsz	5		1
2 25 94	6.3	46	90	204	1.8	2.12	.84	1.342))	1	5	ſ	
3 5, 94	18.5	96	20	2.05	1.2	2.00	182	1.304		$\left(\right)$			·	
4 7.5 40	0.5	96	91	205	1.7	200	. 82	1.334			<u></u>	<u> </u>].
5 10, 90	525	17	91	205	1.2	2.00	82	1.304	↓	$\left \right $		<u> </u>		
6 105 7.0	54.5	.98	91	205	1.7	2.00	1.82	1.304)	$\left(- \right)$		<u> </u>	<u> </u>	-
1, 15, 1.	56.7	59	9/	203	1.1	12.01	182	11.509	$\left \left(-\right \right $	\rightarrow	+			-1
<u>5</u> 10 9	8-7	170	72	2005	1.6	120	1.80	17.45	╞╧┨		<u> </u>	+	<u> </u>	-1
4 11 96	2 1 77	101	VC	000	1,6	1.90	<u>+« ru</u>	1-26)					1	-1 .
J WS 76.	AIBA		7_1	191	1	12.00	1	1.310				1		
10:34 L	1001		<u> </u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		d hotioni · ·	<u> </u>	• 107-1	d C -1		tinio		-1 :-
	, 11/1015tu	Te Data	Net	Rinee	Flectric			Sample	Vol Vol	dscf	لت الم	هيبك		<u> </u>
T		rman 2011	1401		Prohe St	tand VE		1 campio	%1	<u> </u>			•	
Tunpinger #7	1NO LASA	170	000	-	Port Th	reads YE	S NO		M	ſWs:				-1
$\frac{1}{1} \frac{1}{1} \frac{1}$	100	4410	346		Platform	n Ht.					······			1
Impinger(s) #		120	20		1			Stac	k Vel	ft/s:				
Silica Gel:	7410	7(e)	15]			Flow	rate, a	cfm:		•		
	Total N	et / Rinse:	381					Flow r	ate, de	fon:	<u></u>		C	28
То	otal Sample	e Volume:	<u> </u>					%1	sokine	etics:	2011		<u> </u>	ЦĂ.
														i i s

		Iso	kinetic	Sampl	ling Da	ta She	et (Met	hod	5	_)					
Facil	ity: Ti	clart 7	Tito	•	Date: 💈	217 3	シン	Run #:	3	Perso	nnel:	K K	SA		
		Facility Informa	ntion			Equipu	nent Inform	nation		Sa	amplin	ıg In	forma	ation	
]	Location:	contest			Meter #: $25/47$ Pitot #: $Ph 197$					1 Pbar: 29,35					
I	Port Dia.:	<u> </u>	pth: <u>.5.5/</u>	<u>573.5</u>	Yd: <u>445</u> Cp: <u>84</u>										
	Fitting:	Len	gth:			$\begin{array}{c c} \Delta H(\underline{\theta}; & \underline{\mathcal{F}}_{1/2} \cup \mathbb{N} \text{ oz } \# & \underline{\mathcal{F}}_{2/2} & \underline{\mathcal{F}}_{1/2} \cup \underline{\mathcal{F}}_{1/2} & \underline{\mathcal{F}}_{1/2} \cup \underline{\mathcal{F}}_{1/2} & \underline{\mathcal{F}}_{1/2} & \underline{\mathcal{F}}_{1/2} \cup \underline{\mathcal{F}}_{1/2} & \underline{\mathcal{F}}_$						10	535		
_	Port Heig	ht from deck			FUTER BO	$\frac{2\nu}{2}$	3.4% CU2: 2.40								
s i S	tack Dia:	<u>3625/53</u> 15 A	IEa: 13 9	531	FUIE		\angle % $H_2O:$ ZC								
	Upstream	n from disturba	nce:		Prot	be #: [][[]]	<u>Z</u> 0m	.b. #				<u></u>	61.5		
	ownstream	n from disturba	nce:		Pyromete	⊐I#;				L			·		1
Б	nitial LC:	.000		Final	LC:	101.	-			Pitot	LC: _				
	CFM @	14	"Hg	CFN	M@	14	"Hg	Су	clonic Flo	ow Ch	neck:	1	\leq		
B _1;_4	Timese	Care Methor	Meter T		Stack	۸۳	AH	Meter	SORT	1	emp. °F	Т	Vac	Notes	1
Point	1 mme	Vol. Ft ³	In	Out	Term, "F		· · · ·	ACEM	۵P	Probe	Filter	Imp.	"Hg		
H	1134	41.79 AV	941	qL1	202	2.0	2,20	86	12414	120	26 K	50	4		1
2	. 5.8	9853	93	93	203	1.9	208	84	1/378	1	1	}	4		1
3	- Contraction of the second se		94	97	203	18	190	82	1.342	11			K		1
4	75	9702	96	93	204	1.8	1.28	-82	1.342	·L		71	4		1
13	10	970 7	96	43	204	1.7	1.87	.71	1.304		Π	1	4		1
1	125.	4736	98	93	205	1.7	1.87	- 79	1304				4		
5	15	9756	94	94	207	1:7	1.87	.79	1.304	$ \setminus$	$\left[\right]$		4		
8	17.8	477.6	100	97	206	1.6	1.70	.77	1,265	+(2		
9	20	979.5	101	94	200	126	1.76	.77	1-201	\top					
4	228	9.81375					1-	~	<u> </u>	\square	<u> </u> , †		-		
Ī	1159	981.375	191	194	213	1.9	2.07	54	1.370	1238	248	(sr	9		
2	25	983.4	100	95	214	1.9	2.07	.54	1325	1	$\downarrow (\downarrow$	\bot	4	·	_
3	8	985.4	100	98	216	1-8	1-25	-81	1.342	<u>_</u>	$\downarrow \downarrow \downarrow$	+	4		4
4	715	187-6	100	96	217	128	1.25	.81	1.842	╘┨╌┥╴	+++		17		4
L	10	989-5	100	96	218	1.7	1-85	-79	1.384	4/-	++		19_		4
6	128	991.4	100	95	214	1-1-	1 25	1.14	1,004	$ \rightarrow $	+++		14		-
4	15	193.4	101	95	209	1.1	1.87	-80	1.304	$+ \langle$	+ + +	\rightarrow	17	1	-
	1/5	1955	101	15	206	100	1.70	2011	1710		\rightarrow	<u> </u>	19	<u> </u>	-
4	1 30 d	1911	102	- 7.5	206	6	1-11	.17	1-200		<u> </u>		\vdash		-
14	ary ch	999 051	10	51	7.07	19	1710	.04	1224	1 2234	1260	10.	4		\neg
1	φ	149.01	aJ		5.00	1:5	140	122	1747	21	7	-00	14		-
H	1 mg	10010	94	10	200	12	1.99	87	1.345	2	+	17	6	· · · ·	1
14	78	10007	100	GL	2.00	117	1.89	1 80	1.30	.v	+(\mathbf{t}	4		1
H		0072	101	41	200	1.7	1.89	.60	1.300	11	17	\uparrow	4		1
1	1 ASK	DD & D	1.102	ab	202	11.7	1.84	. 80	1.38	y)		1	4		7
1×	100	ID M D	103	94	206	167	1.84	183	1.300	115	11	1	14		
1	178	DIAN	124	46	708	1.6	12.76	1.78	1265	75	12	\square	3		
A	1 20	1214,3	104	96	7.07	1.6	1.27	178	1265	-			حر		
SI	NB	1016.616	1												
1	21 <0	\$3716	1	2	191		2.1]	1.318	ビ					
·	<u></u>	Moist	tire Data'			1	Stack Infor	mation	1.	Fi	eld Ca	lçula	rions		T
<u> </u>	<u></u>	Initial	Final	Net	Rinse	Electric	ity YE	S NC	Sampl	e Vol	, dscf:		<i>.</i>		1
· Im	oinger #1	100	3012	207	-	Probe S	Stand YE	S NC		%	6 H ₂ O:			4	
Im	pinger #2	1100	1241	24		Port Th	reads YE	S NC			MWs:				
Im	pinger(s) i	¥ 1		,		Platfor	m Ht.						n References	u Ar s	
Im	pinger(s)	¥						1	Stz	nck Ve	el, ft/s:			49. 1	
Sī	ica Gel:	761	776	15		4			Floy	v rate,	, acfin:	l <u>es à</u>		· -	
		Total 1	Net / Rinse	: 33)		_	AN STREET		Flow	rate,	dsfcm			— C	_ C
		Total Samp	le Volume	s: `					%	lsoki	netics:				_^

APPENDIX D STRIP CHART RECORDS

(1) A state of the state of

D-1

APPENDIX E CALIBRATION GAS CERTIFICATES

E-1

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

A Contraction of the second se

CERTIFICATE OF ANALYSIS / EPA PROTOCOL Fill Date: 05/25/2022 Certificate Issuance Date: 06/08/2022 Customer & Order Information Lot Number: 70086214507 Linde Order Number: 69448537 BEST ENVIRONMENTAL SERVICES Part Number: NI CD12CO35E-AS Cylinder Style & Outlet: AS CGA 590 339 STEALTH CT LIVERMORE CA 94551 Customer PO Number: 46 Cylinder Pressure and Volume: 2000 psig 140 ft3 **ProSpec EZ Cert** Certified Concentration NIST Traceable Expiration Date: 06/06/2030 Expanded Uncertainty Cylinder Number: DT0045735 12.04 % Carbon dioxide ± 0,06 % 44.9 ppm Carbon monoxide ± 0.4 ppm ± 0.05 % 8.94 % Oxygen Balance Nitrogen Certification Date: 06/06/2022 Term: 96 Months Expiration Date: 06/06/2030 Certification Information: This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG. CO responses have been corrected for CO2 interference. CO responses have been corrected for O2 interference. CO2 responses have been corrected for Oxygen IR Broadening effect. O2 es have been corrected for CO2 Interference. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Type / Cylinder #: GMIS / CC176580 1. Component: Carbon dioxide Reference Standard: Concentration / Uncertainty: 14.26 % ±0.03 % Requested Concentration: 12 % Expiration Date: 01/21/2030 Certified Concentration: 12.04 % SRM # / Sample # / Cylinder #: NTRM / N/A / CC726055 Horiba VIA-510 S/N 20C194WK Instrument Lised: Traceable to: SRM Concentration / Uncertainty: 19.34% / ±0.03% NDIR Analytical Method: SRM Expiration Date: 01/12/2027 Last Multipoint Calibration: 06/06/2022 06/06/2022 First Analysis Data: Date Second Analysis Data: Date 12.04 Z: 0 14.26 C: 12.06 Conc: 7. 0 R: C: ٥ Conc: ۵ R: 0 14.29 Z: 0 C: 12.07 Conc: 12.05 R: 0 7: 0 C: 0 Conc: 0 R: 12.04 Z: 0 C: 12.06 R: 14.31 Conc: Z: 0 C: 0 R: 0 Conc: 0 % 12.04 UOM: % Mean Test Assav: % UÔM: % Mean Test Assay: Type / Cylinder #: NTRM / CC78493 2. · Component: Carbon monoxide Reference Standard: Concentration / Uncertainty: 100.1 ppm ±0.8 ppm Requested Concentration: 45 ppm Expiration Date: 07/09/2027 Certified Concentration: 44.9 ppm SRM # / Sample # / Cylinder #: NTRM / 190703 / CC8737 Horlba VIA-510 S/N 576876015 Traceable to: Instrument Used: Analytical Method: NDIR SRM Concentration / Uncertainty: 100.1 ppm / ±0.8 ppm SRM Expiration Date: 07/09/2027 Last Multipoint Calibration: 06/06/2022 Date 06/06/2022 Second Analysis Data: Date First Analysis Data: 44.9 R: 100.1 C: 44.9 Conc: Z: R: 0 C: Conc: 0 Z: 0 0 R: 100.2 7. ۵ C: 44.9 Conc: 44.9 R: n 7. n C: 0 Conc: 0 Z: C: 44.9 R: 100.1 Conc: 44.9 Z: 0 C: 0 R: 0 Conc: 0 0 44.9 UOM: ppm Mean Test Assav: ppm DOW: DDM Mean Test Assav: ppm Type / Cylinder #: NTRM / DT0010262 Component: Oxygen 3. Reference Standard: Concentration / Uncertainty: 9.875 % ±0.040 % Requested Concentration: 9 % Expiration Date: 11/18/2022 8.94 % Certified Concentration: SRM # / Sample # / Cylinder #: NTRM / 170701 / DT0010262 Siemens Oxymat 6E S/N 7MB20211AA000CA1 Traceable to: Instrument Used: SRM Concentration / Uncertainty: 9.875% / ±0.040% Analytical Method: Paramagnetic SRM Expiration Date: 11/18/2022 Last Multipoint Calibration: 06/06/2022 Date 06/06/2022 Date Second Analysis Data: First Analysis Data: 8.922 8.94 Conc: 0 7: n R: 9.875 C' Conc: z: D R: ٥ c٠ n 8.927 R: 9.881 Z: 0 C; Conc: 8.94 R: 0 Z: 0 C: 0 Conc: 0 C: 8.921 9.822 Conc: 8.94 0 0 R: Z: 0 0 R: Conc: Z: 0 C: Mean Test Assav: 8.94 % UOM: % % UOM: % Mean Test Assav:

Analyzed By

Courtney Z

Certified By

Ulwn Mr Nelson M

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is aftered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information goes extended on such information, such information.

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

BEST ENVIRONMENTAL SERVICES 339 STEALTH CT LIVERMORE CA 94551 Certificate Issuance Date: 07/20/2021 Praxair Order Number: 45384969 Part Number: NI CD7C08E-AS Customer PO Number: 17 Fill Date: 06/16/2021 Lot Number: 70086116702 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certification Information: Certification Date: 07/19/2021 Term: 96 Months Expiration Date: 07/19/2029

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100-PSIG.

CO2 responses have been corrected for Oxygen IR Broadening effect, CO responses have been corrected for CO2 interference. O2 responses have been corrected for CO2 interference.

alytical Data:	(F	R=Reference Stand	lard, Z≂Zer	o Gas, C	C=Gas Car	ndidate)									
. Component:	Carbon dioxi	de				Reference S	tandard		Type / C	Cylinder #:	GMIS	/ CC256	638		
Requested Con	entration: 7 %				•		c	Concentra	tion / Ui	ncertainty:	6,99 %	6 ±0.02 %	6		
Certified Conce	tration: 6,98	%							Expira	ation Date:	05/24/	2027			
Instrument Used	: Horib	a VIA-510 S/N 200	C194WK			Traceable to	: SRM	//#/Sam	ple #/ (Cylinder #:	SRM	1674b / 7	-H-077FF	10631	
Analytical Metho	d: NDIR					SR	M Conce	intration (enter wi	th units) /	6.944	% / ±0.01	3%		
Last Multipoint (alibration: 06/21	/2021				. –		SRI	v Expira	ition Date:	08/1//	2019			
First Analysis	Data:		Date	07/19/	2021		Secon	d Analys	is Data:	: '			Date		
Z: 0	R: 6.99	C: 6.98	Conc:	6.98			Z:	0	R:	0	C:	0	Conc:	0	
R: 6.99	Z: 0	C: 6.98	Conc:	6.98			R:	0	Z:	0	C:	0	Conc:	0	
Z: 0	C: 6.99	R: 7	Conc:	6.99			Z:	0	C:	0	R:	0	Conc:	0	
UOM: %		Mean Test	Assay:	6.98	%		UOM:	%			Me	ean Test	Assay:		%
Component:	Carbon mone	oxide				Reference S	tandard	:	Type / 0	Cylinder #:	GMIS	/ CC707	385		
Requested Con	entration: 17 pp	m					C	Concentra	ition / U	ncertainty:	24.51	ppm ±0.	04 ppm		
Certified Conce	tration: 16.9	ppm							Expira	ation Date:	10/09/	2027			
Instrument Use	: Horib	a VIA-510 S/N 57	6876015			Traceable to	: SRI	Λ#/Saπ	ipie #/(Cylinder #:	SRM	2635a / 5	58-E-34 / FI	F10666	
Analytical Method	d: NDIR	t.				SR	M Conce	entration (enter w	ith units) /	24,51	2 ppm / ±	:0.029 ppm		
Last Multipoint (alibration: 07/02	2/2021				_		SRI	vi Expira	ation Date:	03/28	2021			
First Analysis	Data:		Date	07/19/	2021		Secon	d Analys	is Data:	:			Date		
Z: 0	R: 24.5	C: 16.9	Conc:	16.9			Z:	0	R:	0	C:	0	Conc:	0	
R: 24.5	Z: 0	C: 16.9	Conc:	16.9			R:	0	Z:	0	C:	0	Conc:	0	
Z: 0	C: 16.9	R: 24.6	Conc:	16.9			Z:	0	C:	0	R:	0	Conc:	0	
UOM: ppm		Mean Test	t Assay:	16.9	ррт		UOM:	ppm			M	ean Test	Assay:		ppm
. Component:	Oxygen					Reference S	tandard	:	Type / (Cylinder #:	GMIS	/ ND292	87		
Requested Con	centration: 21 %						C	Concentra	tion / U	ncertainty:	20,90	% ±0.02	%		
Certified Conce	ntration: 21.0	1 %							Expira	ation Date:	09/01	/2028			
Instrument Use	: 7MB:	20211AA000CA1				Traceable to	: SRI	VI#/Sam	nple#/	Cylinder #:	SRM	2659a / 7	71-E-19 / F	F22331	
Analytical Meth	od: Para	magnetic				SR	M Conce	entration	enter w	ith units) /	20,86	3% / ±0.0	021%		
Last Multipoint	Calibration: 07/14	4/2021						SR	V Expire	ation Date:	08/23	/2021			
First Analysis	Data:		Date	07/19/	/2021] [Secon	d Analys	is Data	;			Date		
Z : 0	R: 20.9	C: 21.01	Conc:	21.01			Z:	0	R:	0	C:	0	Conc:	0	
R: 20.9	Z: 0	c: \$1.01	Conc:	21.01			R:	0	Z:	0	C:	0	Conc:	0	
Z : 0	C: 21.02	R: \$20.91	Conc:	21.02			Z:	0	C:	0	R:	0 /	Conc:	0	
иом: %		Mean Tes	t Assay:	21.01	%		UOM:	%			M	ean Test	Assay:		%
		/				- 1				1	·····	-t	/		
										L		:/			
		/							í,	1 11		11			
Analyzed By	Jose Vasqu	162				Certifie	d By		Leea	nna Flores	5	11			
		1													
		1													
		d at your request b	v qualified	exnertev	within Pres	air Distribution. In	c. While	we belle	ve that t	the information	ution is :	accurate	within the I	imits of	the an

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, inc. While we believe that the information is accurate within the initia or the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, Inc., arising out of the use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, Inc., arising out of the use of the information.

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

seedistanserantaseeee Fill Date: 01/10/2022 Certificate Issuance Date: 01/27/2022 Customer & Order Information Lot Number: 70086201011 Linde Order Number: 61107518 BEST ENVIRONMENTAL SERVICES Cylinder Style & Outlet: AS CGA 660 Part Number: NI NO45ME-AS 339 STEALTH CT LIVERMORE CA 94551 Cylinder Pressure and Volume: 2000 psig 140 ft3 Customer PO Number: 34 ProSpec EZ Cert **Certified** Concentration NIST Traceable Expiration Date: 01/27/2025 Expanded Uncertainty Cylinder Number: CC99627 ± 0.2 ppm 44.4 ppm Nitric oxide Nitrogen Balance For Reference Only: NOx 44.6 ppm Expiration Date: 01/27/2025 Certification Date:01/27/2022 Term: 36 Months Certification Information: This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Type / Cylinder #: GMIS / DT0037626 1. Component: Nitric oxide Reference Standard: Concentration / Uncertainty: 48.7 ppm ±0.2 ppm Requested Concentration: 45 ppm Expiration Date: 11/17/2024 Certified Concentration: 44.4 ppm Traceable to: SRM # / Sample # / Cylinder #: PRM / C1765710.01 / APEX1324323 instrument Used: Thermo Electron 42i-LS S/N 1030645077 SRM Concentration / Uncertainty: 50.04 ppm / ±0.20 ppm Analytical Method: Chemiluminescence SRM Expiration Date: 12/09/2022 Last Multipoint Calibration: 01/14/2022 01/27/2022 Date First Analysis Data: Date 01/17/2022 Second Analysis Data: C: 44.3 Conc: 44.4 Z: 0 48.7 C: 44.3 Conc: 44.3 Z: ٥ R: 48.7 R: 44.3 44.4 Conc: 44.4 R: 48.6 Z: 0 C: 44.2 Conc: Z: 0 C: R: 48.7 48.6 Conc: 44.4 z: 0 C: 44.3 R: 48.6 Conc: 44.4 C: 44.4 R: 7: ۵ Mean Test Assay: 44.4 UOM: ppm Mean Test Assay: 44.3 ppm ppm UOM: ppm

Certified By

Lissette Morales

Analyzed By

Henry Koung

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising or of the information contained herein exceed the fee established for providing such Information.

Making our planet more productive

DocNumber: 426716

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

Information contained herein has been prepared at your request by qualified experts within Praxsir Distribution, Inc. While we by leve that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the information of the information for any purpose.

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number: Cylinder Number: CC500632 Laboratory: PGVP Number: B32021 Gas Code: NO2,BALN

E02NI99E15WC004 124 - Los Angeles (SAP) - CA

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Expiration Date: Jul 08, 2024

48-402146897-1 144.0 CF 2015 PSIG Jul 08, 2021

660

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Noi Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTIC	CAL RESUI	LTS		
Component		Requested Concentration	Actual Concentration⁄	Protocol Method	Total Relative Uncertainty		Assay Dates
NITROG NITROG	EN DIOXIDE EN	6.000 PPM - Balance	6.585 PPM	G1	+/- 2.3% N	ST Traceable	06/28/2021, 07/08/2021
			CALIBRATIC	N STAND	ARDS		in en mine, ind in weit de la avectifik felenseit fin felenseit (h. 1999). In en mine, ind in weit de la avec ind felenseit fin felenseit (h. 1999).
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date
GMIS PRM The SRM,	4012068031 12386 PRM or RGM note	04 CC511311 D685025 ad above is only in reference	9.690 PPM NITRC 9.91 PPM NITRO e to the GMIS used in the av	GEN DIOXIDE/N GEN DIOXIDE/A	NITROGEN R f the analysis.	+/- 2.1% +/- 2.0%	May 02, 2022 Feb 20, 2020
				,,	1	1 14	and a second prove the second
			ANALYTICA	L EQUIPM	IENT		
Instrument/Make/Model Analytical Principle Last Multipoint Calibration							ration
MKS FTI	R NO2 0183358	21	FTIR		Jul 01	, 2021	

Triad Data Available Upon Request

Approved for Release

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained herein exceed the foe established for providing such information.

Making our planet more productive

DocNumber: 426976

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

APPENDIX F EQUIPMENT CALIBRATION RECORDS

Factors/Conversions BEST ENVIRONMENTAL METHOD 5 PRE-TEST CONSOLE CALIBRATION **USING CALIBRATED CRITICAL ORIFICES Calibration Conditions** 5-POINT ENGLISH UNITS Dat 10 Meter Console Information

Console Model Number	Lol 1
Console Serial Number	
DGM Model Number	
DGM Serial Number	

Date Time	July 6, 2022	1300
Barometric Pressure	29.8	in Hg
Theoretical Critical Vacuum ¹	14.1	in Hg
Calibration Technician	Burt Kuscih	

Std Temp	528	Å
Std Press	29.92	in Hg
ž	17.647	oR/in Hg

¹ for valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft³*°R^{1/2})(in.Hg*min).

								r			
		Actual	Vacuum		in Hg	20	18	16	14	11	
		Amb Temp	Final	(t _{amb})	¥,	74	75	75	75	75	
	Critical Orifice	Amb Temp	Initial	(t _{amb})	÷	74	74	75	75	75	
		Coefficient		ĸ	see above2	0.2323	0.3349	0.4442	0.5883	0.8043	
		Serial	Number			SF40	SF48	SF55	SF63	SF73	
tion Data		Outlet Temp	Final	(t _{mt})	Ŀ	75	76	77	78	78	
Calibra		Outlet Temp	Initial	(t _{ml})	٩°	73	75	76	77	78	
	Metering Console	Volume	Final	(V _m t)	cubic feet	605.500	610.500	615.512	620.497	625.357	
		Volume	Initial	(V _m)	cubic feet	599.800	605.500	610.500	615.512	620.497	
		DGM Orifice	Ч	(P.,)	in H ₂ O	0.40	0.80	1.30	2.30	4.20	
	Run Time		Elapsed	(0)	min	18.15	11.08	8.26	6.23	4.47	

	·								r		
	0	Variation	(@H\V)		0.18	0.08	60.0-	-0.07	-0.10	AH@ Average	
	Αh	0.75 SCFM	(©H@)	in H2O	2.476	2.383	2.204	2.230	2.197	2.298	
is Meter	Flowrate	Std & Corr	(Q _{m(std)(corr)})	cfm	0.300	0.432	0.572	0.758	1.036		
Dry Ga	on Factor	Variation	(AY)		0.00	0.01	-0.01	0.00	0.00	Y Average	
Results	Calibratio	Value	ω		0.968	0.972	0.959	0.963	0.965	0.965	
Standardized Data		Orifice	(Q _{cr(std)})	cţu	0.300	0.432	0.572	0.758	1.036		
	ata	Data	Critical	(Vcr(std))	cubic feet	5.437	4.783	4.727	4.722	4.632	
		s Meter	(Q _{m(std)})	cfm	0.310	0.444	0.597	0.787	1.074		
		Dry Ga	(V _{m(std)})	cubic feet	5.619	4.920	4.929	4.905	4.800		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02. Note: For Calibration Factor dHa, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using the Precision Wet Test Meter # 535476, which in turn was calibrated using the American Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.).

Signature: Burt Kusich

Date: 7/6/2022

A state of the sta

10000

LSI 1 Yd = 0.965 dHa = 2.30 Cal Date: 07/06/22

 $Yd = \begin{bmatrix} LSI \ 1 \\ 0.965 \\ dHa = 2.30 \\ Cal Date: 7/6/2022 \end{bmatrix}$

and the second sec

And a second second

TYPE K THERMOCOUPLE READOUT CALIBRATION

Meter Box:	LSI 1
Technician:	Burt Kusich
Date:	7/6/2022
Next Cal Due:	1/6/2023

Test T/C °F	Ref. T/C °F	Difference [°] F	% Difference	Results
102	100	-2	-2	Pass
204	200	-4	-2	Pass
302	300	-2	-1	Pass
398	400	2	1	Pass
498	500	2	0	Pass
599	600	1	0	Pass
700	700	0	0	Pass
. 904	900	-4	0	Pass

Comments:		Re	ferance Omega tc s	imulator. CL30	0-2100f s/n 710	
Equipment Condition:	🖲 Good	🔿 Fair	O Poor	O Repaired		
Reference Thermor	neter. ASTM merc	oury in glass.			Pre Cal:	✓
Method Reference:	EPA QA Handboo	ok Vol. III: Statio	onary Source Specific M	ethods, Sect. 3.5.2	2 Post Cal:	
Tolerance Limi	ts: ±4 °F at ≤40	00oF, ±1.5%	at ≥400oF.			
Calibration Freque	ncy: 6 Months				NIST Pyrometer:	T223406
The results sub-	mitted herein a	re true to the	best of my knowled	ge.	ASTM Thermometer:	3304RM
					NIST Thermocouple:	OM121120934
Technicians Sig	znature:	On File				

Differential Pressure Gauge Calibration

Meter Box:	LSI 1	Scale:	1	
Technician:	Burt Kusich		Electronic	
Date:	7/6/2022		Magnahelic	\checkmark
ID No.	W38URH		dP Mag	
Next Cal Due:	1/6/2023			

+/-	Guage ∆P	Ref. Manometer	Difference ∆P	% Difference	Results
+	0.39	0.37	-0.02	2.0	Pass
+	0.8	0.77	-0.03	3.0	Pass
+	0.98	0.95	-0.03	3.0	Pass

Comments:						
Equipment Condition:	Good	🔿 Fair	O Poor	O Repaired		
Acceptance limit	: Agree withi	n 5% of inclin	ned manometer		Pre Cal:	\checkmark
Method Reference	e: Code of R	egulations,40	PT60, App. A, Mer	thod 2	Post Cal:	
Calibration Frequ	lency: 6 Mon	iths				
					STD Used:	0-10" Manometer
The results submitted herein are true to the best of my knowledge.						
Technicians Sign	ature:	Burt Kusich				

Differential Pressure Gauge Calibration

Meter Box:	LSI 1
Technician:	Burt Kusich
Date:	7/6/2022
ID No.	R01081230N10
Next Cal Due:	1/6/2023

Scale:

3

3	
Electronic	
Magnahelic	\checkmark
dP Mag	

+/-Guage **D**P Ref. Manometer Difference ΔP % Difference Results +0.70 0.60 -0.10 3.3 Pass +1.60 1.60 0.00 0.0 Pass +2.50 2.50 0.00 0.0 Pass

Comments:						
Equipment Condition:	Good	🔿 Fair	O Poor	O Repaired		
Acceptance limit: Agree within 5% of inclined manometer					Pre Cal:	
Method Reference	Code of Regulati	ons,40 PT60,App	o. A, Method 2		Post Cal:	
Calibration Freque	ncy: 6 Months					
					STD Used:	0-10" Manometer
The results submitted herein are true to the best of my knowledge.						
Technicians Si	gnature:	Burt Kusich				

Differential Pressure Gauge Calibration

Meter Box: Technician: Date: ID No. Next Cal Due:	LSI 1 Burt Kusich 7/6/2022 W37VYF 1/6/2023				Scale:	5 Electronic Magnahelic dH Mag	
	+/-	Guage ∆P	Ref. Manometer	Difference ∆P	% Difference	Results	
	+	0.50	0.50	0.00	0.0	Pass	
	+	1.50	1.50	0.00	0.0	Pass	
	+	4.00	4.00	0.00	0.0	Pass	
Comments:							
Equipment Condition:	Good	🔿 Fair	O Poor	O Repaired			
Acceptance limi	t: Agree within	5% of inclined	manometer		Pre Cal:	✓	
Method Referen	ce: Code of Re	gulations,40 PT	160, App. A, Method	2	Post Cal:		
Calibration Frequency: 6 Months The results submitted herein are true to the best of my knowledge.					STD Used:	0-10" Manometer	r

Technicians Signature: Bust Kusich

S-Type Pitot Tube Geometric Calibration Data Sheet

Technician:	Burt Kusich	Probe No.:	197
Date:	7/15/2022	Probe Length:	88
Next Cal Due:	1/15/2023	Probe Type:	M5

Level Pitot Assembly

Pitot tube meets or exceeds all specifications, criteria and/or applicable design features and is hereby assigned a pitot tube certification factor of 0.84. As per 40 CFR Pt. 60 App. A, Reference Method 2

a1 & a2 (<10°), b1 & b2 (<5°). Z < 0.125 in. & W < 0.031 in.

Tolerance limits from:

 Standards of Performance for New Stationary sources, Federal Register 36 (247) December 233,1971.
 Valbra, R.F., "The Effects of Impact Opening Misalignment on the Value of the Type-S Pitot Coefficien Emission Measurement Branch, Research Triangle Park, NC, October 1976.

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

• 1

TYPE K THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich		
Date:	7/15/2022	Pitot No.:	197
		Pitot Length:	88
Next Cal Due:	1/15/2023	Probe Type:	Pitot

Test T/C °F	Ref. T/C °F	Ref. T/C °F Difference °F		Results
60	60	0.0	0.0	Pass
215	214	-1.0	-0.5	Pass
340	342	2.0	0.6	Pass

Сс	mn	ien	ts:	

Equipment	Cood	O Fair		O Repaired			
Condition:	0000		0 9001				
Reference Thermometer. ASTM mercury in glass. Pre Cal:						\checkmark	
Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Meth(Post Cal:							
Tolerance Limi	ts: ±4 °F at ≤40	00oF, ±1.5%	at ≥400oF.				

NIST Pyrometer: T223406 ASTM Thermometer: 3304RM

NIST Thermocouple: OM121120934

Calibration Frequency: 6 Months

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

PROBE HEATER THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich		
Date:	7/15/2022	Pitot No.:	1 97
		Pitot Length:	88
Next Cal Due:	1/15/2023	Probe Type:	Pitot

Test T/C °F	Ref. T/C °F	Difference ^o F	% Difference	Results
85 .	85	0.0	0.0	Pass
200	200	0.0	0.0	Pass
275	277	2.0	0.7	Pass

Comments:

Equipment		○ Eair	
Condition:	U G000		

Reference Thermometer. ASTM mercury in glass.

Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Metho Sect. 3.5.2.2 Tolerance Limits: ± 4 °F at ≤ 400 oF, $\pm 1.5\%$ at ≥ 400 oF.

 $\overline{}$

Calibration Frequency: 6 Months

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

METHOD 5 FILTER OVEN THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich
Date:	7/15/2022
ID No.	8
Next Cal Due:	1/15/2023

Test T/C °F	Ref. T/C °F	Difference ^o F	% Difference	Results
75	76	1.0	1.3	Pass
180	180	0.0	0.0	Pass
280	281	1.0	0.4	Pass

Comments:	Bottom or 9	0° Style						
Equipment Condition:	l Good	○ Fair	O Poor	O Repaired				
Reference Thermometer. ASTM mercury in glass. Pre Cal:								
Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Metho Post Cal:								
Tolerance Limits: ±5.4 °F at ambient temperature and in hot water bath.								
Calibration Frequ	Calibration Frequency: 6 Months NIST Pyrometer:							
The results subm	itted herein a	e true to the b	est of my knowled	lge. AS	TM Thermometer:	3304RM		
				NI	ST Thermocouple:	OM121120934		

Technicians Signature: On File

Nozzle Geometric Calibration Data Sheet Method 5 Nozzle Type: Stainless Steel \checkmark Technician: Burt Kusich Glass Date: 1/11/2022 25 Quartz Nozzle No. 0.202 Inconel Nozzle Diameter: 1/11/2023 Next Cal Due:

A	0.202
В	0.203
C	0.202
Average:	0.202
Range:	0.001

Comments:

Nozzle
 Good O Fair

Condition:

Reference Method: EPA 5 (section 5.1)

1)

O Repaired

O Poor

Acceptance Limit < 0.004" range of 3 measurements

Calibration Frequency: 12 Months

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

APPENDIX G STACK DIAGRAMS

Teichert Aggregates Truckee, CA

Martis Valley-Hot Mix Asphalt Plant Baghouse Outet (Permit #88-36-08)

Stack i.d. Port Upstream Disturbance Port Downstream Disturbance 53.75" X 36.25" <1 Stack Diameter 5 stack Diameters

APPENDIX H SAMPLING SYSTEM DIAGRAMS

H-1

EPA METHOD 1

EPA METHOD 1

TABLE 1-1 CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS

Number of tranverse points layout	Matrix
9	3×3
12	4×3
16	4×4
20	5×4
25	5×5
30	6×5
36	6×6
42	7×6
49	7×7

TABLE 1-2—LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

[Percent of stack diameter from inside wall to traverse point]

Traverse point	Number of traverse points on a diameter											
number on a												
diameter	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64,4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
13							94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	83.5	78.2	72.8
16								98.4	92.5	87.1	82.0	77.0
17									95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
										96.1	91.3	86.8
20										98.7	94.0	89.5
21											96.5	92.1
21											98.9	94.5
22												96.8
23												98.9
24						l						90.9

ų

Traverse % of diameter Point Distance 1 44 2 14.7 3 29.5 4 70.5 5 83.36 93.6

EPA METHOD 1

Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with traverse points at centroid of each area.

BEST ENVIRONMENTAL

EPA Methods 3A, 6C, 7E & 10

CEM Sampling Train

a far anna a

清

CARB Method 5

Total Particulate Sampling Train

EPA Method 18

Positive Pressure Sampling Train

APPENDIX I SOURCE TEST PLAN

Source Test Protocol Teichert Aggregates Martis Valley-Asphalt Batch Plant PTO #88-36-08

Prepared For:

Teichert Aggregates 3500 American River Drive Sacramento, CA 95851 Attn: Nic Armstrong Email: <u>NArmstrong@teichert.com</u>

Submitted To:

Northern Sierra AQMD 200 Litton Drive Suite 320 Grass Valley, CA 95945 Attn: Sam Longmire Email: <u>sam@myairdistrict.com</u>

Prepared By: BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone (925) 455-9474 Fax (925) 455-9479 Attn: Bobby Asfour Email: bestair@best-enviro.com

Date Issued: June 16, 2022

1

SUMMARY INFORMATION

Source Test Information

General Information

Source Owner:

Source Location:

Teichert Aggregates 3500 American River Drive Sacramento, CA 95851

Martis Valley 13879 Joerger Road Truckee, CA 96160

Phone: Contact:

Source Description:

Permit ID:

Test Parameters & Limits:

Source Testing Firm:

Phone: Fax: Contact:

Proposed Testing Dates:

Analytical Laboratories:

(916) 484-3326 Nic Armstrong

One Propane Fired Batch Mix Asphalt Plant

88-36-08

PM: 0.04 gr/dscf
TSP: 6.27 tons/year & 0.1 gr/dscf @ 12% CO₂
NOx: 10.85 tons/year
CO: 70.70 tons/year
TOG: 17.85 tons/year

BEST ENVIRONMENTAL (BE)

339 Stealth Court Livermore, CA 94551 (925) 455-9474 (925) 455-9479 Bobby Asfour

July 13, 2022

BEST ENVIRONMENTAL (BE)

339 Stealth CourtLivermore, CA 94551Phone: (925) 455-9474 ext. 105Attn: Ron Mariano(Particulate & TOG)

2

1-3
1.0 Introduction:

The Source testing program objective is to determine compliance with respect to Northern Sierra Air Quality Management District (NSAQMD) monitoring and emission requirements. Meeting these objectives will require Continuous Emissions Monitoring (CEM) of O₂, CO₂, NOx & CO. Additionally, samples will be collected and analyzed for TOG and PM₁₀.

The plant should be operated at a load acceptable to the NSAQMD.

2.0 Emission Source Information:

Teichert Aggregates operates a Propane Gas Fired 135MMBtu/hr Drum Mix Burner used to provide heat for drying asphalt. As the plant demands product, rock is injected into the drum dryer/mixer to begin the asphalt production process. The air and emissions are filtered and pulled into the baghouse where vacuum-style bags filter out the particulate. The emissions are then drawn through a 30HP exhaust fan, which draws a negative static all the way back to the burner and exits the stack. (Permit # 88-36-08)

Emissions will be sampled from the three 4-inch ports located on the 53.75" X 36.25" rectangular stack outlet. The sampling ports are located 5 equivalent stack diameters downstream from any points of flow disturbance and less than 1 diameter upstream from the exit. The ports will be accessed using a man-lift.

PTO #	Description	Limits
88-36-08	Asphalt Plant	PM 0.04 gr/dscf, TSP 6.27 tons/year & 0.1 gr/dscf @ 12% CO ₂ , NOx 10.85 tons/year, CO 70.70 tons/year, TOG 17.85 tons/year

3.0 Source Testing Program Description:

Triplicate test runs will be performed on the exhaust for O₂, CO₂, NOx, CO, THC & PM₁₀. During each test run all relevant data (fuel flow, process rate and dryer temperature) will be monitored and recorded. The exhaust flow rate will be determined from the Method 1-4 flow measurements and will be used to calculate mass emission rates

Parameter	Location	Methods	Duration	# of Runs
Flow Rate	Exhaust	CARB Methods 1-4	60 mins	3
PM10	Exhaust	CARB Method 5	60 mins	3
NOx, CO and O ₂	Exhaust	EPA Methods 7E, 10 & 3A	40 mins	3
TOG	Exhaust	EPA Method 18	40 mins	3
Flow Rate	Exhaust	EPA Method 19	40 mins	3

Overview of Sampling-Drum Mix Asphalt Plant PTO #88-36-08

The Method 1-4 flow rates will be used to determine the gaseous (NOx, CO & TOG) emission rates of the dryer. TOG will be assumed equal to total non-methane/ethane hydrocarbons as methane. The Method 1-4 flow rates will be used to determine the PM/PM_{10} emission rates emitted from the baghouse. TSP will be assumed equal to filterable particulate and total particulate matter will be assumed PM_{10} .

Due to high moisture content (>10% H2O) in the exhaust, EPA Method 25a is not recommended for the TOG sampling. EPA Method 18 will be used in lieu of EPA Method 25a.

4.0 Source Testing Procedures:

This section is intended to provide an overview of the sampling strategy and does not attempt to summarize the sampling procedures, which are described in detail in the reference methods.

EPA Methods 7E (NO_x), 10 (CO), 18 (THC), 3A (O₂ & CO₂), CARB Methods 1-5 (Filterable and Condensable Particulate & DSCFM) will be used to determine emission compliance.

<u>CARB Method 1</u>. This method is used to determine the duct of stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements. The point selection is made based on the type of test (particulate or velocity), the stack diameter and portlocation distance from flow disturbance.

<u>CARB Method 2</u> is used to determine stack gas velocity using a standard or S-type Pitot tube and inclined manometer. Temperature is monitored using a K-type thermocouple and calibrated Omega

- David Strating

temperature meter. Leak checks are performed before and after each traverse to validate the results. Thermometer calibrations are performed using an Omega Model CL-300 calibrator. Geometric calibrations of S-type pitots are performed and records are submitted with the report.

<u>**CARB Method 3**</u> is used to determine the molecular weight of the stack gas. The $%O_2$ and $%CO_2$ concentrations are measured by fyrite apparatus or CEM.

<u>CARB Method 4</u> is used to determine the moisture content in the gas stream by extracting a sample and condensing the moisture in the impingers and the silica gel trap of the Method 5 sample trains. The moisture gained is determined volumetrically and gravimetrically. Results are recorded on the field data sheet. A sample is pulled using a leak tight pump. Volume is measured with a calibrated dry gas meter. Pre-and post-test leak checks are performed for each run.

CARB Method 5 is used to determine the filterable and condensable Particulate emissions. The sampling equipment consists of a stainless steal nozzle, a BE constructed heated stainless steal probe w/stainless steal liner, heated filter box and filter holder with glass fiber filter, followed by a Teflon line and umbilical to four Greenburg-Smith impingers, a pump and a meter control module. The first and second impingers are filled with 100 mL of DI water. A third impinger is left empty and the fourth impinger contains silica gel desiccant to dry the gas before the pump and gas meter. The entire system must be leak free before pulling stack gas though at a rate suitable for the stack flow rate. Following sampling, the filters are collected and sent to the BE laboratory for analysis. Filterable particulate was determined gravimetrically from the probe/nozzle acetone rinse and filter, following evaporation and desiccation of these fractions. Condensable gaseous particulate emissions that pass through the filter (rated at 99.95% efficient for 0.3µm particulates) are collected and recovered from the sample line and back-half of the filter holder and from the first two impingers containing de-ionized water. The organic condensable particulate fraction is separated using a dichloromethane rinse, which is evaporated desiccated and weighed. The remaining aqueous fraction is also evaporated, desiccated and weighed to determine the inorganic condensable particulate fraction.

Sampling QA/QC: consists of pitot leak checks per CARB Method 2. Sampling system leak checks are performed before and after each test run. The sampling system leak checks are performed per CARB Method 4. The impingers are kept in ice to maintain the temperature of the gas exiting the last impinger to below 68°F. No silicone grease is used in the components of the sampling train. The dry gas meter, pitot, thermocouples, gauges and nozzles are all calibrated according to the methods and with a frequency of between 6 to 12 months as specified in CARB QA/QC Volume VI, Table 3.

Nozzles are calibrated to within 0.001" diameter and are inspected for damage prior to each test. Reagent blanks were collected using the same lot reagents, same proportions and techniques as the test samples. <u>Analytical QA/QC</u> consisted of a reagent blank. All gravimetric work is performed on calibrated analytical balances.

5

1-6

For the Continuous Emission Monitoring procedures (EPA Methods 7E, 10 & 3A), a sample is extracted from the exhaust stack conditioned and analyzed by continuous monitoring gas analyzers in a test van. The sampling system consists of a stainless steel sample probe, heated Teflon sample line, glass-fiber particulate filter, glass moisture-condensation knockouts, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response errors. The entire sampling system is leak checked before and after the sampling program. The BE sampling and analytical system bias at the beginning and end of each test run. System bias is determined by pulling calibration gas through the entire sampling system. Individual test run calibration gases will be selected to fall approximately within the following instrument ranges; 80 to 90 percent for the high calibration, 40 to 60 percent for the mid range, and zero. Zero and calibration drift values and system bias will be determined for each test run. A stratification check is performed on the source during the first test run.

Parameter	Limits
System Criteria	
Instrument Linearity	\pm 2% Calibration Span or \pm 0.5 diff.
System Bias	\pm 5% Calibration Span or \pm 0.5 diff.
Calibration Gas	± 2% Value
NO _x converter efficiency	>90%
Test Criteria	
Instrument Zero Drift	\pm 3% Calibration Span or \pm 0.5 diff.
Instrument Span Drift	\pm 3% Calibration Span or \pm 0.5 diff.

The following system and test criteria will be monitored (EPA Methods 7E, 3A, & 10):

All calibration gases are EPA Protocol #1 rated or are traceable to the National Institute of Standards and Technology. Calibration gas certificates will be included in the final test report. The analyzer data recording system consists of computer Data Acquisition System (DAS) and a multi channel strip chart recorder.

BEST ENVIRONMENTAL

<u>Parameter</u>	Make Model	<u>Principle</u>
NO _x	CAI 600CLD	Chemiluminescence
O ₂	CAI 110P	Paramagnetic
CO ₂	CAI 100	NDIR
СО	TECO 48i	IR
THC	CAI 300M	FID

The following continuous monitoring analyzers or equivalents will be used:

The following expected concentrations and calibration ranges are proposed for the Propane Burner. Certain gases may be substituted depending on availability at the time of testing.

	Expected	
O ₂	10-15%	Range 0-25
CO ₂	4-8%	Range 0-15
NOx	35 ppm	Range 0-100
СО	350ppm	Range 0-1000
THC	150ppm	Range 0-300 or 0-1000

EPA Method 18 is used to determine carbon speciated hydrocarbons (C_1 , $C_2 \& C_3$ +) emissions by gas chromatograph / Flame Ionization Detection (GC/FID). Gaseous emissions are drawn through a Teflon sample line to a tedlar bag located in a rigid leak proof bag container. Sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The bag samples are taken to a laboratory and analyzed within 72 hours. The results are reported as methane with a detection limit of 0.5 ppm for non-methane non-ethane organic compounds (C_3 +).

z:\quotes\2022 stp\nsaqmd\teichert-martis valley.doc

5.0 Project Organization/Key Personnel:

The table below lists the positions and responsibilities of the personnel potentially assigned to this project.

Project Organization

Position	Responsibilities
Project Manager	Project Overview, Collection of all field data and operational data, Data reduction and Report Writing
Source Test Technician	Sample collection, Chain of Custody
N/A	Receipt of Samples, Sample analysis, Lab report production

The Project Manager is the primary person responsible for the outcome of this project. He leads the sampling team in the field, interacts with the client during testing and is responsible for gathering all data necessary for completing the report. Upon the completion of the fieldwork, he completes any Chain of Custody documentation and submits samples to the laboratory for analysis. He then reduces the data and prepares the report.

The Source Test Technicians are responsible for performing the actual field emissions tests. They are responsible for performing the emissions tests as per the approved test methods.

The Laboratory Supervisor is responsible for receipt, analysis and disposition of samples. He is also responsible for all laboratory method specific QA/QC procedures.

BE is an approved independent contractor for the California Air Resources Board (CARB), which is a national leader in the development and implementation of progressive emissions monitoring and documentation programs.

8

1-9

6.0 QA & QC Procedures:

QA/QC Program All quality assurance and quality control procedures will be followed as prescribed in the appropriate methods and technical guidance manuals.

Adherence to QA/QC procedures during field test preparation and field sampling will be the responsibility of the QA/QC Officer and/or Project Manager. This test program would include all QA/QC procedures specified in the test methods (equipment calibration, field data recording, contamination control and record keeping). Analytical QA/QC protocol will be the responsibility of the Analytical Liaison, and the laboratory manager and QA/QC coordinator assigned to this program by the laboratory we have subcontracted. Any deviations from stated protocols not mentioned herein would be discussed with the appropriate individuals prior to implementation.

Chain of Custody: A sample is considered to be under a person's custody if (1) if in a person's physical possession, (2) in view of the person after he has taken possession, (3) secured by that person that no one can tamper with the sample, or (4) secured by that person in an area which is restricted to authorized personnel. The following steps are taken to ensure sample identification and integrity:

- 1) Sample labels (identity, #, date, time)
- 2) C.O.C. seals (with sample #)
- 3) Field sample log book and field notes
- 4) C.O.C. record and analysis request sheet
- 5) Shipping papers (Courier, Fed. Ex.)
- 6) Receiving/Log-in (signed receipt of samples and their condition)

Once the sample has been received in the laboratory and the status of the sample integrity has been determined, the lab QA/QC supervisor is responsible for care and custody. The lab should be prepared to testify to the possession and security of the sample until analysis is complete.

In addition to the QA/QC procedures mentioned, BE uses EPA Protocol or 1% NIST Traceable calibration gases.

7.0 Source Test Report:

Data reduction/reporting procedures: All data reduction is performed using Excel spreadsheet programs developed by BE. The report will be written by a senior project manager and will be reviewed by his peers. All supporting documentation, field data sheets, lab reports, lab and field QA/QC reports, emission calculations, etc., will be included in the final report. Calculations are contained in the referenced methods and in the APCD/AQMD source Test Procedure Guidelines where applicable. All standard units shall be reported pursuant to District policy, i.e. 68°F and 29.92 inches of mercury column. The expected date for a final report is approximately two weeks after the analytical work is completed. The analytical turnaround time is approximately two to three weeks.

The technical report meeting the requirements of the NSAQMD will be submitted to the Teichert Materials within four weeks of the completion of the test program.

All ancillary information will be included with the report; process information, field data sheets, strip charts, calculations, lab reports, equipment calibrations.

Submitted by,

Bobby Asfour Principal QSTI

cc: Nic Armstrong, Teichert Materials

1-11

APPENDIX J PERMIT TO OPERATE

J-1

NORTHERN SIERRA AIR QUALITY MANAGEMENT DISTRICT

Gretchen Bennitt, Executive Director

Dibritiér HEADOUARTIES 200 Litton Drive, Suite 320 P.O. Box 2509 Clrass Valley, CA 95945 (\$30) 274-9360 / FAX: (\$30) 274-7546 emult: office@mynirdistrict.com or www.mynirdistrict.com <u>DASTRING PURCE</u> 13450 Donner Pass Rd., Ste. B, Truekee, CA 96161 Mailing Address: P.O. Box 9766, Truekee, CA 96162 (530) 550-7872 / FAX: (530) 587-2623 email: ryan@myairdistrict.com Northlan Parts Overce 270 County Hospital Rond, Sulte 127 P.O. Box 3981, Quincy, CA 95971 (530) 283-4654 / FAX: (530) 283-0699

PERMIT TO OPERATE

Issued on: October 24, 2012

Permit No.<u>#88-36-08</u>

Valid from: November 5, 2012 to November 4, 2013

By:

Gretchen Bennitt, Executive Director

GRANTED TO:

Teichert Aggregates

P.O. Box 447

Truckee, CA 96160

FACILITY LOCATION: Martis Valley, Joerger Road

Truckee, CA 96160

Under the provisions of District Regulation V, authorization is hereby granted to operate the following equipment subject to the conditions on the following page(s):

ASPHALT BATCH PLANT

Consisting of the items on Page 2:

POST IN A CONSPICUOUS PLACE

Page 2: Permit #88-36-08 2012/2013 Permit to Operate Teichert Aggregates

- 1. AGGREGATE BINS
- 2. TUNNEL CONVEYOR BELT
- 3. BYPASS CONVEYOR BELT
- 4. ROTARY DRUM CONVEYOR BELT
- 5. "MINI" CONVEYOR
- 6. DRAG SLAT CONVEYER
- 7. CONVEYOR: LEADS MATERIAL INTO CORRECT SILO
- 8. GENCOR ULTRA FLAME 135 VAPORIZED NATURAL GAS BURNER (BTU:135,000,000/HOUR)-ON ROTARY DRUM
- 9. TWO CYCLONES
- 10. STANDARD HAVENS BAGHOUSE AND ASSOCIATED DUCT WORK

Page 3: Permit #88-36-08 2012/2013 Permit to Operate Teichert Aggregates

THIS PERMIT HAS BEEN ISSUED, SUBJECT TO THE FOLLOWING CONDITIONS. COMMENCING WORK UNDER THIS PERMIT SHALL BE DEEMED ACCEPTANCE OF THE CONDITIONS SO SPECIFIED.

Permit conditions 1 through 20 of Permit No. 88-36-01 shall also apply to this permit, in their entirety, unless otherwise stated in the permit conditions listed for this permit.

PERMIT CONDITIONS SPECIFIC TO ASPHALT BATCH PLANTS

- 21. In the event of changes of ownership, or control of the facilities herein permitted, this Permit to Operate shall be binding upon all subsequent owners and operators. The operator shall notify the succeeding owner and operator of the existence of this Permit to Operate and its conditions by letter, a copy of which shall be forwarded to the Air Pollution Control Officer. District notification shall occur a minimum of thirty (30) days prior to the actual transfer date.
 - 22. <u>Production Limits</u>: Unless prior approval has been granted by the APCO, the following production limits apply to the asphalt batch plant. The maximum hourly process rate allowed under this permit shall not exceed 350 tons per hour. The maximum annual process rate allowed under this permit shall be not exceed 700,000 tons of product per year. Total plant hours shall not exceed 2,000 hours per year over a maximum of 190 days per year.
 - 23. <u>Emission Limits</u>: Total annual actual emissions allowed under this Permit to Operate shall be limited to below the following maximum emissions:

Total Suspended Particulate (TSP): Grain Loading Nitrogen Oxides (NOx): Sulfur Oxides (SOx): Total Organic Gases (TOG): Carbon Monoxide (CO): 6.27 tons/yr, and 0.1 gr./dsof @ 12% CO2 10.85 tons/yr 1.75 tons/yr 17.85 tons/yr 70.70 tons/yr

The TSP limit is based on the District limit of 0.1 gr/dscf, this facility should be aware that they are required to comply with NSPS Regulations in 40CFR Part 60, Subpart I which limits. particulate matter to 0.04 gr/dscf. The District is not delegated to enforce NSPS. The NSPS regulations are enforced by EPA.

Page 4: Permit #88-36-08 2012/2013 Permit to Operate Teichert Aggregates

- 24. The permittee shall not process through the asphalt batch plant any soil or other inaterial that is contaminated with hydrocarbons without prior written approval from the Air Pollution Control Officer. No soil or other material that is hazardous shall be allowed to be processed through the asphalt batch plant at any time.
- 25. <u>Record keeping</u>: The applicant shall maintain daily records of plant operating hours, hourly asphalt concrete production rate in tons per hour (TPH), tons of product produced per day (TPD), natural gas fuel usage, asphalt batch plant dryer-related diesel fuel usage, and number of operating days. Maintenance records shall be maintained showing the date of inspections, findings and repairs made. All of these records shall be maintained for a period of five (5) years, and made available to District inspectors upon request.
- 26. Fugitive dust emissions shall be controlled at all times such that a public nuisance is not created at any point beyond the facility property lines pursuant to California Health and Safety Code Section 41700.
- 27. Fugitive dust emissions generated from feed hoppers, conveyor transfer points, conveyors, screens, etc. shall be controlled at all times by the use of dust suppression techniques that shall include but are not limited to the following methods:
 - a. Aggregate feed in bins and on conveyor belts shall be maintained at a minimum moisture content of 1% by either natural moisture or by the use of spray bars, nozzles, or water foggers that effectively deliver a water spray to material being processed when the facility is active.
 - b. Spray bars, nozzles, or water foggers may be used at other emission points.
 - c. Minimize aggregate feed material free fall distances, as much as is practical.
 - d. Provide enclosures that effectively contain fugitive dust emissions and duct emission to control equipment, where practical.
- 28. Fugitive dust emissions generated from access roads, internal driveways, yards, and stockpiles, equipment use areas, parking areas, etc. shall be controlled at all times by the use of dust suppression techniques that shall include, but are not limited to the following methods:
 - a. Watering: 6 to 8 times per day, or as needed to maintain dampness;
 - b. Reduced driving speeds: all vehicle speeds within the facility property lines shall be restricted below 15 miles per hour, except in the case of an emergency.

i

Page 5: Permit #88-36-08 2012/2013 Permit to Operate Teichert Aggrogates

29. Liquified petroleum gas (LPG) shall be the primary fuel used to fire the aggregate dryer unless written notice is provided to the APCO. When diesel fuel is used, then only No. 2 Diesel (or better) having a sulphur content of 0.05% (500 parts per million) or less, per section 2281 of Title 13, California Code of Regulations (CCR), and an aromatic hydrocarbon content of less than 10% by volume, per section 2282 of Title 13, CCR.

PERMIT CONDITIONS SPECIFIC TO BAGHOUSES

- 30. Collected particulate matter shall be disposed of in a manner which prevents entrainment of the material into the ambient air. The particulate load-out area shall be maintained clean to prevent entrainment of the particulates into the ambient air, causing nuisance and reduced air quality.
- 31. A spare set of new bags, numbering at least 10% of the total required, shall be maintained on the premises at all times.
- 32. The baghouse shall be equipped with a pressure differential gauge to indicate pressure drop across the bags. The gauge shall be maintained in good working condition at all times.
- 33. Maintenance procedures shall be implemented to provide regular monthly inspections of ducts, baghouse seams, and bags to prevent leaks from going undetected. All leaks in the system shall be repaired when they are discovered. A copy of these maintenance procedures shall be provided to the District if requested.
- 34. Source Test Requirements: A source test shall be performed on the asphalt batch plant baghouse stack every third year (in the years 2005, 2008 and so forth), or after any major modification to the equipment of process. In addition, the following conditions apply:

a. The source test shall be conducted per 40 CFR, Part 60, Appendix A, for sample and velocity traverse (Method 1), stack gas velocity and volumetric flow rate (Method 2), particulate matter (Use ARB modified method 5 - includes back half of impinger train), nitrogen exides (Method 7E), carbon monexide (Method 10), and total hydrocarbons (Method 25A); or equivalent test methods approved by the Executive Officer of the Air Resources Board and the Air Pollution Control Officer. Results must provide emissions rates in pounds per hour and pounds per ton of asphalt produced.

b. Submit a source test plan and protocol to the Air Pollution Control Officer for approval at least 30 days before the source test is to be performed.