(509)427-5970

7121 E Loop Road, PO Box 371 Stevenson, Washington 98648

TO: City Council FROM: Ben Shumaker DATE: July 15th, 2021

SUBJECT: Rock Creek Drive Run-Off Testing—Summary Report—Request for Direction

Introduction

This memo summarizes the results of the stormwater run-off at Rock Creek Drive and Foster Creek Road which leaves orange-stains on roadside vegetation and soils. Public concerns brought this issue to the City Council's attention. The intersection's proximity to the 2 capped landfills led to the Council's decision to test the stormwater run-off to determine if pollutants from the landfill threatened the community's environmental and/or human health.

The City's underlying hypothesis for the testing was: "The orange-staining is an indicator of high-levels of pollutants associated with the capped landfills". This hypothesis builds on the previous hypothesis promoted by Skamania County's engineering staff which can be summarized as: "The orange-staining is the result of naturally occurring iron-related bacteria and no cause for concern." Both hypotheses are addressed through the testing program which sampled for iron related bacteria and pollutants commonly associated with landfills.

The memo includes an action item seeking Council direction on next steps.

Were Pollutants Discovered?

Water quality tests were performed on 21 containers (12 containers contained grab samples, 7 contained composite samples collected once per hour for 4 hours, and 2 were trip blanks sent by the laboratory for control purposes). The containers were tested according to 12 types of parameters and 655 analytes are reported in Attachment 1.

Broadly, the results show little cause for concern. Total Organic Carbon, Biochemical Oxygen Demand, Total Suspended Solids, Ammonia as N, Iron Related Bacteria were observed. No other analytes were detected. Of the analytes observed only Iron Related Bacteria appeared outside of the expected range.

As a result, the City's hypothesis went largely unproven, and the County's hypothesis was confirmed.

The Underwood Conservation District helped the City analyze the report via Attachment 1. Guidance based on their analysis states:

"Iron bacteria are naturally occurring in soil, shallow groundwater and surface waters. These bacteria combined oxygen and iron to form deposits of rust-colored bacteria cells. I am not familiar with any water quality criteria for iron related bacteria. Issues with these bacteria are usually related to wells and pumps where the biofilm that is left behind by the bacteria can cause equipment fouling, clogging and color/taste issues. I don't believe there is any cause for concern related to the presence of these bacteria at this location, but I recommend reaching out to your Department of Ecology contact to ask if the level detected (2200mg/L) is indicative of a seepage issue from the uncapped landfill.

To show that there are not adverse effects to downstream surface waters (Rock Cove) it may be worthwhile to conduct one additional sampling event during wet conditions when active seepage from the landfill area is evident."

How Were Pollutants Investigated?

City staff researched past testing related to the capped landfills and discovered a 1991 summary of 1990 sampling efforts. This summary described the presence of 1,1,1 – Trichloroethane at 0.9 ug/l, concentrations of lead and zinc which were below the National Drinking Water Standards (NDWS) at the time, and concentrations of iron and manganese which were above the secondary NDWS suggested levels.

City staff consulted with a) the water quality professionals from the Department of Ecology's non-point source and point source (landfill) divisions, b) civil/environmental engineering professionals from the Underwood Conservation District, and c) water quality testing professionals from BSK laboratories, the private firm conducting the water quality analysis.

This consultation lead to a range of sampling options, including sampling for one water quality parameter at one location to sampling for several water quality and soil quality parameters at multiple locations. Based on the quoted costs for sampling, staff selected to sample for several water quality parameters at and at only one location.

What is the Next Step?

Staff envisions 3 possible courses of action related to these results. In increasing order of involvement:

- Take no additional action.
- Advocate for other agencies to perform on-going testing.
- Establish an on-going testing program.

Verbal analysis of these course of action can be given upon request at the meeting.

Prepared by,

Ben Shumaker

Community Development Director

Attachment

- 1. Laboratory Report (41 pages)
- 2. UCD Analysis (13 pages)

Ben Shumaker City of Stevenson - 842502 PO Box 371 Stevenson, WA 98648

RE: Report for VED0391 Toxic Water

Dear Ben Shumaker,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 4/19/2021. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Debra Karlsson, at (360) 750-0055.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Debra Karlsson, Project Manager

Accredited in Accordance with NELAP ORELAP #WA100008-010

Case Narrative

Project and Report Details

Invoice Details

Client: City of Stevenson - 842502

Invoice To: City of Stevenson - 842502

Report To: Ben Shumaker

Invoice Attn: Ben Shumaker

Project #: Toxic Water

Received: 4/19/2021 - 12:32

Project PO#: -

Report Due: 5/03/2021

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact
Temperature on Receipt °C: 7.6 COC/Labels Agree

Received On Blue Ice

Sample(s) arrived at lab on same day sampled.

Packing Material - Other

Sample(s) were received in temperature range.

Initial receipt at BSK-VAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

B2.0 Analyte present in the method blank above the method detection limit (MDL). Laboratory does not determine batch

acceptance on detections below the reporting limit (RL).

CV0.0 CCV recovery was above method acceptance limits; no material impact on reported result as sample detection is below

the reporting limit for this parameter.

DP1.1 Sample Duplicate RPD exceeded method acceptance criteria.

MS1.0 Matrix spike recoveries exceed control limits.

MS2.0 MS/MSD RPD exceeds control limit. No material impact as both sets of recovery data meet control criteria.

SR1.0 Surrogate recovery exceeds upper control limit. No material impact as associated analytes are Non-Detect.

Report Distribution

Recipient(s) Report Format CC:

Ben Shumaker FINAL.RPT

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-01 **Sample Date - Time:** 04/19/2021 - 08:30

Sampled By:Carly LemonMatrix:WaterSample Description:Foster and Rock Cr.SeepSample Type:Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch Pr	epared	Analyzed	Qual
Cyanide (total)	SM 4500-CN E	ND	0.050	mg/L	1	AED1354 04	/22/21	04/29/21	
Total Organic Carbon	SM 5310C	1.5	0.70	mg/L	1	AED1553 04	/27/21	04/27/21	

Organics

Volatile Organics by GC-MS			RL	Units	Mult	Batch	Prepared	Analyzed C	Qual
1,1,1-Trichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,1,2,2-Tetrachloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,1,2-Trichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,1-Dichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,1-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,2-Dibromoethane (EDB)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,2-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,2-Dichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,2-Dichloropropane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,3-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
1,4-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
2-Hexanone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/23/21	
4-Methyl-2-pentanone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/23/21	
Acetone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/23/21	
Benzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Bromodichloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Bromoform	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Bromomethane	EPA 624.1	ND	1.0	ug/L	1	AED1389	04/22/21	04/23/21	
Carbon disulfide	EPA 624.1	ND	50	ug/L	1	AED1389	04/22/21	04/23/21	
Carbon Tetrachloride	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Chlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Chloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Chloroform	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Chloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
cis-1,2-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
cis-1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Dibromochloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Dichloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Ethylbenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
p-Isopropyltoluene	EPA 624.1	ND	5.0	ug/L	1	AED1389	04/22/21	04/23/21	
m,p-Xylenes	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Methyl-t-butyl ether	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
o-Xylene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Styrene	EPA 624.1	ND	5.0	ug/L	1	AED1389	04/22/21	04/23/21	
Tetrachloroethene (PCE)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-01 Sampled By: Carly Lemon

Sample Description: Foster and Rock Cr.Seep

Sample Date - Time: 04/19/2021 - 08:30

Matrix: Water Sample Type: Grab

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Volatile Organics by GC-MS									
Toluene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
trans-1,2-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
trans-1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Trichloroethene (TCE)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Trichlorofluoromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	
Vinyl Chloride	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/23/21	CV0.0
Surrogate: 1,2-Dichloroethane-d4	EPA 624.1	112 %	Acceptable	range:	70-130 %				
Surrogate: Bromofluorobenzene	EPA 624.1	103 %	Acceptable	range:	70-130 %				
Surrogate: Toluene-d8	EPA 624.1	98 %	Acceptable	range:	70-130 %				
2-CEVE by EPA 624.1									
2-Chloroethyl vinyl ether	EPA 624.1	ND	1.0	ug/L	1	AED1389	04/22/21	04/23/21	
Surrogate: 1,2-Dichloroethane-d4	EPA 624.1	105 %	Acceptable	range:	70-130 %				
Surrogate: Bromofluorobenzene	EPA 624.1	93 %	Acceptable	range:	70-130 %				
Surrogate: Toluene-d8	EPA 624.1	96 %	Acceptable	range:	70-130 %				
Acrolein and Acrylonitrile by EF	PA 624								
Acrolein	EPA 624.1	ND	2.0	ug/L	1	AED1389	04/22/21	04/23/21	
Acrylonitrile	EPA 624.1	ND	2.0	ug/L	1	AED1389	04/22/21	04/23/21	
Surrogate: 1,2-Dichloroethane-d4	EPA 624.1	118 %	Acceptable	range:	70-130 %				
Surrogate: Bromofluorobenzene	EPA 624.1	101 %	Acceptable	range:	70-130 %				
Surrogate: Toluene-d8	EPA 624.1	99 %	Acceptable	•					

BSK Associates Vancouver Microbiology

Analyte	Method	Result	RL	Units	Batch	Prepared	Qual
Iron Related Bacteria (IRB-BART	<u>D</u>						
Iron Related Bacteria	IRB-BART	2200	25	CFU/ml	VED0074	04/19/21 14:50	

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Total Trihalomethanes		ND	0.50	ug/L					
Total 1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L					
Total Xylenes	EPA 624.1	ND	0.50	ug/L					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sampled By: Carly Lemon

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-02 **Sample Date - Time:** 04/19/2021 - 11:00

Matrix: Water

Sample Description: Rock Cr. and Foster Seep Sample Type: Composite

Composite Start: 04/18/2021 - 11:00

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch Prepared	Analyzed Qual
Ammonia as N	EPA 350.1	0.16	0.10	mg/L	1	AED1296 04/22/21	04/22/21

Metals

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qu	ıal
Antimony, 3010	EPA 6020B	ND	0.20	mg/L	1	AED1646	04/28/21	04/29/21	
Arsenic, 3010	EPA 6020B	ND	0.020	mg/L	1	AED1646	04/28/21	04/29/21	
Beryllium, 3010	EPA 6020B	ND	0.010	mg/L	1	AED1646	04/28/21	04/29/21	
Cadmium, 3010	EPA 6020B	ND	0.020	mg/L	1	AED1646	04/28/21	04/29/21	
Chromium, 3010	EPA 6020B	ND	0.10	mg/L	1	AED1646	04/28/21	04/29/21	
Copper, 3010	EPA 6020B	ND	0.10	mg/L	1	AED1646	04/28/21	04/29/21	
Lead, 3010	EPA 6020B	ND	0.050	mg/L	1	AED1646	04/28/21	04/29/21	
Mercury, 3010	EPA 6020B	ND	0.0040	mg/L	1	AED1646	04/28/21	04/29/21	
Nickel, 3010	EPA 6020B	ND	0.10	mg/L	1	AED1646	04/28/21	04/29/21	
Selenium, 3010	EPA 6020B	ND	0.020	mg/L	1	AED1646	04/28/21	04/29/21	
Silver, 3010	EPA 6020B	ND	0.10	mg/L	1	AED1646	04/28/21	04/29/21	
Thallium, 3010	EPA 6020B	ND	0.20	mg/L	1	AED1646	04/28/21	04/29/21	
Zinc, 3010	EPA 6020B	ND	0.50	mg/L	1	AED1646	04/28/21	04/29/21	

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Washington SVOC by GC-MS									
1,2,4-Trichlorobenzene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
1,2-Diphenylhydrazine (as Azobenzene)	EPA 625.1	ND	20	ug/L	1	AED1195	04/21/21	04/26/21	
2,2'-oxybis(1-chloropropane) (2	^{e)} EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
2,4,6-Trichlorophenol	EPA 625.1	ND	4.0	ug/L	1	AED1195	04/21/21	04/26/21	
2,4-Dichlorophenol	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
2,4-Dimethylphenol	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
2,4-Dinitrophenol	EPA 625.1	ND	2.0	ug/L	1	AED1195	04/21/21	04/26/21	
2,4-Dinitrotoluene	EPA 625.1	ND	0.40	ug/L	1	AED1195	04/21/21	04/26/21	
2,6-Dinitrotoluene	EPA 625.1	ND	0.40	ug/L	1	AED1195	04/21/21	04/26/21	
2-Chloronaphthalene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
2-Chlorophenol	EPA 625.1	ND	2.0	ug/L	1	AED1195	04/21/21	04/26/21	
2-Nitrophenol	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
3,3-Dichlorobenzidine	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
4,6-Dinitro-2-methylphenol	EPA 625.1	ND	2.0	ug/L	1	AED1195	04/21/21	04/26/21	
4-Bromophenyl phenyl ether	EPA 625.1	ND	0.40	ug/L	1	AED1195	04/21/21	04/26/21	
4-Chloro-3-methylphenol	EPA 625.1	ND	2.0	ug/L	1	AED1195	04/21/21	04/26/21	
4-Chlorophenyl phenyl ether	EPA 625.1	ND	0.50	ug/L	1	AED1195	04/21/21	04/26/21	
4-Nitrophenol	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Acenaphthene	EPA 625.1	ND	0.40	ug/L	1	AED1195	04/21/21	04/26/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sampled By: Carly Lemon

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-02 **Sample Date - Time:** 04/19/2021 - 11:00

Matrix: Water

Sample Description: Rock Cr. and Foster Seep

Sample Type: Composite

Composite Start: 04/18/2021 - 11:00

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Washington SVOC by GC-MS					mate				
Acenaphthylene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Anthracene	EPA 625.1	ND	0.60	ug/L	1	AED1195		04/26/21	
Benzidine	EPA 625.1	ND	24	ug/L	1	AED1195		04/26/21	
Benzo(a)anthracene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Benzo(a)pyrene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Benzo(b)fluoranthene	EPA 625.1	ND	1.6	ug/L	1	AED1195	04/21/21	04/26/21	
Benzo(g,h,i)perylene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Benzo(k)fluoranthene	EPA 625.1	ND	1.6	ug/L	1	AED1195	04/21/21	04/26/21	
Bis(2-chloroethoxy)methane	EPA 625.1	ND	21	ug/L	1	AED1195	04/21/21	04/26/21	
Bis(2-chloroethyl) ether	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Bis(2-ethylhexyl) phthalate	EPA 625.1	ND	0.50	ug/L	1	AED1195	04/21/21	04/26/21	
Butyl benzyl phthalate	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Chrysene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Dibenzo(a,h)anthracene	EPA 625.1	ND	1.6	ug/L	1	AED1195	04/21/21	04/26/21	
Diethyl phthalate	EPA 625.1	ND	7.6	ug/L	1	AED1195	04/21/21	04/26/21	
Dimethyl phthalate	EPA 625.1	ND	6.4	ug/L	1	AED1195	04/21/21	04/26/21	
Di-n-butyl phthalate	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Di-n-octyl phthalate	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Fluoranthene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Fluorene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Hexachlorobenzene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Hexachlorobutadiene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Hexachlorocyclopentadiene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Hexachloroethane	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Indeno(1,2,3-cd)pyrene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Isophorone	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Naphthalene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Nitrobenzene	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
N-Nitrosodimethylamine (NDMA)	EPA 625.1	ND	4.0	ug/L	1	AED1195	04/21/21	04/26/21	
N-Nitrosodi-n-propylamine (NDPA)	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
N-Nitrosodiphenylamine (as DPA)	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Pentachlorophenol	EPA 625.1	ND	1.0	ug/L	1	AED1195	04/21/21	04/26/21	
Phenanthrene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Phenol	EPA 625.1	ND	4.0	ug/L	1	AED1195	04/21/21	04/26/21	
Pyrene	EPA 625.1	ND	0.60	ug/L	1	AED1195	04/21/21	04/26/21	
Surrogate: 2,4,6-Tribromophenol	EPA 625.1	112 %	Acceptable	range:	53-200 %				
Surrogate: 2-Fluorobiphenyl	EPA 625.1	70 %	Acceptable	range:	40-127 %				
Surrogate: 2-Fluorophenol	EPA 625.1	78 %	Acceptable	range:	42-123 %				
Surrogate: Nitrobenzene-d5	EPA 625.1	74 %	Acceptable	range:	15-200 %				
Surrogate: Phenol-d6	EPA 625.1	84 %	Acceptable	_					
Surrogate: p-Terphenyl-d14	EPA 625.1	71 %	Acceptable	-					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-02 Sampled By: Carly Lemon

tions Deals On and Frater O

Sample Description: Rock Cr. and Foster Seep

Sample Date - Time: 04/19/2021 - 11:00

Matrix: Water

Sample Type: Composite

Composite Start: 04/18/2021 - 11:00

BSK Associates Vancouver General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch Prepared	Analyzed	Qual
Biochemical Oxygen Demand	SM 5210B	9.7	1.2	mg/L	1.2	VED0094 04/21/21 10:30	04/26/21	
Total Suspended Solids	SM 2540D	56	5.0	mg/L	1	VED0096 04/22/21	04/22/21	

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-03 **Sample Date - Time:** 04/19/2021 - 00:00

Sampled By:BSK VALMatrix:WaterSample Description:Trip Blank - Lot #0321050Sample Type:Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Volatile Organics by GC-MS									
1,1,1-Trichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,1,2,2-Tetrachloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,1,2-Trichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,1-Dichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,1-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,2-Dibromoethane (EDB)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,2-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,2-Dichloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,2-Dichloropropane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,3-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
1,4-Dichlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
2-Hexanone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/22/21	
4-Methyl-2-pentanone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/22/21	
Acetone	EPA 624.1	ND	20	ug/L	1	AED1389	04/22/21	04/22/21	
Benzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Bromodichloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Bromoform	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Bromomethane	EPA 624.1	ND	1.0	ug/L	1	AED1389	04/22/21	04/22/21	
Carbon disulfide	EPA 624.1	ND	50	ug/L	1	AED1389	04/22/21	04/22/21	
Carbon Tetrachloride	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Chlorobenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Chloroethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Chloroform	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Chloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
cis-1,2-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
cis-1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Dibromochloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Dichloromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Ethylbenzene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
p-Isopropyltoluene	EPA 624.1	ND	5.0	ug/L	1	AED1389	04/22/21	04/22/21	
m,p-Xylenes	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Methyl-t-butyl ether	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
o-Xylene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Styrene	EPA 624.1	ND	5.0	ug/L	1	AED1389	04/22/21	04/22/21	
Tetrachloroethene (PCE)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Toluene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
trans-1,2-Dichloroethene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
trans-1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Trichloroethene (TCE)	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Trichlorofluoromethane	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	
Vinyl Chloride	EPA 624.1	ND	0.50	ug/L	1	AED1389	04/22/21	04/22/21	CV0.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sampled By: BSK VAL

Toxic Water

Toxic Water

Certificate of Analysis

Sample ID: VED0391-03

Sample Date - Time: 04/19/2021 - 00:00

Matrix: Water Sample Type: Grab

Sample Description: Trip Blank - Lot #0321050

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Surrogate: 1,2-Dichloroethane-d4	EPA 624.1	111 %	Acceptable	e range: 70	-130 %				
Surrogate: Bromofluorobenzene	EPA 624.1	107 %	Acceptable	e range: 70	-130 %				
Surrogate: Toluene-d8	EPA 624.1	99 %	Acceptable	e range: 70	-130 %				

BSK Associates Vancouver Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Total Trihalomethanes		ND	0.50	ug/L					
Total 1,3-Dichloropropene	EPA 624.1	ND	0.50	ug/L					
Total Xylenes	EPA 624.1	ND	0.50	ug/L					

General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 350.	1 - Qua	lity Co	ntrol					
Batch: AED1296										Prepared: 4/22/202
Prep Method: Method Specific Prepare	ation									Analyst: CT
Blank (AED1296-BLK1)										
Ammonia as N	ND	0.10	mg/L							04/22/21
Blank Spike (AED1296-BS1)										
Ammonia as N	3.8	0.10	mg/L	4.0	ND	96	90-110			04/22/21
Blank Spike Dup (AED1296-BSD1) Ammonia as N	3.9	0.40		4.0	ND	98	90-110	2	20	04/22/21
Ammonia as N	3.9	0.10	mg/L	4.0	ND	90	90-110	2	20	04/22/21
Matrix Spike (AED1296-MS1), Source:	SED0339-01									
Ammonia as N	3.9	0.10	mg/L	4.0	ND	96	90-110			04/22/21
Matrix Spike (AED1296-MS2), Source:	AED2052-03									
Ammonia as N	3.7	0.10	mg/L	4.0	ND	92	90-110			04/22/21
		SM 4500 CI	NE O	uality C	control					
Batch: AED1354		SM 4500-CI	1 E - Q	uanty C	ontroi					Prepared: 4/22/202
Prep Method: Total Cyanide Distillatio	n									Analyst: CE
7										7 mary 5 m. 5 L
Blank (AED1354-BLK1)										
Cyanide (total)	ND	0.050	mg/L							04/29/21
Blank Spike (AED1354-BS1)										
Cyanide (total)	0.25	0.050	mg/L	0.25	ND	99	80-120			04/29/21
Blank Spike Dup (AED1354-BSD1)										
Cyanide (total)	0.23	0.050	mg/L	0.25	ND	92	80-120	8	20	04/29/21
Mark 1 - 0 - 11 - (AED 4054 MO4) 0	A E D 0 400 0 4									
Matrix Spike (AED1354-MS1), Source: Cyanide (total)	AED2428-01 0.23	0.050	ma/l	0.25	ND	89	80-120			04/29/21
Syamue (Istal)	0.23	0.050	mg/L	0.23	ND	03	00-120			04/29/21
Matrix Spike Dup (AED1354-MSD1), Sc	ource: AED2428-01	l								
Cyanide (total)	0.23	0.050	mg/L	0.25	ND	90	80-120	1	20	04/29/21
		SM 53100	C - Qua	lity Co	ntrol					
Batch: AED1553				-						Prepared: 4/27/202
Prep Method: Method Specific Prepar	ation									Analyst: KI
Blank (AED1553-BLK1)										
Total Organic Carbon	ND	0.70	mg/L							04/27/21
Plank Snika (AED4FF2 BS4)										
Blank Spike (AED1553-BS1) Total Organic Carbon	10	0.70	mg/L	10	ND	103	80-120			04/27/21
	10	0.70	HIU/L	10	ND	100	00-120			U 1721121
otal Organic Carbon			3							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		SM 53100	C - Qua	ality Co	ntrol						
Batch: AED1553										Prepared	I: 4/27/2021
Prep Method: Method Specific Pre	eparation									Ar	nalyst: KDF
Blank Spike Dup (AED1553-BSD1))										
Total Organic Carbon	10	0.70	mg/L	10	ND	102	80-120	1	20	04/27/21	
Matrix Spike (AED1553-MS1), Sou	rce: AED1911-02										
Total Organic Carbon	13	0.70	mg/L	10	3.1	103	80-120			04/27/21	
Matrix Spike (AED1553-MS2), Sou	rce: AED2011-02										
Total Organic Carbon	12	0.70	mg/L	10	1.2	105	80-120			04/27/21	
Matrix Spike Dup (AED1553-MSD1), Source: AED1911-02										
Total Organic Carbon	13	0.70	mg/L	10	3.1	103	80-120	0	20	04/27/21	
Matrix Spike Dup (AED1553-MSD2	e), Source: AED2011-02										
Total Organic Carbon	12	0.70	mg/L	10	1.2	105	80-120	0	20	04/27/21	

Metals Quality Control Report

					порон						
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 6020	B - Qua	ality Co	ntrol						
Batch: AED1646				-						Prepare	d: 4/28/202
Prep Method: EPA 3010A											nalyst: VVV
Blank (AED1646-BLK1)											
Beryllium, 3010	ND	0.010	mg/L							04/29/21	
Chromium, 3010	ND	0.10	mg/L							04/29/21	
Nickel, 3010	ND	0.10	mg/L							04/29/21	
Copper, 3010	ND	0.10	mg/L							04/29/21	
Zinc, 3010	ND	0.50	mg/L							04/29/21	
Arsenic, 3010	ND	0.020	mg/L							04/29/21	
Selenium, 3010	ND	0.020	mg/L							04/29/21	
Silver, 3010	ND	0.10	mg/L							04/29/21	
Cadmium, 3010	ND	0.020	mg/L							04/29/21	
Antimony, 3010	ND	0.20	mg/L							04/29/21	
Fhallium, 3010	ND	0.20	mg/L							04/29/21	
_ead, 3010	ND	0.050	mg/L							04/29/21	
Mercury, 3010	ND	0.0040	mg/L							04/29/21	
Blank Spike (AED1646-BS1)											
Beryllium, 3010	4.7	0.010	mg/L	4.0	ND	117	75-125			04/29/21	
Chromium, 3010	4.2	0.10	mg/L	4.0	ND	104	75-125			04/29/21	
Nickel, 3010	3.9	0.10	mg/L	4.0	ND	97	75-125			04/29/21	
Copper, 3010	3.9	0.10	mg/L	4.0	ND	98	75-125			04/29/21	
Zinc, 3010	3.5	0.50	mg/L	4.0	ND	87	75-125			04/29/21	
Arsenic, 3010	3.7	0.020	mg/L	4.0	ND	92	75-125			04/29/21	
Selenium, 3010	3.3	0.020	mg/L	4.0	ND	83	75-125			04/29/21	
Silver, 3010	1.9	0.10	mg/L	2.0	ND	96	75-125			04/29/21	
Cadmium, 3010	3.8	0.020	mg/L	4.0	ND	96	75-125			04/29/21	
Antimony, 3010	4.1	0.20	mg/L	4.0	ND	102	75-125			04/29/21	
гhallium, 3010	3.6	0.20	mg/L	4.0	ND	90	75-125			04/29/21	
_ead, 3010	3.6	0.050	mg/L	4.0	ND	91	75-125			04/29/21	
Mercury, 3010	0.086	0.0040	mg/L	0.10	ND	86	75-125			04/29/21	
Blank Spike Dup (AED1646-BSD1)											
Beryllium, 3010	4.7	0.010	mg/L	4.0	ND	118	75-125	1	20	04/29/21	
Chromium, 3010	4.2	0.10	mg/L	4.0	ND	105	75-125	1	20	04/29/21	
Nickel, 3010	3.9	0.10	mg/L	4.0	ND	97	75-125	0	20	04/29/21	
Copper, 3010	3.9	0.10	mg/L	4.0	ND	98	75-125	1	20	04/29/21	
Zinc, 3010	3.5	0.50	mg/L	4.0	ND	88	75-125	1	20	04/29/21	
Arsenic, 3010	3.7	0.020	mg/L	4.0	ND	92	75-125	0	20	04/29/21	
Selenium, 3010	3.4	0.020	mg/L	4.0	ND	84	75-125	0	20	04/29/21	
Silver, 3010	1.9	0.10	mg/L	2.0	ND	95	75-125	1	20	04/29/21	
Cadmium, 3010	3.8	0.020	mg/L	4.0	ND	96	75-125	0	20	04/29/21	
Antimony, 3010	4.1	0.20	mg/L	4.0	ND	103	75-125	1	20	04/29/21	
Гhallium, 3010	3.6	0.20	mg/L	4.0	ND	90	75-125	1	20	04/29/21	
_ead, 3010	3.6	0.050	mg/L	4.0	ND	90	75-125	1	20	04/29/21	
Mercury, 3010	0.085	0.0040	mg/L	0.10	ND	85	75-125	1	20	04/29/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno **Metals Quality Control Report**

					Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 6020	B - Qua	ality Co	ontrol						

Part				Heite	Spike	Source		%REC		RPD	Date
Prepared: 4/28/20 Prep	Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
Park Spike (AED1646-MS1), Source: VED0391-02 Inflitm, 3010 4.6 0.010 mg/L 4.0 ND 116 75-125 04/29/21 Inflitm, 3010 4.1 0.10 mg/L 4.0 ND 95 75-125 04/29/21 Incombin, 3010 3.8 0.10 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.5 0.50 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 97 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 91 75-125 04/29/21 Incombin, 3010 3.6 0.020 mg/L 4.0 ND 91 75-125 04/29/21 Incombin, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 04/29/21 Indimin, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 95 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 95 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.9 0.00 mg/L 4.0 ND 89 75-125 04/29/21 Indimin, 3010 3.9 0.00 mg/L 4.0 ND 97 75-125 0 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.5 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.3 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 98 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 99 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 99 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 99 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0 ND 99 75-125 0 04/29/21 Indimin, 3010 3.8 0.00 mg/L 4.0			EPA 6020	B - Qu	ality Co	ntrol					
tartix Spike (AED1646-MS1), Source: VED0391-02 tryllium, 3010	Batch: AED1646										Prepared: 4/28/20
ryllium, 3010	Prep Method: EPA 3010A										Analyst: V\
romium, 3010	Matrix Spike (AED1646-MS1), Sour	ce: VED0391-02									
ckel, 3010 3.8 0.10 mg/L 4.0 ND 95 75-125 04/29/21 ppper, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 97 75-125 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 04/29/21 ppper, 3010 3.6 0.020 mg/L 4.0 ND 87 75-125 04/29/21 ppper, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 04/29/21 ppper, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 04/29/21 ppper, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 04/29/21 ppper, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 ppper, 3010 3.5 0.20 mg/L 4.0 ND 95 75-125 04/29/21 ppper, 3010 3.5 0.20 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.5 0.000 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.5 0.000 mg/L 0.10 ND 89 75-125 04/29/21 ppper, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 ppper, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 ppper, 3010 3.9 0.10 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.5 0.006 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.9 0.10 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.5 0.006 mg/L 4.0 ND 89 75-125 04/29/21 ppper, 3010 3.9 0.10 mg/L 4.0 ND 89 75-125 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 89 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 91 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 95 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 95 75-125 0 0 04/29/21 ppper, 3010 3.8 0.000 mg/L 4.0 ND 90 75-125 0 0 04/29/21 ppper, 3010 3.6 0.000 mg/L 4.0 ND	Beryllium, 3010	4.6	0.010	mg/L	4.0	ND	116	75-125			04/29/21
poper, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 04/29/21 percury. 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 04/29/21 percury. 3010 3.6 0.020 mg/L 4.0 ND 83 75-125 04/29/21 percury. 3010 3.8 0.020 mg/L 4.0 ND 91 75-125 04/29/21 percury. 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 percury. 3010 3.5 0.020 mg/L 4.0 ND 95 75-125 04/29/21 percury. 3010 3.5 0.020 mg/L 4.0 ND 95 75-125 04/29/21 percury. 3010 3.5 0.020 mg/L 4.0 ND 88 75-125 04/29/21 percury. 3010 3.5 0.020 mg/L 4.0 ND 88 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 88 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 88 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 0 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 0 04/29/21 percury. 3010 0.083 0.0040 mg/L 0.00 ND 105 75-125 0 0.004/29/21 percury. 3010 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004/29/21 percury. 3010 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004/29/21 0.004	Chromium, 3010	4.1	0.10	mg/L	4.0	ND	103	75-125			04/29/21
nc, 3010	Nickel, 3010	3.8	0.10	mg/L	4.0	ND	95	75-125			04/29/21
senic, 3010 3.6 0.020 mg/L 4.0 ND 91 75-125 04/29/21 slenium, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 04/29/21 slenium, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 04/29/21 slenium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 slenium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 slenium, 3010 3.5 0.20 mg/L 4.0 ND 102 75-125 04/29/21 slenium, 3010 3.5 0.00 mg/L 4.0 ND 88 75-125 04/29/21 slenium, 3010 3.5 0.000 mg/L 4.0 ND 88 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.10 ND 88 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.0 ND 105 75-125 0 0/0 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.0 ND 105 75-125 0 0/0 04/29/21 slenium, 3010 0.083 0.0040 mg/L 0.0 ND 105 75-125 0 0 0 0/29/21 slenium, 3010 0.083 0.0040 mg/L 0.0 ND 105 75-125 0 0 0 0/29/21 slenium, 3010 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0	Copper, 3010	3.9	0.10	mg/L	4.0	ND	97	75-125			04/29/21
selenium, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 04/29/21 ver, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 04/29/21 ver, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 ver, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 ver, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 ver, 3010 3.5 0.20 mg/L 4.0 ND 88 75-125 04/29/21 ver, 3010 3.5 0.050 mg/L 4.0 ND 88 75-125 04/29/21 ver, 3010 3.5 0.050 mg/L 4.0 ND 88 75-125 04/29/21 ver, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ver, 3010 0.083 0.0040 mg/L 0.10 ND 083 0.0040 mg/L 0.10 ND 083 0.0040 09/L 0.00 04/29/21 ver, 3010 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Zinc, 3010	3.5	0.50	mg/L	4.0	ND	87	75-125			04/29/21
ver, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 04/29/21 adminim, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 adminim, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 adminim, 3010 3.5 0.20 mg/L 4.0 ND 88 75-125 04/29/21 adminim, 3010 3.5 0.050 mg/L 4.0 ND 89 75-125 04/29/21 adminim, 3010 3.5 0.050 mg/L 4.0 ND 89 75-125 04/29/21 adminim, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 adminim, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 adminim, 3010 0.083 0.0040 mg/L 0.10 ND 89 75-125 04/29/21 adminim, 3010 0.083 0.0040 mg/L 4.0 ND 116 75-125 0 04/29/21 adminim, 3010 0.0040 0.005	Arsenic, 3010	3.6	0.020	mg/L	4.0	ND	91	75-125			04/29/21
Admium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 04/29/21 allium, 3010 4.1 0.20 mg/L 4.0 ND 102 75-125 04/29/21 allium, 3010 3.5 0.20 mg/L 4.0 ND 88 75-125 04/29/21 ad, 3010 3.5 0.060 mg/L 4.0 ND 89 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.00 ND 83 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.00 ND 116 75-125 0 0.00 04/29/21 ad, 3010 0.0040 0.004	Selenium, 3010	3.3	0.020	mg/L	4.0	ND	83	75-125			04/29/21
Attrix Spike Dup (AED1646-MSD1), Source: VED0391-02 Attrix Spike Dup (AED164-MSD1), Source: VED0391-02 Attrix Spike Dup (AED164-MSD1), Source: VED0391-02 Attrix Spike Dup (AED164-MSD1), ND	Silver, 3010	1.9	0.10	mg/L	2.0	ND	94	75-125			04/29/21
adlium, 3010 3.5 0.20 mg/L 4.0 ND 88 75-125 04/29/21 ad, 3010 0.083 0.0040 mg/L 0.10 ND 87 75-125 04/29/21 adrix Spike Dup (AED1646-MSD1), Source: VED0391-02 atrix Spike Dup (AED1646-MSD1), Source: VED0391-02 arrownium, 3010 4.6 0.010 mg/L 4.0 ND 116 75-125 0 20 04/29/21 arrownium, 3010 4.2 0.10 mg/L 4.0 ND 105 75-125 3 20 04/29/21 arrownium, 3010 4.2 0.10 mg/L 4.0 ND 97 75-125 3 20 04/29/21 arrownium, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 2 20 04/29/21 arrownium, 3010 3.9 0.10 mg/L 4.0 ND 98 75-125 1 20 04/29/21 arrownium, 3010 3.5 0.50 mg/L 4.0 ND 98 75-125 1 20 04/29/21 arrownium, 3010 3.7 0.020 mg/L 4.0 ND 98 75-125 0 20 04/29/21 arrownium, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 arrownium, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 96 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 97 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 96 75-125 0 20 04/29/21 arrownium, 3010 3.8 0.020 mg/L 4.0 ND 97 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 0.000 mg/L 4.0 ND 90 75-125 0 20 04/29/21 arrownium, 3010 3.6 04/29/21 arrownium, 3010 3.5 04/29	Cadmium, 3010	3.8	0.020	mg/L	4.0	ND	95	75-125			04/29/21
ad, 3010 3.5 0.050 mg/L 4.0 ND 89 75-125 04/29/21 ercury, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ercury, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ercury, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 04/29/21 ercury, 3010 4.6 0.010 mg/L 4.0 ND 116 75-125 0 20 04/29/21 ercury, 3010 4.2 0.10 mg/L 4.0 ND 105 75-125 3 20 04/29/21 ercury, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 2 20 04/29/21 ercury, 3010 3.9 0.10 mg/L 4.0 ND 98 75-125 1 20 04/29/21 ercury, 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 0 20 04/29/21 ercury, 3010 3.7 0.020 mg/L 4.0 ND 87 75-125 0 20 04/29/21 ercury, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 ercury, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 ercury, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 1 20 04/29/21 ercury, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1 20 04/29/21 ercury, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1 20 04/29/21 ercury, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 95 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercury, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ercu	Antimony, 3010	4.1	0.20	mg/L	4.0	ND	102	75-125			04/29/21
ercury, 3010 0.083 0.0040 mg/L 0.10 ND 83 75-125 0.4/29/21 eatrix Spike Dup (AED1646-MSD1), Source: VED0391-02 eryllium, 3010 4.6 0.010 mg/L 4.0 ND 116 75-125 0.20 04/29/21 eryllium, 3010 4.2 0.10 mg/L 4.0 ND 105 75-125 3.20 04/29/21 excel, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 2.20 04/29/21 expeper, 3010 3.9 0.10 mg/L 4.0 ND 98 75-125 1.20 04/29/21 expeper, 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 0.20 04/29/21 excel, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0.20 04/29/21 extension, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0.20 04/29/21 extension, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0.20 04/29/21 extension, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0.20 04/29/21 extension, 3010 3.3 0.020 mg/L 4.0 ND 94 75-125 0.20 04/29/21 extension, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 1.20 04/29/21 extension, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1.20 04/29/21 extension, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1.20 04/29/21 extension, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2.20 04/29/21 extension, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2.20 04/29/21 extension, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2.20 04/29/21 extension, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2.20 04/29/21 extension, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2.20 04/29/21	Гhallium, 3010	3.5	0.20	mg/L	4.0	ND	88	75-125			04/29/21
Patrix Spike Dup (AED1646-MSD1), Source: VED0391-02 Paryllium, 3010 4.6 0.010 mg/L 4.0 ND 116 75-125 0 20 04/29/21 100 105 75-125 3 20 04/29/21 100 106, 3010 3.9 0.10 mg/L 4.0 ND 97 75-125 2 20 04/29/21 100 100 100 100 100 100 100	_ead, 3010	3.5	0.050	mg/L	4.0	ND	89	75-125			04/29/21
As a seryllium, 3010 seryllium	Mercury, 3010	0.083	0.0040	mg/L	0.10	ND	83	75-125			04/29/21
1	Matrix Spike Dup (AED1646-MSD1)), Source: VED0391-0	2								
3.9 0.10 mg/L 4.0 ND 97 75-125 2 20 04/29/21 ppper, 3010 3.9 0.10 mg/L 4.0 ND 98 75-125 1 20 04/29/21 ppper, 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 0 20 04/29/21 ppper, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 ppper, 3010 3.3 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 ppper, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 ppper, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 ppper, 3010 3.8 0.020 mg/L 4.0 ND 94 75-125 1 20 04/29/21 ppper, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 ppper, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 ppper, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 ppper, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper pper, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ppper pper pper pper pper pper pper pp	Beryllium, 3010	4.6	0.010	mg/L	4.0	ND	116	75-125	0	20	04/29/21
3.9 0.10 mg/L 4.0 ND 98 75-125 1 20 04/29/21 nc, 3010 3.5 0.50 mg/L 4.0 ND 97 75-125 0 20 04/29/21 senic, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 senic, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 senicm, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 senicm, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 1 20 04/29/21 senicm, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 senicm, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 senicm, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senicm, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senicm, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senicm, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Chromium, 3010	4.2	0.10	mg/L	4.0	ND	105	75-125	3	20	04/29/21
nc, 3010 3.5 0.50 mg/L 4.0 ND 87 75-125 0 20 04/29/21 senic, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 senic, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 senic, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 1 20 04/29/21 senic, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 1 20 04/29/21 senic, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 senic, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 senic, 3010 3.0 0.050 m	Nickel, 3010	3.9	0.10	mg/L	4.0	ND	97	75-125	2	20	04/29/21
senic, 3010 3.7 0.020 mg/L 4.0 ND 91 75-125 0 20 04/29/21 elenium, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 elenium, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 1 20 04/29/21 elenium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 elenium, 3010 4.1 0.20 mg/L 4.0 ND 95 75-125 1 20 04/29/21 elenium, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 elenium, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 elenium, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Copper, 3010	3.9	0.10	mg/L	4.0	ND	98	75-125	1	20	04/29/21
stenium, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 ver, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 1 20 04/29/21 ddmium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 ddmium, 3010 ddmium, 3010 3.8 0.020 mg/L 4.0 ND 103 75-125 1 20 04/29/21 dallium, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 dallium, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Zinc, 3010	3.5	0.50	mg/L	4.0	ND	87	75-125	0	20	04/29/21
slenium, 3010 3.3 0.020 mg/L 4.0 ND 83 75-125 0 20 04/29/21 ver, 3010 1.9 0.10 mg/L 2.0 ND 94 75-125 1 20 04/29/21 sdmium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 stimony, 3010 4.1 0.20 mg/L 4.0 ND 103 75-125 1 20 04/29/21 stimony, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 sad, 3010	Arsenic, 3010	3.7		J	4.0	ND	91	75-125	0	20	04/29/21
admium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 stimony, 3010 4.1 0.20 mg/L 4.0 ND 103 75-125 1 20 04/29/21 sallium, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ad, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Selenium, 3010	3.3	0.020	mg/L	4.0	ND	83	75-125	0	20	04/29/21
admium, 3010 3.8 0.020 mg/L 4.0 ND 95 75-125 0 20 04/29/21 definitionly, 3010 4.1 0.20 mg/L 4.0 ND 103 75-125 1 20 04/29/21 definitionly, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 definitionly, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21 definitionly, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Silver, 3010	1.9	0.10	mg/L	2.0	ND	94	75-125	1	20	04/29/21
allium, 3010 4.1 0.20 mg/L 4.0 ND 103 75-125 1 20 04/29/21 allium, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ad, 3010 ND 90 75-125 2 20 04/29/21	Cadmium, 3010	3.8	0.020	mg/L	4.0	ND	95	75-125	0	20	04/29/21
allium, 3010 3.6 0.20 mg/L 4.0 ND 90 75-125 2 20 04/29/21 ad, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Antimony, 3010	4.1	0.20	•	4.0	ND	103	75-125	1	20	04/29/21
ad, 3010 3.6 0.050 mg/L 4.0 ND 90 75-125 2 20 04/29/21	Гhallium, 3010	3.6		J	4.0	ND	90	75-125	2	20	04/29/21
·	_ead, 3010	3.6		•	4.0	ND	90	75-125	2	20	04/29/21
	Mercury, 3010	0.087	0.0040	mg/L	0.10	ND	87	75-125	4	20	04/29/21

%REC

RPD

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyte	Result	RL	Spike Units _{Level}	Source Result	%REC	%REC Limits	RPD .imit	Date Analyzed	Qual
		EPA 624.	1 - Quality Co	ntrol					
Batch: AED1389								Prepare	d: 4/22/20
Prep Method: no prep-volatiles								A	nalyst: Al
Blank (AED1389-BLK1)									
,1,1-Trichloroethane	ND	0.50	ug/L					04/22/21	
,1,2,2-Tetrachloroethane	ND	0.50	ug/L					04/22/21	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L					04/22/21	
,1,2-Trichloroethane	ND	0.50	ug/L					04/22/21	
,1-Dichloroethane	ND	0.50	ug/L					04/22/21	
,1-Dichloroethene	ND	0.50	ug/L					04/22/21	
,2-Dibromoethane (EDB)	ND	0.50	ug/L					04/22/21	
,2-Dichlorobenzene	ND	0.50	ug/L					04/22/21	
,2-Dichloroethane	ND	0.50	ug/L					04/22/21	
,2-Dichloropropane	ND	0.50	ug/L					04/22/21	
,3-Dichlorobenzene	ND	0.50	ug/L					04/22/21	
,4-Dichlorobenzene	ND	0.50	ug/L					04/22/21	
-Chloroethyl vinyl ether	ND	1.0	ug/L					04/22/21	
-Hexanone	ND	20	ug/L					04/22/21	
-Methyl-2-pentanone	ND	20	ug/L					04/22/21	
cetone	ND	20	ug/L					04/22/21	
crolein	ND	2.0	ug/L					04/22/21	
crylonitrile	ND	2.0	ug/L					04/22/21	
denzene	ND	0.50	ug/L					04/22/21	
romodichloromethane	ND	0.50	ug/L					04/22/21	
romoform	ND	0.50	ug/L					04/22/21	
romomethane	ND	1.0	ug/L					04/22/21	
Carbon disulfide	ND	50	ug/L					04/22/21	
Carbon Tetrachloride	ND	0.50	ug/L					04/22/21	
Chlorobenzene	ND	0.50	ug/L					04/22/21	
Chloroethane	ND	0.50	ug/L					04/22/21	
Chloroform	ND	0.50	ug/L					04/22/21	
Chloromethane	ND	0.50	ug/L					04/22/21	
is-1,2-Dichloroethene	ND	0.50	ug/L					04/22/21	
is-1,3-Dichloropropene	ND	0.50	ug/L					04/22/21	
Dibromochloromethane	ND	0.50	ug/L					04/22/21	
Dichloromethane	ND	0.50	ug/L					04/22/21	
ithylbenzene	ND	0.50	ug/L					04/22/21	
-Isopropyltoluene	ND	5.0	ug/L					04/22/21	
n,p-Xylenes	ND	0.50	ug/L					04/22/21	
flethyl-t-butyl ether	ND	0.50	ug/L					04/22/21	
-Xylene	ND	0.50	ug/L					04/22/21	
styrene	ND	5.0	ug/L					04/22/21	
etrachloroethene (PCE)	ND	0.50	ug/L					04/22/21	
oluene	ND	0.50	ug/L					04/22/21	
rans-1,2-Dichloroethene	ND	0.50	ug/L ug/L					04/22/21	
ans-1,3-Dichloropropene	ND	0.50	_					04/22/21	
and 1,0-Diomoroproperie	ND	0.50	ug/L ug/L					04/22/21	

accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

				Spike	Source		%REC	RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD Limit	Analyzed	Qual
		EPA 624.	1 - Qua	ality Co	ntrol					
Batch: AED1389				•					Prepare	d: 4/22/202
Prep Method: no prep-volatiles									Α	nalyst: AMI
Blank (AED1389-BLK1)										
richlorofluoromethane	ND	0.50	ug/L						04/22/21	
/inyl Chloride	ND	0.50	ug/L						04/22/21	
Surrogate: 1,2-Dichloroethane-d4	60			50		121	70-130		04/22/21	
Surrogate: Bromofluorobenzene	48			50		97	70-130		04/22/21	
Surrogate: Toluene-d8	45			50		90	70-130		04/22/21	
Blank Spike (AED1389-BS1)										
,1,1-Trichloroethane	10	0.50	ug/L	10	ND	103	52-162		04/22/21	
,1,2,2-Tetrachloroethane	9.7	0.50	ug/L	10	ND	97	46-157		04/22/21	
,1,2-Trichloro-1,2,2-trifluoroethane	12	0.50	ug/L	10	ND	118	59-161		04/22/21	
,1,2-Trichloroethane	9.8	0.50	ug/L	10	ND	98	52-150		04/22/21	
,1-Dichloroethane	9.8	0.50	ug/L	10	ND	98	59-155		04/22/21	
,1-Dichloroethene	10	0.50	ug/L	10	ND	102	10-234		04/22/21	
,2-Dibromoethane (EDB)	9.4	0.50	ug/L	10	ND	94	77-125		04/22/21	
,2-Dichlorobenzene	9.7	0.50	ug/L	10	ND	97	18-190		04/22/21	
,2-Dichloroethane	9.7	0.50	ug/L	10	ND	97	49-155		04/22/21	
,2-Dichloropropane	9.3	0.50	ug/L	10	ND	93	10-210		04/22/21	
,3-Dichlorobenzene	9.7	0.50	ug/L	10	ND	97	59-156		04/22/21	
,4-Dichlorobenzene	9.7	0.50	ug/L	10	ND	97	18-190		04/22/21	
2-Chloroethyl vinyl ether	11	1.0	ug/L	10	ND	113	10-305		04/22/21	
2-Hexanone	8.3	20	ug/L	10	ND	83	62-141		04/22/21	
l-Methyl-2-pentanone	7.9	20	ug/L	10	ND	79	72-134		04/22/21	
Acetone	8.9	20	ug/L	10	ND	89	49-165		04/22/21	
Acrolein	100	2.0	ug/L	100	ND	102	44-144		04/22/21	
Acrylonitrile	9.5	2.0	ug/L	10	ND	95	54-140		04/22/21	
Benzene	9.9	0.50	ug/L	10	ND	99	37-151		04/22/21	
Bromodichloromethane	9.4	0.50	ug/L	10	ND	94	80-127		04/22/21	
Bromoform	8.5	0.50	ug/L	10	ND	85	45-169		04/22/21	
Bromomethane	11	1.0	ug/L	10	ND	108	10-242		04/22/21	
Carbon disulfide	11	50	ug/L	10	ND	108	78-140		04/22/21	
Carbon Tetrachloride	10	0.50	ug/L	10	ND	104	70-140		04/22/21	
Chlorobenzene	9.8	0.50	ug/L	10	ND	98	37-160		04/22/21	
Chloroethane	9.5	0.50	ug/L	10	ND	95	14-230		04/22/21	
Chloroform	9.9	0.50	ug/L	10	ND	99	51-138		04/22/21	
Chloromethane	12	0.50	ug/L	10	ND	115	10-273		04/22/21	
cis-1,2-Dichloroethene	9.5	0.50	ug/L	10	ND	95	77-132		04/22/21	
sis-1,3-Dichloropropene	8.8	0.50	ug/L	10	ND	88	10-227		04/22/21	
Dibromochloromethane	9.1	0.50	ug/L	10	ND	91	53-149		04/22/21	
Dichloromethane	10	0.50	ug/L	10	ND	101	10-221		04/22/21	
Ethylbenzene	9.5	0.50	ug/L ug/L	10	ND	95	37-162		04/22/21	
p-Isopropyltoluene	9.6	5.0	_	10	ND	95 96	50-150		04/22/21	
n,p-Xylenes	19	0.50	ug/L	20	ND	97	76-123		04/22/21	
Methyl-t-butyl ether	18	0.50	ug/L ug/L	20	ND ND	90	76-123		04/22/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 624.	1 - Qua	ality Co	ntrol						
Batch: AED1389										Prepared	d: 4/22/2021
Prep Method: no prep-volatiles										Ar	nalyst: AMN
Blank Spike (AED1389-BS1)											
p-Xylene	9.0	0.50	ug/L	10	ND	90	84-121			04/22/21	
Styrene	9.1	5.0	ug/L	10	ND	91	79-124			04/22/21	
Tetrachloroethene (PCE)	10	0.50	ug/L	10	ND	104	64-148			04/22/21	
l'oluene	9.8	0.50	ug/L	10	ND	98	47-150			04/22/21	
rans-1,2-Dichloroethene	10	0.50	ug/L	10	ND	101	54-156			04/22/21	
rans-1,3-Dichloropropene	9.0	0.50	ug/L	10	ND	90	17-183			04/22/21	
richloroethene (TCE)	9.2	0.50	ug/L	10	ND	92	71-157			04/22/21	
Frichlorofluoromethane	11	0.50	ug/L	10	ND	105	17-181			04/22/21	
/inyl Chloride	12	0.50	ug/L	10	ND	121	10-251			04/22/21	
Surrogate: 1,2-Dichloroethane-d4	50			50		101	70-130			04/22/21	
Surrogate: Bromofluorobenzene	49			50		99	70-130			04/22/21	
Surrogate: Toluene-d8	50			50		100	70-130			04/22/21	
Blank Spike Dup (AED1389-BSD1)											
,1,1-Trichloroethane	10	0.50	ug/L	10	ND	103	52-162	1	30	04/22/21	
,1,2,2-Tetrachloroethane	9.8	0.50	ug/L	10	ND	98	46-157	0	30	04/22/21	
,1,2-Trichloro-1,2,2-trifluoroethane	12	0.50	ug/L	10	ND	117	59-161	1	30	04/22/21	
,1,2-Trichloroethane	9.7	0.50	ug/L	10	ND	97	52-150	1	30	04/22/21	
,1-Dichloroethane	9.9	0.50	ug/L	10	ND	99	59-155	1	30	04/22/21	
,1-Dichloroethene	10	0.50	ug/L	10	ND	103	10-234	1	30	04/22/21	
,2-Dibromoethane (EDB)	9.5	0.50	ug/L	10	ND	95	77-125	1	30	04/22/21	
,2-Dichlorobenzene	9.6	0.50	ug/L	10	ND	96	18-190	1	30	04/22/21	
,2-Dichloroethane	9.7	0.50	ug/L	10	ND	97	49-155	0	30	04/22/21	
,2-Dichloropropane	9.6	0.50	ug/L	10	ND	96	10-210	3	30	04/22/21	
,3-Dichlorobenzene	9.6	0.50	ug/L	10	ND	96	59-156	1	30	04/22/21	
,4-Dichlorobenzene	9.6	0.50	ug/L	10	ND	96	18-190	1	30	04/22/21	
2-Chloroethyl vinyl ether	12	1.0	ug/L	10	ND	117	10-305	3	30	04/22/21	
2-Hexanone	8.4	20	ug/L	10	ND	84	62-141	1	30	04/22/21	
I-Methyl-2-pentanone	8.0	20	ug/L	10	ND	80	72-134	2	30	04/22/21	
Acetone	9.0		ug/L	10	ND	90	49-165	1	30	04/22/21	
Acrolein	110	2.0	ug/L	100	ND	110	44-144	8	30	04/22/21	
Acrylonitrile	9.6	2.0	ug/L	10	ND	96	54-140	1	30	04/22/21	
Benzene	9.4	0.50	ug/L	10	ND	94	37-151	5	30	04/22/21	
Bromodichloromethane	9.5	0.50	ug/L	10	ND	95	80-127	1	30	04/22/21	
Bromoform	8.7	0.50	ug/L	10	ND	87	45-169	1	30	04/22/21	
Bromomethane	10	1.0	ug/L	10	ND	103	10-242	5	30	04/22/21	
Carbon disulfide	11	50	ug/L	10	ND	108	78-140	0	30	04/22/21	
Carbon Tetrachloride	10	0.50	ug/L	10	ND	105	70-140	1	30	04/22/21	
Chlorobenzene	9.8	0.50	ug/L ug/L	10	ND	98	37-160	0	30	04/22/21	
Chloroethane	9.2	0.50	ug/L ug/L	10	ND	92	14-230	3	30	04/22/21	
Chloroform	10	0.50	_	10	ND	100	51-138	1	30	04/22/21	
J. 1101 0101111	10	0.50	ug/L	10		100	0 1-100	'	50	U-1/44/4 I	
Chloromethane	11	0.50	ug/L	10	ND	114	10-273	1	30	04/22/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno

Organics Quality Control Report

RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual	
EPA 624.	1 - Qua	ality Co	ntrol						
								Prepared: 4/22	2/202
								Analyst:	AM
0.50	ug/L	10	ND	90	10-227	2	30	04/22/21	
0.50	ug/L	10	ND	91	53-149	0	30	04/22/21	
0.50	ug/L	10	ND	101	10-221	1	30	04/22/21	
0.50	ug/L	10	ND	95	37-162	1	30	04/22/21	
5.0	ug/L	10	ND	94	50-150	2	30	04/22/21	
0.50	ug/L	20	ND	97	76-123	1	30	04/22/21	
0.50	ug/L	20	ND	92	76-133	2	30	04/22/21	
0.50	ug/L	10	ND	91	84-121	1	30	04/22/21	
5.0	ug/L	10	ND	90	79-124	1	30	04/22/21	
0.50	ug/L	10	ND	101	64-148	2	30	04/22/21	
0.50	ug/L	10	ND	98	47-150	0	30	04/22/21	
0.50	ug/L	10	ND	102	54-156	0	30	04/22/21	
0.50	ug/L	10	ND	91	17-183	1	30	04/22/21	
0.50	ug/L	10	ND	100	71-157	9	30	04/22/21	
0.50	ug/L	10	ND	96	17-181	10	30	04/22/21	
0.50	ug/L	10	ND	121	10-251	0	30	04/22/21	
		50		96	70-130			04/22/21	
		50 50		95 98	70-130 70-130			04/22/21 04/22/21	
								Prepared: 4/2 ² Analyst	
0.60	ug/L							04/23/21	
20	ug/L							04/23/21	
0.60	ug/L							04/23/21	
4.0	ug/L							04/23/21	
1.0	ug/L							04/23/21	
1.0	ug/L							04/23/21	
2.0	ug/L							04/23/21	
0.40	ug/L							04/23/21	
0.40	ug/L							04/23/21	
0.60	ug/L							04/23/21	
2.0	ug/L							04/23/21	
1.0	ug/L							04/23/21	
1.0	ug/L							04/23/21	
2.0	ug/L							04/23/21	
0.40	ug/L							04/23/21	
2.0	ug/L							04/23/21	
0.50	ug/L							04/23/21	
1.0	ug/L							04/23/21	
						١	/ED039	1 FINAL 05042021	120
							\	VED039	VED0391 FINAL 05042021

Organics Quality Control Report

			Spike	Source		%REC	RPD	Date	
Analyte	Result	RL	Units Level	Result	%REC	Limits	RPD Limit	Analyzed	Qual
		EPA 625.	1 - Quality Co	ntrol					
Batch: AED1195								Prepare	d: 4/21/20
Prep Method: EPA 3520C								Α	nalyst: Y
Blank (AED1195-BLK1)									
Acenaphthene	ND	0.40	ug/L					04/23/21	
Acenaphthylene	ND	0.60	ug/L					04/23/21	
Anthracene	ND	0.60	ug/L					04/23/21	
Benzidine	ND	24	ug/L					04/23/21	
Benzo(a)anthracene	ND	0.60	ug/L					04/23/21	
Benzo(a)pyrene	ND	1.0	ug/L					04/23/21	
Benzo(b)fluoranthene	ND	1.6	ug/L					04/23/21	
Benzo(g,h,i)perylene	ND	1.0	ug/L					04/23/21	
Benzo(k)fluoranthene	ND	1.6	ug/L ug/L					04/23/21	
Bis(2-chloroethoxy)methane	ND	21	ug/L ug/L					04/23/21	
Bis(2-chloroethyl) ether	ND	1.0	ug/L ug/L					04/23/21	
Bis(2-ethylhexyl) phthalate	ND	0.50	ug/L ug/L					04/23/21	B2.0
Butyl benzyl phthalate	ND	0.60	_					04/23/21	D2.0
Chrysene	ND	0.60	ug/L					04/23/21	
Dibenzo(a,h)anthracene	ND		ug/L					04/23/21	
Diethyl phthalate	ND	1.6	ug/L					04/23/21	
Dimethyl phthalate	ND	7.6	ug/L					04/23/21	
• •	ND	6.4	ug/L					04/23/21	B2.0
Di-n-butyl phthalate	ND	1.0	ug/L					04/23/21	DZ.U
Di-n-octyl phthalate Fluoranthene	ND	0.60	ug/L					04/23/21	
Fluorene	ND	0.60	ug/L					04/23/21	
Hexachlorobenzene	ND	0.60	ug/L					04/23/21	
		0.60	ug/L					04/23/21	
lexachlere systement adiana	ND	1.0	ug/L					04/23/21	
lexachlereethene	ND	1.0	ug/L					04/23/21	
Hexachloroethane	ND	1.0	ug/L						
ndeno(1,2,3-cd)pyrene	ND	1.0	ug/L					04/23/21	
sophorone	ND	1.0	ug/L					04/23/21	
Naphthalene	ND	0.60	ug/L					04/23/21	
Vitrobenzene	ND	1.0	ug/L					04/23/21	
N-Nitrosodimethylamine (NDMA)	ND	4.0	_					04/23/21	
N-Nitrosodi-n-propylamine (NDPA)	ND	1.0	ug/L					04/23/21	
N-Nitrosodiphenylamine (as DPA)	ND	1.0	ug/L					04/23/21	
Pentachlorophenol	ND	1.0	ug/L					04/23/21	
Phenanthrene	ND	0.60	ug/L					04/23/21	
Phenol	ND	4.0	ug/L					04/23/21	
Pyrene	ND	0.60	ug/L					04/23/21	
Surrogate: 2,4,6-Tribromophenol	5.3		5.0		107	53-200		04/23/21	
Surrogate: 2-Fluorobiphenyl	3.6		5.0 5.0		72 80	40-127		04/23/21	
Surrogate: 2-Fluorophenol	4.0		5.0 5.0		80 76	42-123		04/23/21	
Surrogate: Nitrobenzene-d5 Surrogate: Phenol-d6	3.8 <i>4.4</i>		5.0 5.0		76 87	15-200 10-200		04/23/21 04/23/21	
Surrogate: r-Tierloi-do Surrogate: p-Terphenyl-d14	3.9		5.0 5.0		79	50-150		04/23/21	

Blank Spike (AED1195-BS1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit	Date Analyzed	Qual
		EPA 625.	1 - Qua	ality Co	ntrol					
Batch: AED1195									Prepare	d: 4/21/20
Prep Method: EPA 3520C									Α	nalyst: YN
Blank Spike (AED1195-BS1)										
,2,4-Trichlorobenzene	2.7	0.60	ug/L	5.0	ND	55	44-142		04/26/21	
,2-Diphenylhydrazine (as Azobenzene)	3.7	20	ug/L	5.0	ND	75	30-130		04/26/21	
2,2'-oxybis(1-chloropropane)	(2) 3.6	0.60	ug/L	5.0	ND	72	36-166		04/26/21	
2,4,6-Trichlorophenol	4.1	4.0	ug/L	5.0	ND	82	37-144		04/26/21	
2,4-Dichlorophenol	3.9	1.0	ug/L	5.0	ND	78	39-135		04/26/21	
2,4-Dimethylphenol	4.2	1.0	ug/L	5.0	ND	83	32-120		04/26/21	
2,4-Dinitrophenol	4.8	2.0	ug/L	5.0	ND	95	10-191		04/26/21	
2,4-Dinitrotoluene	4.2	0.40	ug/L	5.0	ND	84	39-139		04/26/21	
2,6-Dinitrotoluene	4.0	0.40	ug/L	5.0	ND	79	50-158		04/26/21	
2-Chloronaphthalene	3.4	0.60	ug/L	5.0	ND	69	60-120		04/26/21	
2-Chlorophenol	3.5	2.0	ug/L	5.0	ND	70	23-134		04/26/21	
2-Nitrophenol	4.0	1.0	ug/L	5.0	ND	80	29-182		04/26/21	
3,3-Dichlorobenzidine	9.5	1.0	ug/L	20	ND	47	10-200		04/26/21	
l,6-Dinitro-2-methylphenol	5.0	2.0	ug/L	5.0	ND	99	10-181		04/26/21	
-Bromophenyl phenyl ether	3.7	0.40	ug/L	5.0	ND	73	53-127		04/26/21	
-Chloro-3-methylphenol	4.4	2.0	ug/L	5.0	ND	89	22-147		04/26/21	
-Chlorophenyl phenyl ether	3.6	0.50	ug/L	5.0	ND	72	25-158		04/26/21	
-Nitrophenol	4.4	1.0	ug/L	5.0	ND	88	10-132		04/26/21	
Acenaphthene	0.077	0.40	ug/L	0.10	ND	77	47-145		04/26/21	
Acenaphthylene	0.076	0.60	ug/L	0.10	ND	76	33-145		04/26/21	
Anthracene	0.080	0.60	ug/L	0.10	ND	80	27-133		04/26/21	
Benzidine	3.0	24	ug/L	20	ND	15	10-200		04/26/21	
Benzo(a)anthracene	0.087	0.60	ug/L	0.10	ND	87	33-143		04/26/21	
Benzo(a)pyrene	0.083	1.0	ug/L	0.10	ND	83	17-163		04/26/21	
Benzo(b)fluoranthene	0.085	1.6	ug/L	0.10	ND	85	24-159		04/26/21	
Benzo(g,h,i)perylene	0.077	1.0	ug/L	0.10	ND	77	10-200		04/26/21	
Benzo(k)fluoranthene	0.080	1.6	ug/L	0.10	ND	80	11-162		04/26/21	
Bis(2-chloroethoxy)methane	3.6	21	ug/L	5.0	ND	72	33-184		04/26/21	
Bis(2-chloroethyl) ether	3.8	1.0	ug/L	5.0	ND	75	12-158		04/26/21	
Bis(2-ethylhexyl) phthalate	3.9	0.50	ug/L	5.0	ND	77	8-158		04/26/21	
Butyl benzyl phthalate	3.2	0.60	ug/L	5.0	ND	64	10-152		04/26/21	
Chrysene	0.081	0.60	ug/L	0.10	ND	81	17-168		04/26/21	
Dibenzo(a,h)anthracene	0.072	1.6	ug/L	0.10	ND	72	10-200		04/26/21	
Diethyl phthalate	2.6	7.6	ug/L	5.0	ND	51	10-120		04/26/21	
Dimethyl phthalate	1.3	6.4	ug/L	5.0	ND	25	10-120		04/26/21	
Di-n-butyl phthalate	3.6	1.0	ug/L	5.0	ND	72	10-120		04/26/21	
Di-n-octyl phthalate	3.3	0.60	ug/L	5.0	ND	67	10-146		04/26/21	
Fluoranthene	0.082	0.60	ug/L	0.10	ND	82	26-137		04/26/21	
Fluorene	0.078	0.60	ug/L	0.10	ND	78	59-121		04/26/21	
Hexachlorobenzene	3.6	0.60	ug/L	5.0	ND	73	10-152		04/26/21	
Hexachlorobutadiene	2.2	1.0	ug/L	5.0	ND	45	24-120		04/26/21	
lexachlorocyclopentadiene	2.7	1.0	ug/L	5.0	ND	55	10-130		04/26/21	
lexachloroethane	2.2	1.0	ug/L	5.0	ND	43	40-120		04/26/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyta	Doorle	DI	Units	Spike Level	Source	% DEC	%REC	RPD Limit	Date	Ouel
Analyte	Result	RL			Result	%REC	Limits	RPD Limit	Analyzed	Qual
		EPA 625.	1 - Qua	ality Cor	ntrol					
Batch: AED1195									Prepare	ed: 4/21/20
Prep Method: EPA 3520C									A	nalyst: Y
Blank Spike (AED1195-BS1)										
ndeno(1,2,3-cd)pyrene	0.070	1.0	ug/L	0.10	ND	70	10-171		04/26/21	
sophorone	3.9	1.0	ug/L	5.0	ND	77	21-196		04/26/21	
Naphthalene	0.069	0.60	ug/L	0.10	ND	69	21-133		04/26/21	
Nitrobenzene	3.7	1.0	ug/L	5.0	ND	74	35-180		04/26/21	
N-Nitrosodimethylamine (NDMA)	3.6	4.0	ug/L	5.0	ND	73	10-130		04/26/21	
N-Nitrosodi-n-propylamine (NDPA)	4.0	1.0	ug/L	5.0	ND	80	10-200		04/26/21	
N-Nitrosodiphenylamine (as DPA)	3.5	1.0	ug/L	5.0	ND	71	10-130		04/26/21	
Pentachlorophenol	4.2	1.0	ug/L	5.0	ND	83	14-176		04/26/21	
Phenanthrene	0.078	0.60	ug/L	0.10	ND	78	54-120		04/26/21	
Phenol	3.6	4.0	ug/L	5.0	ND	72	10-120		04/26/21	
Pyrene	0.083	0.60	ug/L	0.10	ND	83	52-120		04/26/21	
Surrogate: 2,4,6-Tribromophenol	5.5	0.50	~g/ -	5.0		109	53-200		04/26/21	
Surrogate: 2-Fluorobiphenyl	3.5			5.0		70	40-127		04/26/21	
Surrogate: 2-Fluorophenol	3.6			5.0		72	42-123		04/26/21	
Surrogate: Nitrobenzene-d5	3.8			5.0		76	15-200		04/26/21	
Surrogate: Phenol-d6	4.0			5.0		80	10-200		04/26/21	
Surrogate: p-Terphenyl-d14	3.9			5.0		79	50-150		04/26/21	
Matrix Spike (AED1195-MS1), Sou	urce: AFD1476-02									
,2,4-Trichlorobenzene	3.0	0.60	ug/L	4.8	ND	63	44-142		04/23/21	
,2-Diphenylhydrazine (as Azobenzene)	3.5	20	ug/L	4.8	ND	73	30-130		04/23/21	
2,2'-oxybis(1-chloropropane)	(2) 3.5	0.60	ug/L	4.8	ND	72	36-166		04/23/21	
2,4,6-Trichlorophenol	3.9	4.0	ug/L	4.8	ND	82	37-144		04/23/21	
·			3/-			81			04/23/21	
2,4-Dichlorophenol	3.9	1.0	ua/L	4.8	ND	01	39-133			
2,4-Dichlorophenol	3.9 3.9	1.0	ug/L ug/l	4.8 4.8	ND ND		39-135 32-120		04/23/21	
2,4-Dimethylphenol	3.9	1.0	ug/L	4.8	ND	75	32-120		04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol	3.9 4.4	1.0 2.0	ug/L ug/L	4.8 4.8	ND ND	75 86	32-120 10-191		04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	3.9 4.4 4.0	1.0 2.0 0.40	ug/L ug/L ug/L	4.8 4.8 4.8	ND ND ND	75 86 84	32-120 10-191 39-139		04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	3.9 4.4 4.0 3.8	1.0 2.0 0.40 0.40	ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8	ND ND ND ND	75 86 84 80	32-120 10-191 39-139 50-158		04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	3.9 4.4 4.0 3.8 3.4	1.0 2.0 0.40 0.40 0.60	ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8	ND ND ND ND	75 86 84 80 71	32-120 10-191 39-139 50-158 60-120		04/23/21 04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	3.9 4.4 4.0 3.8 3.4 3.3	1.0 2.0 0.40 0.40 0.60 2.0	ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8	ND ND ND ND ND	75 86 84 80 71 70	32-120 10-191 39-139 50-158 60-120 23-134		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol	3.9 4.4 4.0 3.8 3.4 3.3	1.0 2.0 0.40 0.40 0.60 2.0	ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8	ND ND ND ND ND ND	75 86 84 80 71 70 82	32-120 10-191 39-139 50-158 60-120 23-134 29-182		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS4.0.1.
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND	1.0 2.0 0.40 0.40 0.60 2.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND	75 86 84 80 71 70 82	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 L c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6	1.0 2.0 0.40 0.60 2.0 1.0 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND	75 86 84 80 71 70 82 0	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>Lc</i>
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 1-Bromophenyl phenyl ether	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>L</i> c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4	1.0 2.0 0.40 0.40 0.60 2.0 1.0 2.0 0.40 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>L</i> c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>L</i> c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenol 4-Nitrophenol	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4	1.0 2.0 0.40 0.60 2.0 1.0 1.0 2.0 0.40 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 L c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Chlorophenol	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40 2.0 0.50 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>L</i> c
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Nitrophenol 4-Cenaphthene 4-Cenaphthylene	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076 0.075	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40 2.0 0.50 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94 80 79	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145 33-145		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	MS1.0 <i>Lc</i>
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 3-Bromophenyl phenyl ether 3-Chloro-3-methylphenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Cenaphthene 3-Cenaphthylene	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076 0.075 0.077	1.0 2.0 0.40 0.60 2.0 1.0 1.0 2.0 0.40 2.0 0.50 1.0 0.40 0.60	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94 80 79	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145 33-145 27-133		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Nitrophenol 4-Characteria (Characteria (Characteri	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076 0.075 0.077 ND	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40 2.0 0.50 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 19 4.8 4.8 4.8 4.8 0.096 0.096 19	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94 80 79	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145 33-145 27-133 10-200		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Nitrophenol 3,3-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 3-Bromophenyl phenyl ether 3-Chloro-3-methylphenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Cenaphthene 3-Cenaphthylene	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076 0.075 0.077 ND 0.075	1.0 2.0 0.40 0.60 2.0 1.0 1.0 2.0 0.40 2.0 0.50 1.0 0.40 0.60	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94 80 79	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145 33-145 27-133 10-200 33-143		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Chlorophenol 3-Dichlorobenzidine 3-Dichlorobenzidine 3-Dinitro-2-methylphenol 3-Bromophenyl phenyl ether 3-Chloro-3-methylphenol 3-Chlorophenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Chlorophenyl phenyl ether 3-Nitrophenol 3-Cenaphthene 3-Cenaphthylene 3-Cenaphthylene 3-Cenaphthylene 3-Cenapithylene	3.9 4.4 4.0 3.8 3.4 3.3 3.9 ND 4.6 3.4 4.4 3.4 4.5 0.076 0.075 0.077 ND	1.0 2.0 0.40 0.60 2.0 1.0 2.0 0.40 2.0 0.50 1.0 0.60 0.60	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.8 4.8 4.8 4.8 4.8 4.8 19 4.8 4.8 4.8 4.8 0.096 0.096 19	ND N	75 86 84 80 71 70 82 0 96 72 91 72 94 80 79	32-120 10-191 39-139 50-158 60-120 23-134 29-182 10-200 10-181 53-127 22-147 25-158 10-132 47-145 33-145 27-133 10-200		04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21 04/23/21	

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Q	ual
		EPA 625.			ntrol						
Batch: AED1195				•						Prepared: 4	4/21/20
Prep Method: EPA 3520C										Anal	yst: Y
//atrix Spike (AED1195-MS1), Sour	rce: AFD1476-02										
Benzo(g,h,i)perylene	0.048	1.0	ug/L	0.096	ND	50	10-200			04/23/21	
Benzo(k)fluoranthene	0.089	1.6	ug/L	0.096	ND	93	11-162			04/23/21	
Bis(2-chloroethoxy)methane	3.5	21	ug/L	4.8	ND	73	33-184			04/23/21	
Bis(2-chloroethyl) ether	3.5	1.0	ug/L	4.8	ND	74	12-158			04/23/21	
Bis(2-ethylhexyl) phthalate	3.7	0.50	ug/L	4.8	ND	75	8-158			04/23/21	
Butyl benzyl phthalate	2.2	0.60	ug/L ug/L	4.8	ND	46	10-152			04/23/21	
Chrysene	0.075	0.60	_	0.096	ND	78	17-168			04/23/21	
Dibenzo(a,h)anthracene	0.075	1.6	ug/L	0.096	ND	57	10-200			04/23/21	
Diethyl phthalate	1.8		ug/L	4.8	ND	37	10-200			04/23/21	
Dimethyl phthalate	0.88	7.6 6.4	ug/L	4.8	ND ND	18	10-120			04/23/21	
Di-n-butyl phthalate	2.6	6.4	ug/L	4.0 4.8	ND ND	54	10-120			04/23/21	
• •	3.9	1.0	ug/L							04/23/21	
i-n-octyl phthalate Iuoranthene	0.080	0.60	ug/L	4.8 0.096	ND ND	81 83	10-146 26-137			04/23/21	
luorene	0.080	0.60	ug/L	0.096	ND ND	83	59-121			04/23/21	
lexachlorobenzene	3.5	0.60	ug/L				10-152			04/23/21	
lexachlorobenzene lexachlorobutadiene	3.5 2.7	0.60	ug/L	4.8 4.8	ND ND	73 56	24-120			04/23/21	
lexachlorocyclopentadiene	2.4	1.0	ug/L	4.8	ND ND	50	10-130			04/23/21	
lexachlorocyclopentadiene lexachloroethane	2.6	1.0	ug/L		ND ND					04/23/21	
	0.051	1.0	ug/L	4.8		55 53	40-120 10-171			04/23/21	
ndeno(1,2,3-cd)pyrene		1.0	ug/L	0.096	ND	53					
sophorone	3.7 0.073	1.0	ug/L	4.8	ND	77 76	21-196			04/23/21 04/23/21	
laphthalene		0.60	ug/L	0.096	ND	76 74	21-133				
litrobenzene	3.6	1.0	ug/L	4.8	ND	74 75	35-180			04/23/21	
I-Nitrosodimethylamine (NDMA)	3.6	4.0	ug/L	4.8	ND	75 70	10-130			04/23/21	
I-Nitrosodi-n-propylamine (NDPA)	3.8	1.0	ug/L	4.8	ND	79 70	10-200			04/23/21	
I-Nitrosodiphenylamine (as DPA)	3.7	1.0	ug/L	4.8	ND	78 07	10-130			04/23/21	
Pentachlorophenol	4.1	1.0	ug/L	4.8	ND	87	14-176			04/23/21	
Phenanthrene	0.076	0.60	ug/L	0.096	ND	79 70	54-120			04/23/21	
Phenol	3.4	4.0	ug/L	4.8	ND	72	10-120			04/23/21	
yrene	0.082 5.5	0.60	ug/L	0.096	ND	85 11 <i>5</i>	52-120 53-200			04/23/21 04/23/21	
Surrogate: 2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl	3. <i>4</i>			4.8 4.8		115 71	40-127			04/23/21	
Surrogate: 2-Fluorophenol	3.5			4.8		73	42-123			04/23/21	
Surrogate: Nitrobenzene-d5	3.6			4.8		76	15-200			04/23/21	
Surrogate: Phenol-d6	3.8			4.8		79	10-200			04/23/21	
Surrogate: p-Terphenyl-d14	3.6			4.8		76	50-150			04/23/21	
letris Cuike Dun (AED440E MCD4)	A Course AED4476 02										
latrix Spike Dup (AED1195-MSD1) ,2,4-Trichlorobenzene	3.1	0.60	ug/L	4.8	ND	64	44-142	1	30	04/23/21	
,2-Diphenylhydrazine (as Azobenzene)	3.6	20	ug/L	4.8	ND	74	30-130	1	30	04/23/21	
,2'-oxybis(1-chloropropane)	(2) 3.4	0.60	ug/L ug/L	4.8	ND	70	36-166	3	30	04/23/21	
,4,6-Trichlorophenol	3.9	4.0	ug/L ug/L	4.8	ND	80	37-144	1	30	04/23/21	
,4,0-micriorophenol	3.8	1.0	ug/L ug/L	4.8	ND	80	39-135	1	30	04/23/21	
,4-Dimethylphenol	3.8	1.0	ug/L ug/L	4.8	ND	74	32-120	2	30	04/23/21	
,4-Dinitrophenol	4.3	2.0	Ū	4.8	ND ND	83	10-191	3	30	04/23/21	
	+ .J	2.0	ug/L	4.0	שויו	UJ	10-191	J	50	UTIZUIZI	

Page 21 of 41

Organics Quality Control Report

Spike

Source

%REC

RPD

Date

Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 625.	1 - Qu	ality Cor	itrol						
Batch: AED1195										Prepare	ed: 4/21/202
Prep Method: EPA 3520C										P	nalyst: YN
Matrix Spike Dup (AED1195-MSD1),	Source: AED1476-0	2									
2,4-Dinitrotoluene	4.1	0.40	ug/L	4.8	ND	85	39-139	1	30	04/23/21	
2,6-Dinitrotoluene	3.9	0.40	ug/L	4.8	ND	80	50-158	1	30	04/23/21	
2-Chloronaphthalene	3.4	0.60	ug/L	4.8	ND	72	60-120	1	30	04/23/21	
2-Chlorophenol	3.3	2.0	ug/L	4.8	ND	69	23-134	1	30	04/23/21	
2-Nitrophenol	3.7	1.0	ug/L	4.8	ND	78	29-182	4	30	04/23/21	
3,3-Dichlorobenzidine	0.56	1.0	ug/L	19	ND	3	10-200		30	04/23/21	MS1.0 Lov
1,6-Dinitro-2-methylphenol	4.5	2.0	ug/L	4.8	ND	94	10-181	2	30	04/23/21	
1-Bromophenyl phenyl ether	3.5	0.40	ug/L	4.8	ND	73	53-127	2	30	04/23/21	
1-Chloro-3-methylphenol	4.4	2.0	ug/L	4.8	ND	91	22-147	1	30	04/23/21	
1-Chlorophenyl phenyl ether	3.5	0.50	ug/L	4.8	ND	74	25-158	2	30	04/23/21	
1-Nitrophenol	4.5	1.0	ug/L	4.8	ND	93	10-132	0	30	04/23/21	
Acenaphthene	0.075	0.40	ug/L	0.096	ND	79	47-145	1	30	04/23/21	
Acenaphthylene	0.075	0.60	ug/L	0.096	ND	78	33-145	0	30	04/23/21	
Anthracene	0.078	0.60	ug/L	0.096	ND	81	27-133	2	30	04/23/21	
Benzidine	ND	24	ug/L	19	ND	0	10-200		30	04/23/21	MS1.0 <i>Lo</i> v
Benzo(a)anthracene	0.077	0.60	ug/L	0.096	ND	80	33-143	3	30	04/23/21	
Benzo(a)pyrene	0.084	1.0	ug/L	0.096	ND	87	17-163	2	30	04/23/21	
Benzo(b)fluoranthene	0.087	1.6	ug/L	0.096	ND	90	24-159	5	30	04/23/21	
Benzo(g,h,i)perylene	0.049	1.0	ug/L	0.096	ND	51	10-200	2	30	04/23/21	
Benzo(k)fluoranthene	0.084	1.6	ug/L	0.096	ND	88	11-162	6	30	04/23/21	
Bis(2-chloroethoxy)methane	3.5	21	ug/L	4.8	ND	72	33-184	1	30	04/23/21	
Bis(2-chloroethyl) ether	3.5	1.0	ug/L	4.8	ND	73	12-158	1	30	04/23/21	
Bis(2-ethylhexyl) phthalate	4.0	0.50	ug/L	4.8	ND	79	8-158	6	30	04/23/21	
Butyl benzyl phthalate	2.6	0.60	ug/L	4.8	ND	54	10-152	15	30	04/23/21	
Chrysene	0.077	0.60	ug/L	0.096	ND	80	17-168	3	30	04/23/21	
Dibenzo(a,h)anthracene	0.056	1.6	ug/L	0.096	ND	58	10-200	2	30	04/23/21	
Diethyl phthalate	2.2	7.6	ug/L	4.8	ND	46	10-120	23	30	04/23/21	
Dimethyl phthalate	1.3	6.4	ug/L	4.8	ND	27	10-120	38	30	04/23/21	MS2.0
Di-n-butyl phthalate	3.0	1.0	ug/L	4.8	ND	63	10-120	15	30	04/23/21	
Di-n-octyl phthalate	4.0	0.60	ug/L	4.8	ND	83	10-146	3	30	04/23/21	
Fluoranthene	0.081	0.60	-	0.096	ND	84	26-137	1	30	04/23/21	
Fluorene	0.080	0.60	ug/L	0.096	ND	83	59-121	1	30	04/23/21	
Hexachlorobenzene	3.5	0.60	ug/L	4.8	ND	72	10-152	1	30	04/23/21	
Hexachlorobutadiene	2.9	1.0	ug/L	4.8	ND	60	24-120	7	30	04/23/21	
Hexachlorocyclopentadiene	2.7	1.0	ug/L	4.8	ND	55	10-130	10	30	04/23/21	
Hexachloroethane	2.7	1.0	ug/L	4.8	ND	57	40-120	4	30	04/23/21	
ndeno(1,2,3-cd)pyrene	0.053	1.0	ug/L	0.096	ND	55	10-171	3	30	04/23/21	
sophorone	3.6	1.0	_	4.8	ND	75	21-196	1	30	04/23/21	
Naphthalene	0.070		ug/L	0.096	ND	73 73	21-133	4	30	04/23/21	
Naprimalene Nitrobenzene	3.5	0.60	ug/L	4.8	ND	73 72	35-180	2	30	04/23/21	
AIR ODG IZGIIC	3.0	1.0	ug/L	4.0	ייי		30-100	_	30	04/23/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3.6

3.8

3.8

N-Nitrosodimethylamine (NDMA)

N-Nitrosodi-n-propylamine (NDPA)

N-Nitrosodiphenylamine (as DPA)

VED0391 FINAL 05042021 1208

04/23/21

04/23/21

04/23/21

30

10-130

10-200

10-130

4.8

4.8

4.8

ND

79

4.0 ug/L

1.0 ug/L

1.0 ug/L

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual	
		EPA 625.	1 - Qua	ality Cor	ntrol						
Batch: AED1195										Prepared: 4/21	/2021
Prep Method: EPA 3520C										Analyst:	YNV
Matrix Spike Dup (AED1195-MSD1),	Source: AED1476-02										
Pentachlorophenol	4.1	1.0	ug/L	4.8	ND	86	14-176	1	30	04/23/21	
Phenanthrene	0.076	0.60	ug/L	0.096	ND	79	54-120	0	30	04/23/21	
Phenol	3.4	4.0	ug/L	4.8	ND	71	10-120	0	30	04/23/21	
Pyrene	0.084	0.60	ug/L	0.096	ND	88	52-120	3	30	04/23/21	
Surrogate: 2,4,6-Tribromophenol	5.5			4.8		115	53-200			04/23/21	
Surrogate: 2-Fluorobiphenyl	3.4			4.8		70	40-127			04/23/21	
Surrogate: 2-Fluorophenol	3.4			4.8		70	42-123			04/23/21	
Surrogate: Nitrobenzene-d5	3.6			4.8		75	15-200			04/23/21	
Surrogate: Phenol-d6	3.8			4.8		78	10-200			04/23/21	
Surrogate: p-Terphenyl-d14	3.7			4.8		78	50-150			04/23/21	

BSK Associates Vancouver

General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		SM 2540) - Qua	lity Co	ntrol						
Batch: VED0096										Prepared	d: 4/22/202
Prep Method: Method Specific Prep	aration									Α	nalyst: PY/
Blank (VED0096-BLK1)											
Total Suspended Solids	ND	5.0	mg/L							04/22/21	
Duplicate (VED0096-DUP1), Source:	VED0425-01										
Total Suspended Solids	33	5.0	mg/L		33			0	10	04/22/21	
Duplicate (VED0096-DUP2), Source:	VED0459-01										
Total Suspended Solids	52	5.0	mg/L		42			21	10	04/22/21	DP1.1
		SM 5210E	3 - Qua	lity Co	ntrol						
Batch: VED0094										Prepared	d: 4/21/202
Prep Method: Method Specific Prep	aration									Α	nalyst: PY/
Blank (VED0094-BLK1)											
Biochemical Oxygen Demand	ND	1.0	mg/L							04/26/21	
Blank Spike (VED0094-BS1)											
Biochemical Oxygen Demand	210	1.0	mg/L	200	ND	105	85-115			04/26/21	
Duplicate (VED0094-DUP1), Source:	VED0425-01										
Biochemical Oxygen Demand	320	50	mg/L		290			9	10	04/26/21	

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved
- Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- (2) Formerly known as Bis(2-Chloroisopropyl) ether.

Definitions

mg/L: Milligrams/Liter (ppm) MDL: Method Detection Limit MDA95: Min. Detected Activity mg/Kg: Milligrams/Kilogram (ppm) RL: Reporting Limit: DL x Dilution MPN: Most Probable Number μg/L: Micrograms/Liter (ppb) ND: None Detected below MRL/MDL CFU: Colony Forming Unit Micrograms/Kilogram (ppb) pCi/L: PicoCuries per Liter Absent: Less than 1 CFU/100mLs μg/Kg: Present: 1 or more CFU/100mLs

Percent RL Mult: **RL** Multiplier NR:

Non-Reportable MCL: Maximum Contaminant Limit The analyte was not detected at or

above the reported sample quantitation

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters:

Iron Related Bacteria

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

=	rn	•	n	^

State of California - ELAP 1180 State of Hawaii 4021 Los Angeles CSD 9254479 NELAP certified 4021-017 State of Nevada CA000792020-2 State of Oregon - NELAP 4021-017 EPA - UCMR4 CA00079 State of Washington C997-21

Sacramento

State of California - ELAP 2435

San Bernardino

State of California - ELAP 2993 Los Angeles CSD 9254478

NELAP certified 4119-005 State of Oregon - NELAP 4119-005

Vancouver

NELAP certified WA100008-014 State of Oregon - NELAP WA100008-014

State of Washington C824-20

Turnaround Time Request	Standard - 10 business days	Rush (Surcharge may apply)
	X	
	Page 1 of 1	,
Slvd.	19	com

Date needed:

//202	1(
04/19/2021		
5970		
Steve5970		
/ED0391		
KE KE		

*Required Fields	Temp: 1.00 IR#:	#: (0)									
	Report Attention*:	Inve	Invoice To*:	Ą.	Phone*:	-		Fax*:			
City of Staylenson	Karl Kussell	בֿ <u>ה</u>	Cn File	ς_	509-427-5970	7-297					
				Ţ	nair: Kar	l@ci.sl	E-mail: Karl@ci.stevenson.wa.us	n.wa.u	S		
Address*: PO Box 371	city*: Stevenson		State*: Zip*: WA 98	Zip*: 98648	afip	əlirti					
Project: Toxic Water	Project#:	Rep	Reporting Options: Trace (J-Flag	-Flag)	Раск	cւλլou					
Sampler Name (Printed/Signature): CARLY LEMON Canh	B. Lunen		☐Fax ☐EDD Type: ☐Mail	225	5-44-						
Compliance?: ☐Yes ☒ No State: ☑WA ☐OR	System/PWS ID:	HOO	DOH Source/Source ID:		545341		`	>			
Water System Name:	27	Coun	County: SKamania	1047		_			-		
Sample Composition:	anded T**Composite	Distrik	Distribution Sample	- ·			W ,€	cteri H-Dx			
Sample Taken: Before Treatment After Treatment	atment	t Ģ	Group (WA only):	8 0			-				
Matrix Types: SW=Surface Water BW=Bottled Water GW=Ground Water WW=Waste Water STW=Storm Water DW=Drinking Water SO=Solid	/=Ground Water WW=Waste Water STV	/=Storm Water DW	=Drinking Water SO=Solid	\neg	~		_				
# Sample Description/Location*	Sampled* Date Time	- Matrix*	Comments	# of cont.					ΟT		
1 Fester and Rock Cr. SCEP	4/19/21 0830	×	Grab	12	>	>	>	<i>></i>	`		
4 Trip Blank - Let # 0321050		×		2	_						
					\dashv					1	
		5.	d.								
					\dashv						
Receipt Conditions in Vancouver: Temp:	Received Via:			FED EX	Courier:	ar.					
Reinquenestry (Signature and Printed Name)	Company Of State	Date Time	Time Received by (Signature and Printed Name) 12:32	nted Name)				Company	any	40.00	
Relinquished by: (Signature and Printed Name)	1	Date	Received by: (Signature and Printed Name)	nted Name)				Company	any	11.5	
Relinquished by: (Signature and Printed Name)	Company	all also	Received for Lab by. (Signature and Printed Name)	and Printed Nan	ne)	9	J.	SI	2		
Payment Received at Delivery.	Cash Date:	Am	Amount:	PIA#:		(-7	Init.			
Shipping Method: ONTRAC UPS GSO Cooling Method: West Rive None	(WALK-IN FED EX	Alaskan Airlines	les Courier.				Custody Seal: Y (N Chilling Process Beg	Custody Seal: Y (N) Chilling Process Begun: (Y)N	N N	¥	
	rilloh homash are securely delenged are for M.	ment Delinerent halance	are subject to monthly service charges and inte		Stranger in BSK's current St	andard	Terms and Conditions for Labora	ions for Labor	tory Services.	The person signing for	o for

Payment to services rendered as noted Rheward's due in life with 18 and 18 and

Page 2517 E. Evergreen Blvd. Vancouver, WA 98661 P 360,750,0055 F 360,750,0057

Turnaround Time Reques Standard - 10 business days	Rush (Surcharge may apply)
X	
4	•

lnes	days
Rec	S
Time	busines
Turnaround	Standard - 10 I
	X
_	

35	
duest	s days
9	sq
e)	es
Ě	usine
	o br
2	*
o D	ď
E	Standard
Ξ	ä
2	S
E	
	ΧI

uest	ays
ne Req	siness da
ind Tir	- 10 bus
urnarol	standard
≓ F	v V

Standard - 10 business days	I me kequest	business days
	Standard 40	Stalluaru - 10

Date needed:

E#

Temp:

*Required Fields

City of Stevenson	Company	• Nomest	spiel reins		-	cillo.	11.14.										
— ₹ — E — B — E — B	Company Cilen	ic value :		<u>*</u> ×	port Attention	.: <u>च</u>			Invoice Tot:			Phone*:	707	01		Fax*:	
R L E F 18 S S OF F 18 T T T T T T T T T	CITY O	f Stevensol	<u>ر</u>	Adc	litional cc's:	5		_	B			202	C-/7t	0/8			
로드[레드 - 18	Address.							2				E-mail*:	(arl@	ci.steve	enson.	va.us	
토트 (8 5 > 8 로 8 # 주 6	PO Box 3	371			Steve	nosu			State*:	diz O	8648			AVV	Ţ;		
8 0 ≥ 0 = 0 # T	Project: Toxic Water				Project #:				Reporting Opt		e (J-Flag)			'(pin	siJ 1		
S S S = S # Y S	Sampler Name	2	S	7	Lim	Ç	100		Fax Mail		Type:			ıbırı) ə	Shor		
> ທີ່ : ທີ່ # ▼	Compliance?				stem/PWS	D:		8	H Source/	Source ID:				1SP	- /		
S Page 28 of	Water Syster	1						Š	unty: 5 k				0.792	۸۸ ۶	/ /∧		
S Page 28 of	Sample Com		e Source	**Blend			posite		tribution Sa	ample		э		7PU -	, r.		¥i
Page 28 of	Sample Take	n: Before Tre	atment [After Treatm	ent 🖫	T No T	reatment	J	Group (W/	A only):	B 	ino		، د د	979		
# Page 28 of		Matrix Types: SW=Surfa	ce Water BW=Bo	ottled Water GW=Gr	ound Water V	/W=Waste V	/ater STW=S	Storm Water D	W=Drinking \	Water SO=Solid		ш			-		
Page 28 of		Sample Det	scription/Loc	cation*	1	Date	Time	Matrix*		Comments	# of	mΑ					
Receipt Conditions in Vancouver. Received Vie. 1 Cash Date: Date: Date: Date: Amount: Date: Date: Amount: Date: Amount: Date: Amount: Date: Amount: Date: Amount: Date: Date: Amount: Date: Date: Amount: Date: Amount: Date: Date: Amount: Date: Date: Amount: Date: Date: Amount: Date: Date: Date: Amount: Date: Amount: Date: Date:	۳ ب	70	2	60	3	12 61	11:00		Composite	a)	7	>	<u> </u>	-			
Receipt Conditions in Vancouver. Temporal by (Signature and Printed Name) Fellowery: Charles were an element and printed Name) Fellowery: Charles were an element and printed Name) Fellowery: Charles were received as Delivery: Charles were received as the first were received and the first were received as the first were received and the first were received as the first were received and the first were recei	Ullin																
Receipt Conditions in Vancouver: Temp: Received Via: UPS WALK-IN FED EX Courier: Received by (Signature and Printed Name) Reference to the Company Company Reference to the Company Reference to th																	
Receipt Conditions in Vancouver: Temp: Received Via: UPS WALK-IN FED EX Courier: Received Via: UPS WALK-IN FED EX Courier: Received Via: UPS WALK-IN FED EX Courier: Company Reinroushed by: (Signature and Printed Name) Company Received by: (Signature and Printed Name) Company Co																	
Receipt Conditions in Vancouver. Receipt Conditions in Vancouver. Receipt Conditions in Vancouver. Receiped Conditions in Vancouver. Received Visit Signature and Printed Name) Religizable by (Signature and Printed Name) Received by																	
Receipt Conditions in Vancouver: Temp: Receipt Conditions in Vancouver: Temp: Refinquished by: (Signature and Printed Name) Refinquished by: (Signature and Prin														-			
Receipt Conditions in Vancouver: Temp: Received Via: UPS WALK-IN FED EX Courier: Company Company Company Company Company Company Relinquished by (Signature and Printed Name) Relinquished by (Signature and													+	1	-		
Received by: (Signature and Printed Name) Company	Receipt Condition	ons in Vancouver.	Temp:			7	eceived Via		PS		- X3 G	_ 0	nujer.	-			
Religious by Signature and Printed Name) Company Dafe Time Received by Signature and Printed Name) Company Compa	Relinguished by (Si	ignature and Printed Name)	0 1 70					Š	2	eived by. (Signature and P	rinted Name)					Company	
Reinquished by: (Signature and Printed Name) Reinquished by: (Signature and Printed Name) Reinquished by: (Signature and Printed Name) Received for Lab by:	4.2	ignature and Printed Name)	1			"	_		Š	eived by: (Signature and P.	rinted Name)					Company	
ment Received at Delivery: Place	Relinquished by: (Si	gnature and Printed Name)			Сотрапу			10/0/L	Rece	sived for Lab by. (Signatur	e and Printed N	ame)	2	160	200	2	
ping Method: ONTRAC UPS GSO WALK-IN FED EX Alaskan Alrilines Courier. Ding Method: Wet Blue None Custody Seal: Y N		d at Delivery:	Check	/ Cash	Dat	ái		N A	mount:		PIA#:		1	747 1	7		
D fing Method: Wet Blue Chone Characters removed to the Blue Chone Characters are subject to monthly service charges and interest specified in BSK's current Standard Terms and Conditions for Librariany Services. Online Characters are subject to monthly service charges and interest specified in BSK's current Standard Terms and Conditions for Librariany Services. Online Characters are subject to monthly service charges and interest specified in BSK's current Standard Terms and Conditions for Librariany Services. Online Characters are contracted to the Chief, that the Client, that the Client agrees to be responsible for payment for the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services. Unlike the Client agrees to be responsible for payment for the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services.	Sping Method:		Sdn	OSO	WALK-IN	T.	ED EX	Alaskan Airl	lines	Courier.				Custo	dv Seal: V	Z	
Operation pervious formations as noted there are due in this within 30 days from the date throughous pervious. In ot so paid, account balances are subject to monthly service charges and interest specified in BSK's current Standard Terms and Conditions for Laboratory Services, and spreas to be responsible for payment for the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services unless contractually bound otherwise. BSK's terms	e ging Method:	Wet Blue	None											Chillin	d Process l	Segun: Y/N	
Upons can be found at www.basasocaldes.com/BSK/LabTermsConditions.pdf	Sent for services i	rendered as noted herein are due in knowledges that they are either the	full within 30 days fro Client or an authorize	orn the date invoiced. If not d agent to the Client, that	t so paid, account the Client agrees	balances are de. to be responsib	imed delinquent.	Delinquent balani	ces are subject to	o monthly service charges an	d interest specifi	d in BSK's ci	irrent Standa	rd Terms and	Conditions for	Laboratory Services, T	he person signing f
4.	of 4	nd at www.bskussociates.com/BSK	LabTermsConditions.p	Jb.	a li					stood), drin agrees to pen a te	ms and conduco	is for inborat	ory services	nless contrac	tually bound o	therwise. BSK's curren	f terms and

Sample Integrity

VED0391	Steve5970	04/19/2021	
		10	(******

BSI	SSK Bottles: Yes No Page of								
	Was temperature within range? Chemistry ≤ 6°C Micro < 8°C	Yes (No) N			correct contained for the tests			Yes	No NA
COC Info	If samples were taken today, is there evidence that chilling has begun?	(Yes) No N	J _Δ V	Vere t	here bubbles es Only)		A 10 10 10 10	Yes	No NA
<u></u>	Did all bottles arrive unbroken and intact?	(Yes) N			sufficient amo	unt of sam	ple received?	Yes	No
8	Did all bottle labels agree with COC?	(Yes) N	o D	o sar	nples have a l	nold time <7	72 hours?	Yes	No
	Was sodium thiosulfate added to CN sample(s) until chlorine was no longer present?	Yes No (1Δ 1	Vas P M:	M notified of o		es? 105 4/19/21	Yes	No NA
	250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V)	Checks	1		263	32	77		
Ī	Bacti Na ₂ S ₂ O ₃		1		//	/_			
Ī	None (P)White Cap	_				20			
	Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW	CI, pH > 8	1			,			
	Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)2SO4 WW	pH 9.3-9.7							
the lab	Cr6 (P) Black Label/Blue Cap NH4OH(NH4)2SO4 7199 ***24 HOUR HOLD TIME***	pH 9.0-9.5				1			
.⊑	HNO3 (P) Red Cap or HCI (P) Purple Cap/Lt. Blue Label	=				IB			
performed	H ₂ SO ₄ (P) or (AG) Yellow Cap/Label	pH < 2)			in			
erfor	NaOH (P) Green Cap	CI, pH >10	LA	r		(
b e	NaOH + ZnAc (P)	pH > 9	1			2			
or a	Dissolved Oxygen 300ml (g)	_	>			3C >			
₹	None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270		W			K			
	HCI (AG)Lt. Blue Label O&G, Diesel	-	10,						
ceive	Ascorbic, EDTA, KH ₂ Ct (AG) ^{Pink Label} 525	_							
Re:	Na ₂ O ₃ S 250mL (AG) ^{Neon Green Label} 515		/				1		
es scks	Na ₂ S ₂ O ₃ 1 Liter (Brown P) 549	_					1	12/	
ott G	Na ₂ S ₂ O ₃ (AG) ^{Blue Label} 548, THM, 524						11,00	Dr'	
a	Na ₂ S ₂ O ₃ (CG) ^{Blue Label} 504, 505, 547	-					, MILL		
Bc on/chlorine	Na ₂ S ₂ O ₃ + MCAA (CG) ^{Orange Label} 531	pH < 3			1				
ation	NH ₄ CI (AG) ^{Purple Label} 552								
Servis	EDA (AG)Brown Label DBPs								
pre	HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624	_ 17	84		2V				
eans	Buffer pH 4 (CG)		IV	,					
e.	H ₃ PO ₄ (CG) ^{Salmon Label}		30	/					
إ	Other:		-						cost entirii
	Asbestos 1Liter Plastic w/ Foil		-			- /			
	Low Level Hg / Metals Double Baggie Bottled Water								Nove Sign
	Clear Glass 250mL / 500mL / 1 Liter	-	1			1			
	Soil Tube Brass / Steel / Plastic								
	Tedlar Bag / Plastic Bag		1		-	1			
ų		e/Time/Initial	s		Container	Pres	ervative D	ate/Tim	ne/Initials
Split	SP		S						
3	SP		S	Р					
Comments									
ပိ									

Labeled by: _____ @ ____

SAMPLE TRANSIT ORDER

VED0391

Debra Karlsson

Receipt	temp	@	FAL:	8
---------	------	---	------	---

Thermometer/ IR Gun ID: 66

SENDING LABORATORY:

BSK Associates Vancouver 2517 E. Evergreen Blvd. Vancouver, WA 98661 360-750-0055 (Main) 360-750-0057 (FAX)

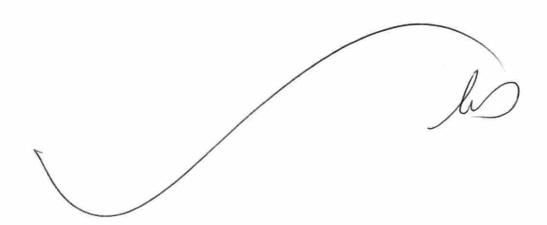
Project Manager: Debra Karlsson

E-mail: dkarlsson@bskassociates.com

RECEIVING LABORATORY:

BSK Associates Laboratory Fresno 1414 Stanislaus St Fresno, CA 93706 559-497-2888 (Main) 559-485-6935 (FAX)

Turnaround (Days): Standard QC Deliverables: I Std III IV


040500

VED0391-01 Foster and Rock Cr.Seep Client Matrix Water Analysis: Cyanide, WA EPA 624.1 - 2-chloroethyl vinyl ether EPA 624.1 - Extended List TOC, WA Client Matrix Water VED0391-02 Rock Cr. and Foster Seep Client Matrix Water 04/19/2021 11:00 Lab Matrix: Manonia, CFA Antimony, 3010 ICPMS, WA Assenic, 3010 ICPMS, WA Assenic, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Client Matrix Vater 04/19/2021 00:00 VED0391-03 Trip Blank - Lot #0321050 Client Matrix Water 04/19/2021 00:00	Sample ID	Samp Desc		Sample Date	
Cyanide, WA EPA 624.1 - 2-chloroethyl vinyl ether EPA 624.1 - 2-chloroethyl vinyl ether EPA 624.1 - Extended List TOC, WA VED0391-02 Rock Cr. and Foster Seep Client Matrix: Water Analysis: Ammonia, CFA Antimony, 3010 ICPMS, WA Arsenic, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Ting Blank - Lot #0321050 Lab Matrix: Water Analysis:		œ [®] :	Client Matrix Water	04/19/2021 08	8:30
Lab Matrix: Water Analysis: Ammonia, CFA Antimony, 3010 ICPMS, WA Arsenic, 3010 ICPMS, WA Beryllium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Zinc, 3010 I		Cyanide, WA EPA 624.1 - 2-chloroethyl vinyl ether EPA 624.1 - Acrolein and Acrylonitrile EPA 624.1 - Extended List			
Analysis: Ammonia, CFA Antimony, 3010 ICPMS, WA Arsenic, 3010 ICPMS, WA Beryllium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Silver, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Zinc, 3010 ICPMS, WA Zinc, 3010 ICPMS, WA Client Matrix Water Analysis:	VED0391-02	Rock Cr. and Foster Seep	Client Matrix Water	04/19/2021 11	1:00
Ammonia, CFA Antimony, 3010 ICPMS, WA Arsenic, 3010 ICPMS, WA Beryllium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA Trip Blank - Lot #0321050 Client Matrix Water Analysis:	Lab Matrix:	Water			
Lab Matrix: Water Analysis:		Antimony, 3010 ICPMS, WA Arsenic, 3010 ICPMS, WA Beryllium, 3010 ICPMS, WA Cadmium, 3010 ICPMS, WA Chromium, 3010 ICPMS, WA Copper, 3010 ICPMS, WA EPA 625.1, WA - Short List Lead, 3010 ICPMS, WA Mercury, 3010 ICPMS, WA Nickel, 3010 ICPMS, WA Selenium, 3010 ICPMS, WA Thallium, 3010 ICPMS, WA			
Analysis:	VED0391-03	Trip Blank - Lot #0321050	Client Matrix Water	04/19/2021 0	0:00
	Lab Matrix:	Water			

SR-FL-0052-00

Page 30 of 41

Containers Inclu	<u>ded</u>		
VED0391-01	В	250mL P / NaOH	
VED0391-01	C	40mL VOA / None	
VED0391-01	E	40mL VOA / HCL	
VED0391-01	F	40mL VOA / HCL	
VED0391-01	G	40mL VOA / HCL	
VED0391-01	H	40mL VOA / HCL	
VED0391-01	I	40mL VOA / PH4-5 Buffer	40mL CG pH4 buffer voa
VED0391-01	J	40mL VOA / H3PO4	
VED0391-01	K	40mL VOA / H3PO4	
VED0391-01	L.	40mL VOA / H3PO4	
VED0391-02	C	500mL P / HNO3	
VED0391-02	D	250mL P / H2SO4	
VED0391-02	E	1L AG / None	
VED0391-02	F	1L AG / None	
VED0391-02	G	1L AG / None	
VED0391-03	Α	40mL VOA / HCL	
VED0391-03	В	40mL VOA / HCL	

Duryne Van Neste Released By Date

Received By

Date

4-20-21 1600

Released By

Date

Received By

Date

SR-FL-0052-00 Page 31 of 41

SAMPLE TRANSIT INTEGRITY

PM: Debra Karlsson

VED0391 04/19/2021 Steve5970

10

BSK Bottles: Yes No Page of Was temperature within range? Were correct containers and preservatives received for the Yes No NA Yes No NA Chemistry ≤ 6°C Micro< 8°C tests requested? Info Did all bottles arrive unbroken and intact? tes No Bubbles Present VOAs (524.2/TCP/TTHM)? Yes No NA 200 (e) Was a sufficient amount of sample received? (C) No TB Received? (Check Method Below) No NA Do samples have a hold time <72 hours? Was PM notified of discrepancies? Yes (Yes No No MA Was sodium thiosulfate added to CN sample(s) until Yes No 🖎 By/Time: chlorine was no longer present? 2 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Checks Passed? Bacti Na2S2O3 ap None (P) White Cap Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)SO4 DW Cl, pH>8 P F means preservation/chlorine checks are either N/A or are performed in the Cr6 (P) Pink Label/Blue Cap NH40H(NH4)SO4 WW pH 9.3 - 9.7 Cr6 (P) Black Label/Blue Cap NH4OH(NH4)SO4 7199 pH 9.0 - 9.5 P F ***24 HOUR HOLD TIME*** 113 HNO3 (P) Red Cap or HCl (P) Purple Cap/Lt. Blue Label H2SO4(P) or (AG) Yellow Cap/Label (P) pH < 2F 10 NaOH (P) Green Cap Cl, pH> 10 M F IA NaOH + ZnAc (P) pH > 9F Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 30 **Bottles Received** HCl (AG) Lt. Blue Label O&G, Diesel, TCP Ascorbic, EDTA, KH2Ct (AG) Pink Label 525 Na2SO3 250ml (AG) Neon Green Label 515 Na2S2O3 1 Liter (Brown P) 549 Na2S2O3 (AG) Blue Label 548, THM, 524 Na2S2O3 (CG) Blue Label 504, 505, 547 Na2S2O3 + MCAA (CG) Orange Label 531 pH < 3PF NH4Cl (AG) Purple Label 552 ------EDA (AG) Brown Label DBPs HCL (CG) 524.2, BTEX, Gas, MTBE, 8260/624 20 Buffer pH 4 (CG) IV H3PO4 (CG) Salmon Label 250mL P / Trizma 531.1 Other: CG None Asbestos 1L (P) w/Foil / LL Metals Bottle Bottled Water Clear Glass 250ml / 500ml / 1 Liter Solids: Brass / Steel / Plastic Bag Date/Time/Initials Date/Time/Initials Container Preservative Container Preservative S P P S S P S P ✓ Indicates Blanks Received Comments 504_____524.2_____TCP_ TTHM___537____8260/624_ Labels RUSH Checked by: Scanned by: Scanne Paged by:____@ SR-FL-0052-00

SK-FL-0054-00

Page 32 of 41

Specialty Analytical

9011 SE Jannsen Rd Clackamas, OR 97015 TEL: (503) 607-1331

Website: www.specialtyanalytical.com

April 28, 2021

Debra Karlsson BSK Associates 1414 Stanislaus Street

Frenso, CA 93706

TEL: (559) 497-2888 FAX (559) 485-6935

RE: VED0391 Order No.: 2104175

Dear Debra Karlsson:

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Marty French

Lab Director

Specialty Analytical

WO#: **2104175**

Date Reported: 4/28/2021

CLIENT: BSK Associates Collection Date: 4/19/2021 8:30:00 AM

Project: VED0391

Lab ID: 2104175-001 **Matrix:** WATER

Client Sample ID VED0391-01

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
NWTPH-DX - RBC			NWTPH-DX	SW	3510C Analyst: TB
Diesel	ND	0.0766	mg/L	1	4/23/2021 6:11:00 PM
Lube Oil	ND	0.191	mg/L	1	4/23/2021 6:11:00 PM
Surr: o-Terphenyl	104	50 - 150	%Rec	1	4/23/2021 6:11:00 PM

QC SUMMARY REPORT

WO#:

2104175

4/28/2021

Client: BSK Associates

Specialty Analytical

Project:	VED0391				TestCode:	NWTPHDXLL_W	
Sample ID CCV-1	SampType: CCV	TestCode: NWTPHE	OXLL Units: mg/L	Prep [Date:	RunNo: 40128	
Client ID: CCV	Batch ID: 1778	TestNo: NWTPH-	Dx SW 3510C	Analysis [Date: 4/23/2021	SeqNo: 516371	
Analyte	Resu	ılt PQL SPK value	SPK Ref Val	%REC LowLim	it HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Diesel	6.3	9 0.0800 6.000	0	107 8	5 115		
Lube Oil	2.8	8 0.200 3.000	0	96.1 8	5 115		
Sample ID MB-177	782 SampType: MBL	K TestCode: NWTPHE	OXLL Units: mg/L	Prep [Date: 4/22/2021	RunNo: 40128	
Client ID: PBW	Batch ID: 1778	Z TestNo: NWTPH-	Dx SW 3510C	Analysis [Date: 4/23/2021	SeqNo: 516372	
Analyte	Resu	ılt PQL SPK value	SPK Ref Val	%REC LowLim	t HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Diesel	N	D 0.0800					
Lube Oil	N	D 0.200					
Surr: o-Terphenyl	0.20	0.2000		102 5	0 150		
Sample ID LCS-17	782 SampType: LCS	TestCode: NWTPHE	OXLL Units: mg/L	Prep [Date: 4/22/2021	RunNo: 40128	
Client ID: LCSW	Batch ID: 1778	Z TestNo: NWTPH-	Dx SW 3510C	Analysis [Date: 4/23/2021	SeqNo: 516373	
Analyte	Resu	ılt PQL SPK value	SPK Ref Val	%REC LowLim	it HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Diesel	1.0	0.0800 1.000	0	104 60.	7 121		
Lube Oil	0.72	5 0.200 1.000	0	72.5 6	4 126		

QC SUMMARY REPORT

WO#: **2104175**

4/28/2021

Specialty Analytical

BSK Associates

Client:

Project: VED0391 TestCode: NWTPHDXLL_W

Sample ID CCV-2	SampType: CCV	TestCod	de: NWTPHD	XLL Units: mg/L		Prep Da	te:		RunNo: 40	128	
Client ID: CCV	Batch ID: 17782	Test	No: NWTPH-D	x SW 3510C		Analysis Da	te: 4/23/20)21	SeqNo: 516	6376	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	8.30	0.0800	8.000	0	104	85	115				
Lube Oil	3.56	0.200	4.000	0	89.0	85	115				

Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015

TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

Sample Receipt Checklist

Client Name BSK ASSOCIATES Work Order Numbe 2104175 Date and Time Receive 4/21/2021 2:29:07 PM RcptNo: 1 Received by Mandy Wehe Completed by Reviewed by: Completed Date: Reviewed Date: 4/21/2021 2:30:34 PM 4/21/2021 2:41:21 PM Carrier name **UPS** Yes 🗸 No \square Chain of custody present? Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? **✓** No \square Chain of custody agrees with sample labels? Yes Not Presen Yes 🗹 Are matrices correctly identified on Chain of custody? No 🗌 Yes 🗹 No 🗌 Is it clear what analyses were requested? No 🗌 Not Presen Custody seals intact on sample bottles? Yes Yes 🗸 No \square Samples in proper container/bottle? Were correct preservatives used and noted? Yes 🗹 No 🗌 NA Yes 🗸 No 🗌 Sample containers intact? Yes 🗸 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 No 🗌 Were container lables complete (ID, Pres, Date)? Yes 🗸 No 🗌 All samples received within holding time? Was an attempt made to cool the samples? Yes 🗸 No \square NA No 🗌 Yes 🗸 All samples received at a temp. of > 0° C to 6.0° C? NA Response when temperature is outside of range: Preservative added to bottles: Yes 🗹 No \square Sample Temp. taken and recorded upon receipt? То 2.6 ° No \square ✓ Yes No Vials Water - Were bubbles absent in VOC vials? **✓** Yes NA Water - Was there Chlorine Present? **✓** No \square Yes Water - pH acceptable upon receipt? NA Yes 🗸 No 🗌 Are Samples considered acceptable? No 🗹 Custody Seals present? Yes No 🗹 Yes Traffic Report or Packing Lists present? Air Bill \Box Sticker Not Present Airbill or Sticker? Airbill No: No 🗸 Yes 🗌 Sample Tags Present? Yes \square No 🗸 Sample Tags Listed on COC? Tag Numbers: Intact 🗸 Broken Leaking Sample Condition? SAS: Case Number: SDG: Adjusted? Checked b Any No and/or NA (not applicable) response must be detailed in the comments section be

Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336

Website: www.special tyanalytical.com

Sample Receipt Checklist

Client Contacted?			Person Contacted:	_	Comments:
Contact Mode:	Phone:	Fax:	Email:	In Person:	
Client Instructions:					
Date Contacted:		C	ontacted By:		
Regarding:					
CorrectiveAction:					

SUBCONTRACT ORDER **VED0391**

2104175

SENDING LABORATORY:

BSK Associates Vancouver 2517 E. Evergreen Blvd. Vancouver, WA 98661 Phone: 360-750-0055 Fax: 360-750-0057

Project Manager: Debra Karlsson

E-mail:

dkarlsson@bskassociates.com

RECEIVING LABORATORY:

Specialty Analytical 9011 SE Jannsen Road Clackamas, OR 97015 Phone: (503) 607-1331

Fax: -

Turnaround (Days): Standard

Client Matrix Water

QC Deliverables: I Std III IV

Sample Date

04/19/2021 08:30

Sample ID

VED0391-01 Foster and Rock Cr.Seep

Lab Matrix: Water

Analysis:

Samp Desc

V-EXT-NWTPH-Dx

Containers Included

VED0391-01 D

1LAG/HCI

Duayne Van Neste 4/20/2021 Released By

Received By

Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336

Website: www.specialtyanalytical.com

Definition Only

WO#: **2104175**Date: **4/28/2021**

Definitions:

KEY TO FLAGS

A: This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was qualified against gasoline calibration standards.

A1: This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was qualified against diesel calibration standards.

A2: This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was qualified against lube oil calibration standards.

A3: The results was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.

A4: The product appears to be aged or degraded.

B: The blank exhibited a positive result greater than the reporting limit for this compound.

CN: See Case Narrative.

E: Result exceeds the calibration range for this compound. The result should be considered an estimate.

F: The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.

FS: Follow-up testing is suggested.

G: Result may be biased high due to biogenic interferences. Clean up is recommended.

H: Sample was analyzed outside recommended holding time.

HT: At client's request, samples was analyzed outside of recommended holding time.

HP: Sample was analyzed outside recommended holding time due to VOA having pH >2.

J: The results for this analyte is between the MDL and the PQL and should be considered an

Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336

Website: www.specialtyanalytical.com

Definition Only

WO#: **2104175**Date: **4/28/2021**

Definitions:

estimated concentration.

K: Diesel result is biased high due to amount of Oil contained in the sample.

L: Diesel result is biased high due to amount of Gasoline contained in the sample.

M: Oil result is biased high due to amount of Diesel contained in the sample.

N: Gasoline result is biased high due to amount of Diesel contained in the sample.

MC: Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.

MI: Result is outside control limits due to matrix interference.

NH: Sample matrix is non-homogeneous

MSA: Value determined by Method of Standard Addition.

O: Laboratory Control Standard (LCS) exceeded laboratory control limits but meets CCV criteria. Data meets EPA requirements.

Q: Detection levels elevated due to sample matrix.

R: RPD control limits were exceeded

RF: Duplicate failed due to result being at or near the method-reporting limit.

RP: Matrix spike values exceed established QC limits; post digestion spike is in control.

S: Recovery is outside control limits.

SC: CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.

SL: LCS exceeded recovery control limits, but associated MS/MSD passing. Data meets EPA requirements.

From: Carly Lemon
To: Ben Shumaker

Subject: RE: old dump in stevenson

Date: Monday, June 21, 2021 12:09:21 PM

Attachments: image001.png

20210419 072813.jpg 20210419 072810.jpg

Hi Ben, here are the photos I took of the seepage site on April 19, 2021 during our sampling event. The water was stagnant on the day of our sampling event. There was no visual evidence of active seepage from the old dump site and no overflow from the ponded area toward Rock Cove. The water level was down approximately 1 ft lower than it was when we visited the site on

April 12th. The water and surrounding soil had a rusty colored surface and there was a sheen along the eastern edge on the water surface. It is my understanding that the sampling is a response to a citizen complaint and that the sampling parameters were selected based on guidance from Department of Ecology. I reviewed the laboratory results; here is a summary of what samples were collected and the results. Grab samples were collected at 8:30am in laboratory supplied bottles. Composite samples were collected hourly from 8am to 11am. After the final composite was collected, composite sample was split in the field into laboratory supplied containers.

Sampling Parameters:

- EPA 624.1 grab
- EPA 624.1 2-CVE grab
- EPA 624.1 Acroleiin and Acrylonitrile– grab
- Cyanide, WA— grab. Cyanide is associated with extraction of metals from ores, electroplating, steel and chemical industries.
- Iron Bacteria- grab
- NWTPH Dx– grab. Diesel petroleum products (diesel oils, hydraulic fluids, lubricating oils)
- TOC- grab. Total organic carbon, a general measure of water cleanliness.
- Ammonia Composite. Ammonia is a form of nitrogen that has toxic effects on aquatic life.
- BOD- Composite. Biological oxygen demand, a general measure of organic pollution
- Metals, PP Haz Waste (liquid) Composite
- TSS—Composite. Measure of particles larger than 2 microns suspended in water column. General measure of water clarity/quality
- EPA 625.1, WA short list- Composite

A summary of results:

General Chemistry:

Cyanide – non detect.

Total Organic Carbon – 1.5mg/L within the expected range, no cause for concern.

Biochemical Oxygen Demand -9.7 mg/L within the range for a polluted river, considering this water is stagnant the results are as expected.

Total Suspended Solids -56 mg/L - within the expected range for stagnant water along a roadside, results are as expected. Ammonia as N = 0.16 mg/L - within expected range

Organics:

Organics by EPA 624.1. EPA 624.1 is a laboratory method for determining the concentration of Volatile Organic Compounds (VOCs) is water. All EPA 624.1 results were non-detect.

Organics by EPA 625.1. EPA 625.1 is a laboratory method to determine the concentrations of Semivolatile Organic Compounds (SVOCs) in water. All EPA 625.1 results were non-detect.

Microbiology:

Iron Related Bacteria – Result =2200 cfu/ml (more on this below)

Metals:

All results are non-detect.

Diesel petroleum products:

All results are non-detect.

Iron bacteria are naturally occurring in soil, shallow groundwater and surface waters. These bacteria combined oxygen and iron to form deposits of rust-colored bacteria cells. I am not familiar with any water quality criteria for iron related bacteria. Issues with these bacteria are usually related to wells and pumps where the biofilm that is left behind by the bacteria can cause equipment fouling, clogging and color/taste issues. I don't believe there is any cause for concern related to the presence of these bacteria at this location, but I recommend reaching out to your Department of Ecology contact to ask if the level detected (2200mg/L) is indicative of a seepage issue from the uncapped landfill.

To show that there are not adverse effects to downstream surface waters (Rock Cove) it may be worthwhile to conduct one additional sampling event during wet conditions when active seepage from the landfill area is evident.

I hope this helps, Carly

From: Ben Shumaker <ben@ci.stevenson.wa.us>

Sent: Friday, June 11, 2021 8:40 AM **To:** Carly Lemon <carly@ucdwa.org> **Subject:** RE: old dump in stevenson

I understand. Thanks, Carly.

BEN SHUMAKER

From: Carly Lemon [mailto:<u>carly@ucdwa.org</u>]
Sent: Thursday, June 10, 2021 8:44 PM
To: Ben Shumaker <<u>ben@ci.stevenson.wa.us</u>>

Subject: Re: old dump in stevenson

Hi Ben

I won't be able to send a summary until next week. Very busy with other tasks tomorrow.

Carly

Thank you,

Carly Lemon, EIT

Underwood Conservation District

509-637-7002

From: Ben Shumaker < ben@ci.stevenson.wa.us>
Sent: Wednesday, June 9, 2021 8:43:21 AM
To: Carly Lemon < carly@ucdwa.org>

Subject: RE: old dump in stevenson

Hi Carly-

If possible could I have this by midday Friday?

Thank you,

BEN SHUMAKER

From: Ben Shumaker [mailto:ben@ci.stevenson.wa.us]

Sent: Tuesday, May 25, 2021 12:42 PM **To:** 'Carly Lemon' < <u>carly@ucdwa.org</u>> **Subject:** FW: old dump in stevenson

Hi Carly-

Here's where this conversation stands at the moment.

Thank you for discussing more with me the sampling results.

My understanding is that I will prepare a summary report to the City Council outlining:

- The overall number of parameters tested,
- The number of parameters that were non-detect,
- The number of parameters with detected pollutants,
- The number of parameters with detected pollutants outside of acceptable ranges.

To help me with that, I'm hoping you can provide:

- A list of the parameters with detected pollutants,
- The results of your review of iron related bacteria,
- The photos you took on the day of the sampling.

I will also layout options for their future action. I'd appreciate any options you can think of in addition to these:

- No action,
- Follow-up testing as suggested below,
- Joint meeting between the city, county, and Ecology on the topic.

Thanks again for your help with this. I would still be lost without it.

BEN SHUMAKER

From: Mitch Patton [mailto:nwtsrinc@gmail.com]

Sent: Friday, May 21, 2021 5:35 PM

To: Adams, Miranda (ECY) < Miad461@ecy.wa.gov>

Cc: Ben Shumaker < ben@ci.stevenson.wa.us>; City Council < citycouncil@ci.stevenson.wa.us>; Leana Kinley

<<u>leana@ci.stevenson.wa.us</u>>; Scott Anderson <<u>scott.anderson@ci.stevenson.wa.us</u>>

Subject: Re: old dump in stevenson

thank you that is a great idea i have been asking for that for over 4 years now so lets hope it will get done soon its a old landfill unmonitored for years it has issues

On Fri, May 21, 2021 at 5:28 PM Adams, Miranda (ECY) < Miad461@ecy.wa.gov > wrote:

Mitch and others,

As someone who has an extensive background in water quality sampling and analysis, I've reviewed the data and didn't see anything that surprised me. Iron-associated bacteria often

cause alarm because the bright orange color seems so unnatural to people. That's why there are so many informational brochures on the topic.

As far as toxins evaporating from a stagnant ponded area goes, the opposite is actually true; toxins (i.e. heavy metals) accumulate in sediments as water evaporates. The same
is true for salts.
While water quality magnituding about he dance under an approved magnituding plan that contains quality.
While water quality monitoring should be done under an approved monitoring plan that contains quality assurance/quality control procedures, I have faith that the City put forth
a good effort in collecting grab samples to address the concerns brought forth by Mr. Patton.
As environmental professionals and stewards, we are all committed to the health and safety of our communities and the environment in which we live. I do not think it's helpful
to suggest otherwise.
In order to facilitate a more productive conversation, I would like to suggest that Mr. Patton engage the Conservation District to develop a water quality monitoring plan for
review and approval by our water quality staff to ensure its efficacy in resolving this matter. I can refer you to Devan Rostorfer, of our water quality program, for further assistance.
Sincerely,
Miranda Adams - Shorelands/Wetlands Specialist
Shorelands and Environmental Assistance Program
<u>12121 NE 99</u> th St., Suite 2100
Vancouver, WA 98682
(360) 210-2783
miranda.adams@ecy.wa.gov

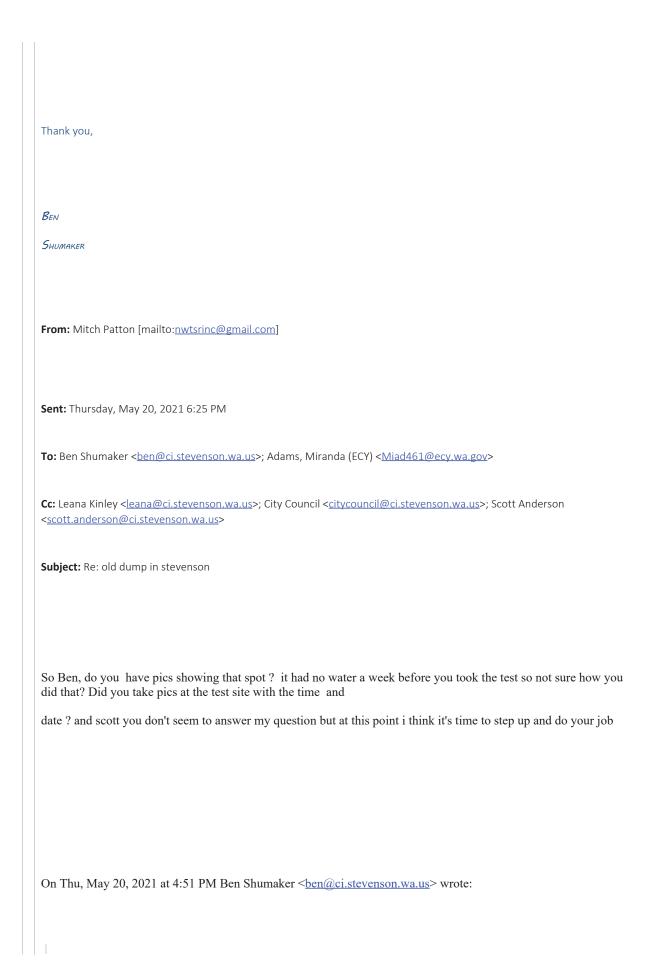
This communication is a public record and may be subject to disclosure per RCW 42.56.

Ecology's offices are closed until further notice as we adhere to a statewide effort to slow the spread of the coronavirus (COVID-19). Regional staff are available

by telephone and email, and information is also available on our

website. We remain committed to service, so don't hesitate to reach out to us.

From: Mitch Patton < nwtsrinc@gmail.com>


Sent: Friday, May 21, 2021 4:57 PM

To: Ben Shumaker < ben@ci.stevenson.wa.us>

Cc: Adams, Miranda (ECY) < <u>Miad461@ECY.WA.GOV</u>>; City Council < <u>citycouncil@ci.stevenson.wa.us</u>>; Leana Kinley < <u>leana@ci.stevenson.wa.us</u>>; Scott Anderson < <u>scott.anderson@ci.stevenson.wa.us</u>>

Subject: Re: old dump in stevenson

0	HIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to pen attachments or links unless you know the sender AND were expecting the attachment or the
	hanks for the info. it was bad timing that water is not what needs to be tested it had sat with no flow for to long and oxins will evaporate into the air so your test if flawed
C	On Fri, May 21, 2021 at 4:51 PM Ben Shumaker < ben@ci.stevenson.wa.us > wrote:
	Hi Mitch-
	I didn't get any photos during the testing on April 19th, and will check with the Underwood Conservation
	District to see if they got any that day. If they did, I will get them and forward to you.
	The first attachment shows a photo from March 2 nd and a photo from today. It's not super
	easy to interpret things, but I've called out where there is a common tree in both the photos and where there are boot prints from our sampling effort. At the time the samples were taken, there was a ponded area approximately 18-24" deep. At the time, no surface
	flow was continuing beyond this area to the culvert under Foster Creek Road.
	The second attachment is the picture you sent on April 18 th . I believe the pond in that
	picture is the same one we took the samples from.

Hi Mitch-

Unfortunately, I won't be able to coordinate with the Underwood Conservation District to help me understand the results until next week. Once I do, I will include you on the summary report we prepare. Until then:

1.

The tests were taken and results obtained. I don't know enough about things to provide a qualitative review of how it went.

2.

The tests were taken here:

3

Unknown at this time. The answer will likely be given by the City Council when they understand the results of this round of testing.

4.

No.

Thank you,
BEN SHUMAKER
From: Mitch Patton [mailto:nwtsrinc@gmail.com]
Sent: Wednesday, May 19, 2021 9:54 AM
To: Ben Shumaker < ben@ci.stevenson.wa.us>; Leana Kinley < leana@ci.stevenson.wa.us>; City of Stevenson
< <u>citycouncil@ci.stevenson.wa.us</u> >;
scott.anderson@ci.stevenson.wa.us
Subject: old dump in stevenson
ben or scott i am checking in as i cant make the meeting tomorrow i have started a new job in appleton and i have to be loading trucks at 3 AM and will be in bed for the meeting
so my questions are
#1 how do you think your water test went

#2 did you test the water above the foster creek road or below it
#3 are you going to test the water again
#4 have you found anything that talks about monitoring the site and who is to do the monitoring
this is all i have for now but i hear we may have new vision coming to the city soon this will help get things back
on line working for the public not doing what is best for the city government and staff you can't keep getting grant money all the time it just increases all of our taxes and takes away from affordable housing we need new vision now what a mess

Mitch Patton

360-903-9040

Mitch Patton

360-903-9040

--

Mitch Patton

360-903-9040

--

Mitch Patton 360-903-9040

