Debra Thomeson

From: Jeff Meucci <jrmeucciscuba@gmail.com>

Sent: Wednesday, May 11, 2022 8:55 AM

To: Debra Thompson

Subject: Fwd: SE sea otter survey

Attachments: Leach et al_2021_Ecology_optimal design in ecological studies.pdf; Lu2022

_Article_ImprovingWildlifePopulationInf.pdf; Eisaguirre_et_al_2021
_diffusion_model_SE.pdf

Hi Debbie, could you please include this information in this week’s packet. Just informational. Thanks

Sent from my iPad

Begin forwarded message:

From: "Schuette, Paul A" <paul_schuette@fws.gov>

Date: May 2, 2022 at 10:40:43 AM AKDT

To: Kathy Hansen <kathy@seafa.org>, "Cate, Jenipher R" <jenipher_cate@fws.gov>, Bo Meredith
<bo.meredith@alaska.gov>, "Eisaguirre, Joseph M" <joseph_eisaguirre @fws.gov>, Ginny Eckert
<gleckert@alaska.edu>, leff Muecci <jrmeucciscuba@gmail.com>, John Moller <jmofish@yahoo.com>,
Katy Bear <KNalven@defenders.org>, "Lemons, Patrick R" <Patrick_Lemons@fws.gov>, "Larsen Tempel,
Jenell T (DFG}" <jenell.larsentempel@alaska.gov>, Lynn Lee <lynn.lee2 @canada.ca>, Mike Jackson
<dot@kake-nsn.gov>, Mike Miller <go2tbird@hotmail.com>, Phil Doherty <info@sardfa.org>, Ralph
Wolfe <rwolfe2 @ccthita-nsn.gov>, Sam Rahung <samuel.rabung@alaska.gov>, ttinker
<ttinker@nhydra.com>, "Weitzman, Benjamin P" <benjamin_weitzman@fws.gov>, Kate Sullivan
<ksullivan@sardfa.org>, Maya Becker <maya_becker@murkowski.senate.gov>, Carly Besh
<carly_besh@murkowski.senate.gov>, "Nichols, Carina {Sullivan)"
<Carina_Nichols@sullivan.senate.gov>, "Lee Kadinger (lee.kadinger@sealaska.com)"

<lee. kadinger@sealaska.com>, "O'Connor, Jamie {(Murkowski}"
<Jamie_O'Connor@murkowski.senate.gov>, "Cummings, Caroline E" <caroline_cummings@fws.gov>,
Perry J Williams <perryw@unr.edu>, "Lemaons, Patrick R" <Patrick_Lemons@fws.gov>

Subject: SE sea otter survey

Helio,

We wanted to provide everyone an update on our sea otter population survey across southeast
Alaska. First, we will be working with Owyhee Air Research to conduct aerial, photo-based
population surveys starting May 17, 2022. The survey will require two weeks of flight time, but
we have allocated our time and resources to be available through June 30, if necessary, to
accommodate poor weather.

Over the past two years, we have designed a sea otter population survey and will be analyzing
the data with the most up-to-date methods (see attached papers). Given the high interest
among stakeholders, we also wanted to give extra consideration to 10 communities. As a result,
we have included transects within a 20km (12.4 mile) radius of each of these communities.



We wanted to share with you our survey maps in advance of the survey. Our hope is that you
can view, discuss, and circulate these maps and provide us with any comments by May 9. We
will do our best to address comments in advance of the start of the survey, working within the
resources available to us (e.g. the amount of flight time we have available for the survey).

Secand, we are planning to rotate our base of operations for the field team (2-4 FWS biologists)
and the Owyhee flight team (pilot, camera operator) across Juneau, Sitka, Petersburg/Wrangell,
and Ketchikan based on airstrip and fueling options to maximize efficiency. We will adapt
when/where we are based depending on weather conditions. Although we hope to solidify
lodging in advance, we anticipate we will sometimes have to make last-minute adjustments.
We would welcome any recommendations for local, back-up options for places to stay (or
camp) in case we get in a jam. Please feel free to send us any local options that come to mind.

Thank you for your input as this project has developed. We look forward to not only conducting
the survey, but hopefully, finding a way to meet up with many of you informally during our time
in southeast, if possible. We will do our best to keep you updated on our location as we move
around the area.

Best,
Paul

Paul Schuette, Ph.D.

Marine Mammals Management
U.S. Fish and Wildlife Service
1011 E. Tudor Rd., MS-341
Anchorage, AK 99503
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Recursive Bayesian computation facilitates adaptive optimal design
in ecological studies

Ty i
Cuinton B. Leact &8 Perry I WiLiams (&) 2 Joseps M. EIsAGUIRRE ® 23 Jamie N. Womere @ #5
MicHAEL R. Bower,* ANp MEviN B. Hooren %7

]Degartment of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado 80523 USA
Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557 USA
3U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska 99303 USA
*Southeast Alaska Inventory and Monitoring Network, National Park Service, Juneau, Alaska 99801 USA
*Glacier Bay Field Station, National Park Service, Juneau, Alaska 99801 USA
U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado 80523 USA
" Department of Statistics, Colorado State University, Fort Collins, Colorado 80523 USA

Citation: Leach, C. B., P. I. Williams, J. M. Eisaguirre, J. N. Womble, M. R. Bower, and M. B. Hooten.
2022. Recursive Bayesian computation facilitates adaptive optimal design in ecological studies. Ecology
103(2):e03573. 10.1002/ecy.3573

Abstract.  Optimal design procedures provide a framework to leverage the learning gener-
ated by ecological models to flexibly and efficiently deploy future monitoring efforts. At the
same time, Bayesian hierarchical models have become widespread in ecology and offer a rich
set of tools for ecological learning and inference. However, coupling these methods with an
optimal design framework can become computationally intractable. Recursive Bayesian com-
putation offers a way to substantially reduce this computational burden, making optimal
design accessible for modern Bayesian ecological models. We demonstrate the application of
so-called prior-proposal recursive Bayes to optimal design using a simulated data binary
regression and the real-world example of monitoring and modeling sea otters in Glacier Bay,
Alaska. These examples highlight the computational gains offered by recursive Bayesian
methods and the tighter fusion of monitoring and science that those computational gains
enable.

Key words:  Bayesian hierarchical modeling, computational efficiency,; monitoring; survey design.

quality data and lower prediction uncertainty (Hooten et
al. 2009). Moreover, static surveillance monitoring may
not make use of existing ecological knowledge that can
lead to improved study designs and inference (Nichols
and Williams 2006). In contrast, optimal adaptive survey

INTRODUCTION

Ecological science involves both data collection and
statistical modeling, but these two fundamental elements
are often developed separately and sequentially in prac-

tice. Studies are commonly structured based on static ran-
dom or space-filling designs. These designs have useful
properties in some inferential settings, but may not repre-
sent the most efficient use of limited field resources, espe-
cially in complex, dynamic ecological systems. In fact,
dynamically evolving processes may be monitored more
efficiently with dynamically evolving designs (Hooten et
al. 2009). Such designs can reduce redundancy in data
collection (Wikle and Royle 1999) and produce higher

Manuscript received 3 February 2021; revised 7 July 2021;
accepted 3 August 2021. Corresponding Editor: José Miguel
Ponciano.

8 E-mail: clint leach@gmail.com

design recognizes that existing data (e.g., from a pilot
study or previous monitoring work) provide ecological
information that can be leveraged to ensure that future
data collection efforts are set up to be efficient and infor-
mative (Wikle and Royle 2005, Hooten et al. 2009).

The optimal design process is iterative, and proceeds
through the following steps: collection of data, develop-
ment and fitting of a statistical model, generation of pre-
dictions, evaluation and selection of a new design based
on the model and its predictions, collection of new data
using that design, and so on (Williams et al. 2018, Hoo-
ten et al. 2019). Throughout this process, practitioners
are required to make a number of choices. Among these
is the choice of model framework and structure.

Article e03573; page |
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Hierarchical Bayesian modeling has become widespread
in ecology and is particularly well suited to integrating
ecological processes with unknown parameters and
noisy data (Berliner 1996, Wikle and Hooten 2010). This
integration is achieved by specifying three levels of the
statistical model (Berliner 1996); the data model that
connects observations to the latent ecological process,
the process model that describes that ecological process
and its associated uncertainty, and parameter models
that use prior information to constrain and inform the
parameters of the data and process models.

Fitting these hierarchical models is computationally
intensive and time consuming, especially for large spatio-
temporal models (e.g., requiring more than 10 h in Wil-
liams et al. [2018]). Furthermore, evaluating a given
design often requires generating predictions of the obser-
vations that design might produce in a future data coliec-
tion effort, augmenting the original data with the
predicted data, and fitting the model to the augmented
data set. This fitted model then provides a means to eval-
uate how those new data would affect our understanding
of the ecological process and its uncertainty. Finding an
optimal design requires repeating this process (i.e., fitting
the Bayesian hierarchical model) for every potential
design. When the number of potential designs is large, the
computational burden of each individual mode! fit ren-
ders this task computationally infeasible, requiring sub-
stantial cloud-based or cluster resources {e.g., Williams
et al. 2018), or completely intractable.

The computational burden of the hierarchical Bayes-
fan treatment has limited its application in optimal
design settings, instead forcing practitioners to rely on
other methods (e.g., Kalman filters; Wikle and Royle
2005, Hooten et al. 2009), or explore a relatively limited
subset of designs (Williams et al. 2018). Thus, we cur-
rently lack the ability to carry the inference offered by
modern Bayesian statistical models forward into the
design phase without having to make compromises
about the designs and models we consider. The main
computational bottleneck involves updating an existing
posterior distribution with predicted future data, which
is the crux of Bayesian optimal adaptive design.

Recursive Bayesian inference provides methods that are
well-suited to addressing this bottleneck. In particular,
recursive methods enable a statistical model to be fit in a
series of steps (e.g., to different groups of data, or to new
data as it becomes available; Hooten et al. 2019). This
partitioning of the statistical fitting procedure can offer
large computational gains over fitting the full model every
time new data need to be assimilated (Hooten et al
2019). Recursive Bayesian methods have recently been
used to facilitate computation in complex ecological
models (e.g., Hooten et al. 2016, Gerber et al. 2018), but
they have yet to be applied in the optimal design setting.

In what follows, we demonstrate how recursive Bayes-
ian methods can be integrated into the optimal design
workflow to substantially reduce the computational cost
of assimilating new data from each potential design. We
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first provide an overview of the optimal design process
in a Bayesian hierarchical setting, and identify the cru-
cial role that recursive Bayesian computing can play in
reducing the computational burden. Then we demon-
strate the recursive Bayes optimal design approach in an
application using simulated data and a binary regression
framework. Finally, we apply the recursive Bayes opti-
mal design framework to a complex Bayesian hierarchi-
cal model of sea otter spatiotemporal dynamics,
demonstrating the substantial computational gains that
recursive Bayesian methods offer. These examples high-
light the important role that recursive Bayesian methods
can play in formally coupling optimal adaptive design
and modern hierarchical Bayesian modeling, leading to
improved ecological inference and closing the feedback
loop between modeling and data collection.

METHODS

Evaluating a design

We represent all possible observations of an ecological
process of interest as an N x | vector y (e.g., containing
abundance or presence/absence at a complete set of sites
in a study area). Then, we collect an initial sample of
observations, ¥, produced by an #; x N design matrix K,
that maps the full domain to the initial observations such
that y, = K;y. The design matrix, K, is usually a (sparse)
matrix composed of zeros and ones that selects the subset
of y that is observed. Given a Bayesian model with param-
eters 8, we obtain a sample from the first-stage posterior
distribution [8y;] using an appropriate stochastic sam-
pling algorithm (Gelfand and Smith 1990). Importantly,
the recursive Bayes procedure outlined here is compatible
with any valid first-stage sampling algorithm (Hooten et
al. 2019), including Markov chain Monte Carlo (MCMC)
and Hamiltonian Monte Carlo (HMC), and any software
implementation thereof (e.g., NIMBLE [de Valpine et al.,
2017] or Stan {Carpenter et al. 2016]).

In the optimal design framework, we use the existing
data y, and the fitted model to compare how different
designs for future data collection affect our estimate of
some target quantity (often a measure of uncertainty).
Formally, welet / = 1, ..., L index the set of all possi-
ble designs, defined by my x N design matrices Ké", that
would produce a new set of my observations given by
yg) = Kg)y. The first step of optimal design is to define
a design criterion, ) (y,,y"), that summarizes some
aspect of our understanding of the process given both
the original and the new data. Choices of design crite-
rion often include prediction variance (Hooten et al.
2009) or the variance of model parameters (Hooten et
al. 2012) or derived quantities {¢.g., abundance; Williams
et al. 2018), in which case the goal of optimal design is
to find the design that will vield the smallest variance
(i.e., the least uncertainty).

Generally, the design criterion will depend either on
the posterior predictive distribution of the full process
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[y]yl,yé” [m f Myi,yé, ][eéy ye, (1)

or directly on the posterior distribution of the model

parameters [{-)fyl,yg)]. In principle, to evaluate the

design criterion for a given Kg") , we need to measure the

process (i.e., observe yg) ), augment the existing data with
that measurement, and fit the statistical model to char-

acterize [GEyl,y(;}] and hence the posterior predictive

distribution [y|y1,y§”]. Thus, computing o) (y]’yg))

given new (predicted) data requires fitting the model to
the augmented data, which, in the case of modern Bayes-
ian hierarchical models, may be computationally
demanding. If the number of potential designs, L, is
large, the standard Bayesian optimal design procedure
becomes intractable.

However, we can further decompose the posterior dis-

tribution as
[7#[5:.9] o]

o] =
o [y 0] o] o]

where [8]y)] o< [y,10](8] is available from the original
model fit to y;. This natural decomposition of the
posterior distribution of @ makes clear that the first-
stage posterior distribution, [8]y,], serves as a prior
on 0 in the second-stage analysis of the augmented
data (Hooten et al, 2019). In prior-proposal recursive
Bayes (PPRB), we also use [Bly,] as the proposal dis-
tribution in a Metropolis-Hastings MCMC algorithm
to update the posterior distribution of 6 given the
new data produced by a given design (Hooten et al.
2019).

At step & of the PPRB MCMC algorithm, we sample
a proposal 6*) ~ [0]y,]. We then accept that proposal
and set 6%+ = 8 with probability min(1, ), where

0oy ] [0y, ] oVl

(o] [P ]
_ o]
[&'(1” !a(k——l)’yi] ’

where allowing the original posterior distribution to
serve as both prior and proposal enables the cancellation
and results in a ratio that depends only on the condi-
tional likelihood of the new data. Note that, because we
often have a finite MCMC sample from the first model

fit (and thus a finite set of proposals, 8, for this stage),
9(*),3;1}

proposal before the second stage and in parallel (Hooten

)

(3)

for each design and

we Can pre-compute [yg’
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et al. 2019). This pre-computation, together with the rel-
ative simplicity of the above Metropolis-Hastings ratio,
can lead to a substantial decrease in computation time
compared to running the full sampling algorithm for
every design. Code implementing PPRB for the follow-
ing examples is available in Data S1 (archived in Leach
2021) and Data 52 (archived in Eisaguirre 2021).

Generating potential future data

The above discussion assumes that y)! is known,

which, of course, it is not. In the case of Gaussian
models (e.g., Wikle and Royle 1999), the design criterion
d" depends only on K and the modeled dependence
structure, and thus new data are not required In more
complex models, eva]uatmg the design requires predic-
tions of the new data y1 (Wlkle and Royle 2005). These
predictions can be readily generated by draws from the
posterior predictive (or imputation) distribution of yq
produced from the first stage model

] - [

We can then use a multiple imputation approach
{Rubin 1996, Scharf et al. 2017) to average the design
criterion over the imputation distribution such that

¥1,0) Bly, Jde. @

dO) = d® (v, ) v v,

E(a (11,3

In practice, we can compute this expectation by first

obtaining samples, ym("' [yg) Iyl form=1, ..., M,
from the first stage posterior predictive distribution. We
then fit the model to each of the M augmented data sets

&)

il

(y NN '")), obtain samples from each of the posterior

()

distributions { 13/1 ¥; ] using PPRB, and compute

the mean of the corresponding design criteria;

1 :
ci(”{y,) — H%du} (3’1 ,}’g”(" ))' ()

The accuracy of the expectation will improve as M
grows larger, but often a relatively small M (on the order
of 10} will be sufficient (Rubin 1996).

The multiple imputation procedure enables us to
account for the uncertainty in the future data in the evaly-
ation of the design criterion. Alternatively, if accounting
for such uncertainty is not desired or necessary, we could
generate a single point estimate of future data by comput-
ing the posterior predictive mean (or median or modg, as

appropriate} of {yg’ yl] or assigning a single fixed fore-

cast of yg) from another source (e.g., expert opinion).
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Optimization

Given an ability to rapidly compute the design crite-
rion ¢, the optimal design can be obtained by finding
the design that minimizes (or maximizes) ). In cases
where the design space is relatively small, each design
can be evaluated and the global optimum selected. If the
design space is too large to evaluate every design, an
optimization routine may be required {e.g., an exchange
algorithm; Royle and Nychka 1998).

Exampre: SIMULATED Binary REGRESSION

Consider a situation in which we seek to predict the
occupancy of a particular species across a spatial domain
comprising 100 discrete units (e.g., plots or transects) over
which we measure a covariate (e.g., through remote sens-
ing), x; for i=1, ..., 100 (Fig. 1b). Let y be a vector
comprising binary occupancy at all sites. An initial data
collection effort randomly samples 10 of these sites, pro-
ducing initial data set y, = K,y with covariates x; = K;x,
where K; is a 10 x 100 matrix of zeros and ones, with a
single one in each row identifying the sampled plot.

We model these data using binary regression, with a
Bernoulli likelihood and a probit link function (', the
inverse CDF of a standard normal distribution). The
resulting full Bayesian model is as follows:

¥~ Bernoulli(p,),
(D_-l(‘l)f) = B()+B]xlis

By ~ Normal(0, of),

By~ Normal(0, oi).

N

We use the data augmentation and Gibbs sampling
approach of Albert and Chib (1993) to draw an MCMC
sample from the posterior distribution of the regression
coefficients ([Bly,]) and the posterior predictive distribu-
tion of occupancy across the study domain ([yjy,]). This
posterior sample could alternatively be generated using
other algorithms (e.g., HMC) or software (e.g., brms;
Biirkner 2017) without changing the following workflow.
The goal of the optimal design framework is to use this
initial data set and model output to select the next site
(of the remaining 90) to be sampled. That is, each of the
remaining 90 sites represent a potential design, indexed
by /, that corresponds to a 1 x 100 design vector K(;) that
has a single 1 in the position of the sampled site and pro-
duces new data yg’) = Kg)y.

To select the optimal design, we first specify a design
criterion. Qur goal is to predict occupancy. Thus we seek
the design that minimizes the total posterior predictive
variance given both the initial and new data

100
! /
4 (1) = Zvarn i), ®

where var(y;|y;, yg)) is the pointwise posterior predictive
variance calculated using the MCMC sample from
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[”"Y%’yg)} produced by PPRB. To account for the

uncertainty in predictions of the future yg), we average
this design criterion over the imputation distribution
{yg") yl] to obtain ¢ (y,). In the binary case, imputed
realizations yg)(”') can only take on values of 0 or 1,
enabling efficient computation of this expectation (see

Appendix S1).
Evaluating the design criterion requires sampling from

[ﬁ‘Yh y(z”‘"')] for all 90 designs and imputed future data
sets. Rather than fit the model to the entire data set
( ;g)(”'),yi), we apply PPRB to use the existing output

from the initial MCMC algorithm (i.e., the p*) drawn
from [Bly,]). At step k of the second-stage MCMC algo-
rithin for design / and imputed data m, we implement
PPRB as follows:

1) Sample a proposal ) ~ [By,] (i.e., selected randomly
with replacement from the first stage MCMC sample).
2) Compute the PPRB Metropolis-Hastings ratio

[y.(;)(m) Iﬁ(*}]
r= —[yg)(m) lﬂ(l")]_ . (9)

3) Accept the proposal Bt with probability min(r, 1).

Using the second-stage samples p*), we compute the
design criteria for each potential design (averaging over
the imputation distribution) and identify the optimal site
for the next sample (Fig. lc, d). The expected design crite-
rion is largest (i.e., with the largest predictive variance) for
sites with more extreme covariate values (Fig. 1c). Despite
the fact that the inflection point (i.e., the x value where
2(x} = 0.5) represents the largest Bernoulli variance, sam-
pling locations with covariate values skightly larger than
this inflection point produce the smallest total expected
prediction variance, The positioning of the optimal design
just off the inflection point highlights the fact that, even
in simple models, the optimal design is often not intuitive
and justifies the need for rigorous optimal design in ongo-
ing ecological monitoring. In more complex spatiotempo-
ral models, often with larger design spaces, it becomes
even more difficult to identify effective designs a priori
(Wikle and Royle 1999, 2005), further emphasizing the
need for PPRB and the speed with which it enables us to
evaluate a potentially large number of designs.

EXAMPLE: SPATIOCTEMPORAL DYNAMICS

Sea otters (Enhydra luris) are an apex predator of the
nearshore marine community of the North Pacific
Ocean and nearly went extinct at the turn of the 20th
century. Reintroductions, translocations, and legal
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protections allowed sea otters to recolonize much of
their former range (Williams et al. 2019). The return of
sea otters has influenced marine food webs, both directly
and indirectly, with impacts on commercially important
fisheries. Thus, information regarding the continued
growth and expansion of sea otters is critical for predict-
ing future expansion, understanding their role as a key-
stone species, and for informing natural resource
management (Tinker et al. 2019). Sea otters are surveyed
using aircraft over large spatial domains and flight time
is typically restricted by range and fuel capacity of air-
craft and operating conditions (Williams et al. 2017a).
Sampling designs must balance requisite data collection
with human safety, aircraft availability, and cost.

To estimate growth and colonization dynamics of sea
otters in Glacier Bay, Alaska, Williams et al. (2017h)
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developed a mechanistically motivated reaction-
diffusion model known as ecological diffusion, embed-
ded within a Bayesian hierarchical framework with
data, process, and parameter levels (sensu Berliner
1996). This model was fit to sea otter aerial survey
counts (Esslinger 2019), with data and process models
specified as follows

Data Model : y,(s))
Process Model : n,(s;)
au(s, 1) (32 &

a1 " gg) (s, yus. )] + yu(s,1).

~ Binomial(r(s;). ),

~ Poisson(u(s;, 1)), (10)

In Eq. 10, y,(s;) represents sea otter count data at
locations s; for i =1, ..., J during time ¢, n,(s;) is the

b

Design

criterion
6.5
6.4

6.3

Easting

Initial data collection effort and evaluation of the optimal design for a binary regression model. (a) The initial estimated occu-

pancy probability p as a function of x, with the black line showing the posterior median and the gray ribbon showing the 95% credible inter-
val. The points show the data obtained from (b) an initial random survey of the study domain. In panel b, each square is a sampling plot

with measured covariate x indicated by the color of the fill. The points indicate the initial sites surveyed, with filled circles indicating the

organism was present and open circles indicating absence. Each of the remaining plots represent a potential design for the next survey. (c, d)

The computed design criteria for each of the 90 potential designs as a function of the x value at each plot (¢) and mapped on the study

domain (d). The dashed line in panels a and c indicates the x value of the optimal plot and the white X identifies the optimal plot in panel d.
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true [atent abundance of sea otters, and ¢ is the individ-
ual sea otter detection probability. The dynamic abun-
dance intensity process, u(s. ). was governed by an
ecological diffusion PDE, with a constant instantaneous
Malthusian growth y and motility p(s, 7) modeled as a
function of spatially varying covariates. See Appendix
81 for the full model specification. The model described
in Eqg. 10 was fit to baseline data, y; collected for
:=1993, ..., 2012, using a custom MCMC algorithm
{(Williams et al. 20178). We used our algorithm to obtain
three MCMC chains in parallel, with 50,000 draws per
chain plus 10,000 for burn in. This required approxi-
mately 5 h per chain, for a total of 15 CPU hours.
Following the optimal design framework, our goal
was to use the initial data y, and corresponding model
output to inform the collection of transects to be sur-

veyed in a hypothetical 2013, producing new data y(;) .

Rather than choosing a design criterion based on the

posterior predictive density as in the binary regression

example, in this example, we focused on the latent total

abundance intensity in 2013, w3 = f tag13(Sds. Our
s

objective was to minimize the variance of the total inten-
sity 9 (yl,yg)) =var(ugm3lyl,yg)), where var{uap;|
Y- yg")) is the predictive process variance calculated

using the MCMC sample from [ugm;Ey],yg”] produced
by PPRB. We used the multiple imputation approach
described above to average this design criterion over the
posterior predictive distribution of y(l” using M = 100

draws of yg)("') ~ [yg) |y1}, such that

1 M r
d(y;) w i 3 var(uaoslyy, v

m=]

(D

For each design / and imputed future data set m, we
implemented the PPRB MCMC algorithm as follows;

1) Sample a proposal (ng}?wu(ﬁ})n) ~ [ma0r3, uz013]¥4]-
2) Compute the PPRB Metropolis-Hastings ratio

I
[y nie),]
Sl NTTIRGRE (12)
[Y2 “2013]

3) Accept the proposal (ngf,)u,ug’:,)n) with probability
min(r, 1).

From the resulting MCMC chains, we computed d*¥
for each candidate design. Given constraints associated
with aircraft range and availability, approximately 20
transects can be flown per day in Glacier Bay, resulting
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in () possible survey designs given the dimensions of
the survey area and the resolution of the data collection
methods (Williams et al. 2018). While it was not feasible
to assess all possible designs, the PPRB procedure
allowed us to compare many more than was previously
practical. Given that the ecological diffusion model
required approximately 15 CPU hours to estimate
parameters using an MCMC algorithm, previous opti-
mization routines that fit the model for each design using
MCMC would require 1500 CPU hours to assess just 1
design over 100 imputed data sets (Williams et al. 2018),
In contrast, the PPRB approach permitted us to com-
pute the design criterion of 1,000 designs (Fig. 2a) in
about 480 CPU hours, which we reduced to <5 h of
run time by parallelizing evaluation over multiple CPUs,
The survey design that optimized our design criterion
{(Fig. 2b) reduced the variance of the hypothetical 2013
sea otter abundance estimate by 38% over the average
random design.

DiscussioN

Applying the principles of optimal design to make effi-
cient use of field resources requires methods that make
efficient use of computational resources. This is espe-
cially true for ecological studies in which Bayesian hier-
archical models are deployed. These models can capture
rich mechanistic information (Wikle and Hooten 2010)
but are often computationally demanding to fit, We pro-
posed the use of PPRB (Hooten et al. 2019) to alleviate
the computational burden and make evaluating a large
number of designs feasiblee We demonstrated this
method using a binary regression model and highlighted
that optimal designs may not always be intuitive without
a comprehensive search of the design space (Wikle and
Royle 1999, 2005). Furthermore, we applied the proce-
dure to a complex Bayesian hierarchical model of sea
otter spatiotemporal dynamics and demonstrated the
substantial computational gains that PPRB produces
relative to fitting the entire model for every considerad
design and possible data set.

The rapid and relatively extensive search of the design
space allowed us to identify a collection of transects for
a hypothetical 2013 sea otter aerial survey that would
produce a more precise estimate of the total sea otter
abundance in Glacier Bay than the average random
design. Given that sea otters are a keystone species
{Estes and Palmisano 1974) with a rapidly expanding
range and abundance in Glacier Bay (Williams et al.
2019), accurately estimating their abundance is crucial
for monitoring and conserving the nearshore ecosystem
in the face of environmental and anthropogenic changes
(Coletti et al. 2016, Tinker et al. 2019). We demon-
strated that the optimal design framework, by leveraging
existing knowledge of sea otter dynamics, learned
through the combination of existing survey data and the
mechanistic principles embedded in the reaction-
diffusion PDE, can help make monitoring data as useful
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and informative as possible (Nichols and Williams
2006).

The challenges inherent in monitoring sea otters in
Glacier Bay and across the North Pacific—costly data
collection, dynamic spatiotemporal processes, and the
need for quality data for conservation, management,
and inference—are emblematic of the challenges faced
throughout much of ecology. Both optimal design and
Bayesian hierarchical modeling offer potential solutions
to some of these challenges, and the use of PPRB allows
them to be coupled more easily. This coupling will help
to make the optimal design framework accessible to
larger monitoring efforts across broader spatial domains
and, in particular, may assist in the targeting of monitor-
ing efforts across the sea otter range in the North Pacific
(Eisaguirre et al. 2021).

Further, by reducing the computational burden of eval-
uating a given design, PPRB allows for greater flexibility
in implementing the other components of the iterative
optimal design framework, including the types of the data
collected, the choice of design criteria, and the optimiza-
tion framework. We focused on applications where the
goal was to choose the locations at which to collect 4 sin-
gle type of data, but the PPRB optimal design framework
could be extended to target sampling across multiple data
types {e.g., in integrated population modeling [Schaub et
al. 2007] or multispecies studies). Further, we demon-
strated two choices of design criterion based on predictive
variance (in the binary regression example) and the vari-
ance of latent derived quantities (in the sea otter exam-
ple). The choice of design criterion will depend on the
goals of a particular study and could include other com-
ponents, such as the costs of implementing a given design
(Williams and Brown 2020}, the benefits of any connected
management actions (Williams and Brown 2020}, or a
measure of the strength of preferential sampling implied
by a design (Diggle et al. 2010, Gelfand and Shirota
2019). Last, the approach we described can be enhanced
by additional optimization strategies. The speed gains
offered by PPRB may make the application of optimiza-
tion frameworks (e.g., exchange algorithms, Royle and
Nychka 1998) more feasible, and the identification of a
global optimum more likely.

As we have demonstrated in our examples and discus-
sion, recursive Bayesian methods offer to substantially
ease the computational burden of coupling optimal design
procedures with Bayesian hierarchical modeling. By facili-
tating this coupling, recursive Bayesian methods help close
the feedback loop between data collection and data analy-
sis, allowing the knowledge produced by Bayesian hierar-
chical modeling to inform monitoring efforts that improve
and accelerate ecological learning and inference.
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Improving Wildlife Population Inference Using
Aerial Imagery and Entity Resolution
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Recent technological advancements have seen a rapid growthin the use of imagery data
to estimate the abundance and spatial distribution of animal populations. However, the
value of imagery data may not be fully exploited under traditional analytical frameworks.
We developed a method that leverages aerial imagery data for population modeling
through entity resolution, a technique that stochastically links the same individual across
multiple images. Resolving duplicate individuals in overlapping images that are distorted
requires realigning observed point patterns optimally; however, popular machine learning
algorithms for image stitching do not often account for alignment uncertainty. Moreover,
duplicated individuals can provide insight about detection probability when overlaps are
viewed as replicate surveys. Our model resolves individual identities by linking observed
locations to latent activity centers and estimates total population as informed by the
linkage structure. We developed a hierarchical framework to achieve entity resolution and
abundance estimation cohesively, thereby avoiding single-direction error propagation
that is common in two-stage models. We illustrate our method through simulation and a
case study using aerial images of sea otters in Glacier Bay, Alaska.

Supplementary materials accompanying this paper appear on-line

Key Words: Bayesian; Data augmentation; Hierarchical model; Spatial capture-
recapture.

1. INTRODUCTION

Aerial surveys are widely used to provide abundance information about terrestrial and
marine species (Caughley 1974; Ver Hoef 2014). Compared to traditional observer-based
surveys, imagery surveys have the advantage of reducing risk for observers and providing a
permanent record that can be independently verified (Buckland et al. 2012). In addition to
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population counts, the imagery data (often referred to as photographs; Fig. 3 in Supplemen-
tary Material) provide individual-level information such as color, size, and location, which
can be leveraged to identify animals without marking them (Williams et al. 2020). This gain
in information leads to more reliable modeling of population abundance than using count
data only (Dennis et al. 2015; Barker et al. 2018; Ketz et al. 2019). In what follows, we
describe a Bayesian hierarchical model to identify unique individuals in overlapping images
and estimate population size under a unified framework. We apply our model to analyze
aerial imagery data of sea otters (Enhydra lutris kenyoni) in Glacier Bay, Alaska. During a
survey, images are acquired at a regular time interval with overlapping regions in the direc-
tion of aircraft movement as it flies along transects that are systematically placed across the
Glacier Bay. Sea otters in the images are located and counted by trained observers after the
survey. Past studies using these data have either discarded overlapping images to meet the
independent count assumption of binomial models (Lu et al. 2019), or treated counts from
overlapping regions as temporal replicates in N-mixture models (Williams et al. 2017).
We demonstrate the advantages of our method over the previously described methods in
simulation.

The information we use to resolve individual identities are the observed locations of
individuals in a sequence of images. However, individual positions may be distorted when
the aircraft deviates from its scheduled trajectory due to a variety of reasons that can influ-
ence altitude and aircraft position, resulting in an artificial transformation of the image
footprints. Further, micro-movement of sea otters and locating uncertainty during labora-
tory processing make exact matching of observed locations in overlapping regions nearly
impossible. There exists a rich literature on image stitching where the common objective is
to optimally combine a sequence of overlapping images into a composite image by mini-
mizing a loss function (Levin et al. 2004; Szeliski 2006; Brown and Lowe 2015; Gross and
Heumann 2016). However, optimization-based image stitching algorithms do not usually
provide uncertainty about the stitching process and are seldom integrated into other models
to provide additional learning about the system. On the other hand, the statistical literature
associated with entity resolution, also known as record linkage when the objective is to
merge multiple data files (in our case, images) in the absence of unique identifiers (in our
case, individual tags, for example). may provide a theoretical basis for uncertainty quan-
tification. We incorporate uncertainty in the record linkage process into a capture-recapture
model for abundance estimation.

Traditional approaches to record linkage compare similarities between pairs of records
from which matching decisions are made (Fellegi and Sunter 1969; Jaro 1989; Winkler
1995). Larsen and Rubin (2001) presented record linkage as a mixture of linkage probabil-
ities between a model for probable links and a model for probable nonlinks. Fortini et al.
(2001), McGlincy (2004), and Larsen (2004) developed the Bayesian approaches based on
the same idea. However, comparison-based approaches are largely infeasible computation-
ally, even when the number of possible links is moderately large (Winkler 2006). One way
to reduce the computation cost of record linkage is by “blocking,” where records parti-
tioned into different blocks are considered nonlinks a priori (Christen 2011; Steorts et al.
2014). Alternatively, record linkage can be presented as the clustering of observed records
by unobserved identities (Copas and Hilton 1990; Tancredi and Liseo 201 1; Liseo and Tan-
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credi 2011; Steorts et al. 2015; Tancredi et al. 2018). Each latent identity has a “true” value
and the associated records are modeled as stochastic distortions from the truth. Steorts et al.
(2015) introduced the graphical record linkage model by representing the linkage structure
as a bipartite graph between observed records and latent identities. By comparing records
to latent identities instead of each other, the computation time to link d data files with a
maximum of n records per file can be substantially reduced from O (n¢) to O(dn). One
distinction between the graphical record linkage model and other non-parametric clustering
methods such as Dirichlet process models and Pitman-Yor process models is that the latter
often assume linear growth of cluster size with the size of data (Wallach et al. 2010; Betan-
court et al. 2016), whereas in record linkage problems, co-referent clusters tend to stay small
even when the number of records grows. Following Liseo and Tancredi (2011) and Steorts
et al. (2015), we made use of a bivariate Gaussian model conditional on the latent truths to
identify unique individuals in the imagery data.

The output of a record linkage model can be used to learn about population size. When
uncertainty exists in linkage structure, record linkage and size estimation are often regarded
as two separate stages (LaPorte et al. 1993; Anderson and Fienberg 1999; Lum et al. 2013).
Sadinle (2018) proposed using “linkage-averaging” to transfer linkage uncertainty as quan-
tified by Bayesian posterior samples into the subsequent stage of population size estimation.
Although linkage-averaging facilitates model exploration by allowing the combination of
different record linkage models with population models, any bias in the record linkage
stage will propagate into the size estimation stage regardless of model choice (Tancredi and
Liseo 2011). Our hierarchical framework naturally relates entity resolution and abundance
estimation as one generative process, thereby allowing information exchange and feedback
between these two model objectives. Other unified modeling approaches exist, including
those presented by Link et al. (2009) and Wright et al. (2009) that incorporate misidentifi-
cation into capture-recapture models by sampling from latent multinomial distributions, the
hierarchical record linkage models proposed by Tancredi and Liseo (2011) and Liseo and
Tancredi (2011) that reflect capture-recapture dynamics through latent matching matrices,
and the latent Poisson process model proposed by Green and Mardia (2005) to align partially
labeled protein structures. We propose a novel framework that combines a record linkage
model and a spatial capture-recapture model (Royle and Young 2008) to align distorted
animal locations and to account for heterogeneity in detection probability due to temporally
changing survey units.

We present our hierarchical record linkage model in Sect. 2. In Sect. 3, we illustrate the
model through simulation and a case study using aerial photographs of sea otters in Glacier
Bay, Alaska. Finally in Sect. 4, we discuss possible extensions and broader applications of
our model.

2. MODEL

2.1. DATA MODEL

Consider a sequence of 7 images with n, observed individuals in image #, for t =
I,..., T (see Fig. 2 in Supplementary Material, for example). Let y; ; be a two-dimensional
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vector of latitude and longitude denoting the observed location of the ith individual in image
1, and let #;, denote the true location of that individual. Distortion in y; ; cceurs in laboratory
processing when the image footprint, 7, is artificially scaled and rotated to fit in a template,
@, . assuming the aircraft trajectory follows a fixed height and orientation. The image centers
(latitude, longitude) were recorded by a GPS device on the aircraft in real time and are reliable
to represent the truth. Using the known image center p, as a reference point, we connect
the distorted displacement of the observed location from the image center to that of the true
location, u; ,;, from the image center as

Yie — e = (1 + ) R(E) (ui,r - #'.') ) ey

where the counterclockwise rotation matrix is given by

R@) = (cosG, ——sme,)_

sin@ cosé;

The scaling parameter, ¢,, and the rotation parameter, @, are modeled using basis function
regression to ensure smoothness and flexibility in the aircraft trajectory (Hefley et al. 2017).
‘We specify

e = witYe,

2
91‘ = v(f)!ﬁ, ( )

where w{r) and »(r) are the basis functions evaluated at time ¢ for scaling and rotation,
respectively. Due to unknown distortion, the true image footprints are also unknown, and
we model the four vertices of the rectangular image footprint F; through a georectification
process from the known template @,

]

mR (=0 (vj,r - FL:) » J=1,2,3,4, (3)

Vie = My =

where v; , denote the vertices of ¥, and v;"! denote the vertices of Q.

We assuime every observed individual has a latent identity, A;,, that may be shared
across images but not within the same image. The true locations, u;,, are modeled as
Gaussian conditioned on a transient activity center associated with the latent identity, s;, ,
and movement uncertainty, 621, such that

2 2
18,0, ~N (Sli.:’ Ty I) :

Subsequently, the conditional distributions of the observed locations are expressed as fol-

lows,

Yirlnsr 26 0 ~ N i + (1 + ) R@) sy, — ). 02 (L +)* RO BT (@)
@
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We note that reliable inference from our model depends on a small o2 relative to the
amount of distortion due to scaling and rotation, and we return to this concept in Sect. 3.1.
Based on the latent identities, the data model in (4) allows us to minimize the Procrustes
distance (Dryden and Mardia 1998) between configurations of points in the overlapping
regions, and the process model that we describe in what follows enables inference about the
latent identities.

2.2. PROCESS MODEL

We adopt a parameter expanded data augmentation approach (Royle 2009; Royle and
Dorazio 2012) and assume there is a super-population of size M much greater than the
total number of observations in a study domain, D, that contains the union of all image
footprints. Each individual in the super-population has a binary variable, z,,, representing
whether the individual belongs to the population being sampled, where z,, ~ Bern(v)
form = 1,..., M. Conditional on the latent identities of the observed individuals, the
augmented data are a zero-inflated version of the capture history. The prior specification on
the zero-inflation parameter, ¥, along with the super-population size, M, implicitly suggests
a prior for the unknown population size, N (Royle et al. 2007),

We let A; denote the vector of latent identities indexed by m for the observed individuals
in image . A plausible configuration of A, must satisfy two conditions: (a) there are no
duplicate identities, and () any identity in A; must be detectable at time 7. Otherwise the
probability of observing A; is zero. Each individual in the super-population is associated
with an activity center, s,,. We let the activity centers be uniformly distributed in the study
domain a priori. We require that an individual is detectable at time 7 if and only if it is
a member of the population being sampled (z,, = 1) and its realized location is inside
the image footprint at time ¢ (u,, , € F;). In the spatial capture-recapture model by Royle
and Young (2008), realized locations are fully augmented for all individuals in the super-
population and unobserved u,, ; are treated as missing data (the model does not account
for measurement error so the observations are the realized locations). However, when the
observed individuals are unidentified, accounting for missingness becomes challenging.
Therefore, we integrate u;, ; from the process model by letting p,, ; denote the probability
that u,, ; falls in F; conditional on F;, the activity center s,,, and the movement process

variance o2, such that

Pmi = P (um,l e F;

1 (u - Sm)f (u - Sm)
Fiy 8, crf) = [F Tmo2 exp (— Y ) du. (5)
I3 u U

Let pp denote the baseline detection probability (e.g., sea otter detectability due to diving
behaviors). Then we have

Po X pHLH lf Im = 1.

P(x- . .
b = 0, otherwise.

2
ZnnSm,j::-Uu,PO) = {
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Assuming the individuals are independently detected, the probability of observing X; is as
follows,

1
{Em}:x[:] , {s.-n]ﬁf=| ' O'HZ. Fi, I)O) = ]—[ {P(me.r]l(m €M)+ (l - !’me.:) T(m ¢ kr)} )

¥ (lt n;!
(6)

migy=I1

where the factor of HL]‘ indicates that all permutations of A, are equally likely a priori. The
process model induces regularization on the number of unique latent identities by controlling
the number of activity centers in an image that belong to the population being sampled. When
the super-population is much larger than the total number of observed individuals, under-
linkage is likely when each observation seeks its own activity center. However, to infer that
a pair of observations in the overlapping region corresponds to different activity centers is to
infer that each individual is detected once between two consecutive visits. Such inference,
along with any extra activity center in the image that remain undetected, will be penalized
by a high detection probability in the model for A; ;. The process model thereby motivates

linkage between observed locations that are spatially proximal.

2.3. PARAMETER MODEL

We used an informative inverse-gamma prior for o> because we have specific knowledge
about the extent of sea otter movement that is physically possible between conseculive
images (Williams 1989). We imposed a penalization on the second derivatives of the fitted
B-splines through the prior variances of e and 8. The penalty parameters were selected
by cross-validation (Wahba 1978; Wood et al. 2016). We specified ¢ ~ Beta(0.001, 1) to
approximate a scale prior for N ([N] o 1/N, Link, 2013), and we centered the prior for py
at 0.75 based on a prior data analysis and as suggested in past studies (Williams et al. 2017;

Luetal. 2019). A full description of prior distributions can be found in Appendix A.
The joint posterior distribution associated with our model is

M
[y 28] = T

m=1

1~

Y]«

[Ty o), o @ B temt  po, v

{zm }j:/,’=1 s {Sm}f,‘:,=| . o}%s a, B, PO:[ x [pol

1~

g
2

[zm W] % [¥] x [a,:} x ] x [B).

-

i

The distortion parameters, ¢; and #;, in Eq. 4 and the image footprint, 7, in Eq. 6 are
deterministic functions of e and B, and are therefore replaced by the basis function coef-
ficients in the above expression. We implemented our model using MCMC and provide a
full description of the algorithm in Supplementary Appendix A.
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3. APPLICATION

3.1. SIMULATION

We simulated a population of N = 200 individuals and sampled their activity centers
Sm, form = 1,..., N, uniformly from a 100 m x 2000 m study domain, D, to emulate
the population intensity in the case study. Fort = 1,..., 7, T = 50, we sampled real-
ized locations u,,; ~ N (s, o2I). We let o2 be 0.25 based on the estimated maximum
underwater speed of sea otters according to empirical studies (Williams 1989). For the mea-
surement process, we set the image centers to be equally spaced between p; = (50, 50)’
and w50 = (1950, 50)" and let the footprint template at time 7, Q,, be a 58 m x 58 m square
centered at p; and parallel to the horizontal axis. We generated distortion parameters from
cubic B-splines with coefficients ¢ = g = (0.1,0.2,0.1, —0.1, —0.2)" and obtained the
image footprint F; using Eq. 3. When u,, , € F,, we detect individual m at time ¢ with
probability pg = 0.75 as informed by past studies (Williams et al. 2017; Lu et al. 2019).
We recorded the distorted locations of the detected individuals by Eq. 1. Figure 1 illustrates
the simulated image footprints and the true locations as well as the corresponding footprint
templates and the observed locations.

In our implementation of the model, we let the super-population be of size M = 3000.
We ran the MCMC algorithm in R version 3.0.2 (R Core Team 2019) for 15,000 iterations.
Our algorithm took 2.5 hours on a 2.5 GHz Intel Core i5 processor. Advanced sampling
strategies like the split-merge Metropolis-Hastings updates on the latent identities can be
used to expedite computation (Jain and Neal 2004), and parallel computing techniques like
recursive Bayesian methods can improve statistical scalability in future implementations
(Hooten et al. 2021). We used a burn-in of 5000 iterations and obtained posterior realizations
of population size as a derived quantity from the remaining K = 10000 posterior samples
of z,, as

M
NO =30 =1, K. (N
1

m=

‘We obtained posterior realizations of the number of unique individuals from all observations
by counting unique labels in the posterior samples of {A,},T:] as

T
yk=1,..., K. (8)

t=1

(k) k)
N = Hx} |

Our model captured the true parameters within their respective 95% credible intervals, which
we summarize in Supplementary Table 1.

Two recent studies have used aerial photographs to estimate sea otter abundance in
Glacier Bay, Alaska. Lu et al. (2019) proposed a nonlinear reaction-diffusion process model
for population intensity, but used only every other image in accordance with the assumptions
of their model. An arbitrary selection of images to use for data analysis may lead to bias in
abundance estimation, especially if population intensity is spatially heterogeneous. Although
our method is not directly comparable to that of Lu et al. (2019), we can compare the
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Figure 1. a Simulated image footprints, 7, overlaid with true locations, u; ;. The time-indexed points represent
image centers, g;. True locations are marked with “B” in even images and “A " in odd images. The largest rectangle
containing all images is the study domain, D; b simulated footprint templates (dashed rectangles), Q;, overlaid
with observed locations. y; ;. that are marked with “00" in even images and “A” in odd images; ¢ a focused
illustration on observed images 20 and 21 (dashed rectangles), overlaid with posterior samples of image footprints
(solid rectangles) and activity centers (points) with their truths (crossed diamonds) .

estimated number of unique individuals in all images because it refers to the observed
abundance. We observed 111 locations from all images in the above simulation, which
correspond to 90 unique individuals in truth. Our model estimated a posterior mean of 90
unique individuals. However, the number of unique individuals from counting all the odd
images is 60, and the number of unique individuals from counting all the even images
is 51. Discarding half of the images led to inconsistent and insufficient counts, whereas
we improved abundance estimates by accounting for duplicate individuals in overlapping
regions.

Williams et al. (2017) proposed an N-mixture model where the counts from overlapping
images are considered temporal replicates. The model divides images into mutually exclu-
sive regions of overlaps and non-overlaps and denotes vy (A;, j) as the count from the jth
Ai = Ul_|Fiand A;NA; =@, i # j. Under the

4 = 1
overlap of region A;, such that U?_,
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Figure 2. a Estimated point-wise 95% credible interval overlaid with the truth for the scaling parameter, ¢; b
estimated point-wise 95% credible interval overlaid with the truth for the rotation parameter, 6 .

assumption of homogeneous detection probability pg and population intensity 7, the counts
are modeled by

¥ (A;, j) ~ Binom (N (A;), po)
N (A;) ~ Pois (] Ail),

&)

where |A;| is the area of A;. Although Williams et al. (2017) accounted for heterogeneity in
po and n based on spatial covariates, we fit the homogeneous version of their model in Eq. 9
to our simulated data using an MCMC algorithm. A posterior realization of population size
is obtained as a derived quantity by N® = p®D|, fork = 1,..., K MCMC iterations.
The estimated posterior mean abundance was 178 with a 95% credible interval (142, 216).
Both the method by Williams et al. (2017) and our method were able to recover the true
population abundance in simulation; nonetheless, our process model distinguished sea otter
detectability due to diving from that due to temporary emigration from the image footprints
(Kendall et al. 1997). In addition to abundance estimation, our estimated activity centers
can be used to inform spatial heterogeneity of the population intensity and our estimated
distortion parameters can be used to reconstruct the aircraft trajectory via trigonometric
projections.

To evaluate our model performance in linkage estimation, we used false discovery rate
(FDR) and false negative rate (FNR) as recommended by Steorts (2015) to account for the
large number of non-links in our application. There are four possible results when comparing
the estimated linkage and the truth:

1. True positive (TP): two individuals have the same latent identity in both the estimation
and the truth;

2. False positive (FP): two individuals are estimated to have the same latent identity
when they are actually different;
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Table 1. True parameter values and marginal posterior means {95% credible intervals) for population size (N)
and the number of unique individoals (¥g) under different simulated movement uncertainties ("Ju )]

ay N Posterior mean (95% CI) No Posterior mean (95% CI}
0.25 200 192 (160, 233) 91 90 (80, 91)

1 200 191 (155, 241) 87 88 (87,91)

23 200 251 (196, 327) 91 95(93,97)

i0 200 364 (216, 668) 88 100 (93, 108)

3. True negative (TN): two individuals have different latent identities in both the esti-
mation and the truth;

4. False negative (FN): two individuals are estimated to have different latent identities
when they are actually the same.

We computed the posterior mean FDR and FNR as E[FDR|Y] = & Y, =htery =

0.000001 and E[FNR|Y] = 21——1 ﬁt% 0.001 based on the model fit to the
simulated data.

Posterior realizations of the scaling and rotation parameters, ¢ and #, were obtained as
derived quantities using Eq. 2, and posterior realizations of the image footprints, F,, were
obtained as derived quantities using Eq. 3. Figure | illustrates posterior samples of the image
footprints and the activity centers overlaid with their truth for a subset of images (images
20 and 21). Our medel performed well, linking observations that correspond to the same
individual in the overlapping region and correctly estimating their activity centers despite
distortion. Figure 2 demonstrates the point-wise 35% credible intervals for ¢ and 8. The
point-wise 95% credible intervals contained the true simulated values for both parameters.

Lastly, we demonstrate our model inference using simulated data with increasing levels
of individual movement, o7, while the other parameters are held constant. We note that any
o2 significantly larger than 0.25 would be unrealistic for sea otters in southeastern Alaska;
nonetheless, the following demonstration serves to emphasize a viable condition for applying
our method in other survey scenarios. Table | summarizes the posterior distributions of the
number of unique individuals and population size along with their truth under different values
of or . The true numbers of unique individuals vary between simulations due to dependence
on cr . The estimated 95% credible interval for Ny widens as individual movement increases,
1|1d;ca1mg less certainty in the Emkage process. Consequently, the estimated 95% credible
interval for N expands along with o2, and the credible intervals when o'f} = 10 did not
contain the respective truths for Ny or N.

3.2. CASE STUDY

Sea otter populations have undergone significant fluctuations throughout their range
over the past two centuries (Jameson et al. 1982). After being hunted (o near extinction
during the maritime fur trade, sea otter populations have recovered in many areas due to
a combination of conservation efforts, translocations, and environmental changes {Larson
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Table 2. Marginal posterior means and 95% credible intervals for the case study

Parameter Posterior mean (95% CI)
PO 0.64 (0.52, 0.75)

W 0.19 (0.15,0.24)

N 566 (453, 704)

o2 0.45 (0.34, 0.59)

13

etal. 2014; Eisaguirre et al. 2021). Monitoring sea otter colonization in Glacier Bay provides
important insight into the ability of a keystone species to recover from near extirpation and
to understand their role in structuring the nearshore food web in Glacier Bay (Williams et al.
2019). From 1993 to 2012, observer-based aerial surveys were conducted from small single-
engine aircraft along systematic transects (Esslinger et al. 2015). Beginning in 2017, aerial
photographic methods (Womble et al. 2018) were conducted using model-based optimized
surveys (Williams et al. 2019). Aerial photographic images were post-processed by trained
observers that counted the number of sea otters in each image. For our case study, we
analyzed a sequence of 20 consecutive images with a total of 151 observations (see Fig. 3 in
Supplementary Material for an example of real images). Sea otter locations were recorded
for 60 m x 90 m footprint templates with their long sides perpendicular to the direction
of aircraft movement (vectors connecting consecutive image centers). Figure 3 illustrates
the observed locations overlaid with footprint templates. Our study domain was a 300 m x
1000 m rectangular region containing all image footprints as shown in Fig. 3.

We let the super-population be of size M = 3000 and ran the MCMC algorithm for
15000 iterations with a burn-in of 5000 iterations. Table 2 summarizes the marginal poste-
rior distributions from the case study. Our estimated detection probability agrees with the
estimates from previous studies (Williams et al. 2017; Lu et al. 2019). Posterior realizations
of population size were obtained as derived quantities by Eq. 7.

Our model inferred a posterior mean of 125 unique individuals among the 151 obser-
vations using Eq. 8. We illustrate posterior samples of the image footprints, F;, obtained
as derived quantities using Eq. 3 and posterior samples of the true locations, u; ;, obtained
as derived quantities using Eq. | for a subset of images (+ = 8, 9) in Fig. 3. Using our
model, we estimated counterclockwise rotation as the distortion process for both images,
thereby linking the two pairs of observations in the overlapping region. The posterior mean
linkage probability was 0.98 for observation pairs (a, h) and (b, 1), and all other observation
pairs have less than 0.02 posterior mean linkage probabilities. Figure 4 demonstrates the
point-wise 95% credible intervals overlaid with the posterior means for scaling and rotation,
respectively.

4. DISCUSSION

We presented a novel method to perform entity resolution and population size estima-
tion using individual locations obtained from aerial imagery data of sea otters. We coupled
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Figure 3. a Observations from the case study. Footprint templates (dashed rectangles), Q,, are overlaid with
observed locations, y; ;, that are marked with “(J” in even images and “A” in odd images. The time-indexed points
represent image centers, p;. The largest rectangle containing all templates is the study domain, D; b a focused
illustration on observed images 8 and 9 (dashed rectangles), overlaid with posterior samples of image footprints
(solid rectangles), F;. Observed locations are indexed by letters, and posterior samples of true locations, u; ;, are
shown in solid squares in image 8 and solid triangles in image 9 .
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Figure4. a Estimated posterior mean and point-wise 95% credible interval for the scaling parameter, ¢; b estimated
posterior mean and point-wise 95% credible interval for the rotation parameter, 8 .

record linkage and capture-recapture models to accommodate important features of aerial
imagery data. Our unified framework allows information exchange and uncertainty propa-
gation between the estimation of linkage structure and population abundance, and our model
is adequate for both inferential tasks.

Record linkage models are often sensitive to parameters that control linkage probability.
In a sensitivity analysis for the graphical record linkage model, Steorts (2015) showed that
linkage inference is only reliable when a very precise prior is used on the parameter for
distortion probability. In the Bayesian alignment model, Green and Mardia (2005) advised
that informative priors be used for parameters that dictate matching tendency. In our model,
linkage of observed locations is motivated by their proximity in Euclidean distance to latent
activity centers. Therefore, as expected, our model is sensitive to o2, the parameter con-
trolling movement. Reliable inference requires that animal movement between consecutive
detections be small relative to distortion, otherwise the model would struggle to identify
unique individuals using locations only. Fortunately, much is known about movement char-
acteristics of many species and this information can be used to specify an informative prior
for 2. During aerial surveys in Glacier Bay, Alaska, the time lapse between consecutive
images is so brief (1 second) that sea otter movement is significantly limited by their physical
capability, thus we specified the prior for ;> such that movement distance between con-
seculive images was less than a meter (Williams 1989). We provide details for a sensitivity
analysis of prior distributions on o2 in Supplementary Appendix B. In addition to limited
individual movement, our method could potentially benefit from more overlapping regions
and higher population intensities because they provide more instances for linkage. On the
other hand, our method may be hindered by extensive distortions in the image footprints
or highly clustered populations where distances between the true activity centers are closer
than o,.

Although our method is designed to link observed individuals and estimate population
size simultaneously, it can be useful even when the objective is only one of the two. The
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output of a record linkage model provides insight about the number of unique individuals
observed at least once, and abundance estimation requires only the additional subset of
population that is not observed. Population models can be used to provide prior information
about the total number of latent individuals in a graphical record linkage model (Tancredi
et al. 2018), a parameter that has also proven to be influential for inference (Steorts 2015).
Detection mechanisms can guide learning about the number of times an individual’s record
is observed: High detection probabilities indicate frequent observations of an individual,
thereby promoting linkage; low detection probabilities indicate few observations of the
individual, thereby proposing new latent identities. Our model assumptions can be general-
ized to account for more complicated monitoring situations. For example, hypergeometric
models may be used in place of binomial models in capture-recapture studies when individ-
val detections are correlated due to sampling without replacement from a finite population
(Darroch 1958; Link et al. 2009; Tancredi and Liseo 2011). We may also model heterogene-
ity in pg to account for factors such as animal diving in response to aircraft disturbance and
survey conditions that affect the backdrop (e.g., kelp, sun angle, sea state).

The use of observed locations in our model helped us better understand the spatial het-
erogeneily in population intensity. Under a uniform prior on s,,, the variation in population
intensity is implicitly reflected through the estimated activity centers. A natural extension
to our method is to model the spatial distribution of activity centers explicitly (Efford 2004,
2011; Brost et al. 2017, 2020). We could account for heterogeneity in the distribution of
activity centers using a species distribution model (SDM; e.g., Hefley and Hooten, 2016).
An SDM is often specified as a spatial point process model, which, in our case, could take

the form
exp (x (s) B
[Sm|x (sm)] = ( n, ) )
[pexp (x(s)'B)ds
for m = 1,..., M, where x (s,,) denotes the vector of spatial covariates at s, and f

denotes the associated coefficients. Alternatively, we could attribute heterogeneity in the
distribution of activity centers to the interaction among individuals which could be modeled
mechanistically (e.g., Scharf et al., 2016).

Although our model was designed for aerial imagery data from sea otter population
surveys in Glacier Bay, Alaska, our framework can be adapted for a variety of applications
that involve intersecting fields of observation (Borchers et al. 2020). Our method is also
useful for aligning unlabeled point patterns with consistent measurement error, such as
reconstruction of a three-dimensional object from two-dimensional views (Ourselin et al.
2001; Rezende et al. 2016) and reconstruction of a movement trajectory using multiple
snapshots (Ando 1991; Du et al. 2016).
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APPENDIX A: PRIOR DISTRIBUTIONS

po~Beta(3, 1),

¥ ~ Beta (0.001, 1),

o2 ~1G (100, 25),

S ~Unif(DY, m=1,.... M,
a~N(@@, 0001R+0010),
B ~N(0,000tR +0.011),

) 1-21 00
where B = (Dz_) Dryand D= |01 -2 1 0
00 1 =21
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Background: Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem
changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a
suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex
predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the
early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed
areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now
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Background

The global decline of apex predators has changed ecosys-
tems [1-4]. These changes continue to have cascading
effects across trophic levels, resulting in new ecosystem
states of varying resilience [2]. When an apex predator is
reintroduced, however, such a perturbation followed by
continued growth and expansion of the population can
change ecological communities and revert an ecosystem
to a previous state [5]. Although often controversial, such
shifts in ecosystem state can achieve conservation goals
and afford ecological and economic benefits [6].

Predator reintroductions are sometimes proposed to
recover ecosystem services or remedy human-caused
declines, such as those due to overharvest [6, 7]. One of
the most successful and celebrated efforts has been the
reintroduction of wolves (Canis lupus) and subsequent
recovery in the Greater Yellowstone Ecosystem. Wolves
recolonized the area at a rate of about 10 km per year [8],
and their renewed presence mediated over-browsing by
elk (Cervus canadensis) and allowed the previous vegeta-
tion structure to return, subsequently driving additional
recovery across the ecosystem [5]. Many reintroductions
are unsuccessful, however [9, 10], because the distribu-
tions of resources, sources of mortality, and the physi-
cal environment—factors that influence recolonization—
are highly variable through space and time [11-13].
Recolonization by apex predators is thus spatiotempo-
rally dynamic, especially over large geographic areas that
are characterized by finer-scale ecological variability [7].
Therefore, recolonization by a predator, as well as its
abundance and persistence, will vary over space and
through time.

Sea otters (Enhydra lutris), apex predators of nearshore
marine systems, were harvested during the commercial
fur trade up until the early 20th century, at which point
they had declined nearly to extinction across most of their
range [14]. For decades following, the nearshore marine
ecosystems in many areas transitioned to, and persisted
in, alternative states dominated by benthic herbivores that
sea otters normally prey upon [15]. Legislation, begin-
ning with the Fur Seal Treaty (1911), followed by the
Marine Mammal Protection Act (MMPA; 1972) and the
Endangered Species Act (1977), protected sea otters from
harvest, with the exception of harvest by Alaska Natives
for subsistence and handicraft, per the MMPA [14]. This
protection facilitated sea otter population growth and
expansion across parts of their range, which has been
reverting the nearshore ecosystem in some of these areas
to the historical predator-dominated state [6, 15-17].

One of these areas is Southeast Alaska, where during
the late 1960s, the then grazer-dominated nearshore sys-
tem was perturbed by the translocation of 413 otters from
stable remnant populations in Prince William Sound and
around Amchitka Island, Alaska [18]. This reintroduction
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followed previous failed attempts and was a four-year
effort that translocated sea otters to seven sites across
Southeast Alaska (Fig. 1). The number of individuals
released at each site ranged from 10-194 [14, 18]. These
individuals seeded a population that was recently esti-
mated to exceed 25,000 [19].

The growing and expanding population colonized pre-
viously occupied areas, as well as newly available habitat
that was historically glaciated (e.g., Glacier Bay; [20]).
Across Southeast Alaska, the sea otter population is likely
decades from reaching carrying capacity [19, 21]; even in
Glacier Bay, the most densely populated area, evidence
suggests carrying capacity may not be reached for 30 years
[21].

Recent studies of the sea otter population in South-
east Alaska used integrated data models to investigate
regional population trends and density-dependent effects
[19] and influence of subsistence harvest [22]. While the
approaches applied in these studies accounted for move-
ments between discrete sub-regions within Southeast
Alaska (i.e., immigration and emigration), they assumed
a known intrinsic growth rate and did not explicitly
incorporate a mechanistic model of population spread
that would naturally capture movements of recolonizing
individuals throughout this continuous geographic area.
Spatiotemporal models, including those based on ecolog-
ical diffusion, allow incorporating such dynamics and can
provide novel insight beyond what conventional meth-
ods yield [23]. Therefore, several questions regarding the
recolonization dynamics of this and other apex preda-
tors, as well as how they drive transitions from grazer- to
predator-dominated ecosystem states, remain.

For example, while wolves and their resources were
protected by a national park during the early stages of
their recolonization of the Greater Yellowstone Region,
sea otters in Southeast Alaska faced immediate com-
petition with commercial fishing industries for some of
their primary prey (e.g., urchins Strougylocentrotus spp.
and bivalves Panopea spp.) as well as mortality from
subsistence harvest [24, 25]. Indeed, sea otter popula-
tion growth and spread was remarkable after individ-
uals reached Glacier Bay National Park—the only area
in Southeast Alaska where subsistence harvest of sea
otters is not permitted—around the mid 1980s [20],
yet Southeast Alaska encompasses a diverse matrix of
marine areas with various types of resource manage-
ment. This recolonization event affords the opportunity
to assess how natural resource management can influ-
ence predator recolonization dynamics. Further, given the
multi-site nature of the reintroduction, we also have an
opportunity to investigate how population growth and
spread can vary among population epicenters and how
multi-site reintroductions may influence the success of
recolonization.
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We address some of the remaining questions about
predator recolonization dynamics using a mechanis-
tic spatiotemporal model of ecological diffusion that
accounts for density dependent population growth and
the spread of the population from multiple reintroduc-
tion sites. In particular, we examined the growth and
spread of sea otters in Southeast Alaska to (1) investi-
gate how colonizing individuals moved throughout the
area from multiple reintroduction sites and (2) deter-
mine what factors contributed to the long term persis-
tence of sea otters in particular locations, with a focus
on the influence of managed areas (e.g., where limited
or no commercial fisheries exist and/or where subsis-
tence harvest of sea otters does not occur). Our approach
involved integrating the mechanistic model of popula-
tion growth and spread in a Bayesian hierarchical frame-
work to estimate process parameters and uncertainty
[26]. This approach has previously been applied on much
smaller spatial scales to model sea otter recolonization

and population dynamics in Glacier Bay from a sin-
gle epicenter (20, 21, 27]. Here, we applied it across
seven population epicenters (or reintroduction sites) to
learn about changes in distribution and abundance of
sea otters in a region with spatially-variable management
regimes.

Methods

Data collection

Various aerial survey methods have been used to collect
data on the distribution and abundance of sea otters in
Southeast Alaska. These include design-based, distribu-
tion, and model-based aerial photographic surveys.

Design-based surveys Design-based aerial surveys [28,
29] were implemented in Yakutat Bay in 1995 and 2005,
Glacier Bay in 1999-2004, 2006, and 2012 [30], and across
the remainder of Southeast Alaska in 2002, 2003, 2010,
and 2011 [31]. These surveys involved observers counting
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sea otters along 400-m wide linear transects flown with
single-engine high-winged aircraft at a speed of 104 km/hr
and altitude of 91 m. Transects were stratified based on
depth and distance to shore, where areas with depths
< 40 m and closer to shore received greater sampling
effort.

These design-based surveys also incorporated inten-
sive search units (ISUs) to use in estimating detection
probability; sea otters frequently dive beneath the sur-
face to forage, during which time that are not available
for detection [27]. During the survey, approximately every
15 minutes, an ISU was initiated based on the pres-
ence of a group of 1-20 sea otters. After being counted
initially, the ISUs were re-counted while the pilot flew
five concentric 400-m diameter circles so that a final
count of each group could be obtained. In total, greater
than 20,000 km of transects were flown across Southeast
Alaska, and details of this effort were outlined recently
by {19].

Distribution surveys We used data from distribution
surveys only when design-based data were unavailable.
This included Glacier Bay in 1993, 1996-1998, 2005,
2009, and 2010. Distribution surveys were conducted
by fixed-wing aircraft with one or more observers and
focused on favorable marine habitats (i.e., areas where
depth was < 40 my; [20]). The locations and counts of
all groups of sea otters encountered were recorded by the
observer(s).

Aerial photographic surveys Aerial photographic sur-
veys [32] were conducted in Glacier Bay in 2017, 2018,
and 2019 [33]. Aerial photographic surveys were con-
ducted from a single-engine high-winged aircraft with
a high-resolution DSLR camera (Nikon D810, 36.6
megapixel) with an 85 mm focal length lens (Zeiss F/1.4
ZF2) mounted in a porthole in the belly of the air-
craft. Random and optimized (see [34]} linear transects
were flown at a speed of 157-166 km/hr and altitude
of 213-250 m with the camera capturing overlapping
images. Each image covered ~60 m x90 m area of the
water’s surface. We used only non-overlapping images for
analyses [21].

Hierarchical model of ecological diffusion

We modeled the growth and spread of sea otters across
Southeast Alaska using an ecological diffusion model.
Ecological diffusion of a population through space and
time emerges from the movements of many individu-
als following random walks with spatially heterogeneous
movement probabilities [35]. Over time, individuals con-
gregate in favorable areas, where they exhibit longer res-
idence time, giving rise to spatiotemporal variability in
pepulation distribution and abundance.
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Model specification
We modeled sea otter abundance in Southeast Alaska at
locations { = 1,...,4, where g is the total number of

400 x400 m grid cells in the study area, during time
t = 1970,...,2020. Note that modeling on this 400 m
spatial resolution matches the resolution of the design-
based surveys. Due to the finer spatial resolution, the
aerial photographic survey counts were aggregated to the
400 m scale, following [21]. Due to imperfect detection
and availability of sea otters during surveys, we modeled
the relationship between the latent true abundance of sea
otters N;; and observed relative abundance y;; as

¥i,e ~ Binomial(N;y, py), (1)

where p, is the detection probability, defined here as the
probability that an animal is on the surface and available
to be counted. ISU data were collected during 12 years
of the design-based surveys, allowing estimation of detec-
tion probability. Additionally, we used a moment-matched
prior for three years for which aerial photo surveys were
conducted; the moments were matched to the marginal
posterior of the detection probability estimated by [34]
(see Appendix 1).

We modeled true abundance with a negative binomial
distribution conditioned on a dynamic mean A;; and dis-
persion parameter T

Niy ~ NB(A;s, 7} 2)

The intensity parameter, A;; is the expected sea otter
abundance in the ith grid cell during time ¢, Because diffu-
sion is a continuous process, we obtain A;; by integration
over a location &;

Mg = f M(s, £)ds, (3)

Si

where A(s, ) is the population intensity at any location s =
(s1,52) in the continuous spatial domain,

We modeled the spatiotemporal dynamics to account
for spread and density-dependent growth of the sea otter
population with the following reaction-diffusion equation
[21]):

n2 .

3 8 9 A, 8)
a—t').(s, t)— (8—5%_;_8_5%) (S(S)A(S, t)—I—VA(S, t) (1— m) .

4)

The diffusion coefficients §(s) represent motility and are
inversely proportional to residence time [35, 36]. The
parameter y is the intrinsic population growth rate, and
K(s) accounts for density-dependence that may vary over
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space. While §(s) controls how the population spreads,
K(s) controls how many individuals areas can sustain long
term. Note that K(s) corresponds to local density depen-
dence, and the nominal carrying capacity of the region can
be obtained by [ K(s)ds [21].

Equation (4) requires specifying an initial condition for
A(s, t). A scaled Gaussian kernel can represent a single
epicenter from which a population spreads [37]. How-
ever, given that sea otters were reintroduced at seven sites
throughout Southeast Alaska, we used a sum of ] = 7
scaled Gaussian kernels, each centered on a reintroduc-
tion site (or epicenter) d;:

—Ne—ed:112
] Gexp (_”:;1,” )
7

Mt =1970) =) ST
=1 [sexp (A—Z’) ds
J

0; is a scale parameter controlling the initial density of
individuals at d;, and «; is a dispersion parameter control-
ling the initial isotropic spread of those individuals around
d;. To limit population spread based on sea otter biology,
we used a reflective boundary, which does not allow pop-
ulation spread past the boundary, at locations adjacent to
terrestrial environments as well as at locations at the off-
shore edge of the nearshore system, i.e., locations exposed
to open ocean that are 5 km from shore or exhibit depths
> 100 m, based on the distribution of survey observations.

To complete the specification of the hierarchical model,
priors were specified for all model parameters. We used
a combination of informative and weakly informative pri-
ors, based on previous results (e.g., from [20], [21], and
[19]) as well as records of the translocations and historical
observations [18]. We provide a complete list of priors in
Appendix 1.

Environmental covariates

We expected that, over time, sea otters would congregate
in areas with favorable habitat and resources. Thus, we
modeled motility & (s) as a log-linear function of covariates
that have been found to be important drivers of sea otter
space use and behavior [20, 21]. Based on previous studies,
our covariates included depth, as a binary indicator (depth
= 1 where < 40 m, and 0 otherwise), distance to shore,
slope of the ocean floor, and shoreline complexity [20, 38—
41]. Shoreline complexity was calculated for each loca-
tion by summing the number of locations within a 1,000
m neighborhood that contained shoreline [20]. Given
that subsistence harvest of sea otters [22] and human
activities (e.g., disturbance from vessel traffic; [24]) influ-
ence sea otter population dynamics, we added a covari-
ate of cumulative distance to the nearest incorporated
city, town, or village. This was the sum of the shortest
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swimmable paths from each city, town, or village, to any
location s.

As one of our goals was to investigate the varying levels
of resource management across Southeast Alaska on the
recolonization, we included Glacier Bay and fisheries clo-
sures as two indicator covariates, representing manage-
ment categories. Sea otter population growth and recolo-
nization dynamics are unique in Glacier Bay [19-21],
which lies within a national park where various human
activities (e.g., commercial fishing, subsistence harvest
of sea otters, etc.) are limited. Some commercial fishing
still occurs in Glacier Bay (i.e., for some finfish and Tan-
ner crab Chionoecetes bairdi), but it is limited and being
phased out. Red sea urchins (Strongylocentrotus francis-
canus), sea cucumbers (Parastichopus californicus), and
geoduck clams (Panopea generosa) are important prey for
sea otters in Southeast Alaska [42—44], but they also sup-
port lucrative commercial fisheries [45]. Management of
these state fisheries in Southeast Alaska involves a rota-
tion of open and closed areas, in addition to areas that
have remained closed long term due to federal jurisdic-
tion, research, or being deemed not viable to support
commercial harvest [45]; these areas closed long-term by
regulation comprised what we termed fisheries closures’
(Fig. 1). Dungeness crab (Cancer magister) are also impor-
tant prey that are commercially harvested [46]; however,
spatial data for this fishery were not available (but, we
note that many of the Dungeness crab closures overlapped
closures that we included). The log-linear function for
motility was therefore

log(é(s)) = Bo + Prdepth(s) + Badist(s) + B3 (slope(s)
x depth(s)) + Bashore(s) + Bstown(s)
+ Boglba(s) + f-fish(s).
(6)

While modeling §(s) as a function of covariates allows
for investigating how the population spreads to reach cer-
tain areas, modeling local density dependence K (s) allows
us to see if certain areas may influence long term pop-
ulation dynamics and densities. So, to further allow the
process model to have sufficient flexibility to capture the
unique colonization dynamics of Glacier Bay and to inves-
tigate the effects of resource management, including fish-
eries closures, on sea otter population dynamics within
the ecological diffusion framework, we allowed density
dependence to vary over space as a function of covariates.
This took the form:

log(K(s)) = wp + a1glba(s) + aafish(s). (7)

While this formulation implies local density dependence
(or local nominal carrying capacity) varies over the region
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only according to these two indicator covariates, real-
ized carrying capacity depends on motility and thus the
covariates driving it as well [21].

All covariates, except for the binary indicators, were
centered and scaled to mean zero and unit variance for
estimation.

Estimation, derived parameters, and model validation

We sampled from the posterior distribution of the hierar-
chical model with Markov chain Monte Carlo (MCMC),
implemented in R and C++ [47]. Ecological diffusion
(Eq. 4) is continuous in space and time, so we used finite
differencing for estimation over the discretized spatial and
temporal domains [21, 27, 36]. Due to the resolution of the
data, we set the spatial discretization to 400 m x400 m
and the temporal discretization to At = 1 d. Additionally,
we used homogenization for computational feasibility [21,
27, 36, 48], which was described in detail by [21] for the
logistic ecological diffusion model. We followed [27] and
[21] and chose € = 1/10, which corresponds to a homog-
enized scale of 4 km x4 km. Much of the computational
demand of this and similar spatiotemporal models results
from the high dimensional matrix operations required by
the finite differencing procedure [27]. In contrast to pre-
vious work, we handled those as sparse matrix operations,
which reduced the computational burden markedly.

To help understand how the colonization front of otters
moved through space and time, we estimated the asymp-
totic spatially explicit spread (or colonization) rates. The
asymptotic spread rate for the Malthusian (or exponen-
tial growth) model and the minimum spread rate for the
logistic model is given by 2\/5_ , where § is the homog-
enized diffusion coefficient [20, 49]. Asymptotic spread
rates greater than the minimum are allowed in nonlinear
(e.g., logistic) cases, and computing them requires know-
ing the shape of the wave front. From Eq. (5), the steepness
of the front at t = 1970 is l/sz, and from theory of
propagating waves, we know that the shape of the wave
front is conserved [50]. Finally, if the front is steep, i.e.,

1/!(}2 > /y/8, then the spread rate converges to 2v/8y,

whereas if the front is flat, i.e., l/sz < 4/ y/S, asymptotic

spread rate can be computed as K—b)' + 'yxf for any time
i

t > 1970 [50, 51].
We estimated total abundance N(t) = [ N(s, t)ds by

HO,t He—Rot . g—Hy "
NR@G = "Nyu+ > N+ 3 NP ®)
i=1 m=1 =1

for the kth MCMC iteration. The term N, is an obser-

, ak) .
vation of true abundance, N,(ni is posterior draw of
true abundance where relative abundance was observed,
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N’!(f) ~ NB(AE’;’, ™) where no data were collected,
is the number of locations where relative abundance or
true abundance was observed, and ng, is the number of
locations where only true abundance was observed [21].
We used the posterior predictive distribution to assess
model fit. A posterior predictive draw for an observation
yizt is given by jg) ~ Binomial(](@(f), pék)J. We compared
these samples to the data point-wise by comparing the
observed counts to the 95% credible intervals of the pos-
terior predictive counts [52]. We assessed convergence to
the posterior by visual inspection of the MCMC chains
with traceplots. We summarized our parameter estimates
using posterior means and 90% credible intervals [53, 54].

Results

It required approximately seven days using 15 indepen-
dent chains run in parallel to obtain an MCMC sample
of 15,000 iterations from the posterior. Only 23 of 42,553
observed counts fell outside of the 95% posterior predic-
tive intervals, suggesting no lack of fit over the area that
was surveyed.

We estimated an intrinsic growth rate of about 0.29
(0.28, 0.31; Table 1). Our estimates of total abundance
(Fig. 2) were similar to other recent estimates [19] and
those obtained with the design-based estimator [55].
Although not definitive, it appears the consistently high
annual growth rate of the sea otter population across
Southeast Alaska may have begun to slow in the last few
years (Fig. 2).

We also found evidence that all covariates included
in the model had an effect on the spatiotemporal pro-
cess, both in terms of motility and density dependence
(Table 1). Generally, sea otters across Southeast Alaska
seemed to prefer areas with shallow depth (i.e, < 40
m), close to shore, steeper slopes (in areas with shallow
depth), and straighter shorelines (Table 1). Additionally,
sea otters tended to concentrate in Glacier Bay, areas with
fisheries closures, and areas close to human communities,
although the effect size was relatively large for areas with
fisheries closures compared to Glacier Bay and human
communities (Table 1). Further, population densities that
begin to regulate growth were likely highest in Glacier
Bay, followed by areas with fisheries closures, and low-
est elsewhere in the region, although there was overlap
in credible intervals between the effects of the protected
status of Glacier Bay and areas with fisheries closures
(Table 1).

The initial dispersal conditions suggested a steep wave

front (i.e., satisfied l/Aflf2 > ¥ /8), so we estimated

asymptotic spread rates with 2,/3y across all epicen-
ters. Rates varied primarily from about 1-8 km/yr, with
a median of 3.0 km/yr, but areas further from shore
commonly exhibited more rapid spread rates (Fig. 3).
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Table 1 Posterior means and 90% credible intervals for the
parameters of the ecological diffusion model with iogfstic
growth estimated for the sea otter population in Southeast
Alaska 1970 to 2020. The subscripts on @ and « are abbraviations
of the translocation sites shown in Fig. 1. Estimates of detecticn
probabilities are provided in Appendix 2: Table 2

Parameter Lower bound  Mean Upper bound
By (intercept) 16.25 16.36 1648
By (depth) -1.89 177 -156
B3 (distance to shore) 0.21 0.29 ¢35
B (slope x depth) 014 0.22 029
B4 (shoreline complexity)  0.14 017 0.21
As (distance 1o towns) 0.37 045 0.55
Bs (Glacier Bay) -0.37 -0.24 -0.10
B7 (fisheries closures) -1.48 -1.34 -1.16
ag (intercept) -1.77 -1.66 -1.55
o (Glacier Bay) 278 316 3.58
> (fisheries closures) 012 187 61

y {intrinsic growth) 0.28 0.29 031

7 (overdispersion} 0.03 0.03 003
hyy (initial density) 11965 14753 175.46
I 8.06 975 1140
il 833 9.96 1163
) 6541 98,50 132,59
g 8.36 1001 1169
] 63.74 96.18 128.84
bes 68.19 95,82 130.55
st (initial dispersal 2541 2878 3220
Bt 137 254 3.80
e 442 911 13.80
Ki3 6.51 063 0.78
K3 0.80 223 379
Ky) 417 849 1240
Kcs 459 9.23 1391

Additionally, areas with fisheries closures generally exhib-
ited slower spread rates (Fig. 3).

Discussion

To improve our understanding of the reintroduction biol-
ogy of apex predators [13], we modeled the ongoing recol-
onization of Southeast Alaska by sea otters as a spatiotem-
poral process based on ecological diffusion, accounting
for multiple population epicenters (i.e., reintroduction
sites), preferential dispersion, and spatially-variable den-
sity dependence (Fig. 4). In addition to the novelty of
spatially-varying density dependence, to our knowledge,
this is the largest spatial extent and finest spatial reso-
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lution over which such a model has been implemented.
Homogenization offers substantial computational gains
[36, 48], but we also used sparse matrix operations, which
made implementing the model on the scale of Southeast
Alaska much more computationally tractable.

Ecological diffusion is well established in mathematical
and ecological theory pertaining to the spread of organ-
isms [35]; however, other process models could certainly
be used to model recolonizing populations. For exam-
ple, [56] implemented a dynamic occupancy model where
colonization proceeds following gradients of favorable
habitat. While an extension to modeling abundance in
their framework is certainly possible, ecological diffusion
naturally models abundance as well as movement toward
and concentration in favorable habitat. [19] and [38] mod-
eled sea otter recolonization {of Southeast Alaska and the
central coast of California, respectively} by parsing the
study areas into distinct units and specifying immigration
and emigration among them. While doing so offers com-
putational advantages, inferences are restricted to those
defined units. In contrast, with a continuous spatiotem-
poral model, such as ecological diffusion, inferences can
be made about any areas of interest within the mod-
eled domain—defined a priori or a posteriori—based on
straightforward post hoc calculations {e.g., time series of
abundance within different areas).

Our results from applying the ecological diffusion
model to Southeast Alaska indicate that sea otters gen-
erally concentrate in areas presumed to be favorable for
foraging as well as areas closer to human communities,
but sea otter densities that begin to regulate population
growth are higher in areas with limited or no commer-
cial fishing and other human activities. We were also able
to obtain greater precision in our estimates of total abun-
dance than design-based estimators and recent modeling
efforts (Fig. 2; [19]). Furthermore, we found that the rates
of colonization averaged about 3 km/yr throughout the
region, with higher rates being in areas with higher motil-
ity. These factors all contributed to the ongoing success
of the recolonization that continues to drive ecosystem
change in the region [15, 42].

Spatial variability in abundance

Another effort to model the growth and expansion of the
sea otter population in Southeast Alaska found that abun-
dance and carrying capacity varied between large, discrete
sub-regions [19]. However, we also accounted for how
spatial covariates drive variation in abundance and move-
ment of sea otters throughout the region (Figs. 3 & 4). We
found that shallow depth, which defines foraging habitat
[39, 40], was positively correlated with sea otter residence
time. We also found that sea otters additionally concen-
trate in areas where commercial fisheries are closed, as
well as in protected areas, where subsistence harvest of
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Fig. 2 Time series of total abundance estimates from the spatiotemporal model of sea otter population growth and spread in Southeast Alaska.
Points are posterior means, and segments are 95% credible intervals. Note region-wide surveys were completed over two years for the years
2002-2003 and 2010-2011

colonization of areas closer to communities, and, in the
longer-term, areas closer to communities where harvest is

sea otters is not permitted (i.e., Glacier Bay; Table 1),
which suggests greater prey availability, foraging habitat,

and mortality risk are strong drivers of sea otter distribu-
tion and abundance. Our finding that sea otters exhibit
higher residence time closer to human communities is
seemingly inconsistent with previous findings of exposure
to subsistence hunting influencing sea otter movement
[44] and population growth [22]. However, the diffusion

common may act as population sinks [22].

Sea otter colonization and foraging habits have marked
effects on assemblages of benthic invertebrates, including
many commercially-harvested shellfish [42, 44, 57]. While
some areas are closed to commercial fishing in South-
east Alaska due to seemingly unsupportable abundances

model is likely capturing what happens during the initial  of harvested species (for commercial purposes), sea otters

Spread rate
(km/year)

Frequency
400 600 800
]

200

T

0 2
Spread rate (km/year)

8

011

Fig. 3 Asymptotic spread rates of the sea otter population in Southeast Alaska based on parameters estimated in the ecological diffusion model.
Note that the map is presented on the homogenized (4 km) resolution, and the red points represent the epicenters (translocation sites), On the left
is a histogram showing the values presented in the map on the right. Note the x-axis is truncated for presentation. Red vertical lines represent the
spread rates in areas closed to commercial fishing for prey species important to sea otters
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0

Fig. 4 Expected abundance (A;;) of sea otters in Southeast Alaska estimated with the ecological diffusion model. Note the study area was rotated
counterclockwise for presentation. Black points in the first panel correspond to the epicenters (translocation sites)

are adept at capturing these species even in closed areas.
[42] found that sea cucumber abundance negatively cor-
relates with sea otter occupancy but also observed sea
cucumbers in sea otter diets in areas where surveys sug-
gested a 100% decline in sea cucumbers. This finding
suggests that sea otters can find prey even when it is unde-
tected by targeted surveys. So, even in areas that may
not be able to support commercial harvest by humans, an
abundance of prey may be available to sea otters, includ-
ing sea cucumbers but likely other species as well that may
have become abundant as the ecosystem transitioned to
the predator-dominated state [58].

In addition to influencing residence time of sea
otters, these areas with reduced commercial activity
may offer sea otters some relief from competition for
food resources, thereby supporting the higher nominal
carrying capacities suggested by our results (Table 1).
Furthermore, extensive glacial retreat over the last 350
years and subsequent ecological succession in the marine

environment has led to a highly diverse and abundant
benthic prey community in Glacier Bay since sea otters
previously inhabited the region [20, 57]. In addition to
the reduced human activity in the protected area of
Glacier Bay, the new habitat likely further contributed to
the higher nominal carrying capacity there (Table 1; [19,
21]). As the population expands into other previously-
glaciated fjords with shallow habitat, we might expect
such areas to similarly support higher carrying capaci-
ties, and we may be presented with an opportunity to
investigate how novel niche space might interact with
management strategy to drive spatially-variable carrying
capacities.

In contrast to the relatively rapid recolonization of
Southeast Alaska, sea otter populations have been slower
to recover in the southern parts of their range, such as the
coastal habitat of California. Parts of Southeast Alaska,
such as the outer coast, are dominated by rocky benthos
that can support healthy kelp forests. So, the top-down
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effects on grazers by sea otters would quickly release kelp
from control [16], in turn providing otters with protec-
tive habitat. The California coast, on the other hand, is a
matrix of disjunct rocky benthos and stretches of softer
substrate—poor for persistent kelp forest establishment—
that may limit the recovery of sea otter populations via
limiting female dispersal and survival [59, 60]. Further,
much more of the nearshore marine environment in Cal-
ifornia is exposed to open ocean compared to the more
sheltered bays and passages of Southeast Alaska. Partic-
ularly exposed areas of the California coast (e.g., Point
Conception) are thought to be barriers to sea otter pop-
ulation spread [60], and new evidence suggests sea otters
may have utilized protected estuaries historically [61].
Predation by white sharks (Carcharodon carcharias) may
also limit sea otter range expansion along the California
coast [62]. These regional differences in recolonization
dynamics highlight the need to carefully consider strate-
gies to improve the likelihood of long-term success of
predator reintroduction efforts.

Other studies have included multiple fine scale habi-
tat covariates in population models to explain carrying
capacity of sea otters [38]. As more spatial data become
available for Southeast Alaska, similar covariates could be
included in the diffusion model. However, homogeniza-
tion of the logistic diffusion model implies that realized
carrying capacity is, in part, a function of motility [21].
We included two indicator covariates in our formula-
tion of K(s), representing areas with different manage-
ment regimes, but variation in motility over the region
also explains spatial variation in carrying capacity in the
model. Other covariates, such as kelp canopy cover and
benthic substrate composition, which have been shown
to be important drivers of sea otter carrying capac-
ity elsewhere [38], could be included in future models
(i.e., as covariates affecting density dependence and/or
motility).

Colonization rates and multi-site reintroductions

While we estimated a median spread rate of 3.0 km/yr in
Southeast Alaska, we also found that asymptotic spread
rates of sea otters can vary greatly over such a vast region
(Fig. 3). Asymptotic spread rates of recolonizing sea otters
in California were first estimated to range from about 1.7
to 3.5 km/yr [63], and [60] estimated about 4.7 km/yr
for the southern edge of the California range and about
2 km/yr for the northern edge. Similarly, [20] estimated
rates of 1.5 to 4.5 km/yr in Glacier Bay. Recalling that
these spread rates are estimated as 2\/5; [20, 49, 63],
the greater range that we estimated is due to (1) a higher
intrinsic growth rate (discussed below; Table 1), as well as
(2) the extensive spatial variability in motility harbored by
a region of such size.
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While we did not find evidence that any of the initial
dispersal conditions (i.e., «;) for sea otters in Southeast
Alaska affected the theoretical asymptotic spread rates
(Table 1), and thus the spatial variation of those rates did
not vary among epicenters (Fig. 3), specific translocation
strategies could improve colonization rates. For example,
if individuals were released at a site such that they were
spread out sufficiently to create a flat propagating front
(i.e., satisfying the condition 1 /sz < m}, theory sug-
gests the population could spread at rates greater than the
minimum spread rate (i.e., ;51- + yi(jz; [50, 51]). Somewhat

counter-intuitively, this sugéests that higher colonization
rates could be achieved by reintroducing individuals over
wide areas where the species is expected to have higher
motility and thus lower residence time (i.e., less favor-
able habitat). While it is important to note that failed
reintroductions are commonly attributed to transloca-
tions of low initial densities (resulting in elevated effects
of demographic stochasticity and/or Allee effects) and to
unsuitable habitat (causing high mortality; [13]), individ-
uals released in areas correlating with low residence time
should spread rapidly to several locations with more favor-
able habitat and begin to concentrate in those areas. In
fact, our results provided evidence of this: The sea otter
population spread quickly over areas with high motility,
then settled at high abundance in areas with low motility,
which included areas with limited or no commercial fish-
ing (Figs. 3 & 4). Given the relationship between motility
in the ecological diffusion model, population spread rates,
and specific forms of resource selection functions [64],
it is possible that preliminary investigations of individual
animal movement—either in the reintroduction area or
a similar area—could be used to optimize a reintroduc-
tion strategy in terms of the initial locations and densi-
ties of released individuals. Nonetheless, these inferences
regarding improved translocation strategies are largely
based on mathematical theory underlying diffusion mod-
els, so further study is needed to determine how they
may apply to translocation and reintroduction efforts in
practice.

While sea otter reintroductions along the North Amer-
ican coast were an early example of a multi-site effort
[18], there is a recent and ongoing multi-site reintroduc-
tion of a terrestrial predator, fisher (Pekania pennanti),
in the northwestern U.S. [65]. Similar to sea otters, fish-
ers declined due to over-harvest and lack of management,
yet reintroduction attempts have been showing promise in
restoring this predator across its historical range [10]. The
simulation modeling by [10] suggested that multiple rein-
troduction sites can improve the success of predator recol-
onization. Our work adds to this body of knowledge by
documenting, with a mechanistic model fit to data, how
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such a process occurs over a region where colonizing indi-
viduals face variability in motility and density dependence.
Indeed, our application was to a marine system, although
a parallel application to the expanding fisher populations
or similar terrestrial predator could reveal how such a pro-
cess might vary between marine and terrestrial systems,
over which animals have inherent differences in motility.
Nonetheless, we found the spread rates of sea otters in
Southeast Alaska were generally less than the 9.78 km/yr
documented for wolves—highly mobile terrestrial preda-
tors [8]. Although, in certain areas, sea otter populations
may be able to exceed that rate (Fig. 3).

Intrinsic growth

A maximum growth rate of about 20-25% has been gen-
erally accepted for sea otter populations for some time
[19, 66]. However, modeling the growth and spread of
sea otters across the entire region of Southeast Alaska as
a continuous spatiotemporal process suggested intrinsic
growth for at least this population is higher (Table 1). The
evidence was quite strong: We used an informative prior
for y centered on 0.25, based on previous studies, yet the
data easily pulled the marginal posterior upward (Table 1;
Appendix 1).

While the previous estimates were generally accepted,
it had been suggested they were likely biased low due to
underestimated natality [67]. Assuming female sea otters
in the area have the ability to average about one female
pup every other year, our estimated intrinsic growth of
about 0.29 is reasonable and aligns with the requisite
theoretical maximum population growth rate [66, 68].
It is therefore possible that sea otter populations have
the potential to grow more rapidly when unhindered by
density-dependent factors than previous evidence sug-
gested. Indeed, our estimate of intrinsic growth is high
among marine mammals [66, 69, 70] but is reasonable,
especially because the relatively mild winter conditions
and productivity of Southeast Alaska are likely conducive
to sea otters averaging one pup per year.

Application of a diffusion model similar to the one
we implemented revealed the intrinsic growth rate of
wolves colonizing parts of France varied between about
0.3 and 0.7, depending on the amount of forest cover
[71]. However, modeling intrinsic growth—the theo-
retical maximum rate of increase of the population—
as a function of covariates, as [71] did, implicitly
assumes that those covariates have a density-independent
effect on population growth. In contrast, we chose to
model the density dependence parameter K(s) as a
function of spatial covariates because we hypothesized
those covariates would affect how density moderates
population growth (e.g., through reduced prey avail-
ability at higher population densities), rather than be
density-independent.
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Continued population growth and spread

While it appears the annual rate of increase of the sea otter
population in Southeast Alaska may be slowing (Fig. 2), it
is likely still decades from reaching total carrying capacity
[19, 21]. As the recolonization process continues, the pop-
ulation will reach new habitat, in addition to Glacier Bay,
that will similarly afford greater local equilibrium abun-
dances. Sea otters in the region also face growing conflicts
with human interests and activities due to their effects on
commercially-valuable and subsistence species [25]. How-
ever, the return of the historical state of the nearshore
marine ecosystem is gaining support among many stake-
holders because there is great value in the ecosystem
services that the predator-dominated system can render,
such as improved carbon sequestration, nursery habitat
for fish, and greater fish biomass [6, 72].

As we continue to monitor this growing and expand-
ing population, as well as the requisite ecosystem change,
we can adapt our modeling approach to gain additional
insight into total equilibrium abundance, the spatial vari-
ability of equilibrium abundance, the effects of subsistence
harvest of sea otters and commercial fisheries, and how
climate change may continue to influence the process. Key
to this ongoing effort will be using the mechanistic dif-
fusion model to forecast population growth and spread
to dynamically optimize the monitoring framework (sexsu
[34]).

Conclusions

As predator reintroductions continue to be proposed
(e.g., 2020 Colorado Proposition 114), there is an increas-
ing need to understand recolonization processes across
modern land- and seascapes with varying levels of man-
agement and human activity. Fundamental to our under-
standing of how keystone predator reintroductions can
drive ecosystem change is understanding how a predator
population grows and expands its range. We provide new
insight into how colonization and growth can occur from
multiple reintroduction sites and with spatial heterogene-
ity in both the physical environment as well as human
activity and management.

Appendix 1: Priors

¥ ~ Normal(0.25, 0.01%)

B ~ Normal(0, 10%I)

B ~ Normal™ (,LLHU,‘, crﬁz_j), where gy = (100, 10, 10, 100,
10;100,100) afid 65 = (202,17, 1%:20%,1%,20%, 204

kj ~ Normal™ (s, 02), where p, = (10,2,10,10,2,
10,10) snd.e2 = (3% 12,8%,8%.1%,3%. 8%

7 ~ Uniform(0, 1)

o ~ Normal(0, 10%I)

p: ~ Beta(l, 1) for ¢ # 2017,2018,2019

pr ~ Beta(44.04937, 13.40566) for t = 2017,2018,2019
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Appendix 2

Table 2 Full version of table 1 from the main text that includes
detection probabilities

Parameter Lower bound Mean Upper bound
fo 16.25 16.36 16.48
I3 -1.89 -1.77 -1.66
fe7] 0.21 0.29 0.35
3 0.14 0.22 029
Ba 0.14 0.17 .21
Bs 037 045 (.55
Bs 037 024 -0.10
B7 -1.48 ~1.34 -1.16
o -1.77 -166 ~1.55
o 278 316 358
72} 012 187 6N

¥ 0.28 029 03t

T 0.03 0.03 0.03
ha 119.65 14753 17546
e 8.06 9.75 1140
Oni 833 9.96 1163
kg 65.41 98.90 13259
Byg 836 10.01 1169
fyi 63.74 96.18 12884
Acs 68.16 98.82 130.55
Kl 2541 28.78 3220
Kal 137 254 380
K 442 AR 13.90
K 051 063 0.78
Ky 0.80 2.23 379
Kyt 417 849 12.40
&cs 453 9.23 1391
Dioas 074 0.80 0.85
a0 ¢.70 075 0.80
P 082 (.86 0.89
P00z 0.86 0.89 091
pannz 0.77 0.79 082
paone 073 0.77 081
20 053 058 063
D 071 075 0.78
Paonn 087 090 092
pPoos 054 058 063
Doz 067 0.77 (.85
Digis 067 077 885
bt 0.67 0.77 0835
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