Pilot-Scale Wetland Design

Treatment Wetlands for Polishing Reclaimed Municipal Wastewater for Indirect Potable Reuse

Environmental Science and Engineering Capstone Class of 2023

CEES 4913/4923

Project Overview

- Design pilot-scale wetland for indirect potable reuse of NWRF effluent
- Augment water supply into Lake Thunderbird
- Removal/reduction of contaminants of emerging concern (CECs)

Fall Semester Project Timeline

Spring Semester Project Timeline

Spring Semester Project Timeline

Why a Wetland Treatment System?

- CEC removal mechanisms
 - Phytoremediation
 - Biodegradation
 - Sorption
 - Photodegradation
 - Microbial degradation
- Reduction of excess nutrients
- Environmental buffer for Lake Thunderbird

Wetland Types

Free water surface wetland (FWSW)

Contaminants of Emerging Concern

- Hazardous to environment, animals, and humans
- CEC Types
 - Pharmaceuticals and personal care products (PPCPs)
 - Endocrine-disrupting chemicals (EDCs)
 - Preservatives
 - Sweeteners
 - Fire retardants
 - Stimulants
 - Pesticides

Project Location

Field Visits

Dynamic Penetrometer

Soil Sampling

Water Sampling and Testing

- 5 Locations
- 26 Samples
- YSI Multiparameter Datasonde
 - o pH
 - Dissolved Oxygen
 - Specific Conductivity
 - Oxidation-Reduction Potential
- Hach 2100Q Turbidimeter
- Hach Digital Titrator
 - Total Alkalinity

Soil Sampling and Testing

- 54 locations
- 172 samples
- Dynamic cone penetrometer tests

Soil Sampling Locations

Soil Sample Collection

DCP Testing

Laboratory Analyses

- Water analyses
 - Biochemical oxygen demand
 - Total suspended solids
 - Metals
 - Anions
 - Fecal indicator bacteria
- Soil analyses
 - Particle size distribution
 - Moisture content
 - Organic matter content
 - Cations
 - Hydraulic conductivity

Secondary Data

- LIDAR Data
- Thornton (2017) studied CECs present in NWRF effluent
 - Up to 98 different CECs analyzed
- NWRF effluent water quality parameter data
 at outfall from 2017 2022

Water Analyses

Turbidity

3.97 ± 0.56 NTU

Nitrate & Nitrite

16.0 mg N/L

Phosphorus

2.19 mg P/L

BOD₅

1.37 ± 0.11 mg/L

Fecal Bacteria

Present

Soil Constituent Averages

Organic Matter Content (%)

> Moisture Content (%)

Soil Classification

> Nitrogen (mg/kg)

Phosphorus (mg/kg)

 0.86 ± 0.01

 8.23 ± 0.03

Poorly Graded

Sand

1.86 ± 0.01 0.48 ± 0.02 2.18 ± 0.01

> 15.12 ± 0.05 13.52 ± 0.02 6.51 ± 0.02

Poorly Graded Silty Sand Silty Sand Sand

3.00 ± 1.37 0.75 ± 0.29 1.20 ± 0.57

19.38 ± 7.74 7.13 ± 1.25 6.50 ± 1.06

Puddle Bear Wetland Solutions

Team Members

Kylie Martin
Soil and Water Data Analysis &
CAD/GIS Modeling

Elina Avila
Wetland Vegetation &
Water Treatment

Sam Taylor – Leader General Wetland Design & Water Treatment

Matthew Varriale
Public Acceptance &
Soil and Data Analysis

Anthony Gallegos Garcia Water Treatment & Hydraulic Design

Yaseen Alwzzan
Finances &
Soil and Water Data Analysis

Technology Evaluation Criteria

Design Alternative

Free Water Surface to Free Water Surface

Design Alternative

Free Water Surface to Horizontal Subsurface Flow

Design Alternative

Horizontal Subsurface to Vertical Flow

Proposed Design

Alternative

Public Approval Ecosystem services

- Educational opportunities

Removal Efficiency

- 40% Phosphorus
- CEC removal

Cost

- Lowest cost
- \$347,000 Net Present Worth

Water Quality Improvement

Texas Administrative Code (TAC) -Surface Water Augmentation for Reclaimed Water

CEC Removal Efficiencies

Design Hydraulics

Flowrate

52 gal/min

Operating Volume

1.8 MGal

Hydraulic Retention Time

17 Days

Hydraulic Loading Rate

1.6 in/day

Wetland Area

1.59 Acres

Vegetation Characteristics

Aquatic

Aesthetics

Native

Functional

Perennial

Non-Invasive

Lanceleaf Frogfruit

Phyla lanceolata

Common Duckweed
Spirodela polyrrhiza

Soft Rush Juncus effusus

American Bulrush Schoenoplectus americanus

Courtesy of the New York Natural Heritage Program

Geotechnical Considerations

Substrate

- Natural substrate
- Biochar

- Healthy vegetation
- High sorption

PVC Liner

- Prevents water infiltration
- Stability

Berm Rebuilding

- Water retention
- South pond, east berm

Final Design

OKTO Engineering

OKTO Engineering

Annie Gilliam Hydrologic Modeling

Jakob Cullifer - Leader General Wetland Design

Holly Jones
Water Treatment

Abdallah Al Balushi Cost Analyst

Nathaniel Wright
Vegetation Specialist &
Water Data Analyst

Elizabeth Watts
Soil & Water Data Analyst

Wetland Alternative #3

Evaluation System for Design Options

Public Acceptance

Land Requirements 25%

Evaluation System for Design Options

- Public Acceptance
 - Aesthetics
 - Activities

- Land Requirements
 - Space constraints

- Cost
 - Construction
 - **O&M**
 - Planned Replacements (5 years)

- Performance
 - Nitrate + Nitrite: 10 mg/L
 - Dissolved Reactive
 Phosphorus: 1 mg/L
 - CECs: Literature
 removal efficiencies

Preferred Wetland Alternative

Option 1

- HSSFW for Nitrogen
- FWSW for Phosphorus
- Removes target CECs
 - Sulfamethoxazole, Triclosan,
 Trimethoprim, Estrone, Diclofenac
- Utilizes native vegetation
 - Bulrush, Cattails, Water Lilies

Wetland Vegetation

HSSFW

- Typha latifolia (Cattail)
- Schoenoplectus americanus (Bulrush)
- Panicum hemitomon (Maidencane)

FWSW

- Typha latifolia (Cattail)
- Schoenoplectus americanus (Bulrush)
- Nymphaea odorata (Water Lily)

Physical Dimensions

North Pond (HSSFW)

- Surface Area: 23,300 ft²
- Operating Volume: 28,000 ft³
- Operating Depth: 4.5 ft
- Freeboard: 0.5 ft

Physical Dimensions

South Pond (FWSW)

- Water Surface Area: 17,100 ft²
- Operating Volume: 39,000 ft³
- Operating Depths: 1 ft 2 ft
- Freeboard: 1 ft

Hydraulics

- HLR = 5.5 in/day
- **HRT** = 8 days
- Wetland flow rate = 40 GPM
- Flow rate varies ± 2% due to ET and precipitation

Contaminant Removal Efficiency

Cost Estimate

Construction: \$380,000

Design Fee: \$76,000

Start-Up Cost: \$19,000

O&M: \$25,000 (20 years)

Planned Replacements: \$110,000

Total Cost: \$ 610,000

Nairnia Engineering

Nairnia Engineering Members

Katrina Mason
Team Leader, Hydraulic and
Hydrologic Design

Lauren Franze Sample Data and Cost Analytics

Ariel Gillen QA/QC, Geotechnical Design

Enrique LambertVegetation, Public Acceptance

Daniel Guevara

Hydraulic and Hydrologic Design

Design Alternative #1

Construction: \$170,000

O&M: \$130,000 (30 years)

Net Present Worth: \$300,000

(Kadlec and Wallace, 2009)

Design Alternative #2

Construction: \$710,000

O&M: \$111,000 (30 years)

Net Present Worth: \$821,000

(Kadlec and Wallace, 2009)

Design Alternative #3

Construction: \$580,000

O&M: \$100,000 (30 years)

Net Present Worth: \$680,000

Evaluation System for Design Alternatives

Cost

Construction and O&M

Efficiency

- Nitrate + Nitrite: 10 mg/L
- Dissolved Reactive Phosphorus: 0.09 mg/L
- CECs: Biodegradation rates

Public Acceptance

Anticipated public perception and feedback

Selection of Preferred Alternative

Schematics of Preferred Alternative

Profile View

Plan View

Footprint: 1.8 acres

Volume: 5 acre-ft

Flow: 82 gpm

HRT: 49-69 days

HLR: 0.67 in/d (49 days)

0.47 in/d (69 days)

Hydraulics

Automated pump

Emergency spillways

- 3" PVC pipe for inflow and outflow
 - Concrete channel for effluent

Geotechnical Design

- Removal of central berm
- Multiple emergency spillways and effluent channel
- High-density polyethylene (HDPE) liner
- 1' layer of soil with dolomite substrate

Vegetation

TP/TN Removal

- Ceratophyllum dermersum (Coontail)
- Vallisneria americana (Eelgrass)
- Canna indica (Indian shot)

Eelgrass

CEC Removal

- Scirpus validus (River club-rush)
- Panicum virgatum (Switchgrass)

River club-rush

Mosquito Control

- Syngonium podophyllum (Arrowhead)
- Alisma subcordatum
 (American water plantain)

Arrowhead

Contaminant Removal Efficiency

Nitrate + Nitrite

0.62 - 1.17 mg/L 93-96% removal

Dissolved Reactive Phosphorus

0.40 - 0.60 mg/L 73-82% removal

Acesulfame, Caffeine, Acetaminophen, Sucralose, Sulfamethoxazole

Removal varies

Cost Estimate

Capital Costs

∘ ≈ \$170,000

- Operation and Maintenance Costs
 - $\circ \approx $130,000 (30 \text{ years})$
- Net Present Worth
 - ∘ ≈ \$300,000

Ending Remarks

Recommendations

- Compile database of measured CECs in NWRF effluent
- Develop design criteria for CEC removal based on mesocosm studies
- Assess viability of underlying groundwater as environmental buffer

Limitations

- Land area available is small
- CEC concentrations in effluent are highly variable
- Design criteria for CEC removal in wetlands do not exist
- Site could be flooded from Canadian River

Conclusions

- Nature-based solutions can be used for indirect potable reuse
- Viable technology applied in other states
- Wetlands have effective nutrient removal
- CEC removal not well characterized
- Land intensive, but economical

Acknowledgements

- City of Norman
 - Steven Hardeman, NWRF Utilities Superintendent and Plant Manager
 - Chris Mattingly, PE, Norman Utilities Director
 - Michele Loudenback, Division of Environmental Resilience and Sustainability
- Center for Restoration of Ecosystems and Watersheds
 - James Queen, Graduate Teaching Assistant
 - Justine McCann, Graduate Research Assistant
 - M'Kenzie Dorman, Graduate Research Assistant
 - Steinar Dahle, Graduate Research Assistant
- Dr. Russell Dutnell, PE, Riverman Engineering LLC
- Dr. Gerald Miller, PE, University of Oklahoma CEES Professor

Acknowledgements

- Environmental Engineering and Science Advisory Board
 - Shellie Chard, Water Quality Division Department of Environmental Quality
 - Jason Masoner, US Geological Survey
 - Nathan Kuhnert, US Bureau of Reclamation
 - Steve Hardeman, Utilities Superintendent and Plant Manager
 - Chris Mattingly, PE, Norman Utilities Director
 - Michele Loudenback, Division of Environmental Resilience and Sustainability
 - Kyle Arthur, Central Oklahoma Master Conservancy District
 - Amanda Nairn, Central Oklahoma Master Conservancy District

Thank you

We are now open for questions

Environmental Science and Engineering Capstone Class of 2023

CEES 4913/4923