Project: 2023 Sanitary Sewer Rehabilitation

| Engineer: | Ward, Getz \& Associates, PLLC |
| :--- | :--- |
| Owner: | City of Montgomery |$\quad$ Project No.: 0 00574-011-00

CHANGE ORDER DETAILS

| You are directed to make the following changes in the Contract Documents: |  |  | PREVIOUS |  | REVISED |  | Net Change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item No. | Description | Unit | Quantity | Amount | Quantity | Amount |  |
| 4 | 8-inch (8") sanitary sewer rehabilitation by CURED-IN-PLACE process, all depths, including pre- and post-construction cleaning and televising; removal of roots and other pipe obstructions by regular pipe cleaning methods; sewer flow control (including by-pass pumping, if required); materials testing; removal and replacement of sprinkler systems, and other above ground obstructions per Attachment A of the Contract; removal and replacement of cleanouts as necessary to complete the work; providing the Engineer copies of the curing logs; and site restoration to existing or better condition (includes removal and replacement of fencing, sod, etc.); | LF | 4,914.0 | \$38.00 | 2,870.0 | \$38.00 | -\$77,672.00 |
| 5 | 12-inch (12") sanitary sewer rehabilitation by CURED-IN-PLACE process, all depths, including pre- and post-construction cleaning and televising; removal of roots and other pipe obstructions by regular pipe cleaning methods; sewer flow control (including by-pass pumping, if required); coordination with testing laboratory for materials testing; removal and replacement of sprinkler systems, and other above ground obstructions per Attachment A of the Contract; removal and replacement of cleanouts as necessary to complete the work; providing the Engineer copies of the curing logs; and site restoration to existing or better condition (includes removal | LF | 868.0 | \$49.00 | 0.0 | \$0.00 | -\$42,532.00 |
| 16 | REMOVE AND REPLACE concrete pavement to match existing as per TxDOT specifications. | SY | 800.0 | \$120.00 | 10.0 | \$120.00 | -\$94,800.00 |
| 17 | REMOVE AND REPLACE asphalt pavement to match existing as per City standard specifications. | SY | 700.0 | \$75.00 | 10.0 | \$75.00 | -\$51,750.00 |
| 32 | Existing 10-inch (10") sanitary sewer pipe upsize to 12 -inch (12") IPS SDR-19 sanitary sewer pipe via Pipe Bursting. Contractor will pipe burst with new HDPE SDR 19 and make all | LF | 0.0 | \$0.00 | 3,050.0 | \$55.00 | \$167,750.00 |
| 33 | Existing 8-inch (8") sanitary sewer pipe upsize to 12-inch (12") IPS SDR-19 sanitary sewer pipe via Pipe Bursting. Contractor will pipe burst with new HDPE SDR 19 and make all | LF | 0.0 | \$0.00 | 381.0 | \$75.00 | \$28,575.00 |
| 34 | Service reconnection via excavation (after pipe bursting | EA | 0.0 | \$0.00 | 5.0 | \$850.00 | \$4,250.00 |
| 35 | 10 -inch (10") sanitary sewer rehabilitation by CURED-IN-PLACE process, all depths, including pre- and post-construction cleaning and televising; removal of roots and other pipe obstructions by regular pipe cleaning methods; sewer flow control (including by-pass pumping, if required); materials testing; removal and replacement of sprinkler systems, and other above ground obstructions per Attachment A of the Contract; removal and replacement of cleanouts as necessary to complete the work; providing the Engineer copies of the curing logs; and site restoration to existing or better condition (includes removal and replacement of fencing, sod, etc.); | LF | 0.0 | \$0.00 | 2,044.0 | \$45.00 | \$91,980.00 |

Engineer: Ward, Getz \& Associates, PLLC Project No.: 00574-011-00

Owner: City of Montgomery
Contractor: Cruz Pec, Inc.

## CHANGE ORDER DESCRIPTION AND REASON

Description of changes: In lieu of repairing and lining the existing sanitary trunkline between SMH-199A and Lift Station No. 2, the entire line will be upsized and replaced from 10" to 12" via pipe bursting construction methods. Existing sanitary line between SMH-166 and SMH-167 to be upsized and replaced from 8 " to 12 " via pipe bursting construction methods (this scope removed from future phase and added to current phase). Added item for 10" Cured-In-Place sanitary sewer rehabilitation.
Reason for change: Upsizing the existing sanitary sewer line in lieu of repairing and lining to accommodate for potential growth to the west and improve overall service in the area.


## CERTIFICATION AND APPROVAL OF CHANGE ORDER NO. 2

The undersigned certify that work and cost proposed by this Change Order is in accordance with the Contract's Specifications terms and conditions, is fair and just and is now part of the Contract.

Date: 2/22/24

ENGINEER: $\qquad$ Date: 02/22/2024

OWNER:
Date: $\qquad$
City of Montgomery

Z:\00574 (City of Montgomery)\011 2023 Sanitary Sewer Rehabilitation\Docs\CA\6. Pay Estimates \& Change Orders\Change Order No. 1 Review\Change Order No. 1\Change Order - CoM.xlsx

City of Montgomery
wgibson@cruztec.com

| 12210 Ann Lane |  |  |  | Date | Quote |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Houston, TX 77064 |  |  |  |  |  |  |
| C: 281.979.6797 |  |  |  | 1/17/2024 |  | COM-003 |
| O: 281.469.2888 |  |  |  |  |  |  |
| F: 281.469.2885 |  |  |  |  |  |  |
| Estimator | Project |  |  | Engineer |  | Rep. |
| Wade Gibson | City of Montgomery 8"-12" Pipe Burst |  |  | City of Montgomery |  | Sean D. |
| Bid Item No. | Unit | Description | Qty | Unit Price |  | Total |
| CO3 | LF | 8" Upsize to 12" IPS SDR 19 Pipe Burst | 381 | \$ 75.00 | \$ | 28,575.00 |
| C03 | EA | Service Reconnection by Excavation | 1 | \$ 850.00 | \$ | 850.00 |
|  |  |  |  | Total | \$ | 29,425.00 |
|  |  |  | Sales Tax |  |  |  |
|  |  |  |  | Total | \$ | 29,425.00 |

NOTES

1. Quote is estimated based on field measurements of from MH 166 to MH 167
2. Services are an estimation only.
3. Cruz Tec will Pipe Burst with HDPE SDR 19 and make all reconnections to the existing manholes. ACCEPTANCE OF PROPOSAL

Owner Name: $\qquad$

Owner Contact: $\qquad$
Date: $\qquad$
Project Payment Bond: $\qquad$ Surety/Bonding Company: $\qquad$

CRUZ TEC INC.

City of Montgomery
wgibson@cruztec.com

| 12210 Ann Lane |  |  |  | Date |  | Quote |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Houston, TX 77064 |  |  |  |  |  |  |  |
| C: 281.979.6797 |  |  |  | 12/28/2023 |  | COM-002 |  |
| O: 281.469.2888 |  |  |  |  |  |  |  |
| F: 281.469.2885 |  |  |  |  |  |  |  |
| Estimator | Project |  |  | Engineer |  | Rep. |  |
| Wade Gibson | City of Montgomery 10"-12" Pipe Burst |  |  | City of Monroe |  | TBD |  |
| Bid Item No. | Unit | Description | Qty | Unit Price |  | Total |  |
| CO2 | LF | 10" Upsize to 12" IPS SDR 19 Pipe Burst | 3,000 | \$ | 55.00 | \$ 165,000.00 |  |
| CO2 | EA | Service Reconnection by Excavation | 5 | \$ | 850.00 | \$ 4,250.00 |  |
|  |  |  |  |  | Total | \$ | 169,250.00 |
|  |  |  |  |  | Sales Tax |  |  |
|  |  |  |  |  | Total | \$ | 169,250.00 |

NOTES

1. Quote is estimated based on field measurements of the trunk line starting at MH 167 and ending at LS \#2
2. Services are an estimation only.
3. Cruz Tec will Pipe Burst with new HDPE SDR 19 and make all reconnections to the existing manholes.

Owner Name: $\qquad$

Owner Contact: $\qquad$
Date: $\qquad$
Project Payment Bond: $\qquad$
Surety/Bonding Company: $\qquad$

CRUZ TEC INC.

$\qquad$

## +GF+ DESIGN-FLOW ${ }^{\circ}$ |IPS HDPE PIPE

IRON PIPE SIZE PE4710 | HIGH DENSITY POLYETHYLENE PIPE
GEORG FISCHER CENTRAL PLASTICS AVAILABLE STANDARDS:
DESIGN-FLOW' M \& I PE4710 HDPE ASTM F714/D3035 AWWAC901/C906 NSF-61
DESIGN-FLOW' FM Approved PE4710 HDPE FM1631
DESIGN-FLOW ${ }^{\circ}$ Gray SL PE4710 HDPE ASTM F714/D3035

| Size |  | $\begin{aligned} & \text { DR } 32.5 \\ & \text { CLASS } 65 \\ & \text { WPR@65psi } \end{aligned}$ |  |  | $\begin{gathered} \text { DR } 26 \\ \text { CLASS } 80 \\ \text { WPR @ 80psi } \end{gathered}$ |  |  | $\begin{gathered} \text { DR } 21 \\ \text { CLASS } 100 \\ \text { wPR @ 100psi } \end{gathered}$ |  |  | DR 19CLASS 110WPR @ 110 psi |  |  | $\begin{aligned} & \text { DR } 17 \\ & \text { CLASS } 130 \\ & \text { WPR @ 130psi } \end{aligned}$ |  |  | $\begin{aligned} & \text { DR } 13.5 \\ & \text { CLASS } 160 \\ & \text { WPR @ 160psi } \end{aligned}$ |  |  | DR 11CLASS 200WPR @ 200psi |  |  | DR 9CLASS 250WPR @ 250psi |  |  | DR 7CLASS 335WPR @ $335 p s i$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { IPS } \\ \text { Pipe } \\ \text { Size } \end{gathered}$ | $\begin{aligned} & \text { Pipe } \\ & \text { OD } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Avg } \\ & \text { (iD } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { (inl } \\ & \text { (in) } \end{aligned}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (iD } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { Wall } \\ & \text { (in) } \end{aligned}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (D) } \\ & \text { (in) } \end{aligned}$ | Min Wall <br> (in) | Weight (lisift) | $\begin{aligned} & \text { Avg } \\ & \text { (in) } \\ & \text { (in) } \end{aligned}$ | $\begin{gathered} \operatorname{Min} \\ \text { Wall } \\ \text { (in) } \end{gathered}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (iD } \\ & \text { (in) } \end{aligned}$ | $\begin{gathered} \text { Min } \\ \text { (inl\| } \\ \text { (in) } \end{gathered}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (iD } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { Wall } \\ & \text { (in) } \end{aligned}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (in } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { Wall } \\ & \text { (in) } \end{aligned}$ | Weight (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { ID } \\ & \text { (in) } \end{aligned}$ | $\underset{\substack{\text { Min } \\ \text { (in) }}}{\text { (ial }}$ | Weight <br> (lbs/ft) | $\begin{aligned} & \text { Avg } \\ & \text { (iD } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { Wall } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { Weight } \\ & (\mathrm{lbs} / \mathrm{ft}) \end{aligned}$ |
| $2 "$ | 2.375 |  | - |  |  |  | - | - | - | - | - | - | - | 2.078 | 0.140 | 0.43 | 2.002 | 0.176 | 0.53 | 1.917 | 0.216 | 0.64 | 1.815 | 0.264 | 0.77 | 1.656 | 0.339 | 0.95 |
| $3 "$ | 3.500 | - | - | - | - | - | - | - | - | - | - | - | - | 3.063 | 0.206 | 0.94 | 2.951 | 0.259 | 1.16 | 2.826 | 0.318 | 1.39 | 2.675 | 0.389 | 1.66 | 2.440 | 0.500 | 2.06 |
| $4 "$ | 4.500 |  | - |  |  |  | - | 4.046 | 0.214 | 1.27 | - | - | - | 3.938 | 0.265 | 1.55 | 3.794 | 0.333 | 1.92 | 3.633 | 0.409 | 2.31 | 3.440 | 0.500 | 2.75 | 3.137 | 0.643 | 3.40 |
| $5 "$ | 5.563 | - | - | - | 5.109 | 0.214 | 1.58 | 5.001 | 0.265 | 1.94 | 4.942 | 0.293 | 2.13 | 4.870 | 0.327 | 2.37 | 4.690 | 0.412 | 2.93 | 4.490 | 0.506 | 3.52 | 4.253 | 0.618 | 4.20 | 3.877 | 0.795 | 5.20 |
| $6 "$ | 6.625 | - | - | - | 6.084 | 0.255 | 2.24 | 5.957 | 0.315 | 2.75 | 5.886 | 0.349 | 3.02 | 5.798 | 0.390 | 3.36 | 5.584 | 0.491 | 4.15 | 5.349 | 0.602 | 5.00 | 5.065 | 0.736 | 5.96 | 4.619 | 0.946 | 7.37 |
| 8" | 8.625 | - | - | - | 7.921 | 0.332 | 3.80 | 7.754 | 0.411 | 4.66 | 7.663 | 0.454 | 5.12 | 7.550 | 0.507 | 5.69 | 7.270 | 0.639 | 7.04 | 6.963 | 0.784 | 8.47 | 6.594 | 0.958 | 10.11 | 6.013 | 1.232 | 12.50 |
| 10" | 10.750 | - | - | - | 9.874 | 0.413 | 5.91 | 9.665 | 0.512 | 7.24 | 9.551 | 0.556 | 7.96 | 9.410 | 0.632 | 8.83 | 9.062 | 0.796 | 10.93 | 8.679 | 0.977 | 13.16 | 8.219 | 1.194 | 15.70 | 7.494 | 1.536 | 19.42 |
| 12" | 12.750 | - | - | - | 11.711 | 0.490 | 8.31 | 11.463 | 0.607 | 10.19 | 11.327 | 0.671 | 11.20 | 11.160 | 0.750 | 12.43 | 10.749 | 0.944 | 15.38 | 10.293 | 1.159 | 18.51 | 9.746 | 1.417 | 22.08 | 8.889 | 1.821 | 27.31 |
| $14 "$ | 14.000 | - | - | - | 12.859 | 0.538 | 10.02 | 12.586 | 0.667 | 12.28 | 12.438 | 0.737 | 13.50 | 12.253 | 0.824 | 14.98 | 11.802 | 1.037 | 18.54 | 11.301 | 1.273 | 22.32 | 10.701 | 1.556 | 26.63 | 9.760 | 2.000 | 32.93 |
| 16" | 16.000 | - | - | - | 14.696 | 0.615 | 13.09 | 14.385 | 0.762 | 16.04 | 14.215 | 0.842 | 17.63 | 14.005 | 0.941 | 19.57 | 13.488 | 1.185 | 24.22 | 12.915 | 1.455 | 29.15 | 12.231 | 1.778 | 34.78 | 11.154 | 2.286 | 43.01 |
| 18" | 18.000 | - | - | - | 16.533 | 0.692 | 16.57 | 16.183 | 0.857 | 20.30 | 15.992 | 0.947 | 22.32 | 15.755 | 1.059 | 24.77 | 15.174 | 1.333 | 30.65 | 14.532 | 1.636 | 36.89 | 13.760 | 2.000 | 44.02 | 12.549 | 2.571 | 54.43 |
| 20" | 20.000 | 18.695 | 0.615 | 16.50 | 18.370 | 0.769 | 20.45 | 17.982 | 0.952 | 25.07 | 17.768 | 1.053 | 27.55 | 17.507 | 1.176 | 30.58 | 16.860 | 1.481 | 37.84 | 16.146 | 1.818 | 45.54 | 15.289 | 2.222 | 54.34 | 13.943 | 2.857 | 67.20 |
| 22" | 22.000 | 20.565 | 0.677 | 19.97 | 20.206 | 0.846 | 24.75 | 19.778 | 1.048 | 30.33 | 19.545 | 1.158 | 33.34 | 19.257 | 1.294 | 37.00 | 18.544 | 1.630 | 45.79 | 17.760 | 2.000 | 55.10 | 16.819 | 2.444 | 65.75 | 15.337 | 3.143 | 81.32 |
| 24" | 24.000 | 22.434 | 0.738 | 23.76 | 22.043 | 0.923 | 29.45 | 21.577 | 1.143 | 36.10 | 21.322 | 1.263 | 39.67 | 21.007 | 1.412 | 44.03 | 20.231 | 1.778 | 54.49 | 19.374 | 2.182 | 65.58 | 18.346 | 2.667 | 78.25 | 16.731 | 3.429 | 96.77 |
| 26" | 26.000 | 24.304 | 0.800 | 27.89 | 23.880 | 1.000 | 34.57 | 23.375 | 1.238 | 42.36 | 23.099 | 1.368 | 46.56 | 22.758 | 1.529 | 51.67 | 21.917 | 1.926 | 63.95 | 20.989 | 2.364 | 76.96 | 19.876 | 2.889 | 91.84 | - | - |  |
| 28" | 28.000 | 26.174 | 0.862 | 32.34 | 25.717 | 1.077 | 40.09 | 25.173 | 1.333 | 49.13 | 24.876 | 1.474 | 54.00 | 24.508 | 1.647 | 59.93 | 23.603 | 2.074 | 74.17 | 22.604 | 2.545 | 89.26 | 21.404 | 3.111 | 106.51 | - | - |  |
| 30" | 30.000 | 28.043 | 0.923 | 37.13 | 27.554 | 1.154 | 46.02 | 26.971 | 1.429 | 56.40 | 26.653 | 1.579 | 61.99 | 26.259 | 1.765 | 68.80 | 25.289 | 2.222 | 85.14 | 24.218 | 2.727 | 102.47 | 22.933 | 3.333 | 122.27 | - | - |  |
| 32" | 32.000 | 29.913 | 0.985 | 42.24 | 29.391 | 1.231 | 52.36 | 28.770 | 1.524 | 64.17 | 28.429 | 1.684 | 70.53 | 28.009 | 1.882 | 78.28 | 26.975 | 2.370 | 96.87 | 25.833 | 2.909 | 116.58 | 24.462 | 3.556 | 139.12 | - | - |  |
| 36" | 36.000 | 33.652 | 1.108 | 53.46 | 33.065 | 1.385 | 66.27 | 32.366 | 1.714 | 81.21 | 31.983 | 1.895 | 89.26 | 31.511 | 2.118 | 99.07 | 30.347 | 2.667 | 122.60 | 29.062 | 3.273 | 147.55 | - | - | - | - | - |  |
| $42^{\prime \prime}$ | 42.000 | 39.260 | 1.292 | 72.77 | 38.575 | 1.615 | 90.20 | 37.760 | 2.000 | 110.54 | - | - | - | 36.762 | 2.471 | 134.84 | 35.404 | 3.111 | 166.88 | - | - | - | - | - | - | - | - |  |
| 48" | 48.000 | 44.869 | 1.477 | 95.05 | 44.086 | 1.846 | 117.81 | 43.154 | 2.286 | 144.38 | - | - | - | 42.014 | 2.824 | 176.12 | - | - | - | - | - | - | - | - | - | - | - |  |
| 54" | 54.000 | 50.478 | 1.662 | 120.29 | 49.597 | 2.077 | 149.10 | 48.549 | 2.571 | 182.73 | - | - | - | 47.266 | 3.176 | 222.90 | - | - | - | - | - | - | - |  |  | - | - | - |
| 63" | 63.000 | 58.890 | 1.938 | 163.73 | 57.863 | 2.423 | 202.94 | 56.640 | 3.000 | 248.72 | - | - | - | - | - | - | - | - | - | - | - | - |  |  |  | - | - | - |
| $65 "$ | 65.000 | 60.760 | 2.000 | 174.29 | 59.700 | 2.500 | 216.03 | 58.438 | 3.095 | 264.76 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Pressure Ratings are calculated using 0.63 design factor for HDS at $73^{\circ} \mathrm{F}$ as listed in PPITR-4 for PE 4710 materials. Temperature, chemical and environmental use considerations may require use of additional design factors. Pipe weights are calculated in accordance with PPI-7 TR-7. Average inside diameter is calculated with nominal OD and minimum wall thickness plus $6 \%$. Actual ID's will vary and are controlled by the dimensions and tolerances listed in the applicable pipe specifications. PER AWWA C906 the working pressure rating equals the pressure class, with an allowance included in the WPR for pressure surge. The pressure and surge design basis for ployethylene pipe is different from the PVC and Dippe design basis.
Other sizes and DR's are available, contact your customer service representative at 1.800.499.6927 www.gfcp.com

STANDARD SIZES AND DR'S SHOWN IN BOLD PRINT. have equal operating pressure capability.

# Print Line Data Sheet for GFCP Design-Flow ${ }^{\text {® }}$ HDPE Pipe for Municipal \& Industrial Use 

## Current Print Line for Design-Flow ${ }^{\circledR}$ HDPE Pipe for M \& I use:

## New Dual Marking Print Line for Design-Flow ${ }^{\circledR}$ HDPE Pipe for M \& I use:

> [ size \& sdr --- trademark --- material astm --- wpr temp --- requirements --- plant* --- ppi des** --- prod date ]

## Changes are as follows:

Omitting the pressure rating designation. Please contact the GFCP Engineering Department for additional WPR details. Adding PE3608 \& PE4710 to the existing PE3408 to insure all material requirements (old and new) are referenced. 0 mitting the material code as specified in previous versions of ASTM F714. ("Code shown above as "C3".)

Notes:
Also see available information outlining the PPI Dependent Listing of material designation codes for GFCP. ("The 3 digit material code that is shown above is for example only. The appropriate material code will be used in place of the code shown here.)
"Plant specific markings shown above as "DI" are for as follows: D=Dallas Plant, A = Abbeville Plant, 1 thru $9=$ Ext. Line Nunber
Standard print line color is blue (white print used on colored pipe). Standard pipe color is black, solid color is available upon request, see "Pipe \& Stripe Color Information". Striping in standard colors is available upon request.

# Print line Data Sheet for GFCP Design-Flow ${ }^{\circledR}$ HDPE D2513 Pipe for Oil \& Gas Gathering 

Current Print Line for Design-Flow ${ }^{\circledR}$ HDPE D2513 Pipe for Oil \& Gas use:

10 IPS DR-13.5----DESIGN-FLOW(®----GAS---PE3408---CEE----ASTM D2513----1---342---061508
New Print line for PE3608 Design-Flow ${ }^{\circledR}$ HDPE D2513 Pipe for Oil \& Gas use:
10 IPS DR-13.5---DESIGN-FIOW®----GAS---PE3408/PE3608---CEE---ASTM D2513---1---342---061508
New Print Line for PE4710 Design-Flow ${ }^{\circledR}$ HDPE D2513 Pipe for Oil \& Gas use:
10 IPS DR-13.5---DESTCN-FLOW®-----GAS----PE3408/PE4710----CEE---ASTM D2513---1---347---061508

## Notes:

Also see available information outlining the PPI Dependent listing of material designation codes for GFCP.
*The 3 digit material code that is shown above is for example only. The appropriate material code will be used in place of the code shown here.
*Plant specific markings shown above as "D1" are for as follows: D = Dallas Plant, $\mathrm{A}=$ Abbeville Plant, 1 thru $9=$ Ext. Line Nunber
Standard print line color is yellow. Standard pipe color is black. Yellow striping is available upon request.

# Print line Data Sheet for GFCP Design-Flow ${ }^{\circledR}$ HDPE Gray Slip Liner Pipe for Sewer Rehabilitation 

Previous Print Line for Design-Flow ${ }^{\circledR}$ Gray Slip Liner HDPE Pipe

12 IPS DR-17----DESIGN-FLOW®----PE3408----73F----ASTM F714 AWWA C906----1---342---061508

# Current Dual Marking Print Line for Design-Flow ${ }^{\circledR}$ Gray Slip Liner HDPE Pipe <br> 12 IPS DR-17----DESIGN-FLOW®---- PE3408/PE3608/PE4710----73F----ASTM F714 AWWA C906----D1---347---061508 <br> [ size \& sdr --- trademark --- material astm --- wpr temp --- requirements --- plant* --- ppides** --- prod date] 

## Notes:

Also see available information outlining the PPI Dependent listing of material designation codes for GFCP.
**The 3 digit material code that is shown above as " 347 " is for example only. The appropriate material code will be used in place of the code shown here.
*Plant specific markings shown above as "D1" are for as follows: $\mathbf{D}=$ Dallas Plant, $\mathrm{A}=$ Abbeville Plant, 1 thru $9=$ Ext. Line Nunber
Standard print line color is black. Standard pipe color is gray. Striping in standard colors is available upon request.

Georg Fischer Central Plastics, LLC 4949 Joseph Hardin Dallas, TX 75236
(formerly Independent Pipe Products, Inc.)
Ph: 972-641-2080 Fx: 972-641-2066

## Print line Data Sheet for GFCP



Design-Flow ${ }^{\circledR}$ FM Approved HDPE Pipe

Print Line for Design-Flow ${ }^{\circledR}$ FM Approved HDPE Pipe:

```
    12 IPS DR-7---DESIGN-FIOW@---PE3608/PE4710---73F---<FW> C2.267---ASTM F714---AWWA C906---NSF61---D1 ---347---011509
[ size & sdr --- trademark --- material astm --- wpr temp --- requirements --- plant* --- ppi des** --- prod date ]
```


## Notes:

Also see available information outlining the PPI Dependent Listing of material designation codes for GFCP.
"The 3 digit material code that is shown above as " 347 " is for example only. The appropriate material code will be used in place of the code shown here.
*Plant specific markings shown above as "D1" are for as follows: D = Dallas Plant, $\mathbf{A}=$ Abbeville Plant, $\mathbf{1}$ thru $9=$ Ext. Line Nunber

Standard print line color is red. Standard pipe color is black. Striping in standard colors is available upon request.

## Pipe \& Striping Color Information for GFCP Design-Flow® HDPE Pipe

## Orientation of Colored Striping:

Four narrow co-axial colored surface stripes are unequally spaced about the $\mathbf{3 6 0}$ degree surface circumference of the pipe, the centers of the colored surface stripes are positioned at $0^{\circ}-81^{\circ}-182^{\circ}-261^{\circ}$ radial.

## Size of Stripes:

The width of each narrow colored surface stripe is in the range of $3 \%$ to $10 \%$ of the pipe diameter, depending upon pipe diameter.

## Available Pipe or Striping Colors:

Red
B/Ue
Grecn
3rown
Ye|low
Orange

# Design-Fiow ${ }^{*}$ High Density Polyethylene Gray Slip Liner Pipe PE4710 Nominal Physical Properties* 

| Typical Specification | ASTM Test Method | Nominal Values |
| :---: | :---: | :---: |
| Density | ASTM D 1505 | . $959 \mathrm{gm} / \mathrm{cm}^{3}$ |
| Melt Index ${ }^{1}$ | ASTM D 1238 | $7.0 \mathrm{gm} / 10 \mathrm{~min}$. |
| Tensile Strength |  |  |
| @ Yield (2 in/min) | ASTM D 638 | 3600 psi |
| @ Break (2 in/min) | ASTM D 638 | 4500 psi |
| Hydrostatic Design Basis (HDB) |  |  |
| @ $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$ | ASTM D 2837 | 1600 psi |
| @ 60 ${ }^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ | ASTM D 2837 | 1000 psi |
| HDB Design Factor (DF) | PPITR-4 | 0.63 |
| Elongation @ Break (2 in/min) | ASTM D 638 | >740\% |
| Flexural Modulus ${ }^{2}$ | ASTM D 790 | 150,000 psi |
| Notched Izod Impact Strength | ASTM D 256 | 9.0 ft-lbf / in |
| Hardness (Shore D) | ASTM D 2240 | 68 |
| Brittleness Temperature | ASTM D 746 | <-103 ${ }^{\circ} \mathrm{F}$ |
| Slow Crack <br> Growth PENT, hours | ASTM D1473 | >10,000 hrs |
| Cell Classification | ASTM D 3350 | 445574E |
| Vicat Softening Point | ASTM D 1525 | $257{ }^{\circ} \mathrm{F}$ |
| Oxidative Induction Time | ASTM D 3895 | OIT > 40 minutes |

Design-Flow ${ }^{\circledR}$ High Density Polyethylene Slip Liner Pipe is manufactured in a standard color of light gray.
Black slip liner can be produced by special request. Product is available in all standard sizes and SDR's as
listed on the Design-Flow ${ }^{\circledR}$ HDPE Pipe Size Charts.
Notes: ${ }^{1} 190^{\circ} \mathrm{C} / 21,600 \mathrm{~g} ;{ }^{2} \mathbf{2 \%}$ Secant - Method 1
*This list of typical physical properties is intended for basic characterization of the material and does not represent specific determinations of specifications. The physical properties values reported herein were determined on compression molded specimens prepared in accordance with procedure C of ASTM D 4703 and may differ from specimens taken from pipe.

|  | $+G F+$ | GEORG FISCHER PIPING SYSTEMS |
| :---: | :---: | :---: |
| GEORG FISCHER CENTRAL PLASTICS | 1.800.499.6927 centralplastics.com | m Version 1.4.2 |
| OKLAHOMA Head Office, Shawnee, Oklahoma, USA SOUTH CAROLINA 217 Old Calhoun Falls Road, Abbe | EXAS 4949 Joseph Hardin Drive, Dallas, TX 75236 ville, SC 29620 | Page 1-15 |

## JMEagle <br> SEWER

Building essentials for a better tomorrow ${ }^{\mathrm{m}}$

\section*{HDPE

## HDPE <br> WATER <br> WATER <br> \& <br> \& <br> MEETS AWWA C901/C906, ASTM D2239, ASTM D2737, ASTM D3035, ASTM F714, CELL CLASS PER ASTM D3350, PPI LISTED MATERIAL (TR-4) PE 3408/3608/4710, AND ANSI/NSF-14.

## APPLICATIONS

JM Eagle's high-performance high-density polyethylene water pressure pipes are suitable for municipal and industrial transmission systems for potable water, sewer, drain, mining, irrigation, and reclaimed water.

## DESCRIPTION

JM Eagle's high-density polyethylene water and sewer pipe is made from premium, highly engineered PE 3408/3608 or PE 4710 resin material for a maximum pressure rating to service today's water and sewer needs.
Products are available in $1 / 2$-inch to 63 -inch diameters.
The product's physical properties make it applicable to open-trench and slip-lining installations.

It can be manufactured with the color striping to identify application, such as a blue stripe for potable water, a green stripe for sewer applications and a purple stripe for reclaimed water.
PE 4710 resin surpasses PE 3408/3608 in the following high-performance designations:

- Density class 4 ( $0.947-0.955 \mathrm{~g} / \mathrm{cc}$ ) vs. density cell class 3 (>0.940-0.947 g/cc).
- SCG (slow crack growth) cell class 7 or PENT value of 500 hours vs. SCG cell class 4 or PENT value of 10 hours.
- 1,000 psi HDS (hydrostatic design stress) vs. 800 psi HDS.


## BENEFITS

JM Eagle's HDPE pipe for water and sewer is manufactured for excellent performance and a long life expectancy.

- Its butt-fused joints eliminate potential leak points, common at 10 to 20 feet with ductile iron pipe, for a zero leak rate.
- Highly resistant to corrosion and weather, recent studies conclude it will last at least 100 years.
- Its light weight and flexibility make it easy to install, eliminate the need for fittings required with directional changes, and make it highly suitable for use in earthquakeprone areas.
- Its high-strength walls give it the highest PE pressure rating, outstanding resistance to SCG and increased resistance to rapid crack propagation.
- The increased working stress rating of high-performance PE 4710 resin material makes it a superior choice over steel or ductile iron pipe, especially for the largediameter pipe sizes.


## HOPE WATER \& SEWER

 SUBMITTAL AND DATA SHEETHOPE IRON PIPE SIZE (I.P.S.) PRESSURE PIPE




* For custom DR, perforated pipe, please contact JM
Eagle"' PE sales at $(800) 621-4404$ for availability.
I.D. : Inside Diameter
All dimensions are in inches unless noted otherwise T. Wall Thickness

For data, sizes, or classes not reflected in these charts, please contact JM Eagle ${ }^{\text {r" }}$ for assistance.
Pipe is NPS SDR 19 gerry

## DRISCOPLEX ${ }^{\circledR} 4600 / 4700$ Series PE Piping

## DRISCOPLEX ${ }^{\circledR}$ 4600/4700 Series PE Piping HDPE Sewer Pipe



DRISCOPLEX ${ }^{\circledR}$ HDPE Piping is available to meet your needs in compliance with ASTM F714 or AWWA C906 product standards.

Produced from only the highest rated HDPE pipe material, DRISCOPLEX ${ }^{\circledR}$ 4600/4700 Series PE Piping is manufactured from PE4710 resin as listed in PPI-TR4.

DRISCOPLEX ${ }^{\circledR}$ HDPE Piping Advantages:
$\checkmark$ Durable
$\checkmark$ Leak Tight
$\checkmark$ Excellent Flow
$\checkmark$ Low Surge
$\checkmark$ Fatigue Free
$\checkmark$ Impact Resistant
$\checkmark$ Trenchless Install
$\checkmark$ Bend Radius
$\checkmark$ Chemical Resistant
$\checkmark$ UV Protection
$\checkmark$ Flexibility
$\checkmark$ Environmental

| Optional Color Stripes to Identify the Application |  |
| :---: | :---: |
| Color | Application |
| Green | Wastewater |

Standard product is solid gray with no stripes.
IPS - 4 Single Stripe / DIPS - 3 Sets of Dual Stripes

## DRISCOPLEX ${ }^{\circledR}$ 4600/4700 Series PE Piping

| DriscoPlex ${ }^{\oplus}$ Series PE Piping Material Physical Properties |  |  |
| :--- | :---: | :---: |
| Property | Standard | Typical Value ${ }^{+}$ |
| Material Designation | ASTM F714 | PE4710 |
| Cell Classification | ASTM D3350 | 445574 E (Gray) |
| Density [4] | ASTM D1505 | $0.950 \mathrm{~g} / \mathrm{cc}$ (Gray) |
| Melt Index [4] | ASTM D1238 | $0.08 \mathrm{~g} / 10 \mathrm{~min}$ |
| Flexural Modulus [5] | ASTM D790 | $>120,000 \mathrm{psi}$ |
| Tensile Strength [5] | ASTM D638 Type IV | $>3500 \mathrm{psi}$ |
| SCG (PENT) [7] | ASTM F1473 | $>500$ hours |
| HDB at 73 ${ }^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)[4]$ | ASTM D2837 | 1600 psi |
| Color; UV stabilizer [E] | ATM D3350 | Black |

This is not a product specification and does not guarantee or establish specific minimum or maximum values or manufacturing tolerance for material or piping products to be supplied. Values obtained from tests of specimens taken from piping product may vary from these typical values.

## Additional Sizes and DR available. Contact Performance Pipe or visit www.performancepipe.com



This product flyer is intended for reference purposes. It should not be used in place of the advice from a licensed Professional Engineer. Pressure Ratings and Pressure Class are based on operating temperature up to $80^{\circ}$ F. Pressure class is based on a 0.5 Design Factor for water application from AWWA while Pressure Rating is based on a 0.63 Design Factor per PPI TR-41. Average inside diameter is calculated using Nominal OD and Minimum Wall plus $6 \%$ for use in estimating fluid flow. Actual ID will vary. When designing components to fit the pipe ID, refer to pipe dimensions and tolerances in the applicable pipe manufacturing specification. Additional information available at www.performancepipe.com

## A Guide to Pneumatic Pipe Bursting

## with the <br> GRUNDOCRACK ${ }^{\circledR}$ SYSTEM

GRUIDOCRACK: $\quad$ ?

## Table of Contents



1) Foreword ..... 4
2) Company Background ..... 5
3) Pipe Bursting History ..... 6
4) GRUNDOCRACK Concept ..... 7
5) Project Considerations ..... 8-13
6) GRUNDOCRACK Equipment Specifications. ..... 14-15
7) Special Applications ..... 16-19
8) Bentonite Specifications ..... 20-21
9) GRUNDOWINCH Specifications ..... 22

## Foreword



For over 35 years TT Technologies has lead the way for trenchless replacement systems beginning with pneumatic piercing tools. Today, after over 200 patents worldwide, TT's pneumatic tools are used in trenchless applications ranging from pipe pulling, pipe ramming, sliplining, directional drilling, and pipe bursting, both mainline and laterals.

While "pipe bursting" can be a generic term, $90 \%$ of the bursts worldwide are accomplished using pneumatic tools, the majority use the TT GRUNDOCRACK ${ }^{\circledR}$ equipment.

TT Technologies, Inc., the proud leader in the trenchless industry, makes safety priority number one each day. For everyone's safety read the operators manual carefully and exercise caution while using the GRUNDOCRACK pipe bursting system. Personal injury or death could result from improper use of the system. Have existing buried utilities located prior to digging, CALL BEFORE YOU DIG (ONE-CALL 1-888-258-0808).



Active from the start of the "trenchless revolution," TT Technologies, Inc., continues to be a leader and innovator in the field of no-dig technology. Beginning in the 1970's with a small staff promoting a limited line of pneumatic piercing tools, TT has since exploded on the market as tools, TT has since exploded on the marke
the source for a variety of trenchless tools and accessories.

This success is attributed to field proven product, and to the TT people. TT Technologies has assembled a team of highly motivated professionals who are dedicated to customer satisfaction. And this process extends far beyond the sale. TT staff assist with proper product training, as well as lending technical expertise at customer job sites throughout North America.

Now headquartered in expanded facilities, TT Technologies is poised to provide the right tools and technologies for trenchless contractors well into the 21 st century, and beyond.


Real job situations involving TT Technologies' GRUNDOCRACK tools have been featured in numerous industry publications.

Air Compressor



Pipe bursting allows the replacement of cast iron, clay, concrete, and other fracturable pipes with a new line of the same, or larger size with a minimum, and in some cases, no excavation and disturbance to the environment.

Pipe bursting can achieve significant savings over traditional "open cut" excavations.


GRUNDOWINCH


Free literature on GRUNDOCRACK tools can be obtained by contacting TT Technologies, Inc.

## Grundocrack Concept

The GRUNDOCRACK system is effectively used where existing pipes have failed beyond the possibility of point repairs. It is also ideal for use where sliplining or "cured in place" is not an option due to reduction in pipe sizes.

The term "fracturable" applies to host pipe materials such as cast iron, clay, non-reinforced and reinforced concrete, ABS , and some plastics.

The percussive action of the GRUNDOCRACK tool, combined with the expander forcing the fragments out into the surrounding soil provides the space needed for the placement of the new pipe. It is this expansive action that allows for the new pipe upsizing. This soil expansion and the percussive action of the tool also reduces stress on the new product pipe.

The twin capstan, dual speed, constant tension GRUNDOWINCH is essential to the bursting process as it provides friction for the pneumatic tool, and guides the tool through the host pipe. The winch is not used to "force" the tool, as a minimal pull is needed to allow the percussive action of the hammer to do the bursting. In addition, the winch "pull" is used to provide tension on the product pipe.



Front Expander


Rear Expander


Guide Head

Project Considerations

1. Concrete, Reinforced Concrete-Good bursting potential. Steel welded wire mesh and thickly encased pipes may cause concern and may require special guide head design.
2. Clay-Good bursting potential. Pipes with PVC joints need special applications tools.
3. Cast Iron-Good bursting potential. Special applications tools and protection of the winch cable must be considered.
4. PVC, ABS Plastic-Some bursting potential. Special cutting blades are necessary, length of runs may be reduced.
5. Transite-Good bursting potential.
6. Asbestos - Cement Pipe-Good bursting potential.
7. Truss pipe - a combination of plastic with a concrete honeycomb reinforcement. Good bursting potential.

## Host Pipe Depth and Profile

1. May effect both winch \& pneumatic tool selection.
2. May effect length of entrance \& exit pit requirements.
3. Special cutting attachments for repair joints, if present.
4. May effect length of possible bursting runs - larger diameter pipe may require shorter burst lengths.

## Host Pipe Depth and Profile

1. Expansion of surrounding soil is affected by depth of host pipe. Using this guide for minimum depth cover (10x the total upsize) (See example on the right).
2. Water table considerations vary with depth working below the water table may require dewatering procedures such as "well pointing" - and in some cases an alternative burst system such as the Grundoburst static system may be more efficient.
3. Profile of host pipe run will affect performance and final grade. A severally errant profile, due to poor initial installation or deterioration over time, will not be "cured" by pipe bursting.
4. Start and exit pits become larger and more complex as depth increases.
5. Length of burst may be shortened as depth increases.

## Host Pipe Repairs

1. Point repairs may contain different materials that will not fracture and may require excavation and removal prior to bursting.
2. Cleaning the host pipe prior to bursting is necessary to prevent the buildup of material in front of the bursting tool. The final grade of the new pipe installed is dependent on a clean, open host pipe the entire length of the run.
3. Different diameters of host pipe in one run may also cause grade problems with the final installation.

## Example:

An existing 8 -inch cast iron pipe needs to be replaced with a new 8 -inch line with a carrying capacity of an 8 -inch pipe. Working pressure is 150 PSI. The pipe is approximately 4 feet deep. Based on the working pressure, SDR 11 ( 165 PSI ) is selected. The inside diameter (ID) of 8 -inch pipe is 6.963 inches. A 10 -inch SDR 11 pipe with an ID of 8.679 inches is needed to supply the 8 -inch carrying capacity. The outside diameter (OD) of the 10 -inch pipe is 10.75 . Therefore, the upsize is from 8 -inch ID Cast Iron to 10.75 -inch OD HDPE, an increase 2.75 inches.

The manufacturer's tool recommendation for this particular burst is an 8.5 -inch diameter pneumatic bursting tool, equipped with a 13.8 -inch OD rear expander. With the rear expander, the total upsize becomes 8 -inch ID to 13.8 -inch OD, an increase of 5.8 inches. Using the guide for minimum depth cover (10x the total upsize), based on 5.8 inches, the minimum pipe depth requirement for bursting in this scenario would be approximately 58 -inches ( $10 \times 5.8$-inches). This depth will prevent any heaving of the ground and pavement caused by soil displacement. In this situation, the existing pipe, located 48 -inches below the surface, may not be deep enough for pipe bursting. Investigate alternative pipe SDRs or use DIPS size pipe. Many times, the pipe is overrated for the application. A 150 PSI system may never actually operate higher than 90-100 PSI. A higher SDR (larger ID), but smaller OD pipe could therefore be used.


Air Compressor


## Soil Conditions and Types



1. Since most favorable bursting projects were originally installed by "trenching" or open cut, at least the top of the host pipe has fill material.
2. Is the surrounding soil expandable? Beach sand is an example of soil, with certain water conditions, that will not remain in the expanded state long enough for the installation of the new product pipe. A host pipe installed in a rock trench may not have room enough for soil expansion, especially if the new pipe is an upsize.
3. Can the base soil support the weight of the tool, expander and product pipes? A sewer line which has been leaking for years may not support this weight during the bursting process.
4. Soil conditions may dictate the use of a lubricant, such as Bentonite or polymers, to help reach the burst length desired. Grundocrack rear expander design allows for efficient lubricant flow at the immediate rear of the expander.
5. Some backfill material, such as pea gravel, and very wet conditions will affect the success of a project. The knowledge of such conditions before the project is started is vital.

## Burst Length

1. In sewer rehab applications, burst length is usually manhole to manhole.
2. An intermediate manhole can be passed through with proper preparation.
3. Longer than normal bursts may need larger tools and Bentonite.
4. New pipe upsize will have an impact on burst length. Normal upsize is two pipe size increases, example: $8^{\prime \prime}$ to $10^{\prime \prime}$ or $8^{\prime \prime}$ to 12 ". Overly large increases in specified new pipe can result in project problems. In addition, the use of DIPS over IPS pipe can change the expected results, due to the increase in new pipe o.d.

## Product Pipe Sizes and Material

1. HDPE is the most common new pipe material.
2. Tool and expander selection is dictated by new pipe size, as well as host pipe specs.

Pipe Sizes


Upsize Examples

| PIPE WEIGHT |  |  |
| :---: | :---: | :---: |
| Pipe Size | Weight per Foot (lbs) | Weight per 100 Feet (lbs) |
| 8" SDR 17 | 5.65 | 565 |
| 10" SDR 17 | 8.78 | 878 |
| 12" SDR 17 | 12.36 | 1236 |
| $20^{\prime \prime}$ SDR 17 | 30.42 | 3042 |
| 30" SDR 17 | 68.45 | 6845 |
| 36" SDR 17 | 98.56 | 9856 |

Table 1
3. Due to the weight of larger diameter, thicker wall HDPE, Bentonite is used to reduce friction. Examples of 100 lengths of various HDPE are shown in Table 1.
4. As shown in Table 1, a $600^{\prime}$ length of 20 " SDR 17 HDPE can approach 20,000 lbs. The GRUNDOCRACK tool and winch combination must overcome this weight, in addition to bursting the host pipe, and expanding the soil.
5. Pipe is available in IPS and DIPS sizes.

GRUNDOCRACK pneumatic
pipe bursting systems are
featured on VHS videotape.
Air Compressor available on CD.


GRUNDOWINCH


## Peripheral Utilities

1. Start and exit pit location can be affected by surrounding utilities.
2. Interfering utilities must be located and exposed prior to burst.
3. Historically, very little damage to surrounding utilities has occurred due to pipe bursting. A Trenchless Technology Center Research Paper completed by Louisiana State University study on these effects is available.

## Service Excavations

1. Sewer services are normally located in the pre-construction video operation.
2. Gas services are normally excavated prior to bursting, usually to provide temporary service.
3. Various T-attachments are available for service hookups to the new main.
4. Services may be burst using a GRUNDOCRACK pneumatic pipe bursting machine with various compact winch configurations available. The GRUNDOTUGGER static pipe bursting system is also available, and can be used with pneumatic piercing tools.
5. In recent years vacuum excavation is being used to expose utilities and service connections, reducing the chance of damage.

## Start and Exit Pits

1. For sewer applications, start and exit pits are usually located in front of manholes.
2. For gas bursts, service pits can be expanded and used for start and exit.
3. All pits should be prepared and shored in an approved manner.

## Manhole Preparation

1. All confined space safety procedures apply when entering manholes.
2. Entry and exit holes must be enlarged to accept the new Expander and pipe size.
3. Manhole invert and benches must be removed if a reversible tool is used. The manhole also must be large enough to facilitate removing the expander from the manhole after the burst is complete.
4. Large upsize bursts using reversible tools may make using existing manholes difficult due to invert elevation changes.
5. In some cases, the amount of labor required to repair a manhole after the burst will make replacing the manhole a better choice. A rear expander tool can then be used, and a faster, sometimes longer burst can be made.


The GRUNDOCRACK complete Product \& Accessories Catalog gives a full listing of all available equipment and accessories.


Air Compressor

- $\quad$ пnirin
- 1 "חा"II






## GRUNDOWINCH



Tool and expander selection is affected by various considerations:

1. Host pipe size
2. Host pipe material
3. Host pipe depth
4. Start and exit pit location
5. Required burst length
6. Terrain
7. Product pipe size
8. Product pipe material

| GRUNDOCRACK SPECIFICATIONS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Part No. | Diameter (In.) | Rear Flair Tool Dia. (In.) | Length (In.) | Weight (Lbs.) | Strokes/ Minute | Air Cons. (cm) |
| PCG 130* | PCG1300000 | 5 | - | 50.5 | 237 | 350 | 92 |
| PCG 145* | PCG1450000 | 5.75 | - | 60 | 370 | 330 | 117 |
| Olympus w/reverse* | PCG1800000A | 7 | - | 66 | 490 | 280 | 159 |
| Hercules w/reverse* | HV2200000 | 9 | - | 79 | 945 | 300 | 283 |
| $\begin{aligned} & \text { Gigant } \\ & \text { w/reverse* } \end{aligned}$ | PCG2700000 | 11 | - | 84 | 1,540 | 310 | 424 |
| $\begin{gathered} \text { Koloss } \\ \text { w/reverse* } \end{gathered}$ | KV3500000 | 15 | - | 102 | 3,375 | 220 | 706 |
| Mini-Atlas | AM1300004 | 5 | 6 | 36 | 132 | 580 | 60 |
| Mini-Olympus | OM1800010 | 7 | 8.5 | 44.5 | 385 | 500 | 124 |
| Olympus | OF1800005 | 7 | 8.3 | 66.5 | 507 | 280 | 159 |
| Hercules | HF2200005 | 8.5 | 9.8 | 75 | 811 | 340 | 282 |
| Gigant | GF2600005 | 10 | 11.8 | 79 | 1,356 | 310 | 424 |
| Koloss | KF3500005 | 14 | 15.7 | 92 | 2,601 | 220 | 706 |
| Goliath | GF4500005 | 18 | 20 | 112 | 5,434 | 180 | 1,236 |
| Taurus | TF6000005 | 24 | 26.3 | 144 | 10,580 | 180 | 1,766 |
| Apollo | AF8000000 | 32 | 35 | 174 | 25,000 | 180 | 3,500 |

*Straight Barrel \& Reversible Tools

The following lists host pipe, new pipe, and tool/ expander selection as a guideline only.

| GRUNDOCRACK EXPANDER SELECTION |  |  |
| :---: | :---: | :---: |
| Host Size- <br> New Product Size | Tool Selection | Expander Selection |
| 4" to 4" | G'Mat 85 \& 95 | Front Expander |
| 4" to 6" | G'Mat 95 | Front Expander |
| 4" to 6" | PCG 130* | Front Expander |
| 4" to 4" | Mini-Atlas | Rear Expander |
| 6" to 6" | PCG 130* | Front Expander |
| $6{ }^{\prime \prime}$ to 8" | PCG 145* | Front Expander |
| 6" to 8" | PCG 180* | Front Expander |
| $6{ }^{\prime \prime}$ to 8" | Hercules | Rear Expander |
| 8" to 8" | PCG 145* | Front Expander |
| 8" to 8" | PCG 180* | Front Expander |
| 8" to 8" | Hercules | Rear Expander |
| 8" to 10" | Hercules | Rear Expander |
| 8" to 10" | PCG 180* | Front Expander |
| 8" to 12" | Hercules, Gigant | Rear Expander |
| 8" to 12" | PCG 220*, limited | Front Expander |
| 10" to 10" | PCG 180* | Front Expander |
| 10" to 10" | Hercules | Rear Expander |
| 10" to 12" | PCG 180*, limited | Front Expander |
| 10" to 12" | PCG 220* | Front Expander |
| 10" to 12" | Hercules, limited | Rear Expander |
| 10" to 12" | Gigant | Rear Expander |
| 10" to 14" | Gigant | Rear Expander |
| 10" to 14" | PCG 270* | Front Expander |
| 12" to 12" | PCG 180*, limited | Front Expander |
| 12" to 12" | Hercules, limited | Rear Expander |
| 12" to 12" | Gigant | Rear Expander |
| $12^{\prime \prime}$ to 12" | PCG 220*, limited | Front Expander |
| 12" to 14" | Gigant | Rear Expander |
| 12" to 14" | PCG 270* | Front Expander |
| 12" to 16" | PCG 270*, limited | Front Expander |
| 12" to 16" | Koloss | Rear Expander |
| 14" to 14" | Gigant | Rear Expander |
| 14" to 14" | PCG 270* | Front Expander |
| 14 " to 16" | Gigant, limited | Rear Expander |
| 14 " to 16" | PCG 270*, limited | Front Expander |
| 14" to 16" | Koloss | Rear Expander |
| 14 " to 18" | Koloss | Rear Expander |
| 14 " to 20" | Koloss, limited | Rear Expander |
| 16" to 16" | Gigant, limited | Rear Expander |
| 16 " to 16" | PCG 270*, limited | Front Expander |
| 16" to 16" | Koloss | Rear Expander |
| 16" to 18" | Koloss | Rear Expander |
| 16 " to 18" | KV 350* | Front Expander |
| 16" to 20" | KV 350*, limited | Front Expander |
| 16 " to 20" | Koloss | Rear Expander |
| 18" to 18" | Koloss | Rear Expander |
| 18" to 18" | KV 350* | Front Expander |
| $18^{\prime \prime}$ to 20" | KV 350* | Front Expander |
| 18" to 20" | Koloss | Rear Expander |
| 18" to 24" | Goliath | Rear Expander |
| 24" \& up | Goliath | Rear Expander |
| 30" \& up | Taurus | Front Expander |

*Straight Barrel \& Reversible Tools limited = limited length bursts

PCG 130* - 5" dia

PCG 145* - 5.75" dia.

Olympus w/reverse* - 7" dia.

Hercules w/reverse* - 9" dia.


Gigant w/reverse* - 11" dia.


Koloss w/reverse* - 15" dia.


Goliath w/reverse* - 18" dia.
*Straight Barrel \& Reversible Tools
Mini-Atlas ${ }^{-}$- $\mathbf{5}^{\prime \prime}$ dia.

Mini-Olympus ${ }^{\text {- }}$-7" dia.

Olympus ${ }^{\text {- 7 }}$ " dia.

## Hercules ${ }^{\text {- 8.5" dia }}$

## $\square$

Gigant ${ }^{-}$- 10" dia.


Koloss ${ }^{\circledR}$ - 14" dia.


Goliath ${ }^{\text {- 18" }}$ dia. Reverse Option Available.


Taurus ${ }^{\ominus}$-24" dia. Reverse Option Available.
 Rammer/Bursting Tool.

Air Compressor

(16)

## Reduce or Eliminate Launch \& Exit Pits

## Windowing Method for Tool Exit

Patent \# (US 6,443,657 B1)

Once a burst is complete, a GRUNDOMAT piercing tool is used to create a pilot bore from the end-point manhole to street level. The GRUNDOCRACK tool is disconnected from the newly installed PE pipe. Using a GRUNDOWINCH constant-tension winch as a guide, the GRUNDOCRACK pipe bursting tool is removed through the pilot bore with a minimum of disruption to the surface.



## Reverse Removal with PCG Tools

GRUNDOCRACK "straight barrel tools" (PCG) can be reversed automatically with a quick throw of a lever on the in-line lubricator. Once the expander is disconnected, the tool is reversed and removed back through the newly installed PE pipe.

This method can save time and expense of exit pit removal. Ideal for same-size bursting applications including $6^{\prime \prime}$ to $6^{\prime \prime}, 8^{\prime \prime}$ to $8^{\prime \prime} 10^{\prime \prime}$ to $10^{\prime \prime}, 12$ " to 12 ", or maximum one-size upsize depending on front expander configuration.

## Rammer Assistance

In certain circumstances a pneumatic rammer may be added to the back of a pipe string in order to overcome difficult bursting conditions. Rammer assistance in bursting operations is typically used for large diameter bursting, difficult ground conditions, extreme depths and difficult pipe
 materials. The added force of the rammer on the back of the pipe string can help overcome pipe drag and difficult soils by increasing bursting speed and achievable distance.


## Mechanical HDD Bursting/Backreaming

Combining pipe bursting with HDD was first developed in the late 1980's in an effort to increase the capabilities of directional drilling equipment. During the bursting/backreaming process a bursting tool is attached to the end of the drill string and pulled back through the host pipe. The bursting tools are either pneumatic or powered by the rotational torque of the drill string. Mechanical HDD bursting/backreaming has had minimal success because of the difficulty in maintaining line and grade during bursting and limited capabilities of the method.



## Bentonite Usage and Selection

Bentonite mixing and delivery systems are commonly used in pipe bursting applications to reduce friction and provide lubrication in difficult soil conditions. Rear expander tools can accommodate a bentonite manifold for delivery of bentonite during bursting operations.

Various GRUNDOMUDD bentonite mixing and delivery systems are available for pipe bursting applications. GRUNDOMUDD is a portable unit that mixes and pumps bentonite. The unit uses a Venturi mixer/filtration system to mix water and bentonite within minutes. An in-tank re-circulating value prevents the mixture from settling. A diaphragm pump is used for pumping the bentonite mixture on the smaller pump and high volume piston pumps are used on the larger pumps.

The GRUNDOMUDD is available in 225-, and 500 -gallon capacity models. Consult a TT Technologies product specialist to determine the appropriate bentonite mixing and delivery unit for a particular project.

| GRUNDOMUDD BENTONITE MIXING AND DELIVERY SYSTEMS |  |  |  |
| :--- | :---: | :---: | :---: |
| MODEL | GS225.2 | DS225.1 | DS500 |
| Length | $72^{\prime \prime}$ | $72^{\prime \prime}$ | $114^{\prime \prime}$ |
| Width | $46^{\prime \prime}$ | $46^{\prime \prime}$ | $52^{\prime \prime}$ |
| Height | $46^{\prime \prime}$ | $46^{\prime \prime}$ | $58^{\prime \prime}$ |
| Weight | 650 lbs. | 650 lbs. | 2150 lbs. |
| Bentonite Pump | Hydra Cell | Hydra Cell | FMC |
| Maximum PSI | 800 | 800 | 1000 |
| Engine Type | Honda | Hatz | Kubota |
| Engine H.P. | 9 | 7 | 23 |
| Electric Start | Yes | Yes | Yes |
| Drive System | V Belt | V Belt | Hydraulic |
| Tank Capacity | 225 gal. | 225 gal. | 500 gal. |
| Number of Tanks | 1 | 1 | 1 |
| Hydraulic Capacity | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | 26 gal. |
| Fuel Capacity | 1.6 gal. | 1.6 gal. | 6 gal. |
| GPM Display | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | Optional |
| Remote Hydraulic | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | Yes |

Table 4


## GRUNDOWINCH Usage and Selection

GRUNDOWINCH selection is determined by tool size and product pipe size. In operation, the GRUNDOWINCH provides constant tension/ variable speeds. As the bursting process starts, the tonnage can be varied until optimum tool speed is achieved, and remain at that setting until the burst is complete. Complete GRUNDOWINCH specifications are available upon request.

Note: Do not use mechanical type winches with the GRUNDOCRACK system.

| MODEL | $\begin{gathered} \hline \text { RW } \\ 1500 \end{gathered}$ | $\begin{gathered} \text { RW } \\ 4002 \end{gathered}$ | $\begin{gathered} \hline \text { RW } \\ 5000 \end{gathered}$ | $\begin{gathered} \hline \text { RW } \\ 10 \end{gathered}$ | $\begin{gathered} \text { *RW } \\ 10 \text { ATW } \end{gathered}$ | $\begin{gathered} \hline \text { RW } \\ 22 \end{gathered}$ | $\begin{gathered} \text { *RW } \\ 22 \text { ATW } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine Type | gas | gas | diesel | diesel | diesel | diesel | diesel |
| Engine output in Horsepower | 5 | 18 | 14 | 35 | 35 | 52 | 52 |
| Line pull Tons Stage 1/2 | 1.5 $\dagger$ | 4.5t / 2.25t | 5.5t / 2.75t | 11t/5.5 $\dagger$ | 11t/5.5t | 22t / 11 t | 22t/ 11 $\dagger$ |
| Max. line speed (feet) | $16^{\prime}$ | $92{ }^{\prime}$ | 92' | 42' | 92' | 55' | 55' |
| Rope diameter (inches) | 5/16 | 7/16 | 1/2 | 5/8 | 5/8 | 7/8 | 7/8 |
| Useful rope length foot | 600' | $650 '$ | 2,100' | 2,300' | 2,300' | 2,300' | 2,400' |
| Single-axle trailer | - | yes | yes | - | - | - | - |
| Tandem-axle trailer | - | - | . | yes | - | yes | - |
| Overrun brake | - | yes | yes | yes | - | electric | - |
| Parking brake | - | yes | yes | yes | yes | yes | yes |
| Towing bar height-adjustable | - | - | yes | yes | - | yes | - |
| Eye coupling Pintel Ring | - | yes | yes | yes | - | yes | - |
| Length | 40" | 114" | 158" | 181" | 107" | 193" | 132" |
| Width | 34" | 63" | 65" | 72" | 67" | 97" | 63" |
| Height | 31" | 51" | 51" | 58" | 63" | 71" | 65" |
| Weight | 755\# | 2,425\# | 3,426\# | 6,500\# | 7,600\# | 13,400\# | 13,800\# |
| Line pull pre-select-system | yes |
| Electric-start | yes |
| Light system 12v DC | - | yes | yes | yes | yes | yes | yes |

*RW 10 ATW and the RW 22 ATW are All-Terrain track mounted Grundowinches.
Table 5

Optional Extras:
Increased rope length. Line Printer giving line speed and forces used. Larger capacity engine-higher line-speed and winching capacity. Painting of winch to customer's colors. Hours in use meter (electric start only). Lighting Board.
(23)


Additional products and training materials are also available, like our Tools \& Accessories Catalogs and User Manuals, Contact your TT salesman for details.

All rights reserved. No part of this catalog may be reproduced or transmitted in any form or by any means, electronic or mechanical, including storage on an information retrieval system, without written permission from TT TECHNOLOGIES, Inc.

## Your One Source FOR TRENCHLESS INFORMATION:

www.pipebursting.biz www.pipebursting.com www.pipebursting.info www.pipebursting.net www.pipebursting.org www.pipebursting.co.uk

www.tttechnologies.com

