

DESIGN AND TESTING OF MODULAR EXPANSION JOINT

NOISE MITIGATION STRATEGIES

The SR 520 Bridge Expansion Joint

- 2) Temperature expansion
- 3) Motion caused by wind
- 4) Motion caused by ground motion

Background: WA SR520 Bridge

Source of Noise

Proposed Solutions

Upper Expansion Support

Custom Moisture Seal

Lower Expansion Support

Modular Expansion Joint Beams

Rolling Simulations

Chevron Deformation

Static and High-Speed Physical Testing

Support Fabrication

Installation

Results

Results Over Time

Noise Compared to Background Over Time, 160 Feet

Phase 2 Issues

- The 3D printed and molded urethane chevrons not durable enough.
- Chevrons need to be flush with roadway to limit compression.
- The design specification of the SR 520 bridge states that the expansion joint should be able to close completely (no gaps between the I-beams).
- Foam durability

Summary

- The polymer noise abatement system is acoustically very effective. More than 85% of the noise from the expansion joint is removed.
- The system is relatively easy to install and remove
- We believe that the treatment should be able to hold up well with time if the material is changed to a mixture of natural and synthetic rubber. The goal is a service life of 5 years.
- Further durability testing is necessary.

SR 520 Expansion Joint Noise Mitigation Study – Phase 2

Opportunities for additional investigation

Evan Grimm, State Bridge & Structures Engineer

March, 13 2023

Phase 2 effort: Overview & questions

Overview	Remaining Questions
 Developed an approach and materials to reduce noise generation Tested and validated the approach in the laboratory Installed materials on the SR 520 bridge to confirm the noise reduction 	 How the system will perform over time How the system will impact the existing Mageba joint components The "cost" (materials, maintenance, staffing and traffic impacts) of this system

How will the system perform over time?

- How long will the materials last, and how often will they need to be replaced?
- What happens at extreme temperatures?
- Do noise mitigation properties drop off over time?

How will the system impact the existing joint and bridge?

- The joint is a system. Adding a foreign material to the system may have impacts:
 - Leakage
 - Need for frequent replacement
 - Roadway drainage issues
- We can't guarantee the noise mitigation material won't adversely impact performance or durability.
 - If joint gaps are inhibited from closing during high temps, it may create overstress elsewhere.
- The joint manufacturer (Mageba) hasn't been consulted. Adding noise mitigation may create warranty/support issues.

What are the costs?

- What are the short and long-term costs to install and maintain this system?
- What will it cost to keep the system functional?
- What happens if the Mageba seals are impacted?

Next steps – Phase 3

• Noise

• Long term durability ?

• Compatibility ?

Phase 3 - Work Plan & Tasks

Budget ~ \$800k

- 1) Development of a highly durable sound attenuation system based on Phase 2.
- 2) Installation and monitoring of the system on the east expansion joint of SR 520 bridge.
- 3) Analysis of the bridge at extreme levels of joint opening and closing.
- 4) Development of tools for the installation, removal, and maintenance of the system.
- 5) Cost analysis for sustained use of the noise attenuation system

Questions

