PV SYSTEM INFO

THIS SYSTEM IS A GRID-TIED PV SYSTEM. PV MODULES WITH A COMBINED STC RATED DC OUTPUT POWER OF 44 kW. TOTAL ANNUAL ENERGY PRODUCTION OF THE PV SYSTEM, ACCORDING TO HELIOSCOPE SOFTWARE SIMULATION IS: 72,920 kWh.

THE PV SYSTEM AND THE ENERGY GENERATED BY THE PV SYSTEM SHALL BE INTERCONNECTED WITH THE UTILITY GRID THROUGH THE EXISTING ON-SITE ELECTRICAL EQUIPMENT VIA LINE SIDE **INTERCONNECTION**. THIS PROJECT DOES NOT INCLUDE STORAGE BATTERIES.

SCOPE OF WORK

Equipment summary:

IRONRIDGE RACKING

110 x Q CELLS Q.PEAK DUO ML-G10+ 400W MODULES 55 x SOLAREDGE P960 POWER OPTIMIZERS 1 x SOLAREDGE 43.2KUS, 208V, 3Ø, INVERTER 1 x AC DISCONNECT, 150A RATED, FUSED WITH 150A FUSES, 3Ø, 208VAC, NEMA 3R 187 x U-ANCHOR 2400 TPO ROOF ATTACHMENTS

GOVERNING CODES

(2017 NATIONAL ELECTRIC CODE (NEC) 2020 FLORIDA BUILDING CODE 7th EDITION (FBC) UNDERWRITERS LABORATORIES (UL) STANDARDS OSHA 29 CFR 1910.269

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) FLORIDA FIRE PREVENTION CODE, 7th EDITION (FFPC)

SITE SPECIFICATIONS

OCCUPANCY CATEGORY: III DESIGN WIND SPEED: 150 MPH EXPOSURE CATEGORY: C GROUND SNOW LOAD: 0 PSF STANDARD: ASCE 7-16

SHEET INDEX

COVER

SITE PLAN

ROOF PLAN & PV LAYOUT

PV MODULE LAYOUT

& STRING SCHEDULE MOUNTING & RACKING METHOD

SINGLE LINE DIAGRAM THREE LINE DIAGRAM

WIRING CALCULATIONS SYSTEM LABELING

DATA SHEETS DATA SHEETS

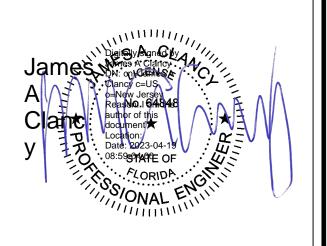
Engineer:

Madeira Beach, FL 33708

Contractor:

Wilson & Girgenti Engineering

MADEIRA BEACH

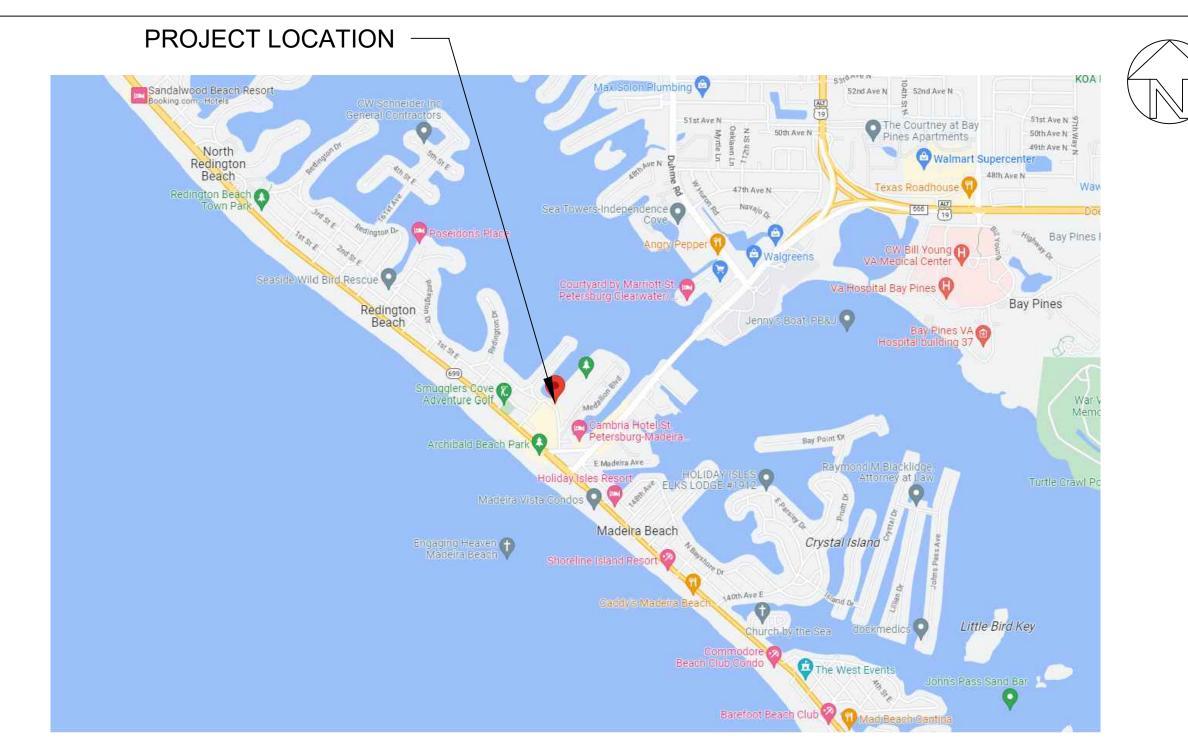

REC CENTER

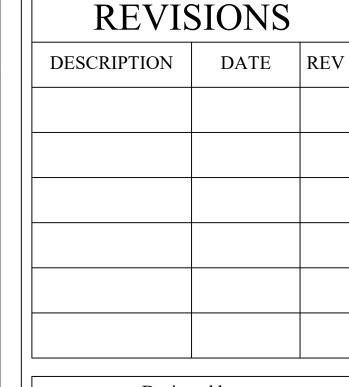
300 Municipal Drive,

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 **ENGINEERS LICENSE #64848**

Engineering Approval:

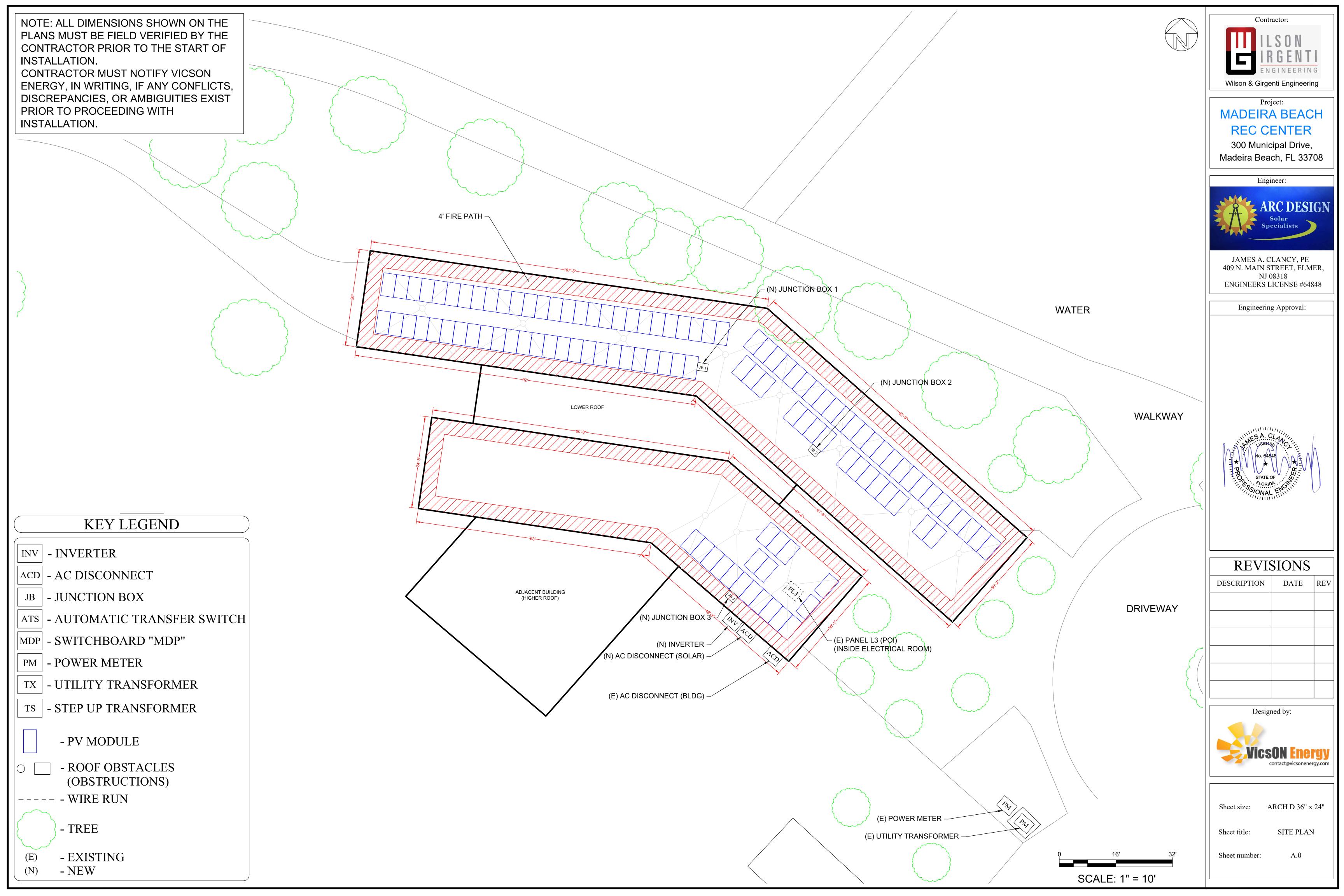
AERIAL SITE VIEW




POWER METER

CONSTRUCTION NOTES

- 1.) CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS PRIOR TO INITIATING CONSTRUCTION. 2.) CONTRACTOR SHALL REVIEW ALL MANUFACTURER INSTALLATION DOCUMENTS PRIOR TO INITIATING CONSTRUCTION.
- 3.) ALL EQUIPMENT SHALL BE LISTED BY U.L. (OR EQUAL) AND LISTED FOR ITS SPECIFIC APPLICATION.
- 4.) ALL EQUIPMENT SHALL BE RATED FOR THE ENVIRONMENT IN WHICH IT IS INSTALLED. 5.) ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S INSTALLATION INSTRUCTIONS.
- 6.) ACCESS TO ELECTRICAL COMPONENTS OVER 150 VOLTS TO GROUND SHALL BE RESTRICTED TO QUALIFIED PERSONNEL.
- 7.) WHERE SIZES OF JUNCTION BOXES, RACEWAYS, AND CONDUITS ARE NOT SPECIFIED, CONTRACTOR SHALL SIZE THEM ACCORDING TO APPLICABLE CODES.
- 8.) PV MODULE FRAMES SHALL BE BONDED TO RACKING RAIL OR BARE COPPER G.E.C. PER THE MODULE MANUFACTURER'S LISTED INSTRUCTION SHEET.
- 9.) PV MODULE RACKING RAIL SHALL BE BONDED TO BARE COPPER G.E.C. VIA WEEB LUG, ILSCO GBL-4DBT LAY-IN LUG, OR EQUIVALENT LISTED LUG.
- 10.) GROUNDING ELECTRODE CONDUCTOR (G.E.C.) SHALL BE CONTINUOUS AND/OR IRREVERSIBLY SPLICED/WELDED.
- 11.) ALL JUNCTION BOXES, COMBINER BOXES, AND DISCONNECTS SHALL BE INSTALLED IN AN ACCESSIBLE LOCATION.
- 12.) WORKING SPACE AROUND ELECTRICAL EQUIPMENT SHALL COMPLY WITH NEC 110.26


VICINITY MAP

Designed by:
Vicson Energy contact@vicsonenergy.com

ARCH D 36" x 24"

ROOF AREAS EXISTING ROOF TYPE: TPO MEAN ROOF HEIGHT: 27ft ROOF SLOPE: 1° ARRAY A AZIMUTH: 188° TOTAL MODULES: 52 MODULE WEIGHT: 48.5 LBS

MODULE DIMENSIONS: $74" \times 41.1" = 21.12 \text{ SF}$ DEAD LOAD: 2.29 PSF

TOTAL ROOF AREA: 2589 SQ. FT TOTAL PV MODULE AREA: 1098.24 SQ. FT

EXISTING ROOF TYPE: TPO MEAN ROOF HEIGHT: 27ft ROOF SLOPE: 1° ARRAY B AZIMUTH: 221° TOTAL MODULES: 40 MODULE WEIGHT: 48.5 LBS MODULE DIMENSIONS: $74" \times 41.1" = 21.12 \text{ SF}$

DEAD LOAD: 2.29 PSF TOTAL ROOF AREA: 2780 SQ. FT TOTAL PV MODULE AREA: 844.8 SQ. FT

INSTALLATION NOTES

GENERAL INSTALLATION PLAN NOTES:

1) DRAWINGS SHOWN MAY NOT REFLECT FIELD CONDITIONS. CONTRACTOR TO FIELD VERIFY CONDITIONS PRIOR TO INSTALLATION. 2) CONTRACTOR MAY LOCATE PV MODULES TO DIFFERENT LOCATION THAN SHOWN.

3) IRONRIDGE XR1000 RAILS SHALL BE INSTALLED AS SHOWN IN SHEET S.1 AND AS FOLLOWS FOR EACH WIND ZONE.

4) ROOF ATTACHMENT SHALL BE INSTALLED ON STEEL ROOF DECK AS SHOWN IN SHEETS S.1. AND A.1. 5) EXISTING BUILDING WITH TPO ROOFING SYSTEM WITH RIGID

INSULATION BOARD, MECHANICALLY FASTENED TO 20GA STEEL ROOF DECK AS SHOWN IN S.1 AND A.1 SHEETS. 6) EXISTING BUILDING WITH STEEL ROOF DECK ATTACHED TO THE

OPEN WEB STEEL JOISTS SPACED MAX @ 9' 3" O.C.

KEY LEGEND

MEAN ROOF HEIGHT LESS THAN 30 FT. CONTRACTOR TO FIELD VERIFY AND SHALL REPORT TO THE ENGINEER IF ANY DISCREPANCIES EXIST BETWEEN PLANS AND IN

INV - INVERTER

FIELD CONDITIONS.

ACD - AC DISCONNECT

JB - JUNCTION BOX

ATS - AUTOMATIC TRANSFER SWITCH

|MDP| - SWITCHBOARD "MDP"

PM - POWER METER

- UTILITY TRANSFORMER

- PV MODULE

- POWER OPTIMIZER

- ROOF OBSTACLES (OBSTRUCTIONS)

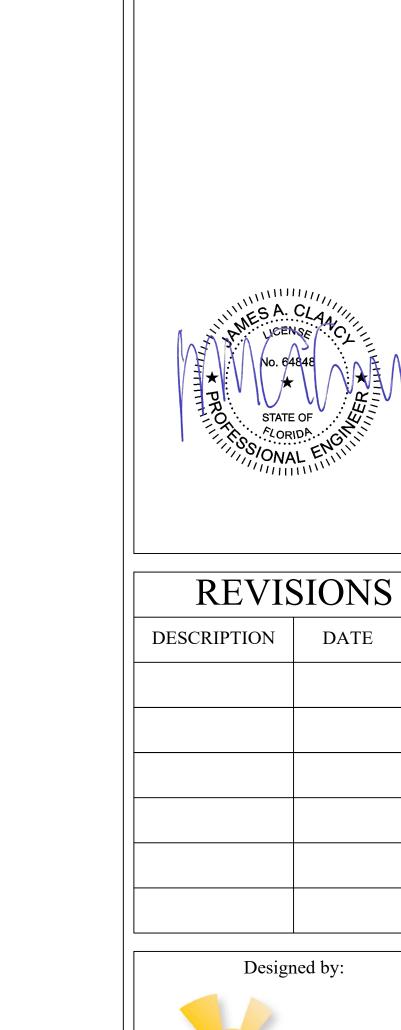
- ROOF ATTACHMENT

- RAIL

---- - WIRE RUN

- EXISTING

- NEW


EXISTING ROOF TYPE: TPO MEAN ROOF HEIGHT: 27ft ROOF SLOPE: 1° ARRAY C AZIMUTH: 221° TOTAL MODULES: 18 MODULE WEIGHT: 48.5 LBS MODULE DIMENSIONS: $74" \times 41.1" = 21.12 \text{ SF}$ DEAD LOAD: 2.29 PSF TOTAL ROOF AREA: 1443 SQ. FT TOTAL PV MODULE AREA: 380.16 SQ. FT

ROOF ZONE 2 ROOF ZONE 3

ROOF ZONE 1

Designed by: **VicsON Energy**

DATE REV

Contractor:

Wilson & Girgenti Engineering

Project:

MADEIRA BEACH

REC CENTER

300 Municipal Drive,

Madeira Beach, FL 33708

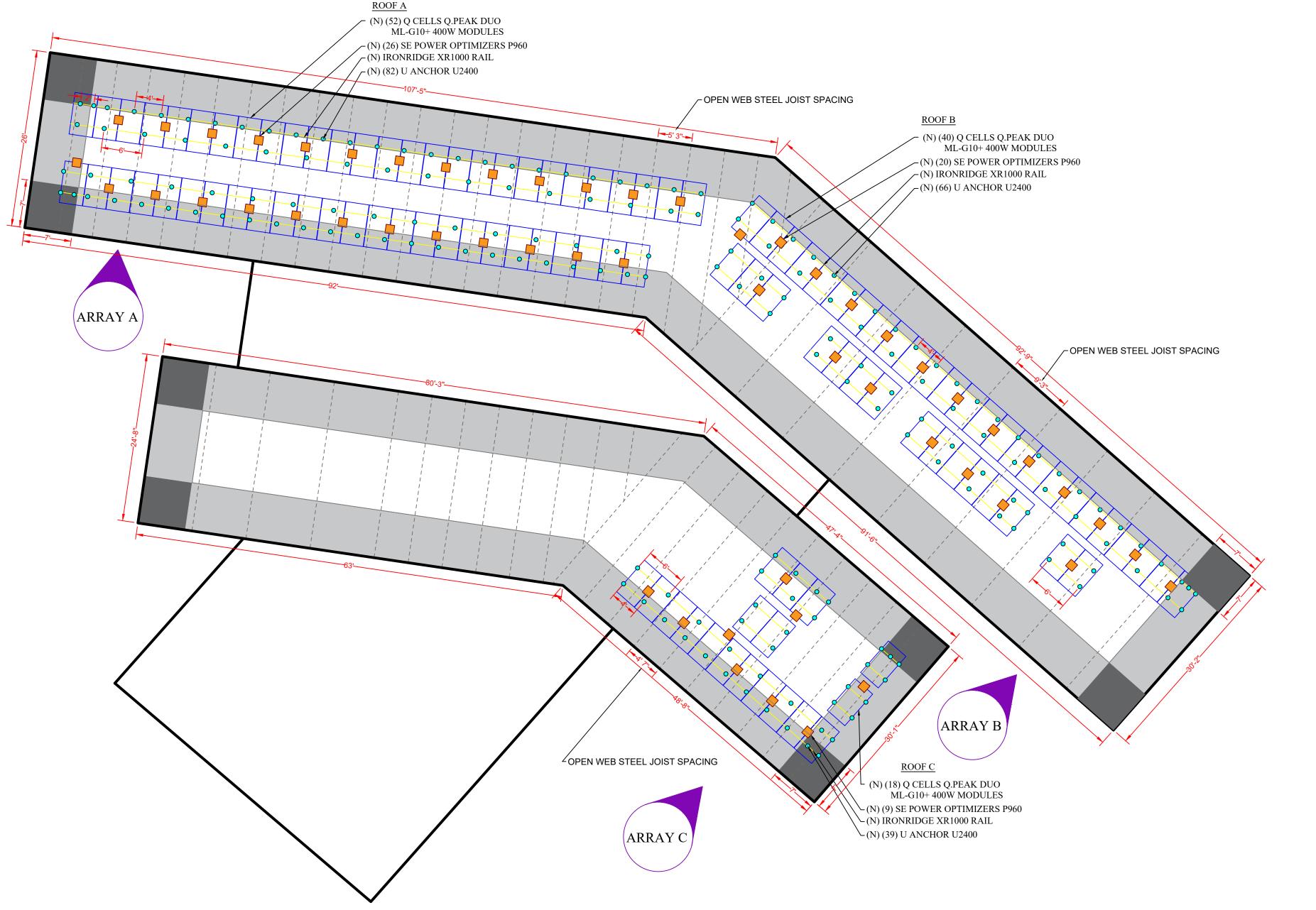
Engineer:

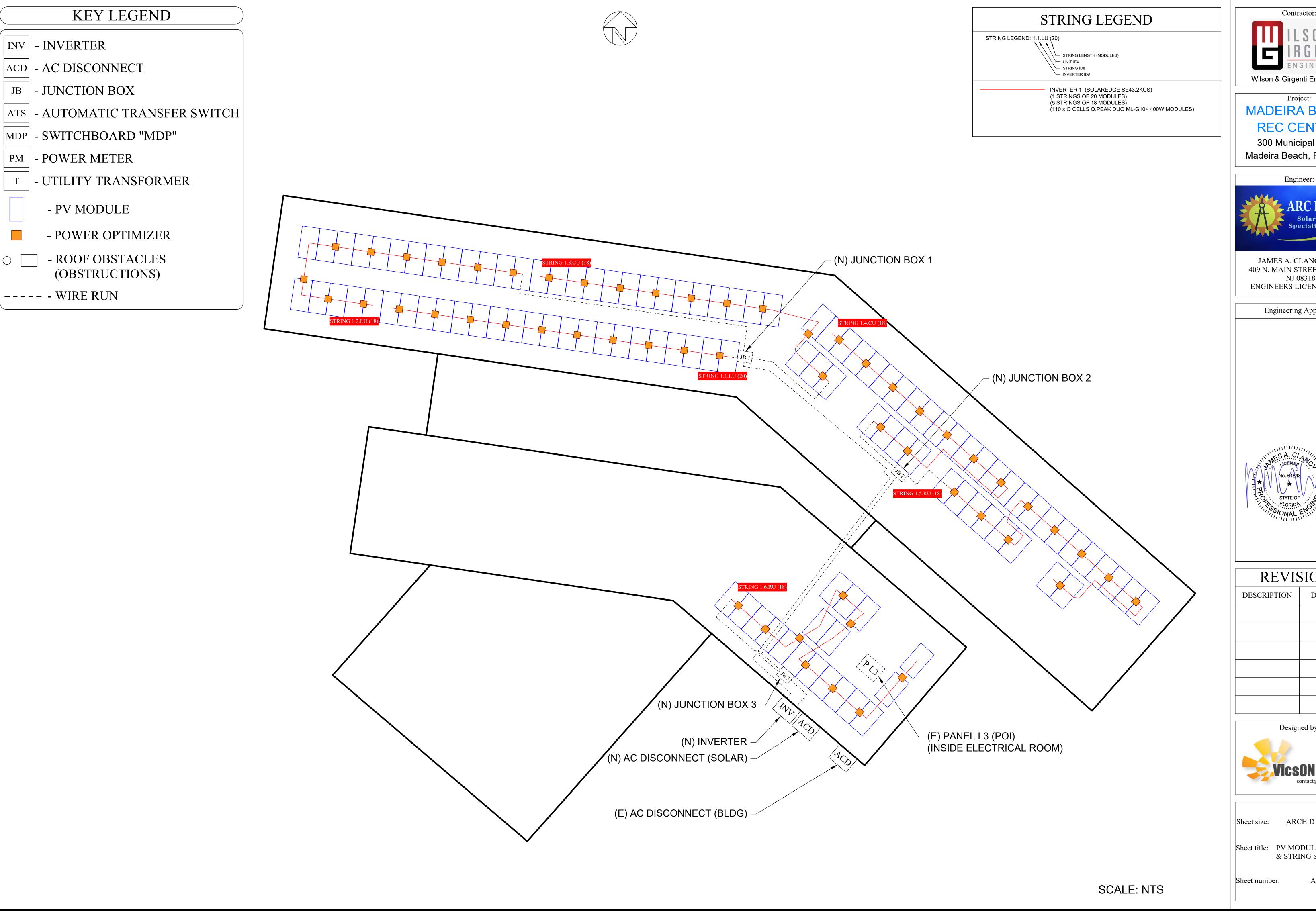
JAMES A. CLANCY, PE

409 N. MAIN STREET, ELMER,

NJ 08318

ENGINEERS LICENSE #64848


Engineering Approval:

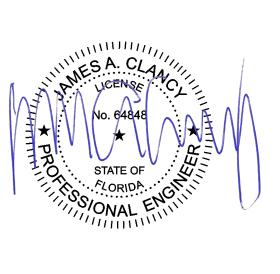

Sheet size: ARCH D 36" x 24"

Sheet title:ROOF PLAN & PV LAYOUT

Sheet number:

SCALE: 1" = 10'

Wilson & Girgenti Engineering


MADEIRA BEACH REC CENTER

300 Municipal Drive, Madeira Beach, FL 33708

Engineer: ARC DESIGN

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

REVISIONS DATE REV

Designed by: Vicson Energy contact@vicsonenergy.com

Sheet size: ARCH D 36" x 24"

Sheet title: PV MODULE LAYOUT & STRING SCHEDULE

U-ANCHOR INSTALLATION **U2400-PVC, TPO, KEE, TPA Roof Membranes**

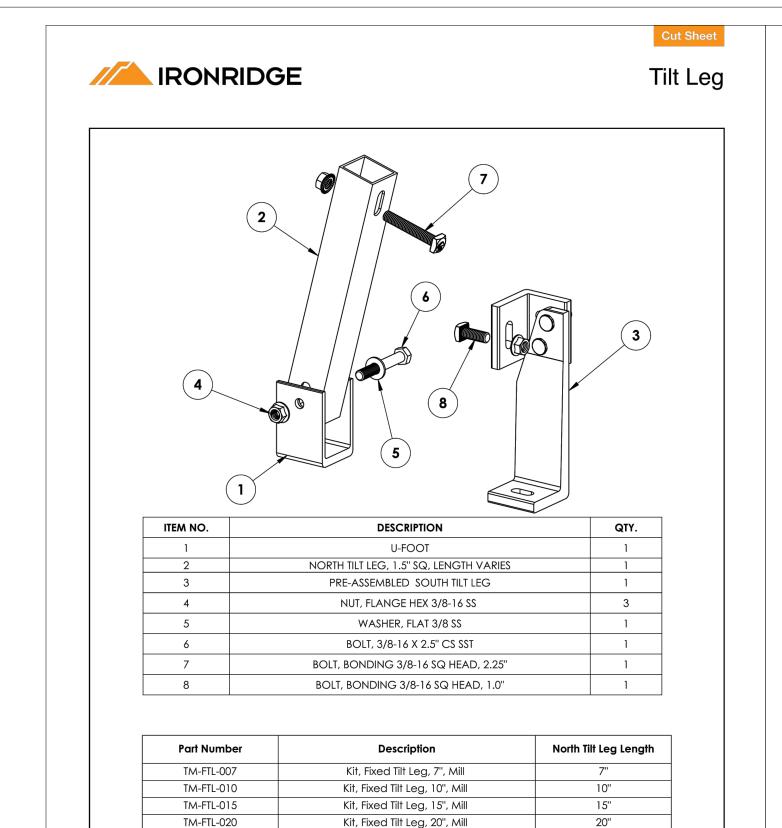
The following instructions are meant to be utilized by an experienced and professional roofing contractor using the proper equipment, techniques, and safety protocols – not just the average handyman. Each installation should always follow the specified roofing manufacturer's written specification.

Align the U-Anchor plate according to the engineered design. Most designs are transferred to the roof surface with chalk lines. *Avoid using Permanent chalk - such as red chalk

Install the U-Anchor Plate using the correct type and quantity of fasteners specified by your

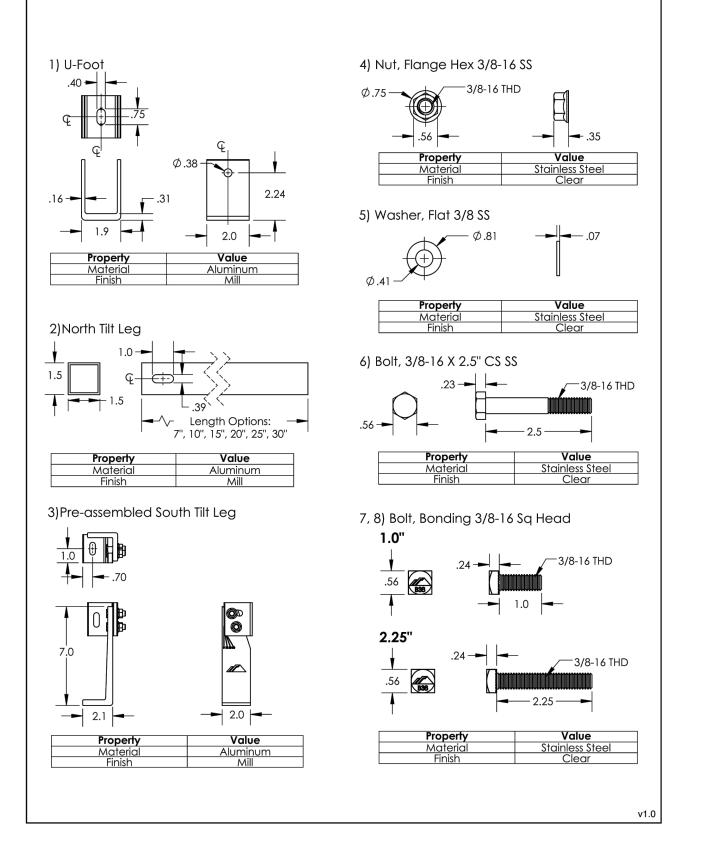
www.anchorp.com

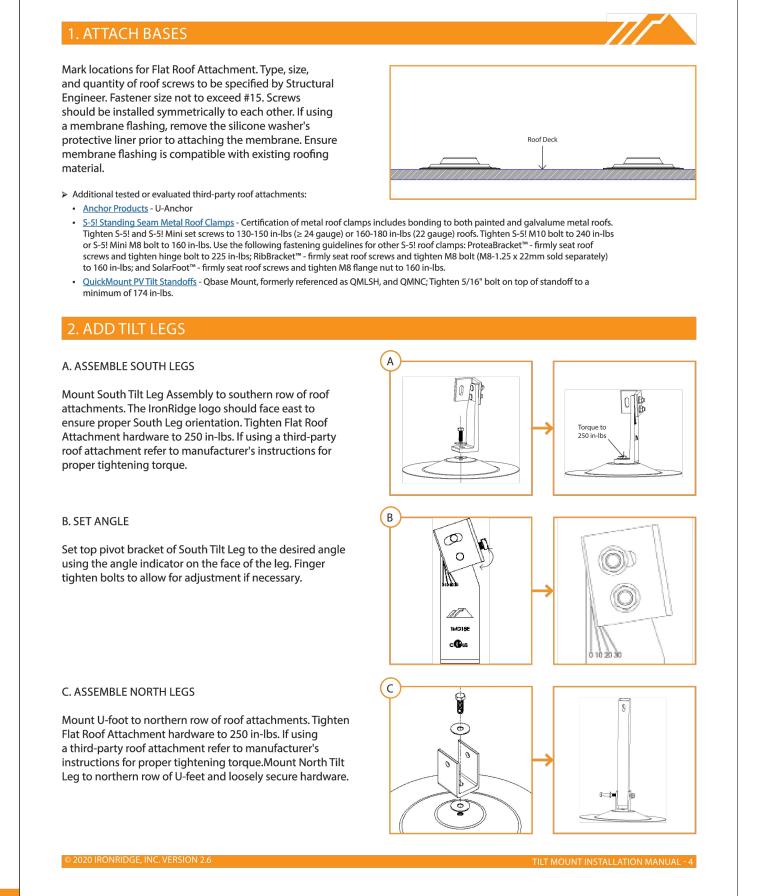
STEP 3


Clean the roof surface with the manufacturer's recommended cleaner.

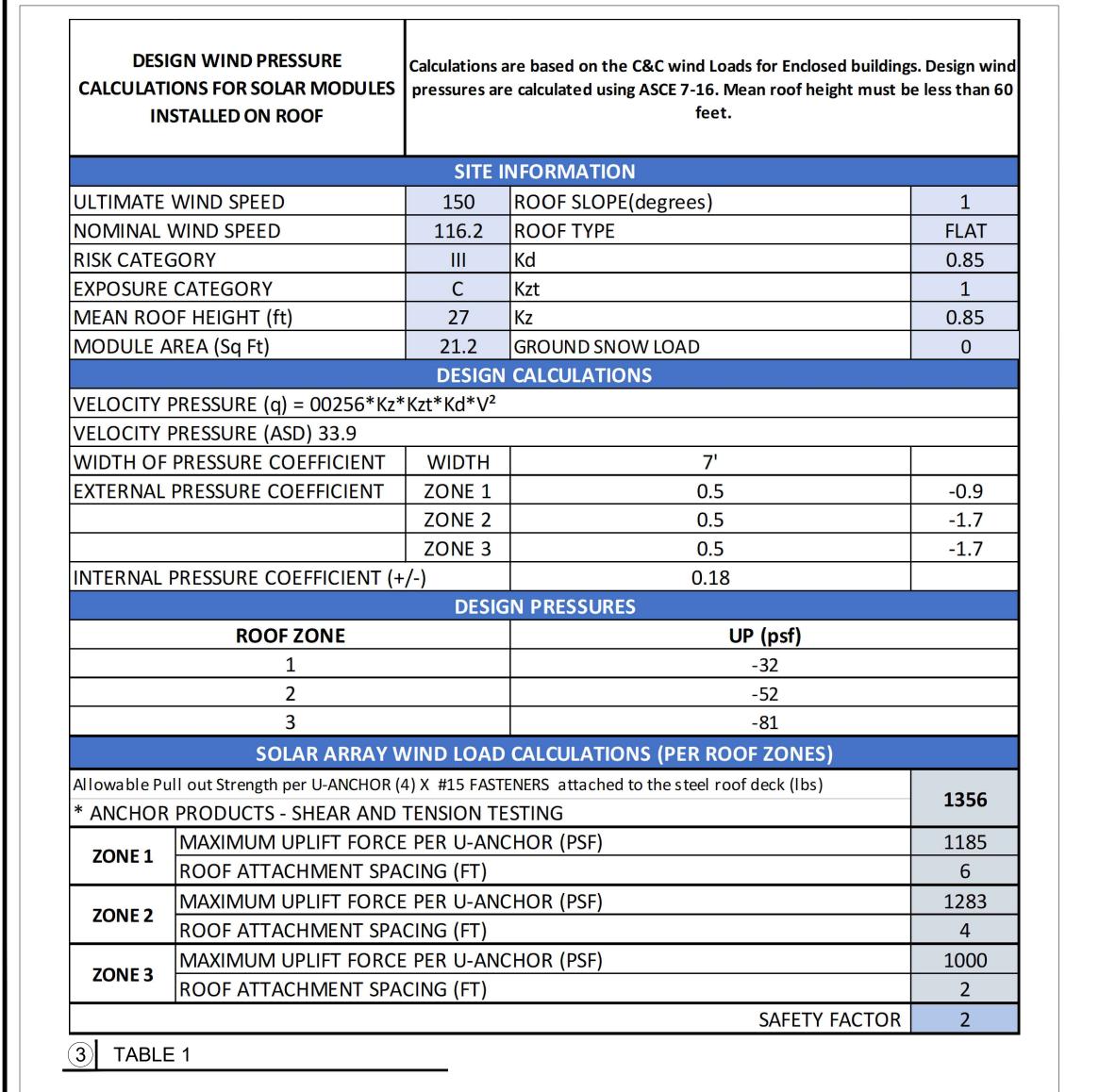
Using the manufacturer's written specifications, hot air weld the perimeter edge of the cover membrane using a 2-inch roller to achieve a minimum 2-inch weld around the perimeter.

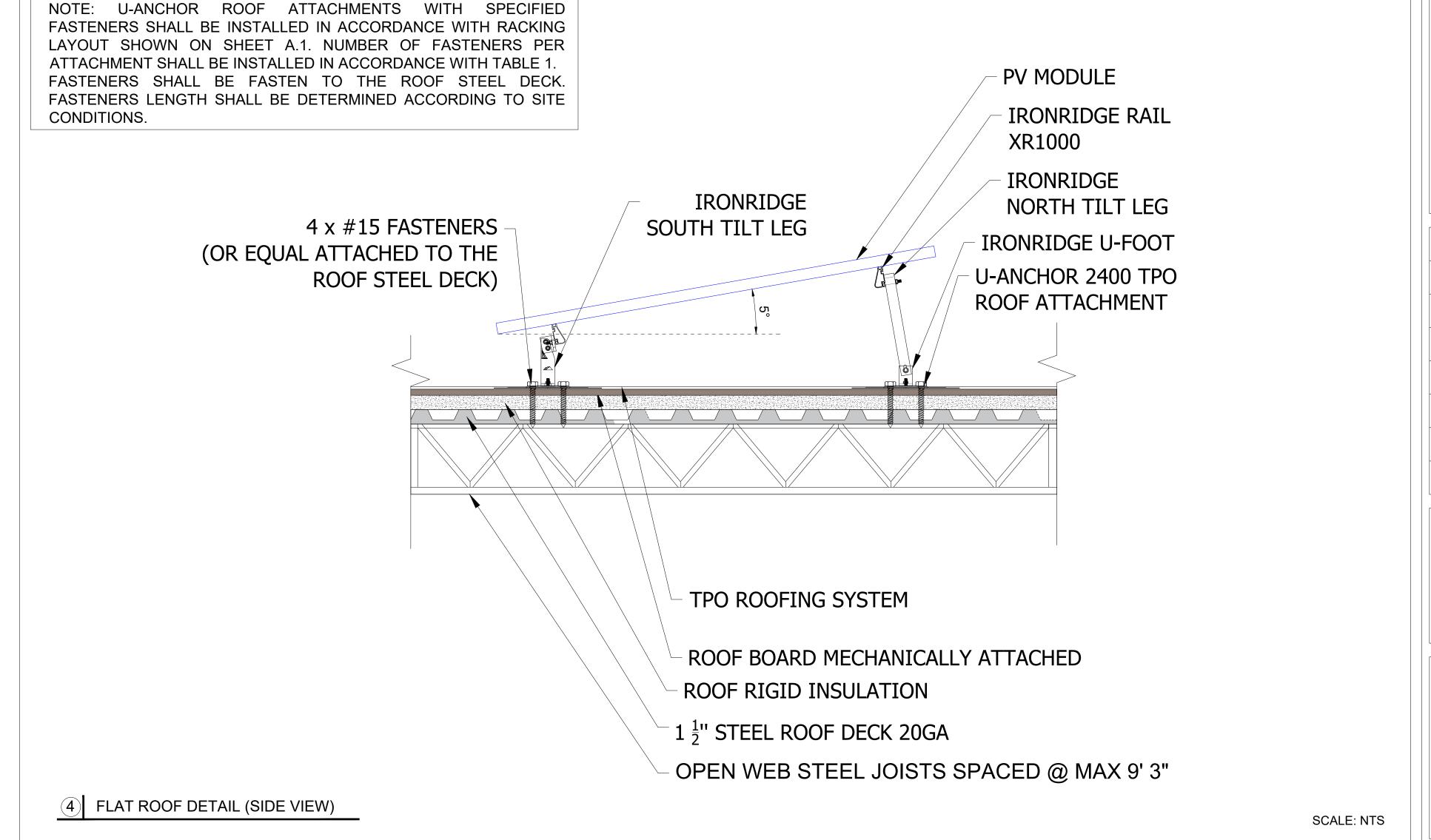
Probe the seam to make sure the membrane is welded properly. If required, apply seam sealant in accordance with the roofing manufacturer's specifications.


ANCHOR PRODUCTS


(1) JU-ANCHOR 2400 INSTALLATION INSTRUCTIONS

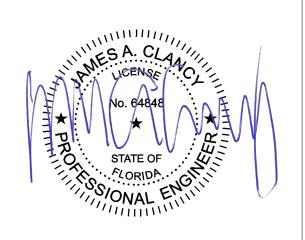
Kit, Fixed Tilt Leg, 25", Mill


Kit, Fixed Tilt Leg, 30", Mill



TM-FTL-025 TM-FTL-030

MADEIRA BEACH REC CENTER


300 Municipal Drive, Madeira Beach, FL 33708

Engineer:

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

REVISIONS DATE REV DESCRIPTION

Designed by:

VicsON Energy

Sheet size: ARCH D 36" x 24"

Sheet title: MOUNTING & RACKING

Sheet number:

S.1

(E) - EXISTING

STRING #1.1 20 x MODULES & 10 x P960 POWER OPTIMIZERS

STRING #1.2

18 x MODULES & 9 x P960

POWER OPTIMIZERS

STRING #1.3

18 x MODULES & 9 x P960

POWER OPTIMIZERS

STRING #1.4

18 x MODULES & 9 x P960

POWER OPTIMIZERS

STRING #1.5

18 x MODULES & 9 x P960

POWER OPTIMIZERS

STRING #1.6 18 x MODULES & 9 x P960 POWER OPTIMIZERS

(N) - NEW

INSTALLATION NOTES:

- 1. Electrical contractor to verify interconnection requirements with Electrical Utility for connection location and standards.
- 2. Electrical Contractor to provide expansion joints and anchoring of all conduit runs as per NEC requirements. 3. Provide label/placard at existing utility connection with "WARNING - CUSTOMER OWNED ELECTRICAL GENERATION
- EQUIPMENT CONNECTED" with appropriate hazard and output ratings of PV System.
- 4. All exterior mounted combiners, junction boxes, troughs, disconnects, etc. shall be minimum NEMA 3R Rated.

DC2

DC3

(N) JUNCTION BOX 3

(N) INVERTER

DC

SOLAREDGE SE43.2KUS 43.2kW

AC

(N) PV AC DISCONNECT

(SOLAR)

208VAC ,3Ø, 4W, 150A RATED,

FUSED 150A FUSES

NEMA 3R

POINT OF INTERCONNECTION —

240.21(B)(1) AND 705.12(A)

(IN COMPLIANCE WITH ARTICLES

(N) LINE SIDE TAP

AC1

- 5. Interconnection to Utility and System Gounding per NEC-2017 Article 690.
- 6. Provide signage as required by NEC-2017 Article 690. 7. All outdoor equipment shall be a minimum of NEMA-3R Rated.
- 8. All DC conductors within the Building Envelope must be in metallic conduit.

(N) JUNCTION BOX 1

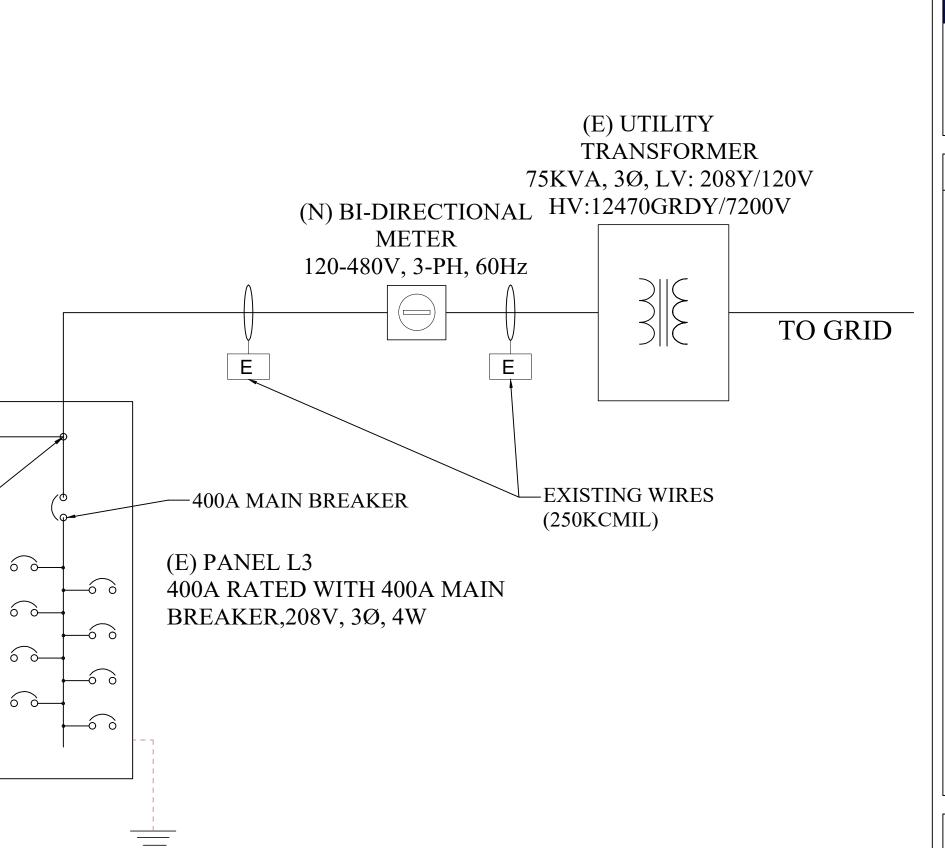
(N) JUNCTION BOX 2

DC1

DC1

DC1

DC1


DC1

DC1

- 9. All DC conductors shall be copper, rated for 1000V and 90° wet environment, unless otherwise noted.
- 10. All AC conductors shall be copper, rated for 600V and 75° unless otherwise noted.
- 11. Confirm line side voltage at electric utility service entrance BEFORE connecting inverter and ensure proper operational range requied by system inverter.

PV SYSTEM SIZE (DC)		44,000	W
NUMBER OF ARR	•		3	••
PV SOURCE CIRCL			6	
PV MODULE POW	, , , , , , , , , , , , , , , , , , ,		400	W
	STRING #1.1-LU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	20
	STRING #1.2-LU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
INI\/EDTED	STRING #1.3-CU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
INVERTER	STRING #1.4-CU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
	STRING #1.5-RU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
	STRING #1.6-RU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
		TOTA	L MODULES:	110

* SOLAREDGE P960 POWER OPTIMIZERS (2 MODULES PER POWER OPTIMIZER)

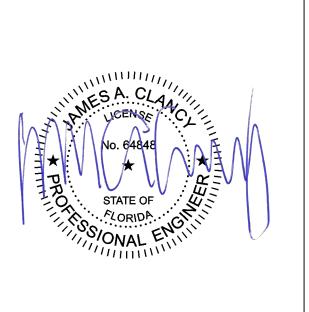
SOLAREDGE PV SYSTEM MONITORING provided via WIRE ETHERNET (LAN) CONNECTION. EACH INVERTER TO BE CONNECTED TO ETHERNET ROUTER VIA CAT5 OR CAT6 CABLE WITH RJ45 CONNECTORS.MAX DISTANCE 300ft (per device connection). ETHERNET CABLES ARE USED TO CONNECT DEVICES TO THE SOLAREDGE MONITORING SERVER THROUGH AN ETHERNET ROUTER.

IF SOLAREDGE GATEWAY OR WIRELESS INVERTER COMMUNICATION IS USED, COORDINATE PLACE AND LOCATION WITH THE INSTALLER.

	WIRE AND CONDUIT SCHEDULE													
		CONDUIT TYPE Number of			PHASE CO	NDUCTOR	NEU	TRAL CONE	OUCTOR		GROUND CC	NDUCTOR		
TAG	CIRCUIT	(SIZ	E)	parallel QTY, SIZE AND TYPE QTY, SIZE AND TYPE		parallel QTY, SIZE AND TYPE QTY, SIZE AND TYPE QTY		QTY, SIZE AND TYPE		QTY, SIZE AND TYPE QTY, SIZE AND TYPE			QTY, SIZE A	AND TYPE
		EMT	PVC	sets		PER CO	ONDUIT		PER COND	UIT		PER CO	NDUIT	
DC1	PV STRING TO JUNCTION BOX #1, #2, #3	N/A	N/A	(1)	2	AWG #10	PV-WIRE	N/A	N/A	N/A	1	AWG #6	BARE COPPER	
DC2	JBOX #1 TO INVERTER(per string)	1''	1-1/4''	(1)	6	AWG #8	PV-WIRE/XHHW-2	N/A	N/A	N/A	1	AWG #10	PV-WIRE/XHHW-2	
DC3	JBOX #2 TO JBOX #3(per string)	3/4"	3/4"	(1)	4	4 AWG #10 PV-WIRE/XHHW-2		N/A	N/A	N/A	1	AWG #10	PV-WIRE/XHHW-2	
DC4	JBOX #3 TO INVERTER(per string)	3/4"	3/4"	(1)	6 AWG #10 PV-WIRE/XHHW-2 N/A N/A N/A 1		1	AWG #10	PV-WIRE/XHHW-2					
AC1	INVERTER to AC DISCONNECT(SOLAR)	2"	2"	(1)	3	AWG #3/0	XHHW-2	1	AWG #4	XHHW-2	1	AWG #4	XHHW-2	
4C2	AC DISCONNECT(SOLAR) TO PANEL L3 (POI)	2''	2"	(1)	3	AWG #3/0	XHHW-2	1	AWG #4	XHHW-2	1	AWG #4	XHHW-2	

Wilson & Girgenti Engineering

Project:


MADEIRA BEACH REC CENTER 300 Municipal Drive, Madeira Beach, FL 33708

Engineer:

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

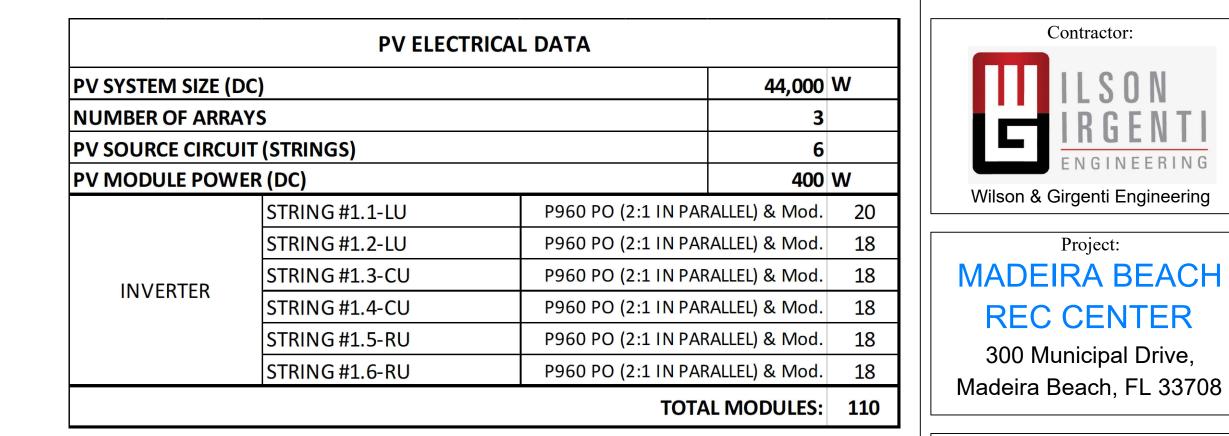
REVISIONS DATE REV DESCRIPTION

Designed by:

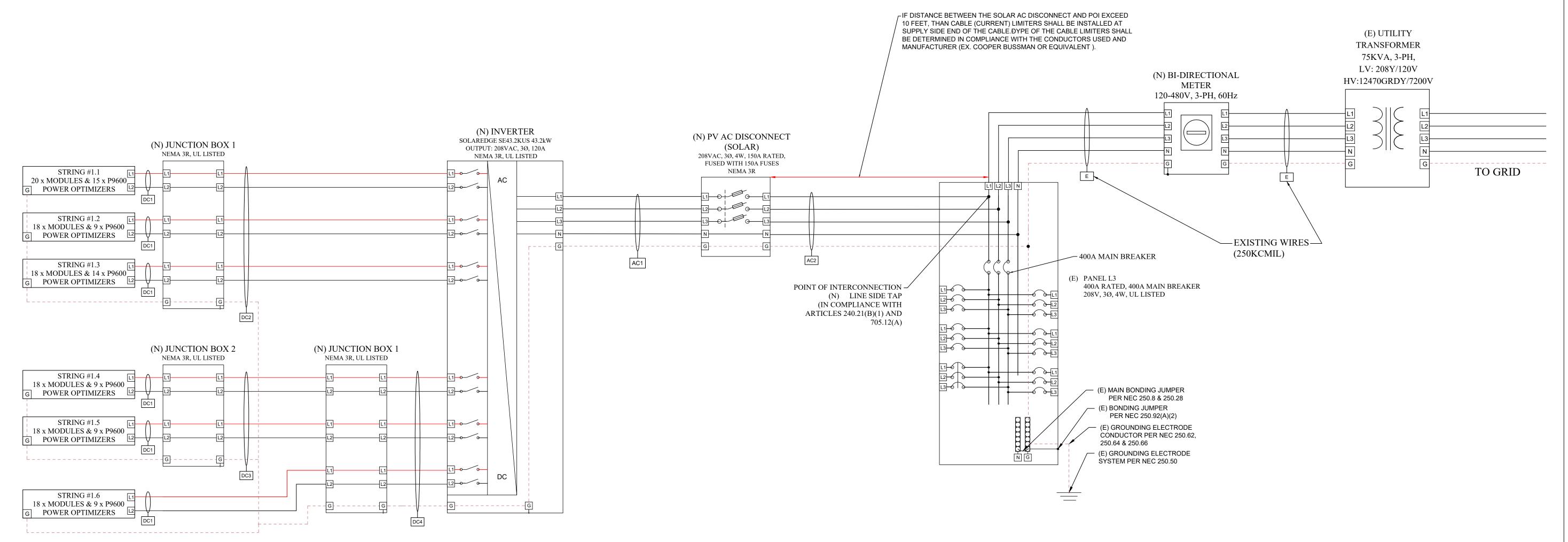
Sheet size: ARCH D 36" x 24"

Sheet title: SINGLE LINE DIAGRAM

E.1 Sheet number:


(E) - EXISTING

(N) - NEW


INSTALLATION NOTES:

- 1. Electrical contractor to verify interconnection requirements with Electrical Utility for connection location and standards.
- 2. Electrical Contractor to provide expansion joints and anchoring of all conduit runs as per NEC requirements. 3. Provide label/placard at existing utility connection with "WARNING - CUSTOMER OWNED ELECTRICAL GENERATION
- EQUIPMENT CONNECTED" with appropriate hazard and output ratings of PV System.
- 4. All exterior mounted combiners, junction boxes, troughs, disconnects, etc. shall be minimum NEMA 3R Rated. 5. Interconnection to Utility and System Gounding per NEC-2017 Article 690.
- 6. Provide signage as required by NEC-2017 Article 690.
- 7. All outdoor equipment shall be a minimum of NEMA-3R Rated.
- 8. All DC conductors within the Building Envelope must be in metallic conduit.
- 9. All DC conductors shall be copper, rated for 1000V and 90° wet environment, unless otherwise noted.
- 10. All AC conductors shall be copper, rated for 600V and 75° unless otherwise noted.
- 11. Confirm line side voltage at electric utility service entrance BEFORE connecting inverter and ensure proper operational range requied by system inverter.

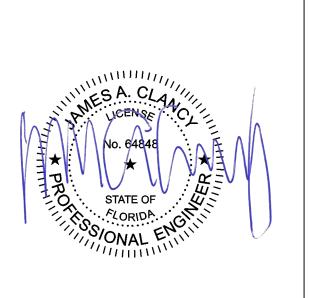
ALL DC CONNNECTORS TO MODULES OR INVERTERS MUST BE OF MATCHING MANUFACTURE BRAND AND STYLE. DO NOT USE 'COMPATIBLE' CONNECTORS WHICH HAVE NOT BEEN UL TESTED FOR COMPATIBILITY. PERFORMANCE AND FIRE DAMAGE MAY RESULT FROM MIS-MATCHED CONNECTOR USEAGE.

* SOLAREDGE P960 POWER OPTIMIZERS (2 MODULES PER POWER OPTIMIZER)

SOLAREDGE PV SYSTEM MONITORING provided via WIRE ETHERNET (LAN) CONNECTION. EACH INVERTER TO BE CONNECTED TO ETHERNET ROUTER VIA CAT5 OR CAT6 CABLE WITH RJ45 CONNECTORS.MAX DISTANCE 300ft (per device connection). ETHERNET CABLES ARE USED TO CONNECT DEVICES TO THE SOLAREDGE MONITORING SERVER THROUGH AN ETHERNET ROUTER.

IF SOLAREDGE GATEWAY OR WIRELESS INVERTER COMMUNICATION IS USED, COORDINATE PLACE AND LOCATION WITH THE INSTALLER.

	WIRE AND CONDUIT SCHEDULE													
CONDUIT TYPE Number of PHASE CONDUCTOR NEUTRAL CONDUCTOR GROUND CONDUCTOR											NDUCTOR			
TAG	CIRCUIT	(SIZI	Ξ)	parallel QTY, SIZE AND TYPE QTY, SIZE AND TYPE QTY, S			QTY, SIZE AND TYPE			PE QTY, SIZE AND TYPE			AND TYPE	
		EMT	PVC	sets		PER CONDUIT			PER CONDUIT			PER CONDUIT		
DC1	PV STRING TO JUNCTION BOX #1, #2, #3	N/A	N/A	(1)	2	AWG #10	PV-WIRE	N/A	N/A	N/A	1	AWG #6	BARE COPPER	
DC2	JBOX #1 TO INVERTER(per string)	1''	1-1/4''	(1)	6	AWG #8	PV-WIRE/XHHW-2	N/A	N/A	N/A	1	AWG #10	PV-WIRE/XHHW-2	
DC3	JBOX #2 TO JBOX #3(per string)	3/4"	3/4"	(1)	4	AWG #10	PV-WIRE/XHHW-2	N/A	N/A	N/A	1	AWG #10	PV-WIRE/XHHW-2	
DC4	JBOX #3 TO INVERTER(per string)	3/4"	3/4"	(1)	6	AWG #10	PV-WIRE/XHHW-2	N/A	N/A	N/A	1	AWG #10	PV-WIRE/XHHW-2	
AC1	INVERTER to AC DISCONNECT(SOLAR)	2"	2''	(1)	3	3 AWG #3/0 XHHW-2		1	AWG #4	XHHW-2	1	AWG #4	XHHW-2	
AC2	AC DISCONNECT(SOLAR) TO PANEL L3 (POI)	2''	2"	(1)	3	AWG #3/0	XHHW-2	1	AWG #4	XHHW-2	1	AWG #4	XHHW-2	


Project: MADEIRA BEACH REC CENTER 300 Municipal Drive,

Engineer:

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

REVISIONS										
DESCRIPTION	DATE	REV								

Designed by:

Sheet size: ARCH D 36" x 24"

Sheet title: THREE LINE DIAGRAM

E.2 Sheet number:

SOLAR MODULES SPECIFICATIONS									
MANUFACTURER	QCELLS								
MODEL Q. PEAK DUO ML-G									
SPECIFICATIONS AT STC	400 W								
MAXIMUM POWER VOLTAGE (Vmp)	37.59 V								
MAXIMUM POWER CURRENT (Imp)	10.64 A								
OPEN CIRCUIT VOLTAGE (Voc)	45.06 V								
SHORT CIRCUIT CURRENT (Isc)	11.16 A								
MAXIMUM SERIES FUSE RATING (A)	20 A								
MAX.PERMISSIBLE SYSTEM VOLTAGE (Vmax)	1000 VDC								
Voc TEMPERATURE COEFFICIENT(%/°C)	-0.27								
MODULE DIMMENSION (60 cells)	74" x 41.1" x 1.26"								

INVERTER SPECIFICATION						
MANUFACTURER	SOLAREDGE					
MODEL	SE43.2KUS					
MAX PV POWER(DC):	58200	W				
RATED AC POWER OUTPUT (AC)	43200	W				
NOMINAL INPUT VOLTAGE (DC+ to DC-)	400	V				
MAX INPUT VOLTAGE (DC+ to DC-)	600	V				
MAX OPERATING INPUT CURRENT (DC)	114	Α				
MAX OUTPUT CURRENT(AC) (PER PHASE)	120	Α				
NOMINAL VOLTAGE (AC)	208	V				
THREE PHASE INVERTER	YES					
NUMBER OF STRINGS	9					

POWER OPTIMIZER DATA	
SOLAREDGE P960	
RATED INPUT DC POWER	960 W
MINIMUM INPUT VOLTAGE	12.5 V DC
ABSOLUTE MAXIMUM INPUT VOLTAGE (Voc)	60 V DC
MAXIMUM SHORT CIRCUIT CURRENT (Isc)	23 A DC
MAXIMUM OUTPUT CURRENT	18 A DC
MAXIMUM OUTPUT VOLTAGE	80 V DC
MAXIMUM POWER PER STRING (for 208V Grid)	7700 W
MINIMUM STRING LENGTH (PO) (for 208V Grid)	10
MAXIMUM STRING LENGTH (PO) (for 208V Grid)	20

AMBIENT TEMPERATURE DATA									
ASHRAE WEATHER DATA									
RECORD LOW TEMPERATURE	1	°C							
AMBIENT TEMPERATURE (HIGH TEMPERATURE 2% AVERAGE)	34	°C							
CONDUIT HEIGHT	0.5	in							
ROOF TOP TEMPERATURE	56	°C							
AMBIENT TEMPERATURE ADJUSTMENT FOR EXPOSED CONDUIT	22	°C							
DC CONDUCTORS TEMPERATURE RATE	90	°C							
AC CONDUCTORS TEMPERATURE RATE	75	°C							
MODULE TEMPERATURE COEFFICIENT	-0.27	%/°C							

	PV ELECTF	RICAL DATA		
PV SYSTEM SIZE (DC)		44,000	W
NUMBER OF ARRA	AYS		3	
PV SOURCE CIRCU	JIT (STRINGS)		6	
PV MODULE POW	ER (DC)		400	W
	STRING #1.1-LU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	20
	STRING #1.2-LU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
INVERTER	STRING #1.3-CU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
INVERIER	STRING #1.4-CU	P960 PO (2:1 IN PAF	RALLEL) & Mod.	18
	STRING #1.5-RU	P960 PO (2:1 IN PAR	RALLEL) & Mod.	18
	STRING #1.6-RU	P960 PO (2:1 IN PAR	RALLEL) & Mod.	18
		TOTA	AL MODULES:	110

VOLTAGE DROP (DC)												
Wire run ORIGIN DESTINATION			Estimated one way	Modules	Operating Voltage (V)	Operating Current (Imp)	Resistance (ohm/Kft)	AWG	Voltage Drop (%)			
STRING #	1.1		` ` `	20	400	18	1.2	10	0.43			
STRING#	1.2	JBOX 1	70	18	400	18	1.2	10	0.76			
STRING #	1.3	-	35	18	400	18	1.2	10	0.38			
STRING#	1.4	IDOV 2	25	18	400	18	1.2	10	0.27			
STRING#	1.5	JBOX 2	25	18	400	18	1.2	10	0.27			
STRING#	1.6	JBOX 3	30	18	400	18	1.2	10	0.32			
	JBOX2	JBOX3	40	36	400	18	1.2	10	0.43			
JBOX 1 (pe	r string)	INIVEDTED	125	56	400	18	0.78	8	0.88			
JBOX 3 (pe	r string)	INVERTER	25	54	400	18	1.2	10	0.27			
() () ()	STRING #	ORIGIN STRING # 1.1 STRING # 1.2 STRING # 1.3 STRING # 1.4 STRING # 1.5 STRING # 1.6	ORIGIN DESTINATION STRING # 1.1 JBOX 1 STRING # 1.3 JBOX 1 STRING # 1.4 JBOX 2 STRING # 1.5 JBOX 3 JBOX 1 (per string) JBOX 3 JBOX 1 (per string) INVERTER	Wire run Estimated one way ORIGIN DESTINATION distance (ft) STRING # 1.1 40 40 STRING # 1.2 JBOX 1 70 STRING # 1.3 35 35 STRING # 1.4 JBOX 2 25 STRING # 1.5 JBOX 3 30 JBOX 3 JBOX 3 40 JBOX 1 (per string) INVERTER 125	Wire run Estimated one way distance (ft) STRING # 1.1 40 20 STRING # 1.2 JBOX 1 70 18 STRING # 1.3 35 18 STRING # 1.4 JBOX 2 25 18 STRING # 1.5 JBOX 3 30 18 STRING # 1.6 JBOX 3 40 36 JBOX 1 (per string) INVERTER 125 56	Wire run Estimated one way distance (ft) Modules Operating Voltage (V) STRING # 1.1 40 20 400 STRING # 1.2 JBOX 1 70 18 400 STRING # 1.3 35 18 400 STRING # 1.4 JBOX 2 25 18 400 STRING # 1.5 JBOX 3 30 18 400 STRING # 1.6 JBOX 3 30 18 400 JBOX 1 (per string) JNVERTER 125 56 400	Wire run Estimated one way distance (ft) Modules Operating Voltage (V) Operating Current (Imp) STRING # 1.1 40 20 400 18 STRING # 1.2 JBOX 1 70 18 400 18 STRING # 1.3 35 18 400 18 STRING # 1.4 JBOX 2 25 18 400 18 STRING # 1.6 JBOX 3 30 18 400 18 STRING # 1.6 JBOX 3 30 18 400 18 JBOX 1 (per string) JNVERTER 125 56 400 18	Wire run Estimated one way distance (ft) Modules Operating Voltage (V) Current (Imp) (Imp) Operating Voltage (V) Operating Current (Imp) Operating Voltage (V) Operating Current (Imp) Operating Voltage (V) Operating Current (Imp) Operating Current (Imp) Operating Voltage (V) Operating Current (Imp) Opera	Wire run Estimated one way distance (ft) Woodules Operating Voltage (V) Operating (urrent (lmp) Operation (lmp)			

VOLTAGE DROP (AC)										
WIRE RUN ORIGIN DESTINATION		Length (ft)	Operating Voltage (V)	MAX Operating Current (A)	Resistance (ohm/Kft)	AWG/ kcmil	Voltage Drop (V)	Voltage Drop (%)		
INVERTER	AC DISCONNECT(SOLAR)	10	208	120	0.082	3/0	0.47	0.09		
AC DISCONNECT(SOLAR)	PANEL L3 (POI)	25	208	120	0.082	3/0	1.18	0.24		

			CON	DUCTOR SPECIFICAT	IONS				REQL	JIRED CIRCUIT	CONDU	JCTOR AMPA	CITY			AMPACITY CH	HECK 1
TAG	CIRCUIT	MATERIAL	TEMP. RATING	SIZE	AMPACITY (per 310.15(B)(16) & 310.15(B)(17)	OPTIMIZER OUTPUT CURRENT (A)	х	# OF PARALLEL STRINGS	=	MAX CURRENT per 690.8(A)(1)	x	MAX CURRENT (125%) per 690.8(A)(1)	x	(125%) per 690.8(B)(1)	= MAX CURRENT per 690.8(B)(1)	< CONDUCTOR AMPACITY	ОК
DC1	PV STRING TO JUNCTION BOX #1, #2, #3	COPPER	90°C	AWG # 10	40 A	18	Х	1	=	18 A	Х	1.25	Х	1.25	= 28.13 A	< 40 A	ОК
DC2	JBOX #1 TO INVERTER(per string)	COPPER	90°C	AWG # 8	55 A	18	X	1	=	18 A	X	1.25	X	1.25	= 28.13 A	< 55 A	ОК
DC3	JBOX #2 TO JBOX #3(per string)	COPPER	90°C	AWG# 10	40 A	18	X	1	=	18 A	X	1.25	Х	1.25	= 28.13 A	< 40 A	ОК
DC4	JBOX #3 TO INVERTER(per string)	COPPER	90°C	AWG # 10	40 A	18	X	1	=	18 A	Х	1.25	Х	1.25	= 28.13 A	< 40 A	ОК

COND	UCTOR TEM	PERATURE DERA	ATING		CONDUIT F	ILL DERATING		CORF	RECT	TED AMP	ACIT	Y CALCUL	ATIC	DN		AN	1PACITY C	HEC	(2
CIRCUIT ENVIRONMENT	LOCAL 2% HIGH TEMP.AVG.	Temp. adder per 310.15(B)(3)(C)	Operating temp. (°C)	CORRECTION	# OF CURRENT CARRING CONDUCTORS	AMPACITY CORRECTION 310.15(B)(3)(A)	TAG	CONDUCTOR AMPACITY	x	TEMP. DERATE	х	CONDUIT FILL DERATE	=	DERA CONDU AMPA	CTOR	23	REQUIRED AMPACITY 590.8(B)(2)	•	ОК
OUTSIDE (ROOF)	34	22	56	0.71	2	1.00	DC1	40	х	0.71	Х	1.00	=	28.4	Α	>	18	Α	ОК
OUTSIDE (ROOF)	34	22	56	0.71	6	0.80	DC2	55	х	0.71	X	0.80	=	31.24	Α	>	18	Α	ОК
OUTSIDE (ROOF)	34	22	56	0.71	6	0.80	DC3	40	х	0.71	Х	0.80	=	22.72	Α	>	18	Α	ОК
OUTSIDE (ROOF)	34	22	56	0.71	6	0.80	DC4	40	Х	0.71	Х	0.80	=	22.72	Α	>	18	Α	ОК

			CON	DUCTOR SPECIFICATI	ONS			REC	UIRED CI	RCUIT CONDU	CTOR A	MPACITY			Al	MPACITY CHE	CK 1
TAG	CIRCUIT	MATERIAL	TEMP. RATING	SIZE	AMPACITY (per 310.15(B)(16) & 310.15(B)(17)	Inverter output current (A)	x	# inverters (parallel)	=	MAX CURRENT per 690.8(A)(1)	x	125% per 690.8(B)(1)	=	MAX CURRENT per 690.8(B)(1)	<	CONDUCTOR AMPACITY	ОК
AC1	INVERTER to AC DISCONNECT(SOLAR)	ALUMINUM	90°C	AWG # 3/0	175 A	120	Х	1	=	120 A	Х	1.25	=	150 A	<	175 A	OK
AC2	AC DISCONNECT(SOLAR) TO PANEL L3 (POI)	ALUMINUM	90°C	AWG # 3/0	175 A	120	Х	1	=	120 A	Х	1.25	=	150 A	<	175 A	OK

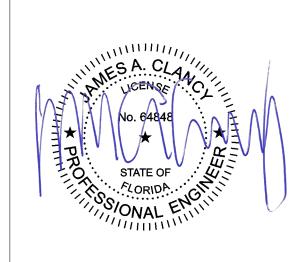
COND	UCTOR TEM	PERATURE DERA	ATING		CONDUITF	ILL DERATING		COR	RECT	ED AMPA	ACIT	Y CALCUL	ATIO	N		AM	PACITY C	CHECK 2	2	
CIRCUIT ENVIRONMENT	LOCAL 2% HIGH TEMP.AVG.	Temp. adder per 310.15(B)(3)(C)	Operating temp. (°C)	CORRECTION	# OF CURRENT CARRING CONDUCTORS	AMPACITY CORRECTION 310.15(B)(3)(A)	TAG	CONDUCTOR AMPACITY	x	TEMP. DERATE	x	CONDUIT FILL DERATE	=	DERA CONDU AMPA	JCTOR	,	REQUIRED AMPACITY 90.8(B)(2	c)K	OVERCURRENT PROTECTION DEVICE (OCPD)
OUTSIDE WALL	34	0	34	0.96	3	1.0	AC1	175	Х	0.96	Х	1.00	=	168	Α	>	120	A C	K	N A
OUTSIDE WALL	34	0	34	0.96	3	1.0	AC2	175	Х	0.96	X	1.00	=	168	Α	>	120	A C	K	150 A

Project:

MADEIRA BEACH

REC CENTER

300 Municipal Drive,


Madeira Beach, FL 33708

Engineer:

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

REVISIONS

DESCRIPTION DATE REV

Sheet size: ARCH D 36" x 24"

Sheet title: WIRING CALCULATIONS

Sheet number:

umber: E.3

. WARNING ELECTRIC SHOCK HAZARD

TERMINALS ON BOTH LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION

LABEL LOCATION:

AC/DC DISCONNECTS, PV LOAD CENTERS,

COMBINER BOXES

(PER CODE: NEC 690.13(B))

WARNING PHOTOVOLTAIC POWER SOURCE

LABEL LOCATION:
JUNCTION BOXES, RACEWAYS, CABLE TRAYS, CONDUIT
BODIES WITH AVAILABLE OPENINGS EVERY 10 FEET,
WITHIN 1' OF TURNS/PENETRATIONS
(PER CODE: NEC 690.31(G)(3))

WARNING DUAL POWER SOURCE SECOND SOURCE IS PHOTOVOLTAIC SYSTEM

ALABEL LOCATION:
BI-DIRECTIONAL METER
(PER CODE: NEC 705.12(D)(3))

CAUTION PHOTOVOLTAIC SYSTEM CIRCUIT IS BACKFED

LABEL LOCATION:
POINT OF INTERCONNECTION
(PER CODE: NEC 690.13(F))

WARNING

INVERTER OUTPUT CONNECTION - DO NOT RELOCATE THIS OVERCURRENT DEVICE

LABEL LOCATION:

PV SYSTEM BREAKER

(PER CODE: NEC 705.12(B)(2)(3)(b))

[Not required if panelboard is rated not less than sum of ampere ratings of all overcurrent devices supplying it]

PHOTOVOLTAIC SYSTEM DISCONNECT

LABEL LOCATION:
PV SYSTEM DISCONNECTS
(PER CODE: NEC 690.13(B))

PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN

LABEL LOCATION:
AC DISCONNECT
(PER CODE: NEC 690.56(C))

INVERTER

8 LABEL LOCATION (3" x 1" PLACARD):

PHOTOVOLTAIC SYSTEM AC DISCONNECT
RATED AC OPERATING CURRENT 120 AMPS
AC NOMINAL OPERATING VOLTAGE 208 VOLTS

/9\ <u>LABEL LOCATION:</u>
AC DISCONNECT, POINT OF INTERCONNECTION
(PER CODE: NEC 690.54)

DC INPUT WARNING LABEL #1

RATED DC CURRENT (Imp)

RATED DC VOLTAGE (Vmp)

SHORT CIRCUIT CURRENT (Isc)

MAXIMUM SYSTEM VOLTAGE (Voc)

110 A

400 V

600 V

LABEL LOCATION (4" x 3" PLACARD):
PV INVERTER 1
(PER CODE: NEC 690.53)

POWER TO THIS BUILDING IS ALSO SUPPLIED BY A ROOF MOUNTED SOLAR PHOTOVOLTAIC SYSTEM WITH DISCONNECT LOCATED AS SHOWN BELOW: AC DISCONNECT

LABEL LOCATION:

MAIN SERVICE PANEL, PV AC DISCONNECT
AND BUILDING ENTRANCE
(PER CODE: NEC 690.56)

EMERGENCY CONTACT INSTALLER: SEM POWER TEL. NUMBER: 888-496-119

LABEL LOCATION:
AC MAIN DISCONNECT
(PER CODE: FFPC 1:11.12.2.1.5)

SIGNAGE REQUIREMENTS

1.RED BACKGROUND
2.WHITE LETTERING
3.MINIMUM 3/8" LETTER HEIGHT
4.ALL CAPITAL LETTERS

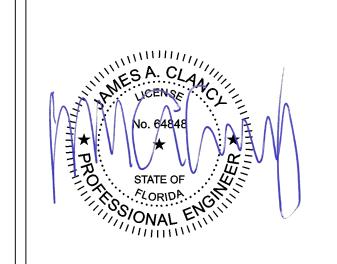
5.ARIAL OR SIMILAR FONT

6.WEATHER RESISTANT MATERIAL, PER UL 969

GROUND

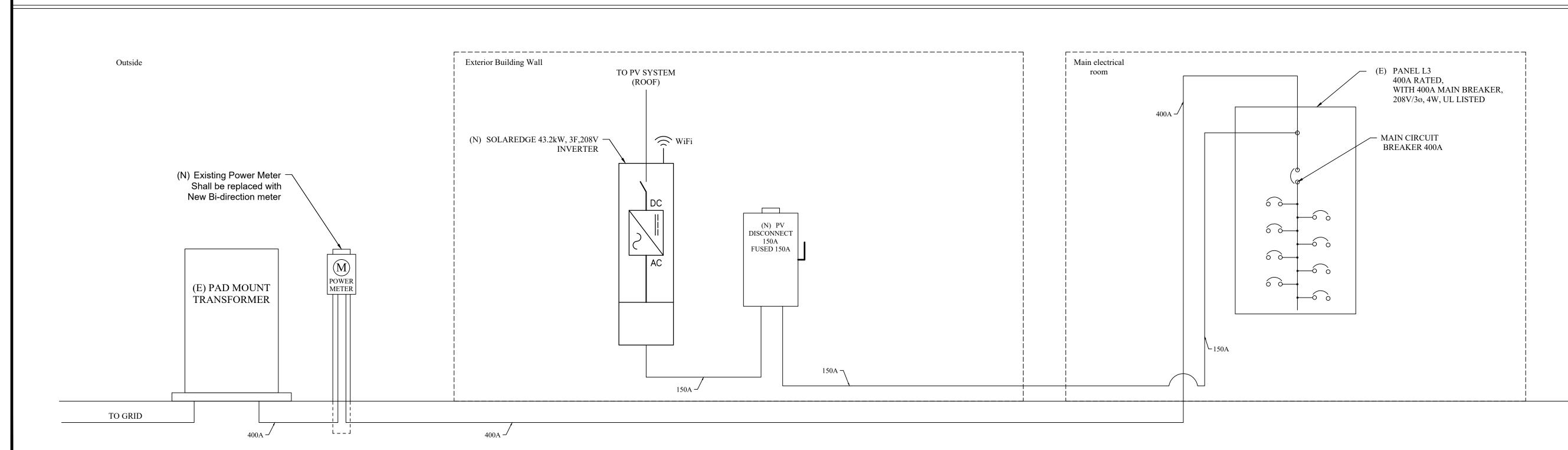
Contractor:

Wilson & Girgenti Engineering


MADEIRA BEACH

REC CENTER

300 Municipal Drive,


Engineering Approval:

ENGINEERS LICENSE #64848

REVISIONS

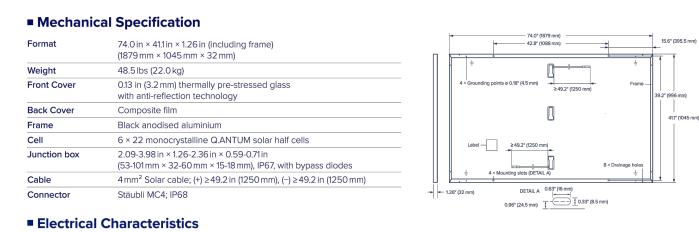
DATE

Designed by:

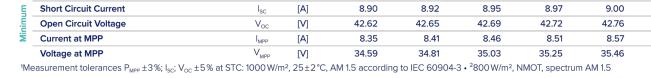
Designed by:

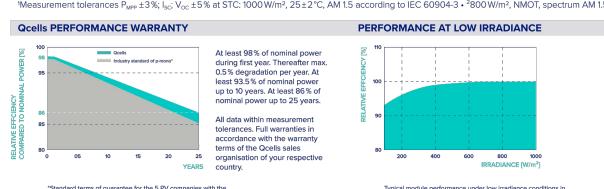
Vicson Energy

contact@vicsonenergy.com


Sheet size: ARCH D 36" x 24"

Sheet title: SYSTEM LABELING &


Sheet number:


GROUND LEVEL ELECTRICAL EQUIPMENT ELEVATION (FRONT VIEW)

Q.PEAK DUO BLK ML-G10+ SERIES

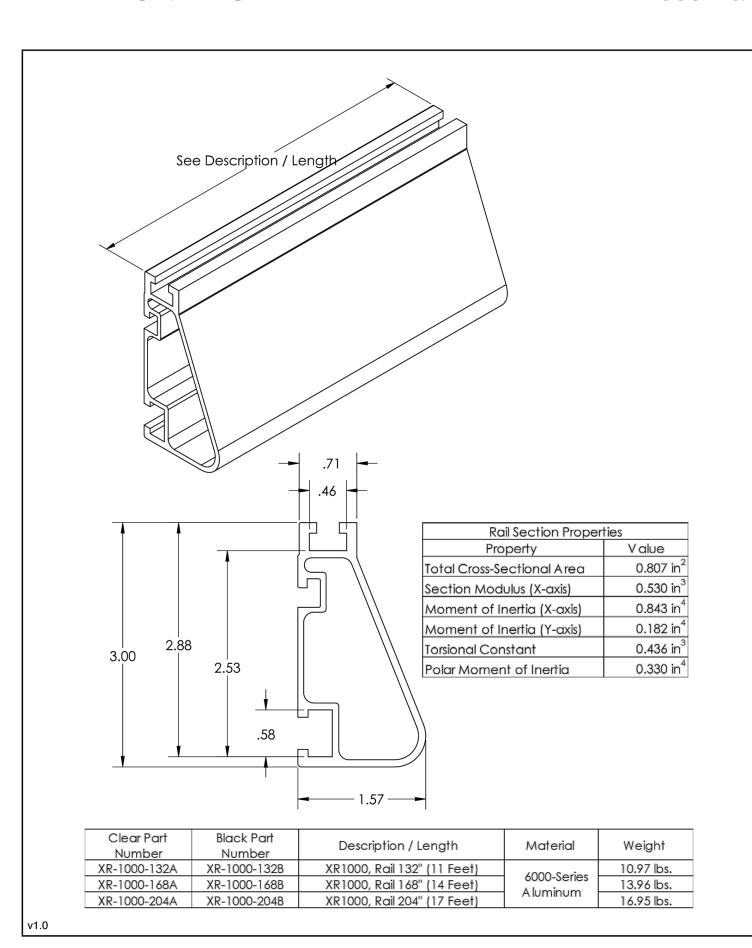
PC	OWER CLASS			385	390	395	400	405	410
MIN	NIMUM PERFORMANCE AT STANDARD TEST COND	DITIONS, ST	C1 (POWER	TOLERANCE +5\	N/-0W)				
	Power at MPP ¹	P_{MPP}	[W]	385	390	395	400	405	410
_	Short Circuit Current ¹	I _{sc}	[A]	11.04	11.07	11.10	11.14	11.17	11.20
를	Open Circuit Voltage ¹	V_{oc}	[V]	45.19	45.23	45.27	45.30	45.34	45.37
Mini	Current at MPP	I _{MPP}	[A]	10.59	10.65	10.71	10.77	10.83	10.89
_	Voltage at MPP	V_{MPP}	[V]	36.36	36.62	36.88	37.13	37.39	37.64
	Efficiency ¹	η	[%]	≥19.6	≥19.9	≥20.1	≥20.4	≥20.6	≥20.9
11M	NIMUM PERFORMANCE AT NORMAL OPERATING C	ONDITION	S, NMOT ²						

remperature Coefficient of I _{sc}			u	[%/K]	+0.04	remperature Coefficient of V _{oc}	р	[76 / K]	-0.27
Temperature Coefficient of P _N	IPP		γ	[%/K]	-0.34	Nominal Module Operating Temperature	NMOT	[°F]	109±5.4 (43±3°C)
■ Properties for Syst	tem D	esign							
Maximum System Voltage	$V_{\rm sys}$	[V]		1000 (IEC)	/1000 (UL)	PV module classification			Class II
Maximum Series Fuse Rating		[A DC]			20	Fire Rating based on ANSI/UL 61730			TYPE 2
Max. Design Load, Push/Pull ³		[lbs/ft²]	75	(3600 Pa)/55	5 (2660 Pa)	Permitted Module Temperature			p to +185°F
Max. Test Load, Push/Pull ³		[lbs/ft²]	113	3 (5400 Pa)/84	4 (4000 Pa)	on Continuous Duty		(−40°C u	p to +85°C)

Qualifications and Certificates

TEMPERATURE COEFFICIENTS

UL 61730, CE-compliant,
Quality Controlled PV - TÜV Rheinland,
IEC 61215:2016, IEC 61730:2016,
U.S. Patent No. 9,893,215 (solar cells),


Qcells pursues minimizing paper output in consideration of the global environment. Note: Installation instructions must be followed. Contact our technical service for further information on approved installation of this product.

Hanwha Q CELLS America Inc. 400 Spectrum Center Drive, Suite 1400, Irvine, CA 92618, USA | TEL +1 949 748 59 96 | EMAIL hqc-inquiry@gcells.com | WEB www.qcells.com

// IRONRIDGE

XR1000 Rail

/ Power Optimizer

For North America

P860 / P960

Power Optimizer Model (Typical Module Compatibility)	P86 (for 2 x 72 ce		P960 (for 2 x 72 cell modules)	
INPUT				
Rated Input DC Power ⁽¹⁾	860		960	W
Connection Method		Dual input for independently conne	ected modules ⁽²⁾	
Absolute Maximum Input Voltage (Voc at lowest temperature)		60		Vdc
MPPT Operating Range		12.5 - 60		Vdc
Maximum Short Circuit Current (Isc)	22		23	Adc
Maximum Short Circuit Current per Input (Isc)	11		11.5	Adc
Maximum Efficiency		99.5		%
Weighted Efficiency		98.6		%
Overvoltage Category		II		
OUTPUT DURING OPERATION (POWE	R OPTIMIZER CONNEC	TED TO OPERATING SOLAI	REDGE INVERTER)	'
Maximum Output Current		18		Adc
Maximum Output Voltage		80		Vdc
OUTPUT DURING STANDBY (POWER O	PTIMIZER DISCONNECT	TED FROM SOLAREDGE IN	VERTER OR SOLAREDGE INVERTI	ER OFF)
Safety Output Voltage per Power Optimizer	THINIZER DISCORNICE	1 ± 0.1	VERTER OR SOLARED OF HIVERT	Vdc
STANDARD COMPLIANCE		1 ± 0.1		Vac
Photovoltaic Rapid Shutdown System		Compliant with NEC 2014, 20	17(3) 2020	
EMC		FCC Part 15 Class A, IEC61000-6-2,	·	
Safety		IEC62109-1 (class II safety),		
Material		UL94 V-0, UV resistar		
RoHS		Yes	it.	
INSTALLATION SPECIFICATIONS		163		
Compatible SolarEdge Inverters		Three phase inverter		
Maximum Allowed System Voltage		1000	5	Vdc
Dimensions (W x L x H)		129 x 168 x 59 / 5.1 x 6.61	v 2 22	
Weight		1064 / 2.34	X 2.32	mm/i gr/lb
Input Connector		MC4 ⁽⁴⁾		gi / it
input Connector	Wire length options	Input #1	Input #2	
Input Wire Length	(1)	(-) 0.16 / 0.52, (+) 0.16 / 0.52	(-) 0.16 / 0.52, (+) 0.16 / 0.52	m / ft
Tipat Wile Length	(2)	(-) 1.6 / 5.24, (+) 0.16 / 0.52	(-) 0.16 / 0.52, (+) 1.6 / 5.24	- ""
Output Wire Type / Connector	(-/	Double insulated; MC		
Output Wire Length		2.3 / 7.5		m / ft
Operating Temperature Range ⁽⁵⁾		-40 to +85 / -40 to +1	85	°C / °F
		0 - 100		%
Protection Rating Relative Humidity (1) Rated power of the module at STC will not exceed the power (2) In the event of an odd number of PV modules in one string, in unused input connectors with the supplied pair of seals (3) NEC 2017 requires that the maximum combined input voltage (4) For other connector types please refer to: https://www.solare	installation of one P860 /P960 power opt ge does not exceed 80V	IP68 / NEMA6P 0 - 100 ules with up to +5% power tolerance are allower tolerance are allower to one PV module is allower.	wed	5

(5) For ambient temperature above +70°C / +158°F, power de-rating is applied. Refer to the Power Optimizers Temperature De-Rating Application Note for more details

PV System Design Usi	ng a SolarEdge Inverter ⁽⁶⁾	Three Phase f	or 208V Grid ⁽⁷⁾	Three Phase fo	r 277/480V Grid	
		P860	P960	P860	P960	
Minimum Chrise Leasth	Power Optimizers		8		14	
Minimum String Length	PV Modules	1	5		27	
Marian and Chairman Lauranth	Power Optimizers			30		
Maximum String Length	PV Modules			60		
Maximum Power per String		720	00(8)	153	300 ⁽⁹⁾	W
Parallel Strings of Different Lengths or C	rientations		\	/es		

Parallel Strings of Different Lengths or Orientations (6) It is not allowed to mix P860/P960 with P801/P800p/P850/P950/P1100 in one string or to mix with P370-P505 in one string

(7) P860 design with three phase 208V inverters is limited. Use the SolarEdge Designer for verification (8) For the 208V grid: It is allowed to install up to 7700W per string when the maximum power difference between each string is 1,000W

(9) For the 277/480V grid: it is allowed to install up to 17,550W per string when the maximum power difference between each string is 2,000W

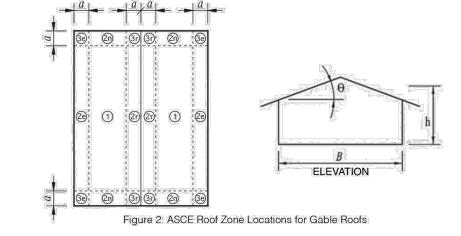
© SolarEdge Technologies Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Ltd. All other trademarks mentioned herein are trademarks of their respective owners. Date: 12/2020/V01/ENG NA. Subject to change without notice.

/ Three Phase Inverter with Synergy Technology for the 208V Grid for North America

SE43.2KUS

	SE43.2KUS	
OUTPUT		
Rated AC Power Output	43200	VA
Maximum AC Power Output	43200	VA
AC Output Line Connections	4-wire WYE (L1-L2-L3-N) plus PE or 3 wire Delta	
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-N)	105-120-132.5	Vac
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-L)	183-208-229	Vac
AC Frequency Min-Nom-Max ⁽¹⁾	59.3 - 60 - 60.5	Hz
Maximum Continuous Output Current (per Phase) @208V	120	А
GFDI Threshold	1	A
Utility Monitoring, Islanding Protection, Configurable Power Factor, Country Configurable Thresholds	Yes	
INPUT		
Maximum DC Power (Module STC), Inverter / Unit	58200 / 19400	W
Transformer-less, Ungrounded	Yes	
Maximum Input Voltage DC to Gnd	300	Vdc
Maximum Input Voltage DC+ to DC-	600	Vdc
Nominal Input Voltage DC to Gnd	200	Vdc
Nominal Input Voltage DC+ to DC-	400	Vdc
Maximum Input Current	38 x 3	Add
Maximum Input Short Circuit Current	135	Add
Reverse-Polarity Protection	Yes	
Ground-Fault Isolation Detection	350kΩ Sensitivity per Unit	
CEC Weighted Efficiency	97	%
Nighttime Power Consumption	< 12	W
ADDITIONAL FEATURES		·
Supported Communication Interfaces	RS485, Ethernet, Cellular GSM (optional)	
Rapid Shutdown	NEC2014 and NEC2017 compliant/certified, upon AC Grid Disconnect	
RS485 Surge Protection	Built-in	
Cable Covers	Ordered separately with part number: DCD-SGY-COVER-HP; Dimensions (H x W x D) – 314.3 x 343.7 x 134.5 mm	
DC SAFETY SWITCH		
DC Disconnect	1000V / 3 x 40A	
STANDARD COMPLIANCE		
Safety	UL1741, UL1741 SA, UL1699B, UL1998, CSA 2.22	
Grid Connection Standards	IEEE 1547, Rule 21, Rule 14 (HI)	
Emissions	FCC part15 class A	
INSTALLATION SPECIFICATIONS	. ee partis dass //	
Number of units	3	
AC Output Conduit Size / Max AWG / Max PE AWG	2" / 4/0 / 4	
DC Output Conduit Size / Terminal Block AWG Range /		
Number of Strings ⁽²⁾	2 x 1.25" / 6-14 / 9 strings	
Dimensions (H x W x D)	Primary Unit: 37 x 12.5 x 10.5 / 940 x 315 x 260; Secondary Unit: 21 x 12.5 x 10.5 / 540 x 315 x 260	in / m
Weight	Primary Unit: 105.8 / 48; Secondary Unit 99.2 / 45	lb/k
Operating Temperature Range	-40 to +140 / -40 to +60 ⁽³⁾	°F / °
Cooling	Fan (user replaceable)	
Noise	< 60	dBA
Protection Rating	NEMA 3R	
Mounting	Bracket provided	

(1) For other regional settings please contact SolarEdge support


© Single input option per unit (up to 3AWG) available
© For power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 12/2019/v01/ENG NA. Subject to change without notice.

CE RoHS

																	Cab	la Da	of Flore	h N/1	unt Cur	+ a ma C	non To	امام الما	ah aa\	Dout	i+	Lands		n stall	-ti															
F	ail:																Gab	ne Ro	oi Fius				pan Ta ength:						scape i	nstall	ation															
XF	1000																			141	ax ivio	auic L		posur		oddic	JI . Z4	31																		
Win	l Roo	f Gro	und Snov	v: 0 nsf		10 psf			20 psf	:	Т	30 p	sf	т -	40 psf			50 ps	F .		60 ps	:	_	70 psf		9	80 psf*	,		90 psf ³	*	Т	100 psf	*	1	10 psf*	k	1	.20 psf	*	Exp	osed Mo	od T	Eds	ge Mo	nd.
Spe				1			I			Г		T	Т	2 6	Т.						T				I					Γ			Τ									П		<u></u>		I
(mp		-	o 1 Group 2	Group 3		Group 2		·	Group 2	· ·	3 Group		·		·		_	·	2 Group 3	Group	1 Group 2	·	3 Group 1	·	Group 3		Group 2		Group 1	·		_	Group 2	Group 3	·	Group 2	Group 3	Group 1	Group 2		•	·	- '	•	Group 2	Group :
90	8-20	_		156	130	130	130	109	109	109	107		_	96	96	96	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	157	134	120	119	96	76
mp	21-2	_		154 149	128 126	128 126	128 126	108	108	108	106 106			96	96	96 98	87 91	87 91	87 91	80	80	80	75	75 78	75 78	72 74	72 74	72 74	67 72	67 72	72	64 66	64	64 66	61 64	61 64	64	58 61	58 61	58 61	154 149	144	138 133		103 110	98
	8-20	_	_	146	130	130	130	109	109	109	107	_		96	96	96	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	157	124	111	110	83	65
95	21-2	_	_	154	128	128	128	108	108	108	106		_	96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	154	135	128	117	98	90
mp	28-4	5 14	149	149	126	126	126	107	107	107	106	106	106	98	98	98	91	91	91	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	149	140	125	116	105	96
100	8-20			135	130	130	130	109	109	109	107	_	_	96	96	96	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	157	116	_		72	56
mp	21-2	_	_	152	128	128	128	108	108	108	106	_		96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	154	126	120		91	77
	8-20			144 127	126 130	126 130	126	107 109	107	107	106 107			98 96	98	98 96	91 86	91 86	91	84 79	84 79	84 79	78 74	78 74	78 74	74 69	74 69	74 69	72 66	72 66	72 66	66 64	66 64	66 64	64 60	64	64 60	61 57	61 57	61 57	149 150		97	110 96	99 64	88 49
10	21-2			146	128	128	127 128	109	109	109	107			96	96	96	87	87	87	80	80	80	75	75	75	69 72	72	69 72	67	67	67	64	64	64	61	61	61	58	58	58	146	109	112	106	80	66
mp	28-4	5 14		137	126	126	126	107	107	107	106	_	_	98	98	98	91	91	91	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	144	126	112	105	96	77
110	8-20	15	7 133	119	130	129	119	109	109	109	107	107	107	96	96	96	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	138	102	83	83	55	44
mp	21-2		_	133	128	128	128	108	108	108	106		_	96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	138	112	105	101	72	58
	20-4		_	130	126	126	126	107	107	107	106			98	98	98	91	91	91	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	136	119	106	100	90	69
11!	8-20 21-2		7 122 4 132	112	130	122 128	112 127	109 108	109	109	107			96	96 96	96 96	86 87	86 87	86	79 80	79 80	79	74	74	74	69	69	69	66 67	66	66 67	64 64	64	64 64	60	60	60	57 58	57	57	127	96 105	67 99	72	49 64	38 51
mp	28-4			124	128 126	126	124	107	107	108	106 106	_	_	96 98	98	98	91	91	91	84	84	80	75 78	75 78	75 78	72 74	72 74	72 74	72	67 72	72	66	66	66	61 64	64	61 64	61	58 61	58 61	131 129	113	101	96 96	80	61
	8-20			104	130	118	104	109	109	104	107		_	96	96	96	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	117	81	56	64	44	35
120	21-2			121	128	128	121	108	108	108	106	_		96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	124	100	92	90	55	45
mp	28-4	5 14	132	118	126	126	118	107	107	107	106	106	106	98	98	98	91	91	91	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	123	108	96	91	72	55
130	8-20		1 106	93	130	106	93	109	106	93	107		_	96	96	93	86	86	86	79	79	79	74	74	74	69	69	69	66	66	66	64	64	64	60	60	60	57	57	57	102	58	41		36	30
mp	21-2	_		109	128	114	109	108	108	107	106			96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	112	83	64	73	45	36
-	28-4 8-20			108 69	126 123	121 96	108 69	107 109	107 96	107 69	106 107		_	98	98	98 69	91 86	91 86	91 69	84 79	79	84 69	78 74	78 74	78 69	74 69	74 69	74 69	72 66	72 66	72 66	66 64	66 64	66 64	64 60	64	64 60	61 57	61 57	61 57	111 72	98 44	33	73 48	59 32	45 25
140	21-2			96	128	103		108	103	96	106	_		96	96	96	87	87	87	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	102	60	45		37	30
mp	28-4			99	126	111	99	107	107	99	106	_		98	98	98	91	91	91	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	101	90	59	59	49	37
150	8-20) 11	74	51	110	74	51	108	74	51	106	74	51	96	74	51	86	74	51	79	74	51	74	74	51	69	69	51	66	66	51	64	64	51	60	60	51	57	57	51	60	35	29	40	27	22
	21-2			84	118	97	84	108	97	84	106	_		96	96	84	87	87	84	80	80	80	75	75	75	72	72	72	67	67	67	64	64	64	61	61	61	58	58	58	96	48	34		32	24
mp	20-4			91	116	103	91	107	103	91	106	_	_	97	97	91	90	90	90	84	84	84	78	78	78	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	93	69	48		41	32
160	8-20 21-2	_		40 64	99 109	56 81	40 64	99 108	56 81	40 64	99	56 81		96	56 81	40 64	86 87	56 81	40 64	79 80	56 80	40 64	74	56 75	40 64	69 72	56 72	40 64	66 67	56 67	40 64	64 64	56 64	40 64	60 61	56 61	40 60	57 58	56 58	40 58	50 74	30 37	25 29		24	19 20
mp	28-4	_		77	109	96	77	105	96	77	103		_	96	96	77	89	89	77	83	83	77	78	78	77	74	74	74	72	72	72	66	66	66	64	64	64	61	61	61	74	54	37		35	26
	8-20			34	76	45	34	76	45	34	76	45		76	45	34	76	45	34	76	45	34	74	45	34	69	45	34	66	45	34	64	45	34	60	45	34	57	45	34	42	27	22		21	17
170	21-2			48	101	64	48	101	64	48	101			96	64	48	87	64	48	80	64	48	75	64	48	72	64	48	67	64	48	64	64	48	61	61	48	58	58	48	64	32	24	42	25	18
mp	28-4	5 10	89	64	100	89	64	100	89	64	100	89	64	93	89	64	87	87	64	82	82	64	78	78	64	74	74	64	72	72	64	66	66	64	64	64	64	61	61	61	56	44	32	35	32	24
17	8-20	68		32	68	40	32	68	40	32	_			_	40	32	68	40	32	68	40	32	68	40	32	68	40	32	66	40	32	64	40	32	60	40	32	57	40	32	39		21		19	
mp	21-2			41	97	56	41	97	56	41	97			96	56	41	87	56	41	80		41	75	56	41	72	56	41	67	56	41	64	56	41	61	56	41	58	56	41	58	30	24		24	16
	9.20			55	96 64	83 36	55 30	96	83	55	96	83	_	92	83	55	86	83	55	81 64	81	55	77 64	77	55	73 64	73 36	55	72	72	55	66	66	55 30	64 60	64	55 30	61 57	61	55	49 36	40 24	29		29	21
180	8-20 21-2			30 37	96	51	37	64 96	36 51	30	96	36 51		96	36 51	30 37	64 87	36 51	30	80	36 51	30 37	75	36 51	30 37	64 72	51	30 37	64 67	36 51	30	64 64	36 51	37	61	36 51	37	58	36 51	30 37	53		20		18 22	15 15
mp	28-4			49	93	74	49	93	74	49	93				74	49	85	74	49		74		76	74	49	73	73	49	72	72	49	66	66	49	64	64	49	61	61	49	44		27		28	20
		_	n 72" spar				64" spar				48" spa																								on Page									REV 02/0		
			aded cells		e condi				Clamp	connec	ction ca	pacity	is excee	ded. Se	e Note 9	on pag	ge 2 for	details.										•							-											

G	rouping	of ASC	E 7-16 F	Roof Zo	nes (Ga	ble)
Roof Slope		8° - 27°			28° - 45°	
Group	Group 1	Group 2	Group 3	Group 1	Group 2	Group 3
ASCE 7-16 Roof Zones	1 2e	2n 2r 3e	3r	1 2e 2r	2n 3r	3e

Notation (Per ASCE 7-16)

 $\mathbf{a} = 10\%$ of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m). If an overhang exists, the edge distance shall be measured from the outside edge of the overhang. The horizontal dimensions used to compute the edge distance shall not include any overhang

B = Horizontal dimension of building measured normal to wind direction, in ft (m).

 $\mathbf{h} = \text{Mean roof height, in ft (m)}.$

 θ = Angle of plane of roof from horizontal, in degrees.

Wilson & Girgenti Engineering

MADEIRA BEACH REC CENTER

300 Municipal Drive, Madeira Beach, FL 33708

Engineer:

JAMES A. CLANCY, PE 409 N. MAIN STREET, ELMER, NJ 08318 ENGINEERS LICENSE #64848

Engineering Approval:

REVISIONS

DATE REV **DESCRIPTION**

Designed by:

ARCH D 36" x 24"

DATA SHEETS

Sheet number:

DS.1

Trust your system at every angle.

The IronRidge Tilt Mount System supports a wide range of solar module tilting angles, while also resisting the extreme wind and snow forces experienced over a building's lifetime.

Every component has been carefully engineered and rigorously tested, and the entire system uses only aluminum and stainless steel materials to resist corrosion.

Roof Friendly

Strength Tested

structural performance.

UL 2703 Listed System

Meets newest effective UL 2703

Lightweight and compatible with industry-standard attachments.

All components evaluated for superior

PE Certified

Pre-stamped engineering letters available in most states.

Design Assistant

Extremely strong and lightweight.

U-Anchor Attachment

Equipment Attachment

approximately 20-25 ft.-lbs.

results are achieved.

Warranty

Secured Mounting Solutions™

component requirements.

Installs on any surface from flat to vertical.

Fast installation, approximate rate of 12 per man hour.

The U2400-TPO is attached by lifting the flashing to expose the

fastening hole on the plate. Then, fastening through the roofing

assembly and into the structural decking with 2-8 approved

membrane cover is then hot air welded around the perimeter

to the roof membrane. After verifying the seam integrity with a

probe, seam sealer maybe required per roofing manufacturer's

Project-specific data is required to determine the correct type

of fastener and number needed to secure each U-Anchor. An

resistance of fasteners included in the load path, (for example,

substrate -> fasteners -> the U-Anchor -> other components.)

To securely mount your rooftop equipment to the U-Anchor,

Refer to product documentation for detailed installation and

Individual roof deck assembly tests available upon request as

Results are based on plate performance only.

Ultimate Load - Shear: 4,339 lbs

Ultimate Load - Tension: 2,713 lbs

Tested in accordance with ICC AC467

application specific results may vary.

ICC-ES Evaluation Report ESR-4152

Subject to terms and conditions.

20 Year Limited Material Only Warranty.

after its installed, the connection nut must be tightened to

ANSI/SPRI FX-1 Pull Test is recommended to measure the pull-out

Use a calibrated torque wrench during install to ensure appropriate

fasteners, as directed by project specific engineering. The

Online software makes it simple to create, share, and price projects.

25-Year Warranty

Products guaranteed to be free of impairing defects.

XR Rails & Tilt Legs

XR Rails

Attach directly to Tilt Legs. Available in three targeted sizes to support specific wind and snow loads.

- Unique curved profile
- Spanning capabilities up to 12'

Universal Fastening Objects

Single, universal size

Clear and black finish

Accessories

Bonded Splices 😑

· Fully assembled and lubricated

XR Rails use internal splices for

Varying versions to match rails

Forms secure bonding connection

seamless connections.

Self-drilling screws

Resources

include South and North Tilt Leg and all hardware. Available in multiple lengths for a wide angle range

 Legs are electrically bonded to rails Clear and black finish

Grounding Clamps UFOs 🥞

- Snap onto the UFO to transform secure and bond modules to rails. into a bonded end clamp.
 - Bonds modules to rails Sized to match modules
- - Fully assembled

Clear and black finish

Grounding Lugs (

- Connects Tilt Mount system to equipment ground.
- Low profile
- Single tool installation Mounts in any direction

Provide a finished look and

- Simple snap-in installations Clips hold up to ten 5mm wires
- UV-stabilized polymer

EHD #15 DRILL POINT FASTENERS

THREAD LENGTH (See Chart Below)

Extra Heavy Duty Roofing Fastener with #3 Philips Truss Head, Cathodic epoxy e-coat-13 threads per inch. Ideal multi-purpose fastener for use with 18-26ga. steel, structural

Application

Insulation and membrane attachment to steel, wood and structural concrete roof decks.

Features and Benefits

- Extra stable #3 Phillips drive Drill point design prevents fastener walking
- 13 threads per inch provides higher pull-out values Drill point cuts through gravel and BUR
- Cathodic epoxy e-coat

Installation and Application Considerations ools: 2000 - 2500 rpm screw guns and hardened #3 Phil-

lips bit. For structural concrete, 7/32" carbide bit and 1500 rpm screw gun or hammer drill in hammer mode. Structural concrete to be predrilled with standard 7/32" carbide bit to minimum 1/2" deeper than fastener penetration. The standard carton package includes one #3 Phillips bit.

Options and Packaging

- Steel thickness from 26 ga (.019 in.) through 18 ga • 2"-4" Lengths: 100/bag or 1000/ bucket.
- 5"-8" Lengths: 100/bag or 500/bucket. Wood 2x (1-1/2" thick): Min penetration: 1" Plywood and OSB: Min through penetration: 3/4" 9"-24" Lengths: Call for details. Structural Concrete: Min penetration: 1" Weights and Dimension: Vary by product.

Pull Out Strength

692 / 3078 N

1/2" Plywood OSB

703 lbf / 3127 N

18 Ga (1.2mm): 1140 lbf / 50171 N

20 Ga (0.9mm): 898 lbf / 3995 N

• 3/4" (19.1mm) FR Plywood (through penetration):

• 4000 psi (1" penetration) (25.4mm): 728 lbf / 3238 N

© 2019 SFS Group USA, Inc. Technical changes reserved. 02/2020

 24 Ga³ (0.6mm): 453 lbf / 2015 N 26 Ga³ (0.5 mm): 301 lbf / 1339 N

• 2 x dimensional lumber (1" penetration) (25.4mm):

- Torsional: 130 lbf / 14.69 N.m
- **Options and Packaging**
- 2"-4" Lengths: 100/pk or 1000/ bucket.
- 9"-24" Lengths: Call for details.

(.048 in.): Min penetration: 3/4"

Coating and Corrosion 15/15 Kesternich per FM 4470800 hour salt spray per ASTM B117

Performance Data <u>Material Strength</u>

Cathodic epoxy e-coat

Tensile: 4350 lbf / 19350 N Shear: 3700 lbf / 16458

5"-8" Lengths: 100/pk or 500/bucket.

Weights and Dimension: Vary by product.

Custom options may be available for additional charge. Lead Information source: times may apply depending on roofing manufacturer and product availability. Revised Version: 08.06.20

Anchor Products LLC. PO Box 1551 Colleyville, TX 76034

Secured Mounting Solutions™

888-575-2131 www.anchorp.com info@anchorp.com

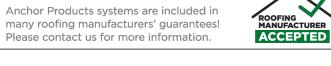
U-ANCHOR™ | U2400-TPO Mechanically Attached Solution For Single-Ply Roofing System

Front

- Material Type: 304 Stainless Steel
- Outer Diameter: 5.5"
- Steel Thickness: 0.047" (1.194mm) Material Type: Galvanized Steel G90
- <u>Cover Membrane</u> Manufacturer: Brand or Non-Brand Specific*
- Color: Default White* Length: 11.75" Width: 11.75"

Packaging Specifications

- Full Box Quantity: 10 units Box Weight: Approx. 10 lbs


- Pallet Dimensions: 48" x 40" x 66"

Anchor Products LLC

Colleyville, TX 76034

PO Box 1551

* Specified option is standard. Custom options may be depending on roofing manufacturer and product availability All representations herein are premised on proper installation and use of approved components. Failure to properly install or use of unapproved components voids all Anchor Products representations.

PRODUCTS™

The U2400-TPO is a lightweight rooftop attachment system consisting of an U-Anchor 2000 Series plate and cover membrane. The cover membrane and separator disk are factory sealed to the top of the plate. The U2400-TPO provides a fastened, watertight, warranted attachment for TPO single-ply membranes.

Back

Product Specifications • 3/8"-16 x 1.5" Bolt*

- Fastener Hole Diameter: 0.265" (8 holes) Fastener Hole Pattern: 4.125" Diameter
- Thickness: Default 60 mil*

<u>Patents</u> Visit www.anchorp.com/patents

- Sold Individually OR Full Box Quantity Individual Weight: Approx. 0.75 lbs
- Box Dimensions: 13" x 11" x 13" Full Pallet Quantity: 50 boxes

www.anchorp.com

info@anchorp.com

ANCHOR PRODUCTS™ PO Box 1551 Colleyville, TX 76034

SEPARATION DISC —

U-ANCHOR MEMBER -

(SACRIFICIAL)

U-ANCHOR PLATE —

ROOFING FASTENER —

COVER

U-Anchor U2400. **Mechanically Attached, Single-Ply Flashing** (PVC/TPO/KEE/TPA) (888) 575-2131

DRAWN BY: ANCHOR PRODUCTS TECHNICAL SUPPORT CATEGORY:

— COVERBOARD (OPTIONAL) --- INSULATION — DECK ASSEMBLY

ANCHOR PRODUCTS DETAIL DRAWINGS: REFER TO THE ROOFING AND FASTENER MANUFACTURERS AND OTHER RELATED PUBLISHED DOCUMENTATION, PRODUCT DATA SHEETS (PDS) AND SAFETY DATA SHEETS (SDS) FOR ADDITIONAL INFORMATION. ALL DETAIL DRAWINGS AND RELATED INSTALLATION GUIDELINES ARE PROVIDED BY ANCHOR PRODUCTS FOR THE SOLE PURPOSE OF CONVEYING ASSEMBLY STRUCTURE. ACCORDINGLY, THE DETAIL DRAWINGS ARE NOT OFFERED, AND SHOULD NOT BE CONSIDERED, AS A SUBSTITUTE FOR PROFESSIONAL DESIGN

2. TO ENSURE WARRANTIES CAN BE MAINTAINED, MOST ROOFING MANUFACTURERS REQUIRE THE FLASHING BE MADE OF THE SAME TYPE AND

BRAND. MOST ROOFING MANUFACTURERS REQUIRE THAT THE INSTALLATION OF THE U-ANCHOR BE PERFORMED BY AN AUTHORIZED 3. FASTENERS MUST BE INSTALLED PER THE FASTENER MANUFACTURER'S REQUIREMENTS FOR EACH SPECIFIC DECK TYPE FOR POSITIONING,

DECK PENETRATION DEPTH, AND OTHER NECESSARY STANDARDS. 4. SEAM WELDS MUST COMPLY WITH THE ROOFING MANUFACTURER'S REQUIREMENTS. THE AREA SHOULD BE CLEANED AND FREE OF DEBRIS AS PER THE ROOFING MANUFACTURERS SPECIFICATION. TYPICAL SEAM WELDS ARE A MINIMUM 1.5". SEAMS MUST BE PROBED TO ENSURE A

SUFFICIENT WELD HAS BEEN ACHIEVED. USE CUT EDGE SEALANT AS MANDATED BY THE ROOFING MANUFACTURER.

Tilt assembly to desired angle, up to 30 degrees. Kits Assembled South Tilt Legs include angle indicators

CAMO 🛞

- Bond modules to rails while staying completely hidden.
 - Universal end-cam clamp Tool-less installation

Ends Caps & Wire Clips

- organize electrical wires.

Title: R

www.anchorp.com

REQUEST DATE: REVISION DATE: 03/01/19 DRAWING NO.: SCALE: NTS

Single-Ply MA AP.2400.SP.MA.01a

- ROOF MEMBRANE

Designed by:

contact@vicsonenergy.com

REVISIONS

DESCRIPTION

DATE REV

Contractor:

Wilson & Girgenti Engineering

Project:

MADEIRA BEACH

REC CENTER

300 Municipal Drive,

Madeira Beach, FL 33708

Engineer:

JAMES A. CLANCY, PE

409 N. MAIN STREET, ELMER,

NJ 08318

ENGINEERS LICENSE #64848

Engineering Approval:

ARCH D 36" x 24" Sheet size:

DATA SHEETS Sheet title:

Sheet number:

DS.2