

April 17, 2024 Proposal No. 08SJO02-02606

Ms. Janice Chin, Assistant Engineer Town of Los Gatos Parks and Public Works Department 41 Miles Avenue, Los Gatos California 95030

Subject: Proposal for Materials Testing Services for the

2024 Annual Curb, Gutter and Sidewalk Maintenance Project

Los Gatos, California Project No.: 813-9921

Dear Ms. Chin:

Ninyo & Moore is pleased to submit this proposal to provide materials testing services for the 2024 Annual Curb, Gutter and Sidewalk Maintenance Project in Los Gatos, California. This proposal includes our proposed scope of services and associated cost estimates, which are based on our review of the project plans, specifications, and our previous experience with similar projects of this nature.

PROPOSED SCOPE OF SERVICES

Based on our review of the project documents, and our experience with similar projects, we propose to provide the following scope of services:

- Sampling of subgrade and aggregate base from the job site and transportation to our laboratory for testing.
- Maximum compacted density determinations of soils and aggregates in the laboratory accordance with ASTM D1557 for subgrade and aggregate base.
- In-place field density testing of soils and aggregates using a nuclear density gauge to determine the relative compaction of compacted subgrade and aggregate base.
- Concrete sampling and testing including slump and temperature tests of concrete and cast compressive strength test specimens (1 set / 150 cubic yards) on site.
- Concrete sample pick-up and transportation to our laboratory for curing and testing.
- Compression testing of concrete cylinders in the laboratory.
- Prepare daily field reports documenting observations and field test results, and reports of laboratory testing to be submitted to the project team.

Prepare a final report at the completion of the project

ESTIMATED FEE

We propose to perform the scope of services described above, subject to the listed assumptions, on

a time-and-materials basis in accordance with the attached Schedule of Fees.

Our fee estimate for the scope of services described for the project is \$18,555 (Eighteen Thousand

Five Hundred Fifty Five Dollars). Our detailed estimate of fee is attached (Table 1). Should the

construction schedule require a lesser or greater amount of services than that estimated herein, the

cost will vary accordingly.

AUTHORIZATION

Please provide us with a Purchase Order as written authorization for us to proceed with the proposed

services.

We sincerely appreciate the opportunity to submit this proposal and look forward to working with you

on this project.

Respectfully submitted,

NINYO & MOORE

Rowell Sta Ana

Senior Staff Engineer

RSA/LMH/rk

Attachments: Table 1 - Breakdown of Estimated Fee

Schedule of Fees

Solhue Hennefern

Construction Services Manager

Lothus Hennefer

Table 1 - Breakdown of Estimated Fee						
Materials Testing						
Senior Technician	Compaction Testing (Subgrade & Aggregate Base)	80 hours @	0 \$ 1	110.00	/hour	\$ 8,800.00
Senior Technician	Concrete Sampling & Testing (Slump & Temperature)	20 hours @	0 \$ 1	110.00	/hour	\$ 2,200.00
Lab Compacted Maximum Density (ASTM D1557)	For Subgrade & Aggregate Base	5 tests @	0 \$ 3	340.00	/test	\$ 1,700.00
Compression Tests	5 Concrete Cylinders / 150 Cubic Yards (4"x 8" Cylinders)	25 tests @) \$	35.00	/test	\$ 875.00
			Sub	total		\$ 13,575.00
Reimbursables						
Field Vehicle Usage		100 hours @	9 \$	15.00	/hour	\$ 1,500.00
Equipment Usage		100 hours @	9 \$	12.00	/hour	\$ 1,200.00
			Sub	total		\$ 2,700.00
Project Management						
Geotechnical / Project Assistant	Data Compilation & Distribution and Dispatch	4 hours @	9 \$	95.00	/hour	\$ 380.00
Project Manager	Meetings, Project Coordination and Progress Report Preparation	8 hours @	0 \$ 1	185.00	/hour	\$ 1,480.00
Principal Engineer	Project Oversight & Consultation	2 hours @	0 \$ 2	210.00	/hour	\$ 420.00
			Sub	total		\$ 2,280.00
TOTAL ESTIMATED FEE						\$ 18,555.00

Schedule of Fees

Hourly Charges for Personnel

Professional Staff Principal Engineer/Geologist/Environmental Scientist/Certified Industrial Hygienist Senior Engineer/Geologist/Environmental Scientist Senior Project Engineer/Geologist/Environmental Scientist Project Engineer/Geologist/Environmental Scientist Senior Staff Engineer/Geologist/Environmental Scientist Staff Engineer/Geologist/Environmental Scientist Staff Engineer/Geologist/Environmental Scientist GIS Analyst Technical Illustrator/CAD Operator	\$ \$ \$ \$ \$ \$	200 195 185 170 155 130
Field Staff Certified Asbestos/Lead Technician Field Operations Manager Nondestructive Examination Technician (UT, MT, LP) Supervisory Technician Special Inspector (Concrete, Masonry, Structural Steel, Welding, and Fireproofing) Senior Technician Technician	\$ \$ \$ \$	130 125 120 115 110
Administrative Staff Information Specialist Geotechnical/Environmental/Laboratory Assistant Data Processor Other Charges	\$	90 95 75
Concrete Coring Equipment (includes technician) Anchor Load Test Equipment (includes technician) GPR Equipment State of California Prevailing Wage Surcharge Inclinometer Hand Auger Equipment Rebar Locator (Pachometer) Vapor Emission Kit Nuclear Density Gauge X-Ray Fluorescence PID/FID Air Sampling Pump Field Vehicle Expert Witness Testimony Special equipment charges will be provided upon request.	19 18 3 10 8 2 6 1 7 2 1 1 45	0/hr 0/hr 0/hr 0/hr 0/hr 5/hr 5/hr 0/hr 5/hr 0/hr 5/hr 0/hr 5/hr

Notes

Our field services, are charged at a 4-hour minimum, and 8-hour minimum for hours exceeding 4 hours. Overtime rates at 1.5 times the regular rates will be charged for work performed in excess of 8 hours in one day Monday through Friday and all day on Saturday. Rates at twice the regular rates will be charged for all work in excess of 12 hours in one day, all day Sunday and on holidays.

Field services that may be subject to prevailing wage in accordance with AB 1768 and Prevailing Wage Determinations, will be subject to a prevailing wage surcharge as shown in our Schedule of Fees. Our rates will be adjusted in conjunction with the increase in the Prevailing Wage Determination during the life of the project, as applicable.

The terms and conditions are included in Ninyo & Moore's Work Authorization and Agreement form.

Schedule of Fees for Laboratory	Tes	ting		
SOILS			CONCRETE	
Atterberg Limits, D 4318, CT 204	\$	170	Compression Tests, 6x12 Cylinder, C 39	\$ 35
California Bearing Ratio (CBR), D 1883			Concrete Mix Design Review, Job Spec	
Chloride and Sulfate Content, CT 417 & CT 422			Concrete Mix Design, per Trial Batch, 6 cylinder, ACI	
Consolidation, D 2435, CT 219			Concrete Cores, Compression (excludes sampling), C 42	
Consolidation, Hydro-Collapse only, D 2435			Drying Shrinkage, C 157	\$ 400
Consolidation – Time Rate, D 2435, CT 219			Flexural Test, C 78	
Direct Shear – Remolded, D 3080			Flexural Test, C 293	
Direct Shear – Netholded, D 3080			Flexural Test, CT 523	
Durability Index, CT 229			Gunite/Shotcrete, Panels, 3 cut cores per panel and test, ACI	
Expansion Index, D 4829, IBC 18-3				
Expansion Detential (Method A), D 4546	φ	170	Lightweight Concrete Fill, Compression, C 495 Petrographic Analysis, C 856	φ ο ο ο ο
Expansion Potential (Method A), D 4546	φ	200		
Geofabric Tensile and Elongation Test, D 4632			Restrained Expansion of Shrinkage Compensation	\$ 450
Hydraulic Conductivity, D 5084			Splitting Tensile Strength, C 496	\$ 100
Hydrometer Analysis, D 6913, CT 203			3x6 Grout, (CLSM), C 39	\$ 55
Moisture, Ash, & Organic Matter of Peat/Organic Soils			2x2x2 Non-Shrink Grout, C 109	\$ 55
Moisture Only, D 2216, CT 226	\$	35		
Moisture and Density, D 2937			ASPHALT	
Permeability, CH, D 2434, CT 220	\$	300	Air Voids, T 269	
pH and Resistivity, CT 643			Asphalt Mix Design, Caltrans (incl. Aggregate Quality)	\$ 4,500
Proctor Density D1557, D 698, CT 216, AASHTO T-180	\$	220	Asphalt Mix Design Review, Job Spec	\$ 180
Proctor Density with Rock Correction D 1557			Dust Proportioning, CT LP-4	\$ 85
R-value, D 2844, CT 301	\$	375	Extraction, % Asphalt, including Gradation, D 2172, CT 382	\$ 250
Sand Equivalent, D 2419, CT 217			Extraction, % Asphalt without Gradation, D 2172, CT 382	\$ 150
Sieve Analysis, D 6913, CT 202			Film Stripping, CT 302	\$ 120
Sieve Analysis, 200 Wash, D 1140, CT 202			Hveem Stability and Unit Weight D 1560, T 246, CT 366	\$ 225
Specific Gravity, D 854	\$	125	Marshall Stability, Flow and Unit Weight, T 245	\$ 240
Thermal Resistivity (ASTM 5334, IEEE 442)			Maximum Theoretical Unit Weight, D 2041, CT 309	\$ 150
Triaxial Shear, C.D, D 4767, T 297			Moisture Content, CT 370	\$ 95
Triaxial Shear, C.U., w/pore pressure, D 4767, T 2297 per pt			Moisture Susceptibility and Tensile Stress Ratio, T 238, CT 371	
Triaxial Shear, C.U., w/o pore pressure, D 4767, T 2297 per pt	\$	350	Slurry Wet Track Abrasion, D 3910	
Triaxial Shear, U.U., D 2850			Superpave, Asphalt Mix Verification (incl. Aggregate Quality)	\$ 4 900
Unconfined Compression, D 2166, T 208			Superpave, Gyratory Unit Wt., T 312	
5.100.m.100 50.mp.100010.n, 2 2 1000, 1 200	Ψ		Superpave, Hamburg Wheel, 20,000 passes, T 324	
MASONRY			Unit Weight sample or core, D 2726, CT 308	\$ 100
Brick Absorption, 24-hour submersion, 5-hr boiling, 7-day, C 67	¢	70	Voids in Mineral Aggregate, (VMA) CT LP-2	
Brick Compression Test, C 67	ΨΦ	55	Voids if Nilletal Aggregate, (VNA) CT LP-3	\$ 30
Brick Efflorescence, C 67			Wax Density, D 1188	¢ 140
Brick Modulus of Rupture, C 67			wax bensity, b 1100	ф 140
Brick Moisture as received, C 67			400DE04TE0	
			AGGREGATES	
Brick Saturation Coefficient, C 67			Clay Lumps and Friable Particles, C 142	
Concrete Block Compression Test, 8x8x16, C 140	\$	70	Cleanness Value, CT 227	\$ 180
Concrete Block Conformance Package, C 90	\$	500	Crushed Particles, CT 205	
Concrete Block Linear Shrinkage, C 426	\$	200	Durability, Coarse or Fine, CT 229	
Concrete Block Unit Weight and Absorption, C 140			Fine Aggregate Angularity, ASTM C 1252, T 304, CT 234	
Cores, Compression or Shear Bond, CA Code			Flat and Elongated Particle, D 4791	
Masonry Grout, 3x3x6 prism compression, C 39			Lightweight Particles, C 123	
Masonry Mortar, 2x2 cube compression, C 109			Los Angeles Abrasion, C 131 or C 535	
Masonry Prism, half size, compression, C 1019	\$	120	Material Finer than No. 200 Sieve by Washing, C 117	\$ 90
Masonry Prism, Full size, compression, C 1019	\$	200	Organic Impurities, C 40	\$ 90
			Potential Alkali Reactivity, Mortar Bar Method, Coarse, C 1260	
REINFORCING AND STRUCTURAL STEEL			Potential Alkali Reactivity, Mortar Bar Method, Fine, C 1260	\$ 950
Chemical Analysis, A 36, A 615	\$	135	Potential Reactivity of Aggregate (Chemical Method), C 289	
Fireproofing Density Test, UBC 7-6			Sand Equivalent, T 176, CT 217	\$ 125
Hardness Test, Rockwell, A 370			Sieve Analysis, Coarse Aggregate, T 27, C 136	\$ 120
High Strength Bolt, Nut & Washer Conformance,	Ψ	-	Sieve Analysis, Fine Aggregate (including wash), T 27, C 136	
per assembly, A 325	¢	150	Sodium Sulfate Soundness, C 88	
Mechanically Spliced Reinforcing Tensile Test, ACI			Specific Gravity and Absorption, Coarse, C 127, CT 206.	
Pre-Stress Strand (7 wire), A 416			Specific Gravity and Absorption, Fine, C 128, CT 207.	
Reinforcing Tensile or Bend up to No. 11, A 615 & A 706			Opocinic Cravity and Absorption, 1 Int., C 120, C1 207	ψ 1/3
		75 90	POOLING	
Structural Steel Tensile Test: Up to 200,000 lbs., A 370			ROOFING	ф oco
Welded Reinforcing Tensile Test: Up to No. 11 bars, ACI	\$	80	Roofing Tile Absorption, (set of 5), C 67	\$ 250
			Roofing Tile Strength Test, (set of 5), C 67	\$ 250

Special preparation of standard test specimens will be charged at the technician's hourly rate. Ninyo & Moore is accredited to perform the AASHTO equivalent of many ASTM test procedures.