Urban Forest & Ecosystem Restoration Plan Working Pair Update

City of Los Altos Environmental Commission May 14th, 2025

Overarching Goal

Help Los Altos work with natural systems by having sufficient habitat for all inhabitants — trees, humans, fish, birds, bugs, etc. — to thrive

Risks Being Mitigated

- Wildfires
- Air Pollution
- Heatwaves
- Flooding
- Mass Plant and Animal Species Die-Off from Pathogens or Invasive Pests

Proposed Clerical Pathway

- Analysis of Current Urban Canopy
- RFP for the Development and Implementation of an Urban Forest + Ecosystem Restoration Plan

Objectives For Discussion

- Comprehensive resident guidance for habitat health
- Updated standards for street tree care and needs
- Defensible space and city planning guidance to mitigate wildfire risk
- Creek restoration
- Land use rezoning to maintain or strengthen important habitat pathways
- Native and climate-ready plant resource program
- Partnerships with neighboring cities to identify and support their habitat goals

Some Considerations

- Allowing space for experimental interventions helps us learn
- Solutions should be adjustable to meet changing conditions
- Identifying incremental milestones can help build up to meet tougher challenges
- Soil and water are the foundations of life
- Connected, vertically heterogenous habitats allow more species to fill a niche^{1 2}, which boosts resilience³
- Principles for robust governance institutions for localized resources: analytic deliberation, nesting, and institutional variety⁴

¹Bae, S., Müller, J., Lee, D., Vierling, K. T., Vogeler, J. C., Vierling, L. A., Hudak, A. T., Latifi, H., & Thorn, S. (2018). Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 215, 145-156. https://doi.org/10.1016/j.rse.2018.05.031

²Walsh, L. L., & Tucker, P. K. (2020). Isotopic niche breadth of a generalist mesopredator increases with habitat heterogeneity across its range. Ecosphere (Washington, D.C), 11(12). https://doi.org/10.1002/ecs2.3314

³Williams, R. J., Purves, D. W., & Huisman, J. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology (Durham), 92(9), 1849-1857. https://doi.org/10.1890/11-0200.1

⁴Dietz, T., Ostrom, E., & Stern, P. C. (2003). The Struggle to Govern the Commons. Science (American Association for the Advancement of Science), 302(5652), 1907–1912. https://doi.org/10.1126/science.1091015

Discussion

