AT&T Mobility • Proposed Base Station (Site No. CCL06325) 707 Fremont Avenue • Los Altos, California

Statement of Hammett & Edison, Inc., Consulting Engineers

The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of AT&T Mobility, a wireless telecommunications carrier, to evaluate the base station (Site No. CCL06325) proposed to be located at 707 Fremont Avenue in Los Altos, California, for compliance with appropriate guidelines limiting human exposure to radio frequency ("RF") electromagnetic fields.

Executive Summary

AT&T proposes to install directional panel antennas on a tall steel pole, configured to resemble a pine tree, to be sited at 707 Fremont Avenue in Los Altos. The proposed operation will comply with the FCC guidelines limiting public exposure to RF energy.

Prevailing Exposure Standard

The U.S. Congress requires that the Federal Communications Commission ("FCC") evaluate its actions for possible significant impact on the environment. A summary of the FCC's exposure limits is shown in Figure 1. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health. The most restrictive limit for exposures of unlimited duration at several wireless service bands are as follows:

Wireless Service Band	Transmit Frequency	"Uncontrolled" Public Limit	Occupational Limit (5 times Public)
Microwave (point-to-point)	1-80 GHz	1.0 mW/cm^2	5.0 mW/cm^2
Millimeter-wave	24–47	1.0	5.0
Part 15 (WiFi & other unlicensed)	2–6	1.0	5.0
C-Band	3,700 MHz	1.0	5.0
DoD-Band	3,450	1.0	5.0
WCS (Wireless Communication)	2,305	1.0	5.0
AWS (Advanced Wireless)	2,110	1.0	5.0
PCS (Personal Communication)	1,930	1.0	5.0
Cellular	869	0.58	2.9
FNET (Public Safety Priority)	758	0.50	2.5
Band 17	734	0.49	2.45
Band 29	717	0.48	2.4
600 MHz	617	0.41	2.05
[most restrictive frequency range]	30–300	0.20	1.0

General Facility Requirements

Base stations typically consist of two distinct parts: the electronic transceivers (also called "radios") that are connected to the traditional wired telephone lines, and the antennas that send the wireless signals created by the radios out to be received by individual subscriber units. The transceivers are

HAMMETT & EDISON, INC. CONSULTING ENGINEERS SAN FRANCISCO ©2024

AT&T Mobility • Proposed Base Station (Site No. CCL06325) 707 Fremont Avenue • Los Altos, California

often located at ground level and are connected to the antennas by coaxial cables. Because of the short wavelength of the frequencies assigned by the FCC for wireless services, the antennas require line-of-sight paths for their signals to propagate well and so are installed at some height above ground. The antennas are designed to concentrate their energy toward the horizon, with very little energy wasted toward the sky or the ground. This means that it is generally not possible for exposure conditions to approach the maximum permissible exposure limits without being physically very near the antennas.

Computer Modeling Method

The FCC provides direction for determining compliance in its Office of Engineering and Technology Bulletin No. 65, "Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radio Frequency Radiation," dated August 1997. Figure 2 describes the calculation methodologies, reflecting the facts that a directional antenna's radiation pattern is not fully formed at locations very close by (the "near-field" effect) and that at greater distances the power level from an energy source decreases with the square of the distance from it (the "inverse square law"). This methodology is an industry standard for evaluating RF exposure conditions and has been demonstrated through numerous field tests to be a conservative prediction of exposure levels.

Site and Facility Description

Based upon information provided by AT&T, including zoning drawings by Spectrum Services, LLC, dated May 24, 2024, it is proposed to install twelve directional panel antennas – six each Quintel Model QD8612-2 and Ericsson Model AIR6419 – on a 75-foot steel pole, configured to resemble a pine tree,^{*} to be sited near the northeast corner of the parking lot at McKenzie Park, located at 707 Fremont Avenue in Los Altos, California. The Quintel antennas would employ up to 12° downtilt and would be mounted at an effective height of about 70 feet above ground. The Ericsson antennas would employ up to 19° downtilt and would be mounted in stacked pairs at effective heights of about 69 and 72½ feet above ground. The twelve antennas would be oriented in identical groups of four (two of each model) toward 20°T, 130°T, and 260°T. The maximum effective radiated power in any direction would be 62,940 watts, representing simultaneous operation at 24,290 watts for C-Band,[†] 11,740 watts for DoD-Band,[†] 7,220 watts for AWS, 6,770 watts for PCS, 5,040 watts for cellular, 3,150 watts for FirstNet, and 4,730 watts for Band 17 service. There are reported no other wireless telecommunications base stations at the site or nearby.

[†] AT&T reports maximum effective radiated power of 101,200 watts in C-Band and 48,900 watts in DoD-Band, to which a duty cycle of 75% is applied; a statistical factor of 32% is also included, to account for spatial distribution of served users, based on the United Nations International Telecommunication Union ITU-T Series K, Supplement 16, dated May 20, 2019.

^{*} Foliage atop the pole puts the overall height at about 80 feet.

AT&T Mobility • Proposed Base Station (Site No. CCL06325) 707 Fremont Avenue • Los Altos, California

Study Results

For a person anywhere at ground, the maximum RF exposure level due to the proposed AT&T operation is calculated to be 0.11 mW/cm^2 , which is 17% of the applicable public exposure limit. The maximum calculated level at the second-floor elevation of any nearby building[‡] is 23% of the public exposure limit. The maximum calculated level at the second-floor elevation of any nearby residence[§] is 10% of the public exposure limit. It should be noted that these results include several "worst-case" assumptions and therefore are expected to overstate actual power density levels from the proposed operation.

No Recommended Mitigation Measures

Due to their mounting location and heights, the AT&T antennas would not be accessible to unauthorized persons, and so no measures are necessary to comply with the FCC public exposure guidelines. It is presumed that AT&T will, as an FCC licensee, take adequate steps to ensure that its employees or contractors receive appropriate training and comply with FCC occupational exposure guidelines whenever work is required near the antennas themselves.

Conclusion

Based on the information and analysis above, it is the undersigned's professional opinion that operation of the base station proposed by AT&T Mobility at 707 Fremont Avenue in Los Altos, California, will comply with the prevailing standards for limiting public exposure to radio frequency energy and, therefore, will not for this reason cause a significant impact on the environment. The highest calculated level in publicly accessible areas is much less than the prevailing standards allow for exposures of unlimited duration. This finding is consistent with measurements of actual exposure conditions taken at other operating base stations.

Authorship

The undersigned author of this statement is a qualified Professional Engineer, holding California Registration Nos. E-13026 and M-20676, which expire on June 30, 2025. This work has been carried out under his direction, and all statements are true and correct of his own knowledge except, where noted, when data has been supplied by others, which data he believes to be correct.

E-13026

REGU

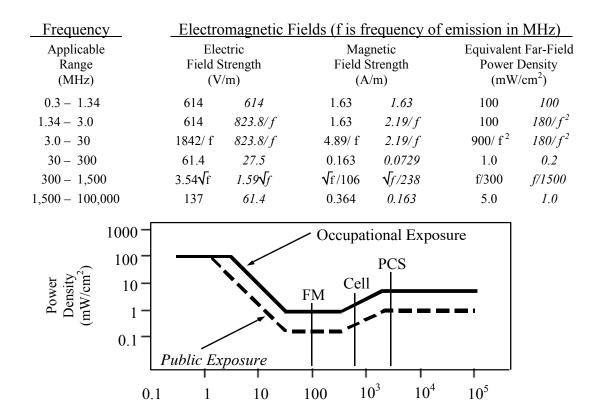
William F. Hammett, P.E. 707/996-5200

May 31, 2024

[§] Located at least 325 feet away, based on photographs from Google Maps.

N0T7 Page 3 of 3

M-20676


6-30-2025

Located at least 90 feet away, based on photographs from Google Maps.

FCC Radio Frequency Protection Guide

The U.S. Congress required (1996 Telecom Act) the Federal Communications Commission ("FCC") to adopt a nationwide human exposure standard to ensure that its licensees do not, cumulatively, have a significant impact on the environment. The FCC adopted the limits from Report No. 86, "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," published in 1986 by the Congressionally chartered National Council on Radiation Protection and Measurements ("NCRP"). Separate limits apply for occupational and public exposure conditions, with the latter limits generally five times more restrictive. The more recent standard, developed by the Institute of Electrical and Electronics Engineers IEEE C95.1-2019, "Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz," includes similar limits. These limits apply for continuous exposures from all sources and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

As shown in the table and chart below, separate limits apply for occupational and public exposure conditions, with the latter limits (in *italics* and/or dashed) up to five times more restrictive:

10 Frequency (MHz)

Higher levels are allowed for short periods of time, such that total exposure levels averaged over six or thirty minutes. for occupational or public settings, respectively, do not exceed the limits, and higher levels also are allowed for exposures to small areas, such that the spatially averaged levels do not exceed the limits. Hammett & Edison has incorporated conservative calculation formulas FCC Office in the of Engineering and Technology Bulletin No. 65 (August 1997) for projecting field levels in a computer program capable of calculating, at thousands of locations on an arbitrary grid, the total expected power density from any number of individual radio frequency sources. The program allows for the inclusion of uneven terrain in the vicinity, as well as any number of nearby buildings of varying heights, to obtain more accurate projections.

HAMMETT & EDISON, INC. CONSULTING ENGINEERS SAN FRANCISCO ©2023

0.1

RFE.CALC[™] Calculation Methodology

Assessment by Calculation of Compliance with FCC Exposure Guidelines

Hammett & Edison has incorporated the FCC Office of Engineering and Technology Bulletin No. 65 ("OET-65") formulas (see Figure 1) in a computer program that calculates, at millions of locations on a grid, the total expected power density from any number of individual radio frequency sources. The program uses the specific antenna patterns from the manufacturers and allows for the inclusion of uneven terrain in the vicinity, as well as any number of nearby buildings of varying heights, to obtain accurate projections of RF exposure levels. The program can account for spatial-averaging when antenna patterns are sufficiently narrow, and time-averaging is typically considered when operation is in single-frequency bands, which require time-sharing between the base stat

$$\frac{0.1 \times 16 \times \eta \times P_{net}}{\pi \times h^2}$$

OET-65 provides this formula for calculating power density in the far-field from an individual RF source:

power density
$$S = \frac{2.56 \times 2 \times ERP}{in \, mW/cm^2}$$

where ERP = total Effective Radiated Power (all polarizations), in kilowatts,

RFF = three-dimensional relative field factor toward point of calculation, and

D = distance from antenna effective height to point of calculation, in meters.

The factor of 2.56 accounts for the increase in power density due to reflections, assuming a reflection coefficient of $1.6 (1.6 \times 1.6 = 2.56)$. This factor is typically used for all sources unless specific information from FCC filings by the manufacturer indicate that a different reflection coefficient would apply. The factor of 1.64 is the gain of a half-wave dipole relative to an isotropic radiator. The factor of 100 in the numerator converts to the desired units of power density.

Because antennas are not true "point sources," their signal patterns may not be fully formed at close distances and so exposure levels may be lower than otherwise calculated by the formula above. OET-65 recommends the cylindrical model formula below to account for this "near-field effect":

power density	$S = \theta$	x D x h	$\frac{0.1 \times 16 \times \eta \times P_{net}}{\pi \times h^2}$
where $P_{net} = net power in post 1 to 16 temps, P_{net} watts,$			
θ = half-power beamwidth $\mathbf{R}^{\mathbf{f}}$ anteni			
D = distance from	n antenna effect	⁻ lculation, in meters, and	
h = aperture heightstarten h	ght of antenna, i	n m 	

The factor of 0.1 in the numerator converts to the desired units of power density.

OET-65 confirms that the "crossover" point between the near- and far-field regions is best determined by finding where the calculations coincide from the two different formulas, and the program uses both formulas to calculate power density.

HAMMETT & EDISON, INC. CONSULTING ENGINEERS SAN FRANCISCO ©2023