DRAINAGE STATEMENT

for

United Management Corp.

Project Location: 32 S L Street, Lake Worth, FL 33460

Prepared by

1900 NW Corporate Boulevard, Suite 101E Boca Raton, FL 33431

Digitally signed by Robert Morgado DN: E=rmorgado@bohlereng.com, CN=Robert Morgado, O="BOHLER ENGINEERING FL, LLC", L=Boca Raton, S=Florida, SERIALNUMBER=MAS20240201284080, C=US Date: 2025.03.14 15:43:41-04'00'

This item has been digitally signed and sealed by Robert Eric Morgado, PE, on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Robert Morgado, P.E. Florida Professional Engineer License No. 95462

February 28, 2025

Drainage Statement

February 27, 2025

<u>Subject:</u> WMODA – United Management Corp.

32 S L Street

Lake Worth, FL 33460

I. Site Description

The proposed project is located at 32 S L Street, Lake Worth, FL 33460, bounded by Lake Avenue, 1st St Avenue South, S L Street and S M Street and consists of a 1.60-acre site (Parcel ID: 38-43-44-21-15-023-0010; 38-43-44-21-15-023-0020; 38-43-44-21-15-023-0030; 38-43-44-21-15-023-0050; 38-43-44-21-15-023-0060; 38-43-44-21-15-023-0090; 38-43-44-21-15-023-0191; 38-43-44-21-15-023-0220; 38-43-44-21-15-023-0230; 38-43-44-21-15-023-0250). The site is in FEMA flood zone X per FEMA map number 12099C0781G. The site is falls within the South Florida Water Management District, and qualifies for a General Permit (10-2) under subsection 403.814(12), F.S.

II. Existing Conditions & Hydrology

The existing site currently consists of existing buildings and parking lot area with storm sewer mains running along the East and South sides of the property. All existing runoff discharges off-site without a known control structure.

III. Proposed Conditions & Hydrology

The proposed development will consist of a residential building, a museum, an art walk, and associated parking. The development will also include a proposed drainage system that will improve the site conditions and provide water quality and water attenuation using Contech underground storm chambers. The proposed system is designed to store the 3-year 1-hour storm event on-site prior to any discharge. The system will connect into the existing drainage with the alley way, and we then be controlled with a control structure. See the construction plans for details.

IV. Site Area Summary

Site Area	Post-Development		
Pervious Area	± 0.14 Acres		
Impervious Area (Excluding	± 0.51 Acres		
Building Area)			
Building Area	± 0.95 Acres		

V. Offsite Area

The drainage system capacity and ICPR model routing has included the offsite alley way runoff. See ICPR4 routing for model results.

Offsite Area	Contributory
Impervious Area (Alley)	± 0.12 Acres

VI. Water Quality

A water quality treatment volume equal to 2.5" times the percent impervious will be provided within the proposed onsite treatment areas. The site will be treated and retained using underground chambers up to the 3-year 1-hour storm event. The total water quality volume needed for the site was calculated to be 0.26 ac-ft. As shown in the table below, the proposed underground treatment meets the water quality standards.

	Treatment Method	Volume Required (ac-ft)	Weir Elevation (ft NAVD)	Volume Provided
Site Area	Contech Chambers	0.260	9.30	0.262

VII. Discharge

The site is designed to have zero discharge up the 3-year 1-hour storm event. Please see the ICPR4 modeling results summarized as shown.

	Area	Allowable	Post	Peak Stage
	(acres)	Discharge (cfs)	Development	(ft NAVD)
			Discharge (cfs)	
3-year 1-hour	1.72	0.00	0.00	9.02

VIII. Outfall Structures

Weir:

Structure	Count	Туре	Depth (ft)	Width (ft)	Elevation (ft NAVD)
Control Structure	1	Sharp Crested, Vertical	2.20	4.50	9.30

VIIII. Water Quantity

The proposed minimum finished floors will be maintained above the 100-year 3-day storm per SFWMD Applicant's Handbook Volume II Part III Section 3.4. To protect the road subgrade, the minimum roadway crown elevation shall be at least 2 feet higher than the control elevation (SFWMD Applicant's Handbook Volume II Part III Section 3.5). Perimeter grading and/or berms will be utilized to contain runoff from the 25-year 3-day design storm event. Proposed minimum roadway elevations will be held above design standards of a 5-year 1-day storm. The underground storage chambers have been designed to fully retain all runoff from the 3-year 1-hour storm event.

Design Storms:

Building Storm Frequency: 100-year 72-hour Design Rainfall: 16 inches

	Peak Stage	Min. Finished Floor (ft	FEMA Elevation
	(ft NAVD)	NAVD)	(ft NAVD)
Site Area	10.90	12.70	N/A

Berm Storm Frequency: 25-year 72-hour Design Rainfall: 13 inches

	Peak Stage (ft NAVD)	Min. Perimeter Berm (ft NAVD)
Site Area	10.53	11.50

Vehicular Use Storm Frequency: 5-year 1-hour Design Rainfall: 3.2 inches

	Peak Stage (ft NAVD)	Min. Road Grade (ft NAVD)
Site Area	10.06	11.00

Retention Storm Frequency: 3-year 1-hour Design Rainfall: 3.6 inches

	Peak Stage (ft NAVD)	Weir Elevation (ft NAVD)
Site Area	9.02	9.30

X. Conclusion

Please see the attached drainage calculations and construction plans. As described above, the proposed design meets South Florida Water Management District and Lake Worth Drainage District.

Date: 2/27/2025 Project: WMODA Project No.: FLB230233

Calculated By: Zach Hayes Checked By: Robert Morgado

WMODA - Stormwater Management

SITE DATA		
Total Site Area (A _T)=	1.60 Acres	100.0%
Total Building (A _B)=	0.95 Acres	59.4%
Total Canopy (A _C)=	0.05 Acres	3.1%
Total Pavement/Sidewalk (A _I)=	0.46 Acres	28.8%
Total Green (A _P)=	0.14 Acres	8.8%
Total Lakes Normal Water Level (A _L)=	0.00 Acres	0.0%
OFFSITE DATA		
Offsite Contributory Area (Alley) =	0.12 Acres	100.0%
SOIL STORAGE CALCULATIONS		
Average Pervious Elevation =	12.0 Ft. +/-	NAVD
Seasonal High Water Table		NAVD (avg)
Depth to water table=	6.00 Ft.	
Soil Storage Type	Flatwoods	
From SFWMD Manual for to W.T. (Comp S) =	6.75 ln.	
Compute overall soil storage for site.=	0.59 In.	
$S=(Comp S)x[A_P/A_T];$		
Compute CN value for site=	94	
CN=1000/(S+10)		
COMPUTE 100-Year, 72-Hour Runoff Volume for Proposed Site		
Rainfall (P ₁₀₀₋₇₂),	16.00 ln.	
$Q_{100-72} = (P_{100-72} - 0.2S^2)/(P_{100-72} + 0.8S) =$	15.31 ln.	
Compute volume generated by storm		
$V = (P_{100-72}/12)xA_T =$	2.04 AcFt.	
COMPUTE 25-Year, 72-hour Runoff Volume for Proposed Site		
Rainfall (P ₅₋₁),	13.00 ln.	
$Q_{5-1} = (P_{5-1} - 0.2S^2)/(P_{5-1} + 0.8S) =$	12.32 ln.	
Compute volume generated by storm		
$V = (P_{5-24}/12)xA_T =$	1.64 AcFt.	
COMPUTE 5-Year, 1-hour Runoff Volume for Proposed Site		
Rainfall (P ₅₋₁),	3.20 ln.	
$Q_{5-1} = (P_{5-1} - 0.2S^2)/(P_{5-1} + 0.8S) =$	2.59 ln.	
Compute volume generated by storm		
$V = (P_{5-24}/12)xA_T =$	0.34 AcFt.	
COMPUTE 3-Year, 1-hour Runoff Volume for Proposed Site		
Rainfall (P ₅₋₂₄),	2.60 ln.	
$Q_{5-24} = (P_{5-24} - 0.2S^2)/(P_{5-24} + 0.8S) =$	2.00 ln.	
Compute volume generated by storm		
$V = (P_{5-24}/12)xA_T =$	0.27 AcFt.	

Date: 2/27/2025 Project: WMODA Project No.: FLB230233

Calculated By: Zach Hayes **Checked By: Robert Morgado**

WMODA - Water Quality

SITE DATA

Total Site Area (A _T)=	1.60 Acres	(100.0%)
Total Building/Canopy (A _B)=	1.00 Acres	(62.5%)
Total Pavement/Sidewalk (A _I)=	0.46 Acres	(28.8%)
Total Green (A _P)=	0.14 Acres	(8.8%)
Total Pond/Lake (A _L)	0.00 Acres	(0.0%)

Compute Water Quality Requirements

-Compute first inch of runoff over entire site

$$WQ_1 = 1 \text{ Inch x } A_T \text{ x } (1 \text{ Ft./12 In.})$$

= 1/12 x 1.6 Acres
= 0.13 Ac.-Ft. or = 1.6 Ac.-In.

-Compute 2.5" x % of Imperviousness

A) Calculate site area for W.Q. Imperviousness

$$A_S = A_{T} - (A_B + A_L)$$

= 1.6 - (1 + 0)
= 0.60 Acres

B) Calculate Imperviousness Area for W.Q.

$$A_{IMP} = A_{S}-A_{P}$$

= 0.6 - 0.14
= 0.46 Acres

C) Calculate percent imperviousness

$$%_{IMP} = (A_{IMP} / A_S) \times 100$$

= (0.46 / 0.6) ×100
= 76.7%

D) Calculate 2.5 inches times the percent imperviousness

$$V_{2.5}$$
 = 2.5 in. x %_{IMP}
= 2.5 in. x 0.767
= 1.92 ln.

E) Calculate W.Q. volume required

$$WQ_{2.5} = V_{2.5} x (A_T - A_L)$$
= 1.92 x (1.6 - 0)
= 0.26 Ac.-Ft. or = 3.12 Ac.-In.

-Determine W.Q. required for site

WQ WO= 0.26 Ac.-Ft. or = 3.12 Ac.-In.at Elev. 9.25

(See stage storage)

< Weir at elev. = 9.30

Since the 3.12 ac-in is greater than the 1.6 ac-in computed for the first inch of runoff the volume of 3.12 ac-in controls.

BOHLER//

Date: 2/27/2025 Project: WMODA Project No: FLB230233

Calculated By: Zach Hayes Checked By: Robert Morgado

	WMODA - Stage Storage									
Basin	Remaining Green	Pavement/Sidewalk	Offsite Contributory Area (Alley)	Chamber 1	Chamber 2	Chamber 3	Canopy	Building (res)	Building (museum)	Total Area (Ac.)
Land Type	Pervious	Impervious	Impervious	N/A	N/A	N/A	Impervious	Impervious	Impervious	
Area (Acres)	0.14	0.46	0.12	N/A	N/A	N/A	0.05	0.76	0.19	1.72
Storage Type	Sloped	Sloped	Sloped	Flat	Flat	Flat	Sloped	Flat	Flat	
Start (Ft.)	11.00	11.50	11.50	N/A	N/A	N/A	12.00	13.83	12.70	
End (Ft.)	12.50	12.50	12.50	N/A	N/A	N/A	15.00	13.83	12.70	
Stage (Ft.)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Storage (Ac-Ft)	Total Storage (Ac-Ft)
5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.50	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02
6.00	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.00	0.05
6.50	0.00	0.00	0.00	0.00	0.01	0.07	0.00	0.00	0.00	0.08
7.00	0.00	0.00	0.00	0.00	0.02	0.10	0.00	0.00	0.00	0.12
7.50	0.00	0.00	0.00	0.00	0.02	0.13	0.00	0.00	0.00	0.15
8.00	0.00	0.00	0.00	0.01	0.03	0.15	0.00	0.00	0.00	0.19
8.50	0.00	0.00	0.00	0.01	0.03	0.18	0.00	0.00	0.00	0.22
9.00	0.00	0.00	0.00	0.01	0.04	0.19	0.00	0.00	0.00	0.25
9.50	0.00	0.00	0.00	0.02	0.04	0.21	0.00	0.00	0.00	0.27
10.00	0.00	0.00	0.00	0.02	0.04	0.21	0.00	0.00	0.00	0.27
10.50	0.00	0.00	0.00	0.02	0.04	0.21	0.00	0.00	0.00	0.27
11.00	0.00	0.00	0.00	0.02	0.04	0.21	0.00	0.00	0.00	0.27
11.50	0.01	0.00	0.00	0.02	0.04	0.21	0.00	0.00	0.00	0.28
12.00	0.05	0.06	0.02	0.02	0.04	0.21	0.00	0.00	0.00	0.39
12.50	0.11	0.23	0.06	0.02	0.04	0.21	0.00	0.00	0.00	0.67
12.70	0.13	0.32	0.08	0.02	0.04	0.21	0.00	0.00	0.00	0.81

Appendix C: Isohyetal Maps from SFWMD Technical Memorandum, *Frequency Analysis of One and Three Day Rainfall Maxima for central and southern Florida*, Paul Trimble, October 1990.

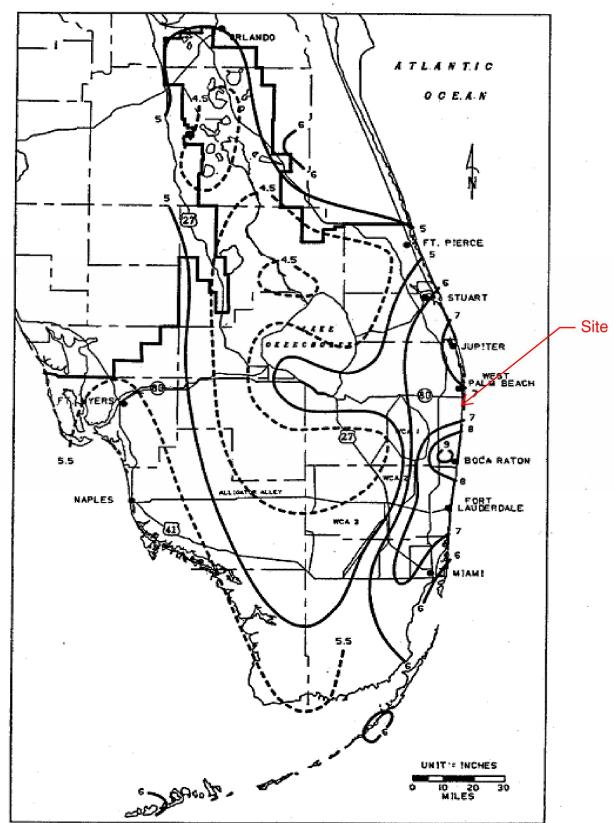


FIGURE C-3. 1-DAY RAINFALL: 5-YEAR RETURN PERIOD

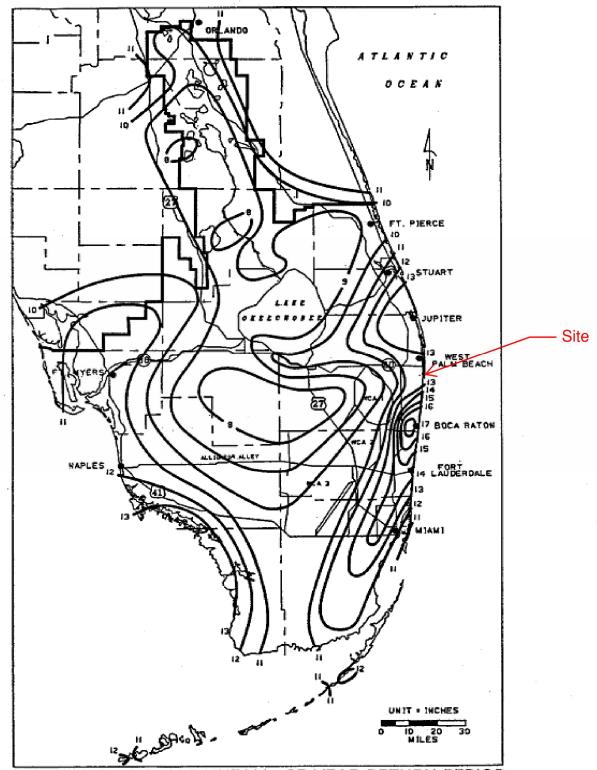


FIGURE C-8. 3-DAY RAINFALL: 25-YEAR RETURN PERIOD

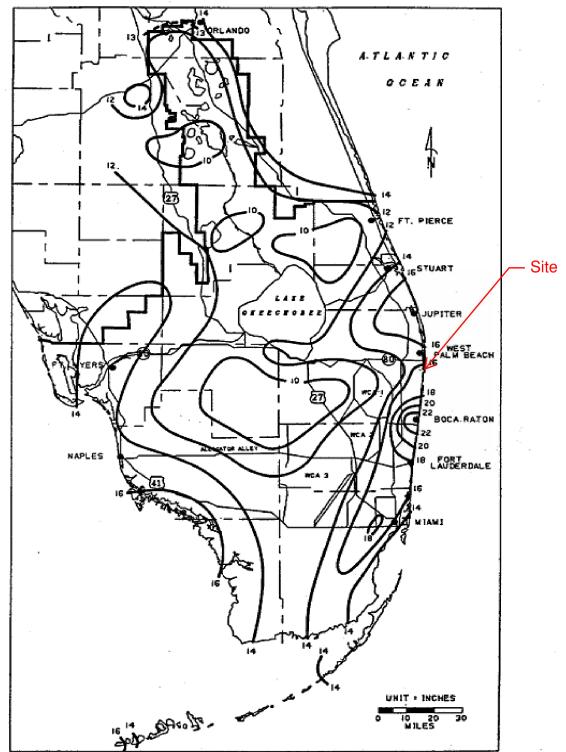
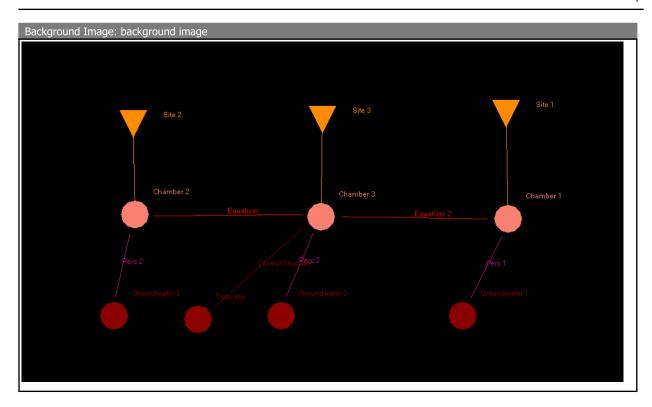



FIGURE C-9. 3-DAY RAINFALL: 100-YEAR RETURN PERIOD

Simple Basin: Site 1

Scenario: Scenario1

Node: Chamber 1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0

Area: 0.4700 ac

Curve Number: 94.0

Ia/S: 0.00

% Impervious: 0.00

% DCIA: 0.00 % Direct: 0.00

Rainfall Name:

Comment:

Simple Basin: Site 2

Scenario: Scenario1

Node: Chamber 2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number Time of Concentration: 10.0000 min

Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0

Area: 0.4300 ac

Curve Number: 94.0

Ia/S: 0.00 % Impervious: 0.00 % DCIA: 0.00 % Direct: 0.00

Rainfall Name:

Comment:

Simple Basin: Site 3

Scenario: Scenario1

Node: Chamber 3

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH484 Peaking Factor: 484.0

Area: 0.8200 ac

Curve Number: 94.0

Ia/S: 0.00

% Impervious: 0.00

% DCIA: 0.00 % Direct: 0.00

Rainfall Name:

Comment:

Node: Chamber 1

Scenario: Scenario1
Type: Stage/Volume
Base Flow: 0.00 cfs
Initial Stage: 7.00 ft

Warning Stage: 12.70 ft Alert Stage: 0.00 ft

Stage [ft]	Volume [ac-ft]	Volume [ft3]
7.00	0.00	0
7.17	0.00	44
7.33	0.00	87
7.50	0.00	131
7.58	0.00	174
7.75	0.01	218
7.92	0.01	261
8.00	0.01	305
8.17	0.01	348
8.25	0.01	392
8.42	0.01	436
8.50	0.01	479
8.67	0.01	523
8.75	0.01	566
8.92	0.01	610
9.00	0.02	653
9.17	0.02	697
9.25	0.02	741
9.42	0.02	784
9.58	0.02	828
9.83	0.02	871
10.00	0.02	915
10.25	0.02	958
13.83	0.02	958

Comment:

Node: Chamber 2

Scenario: Scenario1
Type: Stage/Volume
Base Flow: 0.00 cfs
Initial Stage: 5.00 ft
Warning Stage: 12.70 ft
Alert Stage: 0.00 ft

Stage [ft]	Volume [ac-ft]	Volume [ft3]
5.00	0.00	0
5.17	0.00	44
5.25	0.00	87
5.42	0.00	131
5.50	0.00	174
5.67	0.01	218
5.75	0.01	261

Stage [ft]	Volume [ac-ft]	Volume [ft3]
5.83	0.01	305
6.00	0.01	348
6.08	0.01	392
6.17	0.01	436
6.25	0.01	479
6.33	0.01	523
6.50	0.01	566
6.58	0.01	610
6.67	0.02	653
6.75	0.02	697
6.83	0.02	741
7.00	0.02	784
7.08	0.02	828
7.17	0.02	871
7.25	0.02	915
7.33	0.02	958
7.42	0.02	1002
7.50	0.02	1045
7.67	0.03	1089
7.75	0.03	1133
7.83	0.03	1176
7.92	0.03	1220
8.00	0.03	1263
8.08	0.03	1307
8.25	0.03	1350
8.33	0.03	1394
8.42	0.03	1437
8.50	0.03	1481
8.67	0.04	1525
8.75	0.04	1568
8.83	0.04	1612
9.00	0.04	1655
9.08	0.04	1699
9.25	0.04	1742
9.33	0.04	1786
12.70	0.04	1786

Comment:

Node: Chamber 3

Scenario: Scenario1
Type: Stage/Volume
Base Flow: 0.00 cfs
Initial Stage: 5.00 ft
Warning Stage: 12.70 ft
Alert Stage: 0.00 ft

Stage [ft]	Volume [ac-ft]	Volume [ft3]
5.00	0.00	0
5.08	0.00	131
5.17	0.01	261
5.25	0.01	392
5,33	0,01	566
5.42	0.02	697
5.50	0.02	871
5,58	0.02	1045
5.67	0.03	1220
5.75	0,03	1394
5.83	0.04	1568
5.92	0.04	1742
6.00	0.04	1917
6.08	0.05	2134
6.17	0.05	2309
6.25	0.06	2483
6.33	0.06	2701
6.42	0.07	2875
6.50	0.07	3093
6.58	0.08	3267
6.67	0.08	3485
6.75	0.08	3659
6.83	0.09	3877
6.92	0.09	4051
7.00	0.10	4269
7.08	0.10	4487
7.17	0.11	4661
7.25	0.11	4879
7.33	0.12	5053
7.42	0.12	5271
7.50	0.13	5489
7.58	0.13	5663
7.67	0.14	5881
7.75	0.14	6055
7.83	0.14	6273
7.92	0.15	6447
8.00	0.15	6621
8.08	0.16	6839
8.17	0.16	7013
8,25	0.17	7187
8.33	0.17	7362
8.42	0.17	7536
8.50	0.18	7710
8.58	0.18	7841
8.67	0.18	7971
8,75	0.19	8102
8.83	0.19	8233
8.92	0.19	8364

Stage [ft]	Volume [ac-ft]	Volume [ft3]
9.00	0.20	8494
9.08	0.20	8625
9.17	0.20	8712
9.25	0.20	8843
9.33	0.21	8930
9.42	0.21	9017
12.70	0.21	9017

Comment:

Node: Groundwater 1

Scenario: Scenario1
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.00 ft
Warning Stage: 13.83 ft
Alert Stage: 0.00 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
9999	0	0	0.0000	13.83

Comment:

Node: Groundwater 2

Scenario: Scenario1
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 5.00 ft
Warning Stage: 11.83 ft
Alert Stage: 0.00 ft
Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
9999	0	0	0.0000	11.83

Comment:

Node: Groundwater 3

Scenario: Scenario1 Type: Time/Stage Base Flow: 0.00 cfs
Initial Stage: 5.00 ft
Warning Stage: 11.83 ft
Alert Stage: 0.00 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
9999	0	0	0.0000	11.83

Comment:

Node: Tailwater

Scenario: Scenario1
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 5.00 ft
Warning Stage: 5.00 ft
Alert Stage: 0.00 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
9999	0	0	0.0000	5.00

Comment:

Drop Structure Link: Control Structure Upstream Pipe Downstream Pipe Scenario: Scenario1 Invert: 9.00 ft Invert: 8.75 ft From Node: Chamber 3 Manning's N: 0.0120 Manning's N: 0.0120 To Node: Tailwater Geometry: Circular Geometry: Circular Link Count: 1 Max Depth: 1.50 ft Max Depth: 1.50 ft Bottom Clip Pipe Flow Direction: Both Solution: Combine Default: 0.00 ft Default: 0.00 ft Increments: 0 Op Table: Op Table: Pipe Count: 1 Ref Node: Ref Node: Manning's N: Manning's N: Damping: 0.0000 ft 0.0000 0.0000 Top Clip Length: 21.32 ft FHWA Code: 0 Default: 0.00 ft Default: 0.00 ft Op Table: Entr Loss Coef: 0 Op Table: Ref Node: Exit Loss Coef: 0 Ref Node: Bend Loss Coef: 0 Manning's N: 0.0000 Manning's N: 0.0000 Bend Location: 0.00 dec Energy Switch: Energy Pipe Comment:

Weir Component

Weir: 1

Weir Count: 1

Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 9.30 ft

Control Elevation: 9.30 ft Max Depth: 2.20 ft Max Width: 4.50 ft

Fillet: 0.00 ft

Bottom Clip

Default: 0.00 ft

Op Table: Ref Node:

Top Clip

Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table: Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Pipe Link: Equalizer		Upst	ream	Dowr	nstream
Scenario:	Scenario1	Invert:	5.00 ft	Invert:	5.00 ft
From Node:	Chamber 2	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Chamber 3	Geometry	/: Circu l ar	Geomet	y: Circu l ar
Link Count:	1	Max Depth:	1.50 ft	Max Depth:	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	100.00 ft	Op Table:		Op Table:	
FHWA Code:	0	Ref Node:		Ref Node:	
Entr Loss Coef:	0	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0			Top Clip	
Bend Loss Coef:	0	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 dec	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:	_	·			

Pipe Link: Equa l izer 2	2	Upst	ream	Down	stream
Scenario:	Scenario1	Invert:	7.00 ft	Invert:	5.00 ft
From Node:	Chamber 1	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Chamber 3	Geometry	/: Circu l ar	Geometry	y: Circu l ar
Link Count:	1	Max Depth:	1.00 ft	Max Depth:	1.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	300.00 ft	Op Table:		Op Table:	
FHWA Code:	0	Ref Node:		Ref Node:	
Entr Loss Coef:	0	Manning's N:	0.0000	Manning's N:	0.0000

Exit Loss Coef: 0 Bend Loss Coef: 0

Default: 0.00 ft Default: 0.00 ft

Top Clip

Bend Location: 0.00 dec Energy Switch: Energy

Op Table: Op Table: Ref Node: Ref Node:

Manning's N: 0.0000 Manning's N: 0.0000

Comment:

Percolation Link: Perc 1

Surface Area Option: Vary Based on Stage/Area

Table

From Node: Chamber 1 To Node: Groundwater 1

Scenario: Scenario1

Vertical Flow Termination: Horizontal Flow Algorithm

> Perimeter 1: 107.00 ft Perimeter 2: 107.01 ft Perimeter 3: 107.10 ft

Flow Direction: Both Aquifer Base Elevation: -10.00 ft Water Table Elevation: 7.00 ft

Distance P1 to P2: 5.00 ft Distance P2 to P3: 10.00 ft

Horizontal Conductivity: 3.160 fpd Vertical Conductivity: 2.120 fpd Fillable Porosity: 0.250

Annual Recharge Rate: 0 ipy

Link Count: 1

of Cells P1 to P2: # of Cells P2 to P3: 4

Layer Thickness: 0.00 ft

Comment:

Percolation Link: Perc 2

Surface Area Option: Vary Based on Stage/Area

Table

Scenario: Scenario1 From Node: Chamber 2

To Node: Groundwater 2

Vertical Flow Termination: Horizontal Flow Algorithm Perimeter 1: 134.00 ft

Flow Direction: Both Aquifer Base Elevation: -10.00 ft Water Table Elevation: 5.00 ft Annual Recharge Rate: 0 ipy Horizontal Conductivity: 3.500 fpd

Link Count: 1

Perimeter 2: 134.01 ft Perimeter 3: 134.10 ft Distance P1 to P2: 5.00 ft Distance P2 to P3: 10.00 ft

of Cells P1 to P2: # of Cells P2 to P3: 4

Vertical Conductivity: 2.350 fpd Fillable Porosity: 0.250

Layer Thickness: 0.00 ft

Comment:

Percolation Link: Perc 3

Surface Area Option: Vary Based on Stage/Area

From Node: Chamber 3

Table

To Node: Groundwater 3

Scenario: Scenario1

Vertical Flow Termination: Horizontal Flow Algorithm

Link Count: 1

409.00 ft Perimeter 1:

Flow Direction: Both

Aquifer Base Elevation: -10.00 ft Perimeter 2: 409.01 ft
Water Table Elevation: 5.00 ft Perimeter 3: 409.10 ft
Annual Recharge Rate: 0 ipy Distance P1 to P2: 5.00 ft
Horizontal Conductivity: 3.500 fpd Distance P2 to P3: 10.00 ft
Vertical Conductivity: 2.350 fpd # of Cells P1 to P2: 2
Fillable Porosity: 0.250 # of Cells P2 to P3: 4

Layer Thickness: 0.00 ft

Comment:

Simulation: 100 YR- 72 HR

Scenario: Scenario1

Run Date/Time: 2/27/2025 9:27:51 AM Program Version: StormWise 4.08.01

General

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	72.0000

Hydrology [sec] Surface Hydraulics

[sec]

Min Calculation Time: 60.0000 0.1000

Max Calculation Time: 30.0000

Output Time Increments

Hydro**l**ogy

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.000	15.0000
0	0	0	24.000	6.0000
0	0	0	72.000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
0	0	0	24.0000	5.0000
0	0	0	72.0000	15.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder:

Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set:

> Green-Ampt Set: Vertical Layers Set: Impervious Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr

Max Iterations: 6
Over-Relax Weight 0.5 dec Ia/S: 0.20 dec

Fact:

dZ Tolerance: 0.0010 ft

Max dZ: 1.0000 ft

Smp/Man Basin Rain Glol

Opt:

Link Optimizer Tol: 0.0001 ft

Rainfall Name: ~FLMOD
Rainfall Amount: 16.00 in
Storm Duration: 72.0000 hr
Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (1D): Energy

Comment:

Simulation: 25 YR - 72 HR

Scenario: Scenario1

Run Date/Time: 2/27/2025 9:28:14 AM Program Version: StormWise 4.08.01

General

Run Mode: Normal

 Year
 Month
 Day
 Hour [hr]

 Start Time:
 0
 0
 0
 0.0000

 End Time:
 0
 0
 0
 72,0000

Hydrology [sec]	Surface Hydraulics	[sec]
Min Calculation Time:	60.0000	0.1000
Max Calculation Time:	30.0000	

Output Time Increments

Hydro**l**ogy

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.000	15.0000
0	0	0	24.000	5.0000
0	0	0	72.000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
0	0	0	24.0000	5.0000
0	0	0	72.0000	15.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder:

Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set:

> Green-Ampt Set: Vertical Layers Set: Impervious Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr

Max Iterations: 6

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft

Max dZ: 1.0000 ft

Smp/Man Basin Rain Global

Opt:

Ia/S: 0.20 dec

Link Optimizer Tol: 0.0001 ft

Rainfall Name: ~FLMOD
Rainfall Amount: 13.00 in
Storm Duration: 72.0000 hr
Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (1D): Energy

Comment:

Simulation: 3-YR-1 HR

Scenario: Scenario1

Run Date/Time: 2/27/2025 9:28:41 AM Program Version: StormWise 4.08.01

General

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	1.0000

Hydrology [sec] Surface Hydraulics
[sec]
60.0000 0.1000

Min Calculation Time: 60.0000 0.1000

Max Calculation Time: 30.0000

Output Time Increments

Hydro**l**ogy

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	1.0000
0	0	0	1.0000	5.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
0	0	0	1.0000	5.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder:

Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set:

> Green-Ampt Set: Vertical Layers Set: Impervious Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24,0000 hr

Max Iterations: 6
Over-Relax Weight 0.5 dec

Ia/S: 0.20 dec

Fact:

dZ Tolerance: 0.0010 ft

Max dZ: 1.0000 ft Smp/Man Basin Rain Global

Opt:

Link Optimizer Tol: 0.0001 ft

Rainfall Name: ~FLMOD
Rainfall Amount: 2.60 in
Storm Duration: 1.0000 hr
Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (1D): Energy

Comment:

Simulation: 5 YR - 1 HR

Scenario: Scenario1

Run Date/Time: 2/27/2025 9:28:43 AM Program Version: StormWise 4.08.01

Genera

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	1.0000

Hydrology [sec] Surface Hydraulics

 Min Calculation Time:
 60.0000
 0.1000

 Max Calculation Time:
 30.0000

Output Time Increments

Hydro**l**ogy

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	1.0000
0	0	0	1.0000	5.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
0	0	0	1.0000	5.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder:

Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set:

> Green-Ampt Set: Vertical Layers Set: Impervious Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr

Max Iterations: 6

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft

Max dZ: 1.0000 ft Smp/Man Basin Rain Global

Opt:

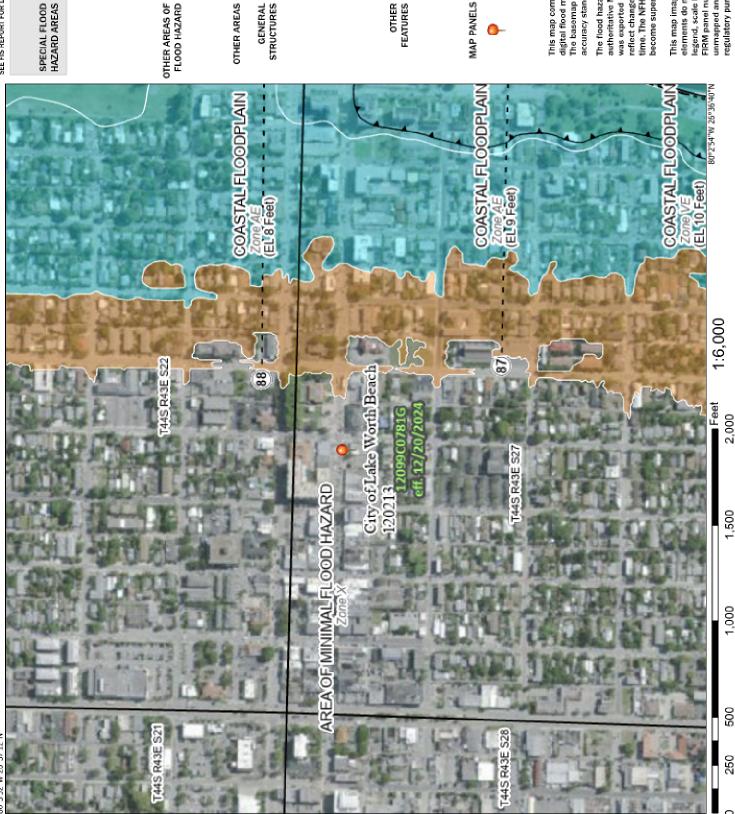
Ia/S: 0.20 dec

Link Optimizer Tol: 0.0001 ft

Rainfall Name: ~FLMOD
Rainfall Amount: 3.20 in
Storm Duration: 1.0000 hr
Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (1D): Energy


Comment:

1D Nodes - Max

Sim	Node Name	Maximum Stage [ft]
100 YR- 72 HR	Chamber 1	10.90
100 YR- 72 HR	Chamber 2	10.20
100 YR- 72 HR	Chamber 3	10.18
25 YR - 72 HR	Chamber 1	10.53
25 YR - 72 HR	Chamber 2	10.07
25 YR - 72 HR	Chamber 3	10.06
3-YR-1 HR	Chamber 1	9.02
3-YR-1 HR	Chamber 2	9.01
3-YR-1 HR	Chamber 3	9.01
5 YR - 1 HR	Chamber 1	10.06
5 YR - 1 HR	Chamber 2	9.87
5 YR - 1 HR	Chamber 3	9.86

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

HAZARD AREAS SPECIAL FLOOD

With BFE or Depth Zone AE, AO, AH, VE, AR Without Base Flood Elevation (BFE)

0.2% Annual Chance Flood Hazard, Areas depth less than one foot or with drainage of 1% annual chance flood with average areas of less than one square mile Zone A Regulatory Floodway

Area with Reduced Flood Risk due to Future Conditions 1% Annual Chance Flood Hazard Zone X Levee, See Notes, Zane X Area with Flood Risk due to Levee Zone p

NO SCREEN Area of Minimal Flood Hazard Zone >

Effective LOMRs

Area of Undetermined Flood Hazard Zone D

OTHER AREAS

Channel, Culvert, or Storm Sewer

STRUCTURES | Levee, Dike, or Floodwall GENERAL

Cross Sections with 1% Annual Chance Water Surface Elevation 17.5

Base Flood Elevation Line (BFE) Coastal Transect man () S man

Limit of Study

Coastal Transect Baseline Jurisdiction Boundary

Hydrographic Feature Profile Baseline

OTHER

FEATURES

No Digital Data Available Digital Data Available

point selected by the user and does not represent The pin displayed on the map is an approximate Unmapped

MAP PANELS

an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the was exported on 1/23/2025 at 2:19 PM and does not become superseded by new data over time. This map image is void if the one or more of the following map FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes. elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers,

ECS Florida, LLC

Subsurface Exploration and Geotechnical Engineering Report

WMODA Lake Worth Development

32 S L Street Lake Worth, Palm Beach County, Florida 33304

ECS Project Number 25:4174

May 8, 2024

Geotechnical • Construction Materials • Environmental • Facilities

May 8, 2024

Mr. Nicholas Tangredi Sunshine Lake Worth Development LLC C/O HE2PD 10 Grand Avenue Rockville Centre, New York 11570

ECS Project No. 25:4174

Reference: Subsurface Exploration and Geotechnical Engineering Report

WMODA Lake Worth Development

32 S L Street

Lake Worth, Palm Beach County, Florida 33304

Dear Mr. Tangredi:

ECS Florida, LLC (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our agreed to scope of work. This report presents our understanding of the geotechnical aspects of the project, the results of the field exploration conducted, and our geotechnical design and construction recommendations for the project.

It has been our pleasure to be of service to you during the design phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions estimated for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Florida, LLC

David W. Spangler, State of Florida Professional Engineer, License No. 58770

This item has been digitally signed and sealed by David W. Spangler on the date indicated here.

Printed Copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

2024.05.0

8 15:30:30

-04'00'

Ernesto J Masis, E.I.

Executo Masio

Geotechnical Project Manager EMasis@ecslimited.com David W. Spangler, P.E.

Dat, Suh

Principal Engineer

Florida Registration No. 58770

DSpangler@ecslimited.com

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	3
1.0	INTRODUCTION	5
2.0	PROJECT INFORMATION	6
2.1	Site Information	6
2.2	Proposed Construction	6
3.0	FIELD EXPLORATION AND LABORATORY TESTING	7
3.1	Usual Open Hole Testing	8
3.2	Subsurface Characterization	8
3.3	Groundwater Observations	
3.4	LABORATORY TESTING	9
4.0	DESIGN RECOMMENDATIONS	9
4.1	BASEMENT CONSIDERATIONS	9
4.2	MAT FOUNDATION	
4.3	SHALLOW FOUNDATION – MUSEUM BUILDING	10
4.4	GROUND IMPROVEMENTS (STONE COLUMNS)	
4.5	DEEP FOUNDATION – AUGER CAST PILES	11
	4.5.1 Test Pile Program: Bi-Directional (O-Cell) Load Test	13
	4.5.2 Augercast Pile Construction Guidelines	14
4.6	TREMIE PLUG/SEAL	16
4.7	SOIL-CEMENT MIXING	16
4.8	LIGHTLY LOADED STRUCTURES	16
4.9	FLOOR SLABS	16
4.10	SEISMIC DESIGN	17
4.11	SITE DESIGN CONSIDERATIONS	18
	4.11.1 Pavements	18
4.12	BELOW GRADE WALLS	20
4.13	B UNDERSLAB SUBDRAINAGE	21
5.0	SITE CONSTRUCTION RECOMMENDATIONS	21
5.1	Subgrade Preparation	
	5.1.1 Previous Site Development	
	5.1.2 Demolition	21
	5.1.3 Stripping and Grubbing	21
	5.1.4 Proofrolling	
	5.1.5 Site Temporary Dewatering	22
	5.1.6 Compaction	22
5.2	Structural Fill	23
5.3	Foundations and Floor Slabs	24
5.4	Utility Installations	24
6.0	Recommended Additional Testing	25
7.0	Closing	26

APPENDICES

Appendix A - Diagrams

- Site Location Diagram
- Boring Location Diagram
- Generalized Subsurface Profile A-A'
- Flood Map
- Soil Survey Map

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure: Standard Penetration Testing (SPT)
- Boring Logs
- Exfiltration Test Result

Appendix C – Laboratory Summary

• Laboratory Data Summary

Appendix D – Project Details and Supporting Documents

• Laboratory Capacity Results

EXECUTIVE SUMMARY

This executive summary is intended as a very brief overview of the primary geotechnical conditions that are expected to affect foundation design and earthwork construction. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- The purpose of this geotechnical exploration was to provide subsurface information for the foundation design and earthwork construction of the proposed Residential and Museum Development. ECS understands that the proposed development is to include the removal of the existing 1-story to 2-story buildings and construction of a new 3-story museum and a series of connected residential condominium buildings ranging from 2-story to 5-story with an underground basement. The condominium buildings will have 1-level of underground parking. Based on our field observations and aerial images, the site is currently occupied by an existing 1-story to 2-story residential buildings.
- The geotechnical exploration performed for the planned development included 8 Standard Penetration Test (SPT) borings drilled to depth a depth in the range of 30 feet to 75 feet below the existing ground surface. Subsurface conditions within the borings generally consisted of FILL material of fine to medium SAND (SP) followed by a layer of fine to medium SAND (SP) and then terminating with a soft to hard LIMESTONE material to maximum termination depth of the borings (75 feet below existing grade).
- Loading information was not provided at the time of this proposal. Based on similar projects and our experience, ECS presumes the proposed 5-story multi-family building with 1-level underground parking garage likely consist of maximum column loads of 725 kips. Based on the maximum column load of 725 kips for the proposed 5-story multi-family building with 1-level underground parking garage, it is our opinion that the proposed residential buildings can be supported on a mat foundation if the site can be dewatered with a maximum allowable bearing pressure of 1,500 psf.
- Based on similar projects and our experience, ECS estimates the proposed 3-story Museum building will likely consist of maximum column loads of 600 kips and wall loads of 10 kips/ft or less. Based on the presumed loading information given above, it is recommended that a ground improvement method in the form of vibratory stone columns can be used to improve bearing capacities. With ground improvements, it is our opinion that allowable bearing capacities in the range of 6,000 psf can be achieved allowing shallow foundations to be constructed at manageable sizes. We recommend engaging with a design-build contractor experienced with South Florida soils be retained to further evaluate this option, if deemed to be a desirable alternative.
- Based on the presumed finished basement and pile cap depths, dewatering will likely be required during installation. The dewatering system should be determined by the contractor.

• ECS should be retained to review the design documents for conformance with our recommendations and be retained for construction materials testing and special inspections to facilitate proper implementation of our recommendations.

1.0 INTRODUCTION

The purpose of this geotechnical exploration was to provide subsurface information for the foundation design and earthwork construction of the proposed residential development. ECS understands that the proposed development is to include the removal of the existing building and construction of a condominium buildings ranging from 2-story to 5-story. The residential buildings will have 1-level of underground parking. ECS presumes the FFE of the ground floor of the condominium will be el +15 NAVD88 and the FFE of the basement will be el +7 NAVD88.

In addition, a new 3-story Museum building will be constructed on the northeastern portion of the site. ECS presumes the FFE of the ground floor of the condominium will be el +15 NAVD88.

ECS should be provided with the actual FFE and basement elevation when they are established during design. The recommendations developed for this report are based on project information provided by HE2PD in the following documents:

- Site plan, prepared by United Management, and
- Map of Boundary Survey, prepared by Principal Meridian Survey, Inc., dated 11/5/2019.

Our services were provided in accordance with our Proposal No. 25:8634-GP, dated April 5, 2024, as authorized by Nicholas Tangredi with HE2PD on April 9, 2024, which includes our Terms and Conditions of Service.

This report contains the procedures and results of our subsurface exploration program, review of existing site conditions, engineering analyses, and recommendations for the design and construction of the project.

The report includes the following items.

- A brief review and description of our field and laboratory test procedures and the results of testing conducted,
- A review of area and site geologic conditions,
- A review of subsurface soil stratigraphy with pertinent available physical properties,
- Final copies of our soil exploration/test boring logs,
- Recommended and foundation type and estimated axial and lateral pile capacities.
- Pile Construction Guidelines.
- Recommendation for standard and heavy-duty pavement,
- Evaluation and recommendations relative to groundwater control, and
- Earthwork construction recommendations including site preparation and placement of engineered fill.

Our assessment was confined to the zone of soil likely to be stressed by the proposed construction. Our work did not address the potential for subsurface expression of deep geological conditions, such as sinkhole development related to karst activity. This evaluation requires a more extensive range of field services than performed in this study. We will be pleased to conduct an exploration to evaluate the probable effect of the regional geology upon the proposed construction if you desire.

2.0 PROJECT INFORMATION

2.1 SITE INFORMATION

The site is located at 32 S L Street in Lake Worth, Palm Beach County, Florida, at the approximate location shown in the following figure below.

Figure 2.1.1. Site Location

ECS reviewed aerial photographs of the subject property and immediate surrounding properties on Historic Aerials and Google Earth© Historical Imagery databases dating to 1958. Based on review of an aerial photographs dating back to 1958, the site appears to be occupied by multiple residential structures ranging from one to two story. In the 2019 aerial photograph the site appears similar to the 1958 aerial, however, a building at the southeastern portion of the site has been removed. The site has remained unchanged throughout the present day. Upon researching the subject area with USDA, it is noted that the site generally consists of St. Lucie-Paola-Urban land complex (41) and Urban Land (48).

Current grade appears to be at elevation of 13 NAVD88. Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on Google-Earth©; therefore, elevation ranges are approximate +/- several feet and should not be used for design .

2.2 PROPOSED CONSTRUCTION

Based on the information provided to us, we understand that the project is likely to consist of the removal of the existing buildings and construction of a series of new connected condominium buildings ranging from 2-story to 5-stories in height. In addition, a new 3-story Museum building will be constructed. The residential buildings will have 1-level of underground parking. Please note that details of the construction of the 2-story to 5-story structures and loads were not available at

the time of this report was prepared, therefore we have made some estimates based on similar projects and experience. The following information included in Table 2.2.1 explains our understanding of the structure:

Table 2.2.1 Museum Building Design Values

SUBJECT	DESIGN INFORMATION / EXPECTATIONS
# of Stories	3-story above grade
Usage	Museum
Framing	We anticipate that the building will be principally cast-in-place
Trailing	concrete with minor reinforced masonry or steel frame.
Column Loads	600 kips (Full Dead and Factored Live) Presumed (Maximum)
Wall Loads	10 kips per linear foot (klf) maximum – Estimated Presumed
	(Maximum)
Ground Finish Floor Elevation	Presumed at +/- 15 feet above existing grades

⁽¹⁾ If actual structural loads differ from these loads ECS must be contacted immediately to revise building foundation recommendations and settlement calculations as needed.

Table 2.2.2 Condiminium Building Design Values

SUBJECT	DESIGN INFORMATION / EXPECTATIONS
# of Stories	2-story to 5-story above grade + basement
Usage	Mixed-Use Residential
Framing	We anticipate that the building will be principally cast-in-place
	concrete with minor reinforced masonry or steel frame.
Column Loads	725 kips (Full Dead and Factored Live) Presumed (Maximum)
Ground Finish Floor Elevation	Presumed at +/- 2 feet above existing grades
Basement Finish Floor	Presumed at +/- 6 feet below existing grades
Elevation	Fresumed at 7/- o feet below existing grades

⁽¹⁾ If actual structural loads differ from these loads ECS must be contacted immediately to revise building foundation recommendations and settlement calculations as needed.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

Our exploration procedures are explained in greater detail in Appendix B including the insert titled Subsurface Exploration Procedures. Our scope of work included drilling 8 SPT borings. Borings were performed for the proposed structures (A-01 and A-02, B-01 through B-04 and C-01 and C-02). Additionally, we performed 2 exfiltration tests (EXF-01 and EXF-02) within the site.

Boring locations were identified in the field by ECS personnel using GPS techniques prior to mobilization of our drilling equipment and their approximate locations are shown on the Boring Location Diagram in Appendix A. The approximate as-drilled boring locations are shown on the Boring Location Diagram in Appendix A. Ground surface elevations noted on our boring logs were interpolated from the provided site survey and should be considered approximate. Standard Penetration Tests (SPTs) were conducted in the borings at regular intervals in general accordance with ASTM D 1586. Small representative samples were obtained during these tests and were used to classify the soils encountered. The standard penetration resistances obtained to provide a general indication of soil density and correlate to shear strength parameters.

⁽²⁾ Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on Google-Earth©; therefore, elevation ranges are approximate +/- several feet.

⁽²⁾ Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on Google-Earth©; therefore, elevation ranges are approximate +/- several feet and should not be used for design.

3.1 USUAL OPEN HOLE TESTING

Usual open hole testing was performed in accordance with procedures of South Florida Water Management District (SFWMD) Usual Condition Test procedure found in the SFWMD Environmental Resource Permit Information Manual Volume IV (September 2010 edition) at the location denoted as exfiltration test EXF-01 on the attached Exfiltration Log found in Appendix B which includes the hydraulic conductivity (K_{IV} values). The measured K_{IV}-values is provided below.

Tests	K _{IV} -Value (cfs/ft2 -ft head)
EXF-01	8.11×10 ⁻⁵
EXF-02	7.31×10 ⁻⁵

Note: Refer to the attached Usual Open Hole Test summary sheet for detailed information

3.2 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil strata. Please refer to the boring logs in Appendix B for more detailed boring information.

The South Florida region is located on the southern flank of Florida Plateau, a stable, carbonate platform on which thick deposits of limestones, dolomites, and evaporates have accumulated. The general geology of the upper 200 feet of this platform within the area of South Florida where the proposed project is to be located is composed predominantly of limestone and quartz sand. The two geological formations that usually are encountered from west to east within Palm Beach County are: Shelly Sediments of Plio-Pleistocence age and Miami Limestone.

Generalized Subsurface Stratigraphy

Generalized Subsurface Stratification				
Approximate Depth (ft)	Elevation ⁽¹⁾ (ft)	Stratum	Description	Ranges of SPT ⁽²⁾ N-values (bpf)
0 to 0.16 – ¼	EL.+13 to EL.+12.84 – EL.+12.75	N/A	Surficial Cover: Ashpalt Thickness [2 to 3 Inches] (3) Topsoil [4 to 6 Inches]	N/A
0.16 – ¼ to 2	EL. +12.84 – EL. +12.75 to EL. +11	I	FILL: Fine to Medium SAND (SP, FILL), contains rock fragments, loose to medium dense to dense, brow (4)	6-38
½ – 2 to 38	EL. +12½ – EL. +11 to EL10 – EL25	=	Fine to Medium SAND (SP), gray, wet, very loose to medium dense, contains trace limestone and shell fragments	4 – 25
38 to 75	EL10 – EL25 to EL62	III	(WR) Highly Weathered to Hard LIMESTONE, gray, wet	7 – 50/1"

Notes:

- 1) Please note that the ground surface elevations were interpolated from the survey plan provided; therefore, elevation ranges are approximate.
- (2) SPT refers to Standard Penetration Test.
- (3) Asphalt Pavement was encountered as surficial cover for Boring B-02, B-03 and C-01.
- (4) Fill Material was encountered in borings B-02 to B-04, and C-02.

A graphical presentation of the subsurface conditions is shown on the Generalized Subsurface Profile Diagrams included in Appendix A.

3.3 GROUNDWATER OBSERVATIONS

Groundwater levels were measured at our boring locations as shown on the boring logs in Appendix B. Groundwater depths measured at the time of drilling ranged from 8 feet to 10 feet below the ground surface. Variations in the long-term water table may occur because of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors. Based upon our interpretation of the subsurface data, it appears that the normal seasonal high groundwater level (SHGWL) is at depths ranging from approximately 4.5 feet to 8 feet below existing grades. We note for refined SHGWL estimates for the proposed basement uplift resistance design, a groundwater monitoring program consisting of surveyed piezometers is recommended.

Based on the Flood Insurance Rate Map (FIRM) Map Number 12099C0781F of Palm Beach County, effective date October 5, 2017, indicates that the site is located within Flood Zone X, which is designated as an area with minimal flood hazard.

3.4 LABORATORY TESTING

Each sample was visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures) including USCS classification symbols, and ASTM D2487 Standard Practice for Classification for Engineering Purposes (Unified Soil Classification System (USCS)). After classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual.

The laboratory testing consisted of classification and index property tests performed on samples obtained during our field exploration operations. Laboratory tests performed included moisture content (ASTM D2216) test. The test results are shown on the boring logs in Appendix B and are tabulated in Appendix C.

4.0 DESIGN RECOMMENDATIONS

4.1 BASEMENT CONSIDERATIONS

We estimate that the season high water table is approximately 6 feet below current grade level within this site. The presumed finished floor elevation of the basement appears to be below the groundwater table. Waterproofing will be needed for construction and permanent water proofing will be needed for the basement. Dewatering in order to cast concrete for the basement may not be viably without the first creating a membrane in the form of a bottom plug. This bottom plug will need to be able to resist the large hydrostatic pressure due to its elevation being below the water table. Methods such as Deep Soil-Cement Mixing Plug and Tremie Plug/Seal can be utilized as a waterproofing barrier for the basement. Descriptions of each method can be found in section 4.6 and 4.7.

The proposed 2-story to 5-story condominium building with 1-level subgrade parking garage, may be supported on augercast piles to optimize the load carrying capacity of the LIMESTONE stratum. Augercast piles are commonly used in South Florida because of their ability to develop high compression and tension capacities when embedded in the Fort Thompson Limestone that was

encountered in the borings. Other benefits to augercast piles are that they will also reduce the impact of vibrations to adjacent structures during construction. The following sections provide recommendations for deep foundation design and support for the proposed structures.

4.2 MAT FOUNDATION

A mat foundation can be explored as a value engineering alternative **if the site can be dewatered** with a maximum allowable bearing pressure of 1,500 psf. The mat foundation can be designed with a downward pressure or thickness sufficient to counteract the hydrostatic pressure without the use of tiedowns. This would require a thicker mat. In addition to that, you have the option in tying down the mat which would result in a thinner mat with either Auger cast piles or helical anchors. Auger cast piles would be the desirable alternative if higher uplifts were necessitated. However, if a very low uplift capacity is needed, helical piles could be used to compliment the weight of the mat itself and provide the required additional anchoring of the mat.

4.3 SHALLOW FOUNDATION – MUSEUM BUILDING

Provided subgrades and engineered fills are prepared as recommended in this report, It is in our opinion that the proposed 3-story Museum structure can be supported on a shallow foundation system supported on ground improved soils. Based upon the presumed loads to be placed over existing loose SAND (SP), it is recommended that a ground improvement system such as a stone column be installed for the project as discussed in the following Section 4.4. We recommend the foundation design use the following parameters:

Summary o	f Shallow	Foundation	Design	Parameters
-----------	-----------	------------	--------	-------------------

Design Parameter	Column Footing	Wall Footing	
Net Allowable Bearing Pressure (1)	6,000 psf		
	(Estimated, but to be determine	ned by the stone column design)	
Acceptable Bearing Soil Material	Compacted Stratum I and/or engineered fill with stone column ground improvements	Compacted Stratum I and/or engineered fill with stone column ground improvements	
Minimum Width	24 inches	18 inches	
Minimum Footing Embedment Depth (below slab or finished grade)	24 inches	24 inches	
Estimated Total Settlement (2)	1-inch or less	1-inch or less	
Estimated Differential Settlement (3)	Approximately ½ inches between columns	Approximately ½ inches over 30 feet	

Notes:

- (1) Net allowable bearing pressure is the applied pressure in excess of the surrounding overburden soils above the base of the foundation.
- (2) Based on estimated structural loads. If final loads are different, ECS must be contacted to update foundation recommendations and settlement calculations.
- (3) Based on maximum column/wall loads and variability in borings. Differential settlement can be re-evaluated once the foundation plans are more complete.

Potential Undercuts: If soft or unsuitable soils are observed at the footing bearing elevations to include any presence of organics, the unsuitable soils should be undercut and replaced with approved engineered fill or with lean concrete ($f'c \ge 1,000$ psi at 28 days) or compacted No. 57 stone, as applicable, up to the original design bottom of footing elevation.

4.4 GROUND IMPROVEMENTS (STONE COLUMNS)

Ground improvement methods in the form of vibratory stone columns (VSC) can be used to improve bearing capacities of the upper loose sands encountered within our borings. It is our opinion that the proposed Museum can be supported with shallow foundations bearing on or above deep ground improvement elements consisting of stone columns extending 23 feet below existing grade surface. The stone columns will increase the allowable bearing pressure to reduce footing sizes, reduce settlements to tolerable levels, infill or bypass anomalous miscellaneous zones to significantly reduce the risk associated with differential settlement. We expect settlements to be less than 1-inch, and occur primarily during construction. Bearing capacity in the range of 6,000 psf appears to be feasible at this site with stone column soil improvements. Stone columns are of a design-build nature and will need to be procured this way. Drawings and specifications should be prepared by the engineering consultants sufficient to adequately bid the work. The proposals prepared by any specialty foundation contractor should be provided to ECS so that we may review the proposed construction techniques to assure compliance with the intention of our geotechnical recommendations.

The stone column vibrator is penetrated to design depth and stone is placed in the resulting cavity as the vibrator is withdrawn. Raising and lowering the vibrator in two-to-three-foot increments provides densification effort to the stone fill and surrounding granular soils. A dense column is formed with the stone laterally compacted against the surrounding soil.

Stone column and the in-situ soil form an integrated system having low compressibility and high shear strength. The excess pore pressure can more readily dissipate through the stone columns which also act as drains. This reduces the amount of time for settlement to occur, as well as reduces liquefaction potential by dissipating seismically generated excess pore pressure.

The VR vibrator can either be mounted to specially fabricated equipment such as a Vibrocat or free hung from a lattice boom crawler crane. Regardless of how the VR vibrator is mounted, the work is generally performed using either the wet top feed or the dry bottom feed method. In the wet top feed method, water jets in the tip of the vibrator, assisting in penetration and stabilization of the hole. Stone backfill is delivered at the ground surface and falls to the tip of the vibrator through the annulus between the vibrator and the surrounding soil. In the dry bottom feed method, the vibrator penetrates the soil by means of its weight and vibrations. The stone is fed through a hopper and supply tube directly to the bottom of the vibrator for injection into the ground.

4.5 DEEP FOUNDATION – AUGER CAST PILES

The condominium building structure may be supported on augercast piles embedded into the LIMESTONE Stratum. For this design, we anticipate that a 2 to 5-story residential building with basement could be supported on either 14-inch diameter or 16-inch diameter ACIP piles. The anticipated settlement is estimated to be less than 1 inch, with differential settlement to be less than ¾ inches for the structures. We recommend appropriately sized augercast piles embedded into the LIMESTONE, Stratum 3, should be considered, such that pile cap sizes are manageable and the bottom of the pile caps be kept as shallow as possible so that dewatering efforts are minimized during construction of foundations.

Table 4.5.1.1 Summary of Residential Buildings Pile Allowable Capacity Estimates

Design Parameters	14-inch Diameter Pile	16-inch Diameter Pile
Allowable Compressive Capacity (Factor of Safety = 2.0)	120 tons	140 tons
Allowable Uplift Capacity	60 tons	70 tons
Spring Constant	240 kips/in	280 kips/in
Allowable Lateral Capacity (Fixed Head Condition)	13 tons	17 tons
Embedment Depth	Minimum 18 feet into Stratum 3	Minimum 18 feet into Stratum 3
Estimated Pile Length and Elevation (Pile lengths were referenced to existing land surface at the time the borings were drilled)	grades	68 feet below existing grades Approximately EL-43 feet
Minimum Center to Center Spacing	3½ feet	4 feet
Minimum Recommended Compression Steel Reinforcement	Full Length Steel Cages to be determined by the Project Structural Engineer	Full Length Steel Cages to be determined by the Project Structural Engineer
Minimum Recommended Grout Compressive Strength	5,000 lbs/in²	5,000 lbs/in²

Notes:

- 1. If final loads are different, ECS must be contacted to update foundation recommendations and settlement calculations.
- Based on maximum column/wall loads and variability in borings. Differential settlement can be re-evaluated once the foundation plans are more complete.

The allowable tension capacities provided above are one-half of the individual pile compressive capacities. The reinforcing steel cages presented in Tables 4.1.1.1 is the recommended minimum. The grout strength is a minimum required value. The project structural engineer should design the pile reinforcement and grout strength to resist all axial, bending, tensile and shear stresses in the pile. If the full recommended pile uplift capacity is not required, the pile uplift capacity may be reduced to minimize the quantity of steel reinforcement required for tension piles. Additional lateral load can be achieved by using battered piles installed at a 1 horizontal (H) to 6 vertical (V) batter. The lateral capacities provided are for a fixed-head condition with a top of pile deflection of approximately 0.375 inches (refer to appendix D for the lateral load analysis).

The estimated pile tip elevations presented in Table 4.1.1.1 are based on where the top of the Limestone stratum were encountered in the borings, and the required embedment presumes the Limestone and Cemented Sand material to be confirmed during pile installation activities. Deeper piles may be required if the bearing stratum is encountered deeper than anticipated or if weaker conditions are encountered during drilling of the required embedment into the bearing stratum. Piles should not be installed shallower than the estimated pile lengths. The estimated pile capacity is based upon a single, free-standing pile statically analyzed. Piles may have significantly different capacities in groups; similarly, pile groups may settle significantly more than single piles. To help mitigate group action effects, piles should normally be spaced a minimum of at least three pile diameters.

To help to assure the pile foundation systems will perform as required, we recommend that we review the final design of the proposed building foundation system before the project moves into the final design and construction phase. The recommendations provided in this report should be

confirmed after the project structural engineer has generated a foundation layout and provided refined building loads.

Auger cast-in-place piling operations are highly dependent on the workmanship of the operator and therefore require strict, full-time quality control and inspection. For this reason, we strongly recommend that ECS provide the inspection service during the auger pile installation. Full-time observation and inspection will allow us to evaluate if piles are being installed properly by the contractor, provided an accurate record of the installation, and provide an opportunity to correct anomalous or unforeseen conditions during the pile placement work.

4.5.1 Test Pile Program: Bi-Directional (O-Cell) Load Test

ECS recommends that at least one (1) bi-directional axial load test be performed for each pile size prior to the installation of production piles to verify the design parameters and confirm the adequacy of the augercast piles contractor's construction methods. These test pile results will be utilized to confirm lateral/uplift capacity of the soils and rock as well, and to optimize the design length of the augercast piles. Due to the high variability of the limestone (Stratum 3) strength at this site, we recommend an SPT boring be performed at the proposed test pile location prior to the load test to confirm the condition of the limestone at the load test location.

The load test should be performed by means of a "Bi-Directional Static Load Tests" per ASTM D8169 "Standard Test Method for Deep Foundations Under Bi-Directional Static Axial Compressive Load". Additionally, we recommend the load test be performed near a planned interior column with high loading conditions within an area of the weaker limestone as encountered at Boring A-1. The test pile shall be instrumented with a minimum of seven vertical levels of embedded strain gages placed at various soil layer interfaces. The contractor performing the load test should submit the proposed test pile location, installation details, and proposed load test procedure and configuration to ECS for review and approval prior to the installation of the test drilled pile. In addition, the construction of the test drilled piles should be performed under the observation of an ECS Geotechnical Engineer, or his/her field representative. Typically, additional pile length is considered for load test piles than what is recommended in the report. The additional pile length will be instrumented to extend the usefulness of the information gathered during the load test program. The intent of the instrumentation is to measure the load distribution between side friction and end bearing. It should be noted that the production drilled pile lengths may be updated based on the results of the load test.

The bi-directional static axial compressive load test method loads the pile in two directions by hydraulically pressurizing an embedded jack within the pile. Pressurizing the jack simultaneously loads the pile below the embedded jack that resists downward movement and loads the pile above, which resists upward movement. The load is determined by relating the applied hydraulic pressure to the jack calibration. Both a calibrated Bourdon gage and electronic pressure transducer monitor the applied pressure during testing. A variety of supplementary instrumentation should be installed in the test pile to obtain detailed data on load transfer. These instruments include: multiple levels of strain gages, embedded displacement transducers (LVWDTs), sister bars, and telltales. The pile must be designed and constructed properly to structurally support the applied test load. Loads of the tests should be performed at least two times the design load indicated in the project plans or to failure of the pile, whichever comes first, to determine the ultimate capacity of the pile.

Load testing of augercast piles shall not begin until the concrete has attained a minimum compressive strength as directed by the Structural Engineer. High early strength concrete may be used to obtain this strength at an earlier time to prevent testing delays, upon the approval of the Engineer.

Upon completion of the Bi-Directional Static Load Test, a report should be submitted by a Registered Professional Engineer in the State of Florida containing the load deflection of the pile top, side shear resistance of the limestone at various depth intervals based on the strain gage data, end bearing resistance and any other pertinent data obtained during testing. Due to the complex nature of the local geology, it is imperative that the load test is performed by a contractor experienced performing load tests in local projects.

4.5.2 Augercast Pile Construction Guidelines

Presented below are general guidelines regarding augured cast-in-place pile construction that we recommend during the installation of the piles.

- 1. The pile contractor's equipment should be inspected when delivered to the site to confirm that the auger length is sufficient to drill to the specified depth/tip elevation. Pile leads should be clearly and accurately marked at one-foot intervals. Equipment must be capable of achieving the minimum plan tip elevations stated herein plus an additional 10 feet.
- 2. The auger and bit diameter should be measured for compliance with the project specifications. Auger flighting should be continuous with no gaps and should be in good condition with uniform diameter throughout the entire length. Auger and bit diameter should be within ¼-inch (±) of the specified diameter.
- 3. Grout pumping equipment (pump, hoses, swivels, connections, etc.) should be checked to confirm that the pump and appurtenances are appropriately sized to develop and maintain the specified grout pressure and delivery volume. The grout pump should be calibrated to determine the volume per pump stroke so that grout volumes placed in the piles can be properly evaluated. If the grout pump includes a stroke counter, the counter should be inspected to assure that it operates correctly.
- 4. Pressure gauges should be inspected to confirm proper operation and placement. As a minimum, pressure gauges should be located at the pump discharge port, the crane leads and at the inlet point to the auger column. All gauge faces should be clearly readable and properly calibrated.
- 5. At the start of pile construction operations, the location and orientation of the auger column and leads should be checked to confirm that the pile is being constructed at the proper location and that the auger and leads are plumb and true to the specified pile orientation.
- 6. During drilling, the auger should be advanced at a rate consistent with the material being penetrated. Care should be taken during auger advancement to prevent prolonged drilling or excessive rotation which could result in ground subsidence or settlement due to the removal of excessive volumes of soil.

- 7. Once the design depth of the pile has been achieved, the auger should be raised off the bottom of the drill hole 12 inches to allow the plug to be pumped out. The auger should be maintained in the position of 12 inches off the bottom of the hole until the grout has reached the bit.
- 8. Prior to the beginning of any further auger withdrawal, a grout volume sufficient to achieve a grout head of seven feet on the auger flights should be pumped through the bit into the borehole. A minimum grout head of seven feet should be maintained during the construction of the entire length of pile.
- 9. Withdrawal of the auger column should be performed at a slow, continuous rate, with the grout pressure and pumping volume maintained at a constant rate during auger withdrawal. Grout volume and pressure should be monitored by the ECS inspector during auger withdrawal and the volume pumped and pressures recorded at each five-foot interval (as a minimum). Slow, positive rotation of the auger should be maintained during pumping; however, at no time should the auger be allowed to rotate in the reverse direction.
- 10. Piles should be drilled and grouted in one continuous operation. The pile contractor should confirm that sufficient grout is available on site prior to beginning construction of each pile. During grouting and pile topping operations, representative samples of the grout mix should be obtained from the pump hopper for evaluation of initial set time and for later compliance testing for compressive strength. Grout which has achieved initial set or has otherwise become unworkable should not be used for pile construction and should be discarded. Piles constructed with grout that has achieved its initial set should be re-drilled and re-grouted.
 - Additionally, grout fluidity should be checked using an appropriate flow cone upon introduction of grout into the pump hopper and at suitable intervals during pile construction operations. If noticeable changes in grout consistency become apparent (grout is too fluid or excessively thick), more frequent fluidity tests should be performed.
- 11. Sufficient grout should be placed in each pile to achieve a minimum grout factor of 1.05 (placed volume divided by theoretical hole volume). The amount of grout pumped per foot of pile during auger retrieval should also be at least 105% of the theoretical volume per foot of pile. Grouting and auger withdrawal operations should be performed to assure a uniform pile diameter free of any necking. Any pile that fails to achieve at least a 1.05 grout factor shall be re-drilled and re-grouted.
- 12. Following the completion of grouting and removal of the augers from the pile bore, the top of the pile should be screened to remove any foreign matter. The top pile form ("pile can") can then be placed and the form topped off with fresh grout to the pile cutoff elevation.
- 13. Placement of reinforcing steel, if included in the project specifications, should be performed as recommended by the structural engineer, generally after grouting. All reinforcing steel, cages, etc. should easily penetrate the grout column. Reinforcing steel which cannot be inserted the full length can be an indication of pile "necking" or other non-uniform pile conditions. If the reinforcing steel cannot be installed under its own weight or by manual insertion, the steel should be removed and the pile re-drilled and re-grouted.
- 14. Following completion of grouting and pile topping operation, the grout level of the pile should be recorded and measured following grout set to determine grout subsidence. Excessive grout subsidence should be reported to the project geotechnical engineer immediately upon

discovery. Grout subsidence greater than that measured during test pile construction should be considered excessive. At no time during pile construction should the grout be allowed to subside below the lower end of the "pile can."

- 15. A minimum grout set time of 12 hours shall be allowed before any adjacent piles are installed unless otherwise directed by the Geotechnical Engineer. No piles closer than 9 feet center to center shall be installed the same day. If grout loss is experienced in a completed pile while drilling an adjacent pile, the construction of the adjacent pile shall be ceased, and the completed pile shall be redrilled and regrouted. The adjacent pile shall not be installed until the next day.
- 16. The ECS pile inspector should record all applicable pile installation data. Specific attention should be given to conditions or practices which may result in inadequate pile construction. Further, the inspector should require that any pile not installed according to the project specifications be replaced or re-drilled.

4.6 TREMIE PLUG/SEAL

Tremie Plug/Seal is a method used to cutoff the vertical flow of groundwater for deeper and large below ground construction. This method involves excavating to design depths after shoring has been placed. Concrete is then tremie poured into the water filled excavation forming an unreinforced slab. Once dry, the water can then be pumped out. Piles will be needed in order for the plug to resist the hydrostatic pressure experienced.

4.7 SOIL-CEMENT MIXING

Soil-Cement Mixing is an in-situ method used to cutoff the vertical flow of groundwater for deeper and large below ground construction. This method involves the mixing of the heterogeneous subsurface soils with an introduced engineered soil/cement material. This method negates the need to pour concrete in the wet as in the tremie method due to performing the soil mixing at above ground level. Piles will be needed in order for the plug to resist the hydrostatic pressure experienced.

4.8 LIGHTLY LOADED STRUCTURES

For lightly loaded structures such as on grade landscape areas, lighting, etc.., provided that subgrades and structural fill are prepared in accordance to the procedures described in Section 5.1 and Section 5.2 of this report, a net allowable bearing pressure of 3,000 psf can be used for design.

4.9 FLOOR SLABS

Provided subgrades and structural fills are prepared as discussed herein, the proposed floor slabs can be constructed as Ground Supported Slabs (or Slab-On-Grade). Based on a lowest finished floor elevation, it appears that the slabs will bear on compacted structural fill and/or Stratum I and II - SAND (SP). However, there may be areas of loose or yielding soils that should be removed from below the structure foundation and the slab footprints, plus and extended horizontal distance of 5

feet and replaced with compacted structural fill in accordance with the recommendations included in this report.

Note that basement slabs and walls will require waterproofing and drainage considerations considering the seasonal high ground water level. See Sections 4.4 and 4.5 of this report for below grade wall and slab recommendations.

Soft or yielding soils may be encountered in some areas. Those soils should be removed and replaced with compacted Structural Fill in accordance with the recommendations included in this report.

Vapor Barrier: Before the placement of concrete, a vapor barrier may be placed on top of the granular drainage layer to provide additional protection against moisture penetration through the floor slab. When a vapor barrier is used, special attention should be given to surface curing of the slab to reduce the potential for uneven drying, curling and/or cracking of the slab. Depending on proposed flooring material types, the structural engineer and/or the architect may choose to eliminate the vapor barrier.

Slab Isolation: Soil-supported slabs should be isolated from the foundations and foundation-supported elements of the structure so that differential movement between the foundations and slab will not induce excessive shear and bending stresses in the floor slab. Where the structural configuration prevents the use of a free-floating slab such as in a drop-down footing/monolithic slab configuration, the slab should be designed with suitable reinforcement and load transfer devices to preclude overstressing of the slab.

4.10 SEISMIC DESIGN

The requires site classification for seismic design based on the upper 100 feet of a soil profile. Three methods are utilized in classifying sites, namely the shear wave velocity (v_s) method; the unconfined compressive strength (s_u) method; and the Standard Penetration Resistance (N-value) method. The N-value method was used for this project.

The seismic site class definitions for the weighted average of shear wave velocity or SPT N-value in the upper 100 feet of the soil profile are shown in the following table:

Shear Wave Velocity, Vs, N value (bpf) **Site Class Soil Profile Name** (ft./s) N/A Hard Rock Vs > 5,000 fpsΑ N/A В Rock $2,500 < Vs \le 5,000 \text{ fps}$ С >50 Very dense soil and soft rock $1,200 < Vs \le 2,500 \text{ fps}$ 15 to 50 D Stiff Soil Profile $600 \le Vs \le 1,200 \text{ fps}$ <15 Ε Soft Soil Profile Vs < 600 fps

Seismic Site Classification

The 2021 Florida Building requires that a Site Class be assigned for the seismic design of new structures. The Site Class for the site was determined by calculating a weighted average SPT N-value for the top 100 feet of the subsurface profile. Based on the conditions encountered in the borings, we recommend that a Site Class "D" be used for design of the proposed building.

4.11 SITE DESIGN CONSIDERATIONS

4.11.1 Pavements

Subgrade Characteristics: Based on the results of our soil test borings, it appears that the soils that will be exposed as pavement subgrade will consist mainly of structural fill material and/or sandy soils. The pavement design assumes subgrades consist of suitable materials evaluated by ECS and placed and compacted to at least 98 percent of the maximum dry density as determined by the Modified Proctor test (ASTM D1557).

Pavement Considerations: Pavement subgrades should be prepared in accordance with the recommendations in <u>Section 5.2 Structural Fill</u>. We are providing recommendations for both standard duty and heavy duty flexible and rigid pavements sections. For the design and construction of exterior pavements, the subgrade should be prepared in strict accordance with the recommendations in the geotechnical report. An important consideration with the design and construction of pavements is surface and subsurface drainage. Where standing water develops, softening of the subgrade and other problems related to the premature deterioration of the pavement can be expected.

Pavement recommendations are based upon local experience with similar pavement conditions, Florida Department of Transportation (FDOT), and AASHTO Guide for Design of Pavement Structures.

A minimum separation of 18 inches should be maintained between the pavement aggregate base (limerock) or base course in asphalt pavement areas and the seasonal high groundwater levels. In most cases, this separation is available. Recommended pavement sections are described below in Table 4.2.1.

	Flexible (Hot Mix Asphalt)		Rigid (Con	crete)
Component	Standard	Heavy	Standard	Heavy
Surface Course	1.5 inches	2.0 inches	5 inches	6 inches
Base Course (Limerock)	6 inches	8 inches	=	-
Stabilized Subgrade	12 inches	12 inches	12 inches	12 inches

Table 4.2.1: Pavement Structures Sections

Hot Mix Asphalt Surface Course (flexible): Prime and tack coats should be applied during the construction of the pavement sections in accordance with Florida Department of Transportation (FDOT) Standard Specifications for Road and Bridge Construction (current edition). Before applying any bituminous material, all loose dust, dirt, and other foreign material which might prevent proper bond with the existing surface should be removed. Care should be taken in cleaning the outer edges, to ensure that the prime or tack coat will adhere. Prior to applying prime coat, the moisture content of the base should be checked to make sure that it does not exceed the optimum moisture. The hot mix asphalt concrete pavement should consist of a Superpave mix Type SP as per FDOT Standard Specifications for Road and Bridge Construction (current edition), Section 334 Superpave Asphalt Concrete. Recycled Asphalt Pavement (RAP) and other recycled materials may be used as indicated in Section 334, previously mentioned. If this is to be a LEED certified project, credits may be awarded for using such materials.

Base Course: Typically, the most prevalent flexible or rigid pavement base material in South Florida is limerock. Limerock is readily available from FDOT approved mines in South Florida. As an alternative base course, crushed concrete could be used. Limerock should have a minimum LBR value of 100 and should be mined from an FDOT approved source. Limerock should be placed in maximum six-inch lifts and compacted to 98 percent of the Modified Proctor (ASTM D1557) maximum dry density. Limerock pavement base shall be in accordance with Section 911 and 200 of the FDOT Specifications for Road and Bridge Construction (Current Edition).

Stabilized Subgrade: Stabilized subgrade soil material should be stabilized with rock to a minimum Limerock Bearing Ratio (LBR) value of 40, as specified by FDOT requirements for Type B or Type C Stabilized Subgrade. All stabilized subgrade materials should be compacted to 98 percent of the Modified Proctor (ASTM D1557) maximum dry density. Furthermore, the stabilized subgrade may be imported material or a blend of on-site soils and imported materials. If a blend is proposed, we recommend that the contractor perform a mix design to find the optimum mix proportions. It should be noted that a minimum of 97 percent of the stabilized material should pass a 3½ inch sieve.

Perform compliance testing for base course to a depth of one foot at a frequency of one test per 5,000 square feet, or at a minimum of two test locations, whichever is greater.

Concrete surface course (rigid): Our recommendations for heavy-duty Portland cement concrete (pcc) pavement section is using unreinforced Portland cement concrete surface course (Type 1) providing a minimum 28-day compressive strength of 4,000 pounds per square inch (psi). This section would be placed atop a layer of fine (SP). Appropriate steel reinforcing and jointing should also be incorporated into the design of all PCC. In addition, the concrete should provide a minimum 28-day flexural strength (modulus of rupture) of 600 psi, based on the third point loading of concrete beam samples.

Rigid pavement notes recommendations:

- The surface of the subgrade soils should be free of all soft, unstable, or unsatisfactory soil and smooth and uniform. Any disturbances or wheel rutting corrected prior to placement of concrete.
- The subgrade soils should be moistened not more than 24 hours prior to placement of concrete but there should be no standing water present during concrete placement.
- Concrete pavement thickness should be uniform throughout, with the exception to thickened edges (curbs or footings).
- The bottom of the pavement base course should be separated from the estimated typical wet season groundwater level by at least one foot.
- Maximum Control Joint Spacing should be 12 feet by 12 feet
- Minimum Sawcut depth should be at least 1/4 of concrete thickness
- Isolation joints are recommended at the interface between concrete pavement and fixed objects such as drainage inlets, light poles, etc.

 Control joints should be sawed as soon as the concrete can withstand traffic and concrete surface and aggregate raveling can be prevented.

It is recommended that dowels be used for all construction joints for new pavements, the interface between new pavement and existing pavements, and interface at existing curb and gutter. It is recommended that 3/4-inch diameter smooth dowels 18 inches long spaced 12 inches on center be used. The full length of the dowels should be lightly oiled.

4.12 BELOW GRADE WALLS

We recommend that below grade walls be designed to withstand at-rest lateral earth pressures and surcharge loads from adjacent building foundations, and/or streets. These recommendations apply to a "drained" condition which is where there is drainage material behind below grade walls that prevents hydrostatic water pressures on the back of the below grade wall.

To accomplish a drained condition, drainage materials such as a free draining gravel, geocomposite drainage panels, weep holes, and an underslab drainage system should be used.

We recommend that walls that are restrained from movement at the top be designed for a linearly increasing lateral earth pressure. The following Figure depicts our recommended at-rest lateral earth pressure condition for a "drained below-grade wall" with restrained wall top:

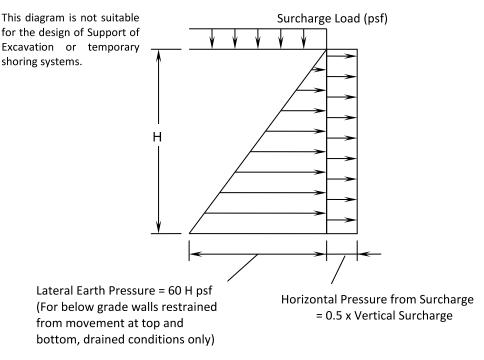


Figure 4.12.1

Surcharge loads imposed within a 45-degree slope from the base of the restrained wall should be considered in the below grade wall design. These surcharge loads should be based on an at-rest pressure coefficient, k_0 , of 0.5. Care should be used to avoid the operation of heavy equipment to

compact the wall backfill since it may overload and damage the wall; in addition, such loads are not typically considered in the design of below grade walls.

4.13 UNDERSLAB SUBDRAINAGE

We recommend that the below grade areas be provided with a designed perimeter and underslab subdrainage system. If requested, ECS can assist with the underslab/basement drainage design.

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 Subgrade Preparation

5.1.1 Previous Site Development

When reviewing our recommendations, please note that there are existing structures on this site, and that previous grading activities have likely occurred on this site. Our experience with previously graded sites indicates that unexpected conditions can exist that were not encountered by the soil test borings. Unexpected conditions could include areas of soft or loose fill, debris-laden fill, and other obstructions or conditions. There is a possibility that existing underground utilities may be present and should be removed or abandoned in place. It should be noted that if existing or former underground utilities are abandoned and not removed or grouted full, soil may migrate into open voids (e.g., open pipes from utilities), causing subsidence of the overlaying construction. These conditions should be addressed by an on-site engineering evaluation by ECS during construction utilizing a test pit exploration. In addition, existing utility lines, if located within proposed construction areas, may cause the new construction to behave unexpectedly due to the variable support conditions caused by old backfill. Furthermore, old backfill along utility lines also may provide inadequate support due to poor compaction. The poor support conditions may result in settlement or distress of the overlying new construction. Based on our experience, existing utility backfill rarely is suitable for support of new foundations. In slab areas, the load support characteristics of the backfill along utility lines typically can be assessed with careful proofrolling and subgrade evaluation during construction. Some undercutting and/or bridging of these backfill areas should be anticipated if utilities are present.

5.1.2 Demolition

Site demolition should include the removal of existing structure, concrete curb and gutter, underground utilities and pipes from the proposed construction areas. Any underground utilities that may exist within the proposed building areas should be relocated, and any within proposed pavement areas should be evaluated by the design team and relocated or filled with grout, if necessary. The crushed stone on the ground surface in the existing pavement areas should be left in place in areas to be filled or can be excavated and re-used as compacted engineered fill but not as the new pavement base course. Excavations or cavities resulting from demolition should be backfilled with compacted structural backfill.

5.1.3 Stripping and Grubbing

The subgrade preparation should consist of stripping all vegetation, rootmat, topsoil, existing fill, existing pavements and aggregate base, and any soft or unsuitable materials. The existing fill

material should be evaluated by ECS engineers before reuse. ECS should be retained to verify that topsoil and unsuitable surficial materials have been removed prior to the placement of structural fill or construction of structures.

5.1.4 Proofrolling

Prior to fill placement or other construction on subgrades, the subgrades should be evaluated by an ECS field technician. The exposed subgrade should be thoroughly proofrolled with construction equipment having a minimum axle load of 20 tons [e.g. fully loaded tandem-axle dump truck]. Proofrolling should be traversed in two perpendicular directions with overlapping passes of the vehicle under the observation of an ECS technician. This procedure is intended to assist in identifying any localized yielding materials.

Where proofrolling identifies areas that are unstable or "pumping" subgrade those areas should be repaired prior to the placement of any subsequent Structural Fill or other construction materials. Methods of stabilization include undercutting or moisture conditioning. The situation should be discussed with ECS to determine the appropriate procedure. Test pits may be excavated to explore the shallow subsurface materials to help in determining the cause of the observed unstable materials, and to assist in the evaluation of appropriate remedial actions to stabilize the subgrade.

5.1.5 Site Temporary Dewatering

Based on the presumed finished basement and pile cap depths, dewatering will likely be required during installation. The dewatering system should be determined by the contractor.

Note that discharge of produced groundwater to surface waters of the state from dewatering operations or other site activities is regulated and would require temporary dewatering permits from Palm Beach County and the State of Florida Department of Environmental Protection (FDEP). This permit is termed a Generic Permit for the Discharge of Produced Groundwater from Any Non-Contaminated Site Activity. If discharge of produced groundwater is anticipated, we recommend sampling and testing of the groundwater early in the site design phase to prevent project delays during construction. ECS can provide the sampling, testing, and professional consulting required to evaluate compliance with the regulations.

5.1.6 Compaction

Subgrade Compaction: Upon completion of subgrade documentation, the exposed subgrade within the five-foot expanded building limit below shallow foundations, grade supported floor slabs, or mat foundations. should be moisture conditioned to within +/- two percent of the soil's optimum moisture content and be compacted with suitable equipment (minimum ten-ton roller) to a depth of twelve inches. Subgrade compaction within the expanded building and pavement limits should be to a dry density of at least 98 percent of the Modified Proctor maximum dry density (ASTM D1557).

Subgrade Compaction Control: The expanded limits of the proposed construction areas should be well defined, including the limits for buildings, fills, and slopes, etc. Field density testing of subgrades will be performed at frequencies in Table 5.1.6.1.

Table 5.1.6.1 Frequency of Subgrade Compaction Testing

Location	Frequency of Tests
Expanded Building Limits	One test per 2,000 sq. ft.
Pavement Areas	One test per 5,000 sq. ft.
Utility Trenches	One test per 200 linear ft.
All Other Non-Critical Areas	One test per 5,000 sq. ft.

5.2 STRUCTURAL FILL

Prior to placement of Structural Fill, representative bulk samples (about 50 pounds) of on-site and/or off-site borrow should be submitted to ECS for laboratory testing, which will typically include Atterberg limits, natural moisture content, grain-size distribution, and moisture-density relationships (i.e., Proctors) for compaction. Import materials should be tested prior to being hauled to the site to determine if they meet project specifications. Alternatively, Proctor data from other accredited laboratories can be submitted if the test results are within the last 90 days.

Satisfactory Structural Fill Materials: Materials satisfactory for use as Structural Fill should consist of inorganic soils with the following engineering properties and compaction requirements.

STRUCTURAL FILL INDEX PROPERTIES		
Subject	Property	
Building and Pavement Areas	LL < 40, PI<6	
Max. Particle Size	4 inches	
Fines Content	Max. 25 % > #200 sieve	
Max. organic content	5% by dry weight	

STRUCTURAL FILL COMPACTION REQUIREMENTS		
Subject	Requirement	
Compaction Standard	Modified Proctor, ASTM D1557	
Required Compaction	95% of Max. Dry Density	
Recommended Moisture Content	-2 to +3 % points of the soil's optimum value	
Loose Thickness	8 inches prior to compaction	

Fill Placement: Asphalt and Concrete should not be reused as Structural Fill. Fill materials should not be placed on excessively wet soils. Excessively wet soils or aggregates should be scarified, aerated, and moisture conditioned. The Stratum I FINE SAND (SP) material is suitable to be reused as structural fill material.

At the end of each workday, all fill areas should be graded to facilitate drainage of any precipitation and the surface should be sealed by use of a smooth-drum roller to limit infiltration of surface water. During placement and compaction of new fill at the beginning of each workday, the Contractor may need to scarify existing subgrades to a depth on the order of four inches so that a weak plane will not be formed between the new fill and the existing subgrade soils.

Drying and compaction of wet soils is typically difficult during the rainy season. Accordingly, earthwork should be performed during the drier times of the year, if practical. Proper drainage should be maintained during the earthwork phases of construction to prevent ponding of water which tends to degrade subgrade soils.

Fill material should be placed in horizontal lifts in confined areas such as utility trenches, portable compaction equipment and thin lifts of three inches to four inches may be required to achieve specified degrees of compaction.

We recommend that the grading contractor have equipment on site during earthwork for both drying and wetting fill soils. We do not anticipate significant problems in controlling moisture within the fill during dry weather, but moisture control may be difficult during extended periods of rain.

5.3 FOUNDATIONS AND FLOOR SLABS

Protection of Foundation Excavations: Exposure to the environment may weaken the soils at the footing bearing level if the foundation excavations remain open for too long a time. Therefore, foundation concrete should be placed the same day that excavations are made. If the bearing soils are softened by surface water intrusion or exposure, the softened soils must be removed from the foundation excavation bottom immediately prior to placement of concrete. If the excavation must remain open overnight, or if rainfall becomes imminent while the bearing soils are exposed, a one to three-inch thick "mud mat" of "lean" concrete should be placed on the bearing soils before the placement of reinforcing steel.

Footing Subgrade Observations (Lightly loaded shallow foundations): After over-excavation of the deleterious organic soils, most of the soils at the foundation bearing elevation are anticipated to be suitable for support of the proposed structure. It is important to have ECS observe the foundation subgrade prior to placing foundation concrete; to confirm the bearing soils are what was anticipated.

Slab Subgrade Verification: Prior to placement of a drainage layer, the subgrade should be prepared in accordance with the recommendations found in <u>Section 5.1.4 Proofrolling</u>.

5.4 UTILITY INSTALLATIONS

Utility Subgrades: The soils encountered in our exploration are expected to be generally suitable for support of utility pipes. The pipe subgrades should be observed and probed for stability by ECS. Any loose or unsuitable materials encountered should be removed and replaced with suitable compacted structural fill, or pipe stone bedding material.

Utility Backfilling: The granular bedding material should be at least 4 inches thick, but not less than that specified by the civil engineer's project drawings and specifications. We recommend that the bedding materials be placed up to the springline of the pipe. Fill placed for support of the utilities, as well as backfill over the utilities, should satisfy the requirements for Section 5.1 Subgrade Preparation and Section 5.2 Structural Fill.

Temporary Dewatering: Based on the assumed design grades, we anticipate localized dewatering for the construction of the footings and utilities that extend 4 feet below existing grade surface. Minor localized dewatering for deeper utility structures can be achieved using sump pumps.

Excavation Safety: All excavations and slopes should be constructed and maintained in accordance with OSHA excavation safety standards. The contractor is solely responsible for designing, constructing, and maintaining stable temporary excavations and slopes. The contractor's responsible person, as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. ECS is providing this information solely as a service to our client. ECS is not assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred.

6.0 RECOMMENDED ADDITIONAL TESTING

ECS recommends that additional SPT borings be performed at the location of the 2-story building in the east portion of the site once area is accessible. Piezometers could also be placed at the proposed basement area to provide refined groundwater measurements and estimated Seasonal High Groundwater levels. Additional field testing, if any, which we feel is necessary to formulate detailed foundation design and site preparation and earthwork construction recommendations, should be conducted prior to final design.

7.0 CLOSING

ECS has prepared this report to guide the geotechnical-related design and construction aspects of the project. We performed these services in accordance with the standard of care expected of professionals in the industry performing similar services on projects of like size and complexity at this time in the region. No other representation expressed or implied, and no warranty or guarantee is included or intended in this report.

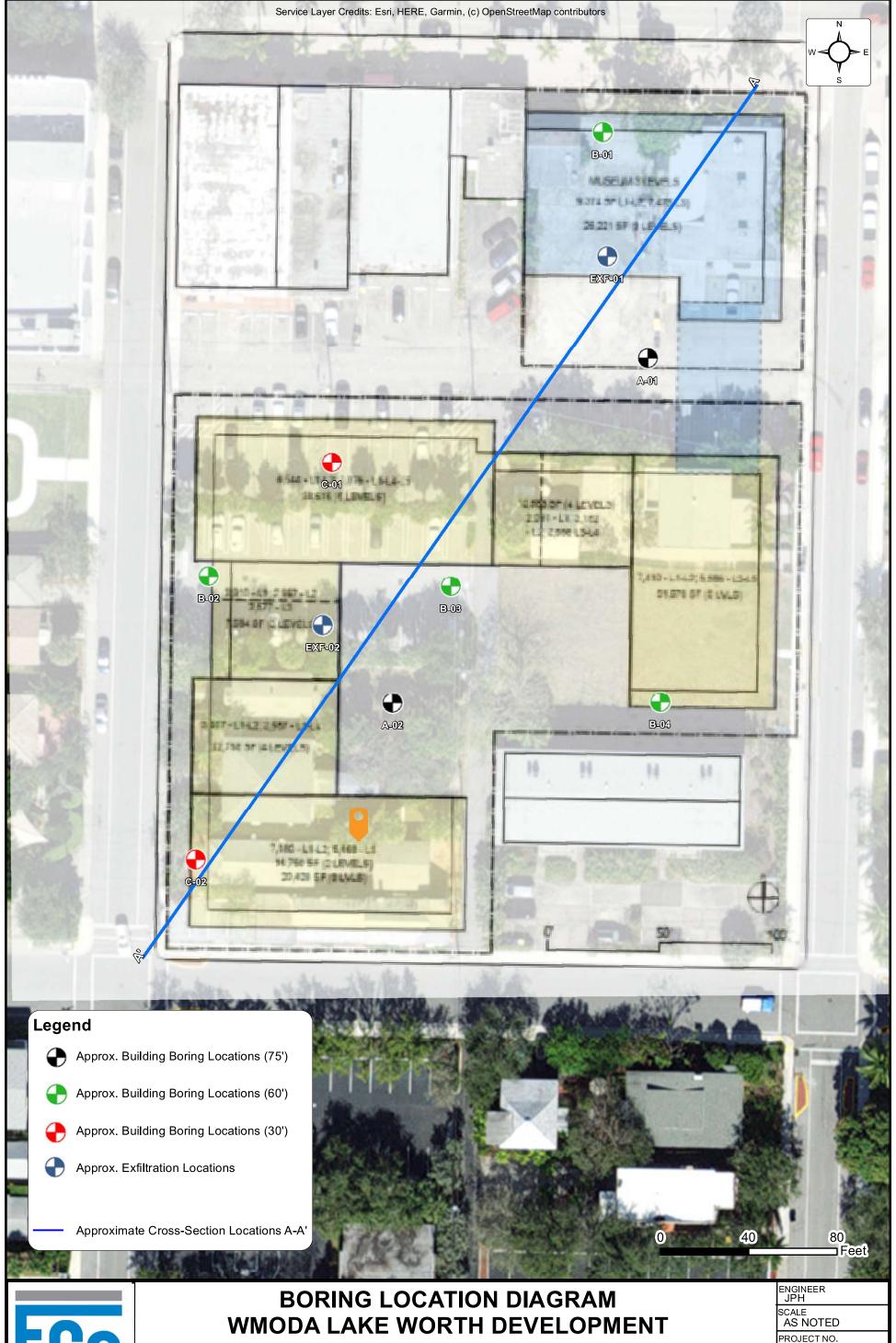
The description of the proposed project is based on information provided to ECS by HE2PD. If any of this information is inaccurate or changes, either because of our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted so we can review our recommendations and provide additional or alternate recommendations that reflect the proposed construction.

We recommend that ECS review the project plans and specifications so we can confirm that those plans/specifications are in accordance with the recommendations of this geotechnical report.

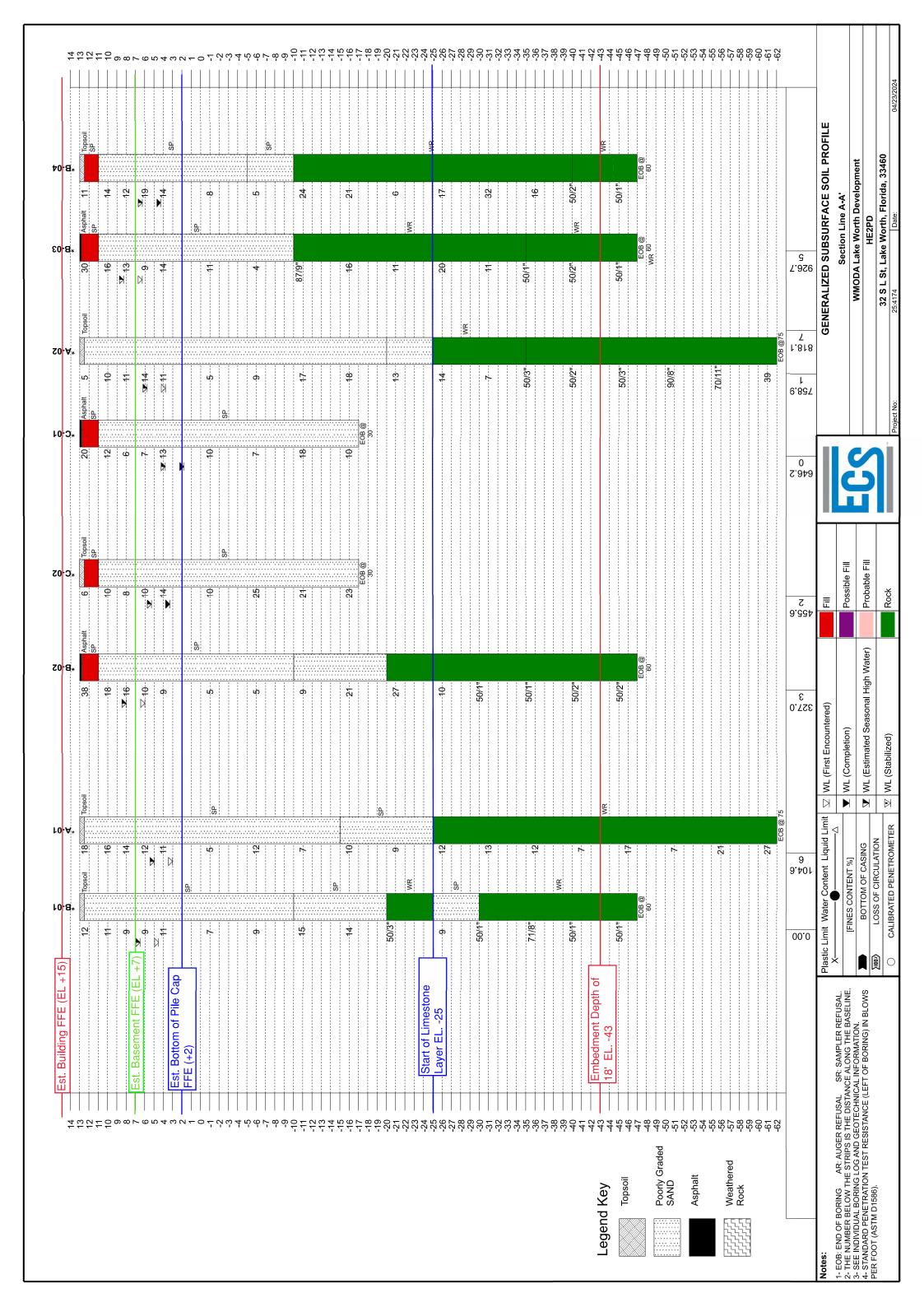
Field observations and quality assurance testing during earthwork and foundation installation are an extension of, and integral to, the geotechnical design. We recommend that ECS be retained to apply our expertise throughout the geotechnical phases of construction, and to provide consultation and recommendation should issues arise.

ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

APPENDIX A – Diagrams


Site Location Diagram
Boring Location Diagram
Generalized Subsurface Profile A-A'
Flood Map
Soil Survey Map

32 S L ST, LAKE WORTH, FLORIDA C/O UNITED MANAGEMENT



32 S L ST, LAKE WORTH, FLORIDA C/O UNITED MANAGEMENT

ENGINEER JPH
SCALE AS NOTED
PROJECT NO. 25:4174
FIGURE 1 OF 1
DATE 5/6/2024

National Flood Hazard Layer FIRMette

Zone VE (EL'8 Feet) EL 7 Feet EL 6 Feet (EL 6 Feet) AE (EL.6 Feet) Feet R43E TAREA OF MINIMAL FLOOD HAZARD ake Worth 44S R43E S21 T44S R43E S28 City Of I

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE)

SPECIAL FLOOD HAZARD AREAS

0.2% Annual Chance Flood Hazard, Areas With BFE or Depth Zone AE, AO, AH, VE, AR Regulatory Floodway

depth less than one foot or with drainage of 1% annual chance flood with average areas of less than one square mile Zone Future Conditions 1% Annual

Area with Flood Risk due to Levee Zoon D Area with Reduced Flood Risk due to Chance Flood Hazard Zone Levee, See Notes, Zone X

OTHER AREAS OF FLOOD HAZARD

No screen Area of Minimal Flood Hazard Zone X

Effective LOMRs

Area of Undetermined Flood Hazard Zone D

OTHER AREAS

Channel, Culvert, or Storm Sewer Levee, Dike, or Floodwall STRUCTURES GENERAL

Cross Sections with 1% Annual Chance B) 20.2

Water Surface Elevation 17.5

Base Flood Elevation Line (BFE) **Jurisdiction Boundary** - Coastal Transect Limit of Study manus \$12 mones

Coastal Transect Baseline Profile Baseline

OTHER

FEATURES

Hydrographic Feature

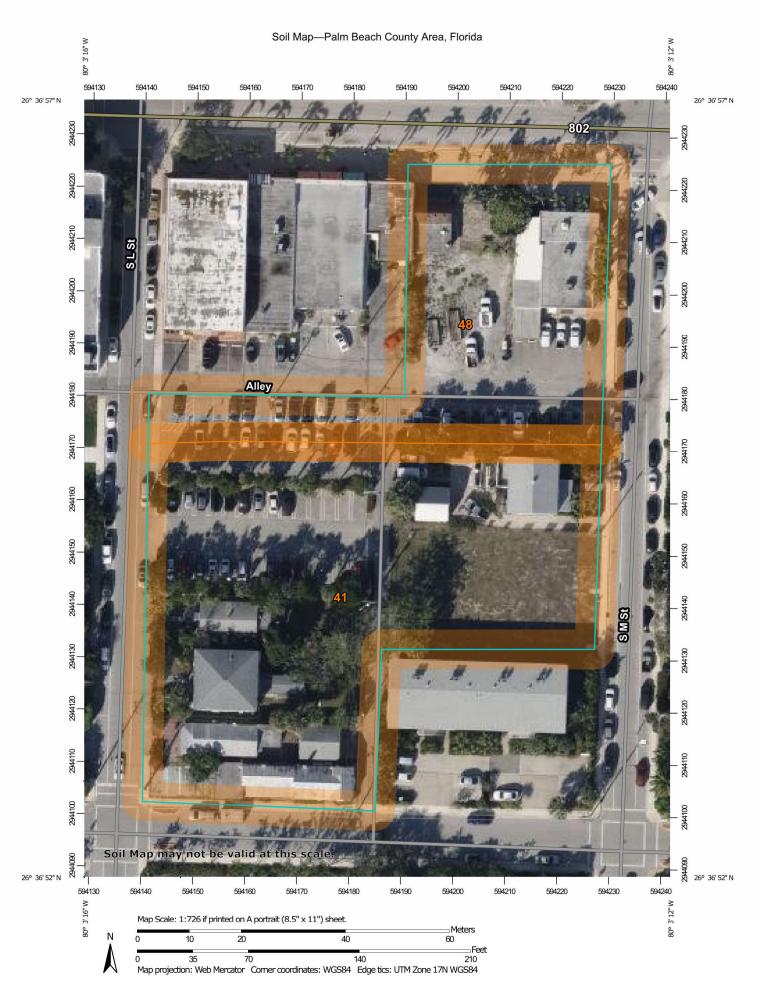
Digital Data Available

No Digital Data Available Unmapped

MAP PANELS

point selected by the user and does not represent The pin displayed on the map is an approximate an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown compiles with FEMA's basemap accuracy standards


authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the was exported on 4/24/2024 at 3:10 PM and does not become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, FIRM panel number, and FIRM effective date. Map images for legend, scale bar, map creation date, community identifiers, unmapped and unmodernized areas cannot be used for regulatory purposes.

1,500

1,000

500

250

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads US Routes Stony Spot Spoil Area Wet Spot Other Rails Nater Features **Fransportation** Background 8 İ Soil Map Unit Polygons Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features Rock Outcrop Gravelly Spot Borrow Pit Clay Spot **Gravel Pit** Lava Flow Area of Interest (AOI) Blowout Landfill 9 Soils

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Palm Beach County Area, Florida Survey Area Data: Version 20, Aug 28, 2023 Soil Survey Area:

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Dec 10, 2022—May

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot

Slide or Slip

A

Sinkhole

Sodic Spot

Saline Spot

Sandy Spot

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
41	St. Lucie-Paola-Urban land complex, 0 to 8 percent slopes	1.2	65.7%
48	Urban land, 0 to 2 percent slopes	0.6	34.3%
Totals for Area of Interest		1.8	100.0%

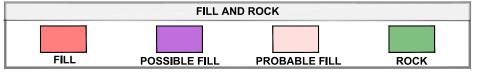
APPENDIX B – Field Operations

Reference Notes for Boring Logs Subsurface Exploration Procedure: Standard Penetration Testing (SPT) Boring Logs Exfiltration Test Results

REFERENCE NOTES FOR BORING LOGS

_										
MATERIAL ¹	,2									
	ASPI	HALT								
	CON	CRETE								
• • • • •	GRA	VEL								
	TOPS	TOPSOIL								
	VOID									
	BRIC	κ								
	AGG	REGATE BASE COURSE								
	GW	WELL-GRADED GRAVEL gravel-sand mixtures, little or no fines								
0°0°	GP	POORLY-GRADED GRAVEL gravel-sand mixtures, little or no fines								
	GM	SILTY GRAVEL gravel-sand-silt mixtures								
II D	GC	CLAYEY GRAVEL gravel-sand-clay mixtures								
	sw	WELL-GRADED SAND gravelly sand, little or no fines								
	SP	POORLY-GRADED SAND gravelly sand, little or no fines								
	SM	SILTY SAND sand-silt mixtures								
////	sc	CLAYEY SAND sand-clay mixtures								
	ML	SILT non-plastic to medium plasticity								
	МН	ELASTIC SILT high plasticity								
	CL	LEAN CLAY low to medium plasticity								
	СН	FAT CLAY high plasticity								
	OL	ORGANIC SILT or CLAY non-plastic to low plasticity								
	ОН	ORGANIC SILT or CLAY high plasticity								
7 7 7 7 7 7 7 7	PT	PEAT highly organic soils								

	DRILLING SAMPLING SYMBOLS & ABBREVIATIONS											
SS	Split Spoon Sampler	PM	Pressuremeter Test									
ST	Shelby Tube Sampler	RD	Rock Bit Drilling									
ws	Wash Sample	RC	Rock Core, NX, BX, AX									
BS	Bulk Sample of Cuttings	REC	Rock Sample Recovery %									
PA	Power Auger (no sample)	RQD	Rock Quality Designation %									
HSA	Hollow Stem Auger											


	PARTICLE SIZE IDENTIFICATION											
DESIGNAT	TON	PARTICLE SIZES										
Boulders	3	12 inches (300 mm) or larger										
Cobbles		3 inches to 12 inches (75 mm to 300 mm)										
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)										
	Fine	4.75 mm to 19 mm (No. 4 sieve to 3/4 inch)										
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)										
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)										
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)										
Silt & Cla	ay ("Fines")	<0.074 mm (smaller than a No. 200 sieve)										

COHESIV	COHESIVE SILTS & CLAYS												
UNCONFINED COMPRESSIVE STRENGTH, QP ⁴	SPT ⁵ (BPF)	CONSISTENCY ⁷ (COHESIVE)											
<0.25	<2	Very Soft											
0.25 - <0.50	2 - 4	Soft											
0.50 - <1.00	5 - 8	Firm											
1.00 - <2.00	9 - 15	Stiff											
2.00 - <4.00	16 - 30	Very Stiff											
4.00 - 8.00	31 - 50	Hard											
>8.00	>50	Very Hard											

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸				
Trace	<u><</u> 5	≤5				
With	10 - 20	10 - 25				
Adjective (ex: "Silty")	25 - 45	30 - 45				

GRAVELS, SANDS & NON-COHESIVE SILTS											
SPT ⁵	DENSITY										
<5	Very Loose										
5 - 10	Loose										
11 - 30	Medium Dense										
31 - 50	Dense										
>50	Very Dense										

	WATER LEVELS ⁶
₹	WL (First Encountered)
Ī	WL (Completion)
Ā	WL (Seasonal High Water)
<u>\$</u>	WL (Stabilized)
í	

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

 $^{^8\}mbox{Percentages}$ are estimated to the nearest 5% per ASTM D 2488-17.

SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586

Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

SPT Procedure:

- Involves driving a hollow tube (split-spoon) into the ground by dropping a 140-lb hammer a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 18-24 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT typically performed for every two to five feet. An approximate 1.5 inch diameter soil sample is recovered.

^{*}Drilling Methods May Vary— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

CLIENT	:						PROJECT NO.: BORING NO								
HE2PD PROJEC	T NAN	лЕ:					25:4174 DRILLER/	CO1	NTRACT	A-01 OR:		1 of 3	_		2
WMOD			Develo	pment			J & R Pre								
SITE LO			المساما	- 2246	0							LOSS OF	CIRCULATION		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
32 S L St LATITU 26.6153	DE:	wortn,	Fioria	LC	ONGITUDE: 0.053691	STATION:				SURFACE EL	EVATION:	BOTTOM OF CASING			-
20.0153			2		5.033691					.5.0	⊗ STANDARD	PENETRATION BLOWS/F	∆ LIQUID L X PLASTIC	IMIT LIMIT	
(H)	SAMPLE NUMBER	TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	Z (FT)	/6" te)*	10 20 20 40	30 40 50 60 80 100 DESIGNATION & RECOVER	CALIBRA	TED PENETRO	
ОЕРТН (FT)	LE NL	SAMPLE TYPE	LE DI	OVER	DESCRIPTION OF N	MATERIAL	f ER LE	ELEVATION (FT)	BLOWS/6" (N - Value)*	RQD	DESIGNATION & RECOVER	TSF	3 4		
DE	AMPI	SAN	AMPI	RECC			WAT		BL.	REC MODIFIED CALIFORNIA SAMPLER			ONTENT % ONTENT] %		
	S		S								BLOWS/FT 10 20	30 40 50	1020	30 40	50
_	S-1	SS	24	13	Topsoil Thickness[6.00"] (SP) FINE TO MEDIUM SA	NND white t			=	5-7-11-10 (18)	8				
_	3-1		24	13	brown, moist to wet, loc				_		18				
_	S-2	SS	24	11	dense				_	9-8-8-9 (16)					
_	3-2		24	11					_	(16)	16				
5-	S-3	SS	24	9					8-	7-7-7-6 (14)					
		3	24						-	(14)	14				
_	S-4	SS	24	11					_	6-7-5-6 (12)					
_			- '						_	(12)	12				
_	S-5	SS	24	13					_	6-5-6-7 (11)	 ⊗ 111				
10-									3-	(/	/11				
-									_						
-									_						
-									_						
-	S-6	SS	24	11					_	1-2-3-2 (5)	 				
15-									- 2		P				
-									_						
-									_						
_									_						
_	S-7	SS	24	14					_	5-7-5-6 (12)	⊗ 12				
20-									-7 -						
-									_						
_									_						
_									_	4-3-4-5					
]	S-8	SS	24	11					_	(7)	₩				
25 –									-12						
_									_						
_									_						
_					(SP) SAND, gray, wet, loc	se to mediui	m ::::	Н	_	4-5-5-5					
_	S-9	SS	24	13	dense, contains limestor				-	(10)	⊗				
30 -									-17 -						
					CONTINUED ON N	EXT PAGE		H							
					NES REPRESENT THE APPROXI	MATE BOUNDA	ARY LINES E	BETV	VEEN SO	IL TYPES. IN	-SITU THE TR	Ansition May E	BE GRADUA	۸L	
□ ∇ V	VL (Firs	st Enco	ounter	ed)	9.75	BORIN	ig starti	ED:	Apr 1	L5 2024	CAVE IN I	DEPTH:			
V	▼ WL (Completion)								Anr	15 2024	HANANAEI	R TYPE: Aut	· · · · · · · · · · · · · · · · · · ·		
A A	▼ WL (Seasonal High Water) 7.75							BORING COMPLETED: HAMM				VIIIE. AUT			
▼ V	√L (Sta	bilizec	l)			EQUIF Truck	PMENT:		ILUG	GED BY:	DRILLING	METHOD: Mu	d rotary		
					GEO	TECHNIC	AL BOF	REH	1OLE I	LOG	-				

CLIENT							PROJECT	NO	.:			SHEET:			
c/o Uni			ent				25:4174 DRILLER,	/	NTP A CT	A-01		2 of 3			2
WMOD			Develo	pment			J & R Pre								
SITE LO										<u> </u>		LOSS DE C	IRCULATION		\\ \\
32 S L S		Worth,	Florida			CTATION			1.		L 5) /A TI O NI	2033 01 0	INCOLATION		7.22.9
26.6153					DNGITUDE: D.053691	STATION:	ON: SURFACE ELEVATION 13.0					воттом	OF CASING		
20.025									-		Ø STANDARD	PENETRATION BLOWS/FT	△ LIQUID LI × PLASTIC L	MIT	1
	SAMPLE NUMBER	PE	<u>S</u>	Î				STS	Ē	_ *	10 20	× PLASTIC I	IMIT —		
ОЕРТН (FT)	N ∪ N	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DECEDIDATION OF N	AATEDIAI		WATER LEVELS) NO	/S/6'		60 80 100 DESIGNATION & RECOVER	CALIBRA'	TED PENETRO	OMETER
EPT	PLE	MPL	PLE	SOVE	DESCRIPTION OF N	/IAI ENIAL		TER	ELEVATION (FT)	BLOWS/6" (N - Value)*	RQD REC			3 4 ONTENT %	5
	SAM	S	SAM	RE						H 2)		CALIFORNIA SAMPLER	[FINES CO	ONTENT] % 30 40	50
					(22) 2222		10.1.00				10 20	30 40 50	10 20	30 40	
-					(SP) SAND, gray, wet, loc dense, contains limestor				_						
_					dense, contains innestor	ie iragineries			_						
-	S-10	SS	24	4					-	5-6-3-2 (9)					
35-	3 10		27						-22 -		9		16.0		
-									-22 -						
-									-						
-									-						
_	C 11		24	_	(WR) Highly Weathered	Soft Limesto	ne,		-	2-4-8-4					
-	S-11	SS	24	6	wet, gray			П	-	(12)	12				
40-									-27 -						
-								П	-						
_								П	-						
-								П	-	4-6-7-5					
_	S-12	SS	24	7				П	_	(13)	13				
45 –								-32							
_															
-															
-								П	-	3304					
_	S-13	SS	24	2					_	3-3-9-4 (12)	⊗				
50 -									-37 -						
_									-						
_									_						
-									-						
_	S-14	SS	24	2					_	1-2-5-6 (7)					
55-	3 14		24						-42 -] (/)	T				
55 -									-42						
-									-						
-									-						
-	6.4-		2.4	4.5					-	24-9-8-9					
	S-15	SS	24	13					-	(17)	17				
60-									-47 -						
-									_		/				
					CONTINUED ON N	IEXT PAGE					:/ :	:::			
					NES REPRESENT THE APPROXI	MATE BOUNDA	ARY LINES	BETV	VEEN SC	DIL TYPES. IN	-SITU THE TR	ANSITION MAY B	E GRADUA	L	
□ □ V	VL (Firs	st Enco	ounter	ed)	9.75	BORIN	ng start	ED:	Apr	15 2024	CAVE IN I	DEPTH:			
▼ ∨	▼ WL (Completion)								Anr	15 2024	HAMME	R TYPE: Auto	n		
▼ ∧	▼ WL (Seasonal High Water) 7.75										HAIVIIVIE	VIITL. AUTO			
▼ V	VL (Sta	bilizec	I)			EQUIF Truck	PMENT:		LOG	GED BY:	DRILLING	METHOD: Mu o	d rotary		
	•				GEC	TECHNIC	AL BO	REH	HOLE	LOG					

CLIENT	:							PROJECT NO.:			BORING NO.:		SHEET:				
HE2PD	T NI A N	45						25:4174	<u></u>	UTD A CT	A-01		3 of 3		LCC		
PROJEC WMOD			Develo	nment				RILLER/ & R Pred							_0		
SITE LO			DC 10.0	J				<u> </u>			ь,с.			0.5 0.5 0.1 0.1 1.5	Vines		
32 S L S		Worth,	Florid										LOS	S OF CIRCULATION	<u>>100%</u>		
26.6153					DNGITUDE: 0.053691	STATION	ON: SURFACE ELEVATION 13.0					EVATION:	BOTTOM OF CASING				
	3ER	ш	(Z	9				\sqrt{\sq}\}}}\sqrt{\sq}}}}}}\sqrt{\sq}}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		(F		STANDARD	PENETRATION BLO	ws/ft A LIQUID I	IMIT LIMIT		
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	20 40		00 7	ATED PENETROMETER		
EPT!) LE N	MPLE	PLE C	OVE	DESCRIPTION OF N	//ATERIAL			TER I	WATIC	LOW I - Va	RQD REC		12	2 3 4 5		
	SAM	SA	SAM	REC					W	ELE	B €		CALIFORNIA SAMPI	LER [FINES C	● WATER CONTENT % [FINES CONTENT] % 10 20 30 40 50		
					(WR) Highly Weathered	Soft Lime	stone	2				10 20		50	2 00 10 00		
_					wet, gray	SOIT LITTE	300110	-,		_	1						
_	S-16	SS	24	6						_	4-3-4-37 (7)	 					
65-										-52							
_										_							
_										_							
_										_							
_	S-17	SS	24	9						_	8-11-10-14 (21)	№					
70-										-57 -	, ,	2	1				
_										_							
_										-			\				
_										_			\				
_	S-18	SS	24	9						-	10-13-14-14						
75-	3-10	33	24	9						-62 -	(27)		⊗ 27				
'3 -					END OF BORING	AT 75 FT	•			-02							
-									-								
-									-								
-										-							
80 -										- 67 –							
-										-							
-										_							
_										_							
-										_							
85-										- 72 –							
-										_							
_										_							
_										_							
_										_							
90-										- 77 –							
_										_							
_										_							
-																	
	<u> </u>	HE STRA	L ATIFICA	L TION I I	 NES REPRESENT THE APPROXI	MATE BOU	NDAR	Y LINES F	LLL BETV	VEEN SO	L IL TYPES: IN-	<u> </u> -SITU THF TR	ANSITION M	AY BE GRADIIA	 AL		
□ V	VL (Firs		9.75			STARTE			L5 2024	CAVE IN		5.000					
▼ v	VL (Cor	npleti	on)			ВО	RING	<u> </u>		Λ 1	IE 2024		D TVDE.	Auto			
T V	▼ WL (Seasonal High Water) 7.75							ETED:			15 2024	HAMMEI	NITPE:	Auto			
▼ V	VL (Sta	bilized	l)			EQ Tru		ΛΕΝΤ:		LOG	GED BY:	DRILLING	METHOD:	Mud rotary			
			-		GEC	OTECHN		L BOF	REH	IOLE I	LOG						

CLIENT	:						PROJECT	NO	.:	BORING N	10.:	SHEET:			
HE2PD PROJEC	T NAN	 ЛЕ:					25:4174 DRILLER/	COI	NTRACT	A-02 OR:		1 of 3			2
WMOD			Develo	pment			J & R Pre								
SITE LO			Elorid	2246	0							LOSS OF C	IRCULATION		<u> </u>
LATITU 26.6149	DE:	vvortii,	, FIOTIU	LC	DNGITUDE: 0.054048	STATION:	ON: SURFACE ELEVATION 13.0					BOTTOM OF CASING			—
20.0143			2		3.03-10-10					.5.0		PENETRATION BLOWS/FT	△ LIQUID LI × PLASTIC	MIT LIMIT	<u> </u>
(F)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)			WATER LEVELS	ELEVATION (FT)	,(er ,y	10 20 20 40 ROCK QUALITY	30 40 50 60 80 100 DESIGNATION & RECOVER'	CALIBRA	TED PENETRO	OMETER	
ОЕРТН (FT)	LE NI	1PLE	LE DI	OVER	DESCRIPTION OF N	8	ER LE	ATIOI	BLOWS/6" (N - Value)*	- RQD	DESIGNATION & RECOVER	TSF	3 4	5	
DE	AMP	SAN	AMP	REC				WAT	ELEV	B Z		CALIFORNIA SAMPLER	WATER CONTENT % [FINES CONTENT] %		
	S		0,				197730				BLOWS/FT 10 20	30 40 50	1020	30 40	50
-	24	12	Topsoil Thickness[6.00"] (SP) FINE TO MEDIUM SA	AND white t		H	-	2-2-3-3 (5)	⊗ S						
_	S-1	SS			brown, moist to wet, loc				_		5				
_	S-2	SS	24	10	dense				_	5-4-6-5 (10)	\ ⊗ 10				
_									_	, ,	10				
5-	S-3	SS	24	10					8-	5-5-6-6 (11)	⊗.				
_									_		11				
_	S-4	SS	24	10					_	6-7-7-8 (14)	\oldot				
_									_	6657					
_	S-5	SS	24	9					_	6-6-5-7 (11)	Ø /11				
10-									3 –						
-									_						
-									-						
_									_	2-2-3-4					
_	S-6	SS	24	10					-	(5)	8				
15-									- 2 –						
-									-						
_									-						
-	6.7		2.4						-	4-4-5-6					
	S-7	SS	24	9					-	(9)	89				
20 –									-7 -						
_									-		\				
]									-						
-	S-8	SS	24	9					-	1-1-16-12 (17)					
25-			27						-12 -	(17)	⊗: 17				
									-						
_									_						
-									_						
_	S-9	SS	24	9					_	11-10-8-7 (18)	⊗				
30-									-17 -						
_					CONTINUED ON N	IEXT PAGE		H							
	Th	HE STRA	L ATIFICA	L TION LI	NES REPRESENT THE APPROXI			BETV	VEEN SO	IL IL TYPES. IN	SITU THE TR	ANSITION MAY B	L E GRADUA	\L	
□ ▽ V	VL (Firs	st Enco	ounter	ed)	9.00	BORIN	NG STARTE	ED:	Apr 1	L5 2024	CAVE IN I	DEPTH:			
▼ ∨	— 1111 / C									15 2024	110000	TVDE -	_		
∡ ∧	VL (Sea	sonal	High V	Vater)	7.00		PLETED:			L5 2024	HAMME	R TYPE: Auto	0		
▼ V	VL (Sta	bilized	H)			EQUIF Truck	PMENT:		LOG	GED BY:	DRILLING	METHOD: Mu	d rotary		
	-				GEC	DTECHNIC	AL BOF	REH	10LE	LOG					

CLIENT							PROJECT NO.:		BORING NO.:		SHEET:			
HE2PD		4.					25:4174			A-02		2 of 3		LCC
PROJECT NAME: WMODA Lake Worth Development DRILLER/CONTRACTOR: J & R Precision Drilling, Inc.														
SITE LOCATION:														
32 S L S		Worth,	Florid											
LATITUDE: LONGITUDE: ST 26.614949 -80.054048							TION: SURFACE ELEVATION 13.0					BOTTOM OF CASING		
	<u>«</u> 2										⊗ STANDARD PENETRATION BLOWS/FT ∴ LIQUID LIMIT × PLASTIC LIMIT		AIT MIT	
l E	SAMPLE NUMBER	SAMPLE NUMBE SAMPLE TYPE MOITAINSSED NOITAINSSED							E)	,e" (6"	10 20 20 40	30 40 50 60 80 100	CALIBRAT	ED PENETROMETER
ОЕРТН (FT)	E NO	PLE 1	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			R LE	ELEVATION (FT)	BLOWS/6" (N - Value)*	ROCK QUALITY RQD	DESIGNATION & RECOVER	TSF 1 2	3 4 5
DEP	MPL	SAM!						WATER LEVELS					WATER CO	
	& &						>	Ш		MODIFIED CALIFORNIA SAMPLER BLOWS/FT			30 40 50	
					(SP) FINE TO MEDIUM SA	o ::::	Н			10 20	30 40 50			
-	-		24	9	brown, moist to wet, loose to medium dense (SP) FINE TO MEDIUM SAND, gray, we medium dense, contains limestone fragments		ım		-22 -	6-6-7-6 (13)				
_		SS												
-	S-10										13			
35-														
-														
_	1								_	1				
		SS	24	5		one,		- - - -	11-7-7-7 (14)					
_	S-11				(WR) Highly Weathered					8				
40	3-11				wet, gray					14				
40-									-27 –					
_									-					
-	1								-					
-									-	15-5-2-2				
-	S-12	SS	24	10					_		🔅			
45-	5					-32 –	}							
-									_					
_									_					
_									_	50/3"		8		
-	S-13	SS	3	2	Hard Limestone, wet, gray				_	(50/3")	50/3'	50/3	/3"	
50-						-37 -								
	1								-					
									-					
-									-					
-		-14 SS 2 2							-	50/2" (50/2")		⊗ 50/2	•	
	5-14								-					
55-	5 1						-42 –	1						
-									-					
-	1								_					
-									-	18-50/3"		⊗ 50/3		
-	S-15	SS	9	6					_	(50/3")		50/3	1	
60-									-47 –					
	1							-	1					
<u> </u>					CONTINUED ON A	IEVT DA OF								
	T L	HE STRA	TIFICA	L TION ! !	CONTINUED ON N NES REPRESENT THE APPROXI			BFT\	WFFN SC	 TYPES IN	 -SITU THE TR	ANSITION MAY R	F GRADIJAI	
∇					9.00				-				_ 5.0 (DOA)	-
✓ WL (First Encountered)9.00✓ WL (Completion)										or 15 2024 CAVE IN		שברוח:		
							BORING AP			pr 15 2024 HAMMEI		R TYPE: Aut	0	
-				vater)	7.00					GED BY:	DDILLING	METHOD: NA	d roto	
<u> </u>	NL (Sta	bilized)			Truck					DKILLING	METHOD: Mu	u rotary	
					GEO	TECHNIC	AL BOI	REH	IOLE I	LOG				

CLIENT	:						PROJECT	NO	.:	BORING N	O.:	SHEET:		
HE2PD	T 11 1 1	4.5					25:4174	/60/	UTD A CT	A-02		3 of 3		LCC
PROJEC WMOD			Dovolo	nmant			DRILLER/ J & R Pre							_03
SITE LO			Develo	pinent			JOKNIE	CISIC		g, піс.				
32 S L S			Florida	a, 3346	0							LOSS OF	CIRCULATION	<u> </u>
LATITU 26.614 9					NGITUDE: 0.054048	STATION:				SURFACE EL 1 3.0	EVATION:	BOTTON	of Casing	
	3ER	E	N)	<u>-</u>				S	Ê		STANDARD	PENETRATION BLOWS/F	LIQUID I	IMIT LIMIT
ОЕРТН (FT)	NUME	SAMPLE TYPE	DIST. (RECOVERY (IN)	DESCRIPTION OF N	ЛАТFRIAI		WATER LEVELS	ION (F	BLOWS/6" (N - Value)*	20 40 ROCK QUALITY	60 80 100 DESIGNATION & RECOVE	TSF	ATED PENETROMETER
DEPT	SAMPLE NUMBER	SAMP	SAMPLE DIST. (IN)	RECOV				WATER	ELEVATION (FT)	N - V)	— RQD — REC ▼ MODIFIED	CALIFORNIA SAMPLER	WATER (ONTENT] %
-	0,		0 ,		Hard Limestone, wet, gr						BLOWS/FT 10 20	30 40 50	10 2	30 40 50
-	S-16	SS	14	8	, , , ,	•			-	10-40-50/2" (90/8")		⊗ 90/8	Į.	
65 –	3-10		14	0					-52	(55,5)		90/0		
- -									-					
- - -									-	44.00.50/5!!				
- - -	S-17	SS	17	7					- -	11-20-50/5" (70/11")		\$ 2 0/1	11	
70 –									-57 — -					
- -									-					
- -	S-18	SS	24	13					-	34-19-20-29 (39)		⊗ 39		
75-				-	END OF BORING	AT 75 FT			-62	, ,		39		
- - -									-					
- -									-					
- 80 -									-67					
-									- -					
									-					
- -									-					
85 –									- 72 –					
- -									-					
_ -									-					
90-									-77 -					
_									-					
-									_					
	TH	HE STRA	ATIFICA	TION LII	I NES REPRESENT THE APPROXII	MATE BOUND	ARY LINES	BET\	VEEN SO	IL TYPES. IN-	SITU THE TR	ANSITION MAY E	BE GRADU	AL
	VL (Firs			ed)	9.00	BORI	NG START	ED:	Apr :	L5 2024	CAVE IN I	DEPTH:		
	VL (Cor VL (Sea			Nater)	7.00	BORI COM	NG PLETED:		Apr :	15 2024	HAMME	R TYPE: Au	to	
	VL (Sta			valet /	7.00	EQUI	PMENT:		LOG	GED BY:	DRILLING	i METHOD: M u	d rotary	
_ <u> </u>	* r (3ta	MINTER	,		GEC	Truck OTECHNIC		REH	HOLE I	LOG			-	

CLIENT							PROJECT	NO	.:	BORING N	10.:	SHEET:		
HE2PD PROJEC	TNAN	лЕ:					25:4174 DRILLER/	COI	NTRACT	B-01 OR:		1 of 2		EC6
WMOD	A Lake	Worth	Develo	pment			J & R Pre							
SITE LO			Elorida	23/6	0							LOSS O	CIRCULATION	\(\)\(\)\(\)
LATITU		vvoi tii,	Tiona		NGITUDE:	STATION:			9	SURFACE E	_EVATION:	POTTO	AA OF CASING	
26.6156	59			-80	0.053751				1	.3.0	1	ROLLC	M OF CASING	
	BER	й	(NI)	Î				LS	(L-	*	10 20	PENETRATION BLOWS, 30 40 50	FT \(\times \) LIQUID I \(\times \) PLASTIC	IMIT LIMIT
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF N	AATEDIAI		WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*		60 80 100 DESIGNATION & RECOV	CALIBRATISF	ATED PENETROMETER
DEPTI	IPLE	MPL	IPLE	COVE	DESCRIPTION OF IN	/IAI ENIAL		\TER	:VATI	N - V	RQD REC			2 3 4 5 CONTENT %
	SAN	S	SAN	RE				×	ELE	1)	MODIFIED BLOWS/FT	CALIFORNIA SAMPLER	[FINES C	ONTENT] % 0 30 40 50
					Topsoil Thickness[6.00"]					5-6-6-6	10 20	30 40 50		
_	S-1	SS	24	13	(SP) FINE TO MEDIUM SA				_	(12)	⊗ 12			
_					brown, moist to wet, loc dense	se to mediui	m		_	5-6-5-6				
_	S-2	SS	24	11	delise				_	(11)	Ø 11			
_									-	4-5-4-6				
5-	S-3	SS	24	10					8 –	(9)	8			
_									_	5-4-5-5				
_	S-4	SS	24	10					_	(9)	8			
-									-	5-5-6-6				
_	S-5	SS	24	17					-	(11)	₩			
10 –									3 –					
_									-					
-									-					
-									=	3-3-4-5				
-	S-6	SS	24	10					_	(7)	*			
15-									-2 –					
_									-					
_									_					
-	S-7	SS	24	11					-	4-4-5-5				
20 –	3-7	33	24	11					-7 -	(9)	8			
20 -									- <i>1</i> -					
=									_					
_									_					
-	S-8	SS	21	11	(SP) FINE TO MEDIUM SA medium dense, contains		et,		-	5-5-10-50/3" (15)	⊗ 15			
25 -	J 0				fragments	innestone			-12 <i>-</i>	, ,	15			
-									-					
_									_					
_									_					
_	S-9	SS	24	11					_	11-8-6-6 (14)	⊗ 14,			
30-									-17		'*\			
					CONTINUED ON N	IEXT PAGE		\vdash	_			<u> </u>		
	Th	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXI			⊥l 3ET\	VEEN SO	IL TYPES. IN	-SITU THE TR	ANSITION MAY	BE GRADU	AL
▽ v	/L (Firs	st Enco	unter	ed)	8.25	BORIN	NG STARTE	ED:	Apr 1	L8 2024	CAVE IN I	DEPTH:		
▼ ∨	/L (Cor	mpleti	on)			BORIN	NG			10.2024	110000) TVD5 -		
™ ∧	/L (Sea	sonal	High V	Vater)	6.25	СОМЕ	PLETED:			18 2024	HAMMER	KIYPE: AL	ito	
▼ v	/L (Sta	bilized)			EQUIP Truck	PMENT:		LOG	GED BY:	DRILLING	METHOD: M	ud rotary	
	-				GEC	DTECHNIC	AL BOF	REH	HOLE I	LOG				

CLIENT	:						PROJEC ⁻).:	BORING N	IO.:	SHEET:		
HE2PD							25:4174			B-01		2 of 2		LCc
PROJE			D I -				DRILLER							_03
SITE LC			Develo	pment			J & R Pre	ecisio	on Urillin	g, inc.		<u> </u>		~
32 S L S	t, Lake		Florid									LOSS OF C	IRCULATION	<u> </u>
26.615					DNGITUDE: 0.053751	STATION:				SURFACE EI 13.0	EVATION:	воттом	OF CASING	
	ER		Î									PENETRATION BLOWS/FT	△ LIQUID LII × PLASTIC L	MIT IMIT
Ē	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	/6" le)*	10 20 20 40	30 40 50 60 80 100 DESIGNATION & RECOVER	CALIBRAT	ED PENETROMETER
ОЕРТН (FT)	E N	PLE	E DI	VER	DESCRIPTION OF N	ЛАТЕRIAL		I.R. LE	TIOL	BLOWS/6" (N - Value)*	RQD	DESIGNATION & RECOVER	TSF 1 2	
DEF	MPL	SAM	MPL	ECO				VATE	LEV	BL(REC		● WATER CO	
	SA	0,	SA	<u>~</u>				>	ш		BLOWS/FT			30 40 50
					(SP) FINE TO MEDIUM SA	AND, gray, v	vet,	:			10 20	30 40 50		
-					medium dense, contains		´ ! ! !		_					
-					fragments			:	_	14-50/3"				
-	S-10	SS	9	3	Hard Limestone, wet, gr	ay			_	(50/3")		50/3"		
35-									-22					
-									_					
									-					
									-					
-					(SP) FINE TO MEDIUM SA	AND, gray, v	vet,	:	-	6-4-5-5				
-	S-11	SS	24	9	loose				-	(9)	8			
40-									-27 -					
-									-					
_									_					
_								:	_	50/1"		50/1"		
-	S-12	SS	1	1	Hard Limestone, wet, gr	ay			-	(50/1")		50/1"		
45-	3 12	33	_	_					-32 -					
45									-32					
_									-					
-									-					
-									_	16-21-50/2"				
-	S-13	SS	14	9					_	(71/8")		⊗ 71/8"		
50-									-37 -					
_									_					
_									-					
-									-	50/1"				
-	S-14	SS	4						-	(50/1")		50/1"		
	3-14	33	1	1					-					
55-									-42					
-	1								_					
-	1								_					
-									_	50/1"		⊗ 50/1"		
-	S-15	SS	1	1					_	(50/1")		50/1		
60-					END OF BORING	AT SO ET			-47 -					
-	1				END OF BURING	A1 00 F1			-					
									-					
		שב כדף.	ATIFICA	TION: ! !	NEC DEDDECENT THE ADDROVE	NAATE DOLLAIS	JA DV LINIEC	םרדי	MELNICO	II TVDEC IN	CITILITUE	ANCITION NAMED	E CDVDIIV	<u> </u>
	۱۱ NL (Firs				NES REPRESENT THE APPROXI								E GKADUA	L
	WL (FIRS			eu)	8.25		ING START	ED:	Apr	18 2024	CAVE IN	DEPTH:		
				۸/a+c :-۱		BOR COM	ing Ipleted:		Apr	18 2024	намме	R TYPE: Auto	o	
	VL (Sea			vater)	6.25		IPMENT:		LOG	GED BY:	DDILLING	METHOD: N	l rotor:	
<u> </u>	VL (Sta	bilized	l)			Truck	ζ				DKILLING	6 METHOD: Mu	rotary	
					GEO	DTECHNI	CAL BO	REI	HOLE	LOG				

CLIENT	:						PROJECT	NO	.:	BORING N	10.:	SHEET:		
HE2PD	~T NIA N	45					25:4174		VITO A CT	B-02		1 of 2		LCc
PROJEC WMOD			Develo	nment			DRILLER/ J & R Pred							
SITE LO			Develo	pinent			Jakrie	.1310		g, піс.				
32 S L S			Florid	a, 3346	0							LOSS C	OF CIRCULATION	<u>>100x</u> >
26.6151					DNGITUDE: 0.054302	STATION:				Surface ei 1 3.0	LEVATION:	вотт	OM OF CASING	
	3ER	ш	(NI	9				S.	(F		STANDARD	PENETRATION BLOWS	S/FT A LIQUID LI	IMIT LIMIT
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	20 40	60 80 100 DESIGNATION & RECO	VERY CALIBRA	TED PENETROMETER
PTH	LE N	1PLE	LE D	OVEF	DESCRIPTION OF N	//ATERIAL		ER L	ATIO	BLOWS/6" N - Value)*	RQD		1 2	3 4 5
DE	AMP	SAN	AMP	RECO				WAT	ELEV	B Z	— REC ▼ MODIFIED	CALIFORNIA SAMPLER	WATER C	ONTENT % ONTENT] %
	Š		S								BLOWS/FT 10 20	30 40 50	1020	30 40 50
-					Asphalt Thickness[3.00"]				_	48-20-18-18				
-	S-1	SS	24	6	(SP FILL) FILL, FINE TO M				_	(38)		⊗ 38		
-					gray, moist, dense, conta fragments	ins limerock	(/i::::		_	13-10-8-7				
-	S-2	SS	24	14	(SP) FINE TO MEDIUM SA	AND, white t	o !!!!		_	(18)	⊗ 18			
_					brown, moist to wet, loc				_					
5-	S-3	SS	24	13	dense			I	8-	7-8-8-8 (16)	b			
_									_	, ,	16			
_	S-4	SS	24	9				abla	_	3-5-5-5				
-	3-4	33	24	9					-	(10)	10			
-									-	5-4-5-6				
_	S-5	SS	24	9					_	(9)	9			
10 -									3-					
_									_					
_									_					
_									_					
-	S-6	SS	24	5					-	4-3-2-2 (5)				
15-	3.0	55							-2 -	(5)	5			
15-									-2-					
-									-					
_									_					
-									_	2-3-2-2				
-	S-7	SS	24	5					_	(5)	\&			
20 -									-7 -					
_									_					
-									-					
-									-					
-					(SP) FINE TO MEDIUM SA		1		-	2-5-4-7				
	S-8	SS	24	9	wet, loose to medium de limestone fragments	ense, contaii	ns 🔛			(9)	8			
25 –					illilestone fragments				-12 -					
-									_					
-									-					
-									_		\			
-	S-9	SS	24	12					_	13-16-5-4 (21)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
30 -									-17 <i>-</i>					
	<u> </u>	IL C.T.	ATIFIC *	TION: ::	CONTINUED ON N				A/EEN CO	III TYDES IN	CITILITIES	A NICITION A 4 4	/ DE CD (D) ()	.1
					NES REPRESENT THE APPROXI								L RE GKADUA	AL .
	VL (Firs			ea)	6.75	BORII	ng starti	ED:	Apr 1	16 2024	CAVE IN I	DEPTH:		
	VL (Coi	•	•			BORII			Apr :	16 2024	HAMME	R TYPE: A	uto	
T V	VL (Sea	asonal	High \	Water)	4.75		PLETED: PMENT:			GED BY:	1			
▼ V	VL (Sta	bilized	l)			Truck	I IVI∟INI.		الما	JLU DI.	DRILLING	METHOD: N	lud rotary	
					GEC	TECHNIC	CAL BOF	REH	HOLE	LOG				

CLIENT		nagem	ent				PROJECT 25:4174	NO	.:	BORING N	IO.:	SHEET: 2 of 2		0
PROJE			ent				DRILLER/	/CO	NTRACT			2012		US.
WMOD			Develo	pment			J & R Pre							
SITE LO			Florida	a. 3346	0							LOSS OF C	CIRCULATION	<u> </u>
LATITU 26.615:	JDE:	••••		LC	DNGITUDE: 0.054302	STATION:				SURFACE EI	EVATION:	воттом	l of casing	-
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF N	∕/ATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	10 20 20 40 ROCK QUALITY 	PENETRATION BLOWS/FT 30 40 50 60 80 100 DESIGNATION & RECOVER	CALIBRATED PE	4 5 NT % IT] %
-					(SP) FINE TO MEDIUM So wet, loose to medium do				- -		10 20	30 40 50		
-	S-10	SS	24	10	limestone fragments (WR) Soft to Hard Limes	tone, wet, g	ray		- - -	5-5-22-11 (27)		©: /27		
35-									-22 - - - - -					
40-	S-11	SS	23	11					-27 -	7-5-5-50/5"	10			
-									 - -	50/1"		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
45-	S-12	SS	1	1					-32 -	(50/1")		50/1		
- - - -	S-13	SS	7	3					- - - - -	37-50/1" (50/1")		⊗ 50/1'	•	
50-									-37 - -					
55-	S-14	SS	8	2					-42	24-50/2" (50/2")		⊗ 50/2'	"	
-				_					- - - -	E0/2"				
60-	S-15	SS	2	2	END OF BORING	AT 60 FT			-47 -	50/2" (50/2")		⊗ 50/2'		
-	-								-	-				
		ור כדי	ATICIO *	TION !!	NICC DEDDECENT THE ADDROVE	NAATE DOLLARD	A DV LINEC !	DCT,	۸/۲۲۸۱۰۵	UL TYPEC IN	CITILITIE	A NICITION A 4AV	E CDADUAL	
	VL (Firs				NES REPRESENT THE APPROXI 6.75		NG START			OIL TYPES. IN: 16 2024	CAVE IN		E GKADUAL	
	NL (Co			<u>, </u>		BORI		<i>∟∪</i> .						
Z /	NL (Sea	sonal	High V	Vater)	4.75	сом	PLETED:			16 2024	HAMME	R TYPE: Aut	0	
▼ \	NL (Sta	bilized	l)			EQUI Truck	PMENT:		LOG	GED BY:	DRILLING	6 METHOD: Mu	d rotary	
					GEO	TECHNIC	CAL BOI	REI	HOLE	LOG				

CLIENT	:						PROJECT	NO	:	BORING N	IO.:	SHEET:		
HE2PD PROJEC	T NAN	лЕ:					25:4174 DRILLER/	CON	NTRACT	B-03 OR:		1 of 2		EC6
WMOD			Develo	pment			J & R Pre							
SITE LO			F1!!	- 2246	•							LOSS OF	CIRCULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
32 S L S		wortn,	, Floria		NGITUDE:	STATION:				SURFACE EI	FVATION:		_	
26.6150					0.053966	317 (11014.				13.0	22 77 (11014.	BOTTOM	1 OF CASING	
	BER	ш	(NE)	2				LS	Ē.	,	STANDARD	PENETRATION BLOWS/F	∆ LIQUID L × PLASTIC	IMIT LIMIT
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	20 40	60 80 100 DESIGNATION & RECOVER	CALIBRA	ATED PENETROMETER
ОЕРТН (FT)	OLE N	MPLE) FE	OVE	DESCRIPTION OF N	MATERIAL		TER L	MTIC	LOW - Va	RQD REC		12	3 4 5
	SAM	SA	SAM	REC				W	ELE	8 2		CALIFORNIA SAMPLER	[FINES C	CONTENT % ONTENT] %
										23-15-15-14	10 20	30 40 50	10 21	0 30 40 50
_	S-1	SS	24	19	Asphalt Thickness[2.00"] (SP FILL) FILL, FINE TO M		D.		_	(30)		Ø.		
_					white to gray, moist, me	dium dense		Ц	_			3 0		
_	S-2	SS	24	13	(SP) FINE TO MEDIUM SA		o		_	10-8-8-9 (16)				
_					brown, moist to wet, ver medium dense	y loose to			_	, ,	16			
5 – 5 –	S-3	SS	24	14				I	8-	6-6-7-6 (13)				
_									_	(==)	/13			
_	S-4	SS	24	14				$ \nabla $	_	5-5-4-6 (9)				
_									_	(3)	9			
_	S-5	SS	24	23					-	5-6-8-9 (14)	⊗			
10 –									3 –	(14)	14			
_									_					
-									-					
_									-					
_	S-6	SS	24	12					-	3-5-6-6 (11)	⊗ 00			
15 –	3 0	33	24	12					-2 -	(11)	1 /11			
-									- -					
-									-					
-									-					
-	S-7	SS	24	11					-	3-2-2-3				
- 20 –	3-7	33	24	11					-7 –	(4)	\$			
									-, -					
_									-					
_									-					
-	S-8	SS	15	11	(WR) Highly Weathered	Soft Limesto	ne,		-	15-37-50/3" (87/9")		87/9		
25 -	3-0	ىن	13	11	gray, wet				-12	,		/ 5/19		
									-12					
_									-					
_									_					
_	S-9	SS	24	2					-	10-11-5-5				
30 –	3-9	33	24	2					17	(16)	16			
									-17 -			<u> </u>		
		IE 2==	A.T.I.T.	TIGO	CONTINUED ON N						CITIL TO THE	ANGERO		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					NES REPRESENT THE APPROXI								SE GRADUA	AL .
	-		ounter	eu)	6.50		NG STARTI	ED:	Apr 1	L6 2024	CAVE IN I	DEPTH:		
	VL (Coi	•	•			BORIN			Apr :	L6 2024	HAMMER	R TYPE: Aut	ю	
			High V	Vater)	4.50		PLETED: PMENT:		LOG	GED BY:	55			
▼ V	VL (Sta	bilized	1)			Truck					DRILLING	METHOD: Mu	d rotary	
					GEO	TECHNIC	CAL BOF	REF	OLE	LOG				

CLIENT HE2PD	:						PROJEC 25:417		D.:	BORING N	10.:	SHEET: 2 of 2	57	
PROJEC	TNAN	1E:							NTRAC			12012		25
WMOD			Develo	pment			J & R P	recisi	on Drillir	ng, Inc.		T		
SITE LO			Florida	a, 3346	0							LOSS OF C	CIRCULATION	<u> </u>
LATITU 26.615 0					NGITUDE: 0.053966	STATION:				SURFACE EI 13.0	LEVATION:	воттом	OF CASING	-
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF N	//ATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	10 20 20 40 ROCK QUALITY 	D PENETRATION BLOWS/FT 30 40 50 60 80 100 O DESIGNATION & RECOVER D CALIFORNIA SAMPLER T 30 40 50		4 5
-					(WR) Highly Weathered gray, wet	Soft Limest	cone,		-					
35 –	S-10	SS	24	2					-22	- - 12-5-6-9 - (11)	⊗ 11			
40-	S-11	SS	24	9					-27 -	- 10-16-4-7 (20)	\$ /2c			
45-	S-12	SS	24	9					-32 -	9-7-4-3 (11)	8			
50-	S-13	SS	1	1	Hard Limestone, gray, w	et			-37	50/1" (50/1")		\$0/1'		
55 -	S-14	SS	7	1					-42 -	50/2" (50/2")				
60-	S-15	SS	1	1	END OF BORING	AT 60 FT			- - 47 -	50/1" - (50/1")		⊗ 50/1¹		
								+			: :			
					NES REPRESENT THE APPROXII	MATE BOUN	DARY LINE	S BET	WEEN SO	DIL TYPES. IN	-SITU THE TE	RANSITION MAY B	E GRADUAL	
□ □ V	VL (Firs	t Encc	unter	ed)	6.50	BOR	ing staf	RTED	Apr	16 2024	CAVE IN	DEPTH:		
	VL (Cor					BOR	ING 1PLETED:		Apr	16 2024	HAMME	R TYPE: Aut	0	
	VL (Sea			Vater)	4.50		IPMENT:		LOG	GGED BY:	Doll i ivic	G METHOD: Mu	d rotary	
<u> </u>	VL (Sta	bilized)		GFC	Truci)RF	HOLF	IOG	DIVILLING	JIVILITIOD, IVIU	a rotary	

CLIENT	:						PROJECT	NO	.:	BORING N	10.:	SHEET:			
HE2PD PROJEC	T NAN	лЕ:					25:4174 DRILLER/	CON	NTRACT	B-04 OR:		1 of 2			2
WMOD			Develo	pment	:		J & R Pre								
SITE LO				2246								LOSS OF CI	IRCULATION		<u> </u>
LATITU		Worth,	Florida		ONGITUDE:	STATION:				SURFACE EI	FVATION:				
26.6149					0.053677	37,41314.				13.0	22 77 11 10 111	воттом	OF CASING		
	R		<u></u>								⊗ STANDARD	PENETRATION BLOWS/FT	△ LIQUID LI × PLASTIC	MIT IMIT	
l F	SAMPLE NUMBER	YPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	*(e	10 20 20 40	30 40 50 60 80 100	CALIBRA	TED DENETRO	OMETER
ОЕРТН (FT)	E NU	SAMPLE TYPE	E DIS	VERY	DESCRIPTION OF N	//ATERIAL		R LE	TION	BLOWS/6" (N - Value)*	ROCK QUALITY RQD	DESIGNATION & RECOVERY	TSF	3 4	
DEP	MPL	SAMI	MPL	ECO				VATE	LEVA	BLC (N -	REC		● WATER C	ONTENT % ONTENT] %	
	SA		SA	-					Ш		BLOWS/FT			30 40	50
_					Topsoil Thickness[6.00"]					2-4-7-6	10 20	30 40 50			
_	S-1	SS	24	11	(SP FILL) FILL, FINE TO M		D,		_	(11)	⊗ 11				
-					brown, moist, medium o		0		_	6-7-7-7					
-	S-2	SS	24	14	brown, moist to wet, loc	•	1: • • •		_	(14)	⊗				
_					dense				-	5-5-7-6					
5-	S-3	SS	24	10					8 –	(12)	⊗ 12				
_									-	7-10-9-8					
-	S-4	SS	24	13				_	_	(19)	19				
_								┰	-	4-6-8-10					
-	S-5	SS	24	10					_	(14)	⊗				
10-									3 –						
_									_						
-									_						
_									_	2 4 4 5					
_	S-6	SS	24	9					_	3-4-4-5 (8)	⊗				
15-									-2						
-									_						
_									_						
_					(SP) FINE TO MEDIUM SA	AND grav w	et :::	Н	_	1 2 2 16					
_	S-7	SS	24	11	loose, contains limeston				_	1-2-3-16 (5)	\oint_{\oint_{0}}				
20 -									- 7 –						
_									_						
_									_						
-					(WR) Highly Weathered	to Soft		Н	_	40.44.45.					
_	S-8	SS	24	10	Limestone, gray, wet	10 3011			_	10-11-13-15 (24)		∂ 24			
25-									-12			24			
_									_						
_									_						
_									_						
_	S-9	SS	24	14					_	12-10-11-36 (21)	Ø /21				
30-									-17						
					CONTINUED ON N	IFYT DAGE	:	H							
	LTI	L HE STRA	L Atifica	L TION LI	NES REPRESENT THE APPROXI			LLL BETV	VEEN SO	I IL TYPES. IN	I -SITU THE TR	ANSITION MAY BE	L E GRADUA	\L	
□ V	VL (Firs						NG STARTI			17 2024	CAVE IN I				
▼ V	VL (Coi	mpleti	on)		8.50	BORII									
	VL (Sea	•		Nater\			NG PLETED:		Apr :	17 2024	HAMME	R TYPE: Auto	•		
				- vacci)	0.30	EQUII	PMENT:		LOG	GED BY:	DRILLING	i METHOD: M ud	l rotarv		-
× V	VL (Sta	niiized	1)		CEC	Truck OTECHNIC	AL DO) E L		IOG	7.11211110		· · · · · · · · · · · · · · · · · · ·		
1					GEC	/ LUIIIVIL	\mathcal{A} L D \mathcal{O} Γ	√∟ſ	IULE	LUU					

CLIENT							PROJE		10.:	:	BORING N	IO.:	SHEET:		
HE2PD		45					25:41		<u> </u>	ITD A CT	B-04		2 of 2		LCC
PROJE:			Develo	nment						ITRACT n Drillin					_0
SITE LC			Develo	pinene			17411				Б)е.			05 000000 07000	Viggi
32 S L S		Worth,	, Florid										LOSS	OF CIRCULATION	<u>>100%</u>
26.614					DNGITUDE: 0.053677	STATION	:				SURFACE EL 13.0	EVATION:	вот	TOM OF CASING	
	<u>~</u>		9							_		⊗ STANDARD	PENETRATION BLOW	VS/FT A LIQUID L	LIMIT LIMIT
l F	SAMPLE NUMBER	YPE	SAMPLE DIST. (IN)	RECOVERY (IN)				STONE EVELS	VELS	ELEVATION (FT)	e)*	10 20 20 40	30 40 50 60 80 10	<u> </u>	ATED PENETROMETER
ОЕРТН (FT)	E NU	SAMPLE TYPE	E DIS	VERY	DESCRIPTION OF N	ЛАТERIAL		1	۲ ۲	TION	BLOWS/6" (N - Value)*	ROCK QUALITY RQD	DESIGNATION & REC	TSF 1 2	
DEP	MPL	SAMI	MPL	ECO					M	LEVA	BLC (N -	REC		● WATER	
	SA		SA							Ш		BLOWS/FT		102	0 30 40 50
					(WR) Highly Weathered	to Soft			$^{+}$			10 20	30 40 50		
-					Limestone, gray, wet					_					
-										-	5-2-4-5				
-	S-10	SS	24	9						_	(6)	 			
35-										-22					
-	1									_		\			
_	1									_					
-										_					
_	S-11	SS	24	12						_	12-8-9-13 (17)	b			
40-	3 11	33	2-7							-27 -	(17)	77			
-0	-														
	-									-			\		
-										-					
-										-	18-17-15-13				
-	S-12	SS	24	11						_	(32)		⊗ /32		
45-										- 32 –					
-										_			/		
-	1									_		/			
_										_	40.007				
_	S-13	SS	24	8						_	12-8-8-7 (16)				
50-										-37		10			
_	1									_					
_	1									_					
-										_	50/2"			,	
	S-14	SS	2	2	Hard Limestone, gray, w	et				-	(50/2")		×	50/2"	
]]]]	33	-	-						40					
55-										-42					
-										-					
-										_					
-										-	50/1" (50/1")		\$	50/1"	
-	S-15	SS	1	1						-	(55,1)				
60 -					END OF BORING	AT 60 FT	-		\dashv	-47 -					
-							[İ	_					
<u> </u>									+						
	ı Ti	HE STR	L ATIFICA	TION LI	I NES REPRESENT THE APPROXI	MATE BOU	NDARY LIN	IES BE	TW	/EEN SO	I DIL TYPES. IN:	<u>I</u> -SITU THE TR	ANSITION MA	<u> </u>	AL
✓ \	NL (Firs						RING STA				17 2024	CAVE IN			
	NL (Cor			•	8.50		RING					O, (V L 114)			
				Mate:-\	6.50)RING)MPLETE[):		Apr :	17 2024	HAMMEI	R TYPE:	Auto	
-	NL (Sea			water)	0.50		UIPMENT			LOG	GED BY:	Dellario	METHOD:	Mud rotom:	
<u>▼ \</u>	NL (Sta	bilizec	1)		<u></u>	Tru						DKILLING	METHOD: I	viuu rotary	
					GEO	DTECHN	IICAL B	ORE	ΕH	IOLE I	LOG				

CLIENT	:						PROJECT	NO	.:	BORING N	IO.:	SHEET:			
HE2PD	T 114 1	45					25:4174	/601	UTD A CT	C-01		1 of 1		FC.	C
PROJEC WMOD			Develo	nment			DRILLER/ J & R Pre								
SITE LO			Develo	pinent			Jakire	CISIO		g, IIIC.					
32 S L S	t, Lake	Worth,	, Florid	a, 3346	0							LOSS O	FCIRCULATION	2	<u>}100%</u>
LATITU 26.6152					DNGITUDE: 0.054130	STATION:				SURFACE EL 13.0	EVATION:	вотто	M OF CASING		
	ER	-	<u> </u>	9				S	(L			PENETRATION BLOWS	/FT A LIQUID LI	IMIT LIMIT	
(F)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	ELEVATION (FT)	*(er.	20 40	60 80 100 DESIGNATION & RECOV	CALIBRA	TED PENETRO	METER
ОЕРТН (FT)	E N	IPLE	E DI	VER	DESCRIPTION OF N	//ATERIAL		ER LE	4TI0	BLOWS/6" (N - Value)*	RQD			3 4	5
DE	MP	SAN	۸MP	RECC				WAT	ELEV.	BL (N	— REC ▼ MODIFIED	CALIFORNIA SAMPLER	WATER C [FINES C	ONTENT % ONTENT] %	
	/S		/S						ш		BLOWS/FT		1020	30 40	50
-					Asphalt Thickness[3.00"]			H	-	13-10-10-11	10 20	30 40 30			
_	S-1	SS	24	17	(SP FILL) FILL, FINE TO M				_	(20)	20				
-					brown, moist, medium calium ca	lense, cont	ains /i::::	Н	-	7-6-6-6					
-	S-2	SS	24	14	(SP) FINE TO MEDIUM SA	AND, white	to		_	(12)	Ø /12				
-					brown, moist to wet, loc				-	4224					
5-	S-3	SS	24	12	dense				8-	4-3-3-4 (6)	 ⊗				
_									_		0 : :				
_	S-4	SS	24	10					_	2-3-4-4 (7)	\ ⊗				
_									-	(,,	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
-	S-5	SS	24	11					_	5-6-7-7 (13)					
10-	5-5	3	24	11				-	3-	(13)	13				
10-									J -						
_									-						
-									-						
-									-	5-6-4-4					
-	S-6	SS	24	10					-	(10)					
15-									-2-						
-									_						
_									_						
_									_	22444					
_	S-7	SS	24	9					_	2-3-4-14 (7)	♦				
20-									- 7 –		\				
_									_						
-									_						
_									-						
_	S-8	SS	24	10					-	6-7-11-7					
25	3-0	33	24	10					10	(18)	18				
25-									-12 -						
-									-						
-									-		/				
-									-	5-5-5-6					
-	S-9	SS	24	9					-	(10)	Ø 10				
30 -					END OF BORING	AT 30 FT	<u> </u>	Н	-17 -						
								Н				<u> </u>	: : :		
	TI	HE STR	ATIFICA	TION LI	NES REPRESENT THE APPROXI	MATE BOUN	DARY LINES	BETV	VEEN SC	IL TYPES. IN	SITU THE TR	ANSITION MAY	BE GRADUA	\L	
_ ▽ v	VL (Firs	st Enco	ounter	ed)		BOR	ING START	ED:	Apr :	17 2024	CAVE IN I	DEPTH:			
V	VL (Coi	mpleti	on)		11.00	BOR	ING			17.202.	110000) TVD5 -			
▼ ∧	VL (Sea	asonal	High \	Water)	9.00		IPLETED:			17 2024	HAMME	KIYPE: A	ıto		
	VL (Sta			•			IPMENT:		LOG	GED BY:	DRILLING	METHOD: M	ud rotary		
├ 	_ (3:0		<u>′</u>		GEC	Truci OTECHNI		REH	HOLE	LOG					

CLIENT HE2PD	:						PROJECT 25:4174	NO	.:	BORING N	10.:	SHEET: 1 of 1	7	
PROJEC	T NAN	лЕ:					DRILLER/	COI	NTRACT			1011		25
WMOD	A Lake	Worth	Develo	pment			J & R Pre							
SITE LO			Florid	a. 3346	0							LOSS OF C	IRCULATION	<u> </u>
LATITU 26.6147	DE:			LC	DNGITUDE: 0.054323	STATION:				SURFACE EI	LEVATION:	воттом	OF CASING	
	~		_			-					⊗ STANDARD	PENETRATION BLOWS/FT	△ LIQUID LIMIT × PLASTIC LIMIT	
l F	SAMPLE NUMBER	YPE	SAMPLE DIST. (IN)	(NE)				WATER LEVELS	(FT)	*(e,,	10 20 20 40	30 40 50 60 80 100		TROMETER
ОЕРТН (FT)	E NU	PLE T	E DIS	VERY	DESCRIPTION OF N	ЛАТЕRIAL		R LE	NOIT	BLOWS/6" (N - Value)*	ROCK QUALITY RQD	DESIGNATION & RECOVER	TSF 1 2 3	
DEP	MPL	SAMPLE TYPE	MPL	RECOVERY (IN)				WATE	ELEVATION (FT)	BLC (N -	— REC ▼ MODIFIED	CALIFORNIA SAMPLER	• WATER CONTENT % [FINES CONTENT] %	5
	SA		SA						ш		BLOWS/F1		1020304	
_					Topsoil Thickness[6.00"]				-	3-3-3-5		30 40 50		
_	S-1	SS	24	16	(SP FILL) FILL, FINE TO M brown, moist, medium o		D,		-	(6)	6			
-					(SP) FINE TO MEDIUM S			П	-	4-5-5-5				
_	S-2	SS	24	11	brown, moist to wet, loc	•			-	(10)	10			
_					dense				-	4-4-4-5				
5-	S-3	SS	24	9					8-	(8)	₩ Β			
-									-	4-5-5-6				
_	S-4	SS	24	10					-	(10)	80			
_									-	6-7-7-6				
-	S-5	SS	24	11				┰	-	(14)	⊗			
10 -									3 –					
_									_					
_									_					
_									_	2467				
_	S-6	SS	24	12					_	2-4-6-7 (10)				
15-									-2-					
_									_					
_									_					
_									_					
_	S-7	SS	24	10					_	8-11-14-16 (25)		⊗ 25		
20-									- 7 –			25		
_									_					
_									_					
_									_					
_	S-8	SS	24	12					_	10-11-10-6	⊗			
25 -									-12 -	, ,	2	1		
									-					
_									-					
-									-					
_	S-9	SS	24	11					_	7-10-13-15 (23)		23		
30-					END OF BODING	AT 20 FT			-17 -	, ,		23		
					END OF BORING	AI JUFI		Ш						
	T I	HE STRA	 ATIFICA	TION ! !	NES REPRESENT THE APPROXI	MATE BOLIND	ARY LINIES F	L I	VFFN SC	 TYPES IN	 -SITU THE TR	ΚΑΝSITION ΜΔΥ Ρ	 F GRADUAI	
□ v	VL (Firs				NET NESERT THE ALT NOVI								_ 5111 15 OT 1E	
	VL (Cor			,	9.50		NG STARTI	ט:	Apr	17 2024	CAVE IN	DEFIM:		
		•	-	Moto		BORII COMI	NG PLETED:		Apr	17 2024	НАММЕ	R TYPE: Auto	o	
			_	Water)	7.50		PMENT:		LOG	GED BY:	DDILLING	C METHOD: B#	l rotar:	
<u>▼ ∨</u>	VL (Sta	bilizec	l)			Truck			10:-		DKILLING	6 METHOD: Mu	a rotary	
1					GEC	DTECHNIC	AL BOF	ΚEŀ	1ULE	LUG				

SOUTH FLORIDA WATER MANAGEMENT DISTRICT "USUAL OPEN - HOLE TEST" Ground Surface Water Table h_w D_s

$$K_{IV} = 4Q/[\pi d(2H_2^2 + 4H_2Ds + H_2d)]$$

8.11E-05 CFS/FT²-FT HEAD

Q = Average Flow Rate = 0.009046 CFS

d = Diameter of Test Hole = 0.40 feet

 H_2 = Head on Water Table = 8.0 feet

 $h_w = Total Hole Depth = 15.0 feet$

 D_s = Saturated Hole Depth = 7.0 feet

TEST LOCATION: EXF-01

DEPTH TO WATER TABLE:

DEPTH OF TEST HOLE:

8 ft
Below Existing Grade
Below Existing Grade

AVERAGE FLOW RATE: 4.1 GPM

SOIL PROFILE:

0.0' - 15.0' SAND with Limerock (SP)

NOTES: The soil profile is determined by drilled cuttings & should not be relied upon as an accurate record of soil type or for transition zones.

USUAL OPEN HOLE TEST SUMMARY	Test Date	Project No.	Test No.	Tested By	Checked by:
USUAL OPEN HOLE TEST SUMMARY	04/18/24	4174	EXF-01	JP	EJM
					Job No.: 25:4174 MODA Lake Worth
ECC					32 S L St
				Lake Worth	. Palm Beach County, Florida

33460

$K_{IV} = 4Q/[\pi d(2H_2^2 + 4H_2Ds + H_2d)]$

7.31E-05 CFS/FT²-FT HEAD

Q = Average Flow Rate = 0.008155 CFS

d = Diameter of Test Hole = 0.40 feet

 H_2 = Head on Water Table = 8.0 feet

 $h_w = Total Hole Depth = 15.0 feet$

 D_s = Saturated Hole Depth = 7.0 feet

TEST LOCATION: EXF-02

DEPTH TO WATER TABLE:

DEPTH OF TEST HOLE:

8 ft
Below Existing Grade
Below Existing Grade

AVERAGE FLOW RATE: 3.7 GPM

SOIL PROFILE:

0.0' - 15.0' SAND with Limerock (SP)

NOTES: The soil profile is determined by drilled cuttings & should not be relied upon as an accurate record of soil type or for transition zones.

USUAL OPEN HOLE TEST SUMMARY	Test Date	Project No.	Test No.	Tested By	Checked by:
USUAL OPEN HOLE TEST SUMMART	04/18/24	4174	EXF-02	JP	EJM
					Job No.: 25:4174
				WN	MODA Lake Worth
					32 S L St
				Lake Worth,	Palm Beach County, Florida
					• •

APPENDIX C – Laboratory Summary

Laboratory Data Summary

Laboratory Testing Summary

					Atte	Atterberg Limits	iits	**Percent	Moisture	Moisture - Density		
Sample Location	Sample Number	Depth (feet)	√MC (%)	Soil	11	٦d	₫	Passing No. 200 Sieve	<maximum Density (pcf)</maximum 	<optimum Moisture (%)</optimum 	@ LBR (%)	#Organic Content (%)
A-01	S-10	33-35	16.0	SP								
A-02	8 - 8	23-25	20.2	SP								
B-02	9-8	13-15	27.8	SP								
B-04	S-3	4-6	14.3	SP								
Notes:	See test reports for test method, Notes: corrected values	ts for test m es	ethod, ^AS	STM D2216	-19, *ASTN	1 D2488, **,	4STM D11	40-17, @FM 5	-515, #ASTM E	^ASTM D2216-19, *ASTM D2488, **ASTM D1140-17, @FM 5-515, #ASTM D2974-20e1 < See test report for D4718	ee test report	for D4718
Definitions:	MC: Moisture Content, Soil ' Ratio, OC: Organic Content	Content, So yanic Conte	il Type: US nt	SCS (Unifie	d Soil Class	sification Sy	stem), LL:	Liquid Limit, F	L: Plastic Limit	Definitions: MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, CBR: California Bearing Ratio, OC: Organic Content	ndex, CBR: Ca	lifornia Bearing

Project: WMODA Lake Worth Development

Project No.: 25:4174 Date Reported: 4/29/2024

Address

Office / Lab

Client: HE2PD

ECS Florida LLC - West Palm Beach

West Palm Beach, FL 33404 2000 Avenue "P" Suite 3

(561)840-3667

Office Number / Fax

(561)840-3668

Tested by	Checked by	Approved by	Date Received
DHansen	DHansen	DHansen	4/26/2024

APPENDIX D – Project Details and Supporting Documents

Lateral Capacity Results

___ rocscience

WMODA Lake Worth Development Ernesto J Masis, EIT ECS Florida, LLC

Report Created Date: 2024/05/01, 16:27:12

Software Version: 3.024

Table of Contents

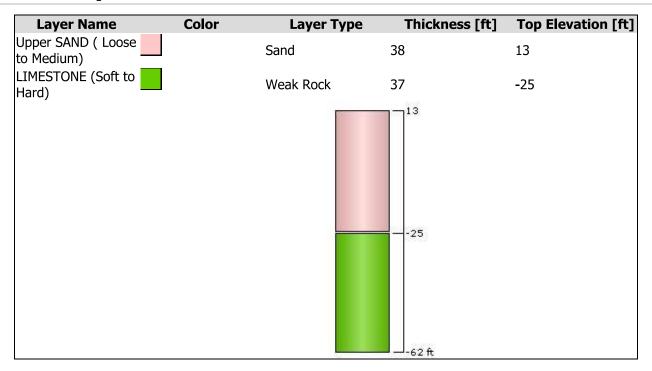
Project Summary	3
Groundwater	4
Goil Layers	
Soil Properties	6
Upper SAND (Loose to Medium)	
LIMESTONE (Soft to Hard)	6
ile Section Properties	7
14 inch (120 Tons)	7
ile Types	8
14 inch (180 Tons)	8
ile Settings	
Pile 1	9
Geometry	9
Loading	9
Advanced Analysis	9

RSPile Analysis Information

WMODA Lake Worth Development

Project Summary

Document Name
Project Title
Analysis
Author
Company
Date Created
Last saved with RSPile version


25.4174 WMODA Lake Worth- 14 Inch Pile WMODA Lake Worth Development Lateral Ernesto J Masis, EIT ECS Florida, LLC 3/9/2023, 9:35:20 AM 3.024

Groundwater

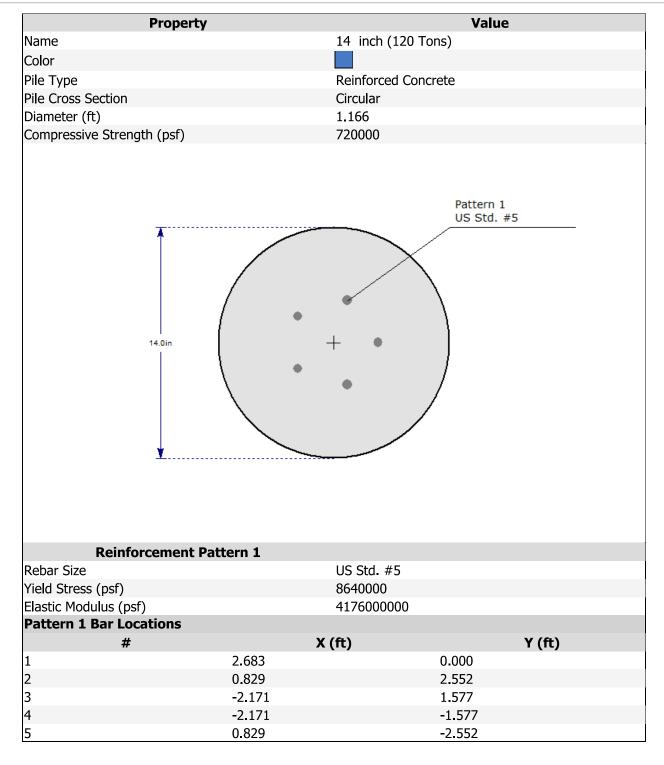
Water Unit Weight
Water Table Elevation

62.4 lbs/ft3 7 ft

Soil Layers

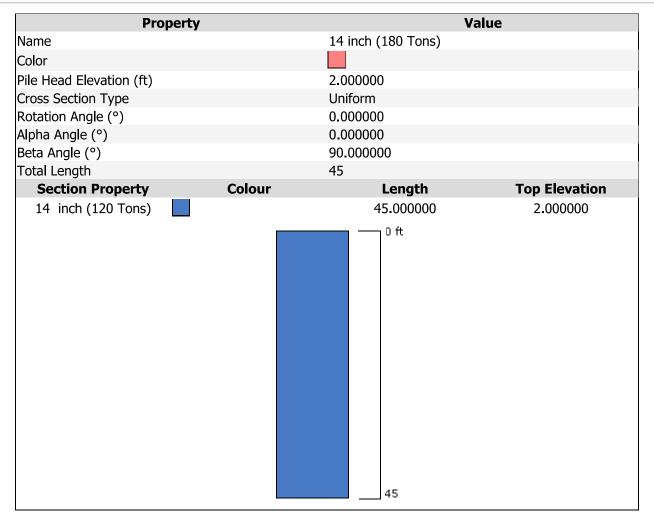
Soil Properties

Upper SAND (Loose to Medium)


Property	Value
Name	Upper SAND (Loose to Medium)
Color	
Soil Type	Sand
Unit Weight (lbs/ft3)	110
Sat. Unit Weight (lbs/ft3)	115
Friction Angle (degrees)	30
Kpy (lbs/ft3)	25920
Kpy Saturated (lbs/ft3)	25920

LIMESTONE (Soft to Hard)

Property	Value
Name	LIMESTONE (Soft to Hard)
Color	
Soil Type	Weak Rock
Unit Weight (lbs/ft3)	125
Sat. Unit Weight (lbs/ft3)	130
Uniaxial Compressive Strength (psf)	30000
Reaction Modulus of Rock (psf)	1.44e+08
Rock Quality Designation (%)	25
Constant Krm	5e-05


Pile Section Properties

14 inch (120 Tons)

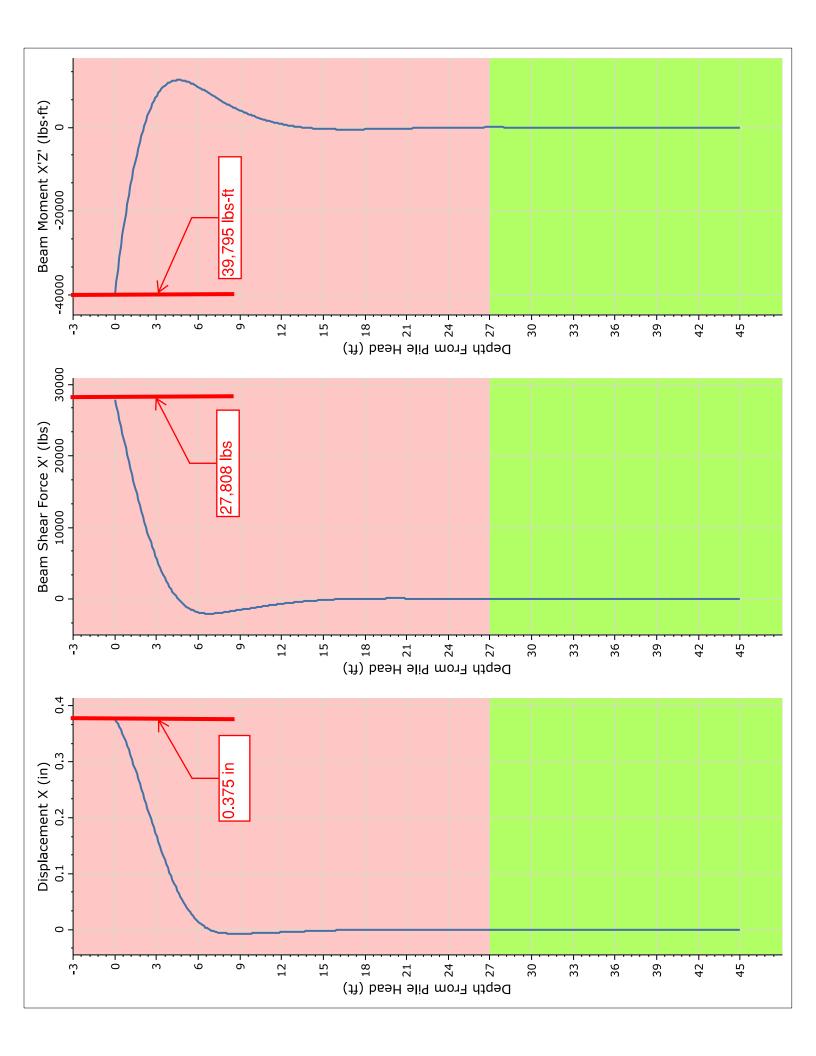
Pile Types

14 inch (180 Tons)

Pile Settings

Pile 1

Geometry


Type	14 inch (180 Tons)
Location	0, 0
Elevation (ft)	2
Length (ft)	45
	Ground Slope
Ground Slope Angle (°)	0
Ground Slope Direction (°)	0

Loading

Loading Type		Static		
Load Factor Profile		None		
Туре		Value		Depth
Slope Y, (deg)	0		0	
Deflection X, (ft)	0.03125		0	

Advanced Analysis

	Pushover Analysis	
Maximum Deflection X (in)	5	
Maximum Deflection Y (in)	5	
Number of Steps	10	

Max shear at 3/8" Displacement

Max moment at 3/8" Displacement

Project Title: WMODA Lake Worth Development
Filename: 25.4174 WMODA Lake Worth- 14 Inch Pile

Depth From Pile Head (ft) Displacement X (in) Beam Shear Force X' (lbs) Beam Moment X'Z' (lbs-ft)

Depth From Pile Head (ft)	<u>Displacement X (in)</u>	Beam Shear Force X' (lbs)	Beam Moment X'Z' (lbs·ft)
0	0.375	27808.33654	-39795.02788
0.112499982		27054.80801	-36981.55138
0.224999964		26050.20394	-34062.27099
0.337499946	0.362694277	25049.70797	-31138.67237
0.449999929	0.356944554	24051.77107	-28317.34135
0.562499911	0.350651036	23064.33975	-25718.95661
0.674999893	0.343847923	22081.35342	-23124.41459
0.787499875	0.336629569	21114.11014	-20749.32342
0.899999857	0.329016022	20152.91962	-18374.30359
1.012499839	0.321093464	19211.93804	-16213.29345
1.124999821	0.312876462	18278.37633	-14052.36402
1.237499803	0.304444715	17368.77922	-12098.81271
1.349999785	0.29580857	16467.73815	-10145.27712
1.462499768	0.287041133	15593.74153	-8392.968031
1.57499975	0.278150838	14729.21859	-6641.495497
1.687499732	0.269208029	13894.16061	-5076.797626
1.799999714	0.260250108	13069.26577	-3511.985841
1.912499696	0.25135778	12275.33876	-2132.207276
2.024999678	0.242501585	11491.89969	-751.8308205
2.13749966	0.233711575	10740.40385	455.8654848
2.249999642	0.22496275	9999.713384	1663.544597
2.362499625	0.216283102	9291.883121	2708.265153
2.474999607		8595.153376	3752.969624
2.587499589		7932.141757	4644.703215
2.699999571		7280.50739	5536.376489
2.812499553		6663.397695	6285.324499
2.924999535		6057.926131	7034.303215
3.037499517		5487.741796	7651.016415
3.149999499	0.157147262	4929.443013	8267.71612
3.262499481	0.148950908	4407.157674	8762.848044
3.374999464		3896.991556	9257.980624
3.487499446		3423.554702	9642.390214
3.599999428	0.124786572	2962.488842	10026.86204
3.71249941	0.117098539	2537.885327	10311.49264
3.824999392	0.109645772	2125.21817	10596.13752
3.937499374	0.1024472	1747.635451	10792.15746
4.049999356	0.095492437	1381.501702	10988.27264
4.162499338	0.088796935	1048.887652	11105.76697
4.274999321	0.082349887	727.1698589	11223.16818
4.387499303	0.076163315	437.2402028	11271.7578

4.499999285	0.070226484	157.605156	11320.38235
4.612499267	0.064548574	-92.10473248	11309.45448
4.724999249	0.059119078	-332.1603213	11298.56345
4.837499231	0.053944626	-544.2557387	11236.80439
4.949999213	0.049015043	-747.3664861	11175.08358
5.062499195	0.044334686	-924.5572541	11070.57791
5.174999178	0.039893794	-1093.453811	10966.04187
5.28749916	0.035694689	-1238.521425	10826.20576
5.399999142	0.03172786	-1375.998322	10686.47881
5.512499124	0.027993652	-1491.763401	10518.26895
5.624999106	0.024482981	-1600.645569	10350.13989
5.737499088	0.021194672	-1689.935982	10159.68733
5.84999907	0.018120461	-1773.048957	9969.233382
5.962499052	0.015258271	-1838.679164	9762.045231
6.074999034	0.012600532	-1898.832542	9554.896134
6.187499017	0.010144012	-1943.591588	9335.996667
6.299998999	0.00788131	-1983.565263	9117.133544
6.412498981	0.005808005	-2010.194897	8890.804553
6.524998963	0.003808003	-2010.134897	8664.514174
6.637498945	0.00391722	-2043.886963	8434.444281
6.749998927	0.002203838	-2051.605265	8204.392014
6.862498909	-0.000715159	-2031.003203	7973.68932
6.974998891		-2049.911253 -2045.396979	7973.68932
	-0.001932176		
7.087498874	-0.002995334	-2033.336904	7517.018586
7.199998856	-0.003910355	-2019.067163	7291.01263
7.312498838	-0.004684157	-1999.038229	7066.559767
7.42499882	-0.005322451	-1977.379625	6842.872531
7.537498802	-0.005832356	-1951.649797	6623.768594
7.649998784	-0.00621921	-1924.835689	6401.021573
7.762498766	-0.0064901	-1895.533286	6203.069686
7.874998748	-0.00664959	-1865.682081	5997.101692
7.98749873	-0.006748691	-1834.669898	5740.138617
8.099998713	-0.006833183	-1803.380613	5525.467583
8.212498695	-0.006904826	-1771.267884	5356.962108
8.324998677	-0.006963023	-1738.9096	5263.435532
8.437498659	-0.00700929	-1705.898111	5043.173272
8.549998641	-0.00704305	-1672.696994	4745.655633
8.662498623	-0.007066286	-1639.004206	4589.552542
8.774998605	-0.007078334	-1605.17319	4405.158169
8.887498587	-0.007080937	-1570.99931	4228.414347
8.99999857	-0.007073398	-1536.735108	4051.673122
9.112498552	-0.007057446	-1502.26665	3882.664321
9.224998534	-0.007032346	-1467.75237	3713.65793
9.337498516	-0.006999808	-1433.162331	3552.425773
9.449998498	-0.00695906	-1398.567627	3391.195839
9.56249848	-0.006911789	-1364.015737	3237.744895
9.674998462	-0.006857198	-1329.497067	3084.295994

9.787498444	-0.00679694	-1295.130079	2938.596727
9.899998426	-0.006730198	-1260.830999	2792.899324
10.01249841	-0.00665859	-1226.783016	2654.890965
10.12499839	-0.006581284	-1192.834524	2516.884298
10.23749837	-0.006499859	-1159.227365	2386.47764
10.34999835	-0.00641347	-1125.748269	2256.072507
10.46249834	-0.006323654	-1092.691867	2133.152617
10.57499832	-0.006229562	-1059.78919	2010.234093
10.6874983	-0.006132686	-1027.382013	1894.662925
10.79999828	-0.006032174	-995.1514274	1779.092969
10.91249827	-0.005929469	-963.4809255	1670.711883
11.02499825	-0.005823721	-932.0072004	1562.331861
11.13749823	-0.005716324	-901.1502747	1460.964037
11.24999821	-0.005606435	-870.5077476	1359.597134
11.36249819	-0.005495394	-840.5312298	1265.049874
11.47499818	-0.005382368	-810.7842916	1170.503402
11.58749816	-0.005362568	-781.7454373	1082.570331
11.69999814	-0.005153402	-752.9490276	994.6379219
11.81249812	-0.005133402	-724.8960175	913.1010716
11.9249981	-0.003037873	-697.0961277	831.5647639
12.03749809	-0.00480472	-670.0685746	756.1965425
12.14999807	-0.004687482	-643.3027549	680.8287513
12.26249805	-0.004570663	-617.3322119	611.3938
12.37499803	-0.004453495	-591.6300799	541.9591734
12.48749802	-0.004337045	-566.7405481	478.2161081
12.599998	-0.004220564	-542.1242964	414.4732694
12.71249798	-0.004105063	-518.3327299	356.1763094
12.82499796	-0.00398982	-494.8176292	297.8794848
12.93749794	-0.003875789	-472.1344336	244.7799677
13.04999793	-0.00376227	-449.7293299	191.6805016
13.16249791	-0.003650165	-428.1588542	143.5282875
13.27499789	-0.0035388	-406.866658	95.37604679
13.38749787	-0.003429023	-386.4076755	51.9208129
13.49999785	-0.003320185	-366.2258408	8.465481556
13.61249784	-0.003213083	-346.8720196	-30.54208914
13.72499782	-0.003107095	-327.7930106	-69.54982196
13.8374978	-0.003002965	-309.533371	-104.3569575
13.94999778	-0.0029001	-291.5451162	-139.1643135
14.06249776	-0.002799194	-274.3644734	-170.0151691
14.17499775	-0.002699681	-257.4508046	-200.8662976
14.28749773	-0.002602207	-241.3301964	-228.0010705
14.39999771	-0.002506234	-225.4712721	-255.1361628
14.51249769	-0.002412359	-210.3883698	-278.7903003
14.62499768	-0.002320073	-195.5610823	-302.4447983
14.73749766	-0.00222993	-181.4905844	-322.848296
14.84999764	-0.002141447	-167.6689491	-343.2521902
14.96249762	-0.002055132	-154.5829573	-360.6289768

15.0749976	-0.001970532	-141.7384836	-378.0061908
15.18749759	-0.001888114	-129.6068602	-392.5735943
15.29999757	-0.00180745	-117.7089047	-407.1414514
15.41249755	-0.001728966	-106.4996112	-419.1097433
15.52499753	-0.001652262	-95.51571119	-431.0785105
15.63749751	-0.001577728	-85.19512769	-440.6505236
15.7499975	-0.001504986	-75.09131615	-450.2230295
15.86249748	-0.00143439	-65.6245419	-457.5938449
15.97499746	-0.00136559	-56.36564288	-464.9651665
16.08749744	-0.001298905	-47.71677733	-470.321865
16.19999743	-0.001234007	-39.26668246	-475.6790797
16.31249741	-0.001171182	-31.39908743	-479.2005546
16.42499739	-0.001111013	-23.72101327	-482.7225523
16.53749737	-0.00111013	-16.59755621	-484.5793781
16.64999735	-0.000993824	-9.654282801	-486.43673
16.76249734	-0.000938518	-3.237561433	-486.7910827
16.87499732	-0.000938918	3.008347586	-487.1459623
16.9874973	-0.000884927	8.75579879	-486.151589
17.09999728	-0.000833249		
		14.34179424	-485.1577404
17.21249726	-0.000735102	19.45731539	-482.9599713
17.32499725	-0.000688591	24.42067823	-480.7627226
17.43749723	-0.000643862	28.94131259	-477.4985242
17.54999721	-0.000600724	33.31898676	-474.2348396
17.66249719	-0.0005593	37.28132609	-470.0329035
17.77499717	-0.000519414	41.10976787	-465.8314726
17.88749716	-0.00048117	44.54981384	-460.8123369
17.99999714	-0.000444412	47.86485725	-455.7936961
18.11249712	-0.000409223	50.81789832	-450.0698959
18.2249971	-0.000375463	53.65463577	-444.3465789
18.33749709	-0.000343199	56.15513889	-438.0228223
18.44999707	-0.000312306	58.54781643	-431.699536
18.56249705	-0.000282833	60.62933284	-424.8729028
18.67499703	-0.000254672	62.61125939	-418.0467257
18.78749701	-0.00022786	64.30634373	-410.8068849
18.899997	-0.000202297	65.90981341	-403.567485
19.01249698	-0.000178009	67.24995548	-395.9969288
19.12499696	-0.000154912	68.50618243	-388.4267976
19.23749694	-0.000133014	69.52175085	-380.6010896
19.34999692	-0.000112247	70.46081569	-372.7757901
19.46249691	-9.26088E-05	71.18101259	-364.7638236
19.57499689	-0.00007404	71.83181983	-356.7522489
19.68749687	-5.65308E-05	72.28464596	-348.6165153
19.79999685	-4.00308E-05	72.67489151	-340.4811562
19.91249684	-2.45208E-05	72.8871209	-332.2780186
20.02499682	-9.9624E-06	73.04326908	-324.0752378
20.1374968	0.000003672	73.04043256	-315.8552095
20.24999678	1.64136E-05	72.98770163	-307.6355204

20.36249676	2.82948E-05	72.79407843	-299.4435461
20.47499675	3.93408E-05	72.55643419	-291.2518935
20.58749673	4.95876E-05	72.19505091	-283.1276315
20.69999671	5.90544E-05	71.79520733	-275.0036735
20.81249669	0.000067782	71.28784356	-266.9817764
20.92499667	7.57824E-05	70.74726999	-258.960166
21.03749666	8.31012E-05	70.11446992	-251.0705602
21.14999664	8.97444E-05	69.45340406	-243.181224
21.26249662	9.57612E-05	68.71449327	-235.4493851
21.3749966	0.000101152	67.95195921	-227.7177991
21.48749658	0.000105968	67.12506622	-220.1650236
21.59999657	0.000110206	66.27889695	-212.6124846
21.71249655	0.00011392	65.38097858	-205.2561554
21.82499653	0.00011332	64.46784238	-197.9000466
21.93749651	0.0001171	63.51471261	-190.7538927
22.0499965	0.000113803	62.55014253	-183.6079436
22.16249648	0.000122018	61.55650403	-176.682293
22.27499646	0.0001238	60.55493013	-169.7568321
22.38749644	0.000123133	59.53440807	-163.058857
22.49999642	0.00012608	58.50919161	-156.361057
22.61249641	0.000126804	57.47436906	-149.8950114
22.72499639	0.000126622	56.43783828	-143.4291269
22.83749637	0.000126125	55.40029279	-137.1965759
22.94999635	0.000125296	54.36377967	-130.9641725
23.06249633	0.000124188	53.33412047	-124.9642134
23.17499632	0.000122782	52.30799802	-118.9643888
23.2874963	0.000121128	51.29590338	-113.1938636
23.39999628	0.000119209	50.28962299	-107.4234604
23.51249626	0.000117074	49.30387731	-101.8771601
23.62499624	0.000114703	48.32600565	-96.33096984
23.73749623	0.000112145	47.37453583	-91.00183044
23.84999621	0.00010938	46.43279105	-85.67278955
23.96249619	0.000106456	45.52270175	-80.55207996
24.07499617	0.000103351	44.62398833	-75.43145784
24.18749616	0.000100111	43.7615957	-70.50896012
24.29999614	9.67176E-05	42.91203781	-65.58653929
24.41249612	9.32124E-05	42.10290143	-60.85072153
24.5249961	8.95776E-05	41.30787428	-56.11497049
24.63749608	8.58528E-05	40.55682679	-51.55315282
24.74999607	8.20212E-05	39.82098573	-46.99139207
24.86249605	0.00007812	39.13216003	-42.58990631
24.97499603	7.41348E-05	38.459467	-38.188468
25.08749601	7.01004E-05	37.83632054	-33.93281161
25.19999599	6.60012E-05	37.23006767	-29.67719352
25.31249598	6.18696E-05	36.67540368	-25.55217856
25.42499596	0.000057696	36.13823362	-21.42719296
25.53749594	5.35068E-05	35.65421888	-17.41709064

25.64999592	4.92936E-05	35.18814177	-13.40700895
25.76249591	4.50816E-05	34.7763208	-9.495690786
25.87499589	4.08636E-05	34.38272746	-5.584384667
25.98749587	3.66624E-05	34.04403279	-1.755460937
26.09999585	3.24744E-05	33.72370397	2.073459259
26.21249583	2.83188E-05	33.4584623	5.836502785
26.32499582	2.41932E-05	33.21157383	9.599551273
26.4374958	2.01132E-05	33.01950795	13.3132174
26.54999578	1.60812E-05	32.8456315	17.02689703
26.66249576	1.21116E-05	32.72585759	20.70754101
26.77499574	8.2056E-06	32.62395685	24.38820713
26.88749573	4.3752E-06	32.57497724	28.05189921
26.99999571	6.264E-07	12.40437924	31.82872391
27.11249574	5.28E-08	-13.74703512	30.39432242
27.22499576	-7.2E-09	-18.35128538	28.7161611
27.33749579	-7.2E-09	-15.93583064	26.79176023
27.44999582	-3.6E-09	-14.86478745	25.00151829
27.56249584	-4.8E-09	-13.92918106	23.43702449
27.67499587	-2.4E-09	-13.00479926	21.87194507
27.7874959	-3.6E-09	-12.1846216	20.50312865
27.89999592	-2.4E-09	-11.37546357	19.13409504
28.01249595	-3.6E-09	-10.6589269	17.93670213
28.12499598	-1.2E-09	-9.950704649	16.73911013
28.237496	-2.4E-09	-9.324485808	15.69164279
28.34999603	-1.2E-09	-8.704645864	14.64399589
28.46249606	-2.4E-09	-8.157232861	13.72766498
28.57499608	-1.2E-09	-7.614776021	12.81117333
28.68749611	-1.2E-09	-7.136172983	12.00955094
28.79999614	-1.2E-09	-6.661461294	11.20778539
28.91249616	-1.2E-09	-6.24296864	10.50650536
29.02499619	-1.2E-09	-5.827558396	9.805098321
29.13749622	-1.2E-09	-5.461593628	9.191595995
29.24999624	0	-5.098088953	8.577981301
29.36249627	-1.2E-09	-4.778036834	8.041266764
29.4749963	0	-4.459960918	7.504453016
29.58749633	-1.2E-09	-4.180046261	7.034913224
29.69999635	0	-3.901728091	6.565285972
29.81249638	0	-3.656906735	6.154511932
29.92499641	0	-3.413381517	5.743660889
30.03749643	0	-3.199246298	5.384296657
30.14999646	0	-2.986167963	5.024864697
30.26249649	0	-2.798867409	4.710475371
30.37499651	0	-2.612443659	4.39602558
30.48749654	0	-2.448572794	4.120983941
30.59999657	0	-2.285336953	3.845894872
30.71249659	0	-2.14212433	3.605281263
30.82499662	0	-1.999355827	3.364619804

30.93749665	0	-1.874058552	3.154115752
31.04999667	0	-1.749156166	2.943570705
31.1624967	0	-1.639538601	2.759409159
31.27499673	0	-1.53026652	2.575211749
31.38749675	0	-1.434366517	2.414096204
31.49999678	0	-1.338768764	2.252949282
31.61249681	0	-1.254869706	2.111995758
31.72499684	0	-1.171235073	1.971014783
31.83749686	0	-1.097835159	1.847700199
31.94999689	0	-1.024666581	1.724361601
32.06249692	0	-0.960451946	1.616478618
32.17499694	0	-0.896439699	1.508574625
32.28749697	0	-0.840260898	1.414192129
32.399997	0	-0.784259158	1.319791252
32.51249702	0	-0.735110586	1.237219788
32.62499705	0	-0.686116916	1.154632245
32.73749708	0	-0.643118809	1.082393778
32.8499971	0	-0.60025622	1.010141244
32.96249713	0	-0.562638909	0.9469427
33.07499716	0	-0.525140158	0.88373185
33.18749718	0	-0.49223029	0.82844197
33.29999721	0	-0.459424144	0.773141324
33.41249724	0	-0.43063263	0.724770416
33.52499726	0	-0.401931859	0.676390088
33.63749729	0	-0.376743328	0.634072308
33.74999732	0	-0.351634185	0.591746287
33.86249734	0	-0.329597761	0.554724144
33.97499737	0	-0.30763079	0.51769479
34.0874974	0	-0.288352019	0.485305584
34.19999743	0	-0.26913401	0.452910071
34.31249745	0	-0.252267801	0.424574033
34.42499748	0	-0.23545475	0.396232476
34.53749751	0	-0.220699196	0.371442389
34.64999753	0	-0.205990148	0.346647474
34.76249756	0	-0.193081123	0.324959593
34.87499759	0	-0.180212785	0.303267488
34.98749761	0	-0.168919218	0.284293599
35.09999764	0	-0.157661246	0.265316014
35.21249767	0	-0.14778098	0.248716482
35.32499769	0	-0.137931854	0.232113717
35.43749772	0	-0.129288033	0.21759141
35.54999775	0	-0.120671454	0.203066274
35.66249777	0	-0.113109351	0.19036124
35.7749978	0	-0.105571082	0.177653733
35.88749783	0	-0.103371082	0.166538552
35.99999785	0	-0.092360441	0.155421207
36.11249788	0	-0.086572629	0.145696917

36.22499791	0	-0.080803059	0.135970733
36.33749793	0	-0.075739578	0.127463267
36.44999796	0	-0.070692058	0.118954145
36.56249799	0	-0.066262272	0.11151122
36.67499802	0	-0.06184645	0.104066846
36.78749804	0	-0.057971066	0.097555233
36.89999807	0	-0.054107898	0.091042352
37.0124981	0	-0.050717546	0.085345492
37.12499812	0	-0.047337882	0.079647523
37.23749815	0	-0.044371875	0.074663442
37.34999818	0	-0.041415218	0.06967839
37.4624982	0	-0.038820463	0.065317873
37.57499823	0	-0.036233889	0.060956506
37.68749826	0	-0.033963941	0.057141499
37.79999828	0	-0.03170115	0.053325749
37.91249831	0	-0.029715376	0.049987962
38.02499834	0	-0.027735863	0.046649526
38.13749836	0	-0.025998718	0.043729214
38.24999839	0	-0.024267051	0.040808333
38.36249842	0	-0.022747439	0.038253222
38.47499844	0	-0.021232621	0.035697613
38.58749847	0	-0.019903342	0.033461966
38.6999985	0	-0.018578257	0.031225883
38.81249852	0	-0.017415516	0.029269681
38.92499855	0	-0.016256444	0.027313099
39.03749858	0	-0.015239428	0.025601326
39.14999861	0	-0.014225624	0.023889221
39.26249863	0	-0.013336128	0.023883221
39.37499866	0	-0.012449443	0.020892962
39.48749869	0	-0.011671545	0.019581952
39.59999871	0	-0.010896108	0.018270689
39.71249874	0	-0.010215885	0.017123187
39.82499877	0	-0.009537814	0.015975462
39.93749879	0	-0.008943089	0.014970927
40.04999882	0	-0.008350248	0.013966197
40.16249885	0	-0.007830375	0.013086648
40.27499887	0	-0.007312152	0.012206929
40.3874989	0	-0.006857825	0.011436621
40.49999893	0	-0.006404944	0.010666165
40.61249895	0	-0.006008031	0.009991311
40.72499898	0	-0.005612385	0.009316327
40.83749901	0	-0.005265782	0.008724846
40.94999903	0	-0.004920288	0.008133252
41.06249906	0	-0.00461779	0.007614556
41.17499909	0	-0.004316265	0.007095762
41.28749911	0	-0.004052457	0.006640568
41.39999914	0	-0.003789504	0.006185287
	-		· · · · · · · · · · · · · · · · · · ·

41.51249917	0	-0.003559661	0.005785446
41.6249992	0	-0.00333068	0.005364851
41.73749922	0	-0.003129629	0.005015815
41.84999925	0	-0.002928949	0.004682585
41.96249928	0	-0.002753554	0.004368934
42.0749993	0	-0.002578884	0.004060052
42.18749933	0	-0.002426935	0.003787898
42.29999936	0	-0.002275501	0.003515676
42.41249938	0	-0.002144113	0.003275186
42.52499941	0	-0.002013181	0.003034654
42.63749944	0	-0.001899987	0.002821514
42.74999946	0	-0.001787197	0.002608337
42.86249949	0	-0.001690157	0.002418706
42.97499952	0	-0.001593476	0.002229043
43.08749954	0	-0.001510839	0.002059504
43.19999957	0	-0.001428524	0.001889937
43.3124996	0	-0.001358801	0.001737433
43.42499962	0	-0.001289367	0.001584907
43.53749965	0	-0.001231302	0.00144669
43.64999968	0	-0.001173498	0.001308454
43.76249971	0	-0.001126042	0.001182032
43.87499973	0	-0.001078825	0.001055595
43.98749976	0	-0.001041123	0.000938689
44.09999979	0	-0.001003642	0.000821771
44.21249981	0	-0.000975015	0.000712274
44.32499984	0	-0.000946594	0.000602767
44.43749987	0	-0.000926524	0.000498703
44.54999989	0	-0.000906631	0.000394634
44.66249992	0	-0.000894824	0.000294124
44.77499995	0	-0.000890894	0.00019299
44.88749997	0	-0.000861753	9.55717E-05
45	0	-0.000825127	-1.3731E-06