An official website of the United States government. ### Fifth Unregulated Contaminant Monitoring Rule The Safe Drinking Water Act (SDWA) requires that once every five years EPA issue a new list of unregulated contaminants to be monitored by public water systems (PWSs). The proposed fifth Unregulated Contaminant Monitoring Rule (UCMR 5) was published on March 11, 2021. UCMR 5, as proposed, would require sample collection for 30 chemical contaminants between 2023 and 2025 using analytical methods developed by EPA and consensus organizations. This proposed action would provide EPA, states, and communities with scientifically valid data on the national occurrence of these contaminants in drinking water. The proposed UCMR 5 would provide new data that is critically needed to improve EPA's understanding of the frequency that 29 PFAS are found in the nation's drinking water systems and at what levels. EPA will accept public comment on the proposed UCMR 5 for 60 days, following publication in the Federal Register. EPA will also hold a virtual stakeholder meeting twice during the public comment period. - 40 CFR (Code of Federal Regulations, Title 40) Part 141: Proposal Revisions to the Unregulated Contaminant Monitoring Rule (UCMR 5) for Public Water Systems and Announcement of a Public Meeting (PDF) (27 pp, 440 K, About PDF) - Press Release: EPA Takes Action to Address PFAS in Drinking Water - UCMR 5 Fact Sheet - Public Stakeholder Meeting (Webinar): April 6 and 7, 2021 # Proposed UCMR 5 scope, analytical methods and contaminants #### **Assessment Monitoring** As proposed, all PWSs serving 3,300 or more people, and 800 representative PWSs serving fewer than 3,300 would collect samples for 30 (29 per- and polyfluoroalkyl substances [PFAS] and lithium), during a 12-month period from January 2023 through December 2025. #### **Proposed Monitoring Design** SDWA was amended by Section 2021 of America's Water Infrastructure Act of 2018 (AWIA). Subject to the availability of appropriations and sufficient laboratory capacity, SDWA now requires that UCMR include all large PWSs (serving >10,000 people), all PWSs serving between 3,300 and 10,000 people, and a representative sample of PWSs serving fewer than 3,300 people. Under the AWIA provisions, EPA continues to be responsible for all analytical costs associated with monitoring at systems serving 10,000 or fewer. Table 1. Proposed UCMR 5 Scope | System
Size (# of
people
served) | 30 Contaminants | |---|---| | Small
Systems (25
-3,299) | 800 randomly selected surface water (SW), ground water under the direct influence of surface water (GWUDI), and ground water (GW) systems | | Small
Systems
(3,300 –
10,000) | All SW, GWUDI, and GW systems | | Large
Systems
(10,001 and
over) | All SW, GWUDI, and GW systems | #### Proposed Contaminants and Analytical Methods SDWA was amended by Section 7311 of the National Defense Authorization Act (NDAA) for Fiscal Year 2020. NDAA specifies that EPA shall include all PFAS in UCMR 5 for which a drinking water method has been validated, and that are not subject to a national primary drinking water regulation. UCMR 5 includes all 29 PFAS that are within the scope of EPA Methods 533 and 537.1; see Table 2. The UCMR 5 proposal fulfills a key commitment in <u>EPA's PFAS Action Plan</u> by including the collection of drinking water occurrence data for a broader group of PFAS (i.e., building on the monitoring for six PFAS that took place under UCMR 3). ## Table 2. Contaminants, Minimum Reporting Levels, Sampling Locations, and Analytical Methods Twenty-nine Per- and Polyfluoroalkyl Substances | Contaminant | Chemical
Abstract
Service
Registry
Number
(CASRN) | Minimum
Reporting
Level | Sample
Point
Location ¹ | Analytical
Methods | |---|--|-------------------------------|--|-----------------------| | 11-chloroeicosafluoro-3-
oxaundecane-1-sulfonic acid
(11Cl-PF3OUdS) | 763051-
92-9 | 0.005
μg/L | EPTDS | EPA
Method
533 | | 9-chlorohexadecafluoro-3-
oxanonane-1-sulfonic acid (9Cl-
PF3ONS) | 756426-
58-1 | 0.002
μg/L | EPTDS | EPA
Method
533 | | 4,8-dioxa-3H-perfluorononanoic acid (ADONA) ² | 919005-
14-4 | 0.003
μg/L | EPTDS | EPA
Method
533 | | hexafluoropropylene oxide dimer acid (HFPO-DA) | 13252-
13-6 | 0.005
μg/L | EPTDS | EPA
Method
533 | | nonafluoro-3,6-dioxaheptanoic acid (NFDHA) | 151772-
58-6 | 0.02 μg/L | EPTDS | EPA
Method
533 | | perfluorobutanoic acid (PFBA) | 375-22-4 | 0.005
μg/L | EPTDS | EPA
Method
533 | | perfluorobutanesulfonic acid (PFBS) | 375-73-5 | 0.003
μg/L | EPTDS | EPA
Method
533 | | 1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS) | 39108-
34-4 | 0.005
μg/L | EPTDS | EPA
Method
533 | | perfluorodecanoic acid (PFDA) | 335-76-2 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluorododecanoic acid
(PFDoA) | 307-55-1 | 0.003
μg/L | EPTDS | EPA
Method
533 | | Contaminant | Chemical
Abstract
Service
Registry
Number
(CASRN) | Minimum
Reporting
Level | Sample
Point
Location ¹ | Analytical
Methods | |---|--|-------------------------------|--|-----------------------| | perfluoro(2-
ethoxyethane)sulfonic acid
(PFEESA) | 113507-
82-7 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluoroheptanesulfonic acid (PFHpS) | 375-92-8 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.003
μg/L | EPTDS | EPA
Method
533 | | 1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS) | 757124-
72-4 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluorohexanesulfonic acid (PFHxS) | 355-46-4 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluoro-3-methoxypropanoic acid (PFMPA) | 377-73-1 | 0.004
μg/L | EPTDS | EPA
Method
533 | | perfluoro-4-methoxybutanoic
acid (PFMBA) | 863090-
89-5 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluorononanoic acid (PFNA) | 375-95-1 | 0.004
μg/L | EPTDS | EPA
Method
533 | | 1H,1H, 2H, 2H-perfluorooctane
sulfonic acid (6:2FTS) | 27619-
97-2 | 0.005
μg/L | EPTDS | EPA
Method
533 | | Contaminant | Chemical
Abstract
Service
Registry
Number
(CASRN) | Minimum
Reporting
Level | Sample
Point
Location ¹ | Analytical
Methods | |---|--|-------------------------------|--|------------------------| | perfluorooctanesulfonic acid (PFOS) | 1763-23-
1 | 0.004
μg/L | EPTDS | EPA
Method
533 | | perfluorooctanoic acid (PFOA) | 335-67-1 | 0.004
μg/L | EPTDS | EPA
Method
533 | | perfluoropentanoic acid (PFPeA) | 2706-90-
3 | 0.003
μg/L | EPTDS | EPA
Method
533 | | perfluoropentanesulfonic acid (PFPeS) | 2706-91-
4 | 0.004
μg/L | EPTDS | EPA
Method
533 | | Perfluoroundecanoic acid (PFUnA) | 2058-94-
8 | 0.002
μg/L | EPTDS | EPA
Method
533 | | N-ethyl
perfluorooctanesulfonamidoacetic
acid (NEtFOSAA) | 2991-50-
6 | 0.005
μg/L | EPTDS | EPA
Method
537.1 | | N-methyl
perfluorooctanesulfonamidoacetic
acid (NMeFOSAA) | 2355-31- | 0.006
μg/L | EPTDS | EPA
Method
537.1 | | perfluorotetradecanoic acid
(PFTA) | 376-06-7 | 0.008
μg/L | EPTDS | EPA
Method
537.1 | | perfluorotridecanoic acid (PFTrDA) | 72629-
94-8 | 0.007
μg/L | EPTDS | EPA
Method
537.1 | #### One Metal | Contaminant | Chemical
Abstract
Service
Registry
Number
(CASRN) | Minimum
Reporting
Level | Sample
Point
Location ¹ | Analytical
Methods | |-------------|--|-------------------------------|--|--| | Lithium | 7439-93-2 | 9 μg/L | EPTDS | EPA Method 200.7; SM 3120 B (2017); SM 3120 B-99 (1999); ASTM D1976-20 | #### **Notes** - 1. Sampling Locations Entry points to the distribution system (EPTDS) - 2. Although the abbreviation used is ADONA (indicating the ammonium salt), 4,8-dioxa-3H-perfluorononanoic acid is the parent acid LAST UPDATED ON MARCH 11, 2021