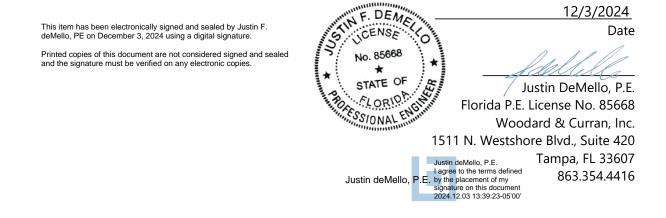


DRINKING WATER FACILITIES PLAN

1511 N. Westshore Blvd., Suite 420 Tampa, FL 33607 800.426.4262


# woodardcurran.com

0234532.14 **City of LaBelle, FL** December 2024



# **CERTIFICATION BY ENGINEER**

The information contained in this report is true and correct to the best of my knowledge, the report was prepared in accordance with generally accepted engineering principles, and I and my designees have discussed the recommendations, costs, and funding approach with the City of LaBelle (City) or the City's delegated representative(s). This Drinking Water Facilities Plan was prepared to meet the requirements of the Florida Drinking Water State Revolving Fund (DWSRF) Program under Chapter 62-552, F.A.C. and this certification pertains only to the planning analysis presented in this report. Certification for design and construction of the proposed facilities shall be completed under a separate DWSRF project.





# TABLE OF CONTENTS

| SEC | TION         | N        |                                                                  | PAGE NO. |
|-----|--------------|----------|------------------------------------------------------------------|----------|
| SUN | <b>IMA</b> R | Y OF FIN | DINGS AND RECOMMENDATIONS                                        | ES-1     |
| 1.  | INT          | RODUCT   | ION                                                              | 1-1      |
|     | 1.1          | Вас      | kground                                                          | 1-1      |
|     | 1.2          |          | ed For Projects                                                  |          |
|     |              | 1.2.1    | Project 1 – Source and Treatment Upgrades                        |          |
|     |              | 1        | .2.1.1 New Backup Generation Equipment at Production Well        |          |
|     |              | 1        | .2.1.2 Membrane Water Treatment Facility Upgrades                |          |
|     |              | 1.2.2    | Project 2 – Distribution and Storage Upgrades                    |          |
|     |              | 1        | .2.2.1 Helms Road Storage Tank                                   | 1-4      |
|     |              | 1        | .2.2.2 State Route 80 & Helms Road Water Main Extension          | 1-4      |
|     |              | 1        | .2.2.3 Zone B Water Main                                         | 1-5      |
|     |              | 1        | .2.2.4 Valve Replacement Program                                 | 1-5      |
|     |              | 1.2.3    | Project 3 – Large Commercial Service and Production Meter Replac | -        |
|     |              |          |                                                                  |          |
|     | 1.3          |          | ilities Planning Overview                                        |          |
|     | 1.4          |          | itary Survey Inspection Findings                                 |          |
|     | 1.5          | Ref      | erence Standards and Guidelines                                  | 1-6      |
| 2.  | EXIS         | STING AN | ID FUTURE CONDITIONS                                             | 2-7      |
|     | 2.1          | Des      | scription of Planning Area                                       | 2-7      |
|     |              | 2.1.1    | Planning Area                                                    | 2-7      |
|     |              | 2.1.2    | Climate                                                          | 2-9      |
|     |              | 2.1.3    | Topography & Drainage                                            | 2-9      |
|     |              | 2.1.4    | Geology, Soils, Physiography                                     | 2-9      |
|     |              | 2.1.5    | Surface and Ground Water Hydrology                               | 2-10     |
|     |              | 2.1.6    | Water Uses                                                       | 2-11     |
|     |              | 2.1.7    | Source Water Protection                                          | 2-11     |
|     |              | 2.1.8    | Wetlands                                                         | 2-11     |
|     |              | 2.1.9    | Environmentally Sensitive Land                                   | 2-13     |
|     |              | 2.1.10   | Plant and Animal Communities                                     | 2-13     |
|     |              | 2.1.11   | Archeological & Historical Sites                                 | 2-14     |
|     |              | 2.1.12   | Floodplains                                                      | 2-14     |
|     |              | 2.1.13   | Air Quality                                                      | 2-16     |
|     |              | 2.1.14   | Managerial Capacity                                              | 2-16     |
|     |              | 2.1.15   | Operation & Maintenance Program                                  | 2-16     |
|     | 2.2          | Soc      | io-Economic Conditions                                           | 2-16     |
|     |              | 2.2.1    | Population and Anticipated Growth                                | 2-16     |
|     |              | 2.2.2    | Planned Developments                                             |          |
|     | 2.3          | Des      | scription of Existing Water System                               | 2-18     |



|    |      | 2.3.1  | Membrane Water Treatment Facility                                                                                                               | 2-20     |
|----|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |      | 2.3.2  | SCADA                                                                                                                                           | 2-20     |
|    |      | 2.3.3  | Water Distribution Piping                                                                                                                       | 2-20     |
|    |      | 2.3.4  | Performance of Existing Water System                                                                                                            | 2-21     |
| 3. | DEV  | ELOPME | ENT OF ALTERNATIVES                                                                                                                             | 3-1      |
|    | 3.1  | Pro    | oject 1 – Source and Treatment Upgrades                                                                                                         | 3-3      |
|    |      | 3.1.1  | Project 1 Alternative 1 – Construction of New Backup Generators at Well                                                                         | Sources, |
|    |      |        | Chemical Storage and Pumping Upgrades, and Additional Cartridges on                                                                             |          |
|    |      |        | Reverse Osmosis Skids                                                                                                                           |          |
|    |      | 3.1.2  | Project 1 Alternative 2 – Construction of New Backup Generators at Well                                                                         |          |
|    |      |        | Chemical Storage and Pumping Upgrades, and Replace Existing Reverse                                                                             |          |
|    |      |        | Skids with New, Larger Reverse Osmosis Skids                                                                                                    |          |
|    |      | 3.1.3  | Project 1 Alternative 3 – Construction of New Backup Generators at Well                                                                         |          |
|    |      |        | Chemical Storage and Pumping Upgrades, and Replace Existing Reverse                                                                             |          |
|    |      | 244    | Skids with New Ultrafiltration Membrane Skids                                                                                                   |          |
|    |      | 3.1.4  | Project 1 Alternatives Cost Comparison                                                                                                          |          |
|    | 2.2  | -      | 3.1.4.1 Life Cycle Cost Analysis                                                                                                                |          |
|    | 3.2  |        | pject 2 – Distribution and Storage Upgrades                                                                                                     |          |
|    |      | 3.2.1  | Project 2 Alternative 1 – New Concrete Ground Storage Tank and Pump                                                                             |          |
|    |      |        | State Route 80 and Zone B Water Mains, and Valve Exercising and Repla                                                                           |          |
|    |      | 3.2.2  | Program<br>Project 2 Alternative 2 – New Pedosphere Elevated Storage Tank, State F                                                              |          |
|    |      | 3.2.2  |                                                                                                                                                 |          |
|    |      | 3.2.3  | and Zone B Water Mains, and Valve Exercising and Replacement Program<br>Project 2 Alternative 3 – New Fluted Column Elevated Storage Tank, Stat |          |
|    |      | 5.2.5  | and Zone B Water Mains, and Valve Exercising and Replacement Progra                                                                             |          |
|    |      | 3.2.4  | Project 2 Alternatives Cost Comparison                                                                                                          |          |
|    |      |        | 3.2.4.1 Life Cycle Cost Analysis                                                                                                                |          |
|    | 3.3  |        | pject 3 – Large Commercial Service and Production Meter Replacement Proc                                                                        |          |
|    | 5.5  | 3.3.1  | Project 3 Alternative 1 – Replace Commercial Service Meters, AMI Endpo                                                                          |          |
|    |      | 5.5.1  | Production Meters 1.5" and Above                                                                                                                |          |
|    |      | 3.3.2  | Project 3 Alternative 2 – Replace All Commercial Service and Production                                                                         |          |
|    |      | 0.012  | and Above, Replace AMI Endpoints at End of Life                                                                                                 |          |
|    |      | 3.3.3  | Project 3 Alternative 3 – Maintain Existing Commercial Service and Produ                                                                        |          |
|    |      |        | Meters 1.5" and Above                                                                                                                           |          |
|    |      | 3.3.4  | Project 3 Alternatives Cost Comparison                                                                                                          |          |
|    |      | 3      | 3.3.4.1 Life Cycle Cost Analysis                                                                                                                |          |
| 4. | SELI |        | LTERNATIVES                                                                                                                                     | 4-1      |
|    | 4.1  | Pro    | pject 1 Selected Alternative                                                                                                                    | 4-1      |
|    |      | 4.1.1  | Conceptual-Level Projected Cost for the Recommended Project 1 Altern                                                                            |          |
|    | 4.2  | Pro    | pject 2 Selected Alternative                                                                                                                    | 4-1      |
|    |      | 4.2.1  | Conceptual-Level Projected Cost for the Recommended Project 2 Alterna                                                                           | ative4-2 |
|    | 4.3  | Pro    | pject 3 Selected Alternative                                                                                                                    |          |
|    |      | 4.3.1  | Conceptual-Level Projected Cost for the Recommended Project 3 Altern                                                                            | ative4-2 |



| 5. | IMP | PLEMENTATION AND COMPLIANCE   | 5-1 |
|----|-----|-------------------------------|-----|
|    | 5.1 | Public Meeting                | 5-1 |
|    | 5.2 | Regulatory Agency Review      | 5-1 |
|    | 5.3 | Financial Planning            | 5-1 |
|    | 5.4 | Project Implementation        |     |
|    |     | 5.4.1 Implementation Schedule |     |
|    | 5.5 | Compliance                    |     |

# TABLES

Table ES-1-1:Selected Plan Proposed Costs

- Table 2-1: Summary of Climate Averages
- Table 2-2: Soil Types within the Planning Area
- Table 2-3:
   Summary of Potential Source Water Contamination Sources
- Table 2-4:Farmland of Unique Importance
- Table 2-5:
   Endangered Species List within Planning Area
- Table 2-6:
   Bureau of Economic and Business Research City of LaBelle Population Growth
- Table 2-7:U.S. Census Population Growth 2000 Through 2020
- Table 2-8: Distribution System Pipe Diameter
- Table 3-1:
   Chemical Storage and Metering Pump Parameters at Membrane Water Treatment Facility
- Table 3-2:Project 1 Source and Treatment Upgrades Alternatives Capital & Operations Cost<br/>Comparison
- Table 3-3: Project 1 LCCA Summary
- Table 3-4:
   Project 2 Distribution and Storage Upgrades Cost Comparison
- Table 3-5:Project 2 LCCA Summary
- Table 3-6:Project 3 Large Commercial Service and Production meter Replacement Program Cost<br/>Comparison
- Table 3-7: Project 3 LCCA Summary
- Table 4-1:
   Conceptual Level Cost Estimate Summary Recommended Project 1 Alternative
- Table 4-2:
   Conceptual Level Cost Estimate Summary Recommended Project 2 Alternative
- Table 4-3: Conceptual Level Cost Estimate Summary Recommended Project 3 Alternative
- Table E-1: Updated Selected Plan Proposed Costs

#### FIGURES

- Figure 1-1: Existing Water System Process Flow Diagram
- Figure 2-1: Planning Area
- Figure 2-2: Wetlands
- Figure 2-3: Floodplains
- Figure 2-4: Water Distribution Map



# **APPENDICES**

- Appendix A: FDEP Sanitary Survey Inspection
- Appendix B: Cost Breakdowns For All Alternatives
- Appendix C: Figures Showing Project Scopes
- Appendix D: Business Plan
- Appendix E: Requirements for Supplemental Appropriations for Hurricanes Fiona and Ian (SAHFI)
- Appendix F: Custom Soil Resource Report
- Appendix G: Source Water Protection Report
- Appendix H: USFWS Wildlife Clearance Letter and Official Species List
- Appendix I: Current Rate Structure
- Appendix J: Community Engagement

# LIST OF ACRONYMS

AAD Average annual day AADD Average annual day demand ° C Degrees Celsius ° F Degrees Fahrenheit 3MRAD Three Month Rolling Average Daily F Flow AADF Average Annual Daily Flow ac-ft Acre feet ADF Average daily flow **BMAP Basin Management Action Plan CDBG Community Development Block Grant** CFR Code of Federal Regulations **CIP** Capital Improvement Program CM Construction Management **CT** Contact Time CWA Critical Wildlife Area CWA Clean Water Act D Day **DEP Department of Environmental Protection DU Dwelling Unit DW Drinking Water DWS Drinking Water Standards** EDU Equivalent Dwelling Unit **EPA Environmental Protection Agency** ERC Equivalent residential connection **EST Estimated** F Fahrenheit F.S. Florida Statute

FAC/ Florida Administrative Code FDEP Florida Department of Environmental Protection FDOT Florida Department of Transportation FL Florida **FP** Facilities Plan Ft Feet FWC Florida Fish and Wildlife Conservation Commission FY Fiscal Year GAO Government Accountability Office GPCD Gallons per Capita per Day GPD Gallons per Day GPM Gallons per minute GST Ground Storage Tank GW Groundwater **HP** Horsepower HUD Department of Housing and Urban Development **ID** Identification **IPR Indirect Potable Reuse** K Potassium kW Kilo watt kWh Kilo Watt hours lb. Pound LCCA Life Cycle Cost Analysis LF Linear feet MADD Monthly Average Daily Demand



(ADD) Average Day Demand (MDD) Max Day Demand (PHD) Peak Hour Demand (FFD) Fire Flow Demand MCC Motor Control Center MCLs Maximum Contaminant Levels MDD Maximum Daily Demand MEPS Mechanical, Electrical, Plumbing, and Structural MG Million Gallons mg/L Milligrams per Liter MGD Million Gallons per Day MHI Median Household Income **MORs Monthly Operation Reports** MPN Most Probable Number N Nitrogen NAVD88 North American Vertical Datum of 1988 NPDES National Pollutant Discharge **Elimination System** NPV Net Present Value **O&M** Operations and Maintenance OFW Outstanding Florida Water OMB Office of Management and Budget **OPC** Opinion of Probable Cost **OSTDS Onsite Sewage Treatment & Disposal** System **OSWTS Onsite Wastewater Treatment System** P Phosphorous **PBTS Performance Based Treatment Systems** PER Preliminary Engineering Report pH Hydrogen Ion Concentration PHF Peak Hour Flow PDF Peak Day Flow Plan Alternative Analysis Plan POC Point of Connection PVC Polyvinylchloride (pipe) RAO Rural Area of Opportunity **RD** Rural Development **Report Preliminary Engineering Report RO** Reverse Osmosis **RUS Rural Utilities Service** SCADA Supervisory Control and Data Acquisition SPPW Single Payment Present Worth SRF State Revolving Fund

SW Surface Water SWIM Surface Water Improvement Management TPC Total Permitted Capacity UFA Upper Floridian Aquifer USDA United States Department of Agriculture USDW Underground Source of Drinking Water USPW Uniform Series Present Worth UV Ultraviolet Light WEP Water and Environmental Programs WK Weeks WMD Water Management District WTF Water Treatment Facility WUP Water Use Permit Y, Yrs. Years



# SUMMARY OF FINDINGS AND RECOMMENDATIONS

#### **Facilities Plan Intent:**

This Facilities Plan was prepared for the City of LaBelle in a collaborative effort by City Staff and Woodard & Curran, Inc. (Woodard & Curran) to meet the needs of the City and the requirements of the Florida Drinking Water State Revolving Fund (SRF) program. The City developed this Drinking Water Facilities Plan to evaluate utility needs related to drinking water production, storage, and distribution to include improved resiliency, health and safety, reliability, O&M efficiencies, and a 20 year Census growth. This Facilities Plan is a planning-level document that defines project needs and costs to allow the City to secure grant and low-interest funds for the design and construction of the recommended alternative.

The Facilities Plan is intended to represent the City's drinking water needs over a 20-year planning period. For this Facility Plan, proposed CIP projects will be placed in service by 2026. The plan assumes a planning period through 2046. The planning area includes the City of LaBelle's utility service area and contiguous lands located in Hendry County as shown in Figure 1-1. The recommendations resulting from this study are consistent with both the City's and the County's Local Comprehensive Plans.

In summary, the facilities plan intent is to:

- Describe existing water facilities, available service area characteristics, and environmental conditions.
- Establish design criteria for the planning period of 20 years.
- Identify and evaluate three (3) alternatives for each proposed project to satisfy the 20-year planning year needs.
- Identify a preferred alternative for each project.
- Describe the recommended facilities and associated estimated cost.
- Identify potential adverse environmental impacts and propose mitigating measures.

#### Findings:

LaBelle's drinking water production, treatment, and distribution systems are described in the most recent *FDEP Sanitary Survey Inspection* (Appendix A). Generally, the City's drinking water is close to or exceeding the equipment design life. The population projection for the 2026-2046 planning period were evaluated based on population projections from the University of Florida Shimberg Center for Affordable Housing, Bureau of Economic and Business Research (BEBR), and the U.S. Census ACS. More specifically, when completing the population projection, the City analyzed its proposed developments with approved and pending Developer Agreements, as well as those with Developer Agreements in progress, along with general population growth projections from historic population trends. The LaBelle drinking water utility service area was evaluated to see how the projected growth would impact drinking water demand and how the City should proceed with infrastructure improvements, to include drinking water storage through the planning period ending in 2046.



Much of the drinking water infrastructure is close to exceeding or has exceeded its design life. Projected growth within the utility service area will result in a greater water demand over the next 20 years. Regulatory requirements for drinking water have increased and are expected to require updated technology related to regulatory compliance.

*In summary*, much of the critical infrastructure is old. Growth within the water utility is primarily driven by an ongoing septic to sewer initiative and planned development within the utility service area.

#### **Recommendations:**

Our life cycle cost analyses (LCCA) of the drinking water infrastructure suggests that it is advantageous for the City to implement the following capital improvements within three years:

- 1. Water source and treatment, including new backup generators, transfer switches, and surge protectors for both existing supply well pumps, new reverse osmosis cartridges and treatment vessels at the Membrane Water Treatment Facility to increase the plant's capacity to treat water, two new propane-driven pumps at the Treatment Facility, and improvements/expansions to chemical storage building, storage, and pumping elements.
- 2. New water distribution and storage upgrades, including:
  - a. A new water storage tank to provide redundancy for maintenance and to increase total system storage capacity to meet industry standards and F.A.C. 62-555.320 (19)(a)
  - b. New transmission and distribution mains along State Route 80 and Helms Road to provide looping to increase reliability and redundancy, to improve water pressure, and water quality.
  - c. New water mains in Zone B area to increase the diameter of undersized mains and maintain adequate pressure and fire protection in this area.
  - d. A valve replacement program that will identify and replace non-functional mainline gate valves.
- 3. A commercial meter replacement program to increase reliability of system information and metering data to support financial stability.

The selected alternatives for water system improvement described in this Facility Plan and their associated opinion of probable costs are shown in Table ES-1-1. The total capital cost of the recommended projects is estimated to be \$26.8 million in 2024 dollars. Detailed opinions of probable cost for each project are included in Appendix B.

| Selected Alternatives Opinion of Probable Capital Cost                         |                                            |                                                     |                                                                             |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|--|--|
|                                                                                | Project 1 – Source &<br>Treatment Upgrades | Project 2 –<br>Distribution and<br>Storage Upgrades | Project 3 – Large<br>Commercial Service<br>and Production Meter<br>Upgrades |  |  |
| Construction Base Cost<br>(2024)                                               | \$2,794,000                                | \$17,473,000                                        | \$185,000                                                                   |  |  |
| Construction<br>Contingency 10%                                                | \$279,000                                  | \$1,747,000                                         | \$19,000                                                                    |  |  |
| Engineering, Permitting<br>and Design 10%                                      | \$279,000                                  | \$1,747,000                                         | \$19,000                                                                    |  |  |
| Engineering Services<br>During Construction<br>8%                              | \$224,000                                  | \$1,398,000                                         | \$0                                                                         |  |  |
| Fiscal, Legal and Administration 3%                                            | \$84,000                                   | \$524,000                                           | \$6,000                                                                     |  |  |
| Land Acquisition                                                               | \$0                                        | \$100,000                                           | \$0                                                                         |  |  |
| Construction Escalation<br>to mid-point of<br>construction (end of<br>2026 7%) | \$530,000                                  | \$3,217,000                                         | \$33,000                                                                    |  |  |
| Total Opinion of<br>Capital Costs                                              | \$4,190,000                                | \$26,206,000                                        | \$262,000                                                                   |  |  |

 Table ES-1-1:
 Selected Plan Proposed Costs

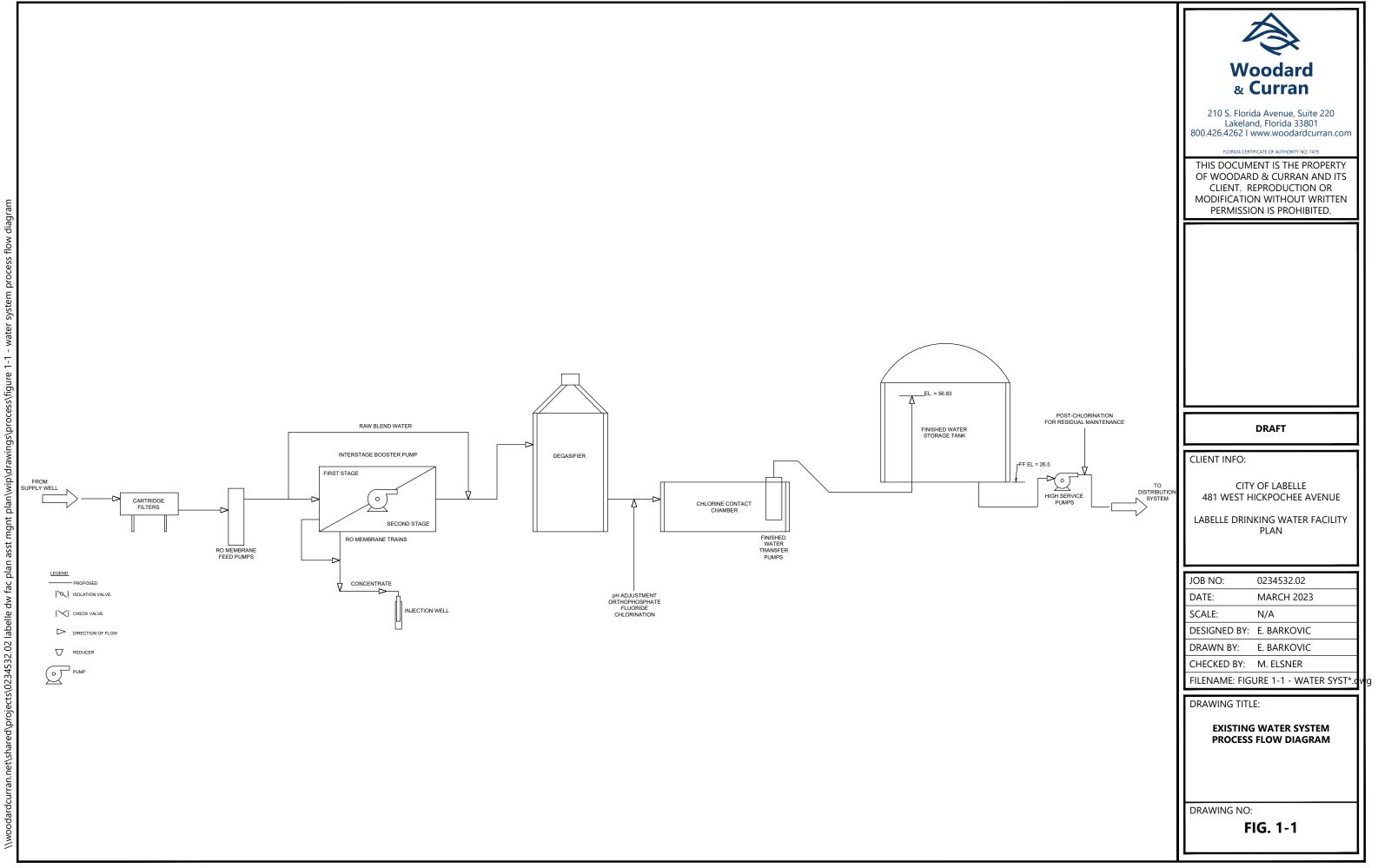
The FDEP SRF program is intended to be the financing source for the project. A Drinking Water SRF Business Plan (Business Plan) has been prepared to explain the financial impact on the users of the drinking water system. The Business Plan is shown in Appendix D and demonstrates rate sufficiency for this CIP. This determination based on the latest rate study and current rate structure.

*In summary*, recommended capital improvements will support system reliability, redundancy, water quality, water pressure, source water protection, proactive operations, and maintenance activities, and address potential regulatory requirements.



# 1. INTRODUCTION

This document is provided to meet the planning requirements for the Drinking Water State Revolving Fund (DWSRF) program for the purpose of obtaining funding for new water infrastructure within the City of LaBelle, Florida (City). This report presents estimated costs for three alternatives for each of three projects, as required by FDEP DWSRF. These projects are proposed to be in service over a 20-year planning period.


# 1.1 Background

The City of LaBelle is located in Hendry County, Florida. The City extracts groundwater from the Upper Floridan Aquifer (UFA) and treats the water with reverse osmosis, pH adjustment, degasification, and disinfection with chlorine prior to distribution. The City has a single potable water treatment facility which includes on-site finished water storage and high service pumps. The City has one distribution pressure zone. The City's distribution system is classified as a community water system with EPA Public Water System ID FL5260050. The City's water system serves 1,910 residential and 469 commercial users, for a total of 2,379 service connections (October 2021 meter counts).

The City has two existing wells, Well 2 and Well 3, that feed the Membrane Water Treatment Facility. Each well is equipped with an 8" submersible pump with a design flow rate of 1,500 gpm (2.16 MGD). Well production data indicate peak average daily withdrawal rates of 830 gpm (1.20 MGD) and 790 gpm (1.14 MGD) for Well 2 and Well 3, respectively. The maximum instantaneous flow rate of each well is approximately 1,500 gpm (2.16 MGD).

The Membrane Water Treatment Facility's process consists of cartridge filtration, reverse osmosis demineralization, degasification, and disinfection with chlorine. Treated water is blended with filtered raw water prior to degasification. Orthophosphate and hydrofluorosicilic acid are also added to finish water prior to distribution for corrosion control and fluoride addition, respectively. See Figure 1-1 for a process flow diagram of the existing water system.

In 2022, the City's average and maximum daily treatment plant outputs were 0.65 MGD and 0.84 MGD, respectively.





# **1.2 Need For Projects**

# **1.2.1 Project 1 – Source and Treatment Upgrades**

# 1.2.1.1 New Backup Generation Equipment at Production Well

The City's two existing wells withdraw water from the Upper Floridian Aquifer. At least one well must remain working to meet daily demands and fill the City's finished water storage tank.

The City currently lacks reliable backup power at its supply wells to maintain operation during power grid outages or other electrical grid failures. The City also needs a portable generator to supply power to the supply wells during emergencies in the event one of the stationary generators is damaged due to a lightning strike or power surge, which has historically been an issue for the City.

# 1.2.1.2 Membrane Water Treatment Facility Upgrades

There are two existing reverse osmosis (RO) skids installed at the Membrane Water Treatment Facility. Each of the existing membrane skids has a capacity of 0.75 MGD. A single RO skid is not able to treat the maximum daily flow when the other RO skids is out of service, which happens regularly for maintenance. The skids can be upgraded to include additional membrane units to increase the total skid capacity however a third skid should also be considered to provide adequate redundancy. The existing treatment cartridges also have membranes nearing the end of their expected service life. The City lacks sufficient redundancy in its reverse osmosis treatment to maintain operations during maintenance activities and during equipment failures.

Additionally, the City has experienced broader electrical equipment and variable-frequency drive failures during lightning strikes at the facility. These strikes have interrupted variable-frequency drive operation in electrically-driven pumps at the plant and supply wells and rendered all electrical pumping equipment temporarily unusable. The City would like to have a completely non-electric pumping capacity in place at the plant so that it can continue to transfer water between its chlorine contact chamber (clearwell) and finished water storage tank, and to pump from its finished water storage tank into its system, during lighting strike outages. The high service pumps, clearwell pumps, and concentrate deep well injection pumps should be rehabilitated or replaced as they are all at the end of their useful life.

Many of the chemical storage tanks at the Membrane Water Treatment Facility are nearing the end of their design lives and may be at risk of failure. Additionally, the chemical metering pumps for each of the treatment chemicals were sized for the existing RO skid capacity and will not be suitable to provide the required chemical metering flow for the increased flow rate through the RO skids. Chemical metering, storage and building upgrades are recommended.

Sodium hypochlorite at the plant is stored in a building, but other treatment chemicals are housed in an outdoor canopy area. The City has experienced weather-related damage to the storage and pumping infrastructure under the canopy and would like to avoid future issues by fully enclosing the chemical storage and metering infrastructure in a building. Additionally, each chemical storage area under the canopy shares a common floor drain where chemicals might mix in the event of a spill of multiple chemicals. The drain ultimately discharges to a septic leaching field rather than separate detention basins. This poses a safety



and environmental risk and the drainage for each chemical should be isolated and routed to a codecompliant detention area rather than a leaching field.

# **1.2.2 Project 2 – Distribution and Storage Upgrades**

# 1.2.2.1 Helms Road Storage Tank

The City has identified a need for additional water storage to aid in the City's water distribution operation. The City operates only one storage tank, which currently controls all logic for water pumped based on water elevation in that tank. This logic is interrupted during tank maintenance, requiring staff to operate the system in hand mode 24/7 during maintenance activities.

An additional storage tank is required for storage of the water produced by the proposed well as part of Project 1.

Additionally, F.A.C. 62-555.320 (19)(a) requires the total useful finished-water storage capacity connected to a water system to be (at minimum) 25 percent of the water system's maximum-day water demand in addition to any design fire-flow demand. Based on the City's 2022 Membrane Water Treatment Facility production data, the current annual average day demand (AADD) has been approximately 0.65 MGD and the maximum day demand (MDD) has been approximately 0.80 MGD. Using the current population of 5,041, it is estimated that the average daily usage is approximately 129 gallons per capita per day. At a projected 2046 population of 6,206, the average day demand is estimated to be 0.80 MGD using the 129 gallons per capita per day (GPCD) average water usage from previous treatment plant production data. Assuming maximum day demand grows at the same rate, the estimated 2046 MDD is expected to be 0.98 MGD.

The fire flow demand is based on providing a flow rate of 2,000 gallons per minute for two hours. To maintain storage for 25% of the maximum day demand plus fire flow, the City must have a total storage volume of approximately 485,000 gallons as shown in the equation below:

Minimum Storage Capacity = 25% of Max Day Demand + Fire Flow Demand

 $Minimum\ Storage\ Capacity = 980,000\ Gal\ x\ 25\% + \left(2,000\ GPM \times \frac{60\ min}{hr}\right) x\ 2\ hrs$ 

*Minimum Storage Capacity* = 485,000 *gallons* 

The City would like to maintain adequate storage capacity during an outage of this tank during maintenance. Currently, the City has no back up water storage tank. Without the tank online, the City cannot provide adequate water volume and pressure to customers. For redundancy and resiliency purposes, the proposed tank will therefore be 1,000,000 gallons.

# 1.2.2.2 State Route 80 & Helms Road Water Main Extension

The western part of the system has many existing dead-ends around East Cowboy Way and Ben Moore Drive. These dead ends cause water age concerns and limit operational reliability in the event of a main break. Additionally, this area lacks required fire flow availability in the Fort Denaud area and has many older and smaller existing pipelines along East Cowboy Way that create pressure issues. New water mains in this area will reduce water age concerns by creating multiple complete pipe loops.



# 1.2.2.3 Zone B Water Main

The City is developing a project to install a sewage collection system in an area called "Zone B" which is currently on septic systems. This area is approximately enclosed by E Hickpochee Ave in the South, E Fort Thompson Ave in the East, Hickory Street in the West, and the Caloosahatchee Canal in the North. Potable water distribution in this area is comprised of 2" and 4" mains; the City would like to replace these pipes with larger-diameter pipe during the sewer installation to minimize the number of required excavations. The existing 2" and 4" pipes cause a lack of fire flow availability in this area to meet Insurance Services Organization guidelines. These small diameter pipes have maximum velocities that are too high, and they cannot deliver adequate fire flow during fire events within American Water Works Association guidelines.

## 1.2.2.4 Valve Replacement Program

The City has many malfunctioning gate valves across the distribution system. No system-wide valve exercising program has been performed to identify the full extent of inoperable and leaking valves within the distribution system. The large number of inoperable valves and the lack of specific knowledge of inoperable valve locations presents a maintenance risk to the City. Inoperable valves may prevent the City from mitigating losses during water main breaks and may require the City to shut down water service to larger areas when pressure losses from such main breaks cannot be adequately contained by valve closures. It is estimated that 30% of the system's 464 gate valves are failing, for a total of 140 gate valves.

# 1.2.3 Project 3 – Large Commercial Service and Production Meter Replacement Program

The City has several large commercial meters which have started to fail and are becoming less accurate. The City loses revenue from major water system customers due to these inaccuracies and would benefit from consistent accurate metering. The City also has many production meters at its treatment plant and well sources that have aged past their typical replacement dates. These meters provide the City with necessary data to manage their system and provide effective and efficient treatment. Inaccurate metering within the system causes direct revenue losses for both drinking water and wastewater enterprise funds. While most of the commercial service meters in the City are 5/8", the largest deficiencies in billed demand come from 58 commercial meters, 1.5" and above. Scope of Study

This Facilities Plan:

- Describes existing water facilities, available service area characteristics, and environmental conditions.
- Establishes design criteria for the planning period of 20 years.
- Identifies and evaluates three (3) alternatives for each proposed project to satisfy the 20-year planning year needs.
- Identifies a preferred alternative for each project.
- Describes the recommended facilities and associated estimated cost.
- Identifies potential adverse environmental impacts and propose mitigating measures.



# 1.3 Facilities Planning Overview

This facilities plan outlines the water system facilities needed for a 20-year planning period. Strategies were developed within the plan to meet estimated system needs, and the planning basis for subsequent design and construction is provided. Additionally, the existing and projected demographic characteristics, topographic, and institutional features of the planning area and their impact on the water system needs are also examined.

The 20-year planning period for the purpose of this work begins in the year 2026 and extends through the year 2046. Three alternatives were identified for each project and evaluated with a recommendation for the most feasible alternative for meeting the City's needs.

#### **1.4 Sanitary Survey Inspection Findings**

During the City's November 28<sup>th</sup>, 2022 sanitary survey inspection by FDEP, the following possible violations of Florida Administrative Codes were observed in the City's drinking water system:

- 1. Excessive corrosion around the High Service Pumps.
- 2. Nylon plug on raw sample tap on Well UFA-2.
- 3. Well UFA-3 had a leak around casing.
- 4. 6 wells have been taken out of operation for more than six months (Wells AAE6983, AAH9205, AAH9250, AAH9252, AAH9251, AAC5589). Disinfection of wells and bacteriological surveys and Evaluations of Wells will be required before wells are placed back into service. The wells must be maintained according to current code while still connected to the system until they are abandoned or physically disconnected from the system.
- 5. Approximately 75% of systems isolation valves are inoperable.
- 6. Fire flow analysis indicates inadequate flow to meet customer demand.
- 7. As a result of one of the two Supply Wells (#3) being out of service, 3 months of 100% of permitted capacity from the alternate well (#2) was exceeded. In one of the three months, (August 2021) three days exceeded 136%. TDS issues prevail in supply well #3.

Project 2 described herein will address possible violation 5 above. The remaining six possible violations fall under the scope of operations and maintenance work and are therefore not within the purview of this Facility Plan and are not eligible for DWSRF funding.

The November 28<sup>th</sup>, 2022 sanitary survey inspection is included as Appendix A.

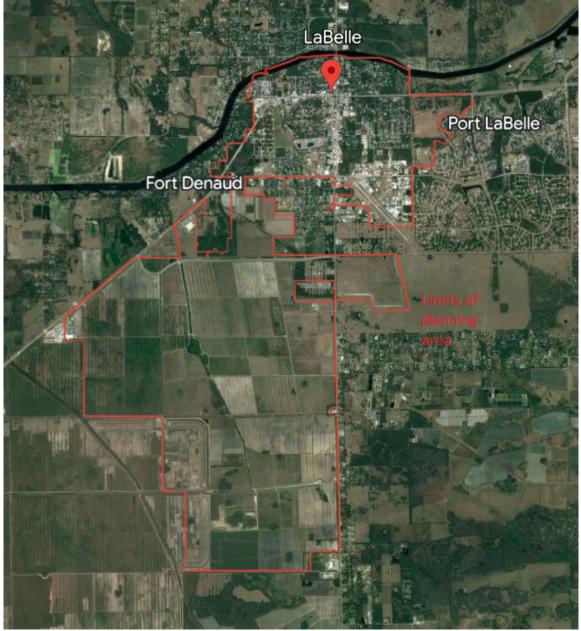
#### **1.5 Reference Standards and Guidelines**

This Report has been organized such that it is compatible with the Facilities Planning guidance document published by the Florida Department of Environmental Protection (FDEP) in 2000 and modified in 2017. Technical requirements in the Florida Administrative Code (FAC) were referenced for the alternatives analysis and recommendations.



# 2. EXISTING AND FUTURE CONDITIONS

This section describes the existing physical, organizational, environmental, and demographic conditions within the planning area. This information is used to establish the existing conditions, project future development, and assess needs within the planning area related to the future water management requirements. This section describes the existing condition and limitations of the drinking water system. The current water demand is outlined and used in conjunction with demographic projections to estimate the future water demand of the system during the planning period.


# 2.1 Description of Planning Area

## 2.1.1 Planning Area

The planning area is located within the City Limits of LaBelle, Florida consisting of approximately 9,270 acres. The City of LaBelle is located in northwestern Hendry County, about 32 miles east of Fort Myers and 92 miles west of West Palm Beach. The City of LaBelle is the county seat of Hendry County and provides urban and commercial amenities for surrounding communities in Hendry and Glades counties. The Caloosahatchee River traverses the northern boundary of the City of LaBelle. The City of LaBelle is within the South Florida Water Management District (SFWMD) and Coastal Heartland National Estuary Program area. Two major state roads, State Road (SR) 80 and State Road 29, divide the City. The planning area is depicted in Figure 2-1 below.



## Figure 2-1: Planning Area



Source: Google Earth



# 2.1.2 Climate

Located in South Florida, the City is within the boundary of Hendry County, Florida. The City's climate is characterized as hot and humid for five months out of the year, from May through October. The City has an average daily high temperature above 87 degrees Fahrenheit during the hot season. The cool season lasts for approximately three months, December through early March. The City has an average low of 52 degrees Fahrenheit during the cool season.

|                           | LaBelle, Florida | United States |
|---------------------------|------------------|---------------|
| Rainfall (in)             | 40.1             | 38.1          |
| Snowfall (in)             | 0.0              | 27.8          |
| Precipitation (days)      | 136.3            | 106.2         |
| Average July High (deg F) | 91               | 85.8          |
| Average Jan. Low (Deg F)  | 52               | 21.7          |
| Elevation (feet)          | 13               | 2,443         |

| Table 2-1: Summary of Climate Averages | Table 2-1: | Summary | of Climate | Averages |
|----------------------------------------|------------|---------|------------|----------|
|----------------------------------------|------------|---------|------------|----------|

## 2.1.3 Topography & Drainage

The topography within 2 miles of LaBelle is mostly flat, with a maximum elevation change of 23 feet and an average elevation above sea level of 12 feet. The geographical coordinates of LaBelle are 26.762 deg latitude, -81.438 deg longitude. The area within 2 miles of LaBelle is covered by artificial surfaces (60%), cropland (26%), and herbaceous vegetation (14%).

According to the United States Fish and Wildlife Service National Wetlands Inventory, the planning area consists of Freshwater Emergent Wetlands, Freshwater Forested/Shrub Wetland, Lakes, and Riverine. Average Elevation of the City is 13ft above sea level with only moderate variations in elevation. The drainage of the planning area is comprised of the following:

- 91.2% of soils are characterized as somewhat poorly drained, poorly drained, or very poorly drained.
- 1.2% of soil is well drained.

The following section lists detailed information on specific types of soils and drainage class within the planning area.

# 2.1.4 Geology, Soils, Physiography

The United States Department of Agriculture Natural Resources Conservation Service Soil Survey denotes that planning area is composed of twenty-nine different types of soils, as provided in Table 2-3. Approximately 50% of the land area is composed of soils that are classified as moderately high, high, and very high capacity to transmit water. 30% of the planning area is classified as moderately low to moderately high capacity to transmit water. The remaining percentage is classified as low to moderately low capacity to transmit water.

The most predominant soil types found in the planning area are characterized as sandy and sandy loamy. The surface to ten inches below, upper horizons, of soils in the planning area are classified as 91.7%



sand/fine sand, 5.7% as fine sand loamy, and .2% muck. See Appendix F for the Custom Soil Resource Report.

| Soil Type                                                     | Drainage Class          | % of AOI |
|---------------------------------------------------------------|-------------------------|----------|
| 1) Cypress Lake sand, 0-2% slopes                             | Poorly drained          | 10.3     |
| 2)Pineda sand, limestone substratum                           | Poorly drained          | 5.4      |
| 4)Oldsmar sand, 0-2% slopes                                   | Poorly drained          | 6.0      |
| 6)Wabasso sand, 0-2% slopes                                   | Poorly drained          | 8.4      |
| 7)Immokalee sand, 0-2% slopes                                 | Poorly drained          | 18.7     |
| 8)Malabar sand, 0-2% slopes                                   | Poorly drained          | 3.9      |
| 9)Riviera fine sand, 0-2% slopes                              | Poorly drained          | 1.9      |
| 10)Pineda-Pineda, wet, fine sand, 0-2%slopes                  | Poorly drained          | 0.0      |
| 14)Wabasso sand, limestone substratum, 0-2% slopes            | Poorly drained          | 7.3%     |
| 15)Myakka sand, 0-2% slopes                                   | Poorly drained          | 0.4%     |
| 17)Basinger sand, 0-2% slopes                                 | Poorly drained          | 3.8%     |
| 18) Pompano sand, 0-2% slopes                                 | Poorly drained          | 3.2%     |
| 19) Gator muck, frequently ponded 0-1% slopes                 | Very poorly drained     | 0.8%     |
| 20) Okeelanta muck                                            | Very poorly drained     | 0.1%     |
| 21)Holopaw sand, 0-2% slopes                                  | Poorly drained          | 7.3%     |
| 22) Valkaria sand                                             | Poorly drained          | 1.0%     |
| 27)Riviera sand, limestone substratum                         | Poorly drained          | 6.3%     |
| 28)Cypress Lake sand, frequently ponded, 0-1% slopes          | Very poorly drained     | 0.9%     |
| 29)Oldsmar sand, limestone substratum                         | Poorly drained          | 3.8%     |
| 32)Riviera sand, frequently ponded, 0-1% slopes               | Very poorly drained     | 0.7%     |
| 34)Chobee fine sandy loan, limestone substratum, depressional | Very poorly drained     | 0.5%     |
| 37) Tuscawilla fine sand, 0-2% slopes                         | Very poorly drained     | 0.5%     |
| 39)Udifluvents                                                | Very poorly drained     | 0.1%     |
| 45)Pahokee muck, drained, 0-1% slopes                         | Very poorly drained     | 0.1%     |
| 47)Udorthents                                                 | Well drained            | 1.2%     |
| 49)Aquents, organic substratum                                | Poorly drained          | 0.2%     |
| 53)Adamsville fine sand, 0-2% slopes                          | Somewhat poorly drained | 1.6%     |
| 57)Chobee fine sandy loam, frequently ponded, 0-1% slopes     | Very poorly drained     | 5.2%     |
| 62)Pineda sand, depressional                                  | Very poorly drained     | 0.1%     |
| 99)Water                                                      | N/A                     | N/A      |

Table 2-2: Soil Types within the Planning Area

# 2.1.5 Surface and Ground Water Hydrology

The Caloosahatchee River flows through the City of LaBelle City Limits and is identified within the Florida Department of Environmental Protection Caloosahatchee River Basin Management Action Plan (BMAP). The Caloosahatchee River and Estuary Watershed is located in Southwest Florida in Charlotte, Glades, Hendry, and Lee Counties. The river runs from Lake Okeechobee through a series of locks to San Carlos Bay. The freshwater segment of the Caloosahatchee is from Lake Okeechobee to the Franklin Lock (S-79). The marine segment extends from the Franklin Lock to Shell Point, adjacent to San Carlos Bay, with Pine Island Sount to the northwest and Estero Bay to the southeast. The Caloosahatchee River and Estuary Watershed is comprised of 3 subwatersheds and 27 basins.



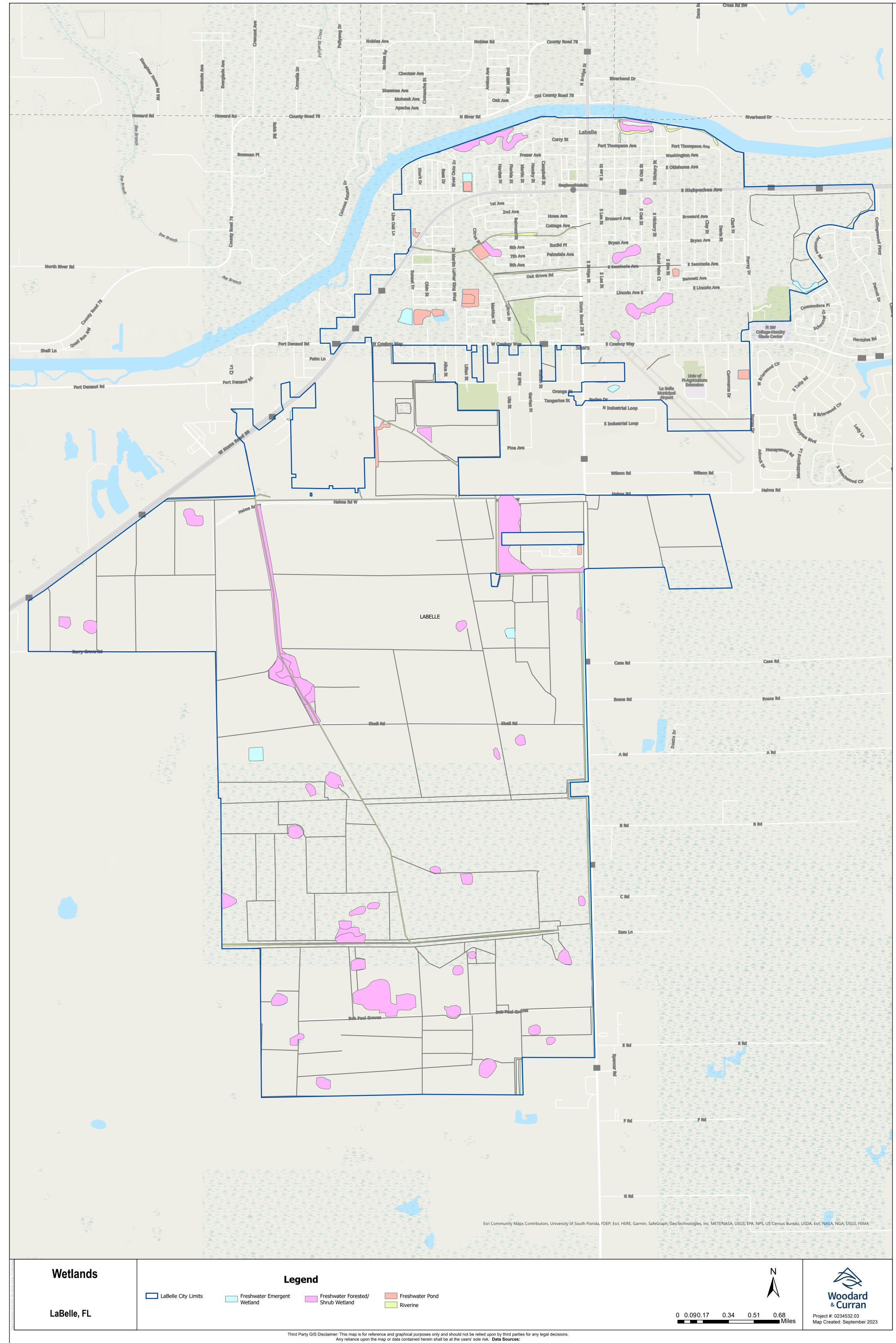
Because the river and estuary have been exposed to hydrologic, land use, and other anthropogenic modifications, the water quality in the estuary and surrounding tributaries to the Caloosahatchee River has been degraded. FDEP adopted TMDLs for total nitrogen (TN) and total phosphorus (TP) for waterbodies in the watershed.

The source of drinking water for the planning area is the Upper Floridan Aquifer (UFA). The UFA is typically composed of limestone and dolomite and has high flows near the center of the state where the planning area is located.

## 2.1.6 Water Uses

The UFA is used as the source of drinking water for the City's utility service area. Surface water in the planning area is used for recreational purposes such as boating and fishing.

#### 2.1.7 Source Water Protection


In 2020, an assessment of potential contamination to the source water was completed as part of the Source Water Assessment and Protection Program (SWAPP) with FDEP under the Safe Drinking Water Act (SDWA). The source water protection area is the area encompassed within a five-year groundwater travel time, defined as the area from which water will drain to a well pumping at the average daily permitted rate for a five-year period. In this area all potential sources of contamination were identified and given a susceptibility score and a concern level. Per the 2023 SWAPP, there are 3 unique potential sources of contamination within the protection areas for the potable water wells operated by the City. Table 2-3 provides the list of potential contamination sources. The potential sources of contamination have a low concern level. The 2023 SWAPP results for the City can be found in Appendix G.

| Facility Type | Facility Class | Status | Name                 | Susceptibility<br>Score | Concern<br>Level |
|---------------|----------------|--------|----------------------|-------------------------|------------------|
| Petroleum     | Local          | Open   | LaBelle City Well #2 | 2.77                    | Low              |
| Storage Tank  | Government     |        |                      |                         |                  |
| Petroleum     | Local          | Open   | LaBelle City Well #3 | 2.77                    | Low              |
| Storage Tank  | Government     |        |                      |                         |                  |
| Petroleum     | Local          | Open   | LaBelle City Well #2 | 2.77                    | Low              |
| Storage Tank  | Government     |        |                      |                         |                  |

| Table 2-3: | : Summary of Potential Source Water Contamination Sources |
|------------|-----------------------------------------------------------|
|------------|-----------------------------------------------------------|

# 2.1.8 Wetlands

According to the United States Fish and Wildlife Service National Wetlands Inventory, the planning area consists of Freshwater Emergent Wetlands, Freshwater Forested/Shrub Wetland, Lakes, and Riverine. It is not anticipated that the proposed project will have any negative effect on wetlands because all proposed upgrades will be done outside of any wetland's boundaries or in existing right-of-way. See Figure 2-2 below.





## 2.1.9 Environmentally Sensitive Land

According to the United States Department of Agriculture Natural Resources Conservation Service, 86.2% of the planning area consists of farmland of unique importance, defined as land other than prime farmland that is used for the production of specific high-value food and fiber crops. It has the special combination of soil quality, growing season, moisture supply, temperature, humidity, air drainage, elevation, and aspect needed for the soil to economically produce sustainable high yields of these crops when properly managed. The water supply is dependable and of adequate quality. The remainder of soils within the planning area is classified as not prime farmland. Table 2-5 below provides a summary of information on the farmland of unique importance within the planning area.

| Soil Type                                        | Percentage | Acreage |
|--------------------------------------------------|------------|---------|
| 1) Cypress Lake sand, 0-2% slopes                | 10.3%      | 949.6   |
| 2) Pineda sand, limestone substratum             | 5.4%       | 501.3   |
| 4) Oldsmar sand, 0-2% slopes                     | 6.0%       | 552.4   |
| 6) Wabasso sand, 0-2% slopes                     | 8.4%       | 777.8   |
| 7) Immokalee sand, 0-2% slopes                   | 18.7%      | 1,724.9 |
| 8) Malabar sand, 0-2% slopes                     | 3.9%       | 355.8   |
| 9) Riviera fine sand, 0-2% slopes                | 1.9%       | 179.9   |
| 10) Pineda-Pineda, wet, fine sand, 0-2%slopes    | 0.0%       | 1.9     |
| 14) Wabasso sand, limestone substratum, 0-2%     | 7.3%       | 673     |
| slopes                                           |            |         |
| 15) Myakka sand, 0-2% slopes                     | 0.4%       | 39.9    |
| 17) Basinger sand, 0-2% slopes                   | 3.8%       | 350.5   |
| 19) Gator muck, frequently ponded 0-1% slopes    | 0.8%       | 70.3    |
| 20) Okeelanta muck                               | 0.1%       | 9.7     |
| 21) Holopaw sand, 0-2% slopes                    | 7.3%       | 670.3   |
| 22) Valkaria sand                                | 1.0%       | 97      |
| 27) Riviera sand, limestone substratum           | 6.3%       | 581.5   |
| 29) Oldsmar sand, limestone substratum           | 3.8%       | 352.4   |
| 32) Riviera sand, frequently ponded, 0-1% slopes | 0.7%       | 68.7    |
| 45) Pahokee muck, drained, 0-1% slopes           | 0.1%       | 10.1    |
| TOTAL:                                           | 80.2%      | 7,966.5 |

#### Table 2-4: Farmland of Unique Importance

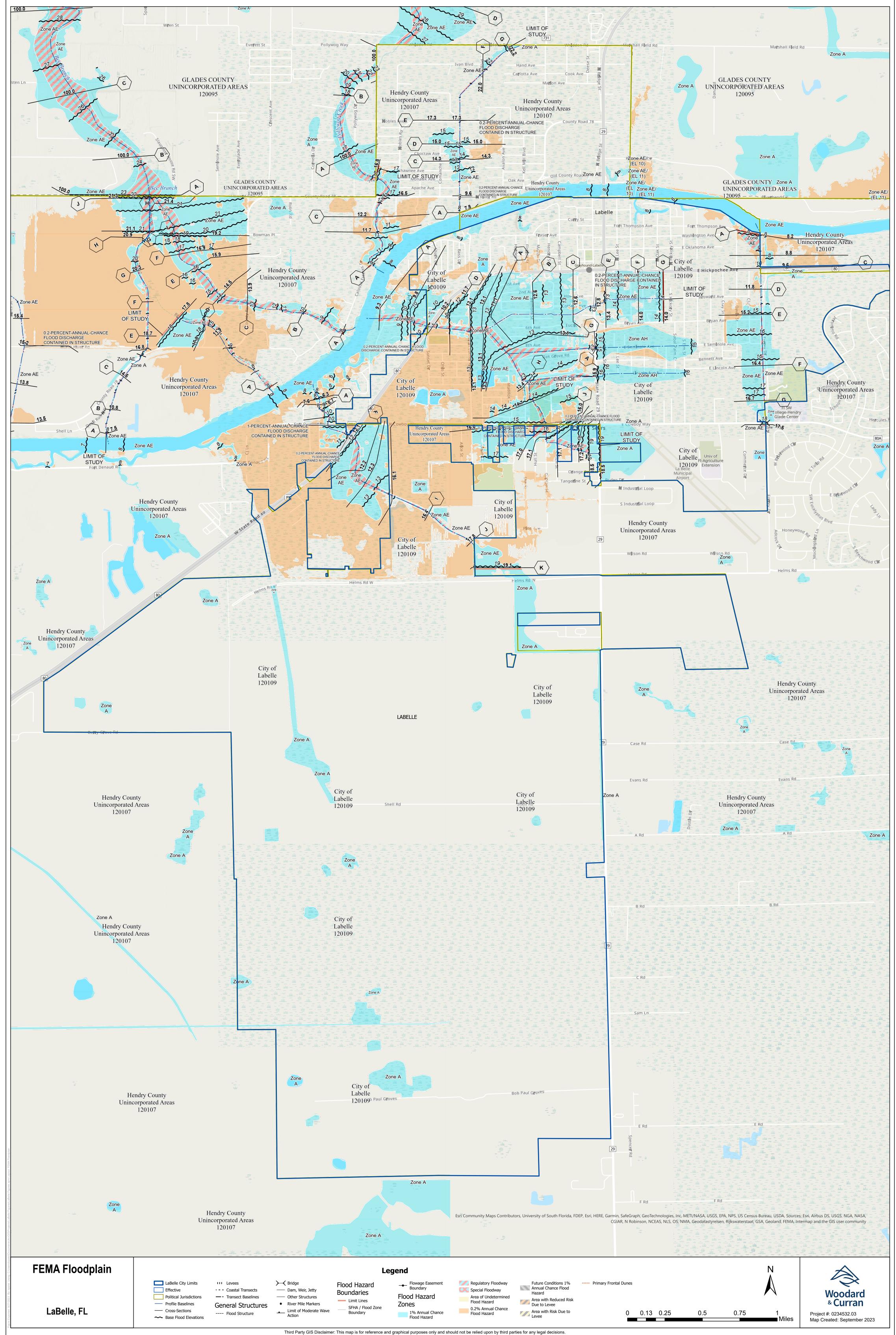
# 2.1.10 Plant and Animal Communities

The United States Fish and Wildlife Service IPaC list includes (12) different species of birds, reptiles, flowering plants, and insects within the planning area. No critical habitats were found within the planning area. Species are classified as candidate, proposed threatened, threatened, or endangered. Table 2-6 below shows the endangered species located in the planning area and the status of each one. Because the proposed project is to take place in previously disturbed areas, the project is not likely to adversely affect resources protected by the Endangered Species Act of 1973. According to the USFWS Consistency Letter dated July 22, 2024, the City of LaBelle proposed project is unlikely to have any detrimental effects to federally listed species or critical habitat and no effect on the species listed below.



The final critical habitat has been identified for the Florida Bonneted Bat, West Indian Manatee, and the Everglade Black Rail bird. According to USFWS Clearence Letter, the proposed project location does not overlap with these species' critical habitat areas. The final USFWS Consistency Letter and Official Species List can be found in Appendix H.

| Category | Species Common Name                          | Species Scientific Name                   | Status     |
|----------|----------------------------------------------|-------------------------------------------|------------|
| Mammals  | Florida Bonneted Bat Eumops floridanus       |                                           | Endangered |
|          | Florida Panther Puma (=Felis) concolor coryi |                                           | Endangered |
|          | Puma Mountain Lion                           | Puma Mountain Lion Puma (=Felis) concolor |            |
|          | Tricolored Bat Perimyotis subflavus          |                                           | Proposed   |
|          |                                              |                                           | Endangered |
|          | West Indian Manatee                          | Trichechus manatus                        | Threatened |
| Birds    | Birds Crested Caracara Caracara plancus au   |                                           | Threatened |
|          | Eastern Black Rail                           | Laterallus jamaicensis ssp.               | Threatened |
|          | jamaicensis                                  |                                           |            |
|          | Everglade Snail Kite                         | Rostrhamus sociabilis                     | Endangered |
|          | plumbeus                                     |                                           |            |
|          | Florida Scrub-jay                            | Aphelocoma coerulescens                   | Threatened |
| Reptiles | American Alligator                           | Alligator mississippiensis                | Threatened |
|          | Eastern Indigo Snake                         | Drymarchon couperi                        | Threatened |
| Insects  | Monarch Butterfly                            | Danaus plexippus                          | Candidate  |


#### 2.1.11 Archeological & Historical Sites

According to the National Register of Historic Places Catalog, there is one historical site within the City Limits of LaBelle. The proposed project will not have an impact on known historical or archeological sites.

- Name: Caldwell Home Place
- Reference Number: 03000009
- State: Florida
- County: Hendry
- Address:160 Curry Street
- Area of Significance: Entertainment/ Recreation; Architecture

#### 2.1.12 Floodplains

Flood zones for the planning area are designated in Figure 2-3. Most of the proposed planning area is within a Zone X floodplain with minimal to moderate flood hazard. All flood zones in the planning area are categorized as Zone A, Zone AE, or Zone X. The Federal Emergency Management Agency (FEMA) defines Zone A and Zone AE as areas subject to inundation by the one percent (1%) annual chance flood event, base flood elevations or flood depths have been determined for Zone AE. All proposed improvements will be designed and constructed above the 500-Year Floodplain.



Any reliance upon the map or data contained herein shall be at the users' sole risk. **Data Sources:** 



# 2.1.13 Air Quality

Hendry County Air Quality Index was rated "Good" for most days out of the year. According to Florida Department of Environmental Protection (FDEP), Hendry County is classified as an area of attainment with respect to the National Ambient Air Quality Standards for Ozone.

Emissions from construction vehicles during construction are the only effect on air quality that is anticipated. Construction is anticipated to last twenty-four (24) months. Project activities will be monitored by the FDEP. There are no anticipated long-term environmental consequences in regard to air quality.

## 2.1.14 Managerial Capacity

As the utility owner, the City of LaBelle has the sole responsibility and authority to build, operate, and maintain the water system.

## 2.1.15 Operation & Maintenance Program

City of LaBelle staff maintain and operate its water system. As needed repairs or rehabilitation of the proposed treatment equipment, storage equipment, and water mains are performed by local contractors. The City's Membrane Water Treatment Plant is operated continuously with regular operator visits. WTP operational parameters include reverse osmosis filtration rates and finished water discharge pumping target pressures. Well pump operations and tank levels are also monitored and adjusted for optimization as demand trends change.

#### 2.2 Socio-Economic Conditions

#### 2.2.1 Population and Anticipated Growth

The City of LaBelle has population estimates from the U.S. Census Bureau (USCB) and the University of Florida's Bureau of Economic Business Research (BEBR). The population projection in this report for the 2026-2046 planning period is based on both data sets.

- BEBR reports that LaBelle has an average population growth of 0.9% between 2013 and 2022 as shown in Table 2-6.
- U.S. Census Bureau (USCB) reports LaBelle has an average population growth of 0.9% per year, using 2000, 2010 and 2020 data as shown in Table 2-7: U.S. Census Population Growth 2000 Through 20208.



| BEBR Data* |                                      |        |  |
|------------|--------------------------------------|--------|--|
| Year       | % Growth                             |        |  |
| 2013       | 4,669                                | -      |  |
| 2014       | 4,708                                | 0.84%  |  |
| 2015       | 4,792                                | 1.78%  |  |
| 2016       | 4,807                                | 0.31%  |  |
| 2017       | 4,951                                | 3.00%  |  |
| 2018       | 5,025                                | 1.49%  |  |
| 2019       | 5,108                                | 1.65%  |  |
| 2020       | 5,151                                | 0.84%  |  |
| 2021       | 5,019                                | -2.56% |  |
| 2022       | 5,041                                | 0.44%  |  |
|            | Average Population Growth (per year) | 0.87%  |  |

#### Table 2-6: Bureau of Economic and Business Research City of LaBelle Population Growth

Average Population Growth (per year)

\*Data from Bureau of Economic and Business Research

| Table 2-7: | U.S. Census Po | pulation Growth 2000 Three | ough 2020 |
|------------|----------------|----------------------------|-----------|
|------------|----------------|----------------------------|-----------|

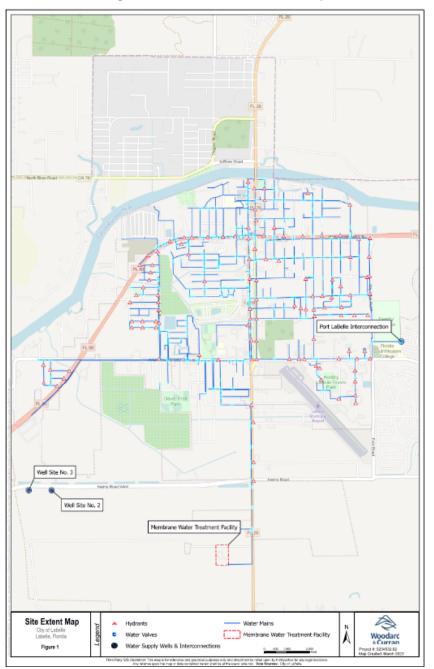
| U.S. Census Data* |                                      |                 |  |
|-------------------|--------------------------------------|-----------------|--|
| Year              | Population (LaBelle FL)              | % Growth/Decade |  |
| 2000              | 4,210                                | -               |  |
| 2010              | 4,640                                | 10.21%          |  |
| 2020              | 4,966                                | 7.03%           |  |
|                   | Average population Growth (per year) | 0.86%           |  |

Average population Growth (per year)

\*Data gathered by the U.S. Census Bureau

An average growth rate of 0.9% per year over the next 20 years was used for population projection based on the two sets of population trend data analyzed. According to BEBR, the population in LaBelle in 2022 was 5,041 people. A 0.9% per year growth rate over the next 23 years puts the population of LaBelle at 6,206 people in the year 2046. This amounts to 23% total growth from 2022 to 2046. A 23% growth in system demand as well was assumed to result from the 23% population growth, from 0.65 to 0.80 MGD during the maximum demand day.




# 2.2.2 Planned Developments

There is one planned development that has an approved developer's agreement in LaBelle. It is an RV park being developed by SWJR Land Development, LLC. The proposed RV park will be located across several parcels along State Route 80 with an address at 7551 W St Rd 80, Labelle FL 33935. The developer's agreement requires the City to provide 62,339 gallons per day of potable water.

#### 2.3 Description of Existing Water System

The LaBelle potable water system includes one water treatment facility, referred to as the Membrane Water Treatment Facility. The drinking water infrastructure is classified as Category V, Class C plants by FAC 62-699. The Florida Department of Environmental Protection (FDEP) has established the permitted capacity of the treatment plant as 1.5 MGD on an average annual daily basis, but it currently treats less than 1 MGD during maximum day demand conditions. Two wells drilled into the Upper Floridian Aquifer (UFA) supply raw water to the Membrane Water Treatment Facility. This treatment facility disinfects the water and serves the distribution system which consists of a single pressure zone. Figure 2-4 shows an overview map of the existing water distribution system. The public water system has one interconnection to Port LaBelle in the east of the system, used only during emergencies. The service area generally covers the downtown and adjacent residential subdivisions. The system serves the incorporated area of the city and portions of the unincorporated county (outside of city limits).









# 2.3.1 Membrane Water Treatment Facility

The Membrane Water Treatment Facility is located on US 29, just south of Jim Kutzy Road in LaBelle, FL. This treatment facility is fed by two raw water wells (Well No. 2 and 3). The wells each have a design point of 1,500 gpm @ 321 ft TDH. Both wells produce a daily average of 305 gpm, but have outputted a total daily flow up to 800 gpm. However, the wells are capable of producing a continuous 1,500 gpm flow if needed. The wells operate in a lead-backup configuration, with one well typically operating at a time.

Treatment consists of cartridge filtration, reverse osmosis demineralization, degasification, pH adjustment, and disinfection with chlorine. Treated water is blended with filtered raw water prior to degasification. Orthophosphate and hydrofluorosicilic acid are also added for corrosion control and fluoridation, respectively.

# 2.3.2 SCADA

The City of LaBelle currently has a SCADA system that can operate the Membrane Water Treatment Facility automatically using local instrumentation. This allows the treatment facility to operate continuously when operators are not present. The SCADA system currently reads and records well flow data, treatment facility raw and finished water flow data, and various other pieces of process data (e.g., chlorination parameters, finished water storage levels, booster pump statuses, cartridge filter statuses, and injection well activity).

# 2.3.3 Water Distribution Piping

LaBelle's water distribution system consists of approximately 49 miles of water mains, ranging from 0.75inch to 12-inch in diameter. Most of the water mains are 6 to 8-inch in diameter PVC, with some ductile, cast iron, and HDPE pipe. The system has one interconnection with Port LaBelle, but this interconnection is for use during emergencies only. See Table 2-9 for a summary of the distribution system pipes by diameter. Various pipes throughout the system are undersized for the required flow capacity. Many mains are older than their design lifespan and many pipes have dead-ends that can result in increased water age.



| Diameter<br>(in) | Length of<br>Pipe (ft) | Length of<br>Pipe (mi) | Percent of<br>System |
|------------------|------------------------|------------------------|----------------------|
| 2                | 85,900                 | 16.27                  | 32.9%                |
| 3                | 3,800                  | 0.71                   | 1.5%                 |
| 4                | 28,800                 | 5.45                   | 11.0%                |
| 6                | 73,200                 | 13.86                  | 28.0%                |
| 8                | 32,700                 | 6.20                   | 12.5%                |
| 10               | 19,100                 | 3.62                   | 7.3%                 |
| 12               | 17,700                 | 3.35                   | 6.8%                 |
| Total            | 261,200                | 49.47                  | 100.00%              |

#### Table 2-8: Distribution System Pipe Diameter

#### 2.3.4 Performance of Existing Water System

The existing Membrane Water Treatment Facility has adequately and consistently treated the UFA source water. The City's demand will grow over the 20-year planning horizon such that the existing water storage is insufficient to meet requirements, therefore the various water system modifications described in this report are required.

The City is dependent on the operation of at least one well and two reverse osmosis treatment skids to provide water service to customers on both an average demand and maximum demand day. The City is currently unable to meet its maximum day demand with only one reverse osmosis skid, leaving the City vulnerable to supply shortages when the reverse osmosis systems require maintenance. The City also has only a single finished water storage tank in place and lacks any redundancy in finished water storage.

The City of LaBelle has approximately 2,379 potable water connections serving an estimated 5,950 people as provided in the 2020 BEBR. An annual 0.87% population growth is expected to occur within the existing service area. Based on daily finished water flow totalizations from January 2021 to April 2022, the average monthly total finished water flow rate into the system is 19,846,000 gal with an average day of 661,533 gal. and a maximum day of 841,800 gal.



# 3. DEVELOPMENT OF ALTERNATIVES

The following groups of projects were evaluated as part of this Facilities Plan:

**Source Water and Treatment:** The condition and capacity of the existing source water wells were evaluated along with new sources for quality, quantity, and redundancy improvements.

While the existing reverse osmosis treatment units are relatively new, components of the existing equipment are approaching the end of their design life and require replacement. Many treatment components are considered short lived assets (10 to 15 years) and therefore require continual renewal and replacement. The two existing reverse osmosis treatment trains could each be upgraded to treat 1.125 MGD if additional treatment cartridges were provided or a third treatment skid could be added to provide adequate system redundancy.

Additionally, new backup generator infrastructure at the City's well sources would improve the City's ability to consistently supply raw water to the treatment plant. New treatment infrastructure upgrades would allow the City to continue to meet non-RO treatment goals for the increased reverse osmosis treatment capacity at the plant.

<u>Water Storage and Distribution</u>: A 1,000,000-gallon ground storage tank containing finished water is located adjacent to the Membrane Water Treatment Facility. Current storage capacity is approximately 34% of ADF. The City should consider additional redundancy storage as part of the Facilities Plan.

Another area of concern is the four high service pumps, motors, and motor controllers at the ground storage tank; currently all pumps are on an electric service with limited emergency fuel options.

The water distribution system has pipes dating back to the 1940's and many are beyond their useful life. The City's GIS database shows many pipes that are undersized and limit the City's ability to provide adequate pressure and fire protection for customers. Many pipes terminate at dead ends. The City's mains have many inoperable valves.

The City has commercial service meters for high-demand customers that are faulty and may be limited the realized revenue of the water system. The City also has many primary process meters that are faulty and affect the quality of the data the City retains about its water operations.

**Project Alternatives Listing:** An evaluation of the City's treatment facilities and distribution system was conducted to develop alternatives to address the water system challenges within the 20-year planning period.

The evaluation resulted in the following three projects, with three alternatives for each, as follows:



Project 1 – Source and Treatment Upgrades

- i. Alternative 1 Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Installation of Additional Cartridges on the Existing Reverse Osmosis Skids
- ii. Alternative 2 Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replacement of the Existing Reverse Osmosis Skids with New, Larger Reverse Osmosis Skids
- iii. Alternative 3 Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replacement of the Existing Reverse Osmosis Skids with New Ultrafiltration Membrane Skids
- Project 2 Distribution and Storage Upgrades
  - i. Alternative 1 Construction of a New Concrete Ground Storage Tank and Pump Station, Construction of the State Route 80 and Zone B Water Mains, and Execution of a Valve Replacement Program
  - ii. Alternative 2 Construction of a Pedosphere Elevated Storage Tank, Construction of the State Route 80 and Zone B Water Mains, and Execution of a Valve Replacement Program
  - iii. Alternative 3 Construction of a Fluted Column Elevated Storage Tank, Construction of the State Route 80 and Zone B Water Mains, and Execution of a Valve Replacement Program

Project 3 – Large Commercial Service Meter and Production Meter Replacement Program

- i. Alternative 1 Replacement of Commercial Service and Production Meters 1.5" and Above and Replacement of All AMI Endpoints
- ii. Alternative 2 Replacement of Commercial Service and System Production 1.5" and Above and Replacement of All AMI Endpoints at End of Life
- iii. Alternative 3 Maintain Existing Commercial Service and Production Meters 1.5" and Above

Each of the projects and their alternatives are described in further detail in the following subsections. Each project is accompanied by a construction cost estimate and a life cycle cost analysis for each alternative. The cost estimates, and any resulting conclusions on project financial or economic feasibility or funding requirements, have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the projects and resulting feasibility depend on actual labor and materials costs, competitive market conditions, actual site conditions, final project scopes, implementation schedule, continuity of personnel and engineering, and other variable factors. As a result, the final project costs may vary from the estimate presented here. All costs are presented in 2024 dollars.

The life cycle cost analysis is important for comparing the alternatives on an equivalent basis over the project life. Average service lives were established based on values provided in Florida Administrative Code Rule 25-30.140(2)a), assuming a class C, small utility. As of the end of January 2024, the nominal local government discount rate is 3.1%.

See Appendix B for an itemized breakdown of capital and life cycle costs for each selected alternative.



# 3.1 Project 1 – Source and Treatment Upgrades

## 3.1.1 Project 1 Alternative 1 – Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Additional Cartridges on Existing Reverse Osmosis Skids

The first alternative to address needed redundancy and minimize ongoing maintenance expenses for the City's treatment process is to add cartridges to the existing reverse osmosis skids. The City has two reverse osmosis skids that are only partially filled with treatment cartridges. Currently, the skids can each treat approximately 0.75 MGD which is below the design flow of the supply wells. This alternative would add additional cartridges to each reverse osmosis skid to bring the capacity of each skid up to a flow sufficient to treat 1.125 MGD when one skid is offline. This alternative also includes replacement of the membranes on the existing cartridges, which are nearing the end of their useful lifespan. Because removing cartridges during construction will limit the facilities ability to treat water, the addition of a third treatment skid may be required during design to ensure the facility can provide uninterrupted water service and provide additional system redundancy.

Additionally, new propane-driven pumps will be added. The first set will transfer water between the treatment plant's chlorine contact chamber and its finished water storage tank. The first set of pumps will have a design point of 1,050 gpm @ 39 ft TDH. The second set of pumps would pump from the finished water storage tank into the system. The second set of pumps will have a design point of 1,850 gpm @ 140 ft TDH. There are available spaces in both the chlorine contact chamber transfer pump area and the finished water high service pump area for these new propane-driven pumps. All existing transfer and high service pumps are electrically driven and will require rehabilitation and/or replacement. The City would like to have propane-driven pumps to maintain service in the event of a variable-frequency drive failure on its electrical pumps caused by the frequent lighting strikes in the area.

This alternative also includes installation of new generators, transfer switches, surge protectors and improved lightning protection system at its two existing well sources to improve water source reliability.

This alternative also includes refurbishment of the existing chemical storage canopy into a full chemical storage building. The existing chemical storage canopy will be retrofitted to be a fully-enclosed masonrybuilt chemical storage building. The building dimensions will be approximately 55'x22'. The building will be designed such that each chemical has its own secondary containment area and chemicals will no longer drain to a leaching field. HVAC and electrical elements will be added to the building. It includes replacement of the existing end-of-life chemical storage and pumping infrastructure for each of the chemicals use in at the facility. New level sensors will be provided for each tank. Chemical metering pumps and tanks will be upsized compared to the existing pumps and tanks to allow them to treat the larger flow rate, and support longer outages or distribution system impacts.

The proposed chemical storage and pumping elements are tabulated in Table 3-1.



| Chemical                | Chemical Storage Tanks                                | Chemical Metering<br>Pump(s)                         | Level Sensors  |
|-------------------------|-------------------------------------------------------|------------------------------------------------------|----------------|
| Sodium Hypochlorite     | Two 2,000-gallon bulk tanks<br>One 75-gallon day tank | Two 6.0 gph duplex pump skids<br>(4.0 gph existing)  | Two ultrasonic |
| Sulfuric Acid           | One 500-gallon bulk tank<br>One 30-gallon day tank    | One 1.5 gph duplex pump skid<br>(1.0 gph existing)   | One ultrasonic |
| Orthophosphate          | One 275-gallon bulk tank<br>One 10-gallon day tank    | One 0.65 gph duplex pump skid<br>(0.42 gph existing) | One ultrasonic |
| Sodium Hydroxide        | One 1,550-gallon bulk tank<br>One 40-gallon day tank  | One 3.0 gph duplex pump skid<br>(2.0 gph existing)   | One ultrasonic |
| Hydrofluorosilicic Acid | One 240-gallon bulk tank<br>One 35-gallon day tank    | One 0.65 gph duplex pump skid<br>(0.42 gph existing) | One ultrasonic |
| Antiscalant             | One 55-gallon bulk tank<br>One 25-gallon day tank     | One 0.65 gph duplex pump skid<br>(0.42 gph existing) | One ultrasonic |

# Table 3-1: Chemical Storage and Metering Pump Parameters at Membrane Water TreatmentFacility

# 3.1.2 Project 1 Alternative 2 – Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New, Larger Reverse Osmosis Skids

The second alternative to add redundancy to the City's treatment process is to replace the existing reverse osmosis skids with larger skids. This alternative would bring the capacity of each skid up to a flow sufficient to treat all flow from a single well. This will give the City full redundancy in its reverse osmosis operations.

Two propane pumps, new generator equipment at the well sources, and chemical storage and pumping equipment are included in this alternative, like Project 1 Alternative 1.

# 3.1.3 Project 1 Alternative 3 – Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New Ultrafiltration Membrane Skids

The third alternative to add redundancy to the City's treatment process is to replace the existing reverse osmosis skids with two new ultrafiltration membrane skids, each with a higher treatment capacity than the existing reverse osmosis skids. Each new ultrafiltration membrane skid would be sized to treat all flow from a single well. This will give the City full redundancy in its treatment operations.

Two propane pumps, new generator equipment at the well sources, and chemical storage and pumping equipment are included in this alternative, like Project 1 Alternative 1.

# 3.1.4 Project 1 Alternatives Cost Comparison

A capital cost comparison of the three Source and Treatment Upgrade alternatives is presented in **Error! Reference source not found.** 

See Appendix B for an itemized breakdown of capital and life cycle costs for the selected alternative.



| ltem<br>No. | Cost Item                                        | Alternative 1 –<br>Expand Existing<br>RO Skid & Replace<br>Existing Filters<br>(and Other<br>Upgrades) | Alternative 2 – New<br>Larger RO Skid<br>(and Other<br>Upgrades) | Alternative 3 –<br>Replace RO Skid<br>with New Ultra<br>Filtration Skid (and<br>Other Upgrades) |  |  |
|-------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
|             |                                                  |                                                                                                        |                                                                  |                                                                                                 |  |  |
|             |                                                  | CAPITAL COST SUM                                                                                       | MMARY                                                            |                                                                                                 |  |  |
| 1           | Capital Base Cost                                | \$2,794,000                                                                                            | \$3,809,000                                                      | \$4,424,000                                                                                     |  |  |
| 2           | Contingency (10%)                                | \$279,000                                                                                              | \$381,000                                                        | \$442,000                                                                                       |  |  |
| 3           | Engineering, Permitting,<br>and Design (10%)     | \$279,000                                                                                              | \$381,000                                                        | \$442,000                                                                                       |  |  |
| 4           | Engineering Services<br>During Construction (8%) | \$224,000                                                                                              | \$305,000                                                        | \$354,000                                                                                       |  |  |
| 5           | Legal and Administration<br>(3%)                 | \$84,000                                                                                               | \$114,000                                                        | \$133,000                                                                                       |  |  |
|             | Total Opinion of Capital<br>Cost                 | \$3,660,000                                                                                            | \$4,990,000                                                      | \$5,795,000                                                                                     |  |  |
|             |                                                  |                                                                                                        |                                                                  |                                                                                                 |  |  |
|             | ANNUAL OPERATIONS AND MAINTENANCE COST SUMMARY   |                                                                                                        |                                                                  |                                                                                                 |  |  |
|             | Operations &<br>Maintenance                      | \$56,000                                                                                               | \$76,000                                                         | \$88,000                                                                                        |  |  |

# Table 3-2: Project 1 Source and Treatment Upgrades Alternatives - Capital & Operations Cost Comparison

# 3.1.4.1 Life Cycle Cost Analysis

**Error! Reference source not found.** provide information on the 20-year life cycle cost analysis (LCCA) for the three proposed alternatives for this project. **Error! Reference source not found.** shows that Alternative 1 has the lowest total life cycle cost.



| Alternative                                                                                                  | Initial Capital<br>Cost* | Replacement<br>Cost** | Lifetime O&M<br>Cost** | Salvage<br>Value** | Total 20-Year<br>Life Cycle Cost<br>(2023 Dollars) |
|--------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------|--------------------|----------------------------------------------------|
| Alternative 1 –<br>Expand<br>Existing RO<br>Skid &<br>Replace<br>Existing Filters<br>(and Other<br>Upgrades) | \$3,660,000              | \$843,000             | \$719,000              | \$2,000            | \$5,220,000                                        |
| Alternative 2 –<br>New Larger<br>RO Skid (and<br>Other<br>Upgrades)                                          | \$4,990,000              | \$1,529,000           | \$884,000              | \$2,000            | \$7,401,000                                        |
| Alternative 3 –<br>Replace RO<br>Skid with New<br>Ultra<br>Filtration Skid<br>(and Other<br>Upgrades)        | \$5,795,000              | \$1,944,000           | \$984,000              | \$2,000            | \$8,721,000                                        |

| Table 3-3: Project 1 LO | CCA Summary |
|-------------------------|-------------|
|-------------------------|-------------|

\*Includes added 10% contingency, 15% engineering, permitting, design, and 3% legal and administrative expenses.

\*\*Replacement costs for replacements needed during 20-year planning period. Salvage value at the end of the 20-year planning period. Net present value O&M costs over 20-year planning period.

### **3.2 Project 2 – Distribution and Storage Upgrades**

### 3.2.1 Project 2 Alternative 1 – New Concrete Ground Storage Tank and Pump Station, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

The first alternative to improve the distribution and storage infrastructure in the system is to provide a new 1,000,000-gallon concrete ground storage tank and pump station. The concrete ground storage tank would be filled by the existing high service pumps at the Membrane Water Treatment Facility. A new high service pump station is proposed to pressurize the water stored in the ground storage tank prior to entering the distribution system. The pump station would have two (2) 100 HP pumps and two (2) 50 HP pumps.

The new concrete ground storage tank would be located on an existing City-owned parcel, whose final location would be determined following modeling analyses during construction. Based on modelling results, the City may need to purchase a property more suitable for storage tank location. The tank site would have several additional miscellaneous work elements, including fencing, gates, yard piping, hydrants, an emergency backup generator, a new electrical service connection, a driveway, and SCADA instrumentation.



This alternative will also include new water mains to improve looping in the City's distribution system and provide connectivity for the proposed pumps. This alternative includes three sections of ductile iron transmission main along State Route 80, in the following quantities and locations:

- 14,000 linear feet of 12" main on Helms Road, from State Route 29 to State Route 80
- 4,700 linear feet of 12" main on State Route 80, from Helms Road West to Ben Moore Drive, connecting to an existing dead-end previously installed between East Cowboy Way and Ben Moore Drive.
- 5,000 linear feet of 12" main on State Route 80, from East Cowboy Way to Miller Avenue.

New water mains will be added in Zone B as part of this alternative to improve fire flow availability by providing new 8" ductile iron water main. The existing Zone B 2" and 4" mains would be abandoned in place or removed, as required. Approximately 15,000 linear feet of new 8" pipe is proposed. Customers' service lines would be replaced with new taps, corporation stops, meter boxes, service lateral pipe, and curb stops.

The City will also address their deficient distribution valves by performing a valve exercising program to catalogue all the City's valves and identify the valves that are failing. The failing valves would then be removed and replaced. It is estimated that 140 valves will be replaced.

# 3.2.2 Project 2 Alternative 2 – New Pedosphere Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

The second alternative to improve the distribution and storage infrastructure in the system is to provide a new 1,000,000-gallon pedosphere elevated storage tank. The pedosphere elevated storage tank would be filled by the system pressure provided by the high service pumps at the Membrane Water Treatment Facility.

The new pedosphere elevated storage tank would be located on an existing City-owned parcel, whose final location and height would be determined following modeling analyses during the design phase. Based on modelling results, the City may need to purchase a property more suitable for storage tank location. The tank site would have several additional miscellaneous work elements, including fencing, gates, yard piping, hydrants, altitude valve, an emergency backup generator, a new electrical service connection, a driveway, and SCADA instrumentation.

This alternative will also include the same water mains and valve exercising program as in Project 2 Alternative 1.

# 3.2.3 Project 2 Alternative 3 – New Fluted Column Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

The third alternative to improve storage redundancy and maintain adequate storage during a tank outage is to provide a new 1,000,000-gallon fluted column elevated storage tank. The fluted column elevated storage tank would be filled by the system pressure provided by the high service pumps at the Membrane Water Treatment Facility.

The new fluted column elevated storage tank would be located on an existing City-owned parcel, whose final location and height would be determined following modeling analyses during construction. Based on modelling results, the City may need to purchase a property more suitable for storage tank location. The



tank site would have several additional miscellaneous work elements, including fencing, gates, yard piping, hydrants, altitude valve, an emergency backup generator, a new electrical service connection, a driveway, and SCADA instrumentation.

This alternative will also include the same water mains and valve exercising program as in Project 2 Alternative 1.

## 3.2.4 Project 2 Alternatives Cost Comparison

A capital cost comparison of the three Distribution and Storage alternatives is presented in Table 3-4.

See Appendix B for an itemized breakdown of capital and life cycle costs for the selected alternative.

| ltem<br>No.                                    | Cost Item                                        | Alternative 1 -<br>New Concrete<br>Ground Storage<br>Tank and Pump<br>Station, Water<br>Mains, and Valve<br>Program | Alternative 2 -<br>New Pedosphere<br>Elevated Storage<br>Tank, Water<br>Mains, and Valve<br>Program | Alternative 3 -<br>New Fluted<br>Column Elevated<br>Storage Tank,<br>Water Mains, and<br>Valve Program |
|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                | C                                                | APITAL COST SUMM                                                                                                    | ARY                                                                                                 |                                                                                                        |
| 1                                              | Capital Base Cost                                | \$16,437,000                                                                                                        | \$17,473,000                                                                                        | \$19,388,000                                                                                           |
| 2                                              | Contingency (10%)                                | \$1,644,000                                                                                                         | \$1,747,000                                                                                         | \$1,939,000                                                                                            |
| 3                                              | Engineering, Permitting, and<br>Design (10%)     | \$1,644,000                                                                                                         | \$1,747,000                                                                                         | \$1,939,000                                                                                            |
| 4                                              | Engineering Services During<br>Construction (8%) | \$1,315,000                                                                                                         | \$1,398,000                                                                                         | \$1,551,000                                                                                            |
| 5                                              | Legal and Administration<br>(3%)                 | \$493,000                                                                                                           | \$524,000                                                                                           | \$582,000                                                                                              |
|                                                | Total Opinion of Capital<br>Cost                 | \$21,553,000                                                                                                        | \$22,889,000                                                                                        | \$25,399,000                                                                                           |
| ANNUAL OPERATIONS AND MAINTENANCE COST SUMMARY |                                                  |                                                                                                                     |                                                                                                     |                                                                                                        |
|                                                | <b>Operations &amp; Maintenance</b>              | \$329,000                                                                                                           | \$349,000                                                                                           | \$388,000                                                                                              |

Table 3-4: Project 2 Distribution and Storage Upgrades Cost Comparison

## 3.2.4.1 Life Cycle Cost Analysis

Table 3-5 provide information on the 20-year life cycle cost analysis (LCCA) for the three proposed alternatives for this project. Table 3-5 shows that Alternative 2 has the lowest total life cycle cost.



| Alternative                                                                                                                                                                       | Initial Capital<br>Cost* | Replacement<br>Cost** | Lifetime<br>O&M Cost** | Salvage<br>Value** | Total 20-Year<br>Life Cycle<br>Cost (2023<br>Dollars) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------|--------------------|-------------------------------------------------------|
| Alternative 1 – New<br>Concrete Ground<br>Storage Tank and<br>Pump Station,<br>State Route 80 and<br>Zone B Water<br>Mains, and Valve<br>Exercising and<br>Replacement<br>Program | \$21,533,000             | \$258,000             | \$9,489,000            | \$5,531,000        | \$25,749,000                                          |
| Alternative 2 – New<br>Pedosphere<br>Elevated Storage<br>Tank, State Route<br>80 and Zone B<br>Water Mains, and<br>Valve Exercising<br>and Replacement<br>Program                 | \$23,836,000             | \$123,000             | \$5,928,000            | \$6,051,000        | \$23,836,000                                          |
| Alternative 3 – New<br>Fluted Column<br>Elevated Storage<br>Tank, State Route<br>80 and Zone B<br>Water Mains, and<br>Valve Exercising<br>and Replacement<br>Program              | \$25,399,000             | \$31,000              | \$7,842,000            | \$7,068,000        | \$26,204,000                                          |

| Table 3-5: | Project 2 LCCA Summary |
|------------|------------------------|
|------------|------------------------|

\*Includes added 10% contingency, 15% engineering, permitting, design, and 3% legal and administrative expenses.

\*\*Replacement costs for replacements needed during 20-year planning period. Salvage value at the end of the 20-year planning period. Net present value O&M costs over 20-year planning period.



### 3.3 **Project 3 – Large Commercial Service and Production Meter Replacement Program**

# 3.3.1 Project 3 Alternative 1 – Replace Commercial Service Meters, AMI Endpoints, and Production Meters 1.5" and Above

The first alternative to correct the City's deficient commercial service meters is to identify and replace the commercial service and production meters 1.5" and to replace the AMI endpoints at each meter at the same time. Each meter would be upgraded to a newer model, along with any required advanced metering infrastructure (AMI) for remote meter reading. This includes up to 100 commercial service meters with their AMI endpoints and 4 production meters.

## 3.3.2 Project 3 Alternative 2 – Replace All Commercial Service and Production Meters 1.5" and Above, Replace AMI Endpoints at End of Life

The second alternative to correct the City's deficient commercial service meters is to identify and replace the commercial service and production meters 1.5" and to replace the AMI endpoints at each meter five years later when the endpoints reach the end of their useful life. Each meter would be upgraded to a newer model, along with any required advanced metering infrastructure (AMI) for remote meter reading. This includes up to 100 commercial service meters and AMI endpoints and 4 production meters.

## 3.3.3 Project 3 Alternative 3 – Maintain Existing Commercial Service and Production Meters 1.5" and Above

The third alternative is to do nothing and maintain the existing commercial service meters. This may cause continued revenue losses from inaccurate meter readings on large customers.

### 3.3.4 **Project 3 Alternatives Cost Comparison**

A capital cost comparison of the three alternatives for commercial service and production meter replacement program is presented in Table 3-6.

See Appendix B for an itemized breakdown of capital and life cycle costs for the selected alternative.



| ltem<br>No. | Cost Item                                        | Alternative 1 -<br>Replace<br>Commercial Service<br>and Production<br>Meters 1.5" and<br>Above, Replace All<br>AMI Endpoints | Alternative 2 -<br>Replace All<br>Commercial Service<br>and Production<br>Meters 1.5" and<br>Above, Replace<br>AMI Endpoints at<br>End of Life | Alternative 3 -<br>Maintain Existing<br>Commercial<br>Service and<br>Production<br>Meters 1.5" and<br>Above |  |
|-------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|             |                                                  | CAPITAL COST SUMI                                                                                                            | MARY                                                                                                                                           |                                                                                                             |  |
| 1           | Capital Base Cost                                | \$185,000                                                                                                                    | \$191,000                                                                                                                                      | -                                                                                                           |  |
| 2           | Contingency (10%)                                | \$19,000                                                                                                                     | \$19,000                                                                                                                                       | -                                                                                                           |  |
| 3           | Engineering, Permitting,<br>and Design (10%)     | \$19,000                                                                                                                     | \$19,000                                                                                                                                       | -                                                                                                           |  |
| 4           | Engineering Services<br>During Construction (0%) | \$0                                                                                                                          | \$0                                                                                                                                            | -                                                                                                           |  |
| 5           | Legal and Administration<br>(3%)                 | \$6,000                                                                                                                      | \$6,000                                                                                                                                        | -                                                                                                           |  |
|             | Total Opinion of Capital<br>Cost                 | \$229,000                                                                                                                    | \$235,000                                                                                                                                      | -                                                                                                           |  |
|             | ANNUAL OPERATIONS AND MAINTENANCE COST SUMMARY   |                                                                                                                              |                                                                                                                                                |                                                                                                             |  |
|             | Operations &<br>Maintenance                      | \$4,000                                                                                                                      | \$4,000                                                                                                                                        | \$34,800                                                                                                    |  |

# Table 3-6: Project 3 Large Commercial Service and Production meter ReplacementProgram Cost Comparison

## 3.3.4.1 Life Cycle Cost Analysis

Table 3-7 provide information on the 20-year life cycle cost analysis (LCCA) for the three proposed alternatives for this project. Table 3-7 shows that Alternative 1 has the lowest total life cycle cost.



| Alternative                                                                                                                                    | Initial Capital<br>Cost* | Replacement<br>Cost** | Lifetime<br>O&M Cost** | Salvage<br>Value** | Total 20-Year<br>Life Cycle<br>Cost (2023<br>Dollars) |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------|--------------------|-------------------------------------------------------|
| Alternative 1 -<br>Replace<br>Commercial Service<br>and Production<br>Meters 1.5" and<br>Above, Replace All<br>AMI Endpoints                   | \$229,000                | \$158,500             | \$55,500               | \$0                | \$443,000                                             |
| Alternative 2 –<br>Replace All<br>Commercial Service<br>and Production<br>Meters 1.5" and<br>Above, Replace<br>AMI Endpoints at<br>End of Life | \$235,000                | \$162,700             | \$57,300               | \$0                | \$455,000                                             |
| Alternative 3 –<br>Maintain Existing<br>Commercial Service<br>and Production<br>Meters 1.5" and<br>Above                                       | \$0                      | \$0                   | \$513,000              | \$0                | \$513,000                                             |

\*Includes added 10% contingency, 15% engineering, permitting, design, and 3% legal and administrative expenses.

\*\*Replacement costs for replacements needed during 20-year planning period. Salvage value at the end of the 20-year planning period. Net present value O&M costs over 20-year planning period.

**Asset Management:** FDEP-SRF encourages and rewards any utility that engages in the SRF program, to implement an active asset management plan. FDEP-SRF definition; "Asset management plan" means a systematic management technique for utility systems that focuses on the long-term life cycle of the assets and their sustained performance, rather than on short-term, day-to-day aspects of the assets. This plan includes the identification of and costs for rehabilitating, repairing, or replacing all assets as well as the schedule to do so. Subsection 62-552.700(7), F.A.C., provides details on the contents of the plan.



# 4. SELECTED ALTERNATIVES

This section of the report presents the recommended alternatives for each of the three proposed projects in Section 3. An investigation into environmental impacts and cost estimates of the recommended plans are also included in this section.

## 4.1 **Project 1 Selected Alternative**

The recommended alternative for improving system production and treatment capacity is Alternative 1 – Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Additional Cartridges on Existing Reverse Osmosis Skids. Adding cartridges to the existing reverse osmosis treatment skids, providing construction flexibility of adding a new treatment skid and providing improved backup generators at the well sources will improve redundancy and give the City the ability to operate with any one piece of source or treatment equipment out of service for regular maintenance. Improving the chemical storage and pumping at the site will preemptively prevent failures for equipment at end of life, remove safety and environmental risks with the existing containment and drainage in the chemical storage canopy, and provide more resilience to the chemical storage area.

## 4.1.1 Conceptual-Level Projected Cost for the Recommended Project 1 Alternative

The conceptual-level Opinion of Probable Cost (OPC) for the overall recommended plan is \$3.66M in 2024 dollars and is summarized in Table 4-1. Cost details are presented in Appendix B.

| ltem<br>No. | Cost Item                                        | Alternative 1 – Expand Existing RO Skid & Replace<br>Existing Filters (and Other Upgrades) |  |  |  |
|-------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
|             | CA                                               | PITAL COST SUMMARY                                                                         |  |  |  |
| 1           | Capital Base Cost                                | \$2,794,000                                                                                |  |  |  |
| 2           | Contingency (10%)                                | \$279,000                                                                                  |  |  |  |
| 3           | Engineering, Permitting, and<br>Design (10%)     | \$279,000                                                                                  |  |  |  |
| 4           | Engineering Services During<br>Construction (8%) | \$224,000                                                                                  |  |  |  |
| 5           | Legal and Administration (3%)                    | \$84,000                                                                                   |  |  |  |
|             | Total Opinion of Capital<br>Cost                 | \$3,660,000                                                                                |  |  |  |
|             | ANNUAL O&M COST SUMMARY                          |                                                                                            |  |  |  |
|             | Annual O&M Cost                                  | \$56,000                                                                                   |  |  |  |

Table 4-1: Conceptual Level Cost Estimate Summary Recommended Project 1 Alternative

## 4.2 **Project 2 Selected Alternative**

The recommended alternative for improving system production and treatment capacity is Alternative 2 – New Pedosphere Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program. This alternative has the lowest life cycle cost among the alternatives.



## 4.2.1 Conceptual-Level Projected Cost for the Recommended Project 2 Alternative

The conceptual-level Opinion of Probable Cost (OPC) for the overall recommended plan is \$22.89M in 2024 dollars and is summarized in Table 4-2. Cost details are presented in Appendix B.

| ltem<br>No. | Cost Item                                           | Alternative 2 – New Pedosphere Elevated Storage Tank, State Route<br>80 and Zone B Water Mains, and Valve Exercising and Replacement<br>Program |  |  |  |
|-------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|             |                                                     | CAPITAL COST SUMMARY                                                                                                                            |  |  |  |
| 1           | Capital Base Cost                                   | \$17,473,000                                                                                                                                    |  |  |  |
| 2           | Contingency (10%)                                   | \$1,747,000                                                                                                                                     |  |  |  |
| 3           | Engineering,<br>Permitting, and<br>Design (10%)     | \$1,747,000                                                                                                                                     |  |  |  |
| 4           | Engineering Services<br>During Construction<br>(8%) | \$1,398,000                                                                                                                                     |  |  |  |
| 5           | Legal and<br>Administration (3%)                    | \$524,000                                                                                                                                       |  |  |  |
|             | Total Opinion of<br>Capital Cost                    | \$22,889,000                                                                                                                                    |  |  |  |
|             | ANNUAL O&M COST SUMMARY                             |                                                                                                                                                 |  |  |  |
|             | Annual O&M Cost                                     | \$349,000                                                                                                                                       |  |  |  |

Table 4-2: Conceptual Level Cost Estimate Summary Recommended Project 2 Alternative

## 4.3 Project 3 Selected Alternative

The recommended alternative for improving service and production meter and improving revenue collection is Alternative 1 – Replace Commercial Service + Production Meters (>1.5"), Replace All AMI Endpoints. This alternative has the lowest life cycle cost among the alternatives.

## 4.3.1 Conceptual-Level Projected Cost for the Recommended Project 3 Alternative

The conceptual-level Opinion of Probable Cost (OPC) for the overall recommended plan is \$229,000 in 2024 dollars and is summarized in Table 4-3. Cost details are presented in Appendix B.



| ltem<br>No. | Cost Item                                           | Alternative 1 - Replace Commercial Service and Production Meters<br>1.5" and Above, Replace All AMI Endpoints |
|-------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|             |                                                     | CAPITAL COST SUMMARY                                                                                          |
| 1           | Capital Base Cost                                   | \$185,000                                                                                                     |
| 2           | Contingency (10%)                                   | \$19,000                                                                                                      |
| 3           | Engineering,<br>Permitting, and<br>Design (10%)     | \$19,000                                                                                                      |
| 4           | Engineering Services<br>During Construction<br>(0%) | \$0                                                                                                           |
| 5           | Legal and<br>Administration (3%)                    | \$6,000                                                                                                       |
|             | Total Opinion of<br>Capital Cost                    | \$229,000                                                                                                     |
|             |                                                     | ANNUAL O&M COST SUMMARY                                                                                       |
|             | Annual O&M Cost                                     | \$4,000                                                                                                       |

## Table 4-3: Conceptual Level Cost Estimate Summary Recommended Project 3 Alternative



## 5. IMPLEMENTATION AND COMPLIANCE

## 5.1 Public Meeting

A public meeting was held August 8, 2024, after advertising in the Okeechobee Newspaper. Resolution 2024-14 to approve this Drinking Water Facilities Plan and submit to the FDEP passed at the meeting. A copy of Resolution 2024-15, the legal advertisement affidavit, and certified meeting minutes are provided in Appendix J.

## 5.2 Regulatory Agency Review

To qualify for a subsidized loan from the SRF, various government agencies must be satisfied with the way that the City of LaBelle is proposing to address their wastewater system challenges. Copies of the Facilities Plan adopted by the City of LaBelle are being sent to the FDEP-SRF for review and comments. The FDEP-SRF staff will distribute this Facilities Plan to Local, State and Federal Agencies via the "State Clearing House Process" for their review and comment.

## 5.3 Financial Planning

The FDEP-SRF program is expected to be the financing source for the project. A capital financing plan (CFP) is included with this Facilities Plan, which provides the financial impact on the users of the system. The CFP is shown in Appendix D and demonstrates that water and sewer operating expenses; existing debt service obligations; and proposed project debt service associated with the selected plan. The CFP also evaluates the current utility rates, existing approved annual increases, and water and sewer impact fees. The CFP is based on the current utility rates and the rate ordinance that the City adopted with a consumer price index (CPI) increase annually, as well as water and sewer impact fees. Copies of the current water and sewer rate documents are provided in Appendix I that support the CFP.

## 5.4 Project Implementation

The City of LaBelle has the sole responsibility and authority to implement the recommended facilities. The City intends to implement this Facility Plan on the following schedule, contingent upon permitting and funding authority review timelines. The City is prepared to begin design immediately.

## 5.4.1 Implementation Schedule

Pre-Design Administration

August 2024 SAHFI Loan Application Submittal (already completed)

November 2024 SAHFI Loan Agreement Execution

Project 1 – Source and Treatment Upgrades

December 2024 Design Kickoff

March 2025 Preliminary Site Investigations and Schematic Design Deliverable



- July 2025 60% Design Deliverable
- March 2025 FDEP Permit Review Submittal & Planning-Level Submittal for SAHFI Review
- July 2025 Deadline for Submittal of Planning-Level Documents for SAHFI Review
- September 2025 FDEP Approval of Permit Submittal
- November 2025 Anticipated SAHFI Approval of Planning-Level Documents
- January 2026 Final Design Deliverable
- January 2026 Submittal of Final Design Documents for SAHFI Review
- March 2026 Bid Document Delivery for City Review
- May 2026 Deadline Submittal of Final Design Documents for SAHFI Review
- July 2026 Anticipated SAHFI Approval of Final Design Documents
- August 2026 Project Bidding
- Project 2 Distribution and Storage Upgrades
- December 2024 Design Kickoff
- March 2025 Preliminary Site Investigations and Schematic Design Deliverable
- July 2025 60% Design Deliverable
- March 2025 FDEP Permit Review Submittal & Planning-Level Submittal for SAHFI Review
- July 2025 Deadline for Submittal of Planning-Level Documents for SAHFI Review
- September 2025 FDEP Approval of Permit Submittal
- November 2025 Anticipated SAHFI Approval of Planning-Level Documents
- January 2026 Final Design Deliverable
- January 2026 Submittal of Final Design Documents for SAHFI Review
- March 2026 Bid Document Delivery for City Review
- May 2026 Deadline Submittal of Final Design Documents for SAHFI Review



| 1.1.2020  |                   | Annual of Cincl     |                  |
|-----------|-------------------|---------------------|------------------|
| July 2026 | Anticipated SAHFI | Approval of Final L | Design Documents |

August 2026 Project Bidding

Project 3 – Large Commercial Service and Production Meter Replacement Program

(Note Project 3 is not eligible for SAHFI funding)

July 2025 Perform meter inventory to identify all meters 1.5" and larger

December 2025 Develop meter inventory, replacement plan, and cost estimate documents

February 2026 Submittal of Final Design Documents for FDEP Funding Review

December 2026 Meter Replacements Complete, Installed, and Integrated

The first alternative to correct the City's deficient commercial service meters is to identify and replace the commercial service and production meters 1.5" and to replace the AMI endpoints at each meter at the same time. Each meter would be upgraded to a newer model, along with any required advanced metering infrastructure (AMI) for remote meter reading. This includes up to 100 commercial service meters with their AMI endpoints and 4 production meters.

#### 5.5 Compliance

- 1. Maintenance and operation of all facilities proposed herein will be the full responsibility of the City of LaBelle as the wholesale provider.
- 2. All proposed water system elements will be designed to meet Florida and federal requirements, including FDEP 62-550 Drinking Water Standards, Monitoring, and Reporting and EPA Part 141 National Primary Drinking Water Regulations.
- 3. Environmental aspects of the proposed facilities are satisfactory.
- 4. Recommended facilities are consistent with the City of LaBelle's master planning direction.



## APPENDIX A: FDEP SANITARY SURVEY INSPECTION



# FLORIDA DEPARTMENT OF Environmental Protection

Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

South District PO Box 2549 Fort Myers FL 33902-2549 SouthDistrict@FloridaDEP.gov

November 28, 2022

Julie Wilkins City of Labelle 481 West Hickpochee Ave Labelle, FL 33935 juliewilkins@citylabelle.com

Re: Warning Letter City of Labelle Facility ID: 5260050 Hendry County - PW

Dear Ms. Wilkins:

A Sanitary Survey inspection was conducted at your facility on August 30, 2022. During this inspection, possible violations of Chapter 403 and 373 Florida Statutes, and Chapter 62-555, Florida Administrative Code were observed.

During the inspection Department personnel noted the following:

- Excessive corrosion around the High Service Pumps.
- Nylon plug on raw sample tap on Well UFA-2.
- Well UFA-3 had a leak around casing.
- 6 wells have been taken out of operation for more than six months (Wells AAE6983, AAH9205, AAH9250, AAH9252, AAH9251. AAC5589).
   Disinfection of Wells and Bacteriological Surveys and Evaluations of Wells will be required before wells are placed back into service. The wells must be maintained according to current code while still connected to the system until they are abandoned or physically disconnected from the system.
- Approximately 75% of systems isolation valves are inoperable.
- Fire flow analysis indicates inadequate flow to meet customer demand.
- As a result of one of the two Supply Wells (#3) being out of service, 3 months of 100% of permitted capacity from the alternate well (#2) was exceeded. In one of the three months, (August 2021) three days exceeded 136%. TDS issues prevail in supply well #3.

Violations of Florida Statutes or administrative rules may result in liability for damages and restoration, and the judicial imposition of civil penalties, pursuant to Section 403 Florida Statutes.

Warning Letter City of Labelle Facility ID: 5260050 Page 2 of 2 November 28, 2022

Please contact Dessy Owiti, at (239) 344-5637 or <u>Dessy.Owiti@FloridaDEP.gov</u>, within **15 days** of receipt of this Warning Letter to arrange a meeting to discuss this matter. The Department is interested in receiving any facts you may have that will assist in determining whether any violations have occurred. You may bring anyone with you to the meeting that you feel could help resolve this matter.

Please be advised that this Warning Letter is part of an agency investigation, preliminary to agency action in accordance with Section 120.57(5), Florida Statutes. We look forward to your cooperation in completing the investigation and resolving this matter.

Sincerely,

Jennifer L. Cargerter

Jennifer L. Carpenter Acting Director of District Management South District Office Florida Department of Environmental Protection

Enclosure: Sanitary Survey

cc: Joe Thomas, <u>jthomas@woodardcurran.com</u> Troy Kepley, <u>tkepley@woodardcurran.com</u> Gary Hull, <u>ghull@citylabelle.com</u>

## Florida Department of Environmental Protection South District Public Water System Sanitary Survey Inspection Report

| Water system: City of Labelle                                                            |        | System                                                    | PWS #: 5260050      | Survey | date: 08 | 3/30/2022    |
|------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------|---------------------|--------|----------|--------------|
| Facility type class: Community                                                           | _ (20  | ;)                                                        | Source type: Ground |        | 4-Log a  | approved: No |
| Facility address: 2500 SR-29 S, Labelle, FL 33935                                        |        |                                                           |                     |        |          |              |
| Facility phone(s): 863-674-4406 Facility email/fax:                                      |        |                                                           |                     |        |          |              |
| Facility contact: Troy Kepley       Facility contact phone(s): 239-340-3737              |        |                                                           |                     |        |          |              |
| Facility contact email/fax: Tkepley@woodardcurran.com                                    |        |                                                           |                     |        |          |              |
| Owner name: Julie Wilkins Company name: Mayor of City of Labelle                         |        |                                                           |                     |        |          |              |
| Owner/Corp address: 481 West Hickpochee Ave City: Labelle State: FL Zip: 33935           |        |                                                           | Zip: 33935          |        |          |              |
| Owner/Corp phone(s): 863-675-2872       Owner e-contact(s): juliewilkins@citylabelle.com |        |                                                           |                     |        |          |              |
| Operator name: Joseph Thomas Certification: B 12173                                      |        |                                                           |                     |        |          |              |
| Operator phone(s): 863-673-4406 Operator email/fax: JThomas@woodardcurran.com            |        |                                                           |                     |        |          |              |
| On-site Rep: Operator                                                                    | mmedia | nmediate Action Required? Yes Inspection recap given? Yes |                     |        |          |              |

#### **GENERAL INFORMATION**

| Number of Service Connections 2,380 |     |
|-------------------------------------|-----|
| Population Served 5,950             |     |
| Plant Design Capacity 999,999       | MGD |
| Average Day (from MORs) 637,858     | GPD |
| Max. Day (from MORs) 780,695        | GPD |
| Total Storage Capacity 1,500,000    | MGD |
| Comments:                           |     |

## **OPERATION & MAINTENANCE**

| Certified Operator: OYes ONo ONot required            |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|
| Plant visits conducted by: Operator                   |  |  |  |  |
| O&M Log: OYes ONo O&M Manual: OYes ONo                |  |  |  |  |
| Visitation Frequency                                  |  |  |  |  |
| Hrs/day: <i>Required_</i> 6Actual_8                   |  |  |  |  |
| Hrs/wk: RequiredActual                                |  |  |  |  |
| Days/wk: Required_7Actual_7                           |  |  |  |  |
| Non-consecutive Days? 🔘Yes 🔘No 💿N/A                   |  |  |  |  |
| MORs submitted regularly?  Yes  No  N/A               |  |  |  |  |
| Data missing from MORs? O Yes ONo ON/A                |  |  |  |  |
|                                                       |  |  |  |  |
| CHLORINATION (Disinfection)                           |  |  |  |  |
| Type: Hypo-Chlorination                               |  |  |  |  |
| Capacity 1,000 x 2 Unit gpd OTotal OEach              |  |  |  |  |
| Chlorine Feed Rate 20-25 gpd                          |  |  |  |  |
| Avg. Amount of Cl <sub>2</sub> gas used <u>N/A</u>    |  |  |  |  |
| Chlorine Residuals: Plant <u>1.0</u> Remote <u>.7</u> |  |  |  |  |
| Remote tap location City Maintance Shop               |  |  |  |  |
| Injection Points before storage and after clearwell   |  |  |  |  |

| injeotion i onto - | belefe eterage and alter elearnen |
|--------------------|-----------------------------------|
| Booster Pump In    | nfo                               |
| Comments:          |                                   |

### AERATION (Gases, Fe, & Mn Removal)

| Type Degasifier Conventional | Capacity <u>1750 gpm</u> |
|------------------------------|--------------------------|
| Aerator Condition Good       |                          |
| Visible Algae Growth OY      | es 💿No                   |

|                             | U |
|-----------------------------|---|
| Protective Screen Condition |   |
| Comments:                   |   |

Comments:

Sulfuric acid added as a pH adjuster for maximum hydrogen sulfide removal.

## RAW WATER SOURCE

| GROUND; Number of Wells 2 |
|---------------------------|
| SURFACE/UDI; Source       |
| PURCHASED from PWS ID #   |
| Emergency Water Source    |
| Emergency Water Capacity  |
|                           |
|                           |

## AUXILIARY POWER SOURCE

| Over Over Over Over Over Over Over Over                     |
|-------------------------------------------------------------|
| Source Generator                                            |
| Capacity of Standby (kW) 650                                |
| Switchover: OAutomatic OManual                              |
| Standby Plan: OYes ONo                                      |
| Hrs Operated Under Load 4 hr / month                        |
| What equipment does it operate?                             |
| Well pumps                                                  |
| ✓ High Service Pumps                                        |
| ✓ Treatment Equipment                                       |
| Satisfy 1/2 max-day demand? OYes ONo OUnk                   |
| Comments:                                                   |
| Wells have their own generators, 100 kW each and runs 1 hr/ |
| week under load.                                            |
| DISTRIBUTION SYSTEM                                         |
| Flow Measuring Device Flow Meter                            |
| Meter Size & Type 10" Magnetic                              |
| Meter tested w/i 5 yrs? OYes ONo OUnk ON/A                  |
| Backflow Prevention :                                       |
| Cross-connections                                           |
| Cross-connection Control Program: OYes ONo ON/A             |
| Coliform Sampling Plan: OYes ONo                            |
| Stage 2 DBPs Sampling Plan: OYes ONo ON/A                   |
| Lead & Copper Sampling Plan: OYesONoON/A                    |
| Comments:                                                   |
| Well 2 - Rosemount Meter                                    |
| SERVICE AREA CHARACTERISTICS:                               |

Municipal/City

Food Service: OYes ONo ON/A

#### PWS ID # <u>5260050</u> Survey Date <u>08/30/2022</u>

#### **OTHER TASTE/ODOR CONTROL PROCESSES** Explain:

#### AMMONIATION

Capacity (gal) Injection Points before storage Comments:

#### **CORROSION CONTROL**

Capacity (gal) Injection Points transfer line Chemicals Used Orthophosphate Comments:

2 gal/day

#### **COAGULATION** (Turbidity Removal)

Chemicals Used Is settling OK? OYes ONo Comments:

#### SOFTENING (Ca/Mg Hardness Removal)

#### **Chemical Precipitation Process:**

Chemicals Used: Lime

| Is settling OK?          | Yes         | ONo    |
|--------------------------|-------------|--------|
|                          | 🔘 Yes       |        |
| Secondary Precipitation  |             |        |
| Recarbonation Type CO2   | for pH adju | stment |
| Sludge Recirculation Use | d OYes      | No     |
| Comments:                |             |        |

#### Ion Exchange Process:

| Capacity   | <u>(gal)</u>          |  |
|------------|-----------------------|--|
| Grade of S | Salt for Regeneration |  |
| Backwash   | Effluent Destination  |  |
| Comments   | 8:                    |  |

#### STABILIZATION

| Effluent S.I.        |      |     |
|----------------------|------|-----|
| Is pH control done?  | DYes | ONo |
| Chemical Used        |      |     |
| Injection Point      |      |     |
| pH Range of Effluent |      |     |
|                      |      |     |

#### SUBPART H/UDI TURBIDITY METERS

Each filter has a turbidity meter OYes ONo Combined turbidity meter probe Point(s):

Last time calibrated\_\_\_\_\_ Comments:

#### FILTRATION (Suspended Solids Removal)

| Туре     | Sand Separator for raw water located at the plant |           |             |     |  |  |
|----------|---------------------------------------------------|-----------|-------------|-----|--|--|
| Size     |                                                   | No        | o. of Units |     |  |  |
| Lengt    | n of Filter Runs                                  |           |             |     |  |  |
| Type of  | of Filter Media                                   |           |             |     |  |  |
| Is med   | dia visible?                                      | OYes      | ONo         |     |  |  |
| Clean    | after BW?                                         | OYes      | ONo         |     |  |  |
| Filter I | Rate                                              | BV        | V Rate      |     |  |  |
| Filter   | Capacity                                          |           |             |     |  |  |
| Crack    | s/Cementation/Cl                                  | nanneling | OYes        | ONo |  |  |
| Efflue   | nt Stability                                      | -         |             |     |  |  |
| Algae    | Growth                                            | OYes      | ONo         |     |  |  |
| Turbic   | lity in clearwell?                                | OYes      | ONo         |     |  |  |
| Comm     | nents:                                            |           |             |     |  |  |

#### **REVERSE OSMOSIS** (Dissolved Solids Removal)

| Pressure 160 (psi)                                |
|---------------------------------------------------|
| No. of Modules 22x2 Permeate Cap. 521             |
| Blend Rate (GPM) 10% raw                          |
| Chemicals Used Anti-Scalant                       |
| Waste-to-product Ratio 75% Recovery               |
| Pre-treatment Spiral Filters and Anti Scalant     |
| Effluent Quality: TDS (mg/L)500-600               |
| Waste Disposal Site Deep Injection Well           |
| IW Permit # & Expir. Date <u>329487-001-UC/1X</u> |
| Comments:                                         |
| 1.5 MG Tank is used to hold concentrate from RO.  |

1.5 MG Tank is used to hold concentrate from RO. Caustic acid pH adjuster no longer in use.

#### **FLUORIDATION**

| Chemical Used Hydr         | ofluorosilio | cic Streng | th <u>23.6%</u> |      |
|----------------------------|--------------|------------|-----------------|------|
| Corrosion Noted            | OYes         | ONo        |                 |      |
| Plugging Noted             | OYes         | 🛈 No       |                 |      |
| High Level Ventilation     | on (acid)    |            | OYes            | ONo  |
| Acid carboys/day ta        | nk venté     | d outside  | • •Yes          | ONo  |
| <b>Designated Electric</b> | al Outlet    | (acid)     | Yes             | O No |
| Analytical Testing E       | quipmer      | nt         | Yes             | O No |
| Anti-siphon Valves         | • Yes        | ONo        |                 |      |
| Residual Range .78         |              |            |                 |      |
| Point of Application       | Transfer L   | ine        |                 |      |
| Emergency Eyewas           | h 🛈 Yes      | o No       |                 |      |
| Comments:                  |              |            |                 |      |

#### **STORAGE FACILITIES**

| Tank Type                                                   | Ground    |  |  |  |  |
|-------------------------------------------------------------|-----------|--|--|--|--|
| Capacity MG                                                 | 1         |  |  |  |  |
| Material                                                    | Concrete  |  |  |  |  |
| By-pass Piping                                              | Yes       |  |  |  |  |
| Gravity Drain                                               | Yes       |  |  |  |  |
| PRV/ARV                                                     | N/A       |  |  |  |  |
| Protected Openings                                          | Yes       |  |  |  |  |
| Pressure Gauge                                              | N/A       |  |  |  |  |
| Sight Glass or<br>Level Indicator                           | L.I.      |  |  |  |  |
| Fittings for<br>Sight Glass                                 | N/A       |  |  |  |  |
| Access Padlocked                                            | Yes       |  |  |  |  |
| Last Inspection Date<br>(for tanks with access<br>manholes) | 2/04/2020 |  |  |  |  |
| On/Off Pressure                                             |           |  |  |  |  |
| Height to Bottom of<br>Elevated Tank                        | N/A       |  |  |  |  |
| Height to Max.<br>Water Level                               | 27 ft     |  |  |  |  |

Comments:

## HIGH SERVICE (HSP), BACKWASH (BWP), TRANSFER (TP) and OTHER (OP) PUMPS

| Pump Purpose   | High Service | High Service | High Service | High Service | Transfer    | Transfer    | High Service | High Service |  |
|----------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|--|
| Pump Number    | 1            | 2            | 3            | 4            | @ Clearwell | @ Clearwell | RO Pump      | RO Pump      |  |
| Туре           | Centrifugal  | Centrifugal  | Centrifugal  | Centrifugal  | Submersible | Submersible | Centrifugal  | Centrifugal  |  |
| Capacity (gpm) | 600          | 600          | 600          | 600          | 1200        | 1200        | 695-1042     | 695-1042     |  |
| Motor HP       | 50           | 50           | 100          | 100          | 30          | 30          | 150          | 150          |  |
| Date Installed | 2014         | 2014         | 2014         | 2014         | 2017        | 2017        |              |              |  |

Comments:

#### **GROUND WATER SOURCE**

| Well Name                       | e (System Identification) | UFA - 2     | UFA - 3     |          |          |
|---------------------------------|---------------------------|-------------|-------------|----------|----------|
| Florida We                      | ell ID                    | AAO4474     | AAO4473     |          |          |
| Year Drille                     | d                         | 2013        | 2013        |          |          |
| Depth Drill                     | ed                        | 697'        | 632'        |          |          |
| Length (outside casing)         |                           | 470'        | 451'        |          |          |
| Diameter (outside casing)       |                           | 24"         | 24'         |          |          |
| Is inundation of well possible? |                           | OYes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| 6' X 6' X 4" Concrete Pad       |                           | ⊙Yes ONo    | OYes ONo    | OYes ONo | OYes ONo |
|                                 | Туре                      | Submersible | Submersible |          |          |
| PUMP                            | Rated Capacity (gpm)      | UNK         | 1800        |          |          |
|                                 | Motor Horsepower          | 200         | 200         |          |          |
| Well casin                      | g 12" above grade?        | OYes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| Well Casir                      | ng Sanitary Seal          | ⊙Yes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| Raw Wate                        | r Sampling Tap            | ⊙Yes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| Above Gro                       | ound Check Valve          | ⊙Yes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| Fence/Housing                   |                           | OYes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| Well Vent                       | Protection                | ⊙Yes ONo    | OYes ONo    | OYes ONo | OYes ONo |
| COMMEN                          | 50                        |             | I           | 1        | 1        |

#### COMMENTS:

#### TREATMENT PROCESSES IN USE:

Sand Separator, Aeration (degasifier tower), Reverse Osmosis, Corrosion control with Orthophosphate, and Fluoridation

Is additional treatment needed? O Yes O No If so, for control of what deficiencies?

| MONITORING VIOLATIONS | MCL VIOLATIONS |
|-----------------------|----------------|

#### **MONITORING COMMENTS:**

PWS ID # <u>5260050</u> Survey Date 08/30/2022

## **DEFICIENCIES:**

| Deficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rule Reference                                      | ce Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                         | Severity | Corrected |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| Excessive corrosion around the High<br>Service Pumps.                                                                                                                                                                                                                                                                                                                                                                                                       | 62-555.350(2) F.A.C.                                | Sand and paint or contact the Department if replacement is necessary.                                                                                                                                                                                                                                                                                                                                                                        | Minor    |           |
| See photos 8, 9, 10, 11, 12, & 13                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |
| Nylon plug on raw sample tap on Well<br>UFA-2.                                                                                                                                                                                                                                                                                                                                                                                                              | 62-555.320(8)(b)2<br>F.A.C.                         | Cut off or remove the plug on raw sample tap on well.                                                                                                                                                                                                                                                                                                                                                                                        | Minor    |           |
| See photo 22.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |
| Well UFA-3 had a leak around casing.                                                                                                                                                                                                                                                                                                                                                                                                                        | 62-555.350(2) F.A.C.                                | Provide proper seal around the casing.                                                                                                                                                                                                                                                                                                                                                                                                       | Minor    |           |
| See photos 18, 19, & 20.                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |
| 6 wells have been taken out of operation for more than<br>six months (Wells AAE6983, AAH9205, AAH9250,<br>AAH9252, AAH9251, AAC5589). Disinfection of Wells<br>and Bacteriological Surveys and Evaluations of Wells will<br>be required before wells are placed back into service.<br>The wells must be maintained according to current code<br>while still connected to the system until they are<br>abandoned or physically disconnected from the system. | 62-555.315(6) F.A.C.                                | Please provide photos for the 6 wells that are currently o of operation for review.                                                                                                                                                                                                                                                                                                                                                          | ut Minor |           |
| Approximately 75% of systems isolation valves are inoperable.                                                                                                                                                                                                                                                                                                                                                                                               | 62-555.350(2) F.A.C.                                | Please repair or replace isolation valves in system.                                                                                                                                                                                                                                                                                                                                                                                         | SNC      |           |
| Fire flow analysis indicate inadequate flow to meet customer demand.                                                                                                                                                                                                                                                                                                                                                                                        | 62-555.348(3) F.A.C.<br>and 62-555.320(6)<br>F.A.C. | Water produced to meet any fire-flow must meet demand                                                                                                                                                                                                                                                                                                                                                                                        | SNC      |           |
| As a result of one of the two Supply Wells (#3)<br>being out of service, 3 months of 100% of<br>permitted capacity from the alternate well (#2)<br>was exceeded. In one of the three months,<br>(August 2021) three days exceeded 136%.                                                                                                                                                                                                                     | 62-555.350(4) F.A.C.                                | No supplier of water shall operate any drinking water treatment plan<br>at a capacity greater than the plant's permitted operating capacity<br>except with the Department's prior approval. Submit a rerate or<br>expansion permit application with the Department, requesting a<br>increase flow. Include the well permit issued by South Florida Water<br>Management District showing the maximum Gallons per day (GPD)<br>allocated flow. | 0110     |           |

Any deficiency marked with an asterisk (\*) is a repeat violation.

#### **ADDITIONAL COMMENTS:**

The system was permitted for 1,500,000 GPD in 2014. As discussed in the 2014 meeting held between City of Labelle and the Department of Environmental Protection personnel, the Design Capacity for Public Water System (PWS 5260050) has been reduced to 999,999 gallons per day (GPD). The plant category and class has been reclassified as 2C.

The Department recommends City of Labelle to hire more staff. Currently has 3 operators.

| Vanessa Kraft Kraft Date: 2022.11.17 09:16:07<br>Inspector: | Approved by: |
|-------------------------------------------------------------|--------------|
|-------------------------------------------------------------|--------------|

#### City of Labelle (5260050) Photos by Vanessa Kraft on 08/30/2022

I certify that these photos represent the true on-site conditions observed and have not been altered in any way.

Vonesso Kraft



Photo 1: View of first train in RO system.



Photo 2: View of second train in RO system.



Photo 3: View of sand separator.



Photo 4: View of degasifier.



Photo 5: View of clearwell and transfer pumps.



Photo 6: View of chlorine tank 1.



Photo 7: View of chlorine tank 2.



Photo 8: View of high service pumps.



Photo 9: View of corrosion on pipes.



Photo 10: View of corrosion on pipes.



Photo 11: View of corrosion on pipes.



Photo 12: View of corrosion on pipes.



Photo 13: View of corrosion at base of pump.



Photo 14: View of ground storage tank.



Photo 15: View of 16,000-Gal lime slurry storage tank and control panel.



Photo 16: View of CO2 storage Tank and power panel.



Photo 17: View of Well UFA – 3.



Photo 18: View of well casing leaking.



Photo 19: View of wet concrete from leak at well casing.



Photo 20: View of leaking well casing.



Photo 21: View of Well UFA – 2.



Photo 22: View of plug on raw sample tap.



## APPENDIX B: COST BREAKDOWNS FOR ALL ALTERNATIVES

#### Project 1 Alternative 1 Conceptual Cost Estimate Source and Treatment Upgrades - Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Additional Cartridges on Existing Reverse Osmosis Skids

| ITEM NO.          | DESCRIPTION                                              | UNITS | ι        | JNIT COST | QTY | тот | TAL CAPITAL<br>COST | LIFETIME O&M |         | LIF | E CYCLE COST<br>(LCCA) |
|-------------------|----------------------------------------------------------|-------|----------|-----------|-----|-----|---------------------|--------------|---------|-----|------------------------|
| ONSTRUCTION C     |                                                          | 1     | ı        |           |     |     |                     |              |         |     |                        |
| everse Osmosis Up |                                                          |       |          |           |     |     |                     |              |         |     |                        |
| 1                 | New Reverse Osmosis Cartridge Products                   | EA    | \$       | 25,000    | 20  | \$  | 500,000             |              | 100,000 | \$  | 1,016,00               |
| 2                 | New Membranes for Existing Reverse Osmosis Cartridges    | LS    | \$       | 275,000   | 1   | \$  | 275,000             | \$           | 55,000  | \$  | 559,00                 |
| ew Pumps          |                                                          |       |          |           |     |     |                     |              |         |     |                        |
|                   | 100 HP Propane-Driven Centrifugal High Service Pump and  |       |          |           |     |     |                     |              |         |     |                        |
|                   | Motor                                                    | EA    | \$       | 120,000   | 1   | \$  | 120,000             | \$           | 40,800  | \$  | 265,0                  |
| 3                 | 1,850 gpm @ 140 ft TDH                                   |       |          |           |     |     |                     |              |         |     |                        |
|                   | 30 HP Propane-Driven Vertical-Turbine Chlorine Contact   |       |          |           |     |     |                     |              |         |     |                        |
|                   | Chamber Vertical Turbine Pump and Motor                  | EA    | \$       | 40,000    | 1   | \$  | 40,000              | \$           | 13,600  | \$  | 88,0                   |
| 4                 | 1,050 gpm @ 39 ft TDH                                    |       |          |           |     |     |                     |              |         |     |                        |
| 5                 | 10" Ductile Iron Pipe for New Pumps                      | LF    |          | \$100     | 40  | \$  | 4,000               | \$           | 2,800   | \$  | 4,0                    |
| 6                 | 10" Check Valve for New Pumps                            | EA    | \$       | 2,820     | 2   | \$  | 5,640               | \$           | 2,256   | \$  | 7,0                    |
| 7                 | 10"x6" Flanged Eccentric Reducer for New Pumps           | EA    | \$       | 1,200     | 2   | \$  | 2,400               | \$           | 960     | \$  | 3,0                    |
| 8                 | 6" Ductile Iron Restrained Coupling Adapter              | EA    | \$       | 1,000     | 4   | \$  | 4,000               | \$           | 1,600   | \$  | 5,0                    |
| 9                 | Structural Pad for New Pump (Assumed 15' x 8' x 12")     | EA    | \$       | 5,000     | 1   | \$  | 5,000               | \$           | 3,500   | \$  | 5,0                    |
| 10                | Instrumentation                                          | LS    | \$       | 45,000    | 1   | \$  | 45,000              | \$           | 9,000   | \$  | 91,0                   |
| 11                | SCADA Implementation                                     | LS    | \$       | 5,000     | 1   | \$  | 5,000               | \$           | 1,000   | \$  | 10,0                   |
| ell Generator Upg |                                                          |       |          |           |     |     |                     |              |         |     |                        |
| 12                | 100 kW Generator                                         | EA    | \$       | 50,000    | 2   | \$  | 100,000             |              | 34,000  | \$  | 221,0                  |
| 13                | Transfer Switches for 100 kW Generator                   | EA    | \$       | 2,000     | 2   | \$  | 4,000               | \$           | 1,360   | \$  | 9,0                    |
| 14                | Surge Protectors for 100 kW Generator                    | EA    | \$       | 1,000     | 2   | \$  | 2,000               | \$           | 680     | \$  | 4,0                    |
| 15                | Instrumentation                                          | LS    | \$       | 10,000    | 1   | \$  | 10,000              | \$           | 2,000   | \$  | 21,0                   |
| 16                | SCADA Implementation                                     | LS    | \$       | 1,000     | 1   | \$  | 1,000               |              | 200     | \$  | 2,0                    |
| 17                | Testing Allowance                                        | LS    | \$       | 2,000     | 1   | \$  | 2,000               | \$           | 800     | \$  | 3,0                    |
| 5                 | nd Pumping Upgrades                                      |       |          |           |     |     |                     |              |         |     |                        |
| 18                | Sodium Hypochlorite - 2,000-Gallon Bulk Tank             | EA    | \$       | 6,000     | 2   | \$  | 12,000              |              | 2,400   | \$  | 24,0                   |
| 19                | Sodium Hypochlorite - 75-Gallon Day Tank                 | EA    | \$       | 500       | 1   | \$  | 500                 |              | 100     | \$  | 1,0                    |
| 20                | Sodium Hypochlorite - 6.0 gal/hour Duplex Pump Skid      | EA    | \$       | 5,000     | 2   | \$  | 10,000              |              | 2,000   | \$  | 21,0                   |
| 21                | Sodium Hypochlorite - Transfer Pump                      | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 22                | Sulfuric Acid - 500-Gallon Bulk Tank                     | EA    | \$       | 1,200     | 1   | \$  | 1,200               | \$           | 240     | \$  | 3,0                    |
| 23                | Sulfuric Acid - 30-Gallon Day Tank                       | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 80      | \$  | 1,0                    |
| 24                | Sulfuric Acid - 1.5 gal/hour Duplex Pump Skid            | EA    | \$       | 4,000     | 1   | \$  | 4,000               | \$           | 800     | \$  | 8,0                    |
| 25                | Sulfuric Acid - Transfer Pump                            | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 26                | Orthophosphate - 275-Gallon Bulk Tank                    | EA    | \$       | 1,000     | 1   | \$  | 1,000               | \$           | 200     | \$  | 2,0                    |
| 27                | Orthophosphate - 10-Gallon Day Tank                      | EA    | \$       | 200       | 1   | \$  | 200                 | \$           | 40      | \$  | -                      |
| 28                | Orthophosphate - 0.65 gal/hour Duplex Pump Skid          | EA    | \$       | 2,000     | 1   | \$  | 2,000               | \$           | 400     | \$  | 4,0                    |
| 29                | Orthophosphate - Transfer Pump                           | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 30                | Sodium Hydroxide - 1,550-Gallon Bulk Tank                | EA    | \$       | 1,800     | 1   | \$  | 1,800               | \$           | 360     | \$  | 3,0                    |
| 31                | Sodium Hydroxide - 40-Gallon Day Tank                    | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 80      | \$  | 1,0                    |
| 32                | Sodium Hydroxide - 3.0 gal/hour Duplex Pump Skid         | EA    | \$       | 4,000     | 1   | \$  | 4,000               | \$           | 800     | \$  | 8,0                    |
| 33                | Sodium Hypochlorite - Transfer Pump                      | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 34                | Hydrofluorosilicic Acid - 240-Gallon Bulk Tank           | EA    | \$       | 900       | 1   | \$  | 900                 | \$           | 180     | \$  | 2,0                    |
| 35                | Hydrofluorosilicic Acid - 35-Gallon Day Tank             | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 80      | \$  | 1,0                    |
| 36                | Hydrofluorosilicic Acid - 0.65 gal/hour Duplex Pump Skid | EA    | \$       | 2,000     | 1   | \$  | 2,000               | \$           | 400     | \$  | 4,0                    |
| 37                | Hydrofluorosilicic Acid - Transfer Pump                  | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 38                | Antiscalant - 55-Gallon Bulk Tank                        | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 80      | \$  | 1,0                    |
| 39                | Antiscalant - 25-Gallon Day Tank                         | EA    | \$       | 300       | 1   | \$  | 300                 | \$           | 60      | \$  | -                      |
| 40                | Antiscalant - 0.65 gal/hour Duplex Pump Skid             | EA    | \$       | 2,000     | 1   | \$  | 2,000               | \$           | 400     | \$  | 4,0                    |
| 41                | Antiscalant - Transfer Pump                              | EA    | \$       | 400       | 1   | \$  | 400                 | \$           | 88      | \$  | 1,0                    |
| 42                | New Chemical Storage Building with Secondary Containment | EA    | \$       | 1,100,000 | 1   | \$  | 1,100,000           | \$           | 440,000 | \$  | 1,424,0                |
| her Construction  | Costs                                                    |       | L        |           |     |     |                     |              |         |     |                        |
| 43                | Mobilization/Demobilization (5%)                         | 5%    | \$       | 114,000   | 1   | \$  | 114,000             |              |         | \$  | 114,0                  |
| 44                | Insurance and Bonds (3%)                                 | 3%    | \$       | 68,000    | 1   | \$  | 68,000              |              |         | \$  | 68,0                   |
| 45                | General Conditions                                       | 5%    | \$       | 114,000   | 1   | \$  | 114,000             |              |         | \$  | 114,0                  |
| 46                | Overhead & Profit                                        | 10%   | \$       | 227,000   | 1   | \$  | 227,000             |              |         | \$  | 227,0                  |
| SUBTOT            | AL                                                       |       |          |           |     | \$  | 2,794,000           | \$           | 718,784 | \$  | 4,354,000.             |
| ON-CONSTRUCT      | ION COSTS                                                |       |          |           |     | •   |                     | •            |         |     |                        |
| 47                | Contingency                                              | 10%   | \$       | 279,400   | 1   | \$  | 279,000             |              |         | \$  | 279,0                  |
| 48                | Engineering, Permitting, and Design                      | 10%   | \$       | 279,400   | 1   | \$  | 279,000             |              |         | \$  | 279,0                  |
| 49                | Engineering Services During Construction                 | 8%    | \$       | 223,520   | 1   | \$  | 224,000             |              |         | \$  | 224,0                  |
| 50                | Legal and Administration                                 | 3%    | \$       | 83,820    | 1   | \$  | 84,000              |              |         | \$  | 84,0                   |
| -                 |                                                          |       | <u> </u> | -,        |     | \$  | 3,660,000           |              |         |     | 5,220,000              |

#### **Project 1 Alternative 2 Conceptual Cost Estimate**

# Source and Treatment Upgrades - Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New, Larger Reverse Osmosis Skids

| ITEM NO.      | DESCRIPTION                                                                                              | UNITS    | U        | NIT COST   | QTY | ſ        | TOTAL CAPITAL<br>COST | LIFETIME O&M    | LIF      | E CYCLE COST<br>(LCCA) |
|---------------|----------------------------------------------------------------------------------------------------------|----------|----------|------------|-----|----------|-----------------------|-----------------|----------|------------------------|
| CONSTRUCT     | ION COSTS                                                                                                |          |          |            |     | <u> </u> |                       |                 |          |                        |
| Reverse Osmo  | osis Upgrades                                                                                            |          |          |            |     |          |                       |                 |          |                        |
| 1             | Demolish Existing Reverse Osmosis Skids                                                                  | EA       | \$       | 50,000     | 2   | \$       | 100,000               | \$ 20,000       | \$       | 203,000                |
| 2             | New 1.5 MGD Reverse Osmosis Membrane Skid                                                                | EA       | \$       | 750,000    | 2   | \$       | 1,500,000             | \$ 300,000      | \$       | 3,048,000              |
| New Pumps     |                                                                                                          |          |          |            |     |          |                       |                 |          |                        |
|               | 100 HP Propane-Driven Centrifugal High Service Pump and                                                  |          |          |            |     |          |                       |                 |          |                        |
|               | Motor                                                                                                    | EA       | \$       | 120,000    | 1   | \$       | 120,000               | \$ 40,800       | \$       | 265,000                |
| 3             | 1,850 gpm @ 140 ft TDH                                                                                   |          |          |            |     |          |                       |                 |          |                        |
|               | 30 HP Propane-Driven Vertical-Turbine Chlorine Contact                                                   |          |          |            |     |          |                       |                 |          |                        |
|               | Chamber Vertical Turbine Pump and Motor                                                                  | EA       | \$       | 40,000     | 1   | \$       | 40,000                | \$ 13,600       | \$       | 88,000                 |
| 4             | 1,050 gpm @ 39 ft TDH                                                                                    |          |          |            |     |          |                       |                 |          |                        |
| 5             | 10" Ductile Iron Pipe for New Pumps                                                                      | LF       |          | \$100      | 40  | \$       | 4,000                 | \$ 2,800        | \$       | 4,000                  |
| 6             | 10" Check Valve for New Pumps                                                                            | EA       | \$       | 2,820      | 2   | \$       | 5,640                 | \$ 2,256        | \$       | 7,000                  |
| 7             | 10"x6" Flanged Eccentric Reducer for New Pumps                                                           | EA       | \$       | 1,200      | 2   | \$       | 2,400                 | \$ 960          |          | 3,000                  |
|               | 6" Ductile Iron Restrained Coupling Adapter                                                              | EA       | \$       | 1,000      | 4   | \$       | 4,000                 | \$ 1,600        |          | 5,000                  |
| 9             | Structural Pad for New Pump (Assumed 15' x 8' x 12")                                                     | EA       | \$       | 5,000      | 1   | \$       | 5,000                 | \$ 3,500        |          | 5,000                  |
|               | Instrumentation                                                                                          | LS       | \$       | 45,000     | 1   | \$       | 45,000                | \$ 9,000        | \$       | 91,000                 |
|               | SCADA Implementation                                                                                     | LS       | \$       | 5,000      | 1   | \$       | 5,000                 | \$ 1,000        | \$       | 10,000                 |
| Well Generate |                                                                                                          |          |          |            | -   | <u> </u> |                       | A               |          |                        |
| 12            | 100 kW Generator                                                                                         | EA       | \$       | 50,000     | 2   | \$       | 100,000               | \$ 34,000       | · ·      | 221,000                |
| 13            | Transfer Switches for 100 kW Generator                                                                   | EA       | \$       | 2,000      | 2   | \$       | 4,000                 | \$ 1,360        | \$       | 9,000                  |
| 14            | Surge Protectors for 100 kW Generator                                                                    | EA       | \$       | 1,000      | 2   | \$       | 2,000                 | \$ 680          | \$       | 4,000                  |
| 15            | Instrumentation                                                                                          | LS       | \$       | 10,000     | 1   | \$       | 10,000                | \$ 2,000        | \$       | 21,000                 |
| 16            | SCADA Implementation                                                                                     | LS       | \$       | 1,000      | 1   | \$       | 1,000                 | \$ 200          | \$       | 2,000                  |
| 17            | Testing Allowance                                                                                        | LS       | \$       | 2,000      | 1   | \$       | 2,000                 | \$ 800          | \$       | 3,000                  |
|               | rage and Pumping Upgrades                                                                                |          |          |            | _   |          |                       |                 |          |                        |
|               | Sodium Hypochlorite - 2,000-Gallon Bulk Tank                                                             | EA       | \$       | 6,000      | 2   | \$       | 12,000                | \$ 2,400        | \$       | 24,000                 |
| 19            | Sodium Hypochlorite - 75-Gallon Day Tank                                                                 | EA       | \$       | 500        | 1   | \$       | 500                   | \$ 100          | \$       | 1,000                  |
| 20            | Sodium Hypochlorite - 6.0 gal/hour Duplex Pump Skid                                                      | EA       | \$       | 5,000      | 2   | \$       | 10,000                | \$ 2,000        | \$       | 21,000                 |
| 21            | Sodium Hypochlorite - Transfer Pump                                                                      | EA       | \$       | 400        | 1   | \$       | 400                   | \$ 88           | \$       | 1,000                  |
| 22            | Sulfuric Acid - 500-Gallon Bulk Tank                                                                     | EA       | \$       | 1,200      | 1   | \$       | 1,200                 | \$ 240          | \$       | 3,000                  |
| 23            | Sulfuric Acid - 30-Gallon Day Tank                                                                       | EA       | \$       | 400        | 1   | \$       | 400                   | \$ 80           | \$       | 1,000                  |
| 24<br>25      | Sulfuric Acid - 1.5 gal/hour Duplex Pump Skid                                                            | EA       | \$       | 4,000      | 1   | \$       | 4,000                 | \$ 800          | \$       | 8,000                  |
|               | Sulfuric Acid - Transfer Pump                                                                            | EA       | \$       | 400        | 1   | \$       | 400                   | \$ 88           | \$       | 1,000                  |
| 26<br>27      | Orthophosphate - 275-Gallon Bulk Tank                                                                    | EA       | \$<br>\$ | 1,000      | 1   | \$       | 1,000                 | \$ 200          | \$       | 2,000                  |
| 27            | Orthophosphate - 10-Gallon Day Tank                                                                      | EA       | · ·      | 200        | 1   | \$       | 200                   | \$ 40           | \$       | -                      |
| 28            | Orthophosphate - 0.65 gal/hour Duplex Pump Skid                                                          | EA       | \$       | 2,000      |     | \$       | 2,000                 | \$ 400          | \$       | 4,000                  |
| 30            | Orthophosphate - Transfer Pump<br>Sodium Hydroxide - 1,550-Gallon Bulk Tank                              | EA<br>EA | \$       | 400        | 1   | \$       | 400                   | \$ 88           | \$       | 1,000                  |
| 30            | Sodium Hydroxide - 1,550-Gallon Buik Tank<br>Sodium Hydroxide - 40-Gallon Day Tank                       |          | \$<br>\$ | 1,800      | 1   | \$<br>\$ | 1,800                 | \$ 360          | \$       | 3,000                  |
| 31            |                                                                                                          | EA       | \$<br>\$ | 400        |     | \$<br>\$ | 400 4,000             | \$ 80           | \$<br>\$ | 1,000                  |
| 33            | Sodium Hydroxide - 3.0 gal/hour Duplex Pump Skid                                                         | EA       | ۵<br>\$  | 4,000      | 1   |          |                       | \$ 800          | ۶<br>۶   | 8,000                  |
| 33            | Sodium Hypochlorite - Transfer Pump<br>Hydrofluorosilicic Acid - 240-Gallon Bulk Tank                    | EA       | ۵<br>۲   | 400        | 1   | \$<br>\$ | 400                   | \$ 88<br>\$ 180 | ۶<br>۶   | 1,000                  |
|               | Hydrofluorosilicic Acid - 240-Gailon Day Tank                                                            | EA<br>EA | ۵<br>۲   | 900<br>400 | 1   | ۵<br>۲   | 900<br>400            | \$ 180<br>\$ 80 | ۶<br>۶   | 2,000                  |
|               | Hydrofluorosilicic Acid - 35-Gallon Day Tank<br>Hydrofluorosilicic Acid - 0.65 gal/hour Duplex Pump Skid | EA       | ۵<br>۲   | 2,000      | 1   | ۵<br>۶   | 2,000                 | \$ 400          |          | 1,000<br>4,000         |
|               | Hydrofiluorosilicic Acid - 0.05 garnoar Duplex Famp Skid                                                 |          |          | -          |     |          |                       |                 |          |                        |
| 38            | Antiscalant - 55-Gallon Bulk Tank                                                                        | EA<br>EA | \$<br>\$ | 400<br>400 | 1   | \$<br>\$ | 400                   | \$ 88<br>\$ 80  | \$<br>\$ | 1,000                  |
| 39            | Antiscalant - 55-Gallon Day Tank                                                                         | EA       | ۵<br>۲   | 300        | 1   | ۵<br>۶   | 300                   | \$ 60           |          | 1,000                  |
| 40            | Antiscalant - 0.65 gal/hour Duplex Pump Skid                                                             | EA       | \$       | 2,000      | 1   | \$       | 2,000                 | \$ 400          |          | 4 000                  |
| 40            | Antiscalant - Transfer Pump                                                                              | EA       | ۵<br>\$  | 2,000      | 1   | ≯<br>\$  | 400                   | \$ 400<br>\$ 88 | ۶<br>۶   | 4,000<br>1,000         |
| 41            | New Chemical Storage Building with Secondary Containment                                                 | EA       | ۶<br>۶   | 1,100,000  | 1   | .⊅<br>\$ | 1,100,000             | \$ 440,000      | ۵<br>\$  | 1,424,000              |
| Other Constru | 5 5 5                                                                                                    | EA       | Þ        | 1,100,000  | 1   | Þ        | 1,100,000             | \$ 440,000      | ¢        | 1,424,000              |
| 43            | Mobilization/Demobilization (5%)                                                                         | 5%       | \$       | 155,000    | 1   | ¢        | 155,000               |                 | \$       | 155,000                |
| 43            | Insurance and Bonds (3%)                                                                                 | 3%       | ۵<br>۶   | 93,000     | 1   | \$<br>\$ | 93,000                |                 | ۶<br>۶   | 93,000                 |
| 44            | General Conditions                                                                                       | 5%       | ۵<br>۶   | 155,000    | 1   | ≯<br>\$  | 155,000               |                 | ۶<br>۶   | 155,000                |
|               | Overhead & Profit                                                                                        | 10%      | ۵<br>۶   | 310,000    | 1   | ≯<br>\$  | 310,000               |                 | ۶<br>۶   | 310,000                |
| SUBTOTAL      |                                                                                                          | 1070     | Þ        | 510,000    | I   | ⇒<br>\$  | 3,809,000             |                 | ⇒<br>\$  | 6,220,000.00           |
|               | TRUCTION COSTS                                                                                           |          |          |            |     | ه ا      | 3,009,000             | L               | 4        | 0,220,000.00           |
| 47            | Contingency                                                                                              | 10%      | \$       | 380,900    | 1   | \$       | 381,000               |                 | \$       | 381,000                |
| 47            | Engineering, Permitting, and Design                                                                      | 10%      | ۶<br>۶   | 380,900    | 1   | \$<br>\$ | 381,000               |                 | \$<br>\$ | 381,000                |
| 48            | Engineering Services During Construction                                                                 | 8%       | ≯<br>\$  | 300,900    | 1   | \$<br>\$ | 381,000               |                 | \$<br>\$ |                        |
| 49<br>50      | Legal and Administration                                                                                 | 3%       | ≯<br>\$  | 304,720    | 1   | -        |                       |                 |          | 305,000                |
| 50            | Legar and Authinistration                                                                                | 5 %      | ¢        | 114,270    | 1   | \$       | 114,000               |                 | \$       | 114,000                |
| TOTAL         |                                                                                                          |          |          |            |     | \$       | 4,990,000             |                 | \$       | 7,401,000.00           |

#### Project 1 Alternative 3 Conceptual Cost Estimate

# Source and Treatment Upgrades - Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New Ultrafiltration Membrane

Skids

| ITEM NO.           | DESCRIPTION                                                                             | UNITS      | U        | NIT COST        | QTY | тс       | OTAL CAPITAL<br>COST | LIF      | ETIME O&M    | LIF      | E CYCLE COST<br>(LCCA) |
|--------------------|-----------------------------------------------------------------------------------------|------------|----------|-----------------|-----|----------|----------------------|----------|--------------|----------|------------------------|
| CONSTRUCT          | TON COSTS                                                                               |            |          |                 |     |          |                      |          |              |          |                        |
| Reverse Osm        | osis Upgrades                                                                           |            |          |                 |     |          |                      |          |              |          |                        |
| 1                  | Demolish Existing Reverse Osmosis Skids                                                 | EA         | \$       | 50,000          | 2   | \$       | 100,000              | \$       | 20,000       | \$       | 203,000                |
| 2                  | New 1.5 MGD Ultrafiltration Membrane Skid                                               | EA         | \$       | 1,000,000       | 2   | \$       | 2,000,000            | \$       | 400,000      | \$       | 4,063,000              |
| New Pumps          | 100 HP Propane-Driven Centrifugal High Service Pump and                                 |            |          |                 |     |          |                      |          |              |          |                        |
|                    | Motor                                                                                   | EA         | \$       | 120,000         | 1   | \$       | 120,000              | \$       | 40,800       | \$       | 265,000                |
| 3                  | 1,850 gpm @ 140 ft TDH                                                                  | LA         | Ą        | 120,000         | 1   | Ŷ        | 120,000              | Ą        | 40,000       | ę        | 205,000                |
|                    | 30 HP Propane-Driven Vertical-Turbine Chlorine Contact                                  |            |          |                 |     |          |                      |          |              |          |                        |
|                    | Chamber Vertical Turbine Pump and Motor                                                 | EA         | \$       | 40,000          | 1   | \$       | 40,000               | \$       | 13,600       | \$       | 88,000                 |
| 4                  | 1,050 gpm @ 39 ft TDH                                                                   |            |          |                 |     |          |                      |          |              |          |                        |
| 5                  | 10" Ductile Iron Pipe for New Pumps                                                     | LF         |          | \$100           | 40  | \$       | 4,000                | \$       | 2,800        | \$       | 4,000                  |
| 6                  | 10" Check Valve for New Pumps                                                           | EA         | \$       | 2,820           | 2   | \$       | 5,640                | \$       | 2,256        | \$       | 7,000                  |
| 7                  | 10"x6" Flanged Eccentric Reducer for New Pumps                                          | EA         | \$       | 1,200           | 2   | \$       | 2,400                | \$       | 960          | \$       | 3,000                  |
| 8                  | 6" Ductile Iron Restrained Coupling Adapter                                             | EA         | \$       | 1,000           | 4   | \$       | 4,000                | \$       | 1,600        | \$       | 5,000                  |
| 9                  | Structural Pad for New Pump (Assumed 15' x 8' x 12")                                    | EA         | \$       | 5,000           | 1   | \$       | 5,000                | \$       | 3,500        | \$       | 5,000                  |
| 10                 | Instrumentation                                                                         | LS         | \$       | 45,000          | 1   | \$       | 45,000               | \$       | 9,000        | \$       | 91,000                 |
| 11                 | SCADA Implementation                                                                    | LS         | \$       | 5,000           | 1   | \$       | 5,000                | \$       | 1,000        | \$       | 10,000                 |
| Well Generat<br>12 | or Upgrades<br>100 kW Generator                                                         | <b>F A</b> | *        | F0 000          | 2   | *        | 100.000              | ¢        | 24.000       | ¢        | 224.000                |
| 12                 | Transfer Switches for 100 kW Generator                                                  | EA         | \$<br>\$ | 50,000          | 2   | \$<br>\$ | 100,000              | \$       | 34,000       | \$<br>\$ | 221,000                |
| 13                 | Surge Protectors for 100 kW Generator                                                   | EA         | ≯<br>\$  | 2,000           |     | ≯<br>\$  | 4,000                | \$<br>\$ | 1,360        | ≯<br>\$  | 9,000                  |
| 14                 | Instrumentation                                                                         | EA<br>LS   | ⇒<br>\$  | 1,000<br>10,000 | 2   | \$<br>\$ | 2,000                | ≯<br>\$  | 680<br>2,000 | ≯<br>\$  | 4,000 21,000           |
| 16                 | SCADA Implementation                                                                    | LS         | ⊅<br>\$  | 1,000           | 1   | ⇒<br>\$  | 1,000                | ≯<br>\$  | 2,000        | ۵<br>\$  | 2,000                  |
| 10                 | Testing Allowance                                                                       | LS         | \$       | 2,000           | 1   | \$       | 2,000                | \$       | 800          | \$       | 3,000                  |
|                    | rage and Pumping Upgrades                                                               | 25         | Ψ        | 2,000           |     | Ψ        | 2,000                | Ψ        | 000          | Ψ        | 5,000                  |
| 18                 | Sodium Hypochlorite - 2,000-Gallon Bulk Tank                                            | EA         | \$       | 6,000           | 2   | \$       | 12,000               | \$       | 2,400        | \$       | 24,000                 |
| 19                 | Sodium Hypochlorite - 75-Gallon Day Tank                                                | EA         | \$       | 500             | 1   | \$       | 500                  | \$       | 100          | \$       | 1,000                  |
| 20                 | Sodium Hypochlorite - 6.0 gal/hour Duplex Pump Skid                                     | EA         | \$       | 5,000           | 2   | \$       | 10,000               | \$       | 2,000        | \$       | 21,000                 |
| 21                 | Sodium Hypochlorite - Transfer Pump                                                     | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 88           | \$       | 1,000                  |
| 22                 | Sulfuric Acid - 500-Gallon Bulk Tank                                                    | EA         | \$       | 1,200           | 1   | \$       | 1,200                | \$       | 240          | \$       | 3,000                  |
| 23                 | Sulfuric Acid - 30-Gallon Day Tank                                                      | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 80           | \$       | 1,000                  |
| 24                 | Sulfuric Acid - 1.5 gal/hour Duplex Pump Skid                                           | EA         | \$       | 4,000           | 1   | \$       | 4,000                | \$       | 800          | \$       | 8,000                  |
| 25                 | Sulfuric Acid - Transfer Pump                                                           | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 88           | \$       | 1,000                  |
| 26                 | Orthophosphate - 275-Gallon Bulk Tank                                                   | EA         | \$       | 1,000           | 1   | \$       | 1,000                | \$       | 200          | \$       | 2,000                  |
| 27                 | Orthophosphate - 10-Gallon Day Tank                                                     | EA         | \$       | 200             | 1   | \$       | 200                  | \$       | 40           | \$       | -                      |
| 28                 | Orthophosphate - 0.65 gal/hour Duplex Pump Skid                                         | EA         | \$       | 2,000           | 1   | \$       | 2,000                | \$       | 400          | \$       | 4,000                  |
| 29                 | Orthophosphate - Transfer Pump                                                          | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 88           | \$       | 1,000                  |
| 30                 | Sodium Hydroxide - 1,550-Gallon Bulk Tank                                               | EA         | \$       | 1,800           | 1   | \$       | 1,800                | \$       | 360          | \$       | 3,000                  |
| 31                 | Sodium Hydroxide - 40-Gallon Day Tank                                                   | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 80           | \$<br>\$ | 1,000                  |
| 32<br>33           | Sodium Hydroxide - 3.0 gal/hour Duplex Pump Skid<br>Sodium Hypochlorite - Transfer Pump | EA<br>EA   | \$<br>\$ | 4,000<br>400    | 1   | \$<br>\$ | 4,000                | \$<br>\$ | 800<br>88    | ≯<br>\$  | 8,000                  |
| 34                 | Hydrofluorosilicic Acid - 240-Gallon Bulk Tank                                          | EA         | ⊅<br>\$  | 900             | 1   | \$<br>\$ | 900                  | ۶<br>۶   | 180          | ۵<br>\$  | 1,000 2,000            |
| 35                 | Hydrofluorosilicic Acid - 35-Gallon Day Tank                                            | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 80           | \$       | 1,000                  |
|                    | Hydrofluorosilicic Acid - 0.65 gal/hour Duplex Pump Skid                                | EA         | \$       | 2,000           | 1   | \$       | 2,000                | \$       | 400          |          | 4,000                  |
| 37                 | Hydrofluorosilicic Acid - Transfer Pump                                                 | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 88           | \$       | 1,000                  |
| 38                 | Antiscalant - 55-Gallon Bulk Tank                                                       | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 80           | \$       | 1,000                  |
| 39                 | Antiscalant - 25-Gallon Day Tank                                                        | EA         | \$       | 300             | 1   | \$       | 300                  | \$       | 60           |          | -                      |
| 40                 | Antiscalant - 0.65 gal/hour Duplex Pump Skid                                            | EA         | \$       | 2,000           | 1   | \$       | 2,000                | \$       | 400          |          | 4,000                  |
| 41                 | Antiscalant - Transfer Pump                                                             | EA         | \$       | 400             | 1   | \$       | 400                  | \$       | 88           | \$       | 1,000                  |
| 42                 | New Chemical Storage Building with Secondary Containment                                | EA         | \$       | 1,100,000       | 1   | \$       | 1,100,000            | \$       | 440,000      | \$       | 1,424,000              |
| Other Constr       |                                                                                         |            |          |                 |     |          |                      |          |              |          |                        |
| 43                 | Mobilization/Demobilization (5%)                                                        | 5%         | \$       | 180,000         | 1   | \$       | 180,000              |          |              | \$       | 180,000                |
| 44                 | Insurance and Bonds (3%)                                                                | 3%         | \$       | 108,000         | 1   | \$       | 108,000              |          |              | \$       | 108,000                |
| 45                 | General Conditions                                                                      | 5%         | \$       | 180,000         | 1   | \$       | 180,000              |          |              | \$       | 180,000                |
| 46                 | Overhead & Profit                                                                       | 10%        | \$       | 360,000         | 1   | \$       | 360,000              |          |              | \$       | 360,000                |
| SUBTOTAL           |                                                                                         |            | _        |                 |     | \$       | 4,424,000            |          |              | \$       | 7,350,000.00           |
|                    |                                                                                         | 1001       | ¢        | 440.405         | -   | 1.       |                      |          |              |          |                        |
| 47                 | Contingency                                                                             | 10%        | \$       | 442,400         | 1   | \$       | 442,000              |          |              | \$       | 442,000                |
| 48                 | Engineering, Permitting, and Design                                                     | 10%        | \$       | 442,400         | 1   | \$       | 442,000              |          |              | \$       | 442,000                |
| 49                 | Engineering Services During Construction                                                | 8%         | \$       | 353,920         | 1   | \$       | 354,000              |          |              | \$       | 354,000                |
| 50                 | Legal and Administration                                                                | 3%         | \$       | 132,720         | 1   | \$       | 133,000              |          |              | \$       | 133,000                |

## Project 2 Alternative 1 Conceptual Cost Estimate Distribution and Storage Upgrades - New Concrete Ground Storage Tank and Pump

# Station, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

| ITEM NO.            | DESCRIPTION                                       | UNITS     | U       | NIT COST    | QTY    | т        | OTAL CAPITAL<br>COST | LIF      | ETIME O&M   | LI      | FE CYCLE COST<br>(LCCA) |
|---------------------|---------------------------------------------------|-----------|---------|-------------|--------|----------|----------------------|----------|-------------|---------|-------------------------|
| CONSTRUCT           | ION COSTS                                         |           | I       |             |        | <u> </u> |                      |          |             |         |                         |
| New Concrete        | Ground Storage Tank and Pump Station              |           |         |             |        |          |                      |          |             |         |                         |
| 1                   | 1,000,000-Gallon Concrete Ground Storage Tank     | EA        | \$      | 1,500,000   | 1      | \$       | 1,500,000            | \$       | 1,800,000   | \$      | 1,399,000               |
| 2                   | Aerator for 500,000-gal Tank                      | EA        | \$      | 81,000      | 2      | \$       | 162,000              | \$       | 64,800      | \$      | 210,000                 |
| 3                   | Tank Coating                                      | LS        | \$      | 700,000     | 1      | \$       | 700,000              | \$       | 280,000     | \$      | 906,000                 |
| 4                   | 12" Ductile Iron Yard Piping                      | LF        | \$      | 400         | 350    | \$       | 140,000              | \$       | 98,000      | \$      | 149,000                 |
| 5                   | Yard Piping Valve & Fitting Allowance             | LS        | \$      | 10,000      | 1      | \$       | 10,000               | \$       | 4,000       | \$      | 13,000                  |
| 6                   | High Service Pumps                                | EA        | \$      | 75,000      | 4      | \$       | 300,000              | \$       | 200,000     | \$      | 447,000                 |
| 7                   | Variable-Frequency Drives for High Service Pumps  | EA        | \$      | 150,000     | 4      | \$       | 600,000              | \$       | 300,000     | \$      | 712,000                 |
| 8                   | Pump Canopy                                       | EA        | \$      | 85,000      | 1      | \$       | 85,000               | \$       | 59,500      | \$      | 91,000                  |
| 9                   | Pump Pads                                         | EA        | \$      | 15,000      | 2      | \$       | 30,000               | \$       | 22,200      | \$      | 31,000                  |
| 10                  | Pump Station Instrumentation                      | LS        | \$      | 70,000      | 1      | \$       | 70,000               | \$       | 14,000      | \$      | 142,000                 |
| 11                  | Pump Station & Tank SCADA Implementation          | LS        | \$      | 7,000       | 1      | \$       | 7,000                | \$       | 1,400       | \$      | 14,000                  |
| 12                  | Instrumentation                                   | LS        | \$      | 70,000      | 1      | \$       | 70,000               | \$       | 14,000      | \$      | 142,000                 |
| 13                  | SCADA Implementation                              | LS        | \$      | 7,000       | 1      | \$       | 7,000                | \$       | 1,400       | \$      | 14,000                  |
| 14                  | Hydrant Assembly                                  | EA        | \$      | 5,700       | 1      | \$       | 5,700                | \$       | 4,560       | \$      | 6,000                   |
| 15                  | Chain Link Fence + Gate                           | LF        | \$      | 70          | 400    | \$       | 28,000               | \$       | 11,200      | \$      | 36,000                  |
| 16                  | Gas Generator                                     | EA        | \$      | 15,000      | 1      | \$       | 15,000               | \$       | 6,000       | \$      | 19,000                  |
| 17                  | Electrical Site Work                              | LS        | \$      | 30,000      | 1      | \$       | 30,000               | \$       | 10,200      | \$      | 66,000                  |
| 18                  | Electrical Building                               | LS        | \$      | 600,000     | 1      | \$       | 600,000              | \$       | 420,000     | \$      | 637,000                 |
| 19                  | Uninterruptible Power Supply                      | EA        | \$      | 1,500       | 1      | \$       | 1,500                | \$       | 600         | \$      | 2,000                   |
| 20                  | Driveway (Asphalt)                                | SY        | \$      | 55          | 1000   | \$       | 55,000               | \$       | 22,000      | \$      | 71,000                  |
| 21                  | Crushed Stone (Tank Washdown)                     | CY        | \$      | 40          | 250    | \$       | 10,000               | \$       | 4,000       | \$      | 13,000                  |
| 22                  | Concrete Energy Blocks (Tank Washdown)            | EA        | \$      | 75          | 15     | \$       | 1,125                | \$       | 788         | \$      | 1,000                   |
| 23                  | Site Clearing + Grading                           | LS        | \$      | 65,000      | 1      | \$       | 65,000               | \$       | 45,500      | \$      | 69,000                  |
| 24                  | Loam and Seed Disturbed Area                      | SY        | \$      | 3           | 9000   | \$       | 27,000               | · ·      | 10,800      | \$      | 35,000                  |
| 25                  | Testing Allowance                                 | LS        | \$      | 15,000      | 1      | \$       | 15.000               | \$       | 6,000       | \$      | 19,000                  |
| State Route 80      | 0 & Helms Road Water Main                         | -         | ·       | -,          |        |          | -,                   |          |             |         | .,                      |
| 26                  | 12" Ductile Iron Water Main (Helms Road)          | LF        | \$      | 250         | 14000  | \$       | 3,500,000            | \$       | 2,450,000   | \$      | 3,717,000               |
| 27                  | 12" Ductile Iron Water Main                       | LF        | \$      | 250         | 9,700  | \$       | 2,425,000            |          | 1,697,500   |         | 2,576,000               |
| 28                  | Gate Valves                                       | EA        | \$      | 3,000       | 47     | \$       | 141,000              | · ·      | 56,400      |         | 183,000                 |
| 29                  | Hydrant Assembly                                  | EA        | \$      | 5,700       | 47     | \$       | 267,900              | \$       | 214,320     | \$      | 274,000                 |
| 30                  | Fittings                                          | LS        | \$      | 592,500     | 1      | \$       | 592,500              | \$       | 237,000     | \$      | 767,000                 |
| 31                  | Pressure Testing & Disinfection                   | LS        | \$      | 6,000       | 1      | \$       | 6,000                | \$       | 2,400       | \$      | 8,000                   |
| 32                  | Geotechnical Investigations                       | LS        | \$      | 30,000      | 1      | \$       | 30,000               | Ŷ        | 2,100       | \$      | 30,000                  |
| Zone B Water        |                                                   |           | Ŷ       | 50,000      |        | ÷        | 50,000               |          |             | Ŷ       | 50,000                  |
| 33                  | 8" Ductile Iron Water Main                        | LF        | \$      | 200         | 15,000 | \$       | 3,000,000            | \$       | 2,100,000   | \$      | 3,186,000               |
| 34                  | Gate Valves                                       | EA        | \$      | 1,500       | 19     | \$       | 28,500               |          | 11,400      | \$      | 37,000                  |
| 35                  | Hydrant Assembly                                  | EA        | \$      | 5,700       | 19     | \$       | 108,300              | · ·      | 86,640      | \$      | 111,000                 |
| 36                  | Fittings                                          | LS        | \$      | 300,000     | 1      | \$       | 300,000              | \$       | 120,000     | \$      | 388.000                 |
| 37                  | Pressure Testing & Disinfection                   | LS        | \$      | 6,000       | 1      | \$       | 6,000                | \$       | 2,400       | \$      | 8,000                   |
| 38                  | Geotechnical Investigations                       | LS        | \$      | 30,000      | 1      | \$       | 30,000               | Ψ        | 2,400       | \$      | 30,000                  |
|                     | & Replacement Program                             |           | 4       | 50,000      |        | ¥        | 50,000               |          |             | ¥       | 50,000                  |
| 39                  | Valve Exercise Program                            | LS        | \$      | 17          | 464    | \$       | 7,733                |          |             | ¢       | 8,000                   |
| 35                  | Replace Failing Valves (Quantity Estimated, to be |           | Ψ       | 17          | -0-    | Ψ        | 1,155                |          |             | Ψ       | 0,000                   |
| 40                  | Validated by Exercise Program)                    | EA        | \$      | 3,000.00    | 140    | \$       | 420,000              | \$       | 168,000     | \$      | 544,000                 |
| 40<br>Other Constru | Ţ                                                 |           |         |             |        |          |                      |          |             |         |                         |
|                     |                                                   | F 0/      | ¢       | 770.000     | 1      | ¢        | 770.000              |          |             | ¢       | 770.000                 |
| 41<br>42            | Mobilization/Demobilization (5%)                  | 5%        | \$<br>¢ | 770,000     | 1      | \$<br>¢  | 770,000              |          |             | \$<br>¢ | 770,000                 |
|                     | Insurance and Bonds (3%)                          | 3%        | \$      | 462,000     |        | \$       | 462,000              | <u> </u> |             | \$      | 462,000                 |
| 43                  | General Conditions Overhead & Profit              | 5%<br>10% | \$      | 770,000     | 1      | \$       | 770,000              | <u> </u> |             | \$      | 770,000                 |
|                     |                                                   | 10%       | \$      | 1,540,000   | 1      | \$       | 1,540,000            | ¢        | 10 5 47 000 | \$      | 1,540,000               |
|                     |                                                   |           |         |             |        | \$       | 16,437,000           | \$       | 10,547,000  | \$      | 20,653,000.00           |
|                     | RUCTION COSTS                                     | 100/      | L &     | 1.0.1.1.1.1 | 1      | 1.0      |                      |          |             | ¢       |                         |
| 45                  | Contingency                                       | 10%       | \$      | 1,644,000   | 1      | \$       | 1,644,000            |          |             | \$      | 1,644,000               |
| 46                  | Engineering, Permitting, and Design               | 10%       | \$      | 1,644,000   | 1      | \$       | 1,644,000            |          |             | \$      | 1,644,000               |
| 47                  | Engineering services during construction          | 8%        | \$      | 1,315,000   | 1      | \$       | 1,315,000            |          |             | \$      | 1,315,000               |
| 48                  | Legal and Administration                          | 3%        | \$      | 493,000     | 1      | \$       | 493,000              |          |             | \$      | 493,000                 |
| TOTA                | LI                                                | 1         | 1       |             |        | \$       | 21,533,000           |          |             | \$      | 25,749,000.00           |

# Project 2 Alternative 2 Conceptual Cost Estimate Distribution and Storage Upgrades - New Pedosphere Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

| ITEM NO.       | DESCRIPTION                                          | UNITS | U       | NIT COST  | QTY    | TOTAL CAPITAL<br>COST |                                | LIFETIME O&M |            | LI      | FE CYCLE COST<br>(LCCA)    |
|----------------|------------------------------------------------------|-------|---------|-----------|--------|-----------------------|--------------------------------|--------------|------------|---------|----------------------------|
| CONSTRUCT      | ION COSTS                                            |       |         |           |        |                       |                                |              |            |         |                            |
| New Pedesph    | ere Elevated Storage Tank                            |       |         |           |        |                       |                                |              |            |         |                            |
| 1              | 1,000,000-Gallon Pedesphere Elevated<br>Storage Tank | EA    | \$      | 3,000,000 | 1      | \$                    | 3,000,000                      | \$           | 3,600,000  | \$      | 2,798,000                  |
| 2              | Tank Coating                                         | LS    | \$      | 100,000   | 1      | \$                    | 100,000                        | \$           | 40,000     | \$      | 129,000                    |
| 3              | 12" PVC Yard Piping                                  | LF    | \$      | 225       | 250    | \$                    | 56,250                         | \$           | 39,375     | \$      | 60,000                     |
| 4              | Yard Piping Valve & Fitting Allowance                | LS    | \$      | 10,000    | 1      | \$                    | 10,000                         | \$           | 4,000      | \$      | 13,000                     |
| 5              | Instrumentation                                      | LS    | \$      | 15,000    | 1      | \$                    | 15,000                         | \$           | 3,000      | \$      | 30,000                     |
| 6              | SCADA Implementation                                 | LS    | \$      | 2,500     | 1      | \$                    | 2,500                          | \$           | 500        | \$      | 5,000                      |
| 7              | Hydrant Assembly                                     | EA    | \$      | 5,700     | 1      | \$                    | 5,700                          | \$           | 4,560      | \$      | 6,000                      |
| 8              | Chain Link Fence + Gate                              | LF    | \$      | 70        | 400    | \$                    | 28,000                         | \$           | 11,200     | \$      | 36,000                     |
| 9              | Electrical Site Work                                 | LS    | \$      | 5,000     | 1      | \$                    | 5,000                          | \$           | 1,700      | \$      | 11,000                     |
| 10             | Uninterruptible Power Supply                         | EA    | \$      | 1,500     | 1      | \$                    | 1,500                          | \$           | 600        | \$      | 2,000                      |
| 11             | Driveway (Asphalt)                                   | SY    | \$      | 55        | 1000   | \$                    | 55,000                         | \$           | 18,700     | \$      | 121,000                    |
| 12             | Crushed Stone (Tank Washdown)                        | CY    | \$      | 40        | 200    | \$                    | 8,000                          | \$           | 3,200      | \$      | 10,000                     |
| 13             | Concrete Energy Blocks (Tank Washdown)               | EA    | \$      | 75        | 15     | \$                    | 1,125                          | \$           | 788        | \$      | 1,000                      |
| 14             | Site Clearing + Grading                              | LS    | \$      | 25,000    | 1      | \$                    | 25,000                         | \$           | 17,500     | \$      | 26,000                     |
| 15             | Loam and Seed Disturbed Area                         | SY    | \$      | 3         | 5000   | \$                    | 15,000                         | \$           | 6,000      | \$      | 19,000                     |
| 16             | Testing Allowance                                    | LS    | \$      | 15.000    | 1      | \$                    | 15,000                         | \$           | 6,000      | \$      | 19,000                     |
| State Route 8  | 0 & Helms Road Water Main                            |       | -       | ,         |        | -                     | ,                              | 7            | -,         | -       |                            |
| 17             | 12" Ductile Iron Water Main (Helms Road)             | LF    | \$      | 250       | 14000  | \$                    | 3,500,000                      | \$           | 2,450,000  | \$      | 3,717,000                  |
| 18             | 12" Ductile Iron Water Main (SR80)                   | LF    | \$      | 250       | 9,700  | \$                    | 2,425,000                      | \$           | 1,697,500  | \$      | 2,576,000                  |
| 19             | Gate Valves                                          | EA    | \$      | 3,000     | 47     | \$                    | 141,000                        | \$           | 56,400     | \$      | 183,000                    |
| 20             | Hydrant Assembly                                     | EA    | \$      | 5,700     | 47     | \$                    | 267,900                        | \$           | 214,320    | \$      | 274,000                    |
| 21             | Fittings                                             | LS    | \$      | 592,500   | 1      | \$                    | 592,500                        | \$           | 237,000    | \$      | 767,000                    |
| 22             | Pressure Testing & Disinfection                      | LS    | \$      | 6,000     | 1      | \$                    | 6,000                          | \$           | 2,400      | \$      | 8,000                      |
| 23             | Geotechnical Investigations                          | LS    | \$      | 30,000    | 1      | \$                    | 30,000                         | Ŷ            | 2,100      | \$      | 30,000                     |
| Zone B Water   | Ţ                                                    | -     | Ŧ       |           |        | -                     |                                |              |            | -       | ,                          |
| 24             | 8" Ductile Iron Water Main                           | LF    | \$      | 200       | 15,000 | \$                    | 3,000,000                      | \$           | 2,100,000  | \$      | 3,186,000                  |
| 25             | Gate Valves                                          | EA    | \$      | 1,500     | 19     | \$                    | 28,500                         | \$           | 11,400     | \$      | 37,000                     |
| 26             | Hydrant Assembly                                     | EA    | \$      | 5,700     | 19     | \$                    | 108,300                        | \$           | 86,640     | \$      | 111,000                    |
| 27             | Fittings                                             | LS    | \$      | 300,000   | 1      | \$                    | 300,000                        | \$           | 120,000    | \$      | 388,000                    |
| 28             | Pressure Testing & Disinfection                      | LS    | \$      | 6,000     | 1      | \$                    | 6,000                          | \$           | 2,400      | \$      | 8,000                      |
| 29             | Geotechnical Investigations                          | LS    | \$      | 30,000    | 1      | \$                    | 30,000                         | Ŷ            | 2,100      | \$      | 30,000                     |
| Valve Exercise | e & Replacement Program                              |       | Ŧ       |           |        | -                     |                                |              |            | -       | ,                          |
| 30             | Valve Exercise Program                               | LS    | \$      | 17        | 464    | \$                    | 7,733                          |              |            | \$      | 8.000                      |
|                | Replace Failing Valves (Quantity Estimated, to       | -     |         |           | -      |                       | ,                              |              |            |         | -,                         |
| 31             | be Validated by Exercise Program)                    | EA    | \$      | 3,000.00  | 140    | \$                    | 420,000                        | \$           | 168,000    | \$      | 544,000                    |
| Other Constru  |                                                      |       |         |           |        |                       |                                |              |            |         |                            |
| 32             | Mobilization/Demobilization (5%)                     | 5%    | \$      | 710,000   | 1      | \$                    | 710,000                        |              |            | \$      | 710,000                    |
| 33             | Insurance and Bonds (3%)                             | 3%    | ۰<br>\$ | 426,000   | 1      | ۰<br>\$               | 426,000                        |              |            | ♪<br>\$ | 426,000                    |
| 34             | General Conditions                                   | 5%    | ۰<br>\$ | 710,000   | 1      | \$                    | 710,000                        |              |            | \$      | 710,000                    |
| 35             | Overhead & Profit                                    | 10%   | ۰<br>\$ |           | 1      |                       |                                |              |            | ♪<br>\$ |                            |
| SUBTOTA        |                                                      | 1070  | ¢.      | 1,421,000 | 1      | \$<br>\$              | 1,421,000<br><b>17,473,000</b> | ¢            | 10,903,000 | ۰<br>\$ | 1,421,000<br>18,420,000.00 |
|                | RUCTION COSTS                                        |       |         |           |        | Ψ                     | 17,475,000                     | Ψ            | 10,903,000 | Ψ       | 10,420,000.00              |
| 36             | Contingency                                          | 10%   | \$      | 1,747,000 | 1      | \$                    | 1,747,000                      |              |            | \$      | 1,747,000                  |
| 30             | Engineering, Permitting, and Design                  | 10%   | ⊅<br>\$ | 1,747,000 | 1      | ۵<br>۶                | 1,747,000                      |              |            | ۶<br>۶  | 1,747,000                  |
| 38             | Engineering services during construction             | 8%    | ≯<br>\$ | 1,747,000 | 1      | ۶<br>۶                | 1,747,000                      |              |            | ۵<br>۲  | 1,747,000                  |
| 39             | Legal and Administration                             | 3%    | ≯<br>\$ | 524,000   | 1      | ≯<br>\$               | 524,000                        |              |            | ≯<br>\$ | 524,000                    |
| 22             | Legar and Automistration                             | 5/0   | Þ       | 524,000   | I I    | Þ                     | 22,889,000                     |              |            | Þ       | 524,000                    |

## **Project 2 Alternative 3 Conceptual Cost Estimate**

## Distribution and Storage Upgrades - New Fluted Column Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement

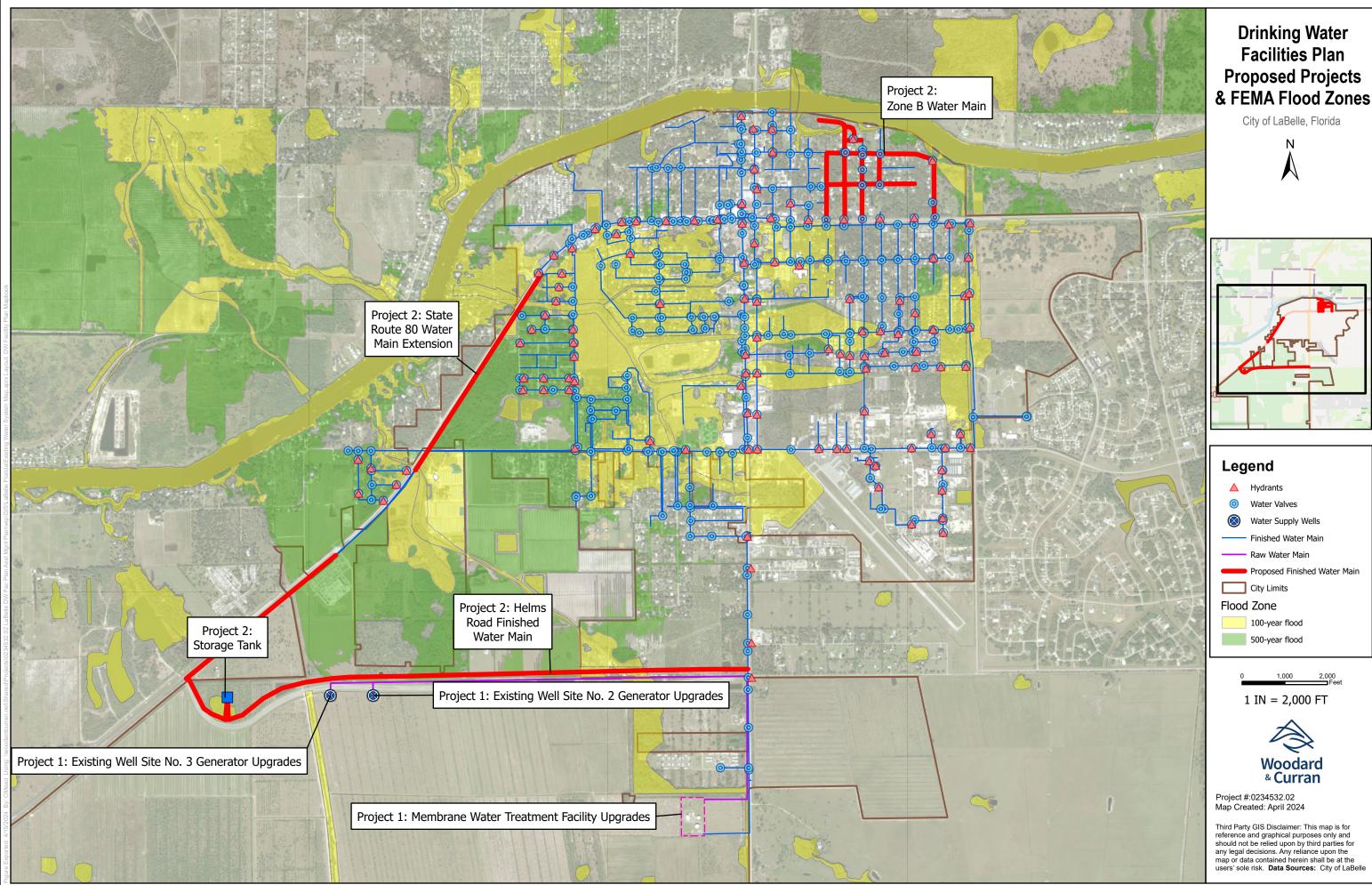
|             |                                                |       |      | Progra    | m      |          |                      |              |            |    |                         |
|-------------|------------------------------------------------|-------|------|-----------|--------|----------|----------------------|--------------|------------|----|-------------------------|
| ITEM NO.    | DESCRIPTION                                    | UNITS | ι    | JNIT COST | QTY    | тс       | OTAL CAPITAL<br>COST | LIFETIME O&M |            | LI | FE CYCLE COST<br>(LCCA) |
| CONSTRUCT   |                                                | ļ     |      |           |        | Į        |                      |              |            |    |                         |
| New Pedesp  | here Fluted Column Storage Tank                |       |      |           |        |          |                      |              |            |    |                         |
| 1           | 1,000,000-Gallon Fluted Column Elevated Stora  | EA    | \$   | 4,500,000 | 1      | \$       | 4,500,000            | \$           | 5,400,000  | \$ | 4,198,000               |
| 2           | Tank Coating                                   | LS    | \$   | 100,000   | 1      | \$       | 100,000              | \$           | 40,000     | \$ | 129,000                 |
| 3           | 12" PVC Yard Piping                            | LF    | \$   | 225       | 250    | \$       | 56,250               | \$           | 39,375     | \$ | 60,000                  |
| 4           | Yard Piping Valve & Fitting Allowance          | LS    | \$   | 10,000    | 1      | \$       | 10,000               | \$           | 4,000      | \$ | 13,000                  |
| 5           | Instrumentation                                | LS    | \$   | 15,000    | 1      | \$       | 15,000               | \$           | 3,000      | \$ | 30,000                  |
| 6           | SCADA Implementation                           | LS    | \$   | 2,500     | 1      | \$       | 2,500                | \$           | 500        | \$ | 5,000                   |
| 7           | Hydrant Assembly                               | EA    | \$   | 5,700     | 1      | \$       | 5,700                | \$           | 4,560      | \$ | 6,000                   |
| 8           | Chain Link Fence + Gate                        | LF    | \$   | 70        | 400    | \$       | 28,000               | \$           | 11,200     | \$ | 36,000                  |
| 9           | Gas Generator                                  | EA    | \$   | 5,000     | 1      | \$       | 5,000                | \$           | 2,000      | \$ | 6,000                   |
| 10          | Electrical Site Work                           | LS    | \$   | 5,000     | 1      | \$       | 5,000                | \$           | 1,700      | \$ | 11,000                  |
| 11          | Uninterruptible Power Supply                   | EA    | \$   | 1,500     | 1      | \$       | 1,500                | \$           | 600        | \$ | 2,000                   |
| 12          | Driveway (Asphalt)                             | SY    | \$   | 55        | 1000   | \$       | 55,000               | \$           | 22,000     | \$ | 71,000                  |
| 13          | Crushed Stone (Tank Washdown)                  | CY    | \$   | 40        | 200    | \$       | 8,000                | \$           | 3,200      | \$ | 10,000                  |
| 14          | Concrete Energy Blocks (Tank Washdown)         | EA    | \$   | 75        | 15     | \$       | 1,125                | \$           | 788        | \$ | 1,000                   |
| 15          | Site Clearing + Grading                        | LS    | \$   | 65,000    | 1      | \$       | 65,000               | \$           | 45,500     | \$ | 69,000                  |
| 16          | Loam and Seed Disturbed Area                   | SY    | \$   | 3         | 9000   | \$       | 27,000               | \$           | 10,800     | \$ | 35,000                  |
| 17          | Testing Allowance                              | LS    | \$   | 15,000    | 1      | \$       | 15,000               | \$           | 6,000      | \$ | 19,000                  |
| State Route | 80 & Helms Road Water Main                     |       |      | · · ·     |        |          | ,                    |              | · · ·      |    | · · ·                   |
| 18          | 12" Ductile Iron Water Main (Helms Road)       | LF    | \$   | 250       | 14000  | \$       | 3,500,000            | \$           | 2,450,000  | \$ | 3,717,000               |
| 19          | 12" Ductile Iron Water Main                    | LF    | \$   | 250       | 9,700  | \$       | 2,425,000            | \$           | 1,697,500  | \$ | 2,576,000               |
| 20          | Gate Valves                                    | EA    | \$   | 3,000     | 47     | \$       | 141,000              | \$           | 56,400     | \$ | 183,000                 |
| 21          | Hydrant Assembly                               | EA    | \$   | 5,700     | 47     | \$       | 267,900              | \$           | 214,320    | \$ | 274,000                 |
| 22          | Fittings                                       | LS    | \$   | 592,500   | 1      | \$       | 592,500              | \$           | 237,000    | \$ | 767,000                 |
| 23          | Pressure Testing & Disinfection                | LS    | \$   | 6,000     | 1      | \$       | 6,000                | \$           | 2,400      | \$ | 8,000                   |
| 24          | Geotechnical Investigations                    | LS    | \$   | 30,000    | 1      | \$       | 30,000               | Ŧ            | 2,100      | \$ | 30,000                  |
| Zone B Wate | , i i i i i i i i i i i i i i i i i i i        | -     | ÷    | 50,000    |        | Ŷ        | 50,000               |              |            | ÷  | 50,000                  |
| 25          | 8" Ductile Iron Water Main                     | LF    | \$   | 200       | 15,000 | \$       | 3,000,000            | \$           | 2,100,000  | \$ | 3,186,000               |
| 26          | Gate Valves                                    | EA    | \$   | 1,500     | 19     | \$       | 28,500               | \$           | 11,400     | \$ | 37,000                  |
| 27          | Hydrant Assembly                               | EA    | \$   | 5,700     | 19     | \$       | 108,300              | \$           | 86,640     | \$ | 111,000                 |
| 28          | Fittings                                       | LS    | \$   | 300,000   | 1      | \$       | 300,000              | \$           | 120,000    | \$ | 388,000                 |
| 29          | Pressure Testing & Disinfection                | LS    | \$   | 6,000     | 1      | \$       | 6,000                | \$           | 2,400      | \$ | 8,000                   |
| 30          | Geotechnical Investigations                    | LS    | \$   | 30,000    | 1      | \$       | 30.000               | Ψ            | 2,400      | \$ | 30,000                  |
|             | e & Replacement Program                        |       | Ψ    | 30,000    |        | Ψ        | 50,000               |              |            | ¥  | 30,000                  |
| 31          | Valve Exercise Program                         | LS    | \$   | 17        | 464    | \$       | 7,733                |              |            | \$ | 8,000                   |
| 51          | Replace Failing Valves (Quantity Estimated, to | 1.5   | Ψ    | 17        | +0+    | Ψ        | 1,155                |              |            | Ψ  | 0,000                   |
| 32          | be Validated by Exercise Program)              | EA    | \$   | 3,000.00  | 140    | \$       | 420,000              | \$           | 168,000    | \$ | 544,000                 |
| -           | ruction Costs                                  |       |      |           |        |          |                      |              |            |    |                         |
|             |                                                | 5%    | ¢    | 700.000   | 1      | *        | 700.000              |              |            | ¢  | 700.000                 |
| 33          | Mobilization/Demobilization (5%)               | 3%    | \$   | 788,000   | 1      | \$       | 788,000              |              |            | \$ | 788,000                 |
| 34          | Insurance and Bonds (3%)                       |       | \$   | 473,000   | 1      | \$       | 473,000              |              |            | \$ | 473,000                 |
| 35          | General Conditions                             | 5%    | \$   | 788,000   | 1      | \$       | 788,000              |              |            | \$ | 788,000                 |
| 36          | Overhead & Profit                              | 10%   | \$   | 1,576,000 | 1      | \$       | 1,576,000            | ¢            | 10 744 000 | \$ | 1,576,000               |
|             |                                                |       | _    |           |        | \$       | 19,388,000           | \$           | 12,741,000 | \$ | 20,193,000.00           |
|             |                                                | 100/  | L.C. | 4 020 005 | 4      | <i>*</i> | 4 000 000            |              |            | *  | 4 000 000               |
| 37          | Contingency                                    | 10%   | \$   | 1,939,000 | 1      | \$       | 1,939,000            |              |            | \$ | 1,939,000               |
| 38          | Engineering, Permitting, and Design            | 10%   | \$   | 1,939,000 | 1      | \$       | 1,939,000            |              |            | \$ | 1,939,000               |
| 39          | Engineering services during construction       | 8%    | \$   | 1,551,000 | 1      | \$       | 1,551,000            |              |            | \$ | 1,551,000               |
| 40          | Legal and Administration                       | 3%    | \$   | 582,000   | 1      | \$       | 582,000              |              |            | \$ | 582,000                 |
| TOTAL       |                                                |       |      |           |        | \$       | 25,399,000           |              |            | \$ | 26,204,000.00           |

## Project 3 Alternative 1 Conceptual Cost Estimate Large Commercial Service Meter and System Meter Replacement Program - Replace Commercial Service Meters, AMI Endpoints, and Production Meters 1.5" and Above

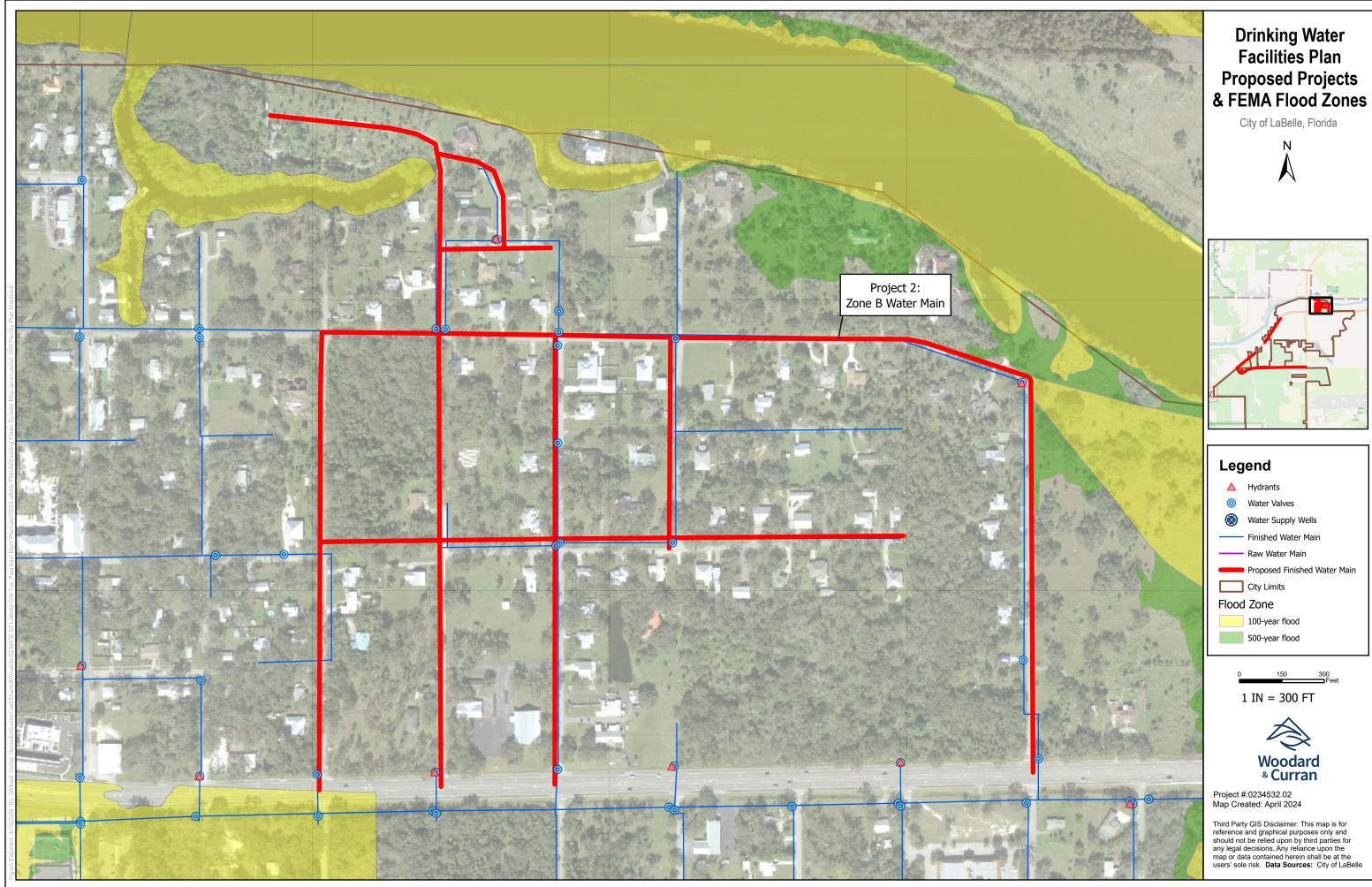
| ITEM NO.           | DESCRIPTION                              | UNITS |    |           | QTY | ٦  | TOTAL CAPITAL<br>COST | LIFETIME | D&M   | LIF | E CYCLE COST<br>(LCCA) |
|--------------------|------------------------------------------|-------|----|-----------|-----|----|-----------------------|----------|-------|-----|------------------------|
| CONSTRUCTION COSTS |                                          |       |    |           |     |    |                       |          |       |     |                        |
| 1                  | Replace Commercial Service Meters        | EA    | \$ | 2,000     | 58  | \$ | 116,000               | \$ 3     | 4,800 | \$  | 250,000                |
| 2                  | Replace System Meters                    | EA    | \$ | 10,000.00 | 4   | \$ | 40,000                | \$ 1     | 2,000 | \$  | 86,000                 |
| 3                  | Replace All AMI Endpoints                | EA    | \$ | 500.00    | 58  | \$ | 29,000                | \$       | 8,700 | \$  | 63,000                 |
| SUBTOTAL           |                                          |       |    |           |     | \$ | 185,000               | \$ 5     | 6,000 | \$  | 399,000.00             |
| NON-CONS           | TRUCTION COSTS                           |       |    |           |     |    |                       |          |       |     |                        |
| 3                  | Contingency                              | 10%   | \$ | 19,000    | 1   | \$ | 19,000                |          |       | \$  | 19,000                 |
| 4                  | Engineering, Permitting, and Design      | 10%   | \$ | 19,000    | 1   | \$ | 19,000                |          |       | \$  | 19,000                 |
| 5                  | Engineering Services During Construction | 0%    | \$ | -         | 1   | \$ | -                     |          |       | \$  | -                      |
| 6                  | Legal and Administration                 | 3%    | \$ | 6,000     | 1   | \$ | 6,000                 |          |       | \$  | 6,000                  |
| TOTAL              |                                          |       |    |           |     | \$ | 229,000               |          |       | \$  | 443,000.00             |

## **Project 3 Alternative 2 Conceptual Cost Estimate**

## Large Commercial Service Meter and System Meter Replacement Program - Replace All Commercial Service and Production Meters 1.5" and Above, Replace AMI Endpoints at End of Life

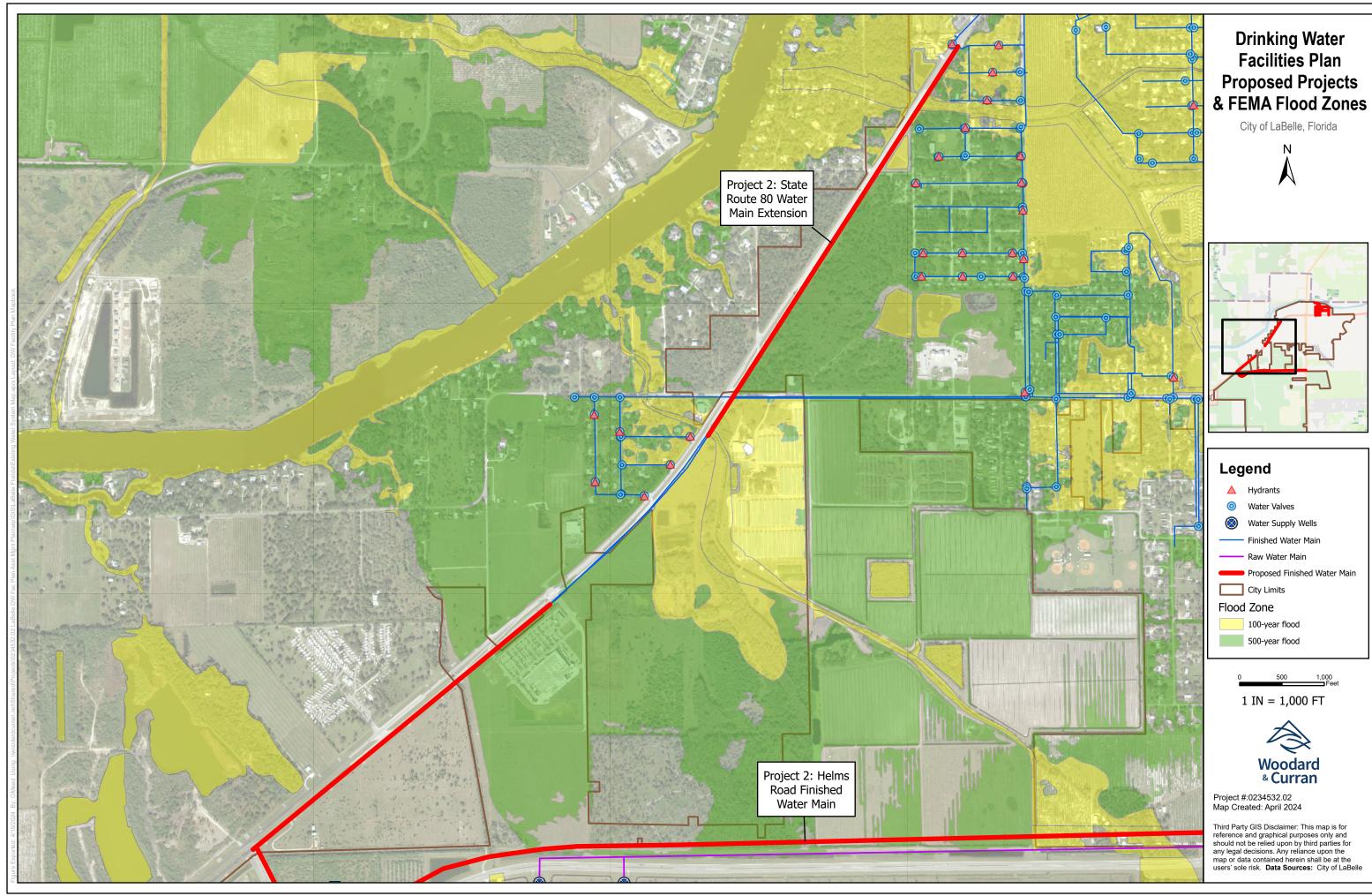

| ITEM NO.  | DESCRIPTION                                  | UNITS | UNIT COST |           | QTY | т  | OTAL CAPITAL<br>COST | LIF | ETIME O&M | L  | FE CYCLE COST<br>(LCCA) |
|-----------|----------------------------------------------|-------|-----------|-----------|-----|----|----------------------|-----|-----------|----|-------------------------|
| CONSTRUCT |                                              | 1     |           |           |     |    |                      |     |           |    |                         |
| 1         | Replace Commercial Service Meters            | EA    | \$        | 2,000     | 58  | \$ | 116,000              | \$  | 34,800    | \$ | 250,000                 |
| 2         | Replace Remaining AMI Endpoint After 5 Years | EA    | \$        | 600       | 58  | \$ | 34,800               | \$  | 10,440    | \$ | 75,000                  |
| 3         | Replace System Meters                        | EA    | \$        | 10,000.00 | 4   | \$ | 40,000               | \$  | 12,000    | \$ | 86,000                  |
| SUBTOTAL  |                                              |       |           |           |     | \$ | 191,000              | \$  | 57,000    | \$ | 411,000.00              |
| NON-CONST | TRUCTION COSTS                               |       |           |           |     |    |                      |     |           |    |                         |
| 4         | Contingency                                  | 10%   | \$        | 19,000    | 1   | \$ | 19,000               |     |           | \$ | 19,000                  |
| 5         | Engineering, Permitting, and Design          | 10%   | \$        | 19,000    | 1   | \$ | 19,000               |     |           | \$ | 19,000                  |
| 6         | Engineering Services During Construction     | 0%    | \$        | -         | 1   | \$ | -                    |     |           | \$ | -                       |
| 7         | Legal and Administration                     | 3%    | \$        | 6,000     | 1   | \$ | 6,000                |     |           | \$ | 6,000                   |
| TOTAL     |                                              |       |           |           |     | \$ | 235,000              |     |           | \$ | 455,000.00              |

# Project 3 Alternative 3 Conceptual Cost Estimate Large Commercial Service Meter and System Meter Replacement Program - Maintain Existing Commercial Service and System Meters 1.5" and Above


| ITEM NO.  | DESCRIPTION                                            | UNITS | UNIT COST | QTY | TOTAL CAPITAL<br>COST | LIFETIME O&M | LIFE CYCLE COST<br>(LCCA) |
|-----------|--------------------------------------------------------|-------|-----------|-----|-----------------------|--------------|---------------------------|
| CONSTRUCT |                                                        |       |           |     |                       |              |                           |
| N/A       |                                                        |       | \$ -      |     | \$-                   | \$ -         | \$-                       |
| SUBTOTAL  |                                                        |       |           |     | \$-                   |              | \$-                       |
| NON-CONS  | TRUCTION COSTS                                         |       |           |     |                       |              |                           |
| 1         | Estimated Revenue Losses from Service Metering Failure | EA    | \$ -      | 58  | \$ -                  | \$ 696,000   | \$ 513,000                |
| TOTAL     |                                                        |       |           |     | \$-                   |              | \$ 513,000                |

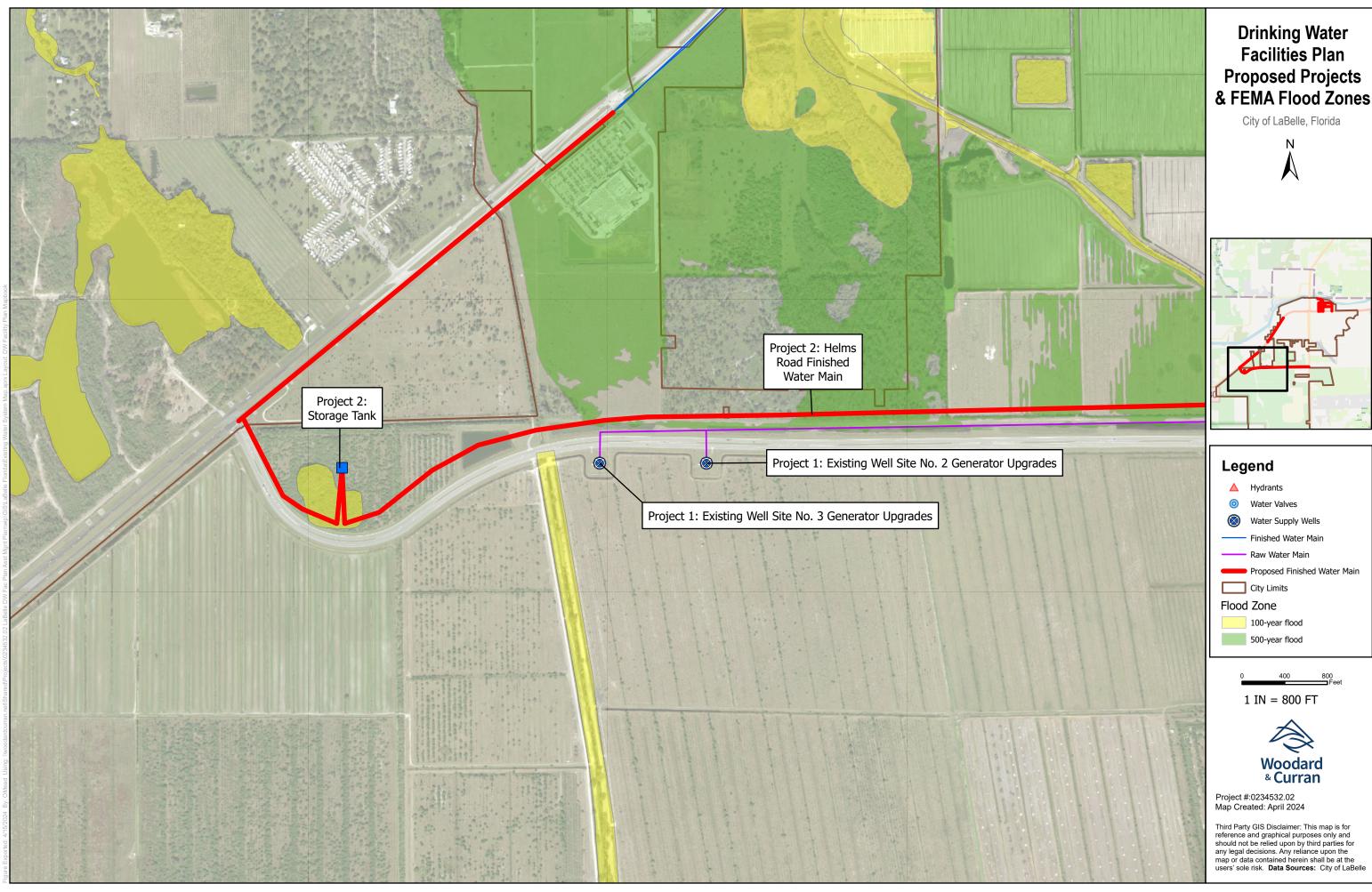


## APPENDIX C: FIGURES SHOWING PROJECT SCOPES








| Δ | Hydrants           |
|---|--------------------|
| 0 | Water Valves       |
| 8 | Water Supply Wells |
|   | Finished Water Mai |
|   | Raw Water Main     |





| Δ | Hydrants     |
|---|--------------|
| 0 | Water Valves |





| 7 | Hydrants     |
|---|--------------|
| ) | Water Valves |



### APPENDIX D: BUSINESS PLAN

### DRINKING WATER STATE REVOLVING FUND BUSINESS PLAN

| Sponsor Name: City of LaBelle, Florida   |             |                       |         | System Po | pulation  | ı: <u>5,</u> | 065     |       |          |
|------------------------------------------|-------------|-----------------------|---------|-----------|-----------|--------------|---------|-------|----------|
| DWSRF Project #:                         |             |                       |         | PWS ID#   | :         |              |         |       |          |
| Contact Person and                       | l Title: Ju | ılie Wilkins, Mayor   |         |           |           | Tele         | ephone: | (863) | 675-2872 |
| Mailing Address:                         | 481 We      | est Hickpochee Avenue | _ City: | LaBelle   |           | State:       | FL      | Zip:  | 33935    |
| Contact for Finance Plan (if different): |             |                       |         |           |           | Tele         | ephone: |       |          |
| Mailing Address:                         |             |                       | City:   |           |           | State:       |         | Zip:  |          |
| e-mail:                                  | juliewilkin | s@citylabelle.com     |         |           |           | Fax:         |         |       |          |
| Source Type:                             | $\boxtimes$ | Ground Water          |         |           | Purchase  | Water        |         |       |          |
|                                          |             | Surface Water         |         |           | Surface/0 | Ground C     | Combine | d     |          |

The Drinking Water State Revolving Fund Program (DWSRF), authorized by the 1996 amendments to the Safe Drinking Water Act, provides financial assistance to public water systems (PWS). To obtain this assistance, project sponsors must demonstrate Capacity Development or demonstrate how the assistance will ensure these requirements are met. The term Capacity Development takes into consideration three vital areas of a public water system: Technical, Managerial, and Financial capabilities.

#### FINANCIAL

A financial capability demonstration (and certification) is required well before the evaluation of the actual loan or grant application. This demonstration is necessary to ensure that the system has the financial capability to repay the loan, if applicable, and to adequately operate and maintain the system. Financial capability also includes funding future capital improvements that may be required. Please see Rule 62-552.700(4) in Chapter 62-552, F.A.C. for further details.

It is expected that the revenues to be dedicated to repaying a loan will be generated either from water and sewer utility operations or from water utility operations alone. If the source of revenues will not be from such enterprises, this set of worksheets alone will not satisfy the Department's needs. (Please contact the Department for further guidance if dedicated revenues will be generated externally to such utilities.)

The following worksheets have been developed to identify the minimum information needed. The completed worksheets should be used in disclosing DWSRF project financing to the public during the required dedicated revenue hearing. The worksheets can serve to identify the impacts of the SRF project on residential users and how the project fits into the project sponsor's overall capital improvement program for the water and sewer utility (or water utility, as appropriate). Supplemental capital financing documentation may be submitted with these worksheets and may be presented at the required dedicated revenue hearing.

| The revenues being dedicated to repayment of the DWSRF loan are:                                                  | Water & Sewer Utility Rate Revenues |     |      |             |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|------|-------------|--|--|
| What is the frequency of water system billing?                                                                    | monthly                             |     |      |             |  |  |
| How often are system rates reviewed for adequacy?                                                                 | annually                            |     |      |             |  |  |
| When was the last time rates were reviewed?                                                                       | 2023                                |     |      |             |  |  |
| What resources and guidance does the water system use for setting water user rates, fees or charges?              | AWWA                                |     |      |             |  |  |
| What is your water system bond rating?                                                                            |                                     |     |      |             |  |  |
| Is a rate increase necessary as a result of this project?                                                         | yes                                 |     |      |             |  |  |
| What is the Median Household Income (MHI) for the entire system?                                                  | \$49,371                            |     |      |             |  |  |
| Which, if any, of the following activities must be undertaken to implement                                        | the DWSRF projec                    |     |      |             |  |  |
| Acquire privately held land?                                                                                      |                                     | Yes |      | $\boxtimes$ |  |  |
| Acquire land held by another public water system entity?                                                          |                                     | Yes | L No | M           |  |  |
| Enter into inter-local or inter-project sponsoring agency's agreements?                                           |                                     | Yes | L No | $\boxtimes$ |  |  |
| Does the system have an annual budget with a separate reserve account for replacement and/or capital improvement? | equipment                           | Yes | 🛛 No |             |  |  |
| Does the system have a capital improvement plan? How many years does                                              | s it cover?                         | Yes | 🛛 No |             |  |  |
| Does the system have a governing board of directors?                                                              |                                     | Yes | 🗌 No |             |  |  |
| Does the water system employ the services of a professional engineer?                                             |                                     | Yes | 🛛 No |             |  |  |
| Are there procedures for billing and collection?                                                                  |                                     | Yes | 🖾 No |             |  |  |

Are there procedures for billing and collection?

Does the system have audited financial statements?

Are there standard purchasing procedures that provide controls over expenditures? What year will construction be completed and repayments begin (for the first project)? What is the estimated cost of your SRF project? Yes ⊠ No □ Yes ⊠ No □ FY2027 \$24,971,000

Please attach a copy of the user charge ordinance.

| WATER RATE REVENUE SUMMARY |                                                                                       |                      |                                  |                      |                      |                      |  |  |
|----------------------------|---------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------|--|--|
|                            |                                                                                       | LAST YR.<br>2023     | YEAR 1<br>(Current Year)<br>2024 | YEAR 2<br>2025       | YEAR 3<br>2026       | SRF Project<br>2027  |  |  |
| 1.                         | Number of Residential Customers                                                       | 1,979                | 2,040                            | 2085                 | 2,111                | 2,141                |  |  |
| 2.                         | Number of New Residential Service<br>Connections                                      | 32                   | 45                               | 26                   | 30                   | 36                   |  |  |
| 3.                         | Annual Residential Water Sales<br>(Gallons)                                           | 115.6M               | 76.2M                            | 115.6M               | 115.6M               | 115.6M               |  |  |
| 4.                         | Avg Daily Residential Usage (Gal/day)<br>(Line 3 divided by line 1 divided by<br>365) | 160                  | 102                              | 152                  | 150                  | 148                  |  |  |
| 5.                         | Annual Residential Water Sales (\$)                                                   | \$1,413,211          | \$1,018,668                      | \$1,580,301          | \$1,817,346          | \$2,089,948          |  |  |
| 6.                         | Average Annual Residential Bill (line 5 divided by line 1)                            | \$714.11             | \$499.35                         | \$757.94             | \$860.89             | \$976.16             |  |  |
| 7.                         | Annual Residential Bill Amount<br>Uncollected                                         | \$46,422             | \$4,237                          | \$4,237              | \$4,237              | \$4,237              |  |  |
| 8.                         | Total Residential Rates Collected (Line 5 minus line 7)                               | \$1,366,789          | \$1,014,431                      | \$1,576,064          | \$1,813,109          | \$2,085,711          |  |  |
| 9.                         | Impact and Connection Fees per<br>Residential Service                                 | \$7,601              | \$7,601                          | \$7,601              | \$7,601              | \$7,601              |  |  |
| 10.                        | Total Residential Impact and<br>Connection Fees (Line 2 times line 9)                 | \$102,191            | \$146,953                        | \$200,000            | \$230,000            | \$280,000            |  |  |
| 11.                        | Number of Commercial Customers                                                        | 475                  | 475                              | 475                  | 475                  | 475                  |  |  |
| 12.                        | Number of New Commercial Service<br>Connections                                       | 7                    | 4                                | 4                    | 4                    | 4                    |  |  |
| 13.                        | Annual Commercial Water Sales<br>(Gallons)                                            | 88,084,000           | 57,718,000                       | 88,084,000           | 88,084,000           | 88,084,000           |  |  |
| 14.                        | Annual Commercial Water Sales (\$)                                                    | \$828,642            | \$559,630                        | \$928,113            | \$1,067,330          | \$1,227,430          |  |  |
| 15.                        | Annual Commercial Bill Amount<br>Uncollected                                          | \$21,273             | \$965                            | \$965                | \$965                | \$965                |  |  |
| 16.                        | Total Commercial/Industrial Bills<br>Collected (Line 14 minus line 15)                | \$807,369            | \$558,665                        | \$927,148            | \$1,066,365          | \$1,226,465          |  |  |
| 17.                        | Impact and Connection Fees for<br>Commercial Service                                  | \$3,378 /<br>\$4,223 | \$3,378 /<br>\$4,223             | \$3,885 /<br>\$4,856 | \$4,467 /<br>\$5,584 | \$5,137 /<br>\$6,422 |  |  |
| 18.                        | Total Commercial Impact and<br>Connection Fees (Line 12 times line 17)                | \$23,648             | \$13,979                         | \$41,500             | \$47,725             | \$49,384             |  |  |
| 19.                        | Bulk Water Sales                                                                      | \$22                 | \$9                              | 0                    | 0                    | 0                    |  |  |
| 20.                        | Total Projected Water Revenue (Line<br>8+10+16+18+19)                                 | \$2,300,021          | \$1,734,038                      | \$2,744,713          | \$3,157,200          | \$3,631,560          |  |  |

Table 1WATER RATE REVENUE SUMMARY

\* Large meters should be checked annually for accuracy.

### **Instructions for Completing Table 1**

Identify the source of the above information and explain methods used to develop the projections (*Attachment* # \_\_\_\_\_). Include an explanation of any revenue and expense growth or other adjustments; for example, any rate increases, service growth, inflation adjustments, expense adjustments reflecting the cost of operating additional facilities, or other considerations. In completing this table assume through year 3 that no SRF project is constructed. In the "SRF Project" column enter the numbers that reflect the first year in which the SRF loan will begin repayments. When completing the numbers in this column assume that the SRF project will be financed using 100% loan funding.

- Line 1 Include the actual number of customers for last year and year 1 (current year). The numbers in years 2 and 3 should reflect an estimated number of residential customers, adjusted for growth. In the SRF column include the expected number of customers based on constructing your SRF project.
- Line 2 This line is a subset of line 1. It should reflect the number of new customers for that year.
- Line 3 This line is your total volume (gallons) of water used by your residential customers. Use actual gallons sold for Last Year and do an estimate for the current year based on total to-date. To determine Year 2 and 3 water sales, first calculate the average daily residential usage in gallons per day on line 4. The estimated water sales for Year 2 and 3 can now be determined by multiplying line 4 by line 1.
- Line 4 This is the average daily residential usage (gallons per day) by a single residential customer. To get this number divide line 3 by line 1. Use Last Year and Current Year to project usage for Year 2 and 3. Usage should be fairly constant.
- Line 5 This is your total residential water sales in dollars. Year 2 and 3 water sales should reflect any increases in rates (i.e. due to inflation). In the SRF column list what the sales would need to be if the SRF project was a 100% loan (to meet all expenses).
- Line 6 To obtain the average annual residential bill, divide line 5 by line 1.
- Line 7 This is the amount of the uncollected residential bills outstanding for the year.
- Line 8 Line 5 minus line 7.
- Line 9 This line is the impact and connection fee for new residential service.
- Line 10 Multiply line 2 by line 9.
- Line 11 Include the actual number of customers for last year and year 1 (current year). The numbers in years 2 and 3 should reflect an estimated number of commercial customers, adjusted for growth. In the SRF column include the expected number of customers based on constructing your SRF project.
- Line 12 This line is a subset of line 11. It should reflect the number of new customers that will be charged an impact or connection fee.

- Line 13 This line is your total volume (gallons) of water used by your commercial accounts.
- Line 14 This is your total commercial water sales in dollars. Year 2 and 3 water sales should reflect any increases in rates (i.e. due to inflation). In the SRF column list what the sales would need to be if the SRF project was a 100% loan (to meet all expenses).
- Line 15 This is the amount of the uncollected residential bills outstanding for the year.
- Line 16 Total revenue collected for commercial accounts (line 14 minus line 15).
- Line 17 This line is the impact and connection fee for new commercial/industrial accounts.
- Line 18 Multiply line 12 by line 17.
- Line 19 Total revenue for bulk water sales to consecutive systems.
- Line 20 Total of line 8+10+16+18+19.

### TABLE 2

### **INCOME, EXPENSES, AND CASH FLOW STATEMENT**

| Income, Expense, and Cash Flow Statement |                                  | Last Yr.<br>2024 | Year 1<br>2025 | Year 2<br>2026 | Year 3<br>2027 | SRF Project<br>2028 |
|------------------------------------------|----------------------------------|------------------|----------------|----------------|----------------|---------------------|
|                                          | <b>OPERATING REVENUES</b>        | 2021             | 2020           | 2020           | 2027           | 2020                |
| 1                                        | Water Rates                      | \$2,181,230      | \$2,508,415    | \$2,884,677    | \$3,317,378    | \$3,814,985         |
| 2                                        | Fire Protection                  |                  |                |                |                |                     |
| 3                                        | Fees and Services                | \$261,000        | \$300,150      | \$345,173      | \$396,948      | \$456,191           |
| 4                                        | Interest Income                  |                  |                |                |                |                     |
| 5a                                       | Other –                          |                  |                |                |                |                     |
| 5b                                       | Other –                          |                  |                |                |                |                     |
| 6                                        | Total (Lines 1 - 5)              | \$2,442,230      | \$2,808,565    | \$3,229,849    | \$3,174,327    | \$4,271,476         |
|                                          | NON-OPERATING REVENUES           |                  |                |                |                |                     |
| 7                                        | Interest Income                  | \$2,500          | \$2,500        | \$2,500        | \$2,500        | \$2,500             |
| 8                                        | Interfund Transfer               |                  |                |                |                |                     |
| 9                                        | Proceeds from the Sale of Assets |                  |                |                |                |                     |
| 10                                       | Leases and Extraction Fees       |                  |                |                |                |                     |
| 11                                       | Construction Grants              | \$1,094,050      | 0              | 0              | 0              | 0                   |
| 12                                       | Proceeds from Borrowing          | 0                | 0              | \$24,971,000   | 0              | 0                   |
| 13                                       | Equity Contribution              | \$500,000        | 0              | 0              | 0              | 0                   |
| 14                                       | Other -                          |                  |                |                |                |                     |
| 15                                       | Total (Lines 7 - 14)             | \$1,652,563      | \$2,500        | \$24,973,500   | \$2,500        | \$2,500             |
|                                          | OPERATING EXPENSES               |                  |                |                |                |                     |
|                                          | OPERATION AND MAINTENANCE        |                  |                |                |                |                     |
| 16                                       | Salaries (Operators)             | \$308,568        | \$317,825      | \$327,360      | \$337,181      | \$347,296           |
| 17                                       | Benefits                         | \$195,511        | \$201,376      | \$207,418      | \$213,640      | \$220,049           |
| 18                                       | Utilities                        | \$154,500        | \$159,135      | \$163,909      | \$168,826      | \$173,891           |
| 19                                       | Chemicals & Treatment            | \$53,000         | \$54,590       | \$56,228       | \$57,915       | \$59,652            |
| 20                                       | Monitoring                       | \$22,100         | \$22,763       | \$23,446       | \$24,149       | \$24,874            |
| 21                                       | Materials, Supplies & Parts      | 0                | 0              | 0              | 0              | 0                   |
| 22                                       | Transportation                   | \$250            | \$258          | \$265          | \$273          | \$281               |
| 23                                       | Purchased Water Costs            | 0                | 0              | 0              | 0              | 0                   |
| 24                                       | Outside Services –               | \$1,295,114      | \$1,333,967    | \$1,373,986    | \$1,415,206    | \$1,457,662         |
| 25                                       | Other –                          | 0                | 0              | 0              | 0              | 0                   |
| 26                                       | Total (Lines 16 – 25)            | \$2,029,043      | \$2,089,914    | \$2,152,612    | \$2,217,190    | \$2,283,706         |

|    | ADMINISTRATIVE                                      |             |             |              |             |               |
|----|-----------------------------------------------------|-------------|-------------|--------------|-------------|---------------|
| 27 | Salaries and Benefits                               |             |             |              |             |               |
| 28 | Building Overhead                                   |             |             |              |             |               |
| 29 | Office Supplies & Postage                           | \$11,000    | \$11,330    | \$11,670     | \$12,020    | \$12,381      |
| 30 | Insurance                                           | \$174,900   | \$180,147   | \$185,551    | \$191,118   | \$196,851     |
| 31 | Customer Billing & Collection                       |             |             |              |             |               |
| 32 | Accounting and Legal                                |             |             |              |             |               |
| 33 | A/E & Professional Services                         |             |             |              |             |               |
| 34 | Other -                                             | \$10,800    | \$11,124    | \$11,458     | \$11,801    | \$12,155      |
| 35 | TOTAL (Lines27 – 34)                                | \$196,700   | \$202,601   | \$208,679    | \$214,939   | \$221,388     |
| 36 | Net Operating Income<br>(Line 6 minus 26 minus 35)  | \$216,487   | \$516,049   | \$868,558    | \$1,282,197 | \$1,766,382   |
|    | (Line o minus 20 minus 00)                          |             |             |              |             |               |
|    | NON-OPERATING EXPENSES                              |             |             |              |             |               |
| 37 | Debt-Repayment – Principal<br>and Interest          | \$775,000   | \$783,476   | \$784,176    | \$1,002,493 | \$2,225,633   |
| 38 |                                                     | 0           | 0           | \$24,971,000 | 0           | 0             |
| 39 | Interfund Transfers                                 | 0           | 0           | 0            | 0           | 0             |
| 40 | To General Fund                                     | 0           | 0           | 0            | 0           | 0             |
| 41 | To Replacement Fund                                 | 0           | 0           | 0            | 0           | 0             |
| 42 | To Emergency Fund                                   | 0           | 0           | 0            | 0           | 0             |
| 43 | Depreciation Expenses (If<br>money is set aside)    | 0           | 0           | 0            | 0           | 0             |
| 44 |                                                     | 0           | 0           | 0            | 0           | 0             |
| 45 | TOTAL (Lines 37 + 44)                               | \$775,000   | \$783,476   | \$25,755,176 | \$1,002,493 | \$2,225,633   |
| 46 | Net Non-Operating Income<br>(Line 15 minus Line 45) | \$877,563   | (\$780,976) | (\$781,676)  | (\$999,993) | (\$2,223,133) |
| 47 | Net Income Before Taxes<br>(Lines 36 + 46)          | \$1,094,050 | \$264,926   | \$86,883     | \$282,204   | (\$456,751)   |
|    | TAXES (N/A for publicly owned systems)              |             |             |              |             |               |
| 48 | Income Taxes                                        |             |             |              |             |               |
| 49 | Other Taxes                                         |             |             |              |             |               |
| 50 | TOTAL (Lines 48 + 49)                               |             |             |              |             |               |
| 51 | Net Income After Taxes<br>(Line 47 minus 50)        | \$1,094,050 | \$264,926   | \$86,883     | \$282,204   | (\$456,751)   |

### **Instructions for Completing Table 2**

Identify the source of the above information and explain methods used to develop the projections (*Attachment* # \_\_\_\_\_). Include an explanation of any revenue and expense growth or other adjustments; for example, any rate increases, service growth, inflation adjustments, expense adjustments reflecting the cost of operating additional facilities, or other considerations.

- <u>REVENUES</u>- Revenues include all sources of income to the system. They are separated on this form as: "Operating", lines 1-6 and "Non-Operating", lines 7-15. When using the subcategory "other" under any item, please write a descriptive term.
- EXPENSES-Expenses include all those activities or purchases which incur cost for the system. Expenses can be estimated in various ways. One method bases the projections on historical expense. This can be accomplished by using historical costs and escalating them from known and projected changes. An example of a known change would be an increase in labor costs for the budget period due to known or anticipated salary increases. An example of a projected increase or escalation in costs would be a 5% annual inflation rate. Materials and Supplies expense, for instance, would be expected to increase with the projected inflation rate. Expenses are separated on this form in the same fashion as Revenues with further subtopics to more clearly define expenses. When using the subcategory "other" under any item please write a descriptive term and cross out the word "other". Expenses are separated on this form as "Operating", lines 16-26, "Administrative", lines 27-35, "Non-Operating", lines 37-45, and "Taxes" lines 48-50.
- Lines 1 This line includes all money received for supplying water service. Information should come from completed Attachment 1.
- Line 2 If a separate fee is charged for fire protection include on this line.
- Line 3 Include all miscellaneous fees and charges generated by providing water service other than for the actual water service (for example, connection fees, bad check fees, reconnect fees, meter testing fees, etc.).
- Line 4 Interest earned from cash on hand or on fees financed by the utility.

Line 5 If used, please describe.

## Non-operating revenues are funds generated outside the water system and used by the water system to cover expenses.

- Lines 7-15 Items should be clear, modify topics if needed.
- Lines 16-17 Salaries and Benefits (Operators), include all compensation to employees of your system when the work is related to the system's O&M. This account should not include compensation of officers, directors, or general and administrative staff. Volunteer labor cannot be applied.
- Line 18 Utilities, includes the cost of all electric power, gas, telephone, water (at least account for what is being used at the plant), and any other system-related expenses incurred in producing and delivering water.

- Line 19 Chemicals and treatment is intended to cover the cost of all chemicals used in the treatment of your water.
- Line 20 Monitoring, includes all water monitoring costs incurred by the system. This should include both in-house monitoring and analysis costs as well as outside laboratory costs.
- Line 21 Materials, supplies, and parts means all materials and supplies used in the O&M of the water system and in providing and delivering the water to the customer. Include any repairs or parts needed in producing and delivering water. This would include grease, oil, and minor repairs to equipment. This should not include materials for administrative purposes such as postage, copying or copy machine supplies, billing forms, or letterhead.
- Line 22 Transportation is intended to include all expenses related to trucks, automobiles, construction equipment, and other vehicle expense used in producing and delivering water to the customer.

Line 23 Include the cost of purchasing water. Use only if a consecutive system.

Administration expenses are considered overhead but not those directly related to O&M of the daily production and delivery of water to the customer. This category includes billing and administrative costs incurred by the system. For example, all meter reading costs, secretarial costs, postage, publications, reference materials, uncollectible debts insurance accounting services, and all other overhead items belong in this subsection.

- Lines 27 Salaries and Benefits include all compensation to employees of your system in which the work is related to the administration of the system, such as officers, directors, secretarial, and meter reading salaries and benefits. This account should not include compensation of operators. If an employee performs both operation and meter reading a percentage of their salary should appear under the appropriate topic. For example, if an operator reads meters 25% of the time, <sup>3</sup>/<sub>4</sub> of their salary should be shown on line 16 and <sup>1</sup>/<sub>4</sub> of their salary on line 27.
- Line 28 Overhead associated with the building itself such as, mortgage payment, insurance, taxes, maintenance, etc.
- Line 29 Office supplies and postage includes all materials and supplies in administration of the water system. This includes office supplies, postage, copier charges, and paper.
- Line 30 Insurance (Vehicles, Liability, Workers' Compensation) includes all insurance costs associated with the coverage for the vehicles, general liability, workers' compensation insurance, and other insurance costs related to the operation and administration of the system.
- Line 31 Customer billing and collection should include all expenses specific to this function such as, special billing forms or software.
- Lines 32 Accounting and legal expenses includes all salaries and wages with legal and accounting functions for the system even if they are outside services.
- Line 33 A/E and professional services means all engineering and other professional services expenses associated with water system planning and design requirements.

Line 34 Other means expenses such as employee training and water certification requirements (classes, registration fees, travel, etc.), public relations campaigns and public notifications, etc. Also include any recurring expenses that did not fit into any of the above line items.

#### Non-operating expenses are ones that are necessary and paid by the water system, but are not part of daily O&M or Administration of the system. Debt Repayment and Capital Improvements are typical items that may appear on this type of analysis.

- Lines 37-42 Expenses that are involved in operating or administering the water system that were not considered in the totals appearing on lines 26 and 35 should be shown in these items, modify if necessary.
- Line 38 Capital improvements include facility and non-facility costs related to: 1) Meeting growth requirements or improving your system's infrastructure to provide better service and reliability to existing customers, 2) replacing or renovating existing facilities, or 3) to ensure compliance with drinking water regulations.
- Line 39-42 Identify any transfer of funds used to offsets other non-water system related capital expenditures. These lines represent some possible categories, modify if needed.
- Line 43 Depreciation expense only applies to systems which are currently depreciating investments made in the past (recovery of previously invested funds). Include amounts on this line only if money is actually set aside.
- Line 44 Include any recurring non-operating expenses that did not fit into any of the above line items.

# Taxes can be incurred in a variety of ways such as a state utility tax, business and occupation tax, property tax or federal income tax. Each of these taxes can be accounted for separately within the operating budget, modify if necessary.

Lines 48-49 Include any incurred taxes.

| Identi     | fy Each Ob | ligation   |            |           | Coverage  |             |             |
|------------|------------|------------|------------|-----------|-----------|-------------|-------------|
| #1         | r & Sewer  | Revenue Bo | ond Series | 15%       |           |             |             |
| #2         | r & Sewer  | Revenue Bo | ond Series | 15%       |           |             |             |
| #3         | r & Sewer  | Revenue Bo | ond Series |           | 15%       |             |             |
| #4         |            | SRF Note   |            |           | 15%       |             |             |
| #5         | DW S       | RF - LS26  | 0370       |           | 15%       |             |             |
| # <b>6</b> | NE         | W SRF Lo   | an         |           | 15%       |             |             |
| ·          | Annual     | Debt Servi | ce (Princi | nal Plus  | Interest) |             |             |
|            |            |            |            | jui i iuș |           |             |             |
|            |            |            |            |           |           |             |             |
| Fiscal     |            |            |            |           |           |             | Total Debt  |
| Year       | #1         | #2         | #3         | #4        | #5        | #6          | Service     |
| 2024       | \$563,885  | \$139,696  | \$64,226   | \$16,544  | \$ 0      |             | \$784,351   |
| 2025       | \$563,010  | \$139,696  | \$64,226   | \$16,544  | \$ 0      |             | \$783,476   |
| 2026       | \$563,970  | \$139,696  | \$64,226   | \$16,544  | \$ 0      |             | \$784,436   |
| 2027       | \$563,710  | \$139,696  | \$64,226   | \$16,544  | \$ 0      |             | \$784,176   |
| 2028       | \$564,258  | \$139,696  | \$64,226   | \$16,544  | \$217,770 | \$1,441,583 | \$2,444,076 |
| 2029       | \$563,585  | \$139,696  | \$64,226   | \$16,544  | \$0       | \$1,441,583 | \$2,225,633 |
| 2030       | \$562,720  | \$139,696  | \$64,226   | \$8,272   | \$ 0      | \$1,441,583 | \$2,216,496 |
| 2031       | \$563,663  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,167 |
| 2032       | \$563,358  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,208,862 |
| 2033       | \$562,833  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,208,337 |
| 2034       | \$564,088  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,592 |
| 2035       | \$563,068  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,208,572 |
| 2036       | \$563,828  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,332 |
| 2037       | \$563,313  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,208,817 |
| 2038       | \$563,550  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,054 |
| 2039       | \$564,513  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,210,017 |
| 2040       | \$564,173  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,677 |
| 2041       | \$563,558  | \$139,696  | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,209,062 |
| 2042       | \$564,668  | \$ 0       | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,070,476 |
| 2043       | \$563,448  | \$ 0       | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,069,256 |
| 2044       | \$563,953  | \$ 0       | \$64,226   | \$ 0      | \$ 0      | \$1,441,583 | \$2,069,761 |
| 2045       | \$563,128  | \$ 0       | \$0        | \$ 0      | \$ 0      | \$1,441,583 | \$2,004,710 |
| 2046       | \$564,000  | \$ 0       | \$ 0       | \$ 0      | \$ 0      | \$1,441,583 | \$2,005,583 |

#### SCHEDULE OF PRIOR, PARITY, OR PROJECTED REVENUES AND DEBT COVERAGE FOR RATE-BASED SYSTEM PLEDGED REVENUE

(Provide information beginning with the two fiscal years preceding the anticipated date of the first SRF loan repayment.)

|            |                                                                                               | FY2024      | FY2025      | FY2026    | FY2027    | FY2028      |
|------------|-----------------------------------------------------------------------------------------------|-------------|-------------|-----------|-----------|-------------|
| (a)<br>(b) | Net Operating Revenues.<br>(Table 2 line 36)<br>Debt Service (including required              | \$216,487   | \$516,049   | \$868,558 | 1,282,197 | 1,766,382   |
| (~)        | coverage) pledged to all prior,<br>parity, or projected projects (last<br>column of Table 3). | \$784,351   | \$783,476   | \$784,436 | \$784,136 | \$2,444,076 |
| (c)        | Net Revenue (= a – b)                                                                         | (\$567,864) | (\$267,426) | \$84,123  | \$498,022 | (\$677,694) |

- (d) Attach audited annual financial report(s), or pages thereof, and any other documentation necessary to support the above information. Include any notes or comments from the audit reports regarding compliance with covenants of debt obligations having a prior or parity lien on the revenues pledged for repayment of the SRF loan. (*Attachment* # \_\_\_\_)
- (e) Attach worksheets reconciling this page with the appropriate financial statements (for example, backing out depreciation and interest payments from operating expenses). (Attachment # \_\_\_\_)
- (f) If the net revenues were not sufficient to satisfy the debt service and coverage requirement, please explain what corrective action was taken. (Attachment #\_\_\_\_)
- (k) Identify the source of the above information and explain methods used to develop the projections (Attachment # \_\_\_\_\_). Include an explanation of any revenue and expense growth or other adjustments; for example, any rate increases, service growth, inflation adjustments, expense adjustments reflecting the cost of operating additional facilities, or other considerations.

LIST OF ATTACHMENTS (use additional sheets if necessary)
Attachment
Number

**TECHNICAL:** Accurate answers to the following questions will help identify the technical strengths as well as areas that may need improving within your system. If a question or section does not apply to your system, please write N/A for not applicable. For questions that ask you to rate your system from 1 to 5, answer 1 for worst case scenario and answer 5 for the best case scenario.

| <ul> <li>System has current and accurate data showing average and peak gpd used</li> <li>System's capacity exceeds peak demand by more than 20% (Percentage -</li> <li>System can most neak demand without pumping at peak compatity for</li> </ul> | %)             | Yes ⊠<br>Yes ⊠          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------|
| • System can meet peak demand without pumping at peak capacity for extended periods.                                                                                                                                                                |                | Yes 🖂                   | No 🗌 |
| • System has an emergency plan in place to meet system demand during a                                                                                                                                                                              |                |                         |      |
| shortage (natural disaster or largest pump/well out, etc.)                                                                                                                                                                                          | Yes 🖂          |                         |      |
| • System has accurate records indicating types and percentage of customers use Residential <u>70</u> % Commercial <u>30</u> % Industrial <u>%</u> Dedicated Irrigation Meter                                                                        |                | Yes 🔀                   |      |
| • System has comprehensive water loss program that compares amount of water                                                                                                                                                                         |                |                         |      |
| produced (plant meter) with total delivered through metered and unmetered                                                                                                                                                                           |                |                         |      |
| service connections (system's unaccounted for water is $25\%$ )                                                                                                                                                                                     | Yes 🖂          | No                      |      |
| Purchase Water Systems NA 🖂                                                                                                                                                                                                                         |                |                         |      |
| System has a written agreement with the supplier that:                                                                                                                                                                                              |                |                         |      |
| • ensures adequate supply of water during shortage conditions,                                                                                                                                                                                      |                | Yes 🗌                   | No 🗌 |
| • does not require the purchase of a minimum amount of water (water is                                                                                                                                                                              |                | v 🗆                     |      |
| <ul><li>supplied through a meter),</li><li>assures supplying water system will remain in compliance with the appropria</li></ul>                                                                                                                    | te             | Yes                     |      |
| State or federal regulations, and                                                                                                                                                                                                                   | Yes [          | 7                       | No   |
| • assures purchasing system will be notified of any water quality issues.                                                                                                                                                                           |                | Yes 🗌                   | No 🗌 |
| Surface Water Systems and Systems Using Ground Water Under the Influe                                                                                                                                                                               | nce of Surface | Water                   | NA 🖂 |
| System has redundancy for all aritical treatment components                                                                                                                                                                                         |                | 1 2 3                   | 1 5  |
| <ul><li>System has redundancy for all critical treatment components</li><li>System monitors raw, settled, and individual filtered water turbidity</li></ul>                                                                                         |                | $1 \ 2 \ 3 \ 1 \ 2 \ 3$ |      |
| <ul> <li>System monitors raw, secred, and marviadar intered water tarbitry</li> <li>System consistently (95% of the time) has a filtered water turbidity of?</li> </ul>                                                                             | <i>/</i> 0.    | 125                     | 1.5  |
| which is within the current standard of .3 NTU                                                                                                                                                                                                      | ,              | 1 2 3                   | 4 5  |
| • System has the capability to add coagulant before the filter and disinfect at                                                                                                                                                                     |                |                         |      |
| various points in the treatment process                                                                                                                                                                                                             |                | 1 2 3                   | 4 5  |
| • System is evaluating (or has evaluated) changes necessary to meet the                                                                                                                                                                             |                | 1 2 2                   |      |
| Enhanced Surface Water Treatment Rule<br>Some needed changes are:                                                                                                                                                                                   |                | 1 2 3                   | 4 5  |
|                                                                                                                                                                                                                                                     |                |                         |      |
| • System is evaluating (or has evaluated) changes needed to meet requirements in the Disinfection By Products Rule                                                                                                                                  |                | 1 2 3                   | 4 5  |
| Some planned modifications are:                                                                                                                                                                                                                     |                | 1 2 3                   |      |
|                                                                                                                                                                                                                                                     |                |                         |      |
| Ground Water System NA                                                                                                                                                                                                                              |                |                         |      |
| • A minimum of two sources of groundwater are provided                                                                                                                                                                                              |                | Yes 🖂                   | No 🗌 |
| • Source water protection area provides a minimum 500 foot radius around eac                                                                                                                                                                        | h              | <u> </u>                | _    |
| drinking water well                                                                                                                                                                                                                                 | 1              | Yes 🖂                   | No 🗌 |
| · Groundwater source capacity equals or exceeds the design maximum day den                                                                                                                                                                          | nand           |                         |      |

| Y | es [ | $\ge$ | N | o 🗌            |
|---|------|-------|---|----------------|
| 1 | 2    | 3     | 4 | <mark>5</mark> |

• System monitors raw water quality to determine appropriate treatment

well out of service

• System's well(s) have; air/vacuum relief valve, check valve, blow-off, by-pass, meter,

and equals or exceeds the design average day demand with the largest producing

working sanitary seal, construction/maintenance records and are properly vented

• System routinely monitors drawdown

### Disinfection

| <ul> <li>System has adequate contact time of <u>360</u> minutes following disinfection and before the first user in the distribution system</li> <li>Disinfection equipment is regularly inspected and maintained</li> <li>A chlorine residual is maintained throughout the distribution system</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | es [<br>2                           |                  | No           | o 🗌<br>o 🗍<br><mark>5</mark>                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------|------------------|--------------|-----------------------------------------------------------------------------|
| Distribution System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |                  |              |                                                                             |
| <ul> <li>System has accurate information, including age, for pipe materials that currently make up the distribution system</li> <li>Water mains providing fire protection are a minimum of 6-inches in diameter</li> <li>System is free of severe "water hammer" problems</li> <li>System tracks ranges of operating pressure, especially during peak demand</li> <li>System maintains a minimum operating pressure of 20 psi</li> <li>Normal operating pressure is kept between 40 and 100 psi</li> <li>System has a routine leak detection program that uses (type of equipment),</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | <mark>1</mark><br>1 | es [<br>2<br><mark>2</mark><br>es [ | $\frac{3}{3}$    | No<br>4<br>4 | $ \begin{array}{c} \circ \boxtimes \\ 5 \\ 5 \\ \circ \square \end{array} $ |
| repairs identified leaks quickly, and keeps water loss in the distribution system below%. Average number of leak repairs per year is <u>100</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   | 2                                   | 3                | 4            | 5                                                                           |
| <ul> <li>System has a cross connection control program in place that addresses:<br/>evaluation of each service connection, installation of specified backflow<br/>preventer, training, record keeping, annual testing, and education</li> <li>System is working to eliminate dead ends in the mains</li> <li>System has a flushing program that operates times a year</li> <li>System has a map showing the bacteriological, lead and copper, and<br/>TTHM (if applicable) sampling points</li> <li>System has accurate "as-built" maps of the distribution system posted that show:<br/>location of sources (or intakes), size of mains, dead end mains, valves, curb stops<br/>on service lines, and proximity of mains to other utilities (gas, electric, etc.)</li> <li>System has a routine valve exercise program</li> <li>All customers are metered and all meters are routinely calibrated</li> <li>Customer complaints in the past year: <u>2</u>.</li> </ul> | 1<br>1<br>1         |                                     | 3<br>3<br>3<br>3 | 4<br>4<br>4  | 5<br>5<br>5<br>5<br>5                                                       |
| Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |                  |              |                                                                             |
| <ul> <li>System has a pump maintenance program that includes annual inspection, scheduling of repair, and routine maintenance that is conducted by a qualified contractor</li> <li>System has standby or emergency power equipment that is routinely tested under load and can provide 100% of the average daily demand for <u>7</u> days</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | <mark>2</mark><br>2                 | 3<br>3           |              | -                                                                           |
| Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |                  |              |                                                                             |
| <ul> <li>System is able to meet peak demand without the high service pumps running at peak capacity for extended period</li> <li>System has adequate reserve capacity for fire protection.<br/>Total storage capacity of the system is <u>1 M gallons</u> gals</li> <li>System's <u>1</u> storage tanks receive routine inspection (every 3-5 years) to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 2<br>2                              | 3                |              | <mark>5</mark><br>5                                                         |
| determine and schedule any needed maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                   | 2                                   | 3                | 4            | <mark>5</mark>                                                              |
| • All storage tanks are equipped with an altitude valve to prevent overflowing and are sized appropriately to ensure adequate turnover and no loss of water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   | 2                                   | 3                | 4            | <mark>5</mark>                                                              |

| • | Storage tanks are covered and the surrounding areas are fenced          | 1 | 2 | 3 | 4 | <mark>5</mark> |  |
|---|-------------------------------------------------------------------------|---|---|---|---|----------------|--|
| • | Storage tanks have a drain valve and an entry hatch to allow access for |   |   |   |   |                |  |
|   | cleaning and painting of the interior of the tank                       | 1 | 2 | 3 | 4 | <mark>5</mark> |  |

**MANAGERIAL:** Answering the next set of question will help the system clearly define responsible parties, staffing needs, operational needs, policies, and internal standard that guide system performance. For questions that ask you to rate your system from 1 to 5, answer 1 for worst case scenario and answer 5 for the best case scenario.

| • | System has a current organizational chart and accompanying position |   |   |   |   |                |
|---|---------------------------------------------------------------------|---|---|---|---|----------------|
|   | descriptions that clearly define responsibilities of staff members  | 1 | 2 | 3 | 4 | <mark>5</mark> |
| - | The plant is a setenamy Class 2C plant experting 6 hours non day    |   |   |   |   |                |

• The plant is a category <u>Class 2C</u> plant operating <u>6</u> hours per day.

List names, class, and license numbers for all operators fulfilling staffing requirements:

| Joseph Thomas – B 0012173 | Salvador Mora – C 0025241 |  |
|---------------------------|---------------------------|--|
| Troy Kepley – C 0023075   |                           |  |
| Juan Cardenas – C 0020126 |                           |  |

- System is satisfied with service provided by contract operator(s)
- The operator's authority and responsibilities are clearly defined

**Policies and Plans:** Please indicate with a check mark the items for which the water system has written policies or plans.

NA 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

location

 $\boxtimes$  water source

- standard specifications connection policies main extension policies  $\boxtimes$ Lead & Copper sample plan  $\square$ bacteriological sampling plan emergency operation plan Cross connection control plan record management plan TTHM  $\overline{\boxtimes}$  public education & outreach disconnection policy general rules disaster response plan personnel policy Safety/Risk Management Policy
- Based on the answers above the system has: clear organizational structure, defined staffing requirements, and appropriate rules/policies

**Operations and Maintenance:** The items that follow are elements that may be contained in a thorough Operations and Maintenance (O&M) manual. A complete O&M manual is useful as a quick reference for anything from trouble shooting to emergency procedures. Please indicate with a check mark those items contained in the system's O&M manual.

#### Introduction and Overview

- System name
- $\bigtriangleup$  design flow capacity
- available training
- System ID#
   type of treatment
   publications available
- Statement of the purpose of the manual and relay to the operator how to best obtain pertinent information
- organizational chart (note which activities require qualified and licensed/certified personnel)

#### **General System Description**

- a flow schematic (source to distribution)
- pumping capabilities (source, chemicals, and high service)

 $\boxtimes$  storage (raw, finished water, and chemicals)

system map showing location of all wells, intake structures, pumping stations, storage tanks, and the defined service area

#### System Operation and Control

- identification of major system components including a description of the normal operation of each component
- $\boxtimes$  possible alternative operation modes and circumstances under which they would be used
- $\boxtimes$  schematic diagrams of each treatment process
- preventative maintenance program (include inspections performed when the facility is off-line)

- common operating problems with methods of bypassing while being repaired
- importance of and how to use laboratory tests for process control
- routine system operation for each major system component this should include startup and shutdown procedures, safety procedures, and meter reading
- $\boxtimes$  evaluation of overall system performance

#### Laboratory Testing

- $\boxtimes$  identification of samples and tests needed for compliance as well as for process control.
- $\boxtimes$  sampling locations, time, and methods
- $\boxtimes$  how to interpret laboratory results and the use of these results to improve the process
- $\boxtimes$  what should be in laboratory supply and chemicals inventory
- $\overline{\boxtimes}$  list of laboratory references;
- instructions for filling out worksheets for a sample (include completed example)
- for tests to be performed by outside laboratories, the name of the laboratory, contact person, telephone number, and method of requesting sample pick-up or schedule for sample pick-up

#### **Records and Reports Section**

- a general explanation of the purpose and importance of accurate records and reports
- a log of complaints and responses
- daily logs, maintenance records, laboratory records, monthly reports, monitoring reports, sanitary surveys, annual reports, operating cost reports, and accident reports.
- kistorical records (permits, standards, pumping capacity, consumption, and drawdown)
- $\square$  list of equipment warranties and provisions
- $\boxtimes$  specific area for filing records
- procedures for reporting to appropriate agencies (specify how long records should be kept)

#### Maintenance

- general information including purpose and value of scheduled and preventative maintenance
- preventative maintenance schedule and sample worksheets with instructions
- specifications for fuels, lubricants, filters, etc. for equipment
- troubleshooting charts or guides which reference pages in manufacturers' O&M manual or system's O&M manual as appropriate
- a record of data plate information on each piece of equipment maintained, this should include manufacturers' maintenance schedule for routine adjustments
- a work order system for maintenance of equipment with sample forms to accurately track O&M costs for each piece of equipment
- brief operation instructions for each piece of equipment with reference to the manufacturers' technical specifications for major system components
- a mechanism for storage and check out of specialized equipment used infrequently
- ☐ list of outside contract maintenance tasks
- Contact person and phone numbers for equipment manufacturers, major suppliers, and all utilities serving the system
- list of special tools used and how to replace
  - stocks of spare parts, supplies, chemicals and other items vital to system operation
- a system of requisitions and/or work orders used to distribute parts, supplies, chemicals, etc. for reorder purposes

#### **Emergency Response Program**

- pre-response activity such as; personnel assignments, emergency equipment inventory, filling a storage tank before a storm hits, copies of all emergency numbers. Laminated copy of phone numbers to keep readily accessible should include water system personnel responsible for making decisions in specific situations; including name, job title, home and work phone number (pager/cell phone number if available), police, fire departments, and for chemical spills or exposure CHEMTECH 800-424-9300.
- $\boxtimes$  safety procedures for all personnel involved in the response

- a contingency plan to ensure proper treatment of water even in adverse conditions which may include agreements with nearby water systems for equipment or personnel
- $\boxtimes$ procedures for putting standby and emergency sources into active service
- $\boxtimes$ procedures for notifying customers, the local health jurisdiction, and EPA of water quality problems
- systematic procedure for returning to normal operation

#### Appendix

The appendix can contain documents and other information that cannot be easily incorporated into the body of the manual. Large documents such as copies of plans and specifications may be stored separately from the main manual. The following list has examples of items that might be included in appendices. Please check all that apply to your O&M Manual.

| Detailed design criteria | 🔀 User Charge System           | Approved shop drawings    |
|--------------------------|--------------------------------|---------------------------|
| Schematics               | Piping color codes             | Valve indices or schedule |
| 🛛 As-built drawings      | Drinking water rules/Ordinance | 🛛 Manufacturers' manuals  |
|                          |                                |                           |

• Based on the answers above please rate the system's current O&M Manual. 1 2 3 4 5

The last set of questions is designed to help you evaluate the systems' source(s). Please read the item then circle the number from 1 (needs improving) to 5 (top notch) that you feel best describes your systems' current status relative to that item or check boxes as appropriate.

| System has an active Source Water Assessment Program                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 <mark>3</mark> 4 5                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| For Ground Water Systems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| <ul> <li>System has accurate historical information (like well driller's log and construction records) for each well</li> <li>Well(s) have the "zone of contribution" identified on a map</li> <li>No storage of potential contaminants in close proximity of well(s)</li> <li>Well(s) are housed and fenced and have an appropriate concrete pad</li> <li>Well casing(s) extend at least 12" above floor or ground Name of aquifer is known: X Yes No Aquifer is: Upper Floridian Confined Unconfined</li> </ul> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| For Surface Water Systems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| • Commercial, industrial, or agricultural operations up stream are identified                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 3 4 5                                            |
| • System has provided a contact to these facilities in case of an accidental release                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 3 4 5                                            |
| System performs up stream monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 3 4 5                                            |
| • System has a raw water reservoir of gallons that acts as a buffer                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 3 4 5                                            |
| <ul> <li>Overall:</li> <li>System has adequate knowledge and program activity to protect and ensure an adequate supply of drinking water 10 years into the future</li> </ul>                                                                                                                                                                                                                                                                                                                                      | 1 <mark>2</mark> 3 4 5                               |

**CERTIFICATION:** I, the undersigned authorized representative of the applicant, hereby certify that all information contained in this form and attachments is true, correct, and complete to the best of my knowledge and belief. I also certify that I have been duly authorized to file the business plan and to provide these assurances.

| Signature ( | Of Authorized Representat | ive |     |       |         |      |
|-------------|---------------------------|-----|-----|-------|---------|------|
| Name (Ple   | ase Print)                |     |     |       |         |      |
| Title       |                           |     |     |       |         |      |
| Address     |                           |     |     |       |         |      |
| City _      |                           |     | \$  | State | <br>Zip | <br> |
| Phone       |                           |     | Fax |       |         |      |



### APPENDIX E: REQUIREMENTS FOR SUPPLEMENTAL APPROPRIATIONS FOR HURRICANES FIONA AND IAN (SAHFI)

In September 2022, Hurricane Ian, a powerful Category 4 storm, struck Florida, causing widespread devastation. Hurricane Ian significantly impacted the City of LaBelle's water and wastewater treatment infrastructure, causing widespread disruptions and exposing vulnerabilities across multiple systems. The storm's effects highlighted critical areas for improvement to ensure resiliency for future events including the following:

#### **1. Source Water and Treatment Challenges**

- **Electrical Disruptions**: Extensive power surges and outages, caused by high winds and lightning strikes, affected source wells and water treatment facilities. Backup systems were insufficient to maintain continuous operations, leading to fluctuations in water pressure.
- **Equipment Damage**: Lightning and flooding damaged key treatment components, including pump motors, control panels, and chemical feed systems, necessitating emergency repairs.
- **Chemical Supply Issues**: Delays in chemical deliveries disrupted the treatment process. Existing chemical storage tanks lacked sufficient capacity to accommodate extended supply interruptions.

#### 2. Water Distribution System Vulnerabilities

- **Pressure Fluctuations**: Inconsistent power supply led to water hammer effects, straining, and damaging the distribution system piping.
- **Damaged Isolation Valves and Hydrants**: Non-functional isolation valves and aging fire hydrants limited the City's ability to isolate failures and ensure adequate fire protection.
- **Single Points of Failure**: Dead ends in the distribution system caused localized outages, exacerbating service interruptions.

#### 3. Wastewater Treatment Challenges

- Access Restrictions: Fallen trees blocked dirt roads leading to wastewater treatment facilities, delaying critical maintenance and emergency operations.
- **Camera and Monitoring System Failures**: Damage to SCADA systems and lack of online access to the facilities cameras hindered remote monitoring and real-time system management.
- **Flooding and Erosion**: Excessive rainfall and localized flooding impacted the structural integrity of wastewater treatment facilities, complicating operations.

#### 4. Broader Operational Impacts

- **Emergency Power Deficits**: Limited backup power systems could not sustain operations during prolonged outages, exposing the need for additional portable and stationary generators.
- **Communication Breakdowns**: Damaged infrastructure impeded coordination between response teams and regulatory agencies.
- **Aging Plant Equipment**: The water treatment plant's aging equipment was severely stressed. All of the critical service pumps downstream of the RO system, including the clearwell, high service,



and concentrate deep well injection pumps, are at the end of their useful life and need to be replaced to insure reliable and energy efficient operation.

• **Redundancy**: The hurricane highlighted the lack of redundancy in certain areas of the water treatment system including capacity limits if one RO train is out of service, storage limitations with the City only having the storage capacity of one ground storage tank, and supply limitations due to size restrictions in water distribution piping and inadequate distribution system looping.

In summary, Hurricane Ian exposed a significant number of critical vulnerabilities in LaBelle's water treatment and supply system, highlighting the need for modernization and improved resilience and redundancy to protect against water supply disruption as a result of future similar events. Pictures of damage around the City of LaBelle as a result of Hurricane Ian are included in this Appendix E. Many of the improvements to address the vulnerabilities had already been identified in the City's Drinking Water Facility Plan. The following items were added or removed from the scope of Projects 1 and 2 in the Drinking Water Facility Plan to address additional needs or vulnerabilities identified as a result of Hurricane Ian:

#### Project 1 – Water Source and Treatment Improvements

- Added replacement of (2) 50 HP High Service Pumps, (2) 100 HP High Service Pumps, (2) 40 HP Concentrate Pumps, and (2) 30 HP Clearwell Pumps
- Added purchase of critical operating shelf spares for long lead equipment including replacement Variable Frequency Drives for the source water well pumps and motor-operated valves for the RO skids
- Added upgrading of the camera system at the water plant to allow for remote monitoring of the camera system at both the source water wells and the water treatment plant
- Added controls and electrical improvements to provide a greater level of protection against lightning strikes and Florida Power & Light power surges

Project 2 – Water Distribution and Storage Upgrades

- Removed State Road 80 & Helms Road Water Main Extensions; this work is being contracted and executed separately
- Removed Zone B Water Main Improvements this work is being contracted and executed separately
- Added pressure surge/water hammer prevention equipment on downstream side of high service pumps for protection of distribution system
- Added replacement of undersized hydrants or hydrants at end of useful life that are not providing adequate fire flow capacity
- Added water main improvements to replace undersized pipes that are limiting distribution during fire flow events
- Added water main improvements to eliminate some of the significant system dead ends that have been created by unmanaged distribution system additions over the last 80 years resulting in poor water distribution to certain areas of the network.

Updated construction cost estimates and life cycle cost estimates that incorporate the above changes are included in this Appendix E and are summarized below in Table E-1. The total capital cost of the recommended projects is estimated to be \$19.45 million in 2024 dollars.

|                                                                              | Project 1 – Source &<br>Treatment Upgrades | Project 2 –<br>Distribution and<br>Storage Upgrades |
|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Construction Base Cost (2024)                                                | \$4,080,000                                | \$10,556,000                                        |
| Construction Contingency 10%                                                 | \$420,000                                  | \$1,101,000                                         |
| Engineering, Permitting and<br>Design 10%                                    | \$420,000                                  | \$1,101,000                                         |
| Engineering Services During<br>Construction<br>8%                            | \$336,000                                  | \$881,000                                           |
| Fiscal, Legal and Administration 3%                                          | \$126,000                                  | \$330,000                                           |
| Land Acquisition                                                             | \$0                                        | \$100,000                                           |
| Construction Escalation to mid-<br>point of construction (end of 2026<br>7%) | \$799,000                                  | \$2,104,000                                         |
| Total Opinion of Capital Costs                                               | \$6,162,000                                | \$16,108,000                                        |

| Table E-5: Updated Selected Plan Proposed Costs | Costs |
|-------------------------------------------------|-------|
|-------------------------------------------------|-------|

The City of LaBelle is seeking SAHFI funding for work associated with the projects identified in the Drinking Facility Plan which involve Water Source and Treatment Improvements (Project 1) and New Water Distribution System and Storage Upgrades (Project 2). This work is eligible for SAHFI funding as it satisfies the goals described within the Hurricane Ian Special Appropriation Florida Requirements guidance for the following purposes:

Subpart L – Drinking Water State Revolving Funds: Authority: Section 1452 of the Safe Drinking Water Act, as amended, 42 U.S.C. 300j-12

Project 3 in the Facility Plan, relating to meter replacements, does not satisfy the goals and therefore funding under SAHFI is not being sought for this particular project.

Specific project elements of Projects 1 & 2 meet a number of the program goals specified within Attachment 2 of the Memorandum dated September 7, 2023 and titled "Award and Implementation of the 2023 State Revolving Fund Supplemental Appropriation for Hurricanes Fiona and Ian (SAHFI)" from the United States Environmental Protection Agency (EPA). LaBelle's proposed projects specifically meet the following program goals:

### A. Project 1 – Source and Treatment Upgrades SAHFI Compliance

I. Drinking Water SRF - SAHFI Requirement I



Projects that **prevent interruption of water distribution system operation** in the event of a flood or natural disaster, including but not limited to:

c. Replacement of damaged equipment with more energy efficient equipment

<u>Project 1 Specific Project Compliance Element</u> - Project 1 will include replacement of the four (4) high service pumps – two (2) 50 HP and two (2) 100 HP - which are at the end of their useful life, with new pumps with premium efficiency motors. Also, one (1) additional 50 HP propane powered high service pump will be provided as a backup high service pump to be put into service in the event of loss of primary and backup electrical power at the water treatment plant.

g. Installation/construction of redundant distribution system components and equipment

<u>Project 1 Specific Project Compliance Element</u> – Project 1 includes (1) 50 HP high service propane driven backup pump to provide pumping of finished water to the distribution system upon loss of power at the water treatment plant.

#### II. Drinking Water SRF - SAHFI Requirement III

Projects that **maintain the operation of a drinking water treatment plant, intake or well** in the event of a flood or natural disaster, including but not limited to:

a. Installation of back-up energy supply or alternative energy sources (e.g., solar panels, wind turbines, batteries, switch boxes) and/or hardening of existing connections to the power grid

<u>Project 1 Specific Project Compliance Element</u> - Project 1 includes a new propane powered pump for finished water transfer from the clearwell to the ground storage tank to allow for pump operation independent of the availability of electricity. The selected alternative for Project 1 also includes new emergency backup generators for the source water well pumps and a portable trailer-mounted genset to provide for a backup power supply which can be utilized at the water treatment plant or the source water wells in the event of stationery genset failure.

b. Replacement of damaged equipment with more energy efficient equipment

<u>Project 1 Specific Project Compliance Element</u> - Project 1 will include replacement of the clearwell and concentrate pumps – (2) 30 HP clearwell pumps and (2) 40 HP concentrate pumps – which are at the end of their useful life. In addition, the existing clearwell pumps are a non-standard pump design which is very difficult to repair and service. These pumps will be replaced with new pumps with premium efficient motors.



c. Physical "hardening" or waterproofing of pumps and electrical equipment at pump stations and other components of distribution systems (including storage facilities and associated equipment) through upgrade or replacement, including: Waterproofing electrical components (e.g., pump motors)

- Waterproofing circuitry
- Dry floodproofing/sealing of structure to prevent floodwater penetration
- Installation/construction of wind resistant features (e.g., wind resistant roofing materials, wind-damage-resistant windows, storm shutters)

<u>Project 1 Specific Project Compliance Element</u> – Project 1 includes improving the chemical storage and pumping at the water treatment plant to prevent unexpected failures of equipment at the end of its useful life, eliminate safety and environmental risks with the existing containment and drainage under the existing chemical storage canopy, protect critical chemical feed equipment from weather-related damages, and provide more resilience to the chemical storage area. The canopy structure over the existing chemical feed systems will be replaced with a climate controlled building. The sodium hypochlorite chemical feed and storage system will be moved from its existing location in a stand-alone shed into the new building with the other chemical feed systems and storage tanks. Chemical feed systems and storage tanks will be increased in size to accommodate the larger capacity of the upgraded RO skids (ref. A.II.g. below). The existing fiberglass control panels will be replaced with 316SS NEMA 4X panels to protect power and controls equipment from spraying water and/or chemicals.

- f. Installation of larger capacity storage tanks
  - Installation of larger capacity chemical storage tanks for continued treatment in absence of delivery service
  - Installation of larger capacity fuel storage tanks for back-up generators
  - Installation of larger capacity water storage facilities (e.g., raw water reservoirs, backwash tanks, contact basins)

<u>Project 1 Specific Project Compliance Element</u> - Project 1 will double the capacity of the chemical storage systems, adding redundancy to mitigate the effect of failures and backup capacity to mitigate delays in delivery of chemicals as a result of a flood or natural disaster.

g. Installation/construction of redundant system components and equipment

<u>Project 1 Specific Project Compliance Element</u> – Project 1 includes new membranes and additional pressure vessels to expand the two (2) RO trains from 0.75 MGD to 1.125 MGD each. The upgraded skids will allow the City to continue to supply water to residents if one of the reverse osmosis treatment trains is offline. A third finished water clearwell pump will be added. This pump will be propane powered to allow the transfer of finished water from the clearwell to the ground storage tank when power is unavailable at the water treatment plant. A trailer mounted generator will provide the



City with backup power capabilities and the ability to move the power supply to the location where it is most needed in the event one of the stationary generators fails. Project 1 also includes the purchase of critical shelf spares including RO skid motor operated valves and VFDs for the source water wells to provide equipment redundancy for difficult to repair equipment with long lead times.

h. SCADA system projects to allow remote or multiple system operation locations

<u>Project 1 Specific Project Compliance Element</u> - Project 1 includes SCADA upgrades which consist of an upgraded camera system at the water treatment plant to allow for remote monitoring of the plant and source water wells and improvements to controls and power surge protection, including possible improvements to lightning protection and grounding at the water treatment plant and source water wells to enable the facilities to better handle lightning strikes and utility-side power surges. Project 1 also includes SCADA upgrades to incorporate the RO skid and chemical feed system upgrades into the existing SCADA system.

#### **B.** Project 2 – Distribution and Storage Upgrades SAHFI Compliance

I. Drinking Water SRF - SAHFI Requirement I

Projects that **prevent interruption of water distribution system operation** in the event of a flood or natural disaster, including but not limited to:

a. Installation of back-up generators (including portable generators) or alternative energy sources (e.g., solar panels, wind turbines, batteries, switch boxes) that service pump stations or other distribution system facilities

<u>Project 2 Specific Project Compliance Element</u> – Project 2 will provide backup power to all equipment associated with the new elevated storage tank which will be integrated into the design of the new backup gensets at the source water supply wells.

c. Replacement of damaged equipment with more energy efficient equipment

<u>Project 2 Specific Project Compliance Element</u> - Project 2 includes a hydropneumatic tank or other pressure surge or water hammer prevention equipment connected to the water distribution system to prevent pressure surges in the distribution system at high service pump startup and shutdown that result in damages to the distribution system piping. Project 2 also includes the replacement of fire hydrants throughout the City that are undersized and at the end of their useful life which increases the risk of the City not being able to protect the public during fire emergencies. And Project 2 includes identification and replacement of non-functional water main isolation gate valves. Non-functional isolation valves prevent the City from being able to quickly isolate piping failures in the distribution system which can result in the loss of large volumes of finished water when operators struggle to close valves (or locate working valves) as



well as the need to isolate much larger sections of the distribution system than would otherwise be necessary.

g. Installation/construction of redundant distribution system components and equipment

<u>Project 2 Specific Project Compliance Element</u> - Project 2 includes new transmission and distribution mains that will eliminate some of the distribution system dead ends around the City and create looping in LaBelle's system, including an extension of the water main along SR80 from the Wal-Mart north of Helms Road to Miller Avenue, to minimize the number of single points of failure that can lead to water outages and to better balance flow distribution throughout the network. Additionally, the selected alternative for Project 2 includes new storage capacity to bring LaBelle's total finished water storage capacity up to the amount required by F.A.C. 62-555.320 (19)(a) and to maintain storage and supply of drinking water in the event one of the system's storage tanks is taken offline. Project 2 will also include replacement of sections of piping in the water distribution system that currently limit distribution of adequate fire flow to hydrants around the city.

#### II. Drinking Water SRF - SAHFI Requirement III

Projects that **maintain the operation of a drinking water treatment plant, intake or well** in the event of a flood or natural disaster, including but not limited to:

a. Installation of back-up energy supply or alternative energy sources (e.g., solar panels, wind turbines, batteries, switch boxes) and/or hardening of existing connections to the power grid

<u>Project 2 Specific Project Compliance Element</u> - Project 2 includes a propane powered backup pump for finished water distribution from the treatment plant during periods when the water treatment plant is without utility-supplied or generator-supplied electricity.

b. Replacement of damaged equipment with more energy efficient equipment

<u>Project 2 Specific Project Compliance Element</u> - Project 2 includes replacement of the four (4) high service pumps which are at the end of their useful life with new pumps with premium efficient motors.

- f. Installation of larger capacity storage tanks
- Installation of larger capacity chemical storage tanks for continued treatment in absence of delivery service
- Installation of larger capacity fuel storage tanks for back-up generators
- Installation of larger capacity water storage facilities (e.g., raw water reservoirs, backwash tanks, contact basins)



<u>Project 2 Specific Project Compliance Element</u> – Project 2 includes a new 1MG elevated storage tank to provide additional and redundant storage of finished drinking water for the City.

g. Installation/construction of redundant system components and equipment

Project 2 Specific Project Compliance Element – Covered above under B.II.a. and f.

### C. 500-Year Floodplain:

Flood zones for the planning area are designated in Figure 2-3 of the Facilities Plan. Most of the proposed planning area falls within Zone A, AE, AH, and X floodplain with minimal to moderate flood hazard. The drinking water treatment facility and source water well locations on FEMA's hazard map confirm that the plant and water wells are located outside of the 0.2% Annual Chance Flood Hazard referred to as the 500-Year Floodplain, providing enhanced redundancy and resiliency of the system during major flood events and natural disasters.

| Source and           | Project 1 Alternative 1 Conc<br>Treatment Upgrades - Construction of New B<br>Upgrades, and Reve  | ackup    | Gener    | rators           | s at We | ell Sources, Ch        |     | ical Storage           | e and    | l Pumping              |
|----------------------|---------------------------------------------------------------------------------------------------|----------|----------|------------------|---------|------------------------|-----|------------------------|----------|------------------------|
| ITEM NO.             | DESCRIPTION                                                                                       | UNITS    |          | соят             | QTY     | TOTAL CAPITAL<br>COST  | T   | LIFETIME O&M           | LIF      | E CYCLE COST<br>(LCCA) |
| CONSTRUCTION CO      | DSTS                                                                                              |          |          |                  |         |                        | _   |                        |          |                        |
| Reverse Osmosis Up   | grades                                                                                            |          |          |                  |         |                        |     |                        |          |                        |
| 1                    | New Reverse Osmosis Cartridge Products                                                            | EA       | \$       | 25,000           | 20      | \$ 500,00              | 00  | \$ 100,000             | \$       | 1,016,000              |
| 2                    | New Membranes for Existing Reverse Osmosis Cartridges                                             | LS       | \$ 2     | 75,000           | 1       | \$ 275,00              | 00  | \$ 55,000              | \$       | 559,000                |
| 3                    | Piping and install                                                                                | LS       |          | 50,000           | 1       | \$ 250,00              |     | \$-                    | \$       | 250,000                |
| 4                    | MWTF Camera System Upgrade                                                                        | LS       | \$       | 30,000           | 1       | \$ 30,00               | 00  | \$ 5,000               | \$       | 60,000                 |
| New Pumps            |                                                                                                   |          |          |                  |         |                        |     |                        |          |                        |
| 5                    | 100 HP Propane-Driven Centrifugal High Service Pump and Motor<br>1,850 gpm @ 140 ft TDH           | EA       | \$ 13    | 20,000           | 1       | \$ 120,00              | 00  | \$ 48,000              | \$       | 155,000                |
| 6                    | 30 HP Propane-Driven Vertical-Turbine Chlorine Contact Chamber<br>Vertical Turbine Pump and Motor | EA       | \$       | 50,000           | 1       | \$ 50,00               | 00  | \$ 20,000              | \$       | 65,000                 |
| 6                    | 1,050 gpm @ 39 ft TDH<br>100 HP High Service Pumps                                                | E۸       | \$       | 75 000           | 2       | ¢ 150.00               | 10  | ¢ 1E.000               | ¢        | 202.000                |
| 8                    | 50 HP High Service Pumps                                                                          | EA<br>EA |          | 75,000<br>55,000 | 2       | \$ 150,00<br>\$ 110,00 | _   | \$ 15,000<br>\$ 15,000 | \$<br>\$ | 293,000 219,000        |
| <u>8</u><br>9        | 40 HP Concentrate Pumps                                                                           | EA       |          | 55,000<br>60,000 | 2       | \$ 120,00              | _   | \$ 15,000<br>\$ 15,000 | \$<br>\$ | 219,000                |
| 10                   | 30 HP Clearwell Pumps                                                                             | EA       |          | 50,000           | 2       | \$ 120,00              |     | \$ 15,000<br>\$ 15,000 | ≯<br>\$  | 238,000                |
| 10                   | 10" Ductile Iron Pipe for New Pumps                                                               | LF       | *        | \$100            | 40      | \$ 100,00              | _   | \$ 2,800               | \$       | 4,000                  |
| 12                   | 10" Check Valve for New Pumps                                                                     | EA       | \$       | 2,820            | 2       | \$ 5,64                |     | \$ 2,256               | ♪<br>\$  | 7,000                  |
| 13                   | 10"x6" Flanged Eccentric Reducer for New Pumps                                                    | EA       | \$       | 1,200            | 2       | \$ 2,40                |     | \$ 960                 | \$       | 3,000                  |
| 14                   | 6" Ductile Iron Restrained Coupling Adapter                                                       | EA       | \$       | 1,000            | 4       | \$ 4,00                |     | \$ 1,600               | \$       | 5,000                  |
| 15                   | Structural Pad for New Pump (Assumed 15' x 8' x 12")                                              | EA       | \$       | 5,000            | 1       | \$ 5,00                |     | \$ 3,500               | \$       | 5,000                  |
| 16                   | Instrumentation                                                                                   | LS       | \$       | 45,000           | 1       | \$ 45,00               |     | \$ 9,000               | \$       | 91,000                 |
| 17                   | SCADA Implementation                                                                              | LS       | \$       | 20,000           | 1       | \$ 20,00               | 00  | \$ 4,000               | \$       | 41,000                 |
| 18                   | Spare parts - well VFDs and RO MOVs                                                               | LS       | \$ 1     | 00,000           | 1       | \$ 100,00              | )0  | \$ 40,000              | \$       | 129,000                |
| Well Generator Upgr  | rades                                                                                             |          |          |                  |         |                        |     |                        |          |                        |
| 19                   | 100 kW Generator                                                                                  | EA       | \$       | 75,000           | 3       | \$ 225,00              | 00  | \$ 76,500              | \$       | 497,000                |
| 20                   | Transfer Switches for 100 kW Generator                                                            | EA       | \$       | 10,000           | 2       | \$ 20,00               | 00  | \$ 6,800               | \$       | 44,000                 |
| 21                   | Surge Protectors for 100 kW Generator                                                             | EA       | \$       | 5,000            | 2       | \$ 10,00               | 00  | \$ 3,400               | \$       | 22,000                 |
| 22                   | Other Power Surge and Lightning Protection                                                        | LS       | \$ 1     | 00,000           | 1       | \$ 100,00              | 00  | \$ 34,000              | \$       | 221,000                |
| 23                   | Instrumentation                                                                                   | LS       | \$       | 10,000           | 1       | \$ 10,00               | 00  | \$ 2,000               | \$       | 21,000                 |
| 24                   | SCADA Implementation                                                                              | LS       |          | 10,000           | 1       | \$ 10,00               | 00  | \$ 2,000               | \$       | 21,000                 |
| 25                   | Testing Allowance                                                                                 | LS       | \$       | 2,000            | 1       | \$ 2,00                | 00  | \$ 800                 | \$       | 3,000                  |
|                      | d Pumping Upgrades                                                                                |          |          |                  |         |                        |     |                        |          |                        |
| 26                   | Sodium Hypochlorite - 2,000-Gallon Bulk Tank                                                      | EA       | \$       | 6,000            | 2       | \$ 12,00               | _   | \$ 2,400               | \$       | 24,000                 |
| 27                   | Sodium Hypochlorite - 75-Gallon Day Tank                                                          | EA       | \$       | 500              | 1       |                        |     | \$ 100                 | \$       | 1,000                  |
| 28                   | Sodium Hypochlorite - 6.0 gal/hour Duplex Pump Skid                                               | EA       | \$       | 5,000            | 2       | \$ 10,00               | _   | \$ 2,000               | \$       | 21,000                 |
| 29<br>30             | Sodium Hypochlorite - Transfer Pump                                                               | EA       | \$       | 400              | 1       | \$ 40                  | _   | \$ 88                  | \$       | 1,000                  |
| 30                   | Sulfuric Acid - 500-Gallon Bulk Tank                                                              | EA       | \$       | 1,200            | 1       | \$ 1,20<br>\$ 40       | _   | \$ 240<br>\$ 80        | \$<br>\$ | 3,000                  |
| 31                   | Sulfuric Acid - 30-Gallon Day Tank<br>Sulfuric Acid - 1.5 gal/hour Duplex Pump Skid               | EA       | \$<br>\$ | 400              | 1       |                        |     | \$ 80<br>\$ 800        | \$<br>\$ | 1,000                  |
| 33                   | Sulfuric Acid - Transfer Pump                                                                     | EA<br>EA | \$       | 4,000            | 1       | \$ 4,00<br>\$ 40       |     | \$ 800<br>\$ 88        | ≯<br>\$  | 8,000                  |
| 34                   | Orthophosphate - 275-Gallon Bulk Tank                                                             | EA       | \$<br>\$ | 1,000            | 1       | \$ 1,00                |     | \$ 200                 | ≯<br>\$  | 2,000                  |
| 35                   | Orthophosphate - 10-Gallon Day Tank                                                               | EA       | \$       | 200              | 1       |                        | 00  |                        |          | 2,000                  |
| 36                   | Orthophosphate - 0.65 gal/hour Duplex Pump Skid                                                   | EA       | \$       | 2,000            | 1       | \$ 2,00                | _   | \$ 400                 | ۹<br>\$  | 4,000                  |
| 37                   | Orthophosphate - Transfer Pump                                                                    | EA       | \$       | 400              | 1       |                        | 00  |                        |          | 1,000                  |
| 38                   | Sodium Hydroxide - 1,550-Gallon Bulk Tank                                                         | EA       | \$       | 1,800            | 1       | \$ 1,80                | _   | \$ 360                 |          | 3,000                  |
| 39                   | Sodium Hydroxide - 40-Gallon Day Tank                                                             | EA       | \$       | 400              | 1       |                        | _   | \$ 80                  |          | 1,000                  |
| 40                   | Sodium Hydroxide - 3.0 gal/hour Duplex Pump Skid                                                  | EA       | \$       | 4,000            | 1       | \$ 4,00                |     | \$ 800                 | \$       | 8,000                  |
| 41                   | Sodium Hypochlorite - Transfer Pump                                                               | EA       | \$       | 400              | 1       | \$ 40                  | _   | \$ 88                  | \$       | 1,000                  |
| 42                   | Hydrofluorosilicic Acid - 240-Gallon Bulk Tank                                                    | EA       | \$       | 900              | 1       |                        |     | \$ 180                 | \$       | 2,000                  |
| 43                   | Hydrofluorosilicic Acid - 35-Gallon Day Tank                                                      | EA       | \$       | 400              | 1       |                        |     | \$ 80                  | \$       | 1,000                  |
| 44                   | Hydrofluorosilicic Acid - 0.65 gal/hour Duplex Pump Skid                                          | EA       | \$       | 2,000            | 1       | \$ 2,00                | _   | \$ 400                 | \$       | 4,000                  |
| 45                   | Hydrofluorosilicic Acid - Transfer Pump                                                           | EA       | \$       | 400              | 1       |                        | _   | \$ 88                  |          | 1,000                  |
| 46                   | Antiscalant - 55-Gallon Bulk Tank                                                                 | EA       | \$       | 400              | 1       | \$ 40                  | 00  | \$ 80                  | \$       | 1,000                  |
| 47                   | Antiscalant - 25-Gallon Day Tank                                                                  | EA       | \$       | 300              | 1       | \$ 30                  | 00  | \$ 60                  | \$       | -                      |
| 48                   | Antiscalant - 0.65 gal/hour Duplex Pump Skid                                                      | EA       | \$       | 2,000            | 1       | \$ 2,00                | 00  | \$ 400                 | \$       | 4,000                  |
| 49                   | Antiscalant - Transfer Pump                                                                       | EA       | \$       | 400              | 1       |                        |     | \$ 88                  | \$       | 1,000                  |
| 50                   | New Chemical Storage Building with Secondary Containment                                          | EA       | \$ 1,0   | 02,700           | 1       | \$ 1,002,70            | 00  | \$ 401,080             | \$       | 1,298,000              |
| Other Construction C |                                                                                                   |          |          |                  |         |                        |     |                        |          |                        |
| 51                   | Mobilization/Demobilization (5%)                                                                  | 5%       |          | 66,000           | 1       | \$ 166,00              | _   |                        | \$       | 166,000                |
| 52                   | Insurance and Bonds (3%)                                                                          | 3%       |          | 99,000           | 1       | \$ 99,00               | _   |                        | \$       | 99,000                 |
| 53                   | General Conditions                                                                                | 5%       |          | 66,000           | 1       | \$ 166,00              | _   |                        | \$       | 166,000                |
| 54                   | Overhead & Profit                                                                                 | 10%      | \$ 3     | 32,000           | 1       | \$ 332,00              | _   |                        | \$       | 332,000                |
|                      |                                                                                                   | _        | _        | _                | _       | \$ 4,080,00            | 0   |                        | \$       | 6,325,000.00           |
|                      |                                                                                                   | 1001     | ¢ .      | 20.2.12          | -       | [ #                    |     |                        |          |                        |
| 55                   | Contingency                                                                                       | 10%      |          | 20,240           | 1       | \$ 420,00              | _   |                        | \$       | 420,000                |
| 56                   | Engineering, Permitting, and Design                                                               | 10%      |          | 20,240           | 1       | \$ 420,00              | _   |                        | \$       | 420,000                |
|                      |                                                                                                   |          |          | 35,580           | 1       | \$ 336,00              | 101 |                        | e (C)    | 336,000                |
| 57<br>58             | Engineering Services During Construction<br>Legal and Administration                              | 8%<br>3% |          | 26,480           | 1       | \$ 126,00              |     |                        | \$<br>\$ | 126,000                |

#### Project 1 Alternative 2 Conceptual Cost Estimate - SAHFI Revision

Source and Treatment Upgrades - Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New, Larger Reverse Osmosis Skids

| 12       100 kW Generator         13       Transfer Switches for 100 kW Ge         14       Surge Protectors for 100 kW Ge         15       Other Power Surge and Lightnin         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 2,000-G         24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 75-Gallc         26       Sodium Hypochlorite - 75-Gallc         27       Sulfuric Acid - 30-Gallon Bulk         28       Sulfuric Acid - 30-Gallon Day Tz         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 727-Gallon Ba         32       Orthophosphate - 10-Gallon Day         33       Orthophosphate - 10-Gallon Day         34       Orthophosphate - 10-Gallon Day         35       Sodium Hydroxide - 40-Gallon Day         36       Sodium Hydroxide - 1.550-Galld         3                                                                                                                                                                                                 | IPTION                     | UNITS | U        | NIT COST     | QTY | 1        | TOTAL CAPITAL<br>COST | LIFETIME O&M       | LI       | FE CYCLE COST<br>(LCCA) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------|--------------|-----|----------|-----------------------|--------------------|----------|-------------------------|
| 1         Demolish Existing Reverse Osmosis           2         New 1.5 MGD Reverse Osmosis           New Pumps         100 HP Propane-Driven Centrifu           Motor         3           3         1,850 gpm @ 140 ft TDH           30 HP Propane-Driven Vertical-Chamber Vertical Turbine Pump         1,050 gpm @ 39 ft TDH           5         10" Ductile Iron Pipe for New Pump           6         10" Check Valve for New Pump (#           10         Instrumentation           9         Structural Pad for New Pump (#           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hyp                                                                                                                                                               |                            |       | 1        |              | 1   |          |                       |                    |          |                         |
| 2         New 1.5 MGD Reverse Osmosis           New Pumps         100 HP Propane-Driven Centrift<br>Motor           3         1,850 gpm @ 140 ft TDH           30 HP Propane-Driven Vertical-<br>Chamber Vertical Turbine Pump           4         1,050 gpm @ 39 ft TDH           5         10" Ductile Iron Pipe for New Pump           6         10" Check Valve for New Pump           7         10"x6" Flanged Eccentric Reduct           8         6" Ductile Iron Restrained Coup           9         Structural Pad for New Pump (#           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallon           24         Sodium Hypochlorite - 75-Gallon Day Tz           25         Sodium Hypochlorite - 75-Gallon Day Tz           26 <td></td> <td></td> <td><i>*</i></td> <td>50.000</td> <td></td> <td></td> <td>100.000</td> <td>*</td> <td><i>*</i></td> <td>202.000</td> |                            |       | <i>*</i> | 50.000       |     |          | 100.000               | *                  | <i>*</i> | 202.000                 |
| New Pumps         100 HP Propane-Driven Centrift<br>Motor           3         1,850 gpm @ 140 ft TDH           30 HP Propane-Driven Vertical-<br>Chamber Vertical Turbine Pump           4         1,050 gpm @ 39 ft TDH           5         10" Ductile Iron Pipe for New Pump           6         10" Check Valve for New Pump           7         10"x6" Flanged Eccentric Reduc           8         6" Ductile Iron Restrained Coup           9         Structural Pad for New Pump (A           10         Instrumentation           11         SCADA Implementation           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightni           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         ScADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallon           24         Sodium Hypochlorite - 75-Gallon Day Tz           25 <t< td=""><td></td><td>EA</td><td>\$</td><td>50,000</td><td>2</td><td>\$</td><td>100,000</td><td>\$ 20,000</td><td>\$</td><td>203,000</td></t<>       |                            | EA    | \$       | 50,000       | 2   | \$       | 100,000               | \$ 20,000          | \$       | 203,000                 |
| 100 HP Propane-Driven Centrifi<br>Motor           3         1,850 gpm @ 140 ft TDH           30 HP Propane-Driven Vertical-<br>Chamber Vertical Turbine Pump           4         1,050 gpm @ 39 ft TDH           5         10" Ductile Iron Pipe for New Pump           6         10" Check Valve for New Pump           7         10"x6" Flanged Eccentric Reduc           8         6" Ductile Iron Restrained Coup           9         Structural Pad for New Pump (A           10         Instrumentation           11         SCADA Implementation           11         SCADA Implementation           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnir           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallo           24         Sodium Hypochlorite - 75-Gallon Day Ta                                                                                                                                            | Membrane Skid              | EA    | \$       | 1,200,000    | 2   | \$       | 2,400,000             | \$ 480,000         | \$       | 4,876,000               |
| 3         1,850 gpm @ 140 ft TDH           30 HP Propane-Driven Vertical-<br>Chamber Vertical Turbine Pump           4         1,050 gpm @ 39 ft TDH           5         10" Ductile Iron Pipe for New Pump           6         10" Check Valve for New Pump (P           10         Instrumentation           9         Structural Pad for New Pump (P           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallo           24         Sodium Hypochlorite - 75-Gallo           25         Sodium Hypochlorite - 75-Gallo           26         Sodium Hypochlorite - 75-Gallon Day T                                                                                                                                                   | gal High Service Pump and  | EA    | \$       | 120,000      | 1   | \$       | 120,000               | \$ 48,000          | \$       | 155,000                 |
| 4       1,050 gpm @ 39 ft TDH         5       10" Ductile Iron Pipe for New Pump:         6       10" Check Valve for New Pump:         7       10"x6" Flanged Eccentric Reduct         8       6" Ductile Iron Restrained Coup         9       Structural Pad for New Pump (P         10       Instrumentation         11       SCADA Implementation         12       100 kW Generator         13       Transfer Switches for 100 kW Ge         14       Surge Protectors for 100 kW Ge         15       Other Power Surge and Lightnin         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 75-Gallon         24       Sodium Hypochlorite - 75-Gallon         25       Sodium Hypochlorite - 77-Gallon Dult         26       Sulfuric Acid - 30-Gallon Dult         27       Sulfuric Acid - 30-Gallon Dult         28       Sulfuric Acid - 30-Gallon Dult         28       Sulfuric Acid -                                                                                                                                                                                                           | urbine Chlorine Contact    |       | Ť        |              |     | -        |                       |                    | •        | ,                       |
| 6         10" Check Valve for New Pumpp           7         10"x6" Flanged Eccentric Reduct           8         6" Ductile Iron Restrained Coup           9         Structural Pad for New Pump (#           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 7.5-Gallc           25         Sodium Hypochlorite - 7.5-Gallc           25         Sodium Hypochlorite - 7.5-Gallc           26         Sodium Hypochlorite - 7.5-Gallc           27         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 1.5 gal/hour Dup           31         Orthophosph                                                                                                                                                               | and Motor                  | EA    | \$       | 50,000       | 1   | \$       | 50,000                | \$ 20,000          | \$       | 65,000                  |
| 7         10"x6" Flanged Eccentric Reduce           8         6" Ductile Iron Restrained Coup           9         Structural Pad for New Pump (#           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           10         Kurge Protectors for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallc           24         Sodium Hypochlorite - 75-Gallc           25         Sodium Hypochlorite - 75-Gallc           26         Sodium Hypochlorite - 75-Gallc           27         Sulfuric Acid - 500-Gallon Bulk           28         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 10-Gallon Day Ta           29         Sulfuric Acid - 10-Gallon Dag           32                                                                                                                                                                        | imps                       | LF    |          | \$100        | 40  | \$       | 4,000                 | \$ 2,800           | \$       | 4,000                   |
| 8         6" Ductile Fon Restrained Coup           9         Structural Pad for New Pump (A           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 75-Gallon Bulk           24         Sodium Hypochlorite - 75-Gallon Bulk           25         Sodium Hypochlorite - 75-Gallon Day Ta           26         Sodium Hypochlorite - 75-Gallon Day Ta           27         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 275-Gallon Day Ta           32         Orthophosphate - 10-Gallon Day           33<                                                                                                                                                      |                            | EA    | \$       | 2,820        | 2   | \$       | 5,640                 | \$ 2,256           | \$       | 7,000                   |
| 9         Structural Pad for New Pump (#           10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12           12         100 kW Generator           13         Transfer Switches for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 6.0 gal/h           25         Sodium Hypochlorite - 10.6 gal/hour Dup           26         Sodium Hypochlorite - 75-Gallon Bulk           28         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 10-Gallon Day Tz           29         Sulfuric Acid - 10-Gallon Day Tz           31         Orthophosphate - 275-Gallon Bulk           32         Orthophosphate - 10-Gallon Day           33         Orthophosphate - 1.50-Gallon           34                                                                                                                                                                    |                            | EA    | \$       | 1,200        | 2   | \$       | 2,400                 | \$ 960             | \$       | 3,000                   |
| 10         Instrumentation           11         SCADA Implementation           Well Generator Upgrades         12         100 kW Generator           13         Transfer Switches for 100 kW Ge           14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,00-Gi           24         Sodium Hypochlorite - 75-Gallon           25         Sodium Hypochlorite - 75-Gallon Day Tz           26         Sodium Hypochlorite - 775-Gallon Day Tz           27         Sulfuric Acid - 30-Gallon Day Tz           28         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 10-Gallon Day Tz           29         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 10-Gallon Day Ta           32         Orthophosphate - 10-Gallon                                                                                                                                     |                            | EA    | \$       | 1,000        | 4   | \$       | 4,000                 |                    | \$       | 5,000                   |
| 11       SCADA Implementation         Well Generator       Upgrades         12       100 kW Generator         13       Transfer Switches for 100 kW Generator         14       Surge Protectors for 100 kW Generator         15       Other Power Surge and Lightnin         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Generation         19       Surge Protectors for 100 kW Generation         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 7.00-Gi         24       Sodium Hypochlorite - 7.00-Gi         25       Sodium Hypochlorite - 7.00-Gi         26       Sodium Hypochlorite - 7.00-Gi         27       Sulfuric Acid - 500-Gallon Day Ta         28       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-Gallon Day Ta                                                                                                                                                                                           | ssumed 15' x 8' x 12")     | EA    | \$       | 5,000        | 1   | \$       | 5,000                 | \$ 3,500           | \$       | 5,000                   |
| Well Generator Upgrades         12       100 kW Generator         13       Transfer Switches for 100 kW Generator         14       Surge Protectors for 100 kW Generator         15       Other Power Surge and Lightnin         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Generation         19       Surge Protectors for 100 kW Generation         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 7.5Gallc         25       Sodium Hypochlorite - 7.5Gallc         25       Sodium Hypochlorite - 7.5Gallc         26       Sodium Hypochlorite - 7.5Gallc         27       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-5Gallon Bulk         28       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 1.5Gallon Bal         32       Orthophosphate - 1.5Gallon Bal         33       Orthophosphate - 1.05Gallon Da         34       Orthophosphate - 1.65 gal/hour                                                                                                                                                                                            |                            | LS    | \$       | 45,000       | 1   | \$       | 45,000                | \$ 9,000           | \$       | 91,000                  |
| 12       100 kW Generator         13       Transfer Switches for 100 kW Ge         14       Surge Protectors for 100 kW Ge         15       Other Power Surge and Lightni         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 2,000-G.         24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 75-Gallc         26       Sodium Hypochlorite - 75-Gallc         27       Sulfuric Acid - 30-Gallon Bulk         28       Sulfuric Acid - 15 gal/hour Dup         30       Sulfuric Acid - 15 gal/hour Dup         31       Orthophosphate - 275-Gallon Bulk         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 10-Gallon Da         34       Orthophosphate - 10-Gallon Da         35       Sodium Hydroxide - 1,550-Gallc         36       Sodium Hydroxide - 30 gal/hour         37       Sodium Hydroxide - 1,550-Gallc         38                                                                                                                                                                                                       |                            | LS    | \$       | 5,000        | 1   | \$       | 5,000                 | \$ 1,000           | \$       | 10,000                  |
| 13       Transfer Switches for 100 kW Ge         14       Surge Protectors for 100 kW Ge         15       Other Power Surge and Lightnin         16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         19       Surge Protectors for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 2,000-G         24       Sodium Hypochlorite - 2,000-G         25       Sodium Hypochlorite - 75-Gallo         26       Sodium Hypochlorite - 75-Gallon Bulk         27       Sulfuric Acid - 500-Gallon Day Ta         28       Sulfuric Acid - 15. gal/hour Dup         30       Sulfuric Acid - 15. gal/hour Dup         31       Orthophosphate - 275-Gallon Ba         32       Orthophosphate - 275-Gallon Da         33       Orthophosphate - 3.0 gal/hou         34       Orthophosphate - 3.0 gal/hou         35       Sodium Hydroxide - 3.0 gal/nou         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td><i>*</i></td><td></td></t<>                                                                  |                            | -     |          |              |     | <u> </u> |                       |                    | <i>*</i> |                         |
| 14         Surge Protectors for 100 kW Ge           15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           19         Surge Protectors for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 2,000-G           25         Sodium Hypochlorite - 2,000-G           26         Sodium Hypochlorite - 2,000-G           27         Sulfuric Acid - 500-Gallon Bulk           28         Sulfuric Acid - 150a-Gallon Day Tz           29         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 10-Gallon Day Tz           29         Sulfuric Acid - 10-Gallon Day Tz           30         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 275-Gallon Ba           32         Orthophosphate - 1,550-Gallon           33         Orthophosphate - 1,550-Gallon           34         Orthophosphate - 1,550-Gallon <tr< td=""><td></td><td>EA</td><td>\$</td><td>75,000</td><td>2</td><td>\$</td><td>150,000</td><td>\$ 51,000</td><td>\$</td><td>331,000</td></tr<> |                            | EA    | \$       | 75,000       | 2   | \$       | 150,000               | \$ 51,000          | \$       | 331,000                 |
| 15         Other Power Surge and Lightnin           16         Instrumentation           17         SCADA Implementation           18         Transfer Switches for 100 kW Ge           19         Surge Protectors for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 6.0 gal/t           25         Sodium Hypochlorite - 75-Gallon           26         Sodium Hypochlorite - 75-Gallon Day Tz           27         Sulfuric Acid - 30-Gallon Day Tz           28         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 10-Gallon Day Tz           29         Sulfuric Acid - 10-Gallon Day Tz           33         Orthophosphate - 10-Gallon Day           34         Orthophosphate - 10-Gallon Day           35         Sodium Hydroxide - 1,550-Gallot           36         Sodium Hydroxide - 30 gal/hou           37         Sodium Hydroxide - 30 gal/hou           38         Sodium Hydroxide - 1,550-Gallot                                                                                                                                     |                            | EA    | \$       | 10,000       | 2   | \$       | 20,000                | \$ 6,800           | \$       | 44,000                  |
| 16       Instrumentation         17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         19       Surge Protectors for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 2,000-G.         24       Sodium Hypochlorite - 7.6Gallc         25       Sodium Hypochlorite - 7.6Gallc         26       Sodium Hypochlorite - 7.6Gallcn         27       Sulfuric Acid - 500-Gallon Day Ta         28       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-Gallon Day         32       Orthophosphate - 10-Gallon Day         33       Orthophosphate - 1.50 Gallon         34       Orthophosphate - 1.50 Gallon         35       Sodium Hydroxide - 3.0 gal/hour         36       Sodium Hydroxide - 3.0 gal/hour         37       Sodium Hydroxide - 3.0 gal/hour                                                                                                                                                                                       |                            | EA    | \$       | 5,000        | 2   | \$       | 10,000                | \$ 3,400           | \$       | 22,000                  |
| 17       SCADA Implementation         18       Transfer Switches for 100 kW Ge         19       Surge Protectors for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         Sodium Hypochlorite - 2,000-G       24         Sodium Hypochlorite - 75-Gallc       25         24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 75-Gallc         26       Sodium Hypochlorite - 75-Gallc         27       Sulfuric Acid - 100-Gallon Bulk         28       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 10-Gallon Dat         32       Orthophosphate - 10-Gallon Dat         33       Orthophosphate - 1.5 gal/hour         34       Orthophosphate - 1.5 gal/hour         35       Sodium Hydroxide - 40-Gallon Dat         36       Sodium Hydroxide - 3.0 gal/hout         37       Sodium Hydroxide - 3.0 gal/hout         38       Sodium Hydroxide - 3.0 gal/hout         39       Hydrofluorosilicic Acid - 0.65 gal         40       Hydrofluorosilicic Acid - 0.65 gal                                                                                                                                                                       | g Protection               | LS    | \$       | 100,000      | 1   | \$       | 100,000               | \$ 34,000          | \$       | 221,000                 |
| 18       Transfer Switches for 100 kW G         19       Surge Protectors for 100 kW Ge         20       Instrumentation         21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades         23       Sodium Hypochlorite - 2,000-G         24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 75-Gallc         26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Bulk         28       Sulfuric Acid - 15 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 10-Gallon Dag         33       Orthophosphate - 10-Gallon Dag         34       Orthophosphate - 1.550-Gallc         35       Sodium Hydroxide - 40-Gallon Dag         36       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 1.550-Gallc         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 1.550-Gallc                                                                                                                                                                      |                            | LS    | \$       | 10,000       | 1   | \$       | 10,000                | \$ 2,000           | \$       | 21,000                  |
| 19         Surge Protectors for 100 kW Ge           20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 75-Gallc           25         Sodium Hypochlorite - Transfer           27         Sulfuric Acid - 500-Gallon Day Ta           28         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - 15 gal/hour Dup           31         Orthophosphate - 275-Gallon Da           32         Orthophosphate - 275-Gallon Da           33         Orthophosphate - 0.65 gal/hou           34         Orthophosphate - 10-Gallon Da           35         Sodium Hydroxide - 1,550-Gallon B           36         Sodium Hydroxide - 3.0 gal/hou           37         Sodium Hydroxide - 3.0 gal/hou           38         Sodium Hydroxide - 3.0 gal/hou           39         Hydrofluorosilicic Acid - 240-Ga           40         Hydrofluorosilicic Acid - 240-Ga           41         Hydrofluorosilicic Acid - 3.0 gal/hou           38         Sodium Hydroxide - 3.0 gal/hou           42         Hydrofluorosilici                                                                                                                            |                            | LS    | \$       | 10,000       | 1   | \$       | 10,000                | \$ 2,000           | \$       | 21,000                  |
| 20         Instrumentation           21         SCADA Implementation           22         Testing Allowance           Chemical Storage and Pumping Upgrades         23           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 2,000-G           25         Sodium Hypochlorite - 75-Gall           25         Sodium Hypochlorite - Transfer           27         Sulfuric Acid - 500-Gallon Bulk           28         Sulfuric Acid - 10-Gallon Day Ta           29         Sulfuric Acid - 1.5 gal/hour Dup           30         Sulfuric Acid - 1.5 gal/hour Dup           31         Orthophosphate - 275-Gallon Ba           32         Orthophosphate - 10-Gallon Dat           33         Orthophosphate - 1,550-Gallon           34         Orthophosphate - 1,550-Gallon           35         Sodium Hydroxide - 4.0-Gallon Dat           36         Sodium Hydroxide - 3.0 gal/hou           37         Sodium Hydroxide - 3.0 gal/hou           38         Sodium Hydroxide - 3.0 gal/hou           39         Hydrofluorosilicic Acid - 240-Ga           40         Hydrofluorosilicic Acid - 15-Gallon           38         Sodium Hydroxide - 4.0-Gallon Lat           41         Hydrofluorosilicic                                                                                                                            |                            | EA    | \$       | 2,000        | 2   | \$       | 4,000                 | \$ 1,360           | \$       | 9,000                   |
| 21       SCADA Implementation         22       Testing Allowance         Chemical Storage and Pumping Upgrades       23         23       Sodium Hypochlorite - 2,000-G         24       Sodium Hypochlorite - 75-Gallo         25       Sodium Hypochlorite - 6.0 gal/1         26       Sodium Hypochlorite - 75-Gallon Day Tz         27       Sulfuric Acid - 30-Gallon Day Tz         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 275-Gallon Bal         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 1,550-Gallo         34       Orthophosphate - 1,550-Gallo         35       Sodium Hydroxide - 40-Gallon Da         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gallon Bulk Tar         41       Hydrofluorosilicic Acid - 10-Si gal/hour Dup         45       Antiscalant - 55-Gallon Bulk Tar         43       Antiscalant - 25-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan                                                                                                                                                                | nerator                    | EA    | \$       | 1,000        | 2   | \$       | 2,000                 | \$ 680             | \$       | 4,000                   |
| 22       Testing Allowance         Chemical Storage and Pumping Upgrades         23       Sodium Hypochlorite - 7.000-G.         24       Sodium Hypochlorite - 7.5-Gallc         25       Sodium Hypochlorite - 6.0 gal/f         26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Bulk         28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 275-Gallon Bulk         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 1.550-Gall         34       Orthophosphate - 1.550-Gall         35       Sodium Hydroxide - 1.50 gal/hou         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 1.55-Gallon Bulk Tar         42       Hydrofluorosilicic Acid - 1.55-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         46 <td></td> <td>LS</td> <td>\$</td> <td>10,000</td> <td>1</td> <td>\$</td> <td>10,000</td> <td>\$ 2,000</td> <td>\$</td> <td>21,000</td>                 |                            | LS    | \$       | 10,000       | 1   | \$       | 10,000                | \$ 2,000           | \$       | 21,000                  |
| Chemical Storage and Pumping Upgrades           23         Sodium Hypochlorite - 2,000-G           24         Sodium Hypochlorite - 75-Gallc           25         Sodium Hypochlorite - 75-Gallc           26         Sodium Hypochlorite - Transfer           27         Sulfuric Acid - 500-Gallon Bulk           28         Sulfuric Acid - 30-Gallon Duly Ta           29         Sulfuric Acid - 15 gal/hour Dup           30         Sulfuric Acid - Transfer Pump           31         Orthophosphate - 275-Gallon Bulk           32         Orthophosphate - 10-Gallon Da           33         Orthophosphate - 10-Gallon Da           34         Orthophosphate - 1,550-Gallc           35         Sodium Hydroxide - 1,550-Gallc           36         Sodium Hydroxide - 30. gal/hou           37         Sodium Hydroxide - 30. gal/hou           38         Sodium Hydroxide - 30. gal/hou           39         Hydrofluorosilicic Acid - 240-Ga           40         Hydrofluorosilicic Acid - 240-Ga           41         Hydrofluorosilicic Acid - 0.65 gal/hour           42         Hydrofluorosilicic Acid - 0.65 gal/hour           43         Antiscalant - 25-Gallon Bulk Tar           44         Antiscalant - 25-Gallon Day Tan           45                                                                                                                 |                            | -     | \$       | 1,000        | 1   | \$       | 1,000                 | \$ 200             | \$       | 2,000                   |
| 23       Sodium Hypochlorite - 2,000-G.         24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 6.0 gal/f         26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Dulk         28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 15.5 gal/hour Dup         31       Orthophosphate - 275-Gallon Ba         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 10-Gallon Da         34       Orthophosphate - 10-Gallon Da         35       Sodium Hydroxide - 1,550-Gallon         36       Sodium Hydroxide - 1,550-Gallon Da         37       Sodium Hydroxide - 40-Gallon 1         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gallon         41       Hydrofluorosilicic Acid - 15-Gallon Day Tan         42       Hydrofluorosilicic Acid - 17ansfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 15-Gallon Upp <tr< td=""><td></td><td>LS</td><td>\$</td><td>2,000</td><td>1</td><td>\$</td><td>2,000</td><td>\$ 800</td><td>\$</td><td>3,000</td></tr<>                 |                            | LS    | \$       | 2,000        | 1   | \$       | 2,000                 | \$ 800             | \$       | 3,000                   |
| 24       Sodium Hypochlorite - 75-Gallc         25       Sodium Hypochlorite - 6.0 gal/f         26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Day Ta         28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 0.65 gal/hou         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - 10-Gallon Da         35       Sodium Hydroxide - 1,550-Gallo         36       Sodium Hydroxide - 4.0-Gallon         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 3.5-Gallon         41       Hydrofluorosilicic Acid - 3.5-Gallon         42       Hydrofluorosilicic Acid - 17ansfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 165 gal/hour Dup         46       Antiscalant - 165 gal/hour Dup                                                                                                                                                                   | llan Dulli Tanli           | F.4   | *        | C 000        | 2   | *        | 12 000                | ¢ 2.400            | ¢        | 24.000                  |
| 25       Sodium Hypochlorite - 6.0 gal/1         26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Bulk '         28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 15 gal/hour Dup         30       Sulfuric Acid - 17 ransfer Pump         31       Orthophosphate - 275-Gallon Da         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - 10-Gallon Da         35       Sodium Hydroxide - 4.0-Gallon Da         36       Sodium Hydroxide - 1,550-Gallo         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 0.65 gal         41       Hydrofluorosilicic Acid - 0.65 gal/hour Dup         42       Hydrofluorosilicic Acid - 0.65 gal/hour Dup         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 10.65 gal/hour Dup         47       New Chemical Storage Building         0ther Construction Costs       48                                                                                                                                                        |                            | EA    | \$       | 6,000<br>500 | 2   | \$       | 12,000                | \$ 2,400           | \$       | 24,000                  |
| 26       Sodium Hypochlorite - Transfer         27       Sulfuric Acid - 500-Gallon Bulk         28       Sulfuric Acid - 30-Gallon Day Tr         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - Transfer Pump         31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 10-Gallon Day         33       Orthophosphate - 10-Gallon Day         34       Orthophosphate - 1,550-Gallon B         35       Sodium Hydroxide - 1,550-Gallon         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 0.65 gal         42       Hydrofluorosilicic Acid - 0.65 gal         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'/2         49                                                                                                                                                                     |                            | EA    | \$<br>\$ | 5,000        | 1   | \$<br>\$ | 500<br>10,000         | \$ 100<br>\$ 2,000 | \$<br>\$ | 1,000<br>21,000         |
| 27       Sulfuric Acid - 500-Gallon Bulk         28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - 1.5 gal/hour Dup         31       Orthophosphate - 275-Gallon Da         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 10-Gallon Da         34       Orthophosphate - 1,550-Gall         35       Sodium Hydroxide - 1,550-Gall         36       Sodium Hydroxide - 1,550-Gall         37       Sodium Hydroxide - 30. gal/hou         38       Sodium Hydroxide - 30. gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 240-Ga         42       Hydrofluorosilicic Acid - 1,65 gal/hour         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         46       Antiscalant - 25-Gallon Day Tan         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       <                                                                                                                                                                   |                            | EA    | ⊅<br>\$  | 400          | 1   | ۵<br>۶   | 400                   | \$ 2,000           | ۶<br>۶   | 1,000                   |
| 28       Sulfuric Acid - 30-Gallon Day Ta         29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - Transfer Pump         31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - 1,550-Gallc         36       Sodium Hydroxide - 40-Gallon I         37       Sodium Hydroxide - 40-Gallon I         38       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 0.65 gal         42       Hydrofluorosilicic Acid - 0.65 gal         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 10.65 gal/hour Dup         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       See Contingency </td <td></td> <td>EA</td> <td>ې<br/>\$</td> <td>1,200</td> <td>1</td> <td>\$</td> <td>1,200</td> <td>\$ 240</td> <td>ء<br/>\$</td> <td>3,000</td>                      |                            | EA    | ې<br>\$  | 1,200        | 1   | \$       | 1,200                 | \$ 240             | ء<br>\$  | 3,000                   |
| 29       Sulfuric Acid - 1.5 gal/hour Dup         30       Sulfuric Acid - Transfer Pump         31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 10-Gallon Dz         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - Transfer Pum         35       Sodium Hydroxide - 1,550-Gallon         36       Sodium Hydroxide - 4.0-Gallon Dz         37       Sodium Hydroxide - 4.0-Gallon Da         38       Sodium Hydroxide - 4.0-Gallon Da         37       Sodium Hydroxide - 4.0-Gallon Da         38       Sodium Hydroxide - 4.0-Gallon Da         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 3.0 gal/hou         41       Hydrofluorosilicic Acid - 0.65 gal         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - Transfer Pump         46       Antiscalant - Toansfer Pump         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50 <t< td=""><td></td><td>EA</td><td>\$</td><td>400</td><td>1</td><td>\$</td><td>400</td><td>\$ 80</td><td>\$</td><td>1,000</td></t<>                                         |                            | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 80              | \$       | 1,000                   |
| 30         Sulfuric Acid - Transfer Pump           31         Orthophosphate - 275-Gallon B           32         Orthophosphate - 10-Gallon Da           33         Orthophosphate - 0.65 gal/hou           34         Orthophosphate - Transfer Pum           35         Sodium Hydroxide - 1,550-Gallon           36         Sodium Hydroxide - 4.0-Gallon Da           37         Sodium Hydroxide - 4.0-Gallon           38         Sodium Hydroxide - 4.0-Gallon           39         Hydrofluorosilicic Acid - 240-Ga           40         Hydrofluorosilicic Acid - 3.0 gal/hou           38         Sodium Hydroxide - 4.0-Gallon           41         Hydrofluorosilicic Acid - 240-Ga           42         Hydrofluorosilicic Acid - 3.5-Gallon Bulk Tar           43         Antiscalant - 55-Gallon Bulk Tar           44         Antiscalant - 25-Gallon Day Tan           45         Antiscalant - 25-Gallon Day Tan           46         Antiscalant - Transfer Pump           47         New Chemical Storage Building           0ther Construction Costs         48           48         Mobilization/Demobilization (5'           49         Insurance and Bonds (3%)           50         General Conditions           51         Over                                                                                                                            |                            | EA    | \$       | 4,000        | 1   | \$       | 4,000                 | \$ 800             | \$       | 8,000                   |
| 31       Orthophosphate - 275-Gallon B         32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - Transfer Purr         35       Sodium Hydroxide - 40-Gallon Da         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gall         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - 10.65 ga         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (57         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       SE         NON-CONSTRUCTION COSTS       52         52       Contingency         53       Engineering, Permitting, and De         54       <                                                                                                                                                                                                      |                            | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 88              | \$       | 1,000                   |
| 32       Orthophosphate - 10-Gallon Da         33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - Transfer Purr         35       Sodium Hydroxide - 1,550-Gallo         36       Sodium Hydroxide - 3.0 gal/hou         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 0.65 ga         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - 0.65 ga         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 0.65 gal/hour Dup         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co <td>ılk Tank</td> <td>EA</td> <td>\$</td> <td>1,000</td> <td>1</td> <td>\$</td> <td>1,000</td> <td>\$ 200</td> <td>\$</td> <td>2,000</td>                                                   | ılk Tank                   | EA    | \$       | 1,000        | 1   | \$       | 1,000                 | \$ 200             | \$       | 2,000                   |
| 33       Orthophosphate - 0.65 gal/hou         34       Orthophosphate - Transfer Pur         35       Sodium Hydroxide - 1,550-Galla         36       Sodium Hydroxide - 40-Gallon         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 0.65 gal/hou         42       Hydrofluorosilicic Acid - 0.65 gal/hou         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 0.65 gal/hour Dup         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurace and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NoN-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                   |                            | EA    | \$       | 200          | 1   | \$       | 200                   | \$ 40              | \$       | -                       |
| 34       Orthophosphate - Transfer Purr         35       Sodium Hydroxide - 1,550-Galto         36       Sodium Hydroxide - 40-Galton I         37       Sodium Hydroxide - 3.0 gal/hot         38       Sodium Hypochlorite - Transfer         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 240-Ga         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - 0.65 ga         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       Non-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                   |                            | EA    | \$       | 2,000        | 1   | \$       | 2,000                 | \$ 400             | \$       | 4,000                   |
| 35       Sodium Hydroxide - 1,550-Galld         36       Sodium Hydroxide - 40-Gallon         37       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxide - 3.0 gal/hou         38       Sodium Hydroxile - Transfer         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gall         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - 1 Transfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                              | · · ·                      | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 88              | \$       | 1,000                   |
| 36       Sodium Hydroxide - 40-Gallon         37       Sodium Hydroxide - 3.0 gal/hot         38       Sodium Hypochlorite - Transfer         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gal         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - 1 Transfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 0.65 gal/hour Dup         47       New Chemical Storage Building         Other Construction Costs       48         Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       Subrotal         NON-CONSTRUCTION COSTS       52         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | EA    | \$       | 1,800        | 1   | \$       | 1,800                 | \$ 360             | \$       | 3,000                   |
| 38       Sodium Hypochlorite - Transfer         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gal         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - Transfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 80              | \$       | 1,000                   |
| 38       Sodium Hypochlorite - Transfer         39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gal         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - Transfer         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - 7ransfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r Duplex Pump Skid         | EA    | \$       | 4,000        | 1   | \$       | 4,000                 | \$ 800             | \$       | 8,000                   |
| 39       Hydrofluorosilicic Acid - 240-Ga         40       Hydrofluorosilicic Acid - 35-Gal         41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - Transfe         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · ·                      | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 88              | \$       | 1,000                   |
| 41       Hydrofluorosilicic Acid - 0.65 ga         42       Hydrofluorosilicic Acid - Transfe         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       S2         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | EA    | \$       | 900          | 1   | \$       | 900                   | \$ 180             | \$       | 2,000                   |
| 42       Hydrofluorosilicic Acid - Transfe         43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on Day Tank                | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 80              | \$       | 1,000                   |
| 43       Antiscalant - 55-Gallon Bulk Tar         44       Antiscalant - 25-Gallon Day Tan         45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         0ther Construction Costs       48         48       Mobilization/Demobilization (5'         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l/hour Duplex Pump Skid    | EA    | \$       | 2,000        | 1   | \$       | 2,000                 |                    | \$       | 4,000                   |
| 44     Antiscalant - 25-Gallon Day Tan       45     Antiscalant - 0.65 gal/hour Dup       46     Antiscalant - Transfer Pump       47     New Chemical Storage Building       0ther Construction Costs     48       48     Mobilization/Demobilization (5'       49     Insurance and Bonds (3%)       50     General Conditions       51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and De       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Pump                     | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 88              | \$       | 1,000                   |
| 45       Antiscalant - 0.65 gal/hour Dup         46       Antiscalant - Transfer Pump         47       New Chemical Storage Building         Other Construction Costs       48         48       Mobilization/Demobilization (5°         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL         NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and De         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k                          | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 80              | \$       | 1,000                   |
| 45     Antiscalant - 0.65 gal/hour Dup       46     Antiscalant - Transfer Pump       47     New Chemical Storage Building       Other Construction Costs     48       48     Mobilization/Demobilization (5'       49     Insurance and Bonds (3%)       50     General Conditions       51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and De       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | EA    | \$       | 300          | 1   | \$       | 300                   | \$ 60              | \$       | -                       |
| 46     Antiscalant - Transfer Pump       47     New Chemical Storage Building       Other Construction Costs     48       48     Mobilization/Demobilization (5'       49     Insurance and Bonds (3%)       50     General Conditions       51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and Deg       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | EA    | \$       | 2,000        | 1   | \$       | 2,000                 | \$ 400             | \$       | 4,000                   |
| Other Construction Costs         48       Mobilization/Demobilization (5%         49       Insurance and Bonds (3%)         50       General Conditions         51       Overhead & Profit         SUBTOTAL       NON-CONSTRUCTION COSTS         52       Contingency         53       Engineering, Permitting, and Deg         54       Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | EA    | \$       | 400          | 1   | \$       | 400                   | \$ 88              | \$       | 1,000                   |
| 48 Mobilization/Demobilization (5'<br>49 Insurance and Bonds (3%)<br>50 General Conditions<br>51 Overhead & Profit<br>SUBTOTAL<br>NON-CONSTRUCTION COSTS<br>52 Contingency<br>53 Engineering, Permitting, and De<br>54 Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with Secondary Containment | EA    | \$       | 1,100,000    | 1   | \$       | 1,100,000             | \$ 440,000         | \$       | 1,424,000               |
| 49     Insurance and Bonds (3%)       50     General Conditions       51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and De       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |       |          |              |     | L        |                       |                    |          |                         |
| 49     Insurance and Bonds (3%)       50     General Conditions       51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and De       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6)                         | 5%    | \$       | 210,000      | 1   | \$       | 210,000               |                    | \$       | 210,000                 |
| 51     Overhead & Profit       SUBTOTAL       NON-CONSTRUCTION COSTS       52     Contingency       53     Engineering, Permitting, and Dec       54     Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 3%    | \$       | 126,000      | 1   | \$       | 126,000               |                    | \$       | 126,000                 |
| SUBTOTAL           NON-CONSTRUCTION COSTS           52         Contingency           53         Engineering, Permitting, and Deg           54         Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 5%    | \$       | 210,000      | 1   | \$       | 210,000               |                    | \$       | 210,000                 |
| Solution                |                            | 10%   | \$       | 421,000      | 1   | \$       | 421,000               |                    | \$       | 421,000                 |
| 52 Contingency<br>53 Engineering, Permitting, and De<br>54 Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |       |          |              |     | \$       | 5,173,000             |                    | \$       | 8,608,000.00            |
| 53         Engineering, Permitting, and De           54         Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |       |          |              |     |          |                       |                    |          |                         |
| 54 Engineering Services During Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 10%   | \$       | 532,819      | 1   | \$       | 533,000               |                    | \$       | 533,000                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                          | 10%   | \$       | 532,819      | 1   | \$       | 533,000               |                    | \$       | 533,000                 |
| 55 Logal and Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nstruction                 | 8%    | \$       | 425,479      | 1   | \$       | 425,000               |                    | \$       | 425,000                 |
| 55 Legal and Authinistration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 3%    | \$       | 160,363      | 1   | \$       | 160,000               |                    | \$       | 160,000                 |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 1 -   |          |              |     | \$       | 6,824,000             |                    | \$       | 10,259,000.00           |

#### Project 1 Alternative 3 Conceptual Cost Estimate - SAHFI Revision

Source and Treatment Upgrades - Construction of New Backup Generators at Well Sources, Chemical Storage and Pumping Upgrades, and Replace Existing Reverse Osmosis Skids with New Ultrafiltration Membrane

Skids

|                    |                                                                                  | SKIU     | 5        |                  |     |          |                      |          |           |          |                        |
|--------------------|----------------------------------------------------------------------------------|----------|----------|------------------|-----|----------|----------------------|----------|-----------|----------|------------------------|
| ITEM NO.           | DESCRIPTION                                                                      | UNITS    | U        | NIT COST         | QTY | т        | OTAL CAPITAL<br>COST | LIF      | ETIME O&M | LIF      | E CYCLE COST<br>(LCCA) |
| CONSTRUCT          | TION COSTS                                                                       |          |          |                  |     |          |                      |          |           |          |                        |
| Reverse Osm        | nosis Upgrades                                                                   |          |          |                  |     |          |                      |          |           |          |                        |
| 1                  | Demolish Existing Reverse Osmosis Skids                                          | EA       | \$       | 50,000           | 2   | \$       | 100,000              | \$       | 20,000    | \$       | 203,000                |
| 2                  | New 1.5 MGD Ultrafiltration Membrane Skid                                        | EA       | \$       | 1,000,000        | 2   | \$       | 2,000,000            | \$       | 400,000   | \$       | 4,063,000              |
| New Pumps          | 100 LID Dramana Driven Cantrificael Lligh Capita Duran and                       |          |          |                  |     |          |                      |          |           |          |                        |
|                    | 100 HP Propane-Driven Centrifugal High Service Pump and<br>Motor                 |          |          | 100.000          |     | *        | 100.000              | *        | 40.000    | *        | 455.000                |
| 3                  | 1,850 gpm @ 140 ft TDH                                                           | EA       | \$       | 120,000          | 1   | \$       | 120,000              | \$       | 48,000    | \$       | 155,000                |
| 5                  | 30 HP Propane-Driven Vertical-Turbine Chlorine Contact                           |          |          |                  |     |          |                      |          |           |          |                        |
|                    | Chamber Vertical Turbine Pump and Motor                                          | EA       | \$       | 50,000           | 1   | \$       | 50,000               | \$       | 20,000    | \$       | 65,000                 |
| 4                  | 1,050 gpm @ 39 ft TDH                                                            | LA       | Ψ        | 50,000           |     | φ        | 50,000               | Ŷ        | 20,000    | Ψ        | 05,000                 |
| 5                  | 10" Ductile Iron Pipe for New Pumps                                              | LF       |          | \$100            | 40  | \$       | 4,000                | \$       | 2,800     | \$       | 4,000                  |
| 6                  | 10" Check Valve for New Pumps                                                    | EA       | \$       | 2,820            | 2   | \$       | 5,640                | \$       | 2,256     | \$       | 7,000                  |
| 7                  | 10"x6" Flanged Eccentric Reducer for New Pumps                                   | EA       | \$       | 1,200            | 2   | \$       | 2,400                | \$       | 960       | \$       | 3,000                  |
| 8                  | 6" Ductile Iron Restrained Coupling Adapter                                      | EA       | \$       | 1,000            | 4   | \$       | 4,000                | \$       | 1,600     | \$       | 5,000                  |
| 9                  | Structural Pad for New Pump (Assumed 15' x 8' x 12")                             | EA       | \$       | 5,000            | 1   | \$       | 5,000                | \$       | 3,500     | \$       | 5,000                  |
| 10                 | Instrumentation                                                                  | LS       | \$       | 45,000           | 1   | \$       | 45,000               | \$       | 9,000     | \$       | 91,000                 |
| 11                 | SCADA Implementation                                                             | LS       | \$       | 5,000            | 1   | \$       | 5,000                | \$       | 1,000     | \$       | 10,000                 |
|                    | tor Upgrades                                                                     |          |          |                  |     |          |                      |          |           |          |                        |
| 12                 | 100 kW Generator                                                                 | EA       | \$       | 75,000           | 2   | \$       | 150,000              | \$       | 51,000    | \$       | 331,000                |
| 13                 | Transfer Switches for 100 kW Generator                                           | EA       | \$       | 10,000           | 2   | \$       | 20,000               | \$       | 6,800     | \$       | 44,000                 |
| 14                 | Surge Protectors for 100 kW Generator                                            | EA       | \$       | 5,000            | 2   | \$       | 10,000               | \$       | 3,400     | \$       | 22,000                 |
| 15                 | Other Power Surge and Lightning Protection                                       | LS       | \$       | 100,000          | 1   | \$       | 100,000              | \$       | 34,000    | \$       | 221,000                |
| 16                 | Instrumentation                                                                  | LS       | \$       | 10,000           | 1   | \$       | 10,000               | \$       | 2,000     | \$       | 21,000                 |
| 17                 | SCADA Implementation                                                             | LS<br>LS | \$       | 10,000           | 1   | \$       | 10,000               | \$       | 2,000     | \$       | 21,000                 |
| 18<br>Chamiaal Sta | Testing Allowance                                                                | LS       | \$       | 2,000            | I   | \$       | 2,000                | \$       | 800       | \$       | 3,000                  |
| 19                 | orage and Pumping Upgrades<br>Sodium Hypochlorite - 2,000-Gallon Bulk Tank       | EA       | \$       | C 000            | 2   | \$       | 12,000               | ¢        | 2,400     | \$       | 24.000                 |
| 20                 | Sodium Hypochlorite - 75-Gallon Day Tank                                         | EA       | ⊅<br>\$  | 6,000<br>500     | 2   | ۵<br>۶   | 12,000<br>500        | \$<br>\$ | 2,400     | ۵<br>۶   | 24,000                 |
| 20                 | Sodium Hypochlorite - 6.0 gal/hour Duplex Pump Skid                              | EA       | .≯<br>\$ | 5,000            | 2   | ≯<br>\$  | 10,000               | ≯<br>\$  | 2,000     | ۶<br>۶   | 21,000                 |
| 22                 | Sodium Hypochlorite - Transfer Pump                                              | EA       | ۰<br>\$  | 400              | 1   | ۶<br>۶   | 400                  | ې<br>\$  | 2,000     | ۶<br>\$  | 1,000                  |
| 23                 | Sulfuric Acid - 500-Gallon Bulk Tank                                             | EA       | \$       | 1,200            | 1   | \$       | 1,200                | \$       | 240       | \$       | 3,000                  |
| 24                 | Sulfuric Acid - 30-Gallon Day Tank                                               | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 80        | \$       | 1,000                  |
| 25                 | Sulfuric Acid - 1.5 gal/hour Duplex Pump Skid                                    | EA       | \$       | 4,000            | 1   | \$       | 4,000                | \$       | 800       | \$       | 8,000                  |
| 26                 | Sulfuric Acid - Transfer Pump                                                    | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 88        | \$       | 1,000                  |
| 27                 | Orthophosphate - 275-Gallon Bulk Tank                                            | EA       | \$       | 1,000            | 1   | \$       | 1,000                | \$       | 200       | \$       | 2,000                  |
| 28                 | Orthophosphate - 10-Gallon Day Tank                                              | EA       | \$       | 200              | 1   | \$       | 200                  | \$       | 40        | \$       | -                      |
| 29                 | Orthophosphate - 0.65 gal/hour Duplex Pump Skid                                  | EA       | \$       | 2,000            | 1   | \$       | 2,000                | \$       | 400       | \$       | 4,000                  |
| 30                 | Orthophosphate - Transfer Pump                                                   | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 88        | \$       | 1,000                  |
| 31                 | Sodium Hydroxide - 1,550-Gallon Bulk Tank                                        | EA       | \$       | 1,800            | 1   | \$       | 1,800                | \$       | 360       | \$       | 3,000                  |
| 32                 | Sodium Hydroxide - 40-Gallon Day Tank                                            | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 80        | \$       | 1,000                  |
| 33                 | Sodium Hydroxide - 3.0 gal/hour Duplex Pump Skid                                 | EA       | \$       | 4,000            | 1   | \$       | 4,000                | \$       | 800       | \$       | 8,000                  |
| 34                 | Sodium Hypochlorite - Transfer Pump                                              | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 88        | \$       | 1,000                  |
| 35                 | Hydrofluorosilicic Acid - 240-Gallon Bulk Tank                                   | EA       | \$       | 900              | 1   | \$       | 900                  | \$       | 180       | \$       | 2,000                  |
| 36                 | Hydrofluorosilicic Acid - 35-Gallon Day Tank                                     | EA       | \$       | 400              | 1   | \$       |                      | \$       | 80        | \$       | 1,000                  |
| 37                 | Hydrofluorosilicic Acid - 0.65 gal/hour Duplex Pump Skid                         | EA       | \$       | 2,000            | 1   | \$       | 2,000                | \$       | 400       | \$       | 4,000                  |
| 38                 | Hydrofluorosilicic Acid - Transfer Pump                                          | EA       | \$       | 400              | 1   | \$       | 400                  | -        | 88        | \$       | 1,000                  |
| 39                 | Antiscalant - 55-Gallon Bulk Tank                                                | EA       | \$       | 400              | 1   | \$       | 400                  | \$       | 80        | \$       | 1,000                  |
| 40<br>41           | Antiscalant - 25-Gallon Day Tank<br>Antiscalant - 0.65 gal/hour Duplex Pump Skid | EA<br>EA | \$<br>\$ | 300<br>2,000     | 1   | \$<br>\$ | 300<br>2,000         | \$<br>\$ | 60<br>400 | \$<br>\$ | -                      |
| 41                 | Antiscalant - Transfer Pump                                                      |          | ۵<br>۲   |                  | 1   | ۵<br>۶   | 400                  | ≯<br>\$  | 400<br>88 |          | 4,000                  |
| 42                 | New Chemical Storage Building with Secondary Containment                         | EA<br>EA | ≯<br>\$  | 400<br>1,100,000 | 1   | ≯<br>\$  | 1,100,000            | ≯<br>\$  | 440,000   | \$<br>\$ | 1,000<br>1,424,000     |
|                    | ruction Costs                                                                    | LA       | ų.       | 1,100,000        |     | ۴        | 1,100,000            | ų        | -++0,000  | Ψ        | 1,424,000              |
| 44                 | Mobilization/Demobilization (5%)                                                 | 5%       | \$       | 189,000          | 1   | \$       | 189,000              | -        |           | \$       | 189,000                |
| 45                 | Insurance and Bonds (3%)                                                         | 3%       | \$       | 114,000          | 1   | \$       | 114,000              | -        |           | \$       | 114,000                |
| 46                 | General Conditions                                                               | 5%       | \$       | 189,000          | 1   | \$       | 189,000              | -        |           | \$       | 189,000                |
| 47                 | Overhead & Profit                                                                | 10%      | \$       | 379,000          | 1   | \$       | 379,000              |          |           | \$       | 379,000                |
| SUBTOTAL           |                                                                                  |          | <u></u>  | ,                |     | \$       | 4,660,000            |          |           | \$       | 7,663,000.00           |
| NON-CONS           | TRUCTION COSTS                                                                   |          |          |                  |     | •        |                      |          |           |          |                        |
| 48                 | Contingency                                                                      | 10%      | \$       | 479,980          | 1   | \$       | 480,000              |          |           | \$       | 480,000                |
| 49                 | Engineering, Permitting, and Design                                              | 10%      | \$       | 479,980          | 1   | \$       | 480,000              |          |           | \$       | 480,000                |
| 50                 | Engineering Services During Construction                                         | 8%       | \$       | 383,285          | 1   | \$       | 383,000              |          |           | \$       | 383,000                |
| 51                 | Legal and Administration                                                         | 3%       | \$       | 144,460          | 1   | \$       | 144,000              |          |           | \$       | 144,000                |
|                    |                                                                                  |          |          |                  |     | \$       | 6,147,000            |          |           | \$       | 9,150,000.00           |

### Project 2 Alternative 1 Conceptual Cost Estimate - SAHFI Revision Distribution and Storage Upgrades - New Concrete Ground Storage Tank and Pump Station, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement Program

|                |                                                                      | -     |         | 0         | -     | 1  |                      | 1            | 1                      |
|----------------|----------------------------------------------------------------------|-------|---------|-----------|-------|----|----------------------|--------------|------------------------|
| ITEM NO.       | DESCRIPTION                                                          | UNITS | U       | NIT COST  | QTY   | т  | OTAL CAPITAL<br>COST | LIFETIME O&M | LIFE CYCLE COST (LCCA) |
| CONSTRUCTIO    | ON COSTS                                                             |       |         |           |       |    |                      |              |                        |
| New Concrete   | Ground Storage Tank and Pump Station                                 |       |         |           |       |    |                      |              |                        |
| 1              | 1,000,000-Gallon Concrete Ground Storage Tank                        | EA    | \$      | 1,600,000 | 1     | \$ | 1,600,000            | \$ 1,920,000 | \$ 1,492,000           |
| 2              | Aerator for 500,000-gal Tank                                         | EA    | \$      | 81,000    | 2     | \$ | 162,000              | \$ 64,800    | \$ 210,000             |
| 3              | Tank Coating                                                         | LS    | \$      | 1,000,000 | 1     | \$ | 1,000,000            | \$ 400,000   | \$ 1,295,000           |
| 4              | 12" Ductile Iron Yard Piping                                         | LF    | \$      | 400       | 350   | \$ | 140,000              | \$ 98,000    | \$ 149,000             |
| 5              | Yard Piping Valve & Fitting Allowance                                | LS    | \$      | 50,000    | 4     | \$ | 200,000              | \$ 80,000    | \$ 259,000             |
| 6              | 100 HP High Service Pumps                                            | EA    | \$      | 75,000    | 2     | \$ | 150,000              | \$ 150,000   | \$ 426,000             |
| 7              | 50 HP High Service Pumps                                             | EA    | \$      | 55,000    | 2     | \$ | 110,000              | \$ 150,000   | \$ 352,000             |
| 8              | Variable-Frequency Drives for High Service Pumps                     | EA    | \$      | 75,000    | 4     | \$ | 300,000              | \$ 90,000    | \$ 646,000             |
| 9              | Pump Canopy                                                          | EA    | \$      | 250,000   | 1     | \$ | 250,000              | \$ 175,000   | \$ 266,000             |
| 10             | Pump Slab and Pads                                                   | EA    | \$      | 50,000    | 4     | \$ | 200,000              | \$ 148,000   | \$ 209,000             |
| 11             | Pump Station Instrumentation                                         | LS    | \$      | 70,000    | 1     | \$ | 70,000               | \$ 14,000    | \$ 142,000             |
| 12             | Pump Station & Tank SCADA Implementation                             | LS    | \$      | 30,000    | 1     | \$ | 30,000               | \$ 6,000     | \$ 61,000              |
| 13             | Switchgear                                                           | LS    | \$      | 150,000   | 1     | \$ | 150,000              | \$ 45,000    | \$ 323,000             |
| 14             | Chlorination equipment                                               | LS    | \$      | 30,000    | 1     | \$ | 30,000               | \$ 6,000     | \$ 61,000              |
| 15             | Hydrant Assembly                                                     | EA    | \$      | 5,700     | 1     | \$ | 5,700                | \$ 4,560     | \$ 6,000               |
| 16             | Chain Link Fence + Gate                                              | LF    | \$      | 70        | 0     | \$ | -                    | \$ -         | \$-                    |
| 17             | Gas Generator                                                        | EA    | \$      | 75,000    | 1     | \$ | 75,000               | \$ 30,000    | \$ 97,000              |
| 18             | Electrical Site Work                                                 | LS    | \$      | 30,000    | 5     | \$ | 150,000              | \$ 51,000    | \$ 331,000             |
| 19             | Electrical Building                                                  | LS    | \$      | 650,000   | 1     | \$ | 650,000              | \$ 455,000   | \$ 690,000             |
| 20             | Uninterruptible Power Supply                                         | EA    | \$      | 1,500     | 0     | \$ | -                    | \$ -         | \$ -                   |
| 21             | Driveway (Asphalt)                                                   | SY    | \$      | 55        | 1000  | \$ | 55,000               | \$ 22,000    | \$ 71,000              |
| 22             | Crushed Stone (Tank Washdown)                                        | CY    | \$      | 40        | 250   | \$ | 10,000               | \$ 4,000     | \$ 13,000              |
| 23             | Concrete Energy Blocks (Tank Washdown)                               | EA    | \$      | 75        | 15    | \$ | 1,125                | \$ 788       | \$ 1,000               |
| 24             | Site Clearing + Grading                                              | LS    | \$      | 25,000    | 1     | \$ | 25,000               | \$ 17,500    | \$ 26,000              |
| 25             | Loam and Seed Disturbed Area                                         | SY    | \$      | 3         | 9000  | \$ | 27,000               | \$ 10,800    | \$ 35,000              |
| 26             | Testing Allowance                                                    | LS    | \$      | 15,000    | 1     | \$ | 15,000               | \$ 6,000     | \$ 19,000              |
| 12" and larger | upgrades + replacement of old/undersized hydrants                    |       |         |           |       |    |                      |              |                        |
| 27             | 12" Ductile Iron Water Main (Helms Road)                             | LF    | \$      | 250       | 5300  | \$ | 1,325,000            | \$ 927,500   | \$ 1,407,000           |
| 28             | 12" Ductile Iron Water Main                                          | LF    | \$      | 250       | 0     | \$ | -                    | \$ -         | \$ -                   |
| 29             | Gate Valves                                                          | EA    | \$      | 3,000     | 6     | \$ | 18,000               | \$ 7,200     | \$ 23,000              |
| 30             | Hydrant Assembly                                                     | EA    | \$      | 5,700     | 100   | \$ | 570,000              | \$ 456,000   | \$ 583,000             |
| 31             | Fittings                                                             | LS    | \$      | 132,500   | 1     | \$ | 132,500              | \$ 53,000    | \$ 172,000             |
| 32             | Pressure Testing & Disinfection                                      | LS    | \$      | 6,000     | 1     | \$ | 6,000                | \$ 2,400     | \$ 8,000               |
| 33             | Geotechnical Investigations                                          | LS    | \$      | 30,000    | 1     | \$ | 30,000               |              | \$ 30,000              |
| <12" upgrades  |                                                                      |       |         |           |       |    |                      |              |                        |
| 34             | 8" Ductile Iron Water Main                                           | LF    | \$      | 200       | 5,300 | \$ | 1,060,000            | \$ 742,000   | \$ 1,126,000           |
| 35             | Gate Valves                                                          | EA    | \$      | 1,500     | 6     | \$ | 9,000                | \$ 3,600     | \$ 12,000              |
| 36             | Hydrant Assembly                                                     | EA    | \$      | 5,700     | 6     | \$ | 34,200               | \$ 27,360    | \$ 35,000              |
| 37             | Fittings                                                             | LS    | \$      | 106,000   | 1     | \$ | 106,000              | \$ 42,400    | \$ 137,000             |
| 38             | Pressure Testing & Disinfection                                      | LS    | \$      | 6,000     | 1     | \$ | 6,000                | \$ 2,400     | \$ 8,000               |
| 39             | Geotechnical Investigations                                          | LS    | \$      | 30,000    | 1     | \$ | 30,000               |              | \$ 30,000              |
|                | & Replacement Program                                                |       |         |           |       |    |                      |              |                        |
| 40             | Valve Exercise Program                                               | LS    | \$      | 17        | 464   | \$ | 7,733                |              | \$ 8,000               |
|                | Replace Failing Valves (Quantity Estimated, to be                    | EA    | \$      | 3,000.00  | 140   | \$ | 420,000              | \$ 168,000   | \$ 544,000             |
| 41             | Validated by Exercise Program)                                       | EA    | ÷       | 3,000.00  | 140   | Þ  | 420,000              | \$ 100,000   | ş 544,000              |
| Other Construc |                                                                      |       |         |           |       |    |                      |              |                        |
| 42             | Mobilization/Demobilization (5%)                                     | 5%    | \$      | 458,000   | 1     | \$ | 458,000              |              | \$ 458,000             |
| 43             | Insurance and Bonds (3%)                                             | 3%    | \$      | 275,000   | 1     | \$ | 275,000              |              | \$ 275,000             |
| 44             | General Conditions                                                   | 5%    | \$      | 458,000   | 1     | \$ | 458,000              |              | \$ 458,000             |
| 45             | Overhead & Profit                                                    | 10%   | \$      | 916,000   | 1     | \$ | 916,000              |              | \$ 916,000             |
| SUBTOTAL       |                                                                      |       |         |           |       | \$ | 8,365,000            | \$ 6,380,000 | \$ 13,410,000.00       |
| NON-CONSTR     | UCTION COSTS                                                         |       |         |           |       |    |                      |              |                        |
| 46             | Contingency                                                          | 10%   | \$      | 873,000   | 1     | \$ | 873,000              |              | \$ 873,000             |
| 47             | Engineering, Permitting, and Design                                  | 10%   | \$      | 873,000   | 1     | \$ | 873,000              |              | \$ 873,000             |
| 47             |                                                                      | 0.0/  | ¢       | 698,000   | 1     | \$ | 698,000              |              | \$ 698,000             |
| 48             | Engineering services during construction                             | 8%    | \$      | 090,000   |       | Þ  | 090,000              |              | φ 050,000              |
|                | Engineering services during construction<br>Legal and Administration | 3%    | ⊅<br>\$ | 262,000   | 1     | \$ | 262,000              |              | \$ 262,000             |

### Project 2 Alternative 2 Conceptual Cost Estimate - SAHFI Revision Distribution and Storage Upgrades - New Pedosphere Elevated Storage Tank, Water Main Improvements, and Valve Exercising and Replacement Program

| ITEM NO.       | DESCRIPTION                                                             | UNITS    | U        | NIT COST  | QTY       | т        | OTAL CAPITAL<br>COST | LIFE     | TIME O&M  | LIFE CYCLE COST (LC |
|----------------|-------------------------------------------------------------------------|----------|----------|-----------|-----------|----------|----------------------|----------|-----------|---------------------|
| CONSTRUCTI     | ON COSTS                                                                |          |          |           |           |          |                      |          |           |                     |
| New Pedesphe   | ere Elevated Storage Tank                                               |          |          |           |           |          |                      |          |           |                     |
|                | 1,000,000-Gallon Pedesphere Elevated                                    | EA       | \$       | 3,500,000 | 1         | \$       | 3,500,000            | \$       | 4,200,000 | \$ 3,265,0          |
| 1              | Storage Tank                                                            |          |          |           |           | · ·      |                      |          |           | . , ,               |
| 2              | Tank Coating                                                            | LS       | \$       | 100,000   | 1         | \$       | 100,000              | \$       | 40,000    | \$ 129,0            |
| 3              | 12" PVC Yard Piping                                                     | LF       | \$       | 225       | 150       | \$       | 33,750               | \$       | 23,625    | \$ 36,0             |
| 4              | Yard Piping Valve & Fitting Allowance                                   | LS       | \$       | 10,000    | 1         | \$       | 10,000               | \$       | 4,000     | \$ 13,0             |
| 5              | Instrumentation                                                         | LS       | \$       | 15,000    | 1         | \$       | 15,000               | \$       | 3,000     | \$ 30,0             |
| 6              | SCADA Implementation                                                    | LS       | \$       | 15,000    | 1         | \$       | 15,000               | \$       | 3,000     | \$ 30,0             |
| 7              | Hydrant Assembly                                                        | EA       | \$       | 5,700     | 1         | \$       | 5,700                | \$       | 4,560     | \$ 6,0              |
| 8              | Chain Link Fence + Gate                                                 | LF       | \$       | 70        | 400       | \$       | 28,000               | \$       | 11,200    | \$ 36,0             |
| 9              | Electrical Site Work                                                    | LS       | \$       | 5,000     | 1         | \$       | 5,000                | \$       | 1,700     | \$ 11,0             |
| 10             | Uninterruptible Power Supply                                            | EA       | \$       | 1,500     | 1         | \$       | 1,500                | \$       | 600       | \$ 2,0              |
| 11             | Driveway (Asphalt)                                                      | SY       | \$       | 55        | 0         | \$       | -                    | \$       | -         | \$                  |
| 12<br>13       | Crushed Stone (Tank Washdown)<br>Concrete Energy Blocks (Tank Washdown) | CY<br>EA | \$<br>\$ | 40        | 0         | \$<br>\$ | -                    | \$<br>\$ | -         | \$<br>\$            |
| 13             | Site Clearing + Grading                                                 |          |          |           |           |          | -                    | •        |           |                     |
| 14             | Loam and Seed Disturbed Area                                            | LS<br>SY | \$<br>\$ | 25,000    | 1<br>5000 | \$<br>\$ | 25,000               | \$       | 17,500    | \$ 26,0             |
| 15             | Testing Allowance                                                       | LS       | ≯<br>\$  | 15,000    |           | \$<br>\$ | 15,000               | \$<br>\$ | 6,000     | \$ 19,0<br>\$ 19,0  |
| -              | upgrades + replacement of old/undersized hyd                            | -        | Þ        | 15,000    | 1         | ¢        | 15,000               | \$       | 6,000     | \$ 19,0             |
| 12 and larger  | 12" Ductile Iron Water Main (Helms Road)                                | LF       | \$       | 250       | 7400      | \$       | 1,850,000            | \$       | 1,295,000 | \$ 1,965,0          |
| 17             | 12" Ductile Iron Water Main (Rein's Road)                               | LF       | ⊅<br>\$  | 250       | 0         | ⊅<br>\$  | 1,650,000            | ≯<br>\$  | 1,295,000 | \$ 1,905,0          |
| 10             | Gate Valves                                                             | EA       | .⊅<br>\$ | 3,000     | 8         | ۰<br>\$  | 24,000               | ۹<br>\$  | 9,600     | \$ 31,0             |
| 20             | Hydrant Assembly                                                        | EA       | ۰<br>\$  | 5,700     | 100       | ې<br>\$  | 570.000              | ۹<br>\$  | 456,000   | \$ 583,0            |
| 21             | Fittings                                                                | LS       | \$       | 185,000   | 100       | \$       | 185,000              | \$       | 74,000    | \$ 240,0            |
| 22             | Pressure Testing & Disinfection                                         | LS       | \$       | 6,000     | 1         | \$       | 6,000                | \$       | 2,400     | \$ 8,0              |
| 23             | Geotechnical Investigations                                             | LS       | \$       | 30,000    | 1         | \$       | 30,000               | Ŷ        | 2,400     | \$ 30,0             |
| <12" upgrade:  | 0                                                                       | 23       | Ψ        | 30,000    |           | Ŷ        | 50,000               |          |           | \$ 50,0             |
| 24             | 8" Ductile Iron Water Main                                              | LF       | \$       | 200       | 7,400     | \$       | 1,480,000            | \$       | 1,036,000 | \$ 1,572,0          |
| 25             | Gate Valves                                                             | EA       | \$       | 1,500     | 8         | \$       | 12,000               | \$       | 4,800     | \$ 16,0             |
| 26             | Hydrant Assembly                                                        | EA       | \$       | 5,700     | 8         | \$       | 45,600               | \$       | 36,480    | \$ 47,0             |
| 27             | Fittings                                                                | LS       | \$       | 148,000   | 1         | \$       | 148,000              | \$       | 59,200    | \$ 192,0            |
| 28             | Pressure Testing & Disinfection                                         | LS       | \$       | 6,000     | 1         | \$       | 6,000                | \$       | 2,400     | \$ 8,0              |
| 29             | Geotechnical Investigations                                             | LS       | \$       | 30.000    | 1         | \$       | 30,000               | Ŷ        | 2,100     | \$ 30,0             |
| Valve Exercise | & Replacement Program                                                   |          | -        | ,         |           | +        |                      |          |           | +                   |
| 30             | Valve Exercise Program                                                  | LS       | \$       | 17        | 464       | \$       | 7,733                |          |           | \$ 8,0              |
|                | Replace Failing Valves (Quantity Estimated, to                          |          | -        |           |           |          |                      |          |           | ,                   |
| 31             | be Validated by Exercise Program)                                       | EA       | \$       | 3,000.00  | 140       | \$       | 420,000              | \$       | 168,000   | \$ 544,0            |
| Other Constru  |                                                                         |          |          |           |           |          |                      |          |           |                     |
| 32             | Mobilization/Demobilization (5%)                                        | 5%       | \$       | 429,000   | 1         | \$       | 429,000              |          |           | \$ 429,0            |
| 33             | Insurance and Bonds (3%)                                                | 3%       | \$       | 257,000   | 1         | \$       | 257,000              |          |           | \$ 257,0            |
| 34             | General Conditions                                                      | 5%       | \$       | 429,000   | 1         | \$       | 429,000              |          |           | \$ 429,0            |
| 35             | Overhead & Profit                                                       | 10%      | \$       | 858,000   | 1         | \$       | 858,000              |          |           | \$ 858,0            |
| SUBTOTAL       |                                                                         |          |          |           | L         | \$       | 10,556,000           | \$       | 7,465,000 | \$ 10,869,000.      |
|                | RUCTION COSTS                                                           |          |          |           |           | • · ·    |                      |          |           |                     |
| 36             | Contingency                                                             | 10%      | \$       | 1,101,000 | 1         | \$       | 1,101,000            |          |           | \$ 1,101,0          |
| 37             | Engineering, Permitting, and Design                                     | 10%      | \$       | 1,101,000 | 1         | \$       | 1,101,000            |          |           | \$ 1,101,0          |
| 38             | Engineering services during construction                                | 8%       | \$       | 881,000   | 1         | \$       | 881,000              |          |           | \$ 881,0            |
| 39             | Legal and Administration                                                | 3%       | \$       | 330,000   | 1         | \$       | 330,000              |          |           | \$ 330,0            |
| TOTAL          | -                                                                       |          | L .      |           |           | \$       | 13,969,000           |          |           | \$ 14,282,000.      |

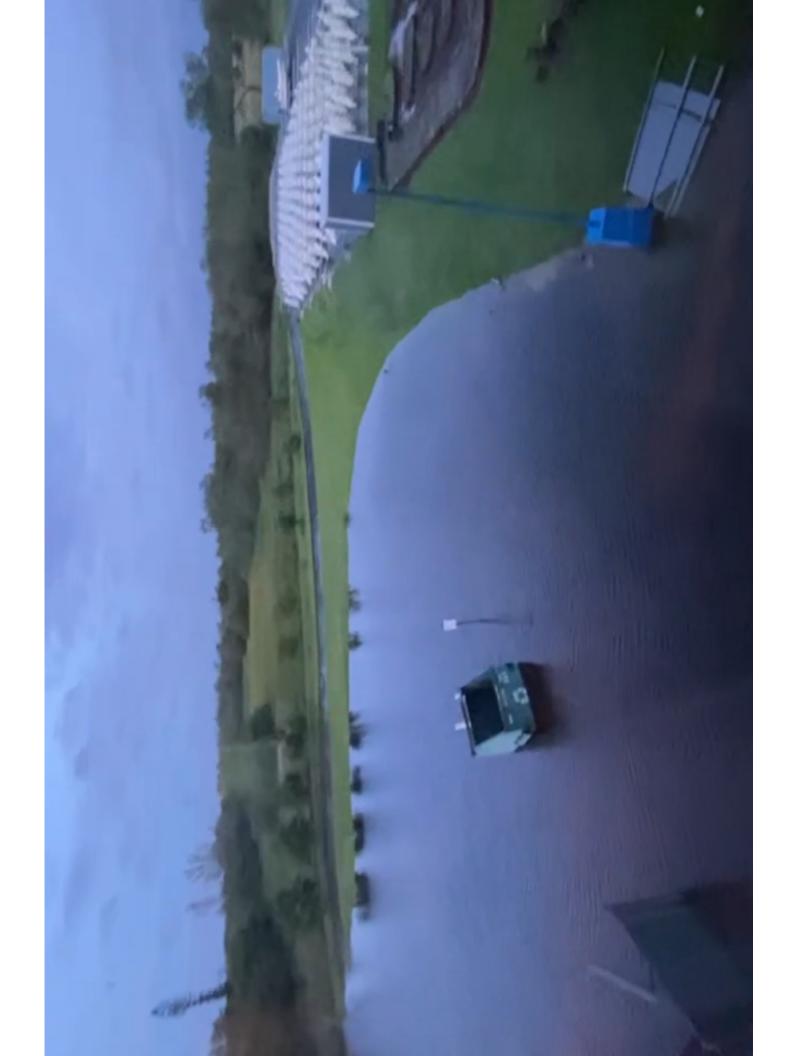
# Project 2 Alternative 3 Conceptual Cost Estimate - SAHFI Revision Distribution and Storage Upgrades - New Fluted Column Elevated Storage Tank, State Route 80 and Zone B Water Mains, and Valve Exercising and Replacement

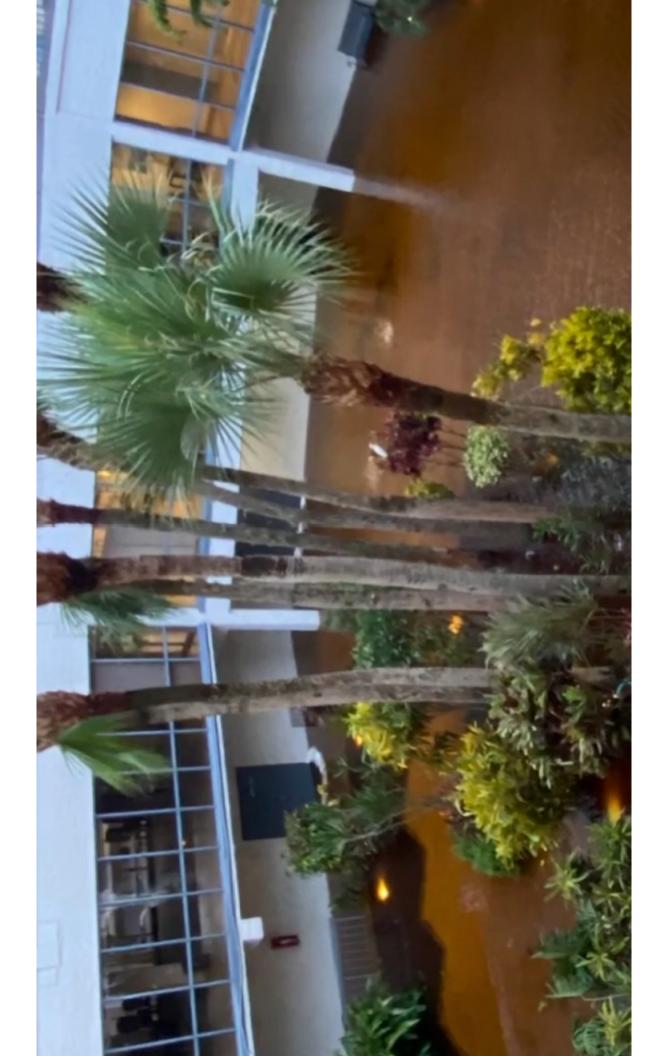
| Program       |                                                |         |          |           |       |    |                      |     |            |    |                         |
|---------------|------------------------------------------------|---------|----------|-----------|-------|----|----------------------|-----|------------|----|-------------------------|
| ITEM NO.      | DESCRIPTION                                    | UNITS   | ι        | JNIT COST | QTY   | тс | OTAL CAPITAL<br>COST | LIF | ETIME O&M  | LI | FE CYCLE COST<br>(LCCA) |
| CONSTRUCT     |                                                |         |          |           |       |    |                      |     |            |    |                         |
| New Fluted C  | Column Storage Tank                            |         |          |           |       |    |                      |     |            |    |                         |
| 1             | 1,000,000-Gallon Fluted Column Elevated Stora  | EA      | \$       | 6,500,000 | 1     | \$ | 6,500,000            | \$  | 7,800,000  | \$ | 6,063,000               |
| 2             | Tank Coating                                   | LS      | \$       | 100,000   | 1     | \$ | 100,000              | \$  | 40,000     | \$ | 129,000                 |
| 3             | 12" PVC Yard Piping                            | LF      | \$       | 225       | 250   | \$ | 56,250               | \$  | 39,375     | \$ | 60,000                  |
| 4             | Yard Piping Valve & Fitting Allowance          | LS      | \$       | 10,000    | 1     | \$ | 10,000               | \$  | 4,000      | \$ | 13,000                  |
| 5             | Instrumentation                                | LS      | \$       | 15,000    | 1     | \$ | 15,000               | \$  | 3,000      | \$ | 30,000                  |
| 6             | SCADA Implementation                           | LS      | \$       | 15,000    | 1     | \$ | 15,000               | \$  | 3,000      | \$ | 30,000                  |
| 7             | Hydrant Assembly                               | EA      | \$       | 5,700     | 1     | \$ | 5,700                | \$  | 4,560      | \$ | 6,000                   |
| 8             | Chain Link Fence + Gate                        | LF      | \$       | 70        | 400   | \$ | 28,000               | \$  | 11,200     | \$ | 36,000                  |
| 9             | Gas Generator                                  | EA      | \$       | 5,000     | 1     | \$ | 5,000                | \$  | 2,000      | \$ | 6,000                   |
| 10            | Electrical Site Work                           | LS      | \$       | 5,000     | 1     | \$ | 5,000                | \$  | 1,700      | \$ | 11,000                  |
| 11            | Uninterruptible Power Supply                   | EA      | \$       | 1,500     | 1     | \$ | 1,500                | \$  | 600        | \$ | 2,000                   |
| 12            | Driveway (Asphalt)                             | SY      | \$       | 55        | 1000  | \$ | 55,000               | \$  | 22,000     | \$ | 71,000                  |
| 13            | Crushed Stone (Tank Washdown)                  | CY      | \$       | 40        | 200   | \$ | 8,000                | \$  | 3,200      | \$ | 10,000                  |
| 14            | Concrete Energy Blocks (Tank Washdown)         | EA      | \$       | 75        | 15    | \$ | 1,125                | \$  | 788        | \$ | 1,000                   |
| 15            | Site Clearing + Grading                        | LS      | \$       | 65,000    | 1     | \$ | 65,000               | \$  | 45,500     | \$ | 69,000                  |
| 16            | Loam and Seed Disturbed Area                   | SY      | \$       | 3         | 9000  | \$ | 27,000               | \$  | 10,800     | \$ | 35,000                  |
| 17            | Testing Allowance                              | LS      | \$       | 15,000    | 1     | \$ | 15,000               | \$  | 6,000      | \$ | 19,000                  |
| 12" and large | er upgrades + replacement of old/undersized hy | /drants |          |           |       |    |                      |     |            |    |                         |
| 18            | 12" Ductile Iron Water Main (Helms Road)       | LF      | \$       | 250       | 5300  | \$ | 1,325,000            | \$  | 927,500    | \$ | 1,407,000               |
| 19            | 12" Ductile Iron Water Main                    | LF      | \$       | 250       | 0     | \$ | -                    | \$  | -          | \$ | -                       |
| 20            | Gate Valves                                    | EA      | \$       | 3,000     | 6     | \$ | 18,000               | \$  | 7,200      | \$ | 23,000                  |
| 21            | Hydrant Assembly                               | EA      | \$       | 5,700     | 100   | \$ | 570,000              | \$  | 456,000    | \$ | 583,000                 |
| 22            | Fittings                                       | LS      | \$       | 132,500   | 1     | \$ | 132,500              | \$  | 53,000     | \$ | 172,000                 |
| 23            | Pressure Testing & Disinfection                | LS      | \$       | 6,000     | 1     | \$ | 6,000                | \$  | 2,400      | \$ | 8,000                   |
| 24            | Geotechnical Investigations                    | LS      | \$       | 30,000    | 1     | \$ | 30,000               |     |            | \$ | 30,000                  |
| <12" upgrad   | es                                             |         |          |           |       |    |                      |     |            |    |                         |
| 25            | 8" Ductile Iron Water Main                     | LF      | \$       | 200       | 5,300 | \$ | 1,060,000            | \$  | 742,000    | \$ | 1,126,000               |
| 26            | Gate Valves                                    | EA      | \$       | 1,500     | 6     | \$ | 9,000                | \$  | 3,600      | \$ | 12,000                  |
| 27            | Hydrant Assembly                               | EA      | \$       | 5,700     | 6     | \$ | 34,200               | \$  | 27,360     | \$ | 35,000                  |
| 28            | Fittings                                       | LS      | \$       | 106,000   | 1     | \$ | 106,000              | \$  | 42,400     | \$ | 137,000                 |
| 29            | Pressure Testing & Disinfection                | LS      | \$       | 6,000     | 1     | \$ | 6,000                | \$  | 2,400      | \$ | 8,000                   |
| 30            | Geotechnical Investigations                    | LS      | \$       | 30,000    | 1     | \$ | 30,000               |     |            | \$ | 30,000                  |
| Valve Exercis | e & Replacement Program                        |         |          |           |       |    |                      |     |            |    |                         |
| 31            | Valve Exercise Program                         | LS      | \$       | 17        | 464   | \$ | 7,733                |     |            | \$ | 8,000                   |
|               | Replace Failing Valves (Quantity Estimated, to | ГА      | đ        | 2 000 00  | 140   | \$ | 420.000              | \$  | 100,000    | ¢  | F 4 4 000               |
| 32            | be Validated by Exercise Program)              | EA      | \$       | 3,000.00  | 140   | ⊅  | 420,000              | Þ   | 168,000    | \$ | 544,000                 |
| Other Constr  | uction Costs                                   |         |          |           |       |    |                      |     |            |    |                         |
| 33            | Mobilization/Demobilization (5%)               | 5%      | \$       | 533,000   | 1     | \$ | 533,000              |     |            | \$ | 533,000                 |
| 34            | Insurance and Bonds (3%)                       | 3%      | \$       | 320,000   | 1     | \$ | 320,000              |     |            | \$ | 320,000                 |
| 35            | General Conditions                             | 5%      | \$       | 533,000   | 1     | \$ | 533,000              |     |            | \$ | 533,000                 |
| 36            | Overhead & Profit                              | 10%     | \$       | 1,067,000 | 1     | \$ | 1,067,000            |     |            | \$ | 1,067,000               |
| SUBTOTAL      |                                                |         | -        |           |       | \$ | 13,120,000           | \$  | 10,430,000 | \$ | 13,167,000.00           |
| NON-CONS      | TRUCTION COSTS                                 |         |          |           |       |    |                      |     |            |    |                         |
| 37            | Contingency                                    | 10%     | \$       | 1,369,000 | 1     | \$ | 1,369,000            |     |            | \$ | 1,369,000               |
| 38            | Engineering, Permitting, and Design            | 10%     | \$       | 1,369,000 | 1     | \$ | 1,369,000            |     |            | \$ | 1,369,000               |
| 39            | Engineering services during construction       | 8%      | \$       | 1,095,000 | 1     | \$ | 1,095,000            |     |            | \$ | 1,095,000               |
| 40            | Legal and Administration                       | 3%      | \$       | 411,000   | 1     | \$ | 411,000              |     |            | \$ | 411,000                 |
| TOTAL         | 5                                              |         | <u> </u> | ,         |       | \$ | 17,364,000           |     |            | \$ | 17,411,000.00           |

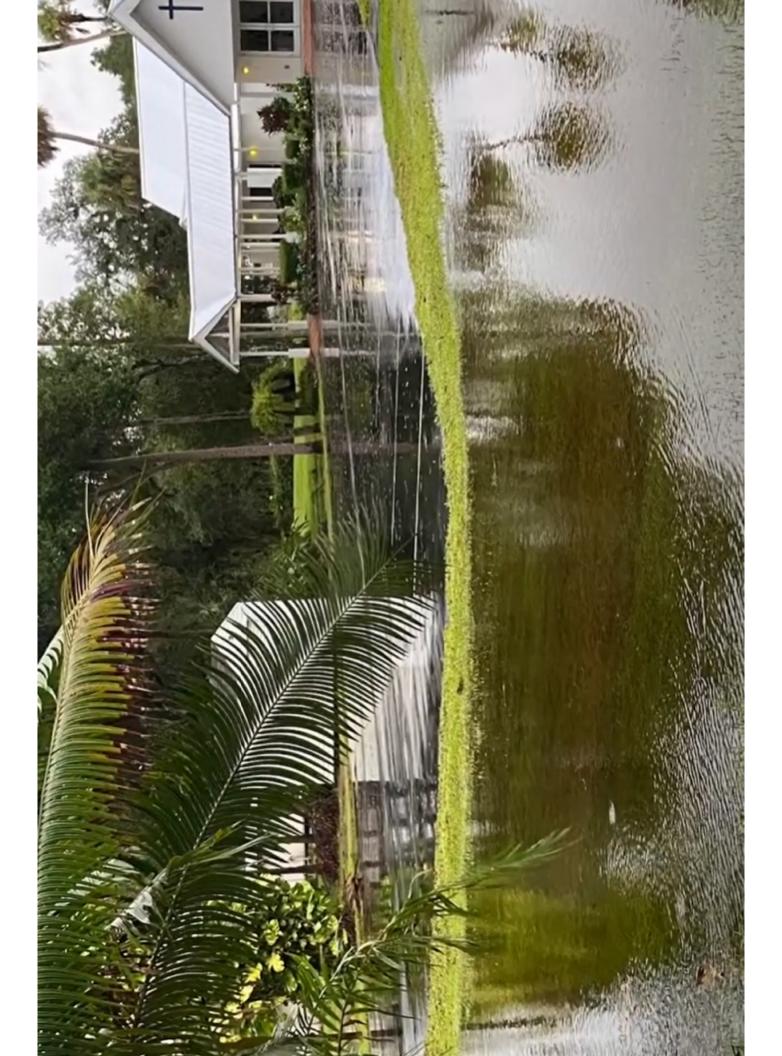
## Project 3 Alternative 1 Conceptual Cost Estimate Large Commercial Service Meter and System Meter Replacement Program - Replace Commercial Service Meters, AMI Endpoints, and Production Meters 1.5" and Above

| ITEM NO.  | DESCRIPTION                              | UNITS | U  | NIT COST  | QTY | ٦  | TOTAL CAPITAL<br>COST | LIFETIME O&M | LIFE CYCLE COST<br>(LCCA) |
|-----------|------------------------------------------|-------|----|-----------|-----|----|-----------------------|--------------|---------------------------|
| CONSTRUCT | TION COSTS                               |       |    |           |     |    |                       |              |                           |
| 1         | Replace Commercial Service Meters        | EA    | \$ | 2,000     | 58  | \$ | 116,000               | \$ 34,800    | \$<br>250,000             |
| 2         | Replace System Meters                    | EA    | \$ | 10,000.00 | 4   | \$ | 40,000                | \$ 12,000    | \$<br>86,000              |
| 3         | Replace All AMI Endpoints                | EA    | \$ | 500.00    | 58  | \$ | 29,000                | \$ 8,700     | \$<br>63,000              |
| SUBTOTAL  |                                          |       |    |           |     | \$ | 185,000               | \$ 56,000    | \$<br>399,000.00          |
| NON-CONS  | TRUCTION COSTS                           |       |    |           |     |    |                       |              |                           |
| 3         | Contingency                              | 10%   | \$ | 19,000    | 1   | \$ | 19,000                |              | \$<br>19,000              |
| 4         | Engineering, Permitting, and Design      | 10%   | \$ | 19,000    | 1   | \$ | 19,000                |              | \$<br>19,000              |
| 5         | Engineering Services During Construction | 0%    | \$ | -         | 1   | \$ | -                     |              | \$<br>-                   |
| 6         | Legal and Administration                 | 3%    | \$ | 6,000     | 1   | \$ | 6,000                 |              | \$<br>6,000               |
| TOTAL     |                                          |       |    |           |     | \$ | 229,000               |              | \$<br>443,000.00          |

## **Project 3 Alternative 2 Conceptual Cost Estimate**


# Large Commercial Service Meter and System Meter Replacement Program - Replace All Commercial Service and Production Meters 1.5" and Above, Replace AMI Endpoints at End of Life


| ITEM NO.  | DESCRIPTION                                  | UNITS | U  | NIT COST  | QTY | т  | OTAL CAPITAL<br>COST | LIF | ETIME O&M | L  | FE CYCLE COST<br>(LCCA) |
|-----------|----------------------------------------------|-------|----|-----------|-----|----|----------------------|-----|-----------|----|-------------------------|
| CONSTRUCT | CONSTRUCTION COSTS                           |       |    |           |     |    |                      |     |           |    |                         |
| 1         | Replace Commercial Service Meters            | EA    | \$ | 2,000     | 58  | \$ | 116,000              | \$  | 34,800    | \$ | 250,000                 |
| 2         | Replace Remaining AMI Endpoint After 5 Years | EA    | \$ | 600       | 58  | \$ | 34,800               | \$  | 10,440    | \$ | 75,000                  |
| 3         | Replace System Meters                        | EA    | \$ | 10,000.00 | 4   | \$ | 40,000               | \$  | 12,000    | \$ | 86,000                  |
| SUBTOTAL  |                                              |       |    |           |     | \$ | 191,000              | \$  | 57,000    | \$ | 411,000.00              |
| NON-CONST | TRUCTION COSTS                               |       |    |           |     |    |                      |     |           |    |                         |
| 4         | Contingency                                  | 10%   | \$ | 19,000    | 1   | \$ | 19,000               |     |           | \$ | 19,000                  |
| 5         | Engineering, Permitting, and Design          | 8%    | \$ | 15,000    | 1   | \$ | 15,000               |     |           | \$ | 15,000                  |
| 6         | Engineering Services During Construction     | 0%    | \$ | -         | 1   | \$ | -                    |     |           | \$ | -                       |
| 7         | Legal and Administration                     | 3%    | \$ | 6,000     | 1   | \$ | 6,000                |     |           | \$ | 6,000                   |
| TOTAL     |                                              |       |    |           |     | \$ | 231,000              |     |           | \$ | 451,000.00              |


## Project 3 Alternative 3 Conceptual Cost Estimate

## Large Commercial Service Meter and System Meter Replacement Program - Maintain Existing Commercial Service and System Meters 1.5" and Above

| ITEM NO.       | DESCRIPTION                                            | UNITS | UNIT COST | QTY | TOTAL CAPITAL<br>COST | LIFETIME O&M | LIFE CYCLE COST<br>(LCCA) |  |
|----------------|--------------------------------------------------------|-------|-----------|-----|-----------------------|--------------|---------------------------|--|
| CONSTRUCTION C |                                                        |       |           |     |                       |              |                           |  |
| N/A            |                                                        |       | \$ -      |     | \$-                   | \$ -         | \$-                       |  |
| SUBTOTAL       |                                                        |       |           |     | \$ -                  |              | \$-                       |  |
| NON-CONSTRUCT  | NON-CONSTRUCTION COSTS                                 |       |           |     |                       |              |                           |  |
| 1              | Estimated Revenue Losses from Service Metering Failure | EA    | \$ -      | 58  | \$ -                  | \$ 696,000   | \$ 513,000                |  |
| TOTAL          |                                                        |       |           |     | \$ -                  |              | \$ 513,000                |  |











# APPENDIX F: CUSTOM SOIL RESOURCE REPORT



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Glades County, Florida, and Hendry County, Florida

LaBelle Advanced Wastewater Treatment Plant



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface                                                             |      |
|---------------------------------------------------------------------|------|
| How Soil Surveys Are Made                                           |      |
| Soil Map                                                            |      |
| Soil Map                                                            | 9    |
| Legend                                                              | 1    |
| Map Unit Legend                                                     | 12   |
| Map Unit Descriptions                                               | . 1: |
| Glades County, Florida                                              | . 1  |
| 35—Arents, very steep                                               | 1    |
| 99—Water                                                            | 10   |
| Hendry County, Florida                                              | 1    |
| 1—Cypress Lake sand, 0 to 2 percent slopes                          | 1    |
| 2—Pineda sand, limestone substratum                                 | 19   |
| 4—Oldsmar sand, 0 to 2 percent slopes                               | 2    |
| 6—Wabasso sand, 0 to 2 percent slopes                               | 2    |
| 7—Immokalee sand, 0 to 2 percent slopes                             | 2    |
| 8—Malabar sand, 0 to 2 percent slopes                               | 2    |
| 9—Riviera fine sand, 0 to 2 percent slopes                          | 2    |
| 10—Pineda-Pineda, wet, fine sand, 0 to 2 percent slopes             |      |
| 14—Wabasso sand, limestone substratum, 0 to 2 percent slopes        |      |
| 15—Myakka sand, 0 to 2 percent slopes                               |      |
| 17—Basinger sand, 0 to 2 percent slopes                             | 3    |
| 18—Pompano sand, 0 to 2 percent slopes                              | 4    |
| 19—Gator muck, frequently ponded, 0 to 1 percent slopes             |      |
| 20—Okeelanta muck                                                   | 4    |
| 21—Holopaw sand, 0 to 2 percent slopes                              | 4    |
| 22—Valkaria sand                                                    |      |
| 27—Riviera sand, limestone substratum                               | 5    |
| 28—Cypress Lake sand, frequently ponded, 0 to 1 percent slopes      | 5    |
| 29—Oldsmar sand, limestone substratum                               |      |
| 32—Riviera sand, frequently ponded, 0 to 1 percent slopes           | 6    |
| 34—Chobee fine sandy loam, limestone substratum, depressional       |      |
| 37—Tuscawilla fine sand, 0 to 2 percent slopes                      |      |
| 39—Udifluvents                                                      |      |
| 45—Pahokee muck, drained, 0 to 1 percent slopes                     | 6    |
| 47—Udorthents                                                       |      |
| 49—Aquents, organic substratum                                      |      |
| 53—Adamsville fine sand, 0 to 2 percent slopes                      |      |
| 57—Chobee fine sandy loam, frequently ponded, 0 to 1 percent slopes |      |
| 62—Pineda sand, depressional                                        |      |
| 99—Water                                                            |      |
| References                                                          |      |
|                                                                     |      |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

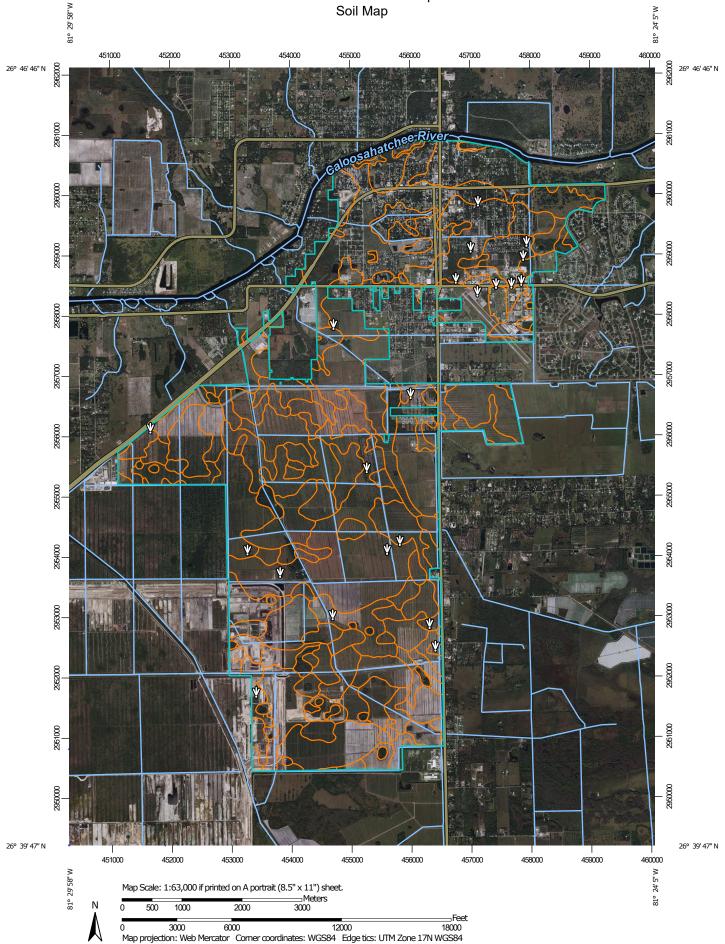
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

## Custom Soil Resource Report Soil Map



|              | MAP LEGEND                                    |            |                         |  |  |  |  |  |
|--------------|-----------------------------------------------|------------|-------------------------|--|--|--|--|--|
| Area of Inte | erest (AOI)                                   |            | Spoil Area              |  |  |  |  |  |
|              | Area of Interest (AOI)                        | ۵          | Stony Spot              |  |  |  |  |  |
| Soils        | Soil Man Unit Dalvaana                        | 0          | Very Stony Spot         |  |  |  |  |  |
|              | Soil Map Unit Polygons<br>Soil Map Unit Lines | Ŷ          | Wet Spot                |  |  |  |  |  |
| ~            |                                               | Δ          | Other                   |  |  |  |  |  |
| Creation I   | Soil Map Unit Points                          | -          | Special Line Features   |  |  |  |  |  |
| Special F    | Point Features<br>Blowout                     | Water Feat | ures                    |  |  |  |  |  |
| ×            | Borrow Pit                                    | $\sim$     | Streams and Canals      |  |  |  |  |  |
| *            | Clay Spot                                     | Transporta |                         |  |  |  |  |  |
| õ            | Closed Depression                             | +++        | Rails                   |  |  |  |  |  |
| ×            | Gravel Pit                                    | ~          | Interstate Highways     |  |  |  |  |  |
| °°           | Gravelly Spot                                 | ~          | US Routes               |  |  |  |  |  |
| 0            | Landfill                                      | $\sim$     | Major Roads             |  |  |  |  |  |
| Ă            | Lava Flow                                     | ~          | Local Roads             |  |  |  |  |  |
| <br>علد      | Marsh or swamp                                | Backgroun  | d<br>Aerial Photography |  |  |  |  |  |
| _            | Mine or Quarry                                |            | Achar Hotography        |  |  |  |  |  |
| ~            | Miscellaneous Water                           |            |                         |  |  |  |  |  |
| 0            | Perennial Water                               |            |                         |  |  |  |  |  |
| 0            |                                               |            |                         |  |  |  |  |  |
| ×            | Rock Outcrop                                  |            |                         |  |  |  |  |  |
| +            | Saline Spot                                   |            |                         |  |  |  |  |  |
| 0 0<br>0 0   | Sandy Spot                                    |            |                         |  |  |  |  |  |
| -            | Severely Eroded Spot                          |            |                         |  |  |  |  |  |
| \$           | Sinkhole                                      |            |                         |  |  |  |  |  |
| ≽            | Slide or Slip                                 |            |                         |  |  |  |  |  |
| ø            | Sodic Spot                                    |            |                         |  |  |  |  |  |

## **MAP INFORMATION**

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Glades County, Florida Survey Area Data: Version 22, Sep 6, 2023

Soil Survey Area: Hendry County, Florida Survey Area Data: Version 23, Aug 28, 2023

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Nov 14, 2021—Nov 23, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

## MAP LEGEND

## MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Map Unit Legend

П

| Map Unit Symbol                | Map Unit Name      | Acres in AOI | Percent of AOI |
|--------------------------------|--------------------|--------------|----------------|
| 35                             | Arents, very steep | 0.1          | 0.0%           |
| 99                             | Water              | 0.2          | 0.0%           |
| Subtotals for Soil Survey Area |                    | 0.3          | 0.0%           |
| Totals for Area of Interest    |                    | 9,237.3      | 100.0%         |

| Map Unit Symbol | Map Unit Name                                                   | Acres in AOI | Percent of AOI |
|-----------------|-----------------------------------------------------------------|--------------|----------------|
| 1               | Cypress Lake sand, 0 to 2 percent slopes                        | 949.6        | 10.3%          |
| 2               | Pineda sand, limestone substratum                               | 501.3        | 5.4%           |
| 4               | Oldsmar sand, 0 to 2 percent slopes                             | 552.4        | 6.0%           |
| 6               | Wabasso sand, 0 to 2 percent slopes                             | 777.8        | 8.4%           |
| 7               | Immokalee sand, 0 to 2 percent slopes                           | 1,724.9      | 18.7%          |
| 8               | Malabar sand, 0 to 2 percent slopes                             | 355.8        | 3.9%           |
| 9               | Riviera fine sand, 0 to 2 percent slopes                        | 179.9        | 1.9%           |
| 10              | Pineda-Pineda, wet, fine sand,<br>0 to 2 percent slopes         | 1.9          | 0.0%           |
| 14              | Wabasso sand, limestone<br>substratum, 0 to 2 percent<br>slopes | 673.0        | 7.3%           |
| 15              | Myakka sand, 0 to 2 percent slopes                              | 39.9         | 0.4%           |
| 17              | Basinger sand, 0 to 2 percent slopes                            | 350.5        | 3.8%           |
| 18              | Pompano sand, 0 to 2 percent slopes                             | 298.8        | 3.2%           |
| 19              | Gator muck, frequently ponded,<br>0 to 1 percent slopes         | 70.3         | 0.8%           |
| 20              | Okeelanta muck                                                  | 9.7          | 0.1%           |
| 21              | Holopaw sand, 0 to 2 percent slopes                             | 670.3        | 7.3%           |
| 22              | Valkaria sand                                                   | 97.0         | 1.0%           |
| 27              | Riviera sand, limestone substratum                              | 581.5        | 6.3%           |
| 28              | Cypress Lake sand, frequently ponded, 0 to 1 percent slopes     | 79.9         | 0.9%           |
| 29              | Oldsmar sand, limestone substratum                              | 352.4        | 3.8%           |

| Map Unit Symbol                                                  | Map Unit Name                                                          | Acres in AOI | Percent of AOI |
|------------------------------------------------------------------|------------------------------------------------------------------------|--------------|----------------|
| 32                                                               | Riviera sand, frequently ponded, 0 to 1 percent slopes                 | 68.7         | 0.7%           |
| Chobee fine sandy loam,<br>limestone substratum,<br>depressional |                                                                        | 46.8         | 0.5%           |
| 37   Tuscawilla fine sand, 0 to 2 percent slopes                 |                                                                        | 44.2         | 0.5%           |
| 39                                                               | Udifluvents                                                            | 10.4         | 0.1%           |
| 45                                                               | Pahokee muck, drained, 0 to 1 percent slopes                           | 10.1         | 0.1%           |
| 47                                                               | Udorthents                                                             | 115.1        | 1.2%           |
| 49                                                               | Aquents, organic substratum                                            | 16.8         | 0.2%           |
| 53                                                               | Adamsville fine sand, 0 to 2 percent slopes                            | 150.2        | 1.6%           |
| 57                                                               | Chobee fine sandy loam,<br>frequently ponded, 0 to 1<br>percent slopes | 484.1        | 5.2%           |
| 62                                                               | Pineda sand, depressional                                              | 12.6         | 0.1%           |
| 99                                                               | Water                                                                  | 11.2         | 0.1%           |
| Subtotals for Soil Survey A                                      | rea                                                                    | 9,237.0      | 100.0%         |
| Totals for Area of Interest                                      |                                                                        | 9,237.3      | 100.0%         |

# **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## **Glades County, Florida**

## 35—Arents, very steep

## **Map Unit Setting**

National map unit symbol: 1ksky Elevation: 0 to 50 feet Mean annual precipitation: 42 to 50 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

## **Map Unit Composition**

Arents and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Arents**

## Setting

Landform: Rises on marine terraces Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Altered marine deposits

## **Typical profile**

A - 0 to 2 inches: fine sand C - 2 to 80 inches: variable

## **Properties and qualities**

Slope: 45 to 60 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group: A
Forage suitability group: Forage suitability group not assigned (G155XB999FL)
Other vegetative classification: Forage suitability group not assigned
(G155XB999FL)
Hydric soil rating: No

## 99—Water

## Map Unit Composition

*Water:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Water**

## Interpretive groups

Land capability classification (irrigated): None specified
 Forage suitability group: Forage suitability group not assigned (G155XB999FL)
 Other vegetative classification: Forage suitability group not assigned
 (G155XB999FL)
 Hydric soil rating: Unranked

## Hendry County, Florida

## 1—Cypress Lake sand, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: 2zlf0 Elevation: 0 to 100 feet Mean annual precipitation: 45 to 55 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 355 to 365 days Farmland classification: Farmland of unique importance

## **Map Unit Composition**

*Cypress lake and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Cypress Lake**

## Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits over limestone

## **Typical profile**

Ap - 0 to 7 inches: sand E - 7 to 28 inches: sand Btg - 28 to 33 inches: fine sandy loam 2R - 33 to 43 inches: bedrock

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 13 to 58 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Forage suitability group: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL) *Other vegetative classification:* South Florida Flatwoods (R155XY003FL), Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL) *Hydric soil rating:* No

## **Minor Components**

## Pineda

Percent of map unit: 4 percent Landform: Drainageways on marine terraces, flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Other vegetative classification: Slough (R155XY011FL), Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL) Hydric soil rating: Yes

## Riviera

Percent of map unit: 4 percent
Landform: Flats on marine terraces
Landform position (three-dimensional): Tread, talf
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G156BC241FL), Slough (R156BY011FL)
Hydric soil rating: Yes

## Brynwood

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

## Wabasso

Percent of map unit: 3 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: No

## 2—Pineda sand, limestone substratum

## Map Unit Setting

National map unit symbol: 17n44 Elevation: 0 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Farmland of unique importance

## Map Unit Composition

*Pineda, limestone substratum, and similar soils:* 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Pineda, Limestone Substratum**

## Setting

Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Parent material: Sandy and loamy marine deposits

## **Typical profile**

A - 0 to 10 inches: sand E/Bw - 10 to 32 inches: sand Btg - 32 to 50 inches: sandy clay loam 2R - 50 to 54 inches: unweathered bedrock

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 40 to 80 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: C/D Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Forage suitability group: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

#### **Minor Components**

## Boca

Percent of map unit: 5 percent
Landform: Flatwoods on marine terraces
Landform position (three-dimensional): Talf
Down-slope shape: Convex
Across-slope shape: Linear
Ecological site: F156AY010FL - Subtropical Pine Flatwoods and Palmetto Prairie of Big Cypress
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

## Pineda

Percent of map unit: 5 percent
Landform: Drainageways on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Concave
Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

## Riviera

Percent of map unit: 5 percent
Landform: Drainageways on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Concave
Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

## Malabar

Percent of map unit: 5 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

## 4—Oldsmar sand, 0 to 2 percent slopes

## Map Unit Setting

National map unit symbol: 2sm4p Elevation: 0 to 80 feet Mean annual precipitation: 42 to 56 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 355 to 365 days Farmland classification: Farmland of unique importance

## Map Unit Composition

Oldsmar and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Oldsmar**

## Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

## **Typical profile**

A - 0 to 6 inches: sand E - 6 to 38 inches: sand Bh - 38 to 50 inches: sand Btg - 50 to 80 inches: sandy clay loam

## Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.1 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: No

#### **Minor Components**

#### Immokalee

Percent of map unit: 6 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: No

## Holopaw

Percent of map unit: 3 percent
Landform: Flatwoods on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Slough (R155XY011FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: Yes

#### Basinger

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

## **Cypress lake**

Percent of map unit: 2 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

## Tequesta

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave

*Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Organic soils in depressions and on flood plains (G156AC645FL), Freshwater Marshes and Ponds (R156BY010FL) *Hydric soil rating:* Yes

## 6—Wabasso sand, 0 to 2 percent slopes

## Map Unit Setting

National map unit symbol: 2svyr Elevation: 0 to 70 feet Mean annual precipitation: 46 to 55 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 355 to 365 days Farmland classification: Farmland of unique importance

#### **Map Unit Composition**

Wabasso and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### Description of Wabasso

#### Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

## **Typical profile**

A - 0 to 6 inches: sand E - 6 to 25 inches: sand Bh - 25 to 30 inches: sand Btg - 30 to 58 inches: sandy clay loam Cg - 58 to 80 inches: loamy sand

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 9 to 50 inches to strongly contrasting textural stratification
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent

*Maximum salinity:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 4.0 *Available water supply, 0 to 60 inches:* Very low (about 1.4 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C/D
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

## Minor Components

## Brynwood

Percent of map unit: 6 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

## **Cypress lake**

Percent of map unit: 5 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

## Pineda

Percent of map unit: 4 percent Landform: Drainageways on marine terraces, flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) Hydric soil rating: Yes

## 7-Immokalee sand, 0 to 2 percent slopes

## Map Unit Setting

National map unit symbol: 2s3ll Elevation: 0 to 150 feet Mean annual precipitation: 42 to 57 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

## Map Unit Composition

*Immokalee and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## Description of Immokalee

## Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Sandy marine deposits

## **Typical profile**

A - 0 to 9 inches: sand E - 9 to 36 inches: sand Bh - 36 to 55 inches: sand C - 55 to 80 inches: sand

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)

Hydric soil rating: No

## **Minor Components**

#### Valkaria

Percent of map unit: 5 percent Landform: Drainageways on flatwoods on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Linear, concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Oldsmar

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

#### Pomello

Percent of map unit: 3 percent
Landform: Ridges on marine terraces, knolls on marine terraces
Landform position (two-dimensional): Summit, backslope
Landform position (three-dimensional): Interfluve, side slope, riser
Down-slope shape: Convex, linear
Across-slope shape: Linear
Ecological site: F155XY150FL - Sandy Upland Mesic Flatwoods and Hammocks on Rises and Knolls
Other vegetative classification: Sandy soils on rises and knolls of mesic uplands (G155XB131FL), Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

## Satellite

Percent of map unit: 2 percent

Landform: Drainageways on flatwoods on marine terraces

Landform position (three-dimensional): Tread, dip, talf

Down-slope shape: Linear

Across-slope shape: Linear, concave

- *Ecological site:* F155XY150FL Sandy Upland Mesic Flatwoods and Hammocks on Rises and Knolls
- *Other vegetative classification:* Sand Pine Scrub (R155XY001FL), Sandy soils on rises and knolls of mesic uplands (G155XB131FL)

Hydric soil rating: No

## Felda

Percent of map unit: 1 percent

Landform: Drainageways on marine terraces, flatwoods on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)

Hydric soil rating: Yes

## 8—Malabar sand, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2sm5k Elevation: 0 to 40 feet Mean annual precipitation: 46 to 57 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

## Map Unit Composition

Malabar and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Malabar**

#### Setting

Landform: Flats on marine terraces, drainageways on marine terraces Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Linear Across-slope shape: Linear, concave Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 5 inches: sand E - 5 to 15 inches: sand Bw - 15 to 35 inches: sand E' - 35 to 45 inches: sand Btg - 45 to 65 inches: sandy loam Cg - 65 to 80 inches: loamy sand

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 3 to 18 inches
Frequency of flooding: None

*Frequency of ponding:* None *Calcium carbonate, maximum content:* 4 percent *Maximum salinity:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 4.0 *Available water supply, 0 to 60 inches:* Low (about 3.7 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)

*Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)

Hydric soil rating: Yes

### **Minor Components**

#### Holopaw

Percent of map unit: 5 percent

*Landform:* Flatwoods on marine terraces, drainageways on marine terraces *Landform position (three-dimensional):* Tread, talf, dip

*Down-slope shape:* Linear, convex

Across-slope shape: Linear, concave

*Ecological site:* F155XY120FL - Sandy Flatwoods and Hammocks

*Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)

Hydric soil rating: Yes

# Basinger

Percent of map unit: 4 percent

Landform: Drainageways on marine terraces, flats on marine terraces

Landform position (three-dimensional): Tread, dip, talf

*Down-slope shape:* Linear, convex

Across-slope shape: Linear, concave

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands

(G155XB141FL), Slough (R155XY011FL)

Hydric soil rating: Yes

### Oldsmar

Percent of map unit: 3 percent

Landform: Flatwoods on marine terraces

Landform position (three-dimensional): Talf

*Down-slope shape:* Linear, convex

Across-slope shape: Linear

Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks

Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands

(G155XB141FL), South Florida Flatwoods (R155XY003FL)

Hydric soil rating: No

# Cypress lake

*Percent of map unit:* 3 percent *Landform:* Flats on marine terraces, drainageways on marine terraces *Landform position (three-dimensional):* Tread, talf, dip *Down-slope shape:* Convex, linear

Across-slope shape: Linear, concave

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL) *Hydric soil rating:* Yes

# 9—Riviera fine sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 2tzw2 Elevation: 0 to 80 feet Mean annual precipitation: 44 to 59 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

*Riviera and similar soils:* 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

### **Description of Riviera**

## Setting

Landform: Drainageways on marine terraces, flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 6 inches: fine sand E - 6 to 28 inches: fine sand Bt/E - 28 to 32 inches: fine sandy loam Btg - 32 to 42 inches: sandy clay loam C - 42 to 80 inches: fine sand

### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 3 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Forage suitability group: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

#### Minor Components

#### Wabasso

Percent of map unit: 8 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

#### Pinellas

Percent of map unit: 4 percent
Landform: Flatwoods on marine terraces
Landform position (three-dimensional): Tread, talf
Down-slope shape: Convex, linear
Across-slope shape: Linear
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), Cabbage Palm Flatwoods (R155XY005FL)
Hydric soil rating: No

#### Brynwood

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

### Floridana

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

### Oldsmar

Percent of map unit: 2 percent
Landform: Flatwoods on marine terraces
Landform position (three-dimensional): Talf
Down-slope shape: Convex, linear
Across-slope shape: Linear
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

# 10-Pineda-Pineda, wet, fine sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 2svyp Elevation: 0 to 100 feet Mean annual precipitation: 42 to 63 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

#### **Map Unit Composition**

*Pineda and similar soils:* 45 percent *Pineda, wet, and similar soils:* 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Pineda**

#### Setting

Landform: Drainageways on marine terraces, flatwoods on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Parent material: Sandy and loamy marine deposits

### **Typical profile**

A - 0 to 1 inches: fine sand E - 1 to 5 inches: fine sand Bw - 5 to 36 inches: fine sand Btg/E - 36 to 54 inches: fine sandy loam Cg - 54 to 80 inches: fine sand

#### **Properties and qualities**

*Slope:* 0 to 2 percent *Depth to restrictive feature:* More than 80 inches Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

*Maximum salinity:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 4.0

Available water supply, 0 to 60 inches: Low (about 5.7 inches)

# Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Forage suitability group: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL)
Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy<br/>over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)
Hydric soil rating: No

### **Description of Pineda, Wet**

### Setting

Landform: Drainageways on marine terraces, flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Parent material: Sandy and loamy marine deposits

# **Typical profile**

A - 0 to 1 inches: fine sand E - 1 to 5 inches: fine sand Bw - 5 to 36 inches: fine sand Btg/E - 36 to 54 inches: fine sandy loam Cg - 54 to 80 inches: fine sand

# **Properties and qualities**

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 5.7 inches)

# Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: A/D

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)

*Other vegetative classification:* Slough (R155XY011FL), Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)

Hydric soil rating: Yes

### **Minor Components**

#### Felda

Percent of map unit: 6 percent

Landform: Drainageways on marine terraces, flats on marine terraces

Landform position (three-dimensional): Tread, dip, talf

Down-slope shape: Linear

Across-slope shape: Concave, linear

- *Ecological site:* R155XY080FL Sandy over Loamy Freshwater Isolated Marshes and Swamps
- *Other vegetative classification:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL)

Hydric soil rating: Yes

### Wabasso

Percent of map unit: 3 percent

Landform: Flatwoods on marine terraces

Landform position (three-dimensional): Tread, talf

Down-slope shape: Convex, linear

Across-slope shape: Linear

Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks

Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands

(G155XB141FL), South Florida Flatwoods (R155XY003FL) *Hydric soil rating:* No

#### Valkaria

Percent of map unit: 2 percent

Landform: Drainageways on flats on marine terraces

Landform position (three-dimensional): Tread, dip, talf

Down-slope shape: Linear

Across-slope shape: Linear, concave

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)

Hydric soil rating: Yes

#### Cypress lake

Percent of map unit: 2 percent

Landform: Flats on marine terraces, drainageways on marine terraces

Landform position (three-dimensional): Tread, talf, dip

Down-slope shape: Convex, linear

Across-slope shape: Linear, concave

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL) *Hydric soil rating:* Yes

33

### Brynwood

Percent of map unit: 2 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

# 14—Wabasso sand, limestone substratum, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2tzws Elevation: 0 to 50 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 355 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

Wabasso, limestone substratum, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### Description of Wabasso, Limestone Substratum

#### Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Sandy and loamy marine deposits over limestone

#### **Typical profile**

A - 0 to 6 inches: sand E - 6 to 25 inches: sand Bh - 25 to 35 inches: sand Btg - 35 to 45 inches: sandy clay loam 2R - 45 to 55 inches: bedrock

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 13 to 54 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Low (about 3.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C/D
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

#### **Minor Components**

#### **Cypress lake**

Percent of map unit: 6 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

#### Gator

Percent of map unit: 3 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Tread, dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Brynwood

Percent of map unit: 3 percent

Landform: Flatwoods on marine terraces

Landform position (three-dimensional): Tread, talf

Down-slope shape: Linear

Across-slope shape: Linear

*Ecological site:* F155XY120FL - Sandy Flatwoods and Hammocks

*Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)

Hydric soil rating: Yes

#### Gentry

Percent of map unit: 3 percent Landform: Depressions on marine terraces

#### **Custom Soil Resource Report**

Landform position (three-dimensional): Tread, dip Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

# 15—Myakka sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 2twt9 Elevation: 10 to 130 feet Mean annual precipitation: 43 to 62 inches Mean annual air temperature: 64 to 77 degrees F Frost-free period: 280 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

*Myakka and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Myakka**

### Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

# **Typical profile**

*A* - 0 to 6 inches: sand *E* - 6 to 20 inches: sand *Bh* - 20 to 36 inches: sand *C* - 36 to 80 inches: sand

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Low (about 5.0 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

### Minor Components

### Basinger

Percent of map unit: 5 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear, convex Across-slope shape: Concave, linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

## Valkaria

Percent of map unit: 5 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Convex, linear Across-slope shape: Linear, concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

# Oldsmar

Percent of map unit: 5 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

# 17—Basinger sand, 0 to 2 percent slopes

### Map Unit Setting

National map unit symbol: 2vbpc Elevation: 0 to 50 feet Mean annual precipitation: 42 to 62 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

### **Map Unit Composition**

Basinger and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Basinger**

#### Setting

Landform: Flats on marine terraces, drainageways on marine terraces Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Convex, concave Across-slope shape: Linear, concave Parent material: Sandy marine deposits

# **Typical profile**

A - 0 to 6 inches: sand E - 6 to 25 inches: sand Bh - 25 to 50 inches: sand C - 50 to 80 inches: sand

# **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 3 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Slough (R155XY011FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: Yes

### **Minor Components**

## Holopaw

Percent of map unit: 6 percent
Landform: Drainageways on marine terraces, flats on marine terraces
Landform position (three-dimensional): Tread, dip, talf
Down-slope shape: Convex, concave, linear
Across-slope shape: Linear, concave
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Slough (R155XY011FL), Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL)
Hydric soil rating: Yes

### Malabar

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

# Pompano

Percent of map unit: 3 percent Landform: Drainageways on flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

# Anclote

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, convex Across-slope shape: Concave, linear Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

# 18—Pompano sand, 0 to 2 percent slopes

### **Map Unit Setting**

National map unit symbol: 2tzw4 Elevation: 0 to 40 feet Mean annual precipitation: 44 to 58 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

### **Map Unit Composition**

Pompano and similar soils: 82 percent Minor components: 18 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Pompano**

#### Setting

Landform: Drainageways on flats on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Parent material: Sandy marine deposits

# **Typical profile**

*A - 0 to 6 inches:* sand *C - 6 to 80 inches:* sand

# **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 3 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very low (about 2.4 inches)

#### Interpretive groups

(G155XB141FL)

 Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 4w
 Hydrologic Soil Group: A/D
 Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps
 Forage suitability group: Sandy soils on flats of mesic or hydric lowlands *Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) *Hydric soil rating:* Yes

### **Minor Components**

### Myakka

Percent of map unit: 8 percent Landform: Drainageways on flatwoods on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Linear, concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

### Brynwood

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

### Holopaw

Percent of map unit: 4 percent
Landform: Drainageways on marine terraces, flats on marine terraces
Landform position (three-dimensional): Tread, dip, talf
Down-slope shape: Convex, concave, linear
Across-slope shape: Linear, concave
Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Slough (R155XY011FL)
Hydric soil rating: Yes

# Samsula

Percent of map unit: 2 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

# 19—Gator muck, frequently ponded, 0 to 1 percent slopes

### Map Unit Setting

National map unit symbol: 2tzwz Elevation: 0 to 100 feet Mean annual precipitation: 42 to 56 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

### Map Unit Composition

Gator and similar soils: 83 percent Minor components: 17 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Gator**

### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material over sandy and loamy marine deposits

# **Typical profile**

*Oa - 0 to 18 inches:* muck *Cq1 - 18 to 36 inches:* sandy clay loam

*Cg2 - 36 to 55 inches:* fine sandy loam

Cg3 - 55 to 80 inches: fine sand

# **Properties and qualities**

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very high (about 13.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D *Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Organic soils in depressions and on flood plains (G155XB645FL)

*Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

### **Minor Components**

### Terra ceia

Percent of map unit: 5 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Tread, dip
Down-slope shape: Concave, convex
Across-slope shape: Concave, linear
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

# Chobee

Percent of map unit: 4 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

# Tequesta

Percent of map unit: 4 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Tread, dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL), Freshwater Marshes and Ponds (R156BY010FL)
Hydric soil rating: Yes

# Felda

Percent of map unit: 3 percent Landform: Drainageways on marine terraces, flatwoods on marine terraces Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Pompano

Percent of map unit: 1 percent
Landform: Drainageways on marine terraces, flatwoods on marine terraces
Landform position (three-dimensional): Tread, dip, talf
Down-slope shape: Linear
Across-slope shape: Concave, linear
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)
Hydric soil rating: Yes

# 20—Okeelanta muck

### Map Unit Setting

National map unit symbol: 17n4l Elevation: 0 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Farmland of unique importance

#### **Map Unit Composition**

Okeelanta, undrained, and similar soils: 50 percent Okeelanta, drained, and similar soils: 37 percent Minor components: 13 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Okeelanta, Undrained**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material over sandy marine deposits

#### **Typical profile**

*Oa - 0 to 48 inches:* muck *C - 48 to 80 inches:* sand

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None

Frequency of ponding: Frequent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Very high (about 20.2 inches)

# Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A/D
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL)
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

# Description of Okeelanta, Drained

# Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material over sandy marine deposits

# **Typical profile**

*Oa - 0 to 48 inches:* muck *C - 48 to 80 inches:* sand

# **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very high (about 20.2 inches)

# Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL)
Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Organic soils in depressions and on flood plains (G155XB645FL)

Hydric soil rating: Yes

#### **Minor Components**

#### Basinger

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

### Gator

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

#### Delray

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

#### Pahokee, drained

Percent of map unit: 2 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Terra ceia

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave *Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

### Holopaw, depressional

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

### Winder, depressional

Percent of map unit: 1 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Linear, concave
Ecological site: R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps
Other vegetative classification: Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

# 21—Holopaw sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 2x9g9 Elevation: 0 to 190 feet Mean annual precipitation: 46 to 57 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

# Map Unit Composition

Holopaw and similar soils: 84 percent Minor components: 16 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Holopaw**

#### Setting

Landform: Flats on marine terraces, drainageways on marine terraces Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Linear, concave Across-slope shape: Concave, linear Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 5 inches: sand Eg - 5 to 48 inches: sand Btg - 48 to 65 inches: sandy clay loam BCkg - 65 to 80 inches: sandy loam

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: About 3 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 4 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL)

*Other vegetative classification:* Slough (R155XY011FL), Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL) *Hydric soil rating:* Yes

#### **Minor Components**

#### Basinger

Percent of map unit: 6 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Concave
Across-slope shape: Linear
Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Slough (R155XY011FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: Yes

# Riviera

Percent of map unit: 4 percent

*Landform:* Drainageways on marine terraces, flats on marine terraces, flatwoods on marine terraces

Landform position (three-dimensional): Tread, dip, talf

*Down-slope shape:* Linear, concave

Across-slope shape: Linear, concave

- *Ecological site:* R155XY080FL Sandy over Loamy Freshwater Isolated Marshes and Swamps
- *Other vegetative classification:* Sandy over loamy soils on flats of hydric or mesic lowlands (G156BC241FL), Slough (R156BY011FL)

Hydric soil rating: Yes

# Oldsmar

Percent of map unit: 3 percent Landform: Flatwoods on marine terraces, drainageways on marine terraces Landform position (three-dimensional): Talf, dip Down-slope shape: Linear, concave Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: No

# **Cypress lake**

Percent of map unit: 2 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

# Gentry

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL) Hydric soil rating: Yes

# 22—Valkaria sand

### Map Unit Setting

National map unit symbol: 17n4n Elevation: 10 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

Valkaria and similar soils: 82 percent Minor components: 18 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Valkaria**

#### Setting

Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Parent material: Sandy marine deposits

# **Typical profile**

A - 0 to 10 inches: sand E - 10 to 15 inches: sand Bw - 15 to 45 inches: sand C - 45 to 80 inches: sand

# **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 0 to 10 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.4 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps  Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
 Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)
 Hydric soil rating: Yes

#### **Minor Components**

#### Pompano

Percent of map unit: 3 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Pineda

Percent of map unit: 3 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) Hydric soil rating: Yes

### Malabar

Percent of map unit: 3 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

### Immokalee

Percent of map unit: 3 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

#### Myakka

Percent of map unit: 3 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

### Basinger

Percent of map unit: 3 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

# 27—Riviera sand, limestone substratum

## **Map Unit Setting**

National map unit symbol: 17n4s Elevation: 0 to 60 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Farmland of unique importance

#### **Map Unit Composition**

*Riviera, limestone substratum, and similar soils:* 83 percent *Minor components:* 17 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Riviera, Limestone Substratum**

#### Setting

Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 5 inches: sand E - 5 to 35 inches: sand Btg - 35 to 50 inches: sandy loam 2R - 50 to 54 inches: unweathered bedrock

#### **Properties and qualities**

Slope: 0 to 2 percent Depth to restrictive feature: 50 to 80 inches to lithic bedrock Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): High to very high (2.00 to 20.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None

Frequency of ponding: None

*Calcium carbonate, maximum content:* 5 percent *Maximum salinity:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 4.0

Available water supply, 0 to 60 inches: Low (about 3.7 inches)

# Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: A/D

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)

*Other vegetative classification:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) *Hydric soil rating:* Yes

Hydric soil rating: Yes

# **Minor Components**

# Boca

Percent of map unit: 3 percent
Landform: Flatwoods on marine terraces
Landform position (three-dimensional): Talf
Down-slope shape: Convex
Across-slope shape: Linear
Ecological site: F156AY010FL - Subtropical Pine Flatwoods and Palmetto Prairie of Big Cypress
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

# Gentry

Percent of map unit: 3 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy over Ioamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

# Gator

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

*Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

#### Pineda, limestone substratum

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) Hydric soil rating: Yes

### Winder

Percent of map unit: 2 percent
Landform: Drainageways on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Linear, concave
Across-slope shape: Concave, linear
Ecological site: F155XY140FL - Loamy and Clayey Hardwood Hammocks
Other vegetative classification: Loamy and clayey soils on flats of hydric or mesic
lowlands (G155XB341FL), Slough (R155XY011FL)
Hydric soil rating: Yes

## Holopaw, limestone substratum

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

### Wabasso, limestone substratum

Percent of map unit: 2 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

# 28—Cypress Lake sand, frequently ponded, 0 to 1 percent slopes

#### Map Unit Setting

National map unit symbol: 2zlf1 Elevation: 0 to 280 feet Mean annual precipitation: 45 to 55 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 55 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

Cypress lake and similar soils: 77 percent Minor components: 23 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Cypress Lake**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Parent material: Sandy and loamy marine deposits over limestone

### **Typical profile**

Ap - 0 to 7 inches: sand E - 7 to 28 inches: sand Btg - 28 to 33 inches: fine sandy loam 2R - 33 to 43 inches: bedrock

### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 13 to 58 inches to lithic bedrock
Drainage class: Very poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D *Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)

*Other vegetative classification:* South Florida Flatwoods (R155XY003FL), Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL) *Hydric soil rating:* Yes

### **Minor Components**

### Pineda

Percent of map unit: 3 percent

*Landform:* Drainageways on marine terraces, flats on marine terraces *Landform position (three-dimensional):* Tread, dip, talf

Down-slope shape: Linear

Across-slope shape: Concave, linear

*Ecological site:* F155XY130FL - Sandy over Loamy Flatwoods and Hammocks *Other vegetative classification:* Slough (R155XY011FL), Sandy over loamy soils

on flats of hydric or mesic lowlands (G155XB241FL)

Hydric soil rating: Yes

### Malabar

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

# Holopaw

Percent of map unit: 3 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Tread, dip

Down-slope shape: Convex, concave

Across-slope shape: Linear, concave

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Freshwater Marshes and Ponds (R155XY010FL),

Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL)

Hydric soil rating: Yes

# Gator

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Organic soils in depressions and on flood plains (G155XB645FL) Hydric soil rating: Yes

# Basinger

Percent of map unit: 3 percent

Landform: Flats on marine terraces, drainageways on marine terraces Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Convex, concave Across-slope shape: Linear, concave Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Slough (R155XY011FL), Sandy soils on flats of

mesic or hydric lowlands (G155XB141FL) *Hydric soil rating:* Yes

# Okeelanta

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL) Hydric soil rating: Yes

# Brynwood

Percent of map unit: 3 percent
Landform: Flatwoods on marine terraces, flatwoods on drainageways
Landform position (three-dimensional): Tread, dip
Down-slope shape: Linear
Across-slope shape: Linear, concave
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Slough (R155XY011FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: Yes

# Riviera

Percent of map unit: 2 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Freshwater Marshes and Ponds (R155XY010FL), Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL)

Hydric soil rating: Yes

# 29—Oldsmar sand, limestone substratum

### **Map Unit Setting**

National map unit symbol: 17n4v Elevation: 0 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Farmland of unique importance

### Map Unit Composition

Oldsmar, limetone substratum, and similar soils: 87 percent Minor components: 13 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Oldsmar, Limetone Substratum**

### Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

# **Typical profile**

A - 0 to 5 inches: sand E - 5 to 37 inches: sand Bh - 37 to 63 inches: sand Btg - 63 to 73 inches: sandy clay loam 2R - 73 to 77 inches: unweathered bedrock

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 60 to 73 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks

#### **Custom Soil Resource Report**

Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydria soil rating: No.

Hydric soil rating: No

### **Minor Components**

#### Hallandale

Percent of map unit: 3 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F156AY030FL - Subtropical Moist Hammocks of Big Cypress Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

### Pineda, limestone substratum

Percent of map unit: 2 percent
Landform: Drainageways on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

### Malabar

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Immokalee

Percent of map unit: 2 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

# Holopaw, limestone substratum

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Riviera, limestone substratum

Percent of map unit: 2 percent
Landform: Drainageways on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), Slough (R155XY011FL)
Hydric soil rating: Yes

# 32—Riviera sand, frequently ponded, 0 to 1 percent slopes

#### Map Unit Setting

National map unit symbol: 2tzwm Elevation: 0 to 70 feet Mean annual precipitation: 46 to 58 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

*Riviera and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Riviera**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 0 inches: sand E - 0 to 22 inches: sand Btg/E - 22 to 31 inches: sandy loam Btg1 - 31 to 42 inches: sandy loam Btg2 - 42 to 80 inches: sandy clay loam

#### **Properties and qualities**

*Slope:* 0 to 1 percent *Depth to restrictive feature:* More than 80 inches

Drainage class: Very poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None

Frequency of ponding: Frequent

Calcium carbonate, maximum content: 4 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0

Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

# Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w

Land capability classification (nonimigate

Hydrologic Soil Group: C/D

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL)

*Other vegetative classification:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

# **Minor Components**

# Chobee

Percent of map unit: 5 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

# Wabasso

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

# Malabar

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) *Hydric soil rating:* Yes

#### Brynwood

Percent of map unit: 3 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

# 34—Chobee fine sandy loam, limestone substratum, depressional

#### Map Unit Setting

National map unit symbol: 17n4y Elevation: 0 to 80 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

*Chobee, depressional, limestone subst., and similar soils:* 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### Description of Chobee, Depressional, Limestone Subst.

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Loamy alluvium

#### **Typical profile**

A - 0 to 15 inches: fine sandy loam Btg - 15 to 50 inches: sandy clay loam 2R - 50 to 54 inches: unweathered bedrock

## **Properties and qualities**

Slope: 0 to 2 percent Depth to restrictive feature: 40 to 79 inches to lithic bedrock Drainage class: Very poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None

Frequency of ponding: Frequent

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0

Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: C/D Ecological site: R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps

*Forage suitability group:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL)

Other vegetative classification: Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

## **Minor Components**

### Jupiter

Percent of map unit: 4 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Cabbage Palm Flatwoods (R155XY005FL) Hydric soil rating: Yes

# Gentry

Percent of map unit: 4 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

# Gator

Percent of map unit: 4 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave *Ecological site:* R155XY100FL - Organic Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

#### Winder, depressional

Percent of map unit: 4 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Linear, concave

*Ecological site:* R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### Dania

Percent of map unit: 4 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Organic soils in depressions and on flood plains (G155XB645FL) Hydric soil rating: Yes

#### 37—Tuscawilla fine sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 30dg1 Elevation: 20 to 110 feet Mean annual precipitation: 46 to 61 inches Mean annual air temperature: 66 to 77 degrees F Frost-free period: 335 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

*Tuscawilla and similar soils:* 84 percent *Minor components:* 16 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Tuscawilla**

#### Setting

Landform: Rises on flats on marine terraces

Landform position (three-dimensional): Tread, talf, rise Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 3 inches: fine sand Eg - 3 to 10 inches: fine sand Btg - 10 to 13 inches: fine sandy loam Btkg - 13 to 40 inches: fine sandy loam Ckg - 40 to 68 inches: fine sand 2Ckg - 68 to 80 inches: fine sand

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Moderate (about 6.3 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Ecological site: F155XY140FL - Loamy and Clayey Hardwood Hammocks Forage suitability group: Loamy and clayey soils on flats of hydric or mesic lowlands (G155XB341FL)

*Other vegetative classification:* Wetland Hardwood Hammock (R155XY012FL), Loamy and clayey soils on flats of hydric or mesic lowlands (G155XB341FL) *Hydric soil rating:* Yes

#### **Minor Components**

#### Wabasso

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks Other vegetative classification: South Florida Flatwoods (R155XY003FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: No

#### Chobee, flooded

Percent of map unit: 4 percent Landform: Flood plains on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear

*Ecological site:* R155XY050FL - Loamy and Clayey Freshwater Floodplain Marshes and Swamps

*Other vegetative classification:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G156BC345FL)

Hydric soil rating: Yes

#### Tequesta

Percent of map unit: 4 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL), Freshwater Marshes and Ponds (R156BY010FL) Hydric soil rating: Yes

#### **Cypress lake**

Percent of map unit: 2 percent

Landform: Flats on marine terraces, drainageways on marine terraces

Landform position (three-dimensional): Tread, talf, dip

Down-slope shape: Convex, linear

Across-slope shape: Linear, concave

*Ecological site:* R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps

*Other vegetative classification:* South Florida Flatwoods (R155XY003FL), Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL)

Hydric soil rating: Yes

#### Jupiter

Percent of map unit: 2 percent

Landform: Flatwoods on marine terraces

Landform position (three-dimensional): Tread, talf

Down-slope shape: Linear

Across-slope shape: Linear

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Cabbage Palm Flatwoods (R155XY005FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)

Hydric soil rating: Yes

#### 39—Udifluvents

#### Map Unit Setting

National map unit symbol: 17n50 Elevation: 0 to 30 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

Udifluvents and similar soils: 92 percent Minor components: 8 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Udifluvents**

#### Setting

Landform: Flood plains on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

#### **Properties and qualities**

Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Runoff class: Negligible Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

#### Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Forage suitability group not assigned (G155XB999FL) Other vegetative classification: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: No

#### **Minor Components**

#### Riviera

Percent of map unit: 4 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G155XB241FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Immokalee

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf *Down-slope shape:* Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)

Hydric soil rating: No

#### 45—Pahokee muck, drained, 0 to 1 percent slopes

#### Map Unit Setting

National map unit symbol: 2rfsb Elevation: 0 to 60 feet Mean annual precipitation: 42 to 55 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 355 to 365 days Farmland classification: Farmland of unique importance

#### Map Unit Composition

Pahokee, drained, and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Pahokee, Drained**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Linear Parent material: Herbaceous organic material over limestone

#### **Typical profile**

Oa - 0 to 40 inches: muck 2R - 40 to 50 inches: bedrock

#### **Properties and qualities**

Slope: 0 to 1 percent
Depth to restrictive feature: 36 to 51 inches to lithic bedrock
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (1.98 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Very high (about 16.1 inches)

#### Interpretive groups

(G155XB645FL)

 Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 3w
 Hydrologic Soil Group: A/D
 Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
 Forage suitability group: Organic soils in depressions and on flood plains *Other vegetative classification:* Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

#### **Minor Components**

#### **Cypress lake**

Percent of map unit: 6 percent
Landform: Flats on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, talf, dip
Down-slope shape: Convex, linear
Across-slope shape: Linear, concave
Ecological site: F155XY130FL - Sandy over Loamy Flatwoods and Hammocks
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic
lowlands (G155XB241FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

#### Dania, drained

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL), Freshwater Marshes and Ponds (R156AY010FL) Hydric soil rating: Yes

#### Lauderhill, drained

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL) Hydric soil rating: Yes

#### 47—Udorthents

#### **Map Unit Setting**

National map unit symbol: 17n54 Elevation: 0 to 20 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Udorthents and similar soils:* 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Udorthents**

#### Setting

Landform: Marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Altered marine deposits

#### **Properties and qualities**

Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Negligible Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

#### Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Forage suitability group not assigned (G155XB999FL) Other vegetative classification: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: No

#### **Minor Components**

#### Aquents

Percent of map unit: 10 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: No

#### 49—Aquents, organic substratum

#### Map Unit Setting

National map unit symbol: 17n55 Elevation: 0 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

Aquents and similar soils: 92 percent Minor components: 8 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Aquents**

#### Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits over organic material over sandy marine deposits

#### **Typical profile**

A - 0 to 8 inches: fine sand E - 8 to 35 inches: loamy sand Oa - 35 to 42 inches: muck C - 42 to 80 inches: sand

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 24 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Hydrologic Soil Group: A Forage suitability group: Forage suitability group not assigned (G155XB999FL) Other vegetative classification: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: No

#### **Minor Components**

#### Basinger

Percent of map unit: 2 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Winder

Percent of map unit: 1 percent

Landform: Drainageways on marine terraces

Landform position (three-dimensional): Dip

*Down-slope shape:* Linear, concave

Across-slope shape: Concave, linear

*Other vegetative classification:* Loamy and clayey soils on flats of hydric or mesic lowlands (G155XB341FL), Slough (R155XY011FL)

Hydric soil rating: Yes

#### Pompano

Percent of map unit: 1 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Concave Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL) Hydric soil rating: Yes

#### Gator

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

#### Chobee, depressional

Percent of map unit: 1 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

*Other vegetative classification:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### Okeelanta, drained

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

#### Riviera, depressional

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

*Other vegetative classification:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL) *Hydric soil rating:* Yes

#### 53—Adamsville fine sand, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 2x9c0 Elevation: 0 to 130 feet Mean annual precipitation: 42 to 57 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 345 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

Adamsville and similar soils: 87 percent Minor components: 13 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Adamsville**

#### Setting

Landform: Rises on marine terraces, knolls on marine terraces Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

#### **Typical profile**

A - 0 to 7 inches: fine sand C - 7 to 80 inches: fine sand

#### Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 18 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 4.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: A

- *Ecological site:* F155XY150FL Sandy Upland Mesic Flatwoods and Hammocks on Rises and Knolls
- *Forage suitability group:* Sandy soils on rises and knolls of mesic uplands (G155XB131FL)
- *Other vegetative classification:* Upland Hardwood Hammock (R155XY008FL), Sandy soils on rises and knolls of mesic uplands (G155XB131FL)
- Hydric soil rating: No

#### **Minor Components**

#### Zolfo

Percent of map unit: 4 percent

Landform: Rises on marine terraces, flatwoods on marine terraces

Landform position (two-dimensional): Summit

Landform position (three-dimensional): Tread, rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

- *Ecological site:* F155XY150FL Sandy Upland Mesic Flatwoods and Hammocks on Rises and Knolls
- *Other vegetative classification:* Sandy soils on rises and knolls of mesic uplands (G155XB131FL), South Florida Flatwoods (R155XY003FL)

Hydric soil rating: No

#### Tavares

Percent of map unit: 4 percent

*Landform:* Knolls on marine terraces, flats on marine terraces, ridges on marine terraces, hills on marine terraces

Landform position (two-dimensional): Summit

Landform position (three-dimensional): Interfluve, side slope, tread, rise

*Down-slope shape:* Linear, convex

Across-slope shape: Convex, linear

- *Ecological site:* R155XY180FL Sandy Scrub on Rises, Ridges, and Knolls of Mesic Uplands
- *Other vegetative classification:* Longleaf Pine-Turkey Oak Hills (R155XY002FL), Sand Pine Scrub (R155XY001FL), Sandy soils on rises, knolls, and ridges of mesic uplands (G155XB121FL) *Hydric soil rating:* No

#### Myakka

Percent of map unit: 3 percent
Landform: Drainageways on flatwoods on marine terraces
Landform position (three-dimensional): Tread, dip, talf
Down-slope shape: Linear
Across-slope shape: Linear, concave
Ecological site: F155XY120FL - Sandy Flatwoods and Hammocks
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

#### Pompano

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear Across-slope shape: Linear, concave *Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Slough (R155XY011FL), Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) *Hydric soil rating:* Yes

#### 57—Chobee fine sandy loam, frequently ponded, 0 to 1 percent slopes

#### Map Unit Setting

National map unit symbol: 2tzvw Elevation: 10 to 70 feet Mean annual precipitation: 45 to 55 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

Chobee and similar soils: 88 percent Minor components: 12 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Chobee**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Loamy marine deposits

#### **Typical profile**

A - 0 to 9 inches: fine sandy loam Btg1 - 9 to 13 inches: fine sandy loam Btg2 - 13 to 68 inches: sandy clay loam Cg - 68 to 80 inches: fine sandy loam

#### **Properties and qualities**

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 14 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: High (about 10.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

- Hydrologic Soil Group: C/D
- *Ecological site:* R155XY090FL Loamy and Clayey Freshwater Isolated Marshes and Swamps
- *Forage suitability group:* Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL)

*Other vegetative classification:* Freshwater Marshes and Ponds (R155XY010FL), Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL)

Hydric soil rating: Yes

#### **Minor Components**

#### Tequesta

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps Other vegetative classification: Organic soils in depressions and on flood plains (G156AC645FL), Freshwater Marshes and Ponds (R156BY010FL)

Hydric soil rating: Yes

#### Winder

Percent of map unit: 3 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Tread, dip
Down-slope shape: Linear, convex
Across-slope shape: Linear, concave
Ecological site: R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps
Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL)
Hydric soil rating: Yes

#### Placid

Percent of map unit: 3 percent
Landform: Depressions on marine terraces, drainageways on marine terraces
Landform position (three-dimensional): Tread, dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps
Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Gator

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### 62—Pineda sand, depressional

#### Map Unit Setting

National map unit symbol: 17n5h Elevation: 10 to 80 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 358 to 365 days Farmland classification: Not prime farmland

#### Map Unit Composition

*Pineda, depressional, and similar soils:* 87 percent *Minor components:* 13 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Pineda, Depressional**

#### Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and loamy marine deposits

#### **Typical profile**

A - 0 to 5 inches: sand E/Bw - 5 to 24 inches: sand Btg - 24 to 42 inches: sandy loam Cg - 42 to 80 inches: sand

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Low (about 3.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: C/D

- *Ecological site:* R155XY080FL Sandy over Loamy Freshwater Isolated Marshes and Swamps
- *Forage suitability group:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL)
- *Other vegetative classification:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### **Minor Components**

#### Gator

Percent of map unit: 2 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Chobee, depressional

Percent of map unit: 2 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY090FL - Loamy and Clayey Freshwater Isolated Marshes and Swamps
Other vegetative classification: Loamy and clayey soils on stream terraces, flood plains, or in depressions (G155XB345FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Holopaw, depressional

Percent of map unit: 2 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

Ecological site: R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps Other vegetative classification: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### Malabar, depressional

Percent of map unit: 2 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### Boca, depressional

Percent of map unit: 2 percent

Landform: Depressions on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

*Ecological site:* F156AY050FL - Subtropical Freshwater Cypress Swamps of Big Cypress

*Other vegetative classification:* Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL), Freshwater Marshes and Ponds (R155XY010FL)

Hydric soil rating: Yes

#### Valkaria

Percent of map unit: 1 percent

Landform: Drainageways on marine terraces

Landform position (three-dimensional): Dip

Down-slope shape: Linear

Across-slope shape: Concave

*Ecological site:* R155XY070FL - Sandy Freshwater Isolated Marshes and Swamps *Other vegetative classification:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL), Slough (R155XY011FL)

Hydric soil rating: Yes

#### Okeelanta, drained

Percent of map unit: 1 percent
Landform: Depressions on marine terraces
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R155XY100FL - Organic Freshwater Isolated Marshes and Swamps
Other vegetative classification: Organic soils in depressions and on flood plains (G155XB645FL), Freshwater Marshes and Ponds (R155XY010FL)
Hydric soil rating: Yes

#### Riviera, depressional

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R155XY080FL - Sandy over Loamy Freshwater Isolated Marshes and Swamps Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL), Sandy over loamy soils on stream terraces, flood plains, or in depressions (G155XB245FL) Hydric soil rating: Yes

#### 99—Water

#### Map Unit Composition

*Water:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Water**

#### Interpretive groups

Land capability classification (irrigated): None specified
 Forage suitability group: Forage suitability group not assigned (G155XB999FL)
 Other vegetative classification: Forage suitability group not assigned
 (G155XB999FL)
 Hydric soil rating: Unranked

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf



### APPENDIX G: SOURCE WATER PROTECTION REPORT

| A-Z Index (https://floridadep.gov/a-z-index)    |
|-------------------------------------------------|
| Forms (https://floridadep.gov/forms)            |
| News (https://floridadep.gov/comm/press-office) |
| Events (https://floridadep.gov/events)          |
| Contact Us (https://floridadep.gov/contact-us)  |
| f (https://www.facebook.com/FLDEP/)             |
|                                                 |

#### SWAPP Quick Links

- Home (/swapp/)
- Search By County (https://prodapps.dep.state.fl.us/swapp/Welcome/links/search\_county\_v)
- Search by PWS Name or Number (https://prodapps.dep.state.fl.us/swapp/Welcome/links/search\_pws\_v)
- How to Help? (https://prodapps.dep.state.fl.us/swapp/Welcome/links/help\_v)

#### Definitions

- Aquifers (https://prodapps.dep.state.fl.us/swapp/Welcome/links/aquifers\_v)
- Public Water Systems (https://prodapps.dep.state.fl.us/swapp/Welcome/links/public\_water\_systems\_v)
- Assessment (https://prodapps.dep.state.fl.us/swapp/Welcome/links/assessment\_v)
- Potential Contaminants (https://prodapps.dep.state.fl.us/swapp/Welcome/links/potential\_contaminants\_v)
- Susceptibility (https://prodapps.dep.state.fl.us/swapp/Welcome/links/susceptibility\_v)
- Prevention (https://prodapps.dep.state.fl.us/swapp/Welcome/links/prevention\_v)

#### Contact Us

- Email (mailto:Marian.Fugitt@floridadep.gov?subject=SWAPP Question)
- Mailing Address (https://prodapps.dep.state.fl.us/swapp/Welcome/links/contact\_v)

#### EPA Source Water Protection Website



(https://www.epa.gov/sourcewaterprotection)

© Copyright 2021 Florida Department of Environmental Protection (https://floridadep.gov/)

- Accessibility (https://floridadep.gov/accessibility-information)
- Disclaimer (https://floridadep.gov/disclaimer)
- Privacy (https://floridadep.gov/privacy-statement)

Source Water Assessment & Protection Program

#### Results For: 2023

LABELLE, CITY OF 2500 SR-29 S LABELLE, FL 33935

Public Water System ID: 5260050 County Name: HENDRY DEP Regulatory Office: DEP South District 2295 Victoria Ave, Suite 364 Fort Myers, FL 33901 239-344-5600 Public Water System Type: COMMUNITY Public Water System Source: GROUND, PURCHASED Primary Use: MUNICIPAL/CITY Population Served: 5950 Size of Assessment Area: GROUND: For this community system, a 5-year ground water travel time around each well was used to define the assessment area. The 5-year ground water travel time is defined by the area from which water will drain to a well pumping at the average daily permitted rate for a five year period of time. Number of Wells: 2

 Well IDOwner IDFLUWID
 Status Well Depth (ft)Aquifer

 63003 UFA - 2
 AAO4474 (//floridadep.gov/water/source-drinking-water/content/florida-unique-well-identification-program)ACTIVE697
 Floridan Aquifer

 63004 UFA 3
 AAO4473 (//floridadep.gov/water/source-drinking-water/content/florida-unique-well-identification-program)ACTIVE632
 Floridan Aquifer

 This system purchases water only during emergencies from:
 Status Well Depth (ft)Aquifer
 Status Well Depth (ft)Aquifer

PORT LABELLE (/swapp/Welcome/detailsByPwsNumber/5260226)

**Results:** 

#### GROUND WATER:

#### Number of Unique Potential Contaminant Sources: 2\*

\*Note: This number represents the total of **unique** potential contaminant sources at this system which commonly is a subset of all of the records (rows) shown in the table below. When these unique potential contaminant sources affect more than one well at this system, they will appear more than once in the following table. Map Direct is a visual tool that can be accessed at <u>Map Direct: Source Water Assessment and Protection (SWAPP) Map (state.fl.us) (https://ca.dep.state.fl.us/mapdirect/? webmap=3733594f71034be2a1b3a84e1e17a221) for more details.</u>

| Facility Type                                                            | Facility Class                | StatusName                             | Affecte<br>Well | <sup>d</sup><br>Susceptibility Score                        | Concern Level                                 |            |
|--------------------------------------------------------------------------|-------------------------------|----------------------------------------|-----------------|-------------------------------------------------------------|-----------------------------------------------|------------|
| PETROLEUM STORAGE TANK<br>(/swapp/Welcome/links/potential_contaminants_y | LOCAL<br><u>()</u> GOVERNMENT | LA<br>BELLE<br>OPEN CITY<br>WELL<br>#2 | 63003           | <u>2.77</u><br><u>(/swapp/Welcome/links/susceptibility_</u> | LOW<br>/)(/swapp/Welcome/links/susceptibility | <u>v</u> ) |
| PETROLEUM STORAGE TANK<br>(/swapp/Welcome/links/potential_contaminants_) | LOCAL<br><u>()</u> GOVERNMENT | OPEN<br>CITY<br>WELL#                  | 63003<br>3      | 2.77<br>(/swapp/Welcome/links/susceptibility_               | LOW<br>y)(/swapp/Welcome/links/susceptibility | <u>v</u> ) |
| PETROLEUM STORAGE TANK<br>(/swapp/Welcome/links/potential_contaminants_) | LOCAL<br><u>/)</u> GOVERNMENT | LA<br>BELLE<br>OPEN CITY<br>WELL<br>#2 | 63004           | 2.77<br>(/swapp/Welcome/links/susceptibility_)              | LOW<br>y)(/swapp/Welcome/links/susceptibility | <u>v</u> ) |



# APPENDIX H: USFWS WILDLIFE CLEARANCE LETTER AND OFFICIAL SPECIES LIST



## United States Department of the Interior

FISH AND WILDLIFE SERVICE Florida Ecological Services Field Office 777 37th St Suite D-101



Vero Beach, FL 32960-3559 Phone: (352) 448-9151 Fax: (772) 562-4288 Email Address: <u>fw4flesregs@fws.gov</u> https://www.fws.gov/office/florida-ecological-services

In Reply Refer To: Project Code: 2024-0119853 Project Name: City of LaBelle Advanced Wastewater Treatment Project

07/22/2024 23:11:59 UTC

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please include your Project Code, listed at the top of this letter, in all subsequent correspondence regarding this project. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered

species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

https://www.fws.gov/sites/default/files/documents/endangered-species-consultation-handbook.pdf

**Migratory Birds**: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/program/migratory-bird-permit/whatwe-do.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/library/collections/threats-birds.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/partner/council-conservation-migratory-birds.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Bald & Golden Eagles
- Migratory Birds
- Marine Mammals
- Wetlands

## **OFFICIAL SPECIES LIST**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

#### Florida Ecological Services Field Office

777 37th St Suite D-101 Vero Beach, FL 32960-3559 (352) 448-9151

## **PROJECT SUMMARY**

| Project Code:        | 2024-0119853                                                            |
|----------------------|-------------------------------------------------------------------------|
| Project Name:        | City of LaBelle Advanced Wastewater Treatment Project                   |
| Project Type:        | Wastewater Facility - New Construction                                  |
| Project Description: | Construction of a new Advanced Wastewater Treatment Plant, lift station |
|                      | upgrades, forcemain upgrades, and sewer system rehabilitation.          |

Project Location:

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@26.71992735,-81.46458275048573,14z</u>



Counties: Hendry County, Florida

## **ENDANGERED SPECIES ACT SPECIES**

There is a total of 12 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

### MAMMALS

| NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATUS                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Florida Bonneted Bat <i>Eumops floridanus</i><br>There is <b>final</b> critical habitat for this species. Your location does not overlap the critical habitat.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/8630</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Endangered                                  |
| Florida Panther Puma (=Felis) concolor coryi<br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/1763</u><br>General project design guidelines:<br><u>https://ipac.ecosphere.fws.gov/project/Z73M3FMV7BGVTAYMWGU7FKNQVQ/documents/generated/7123.pdf</u>                                                                                                                                                                                                                                                                                                                                                                 | Endangered                                  |
| Puma (=mountain Lion) Puma (=Felis) concolor (all subsp. except coryi)<br>Population: FL<br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/6049</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Similarity of<br>Appearance<br>(Threatened) |
| Tricolored Bat <i>Perimyotis subflavus</i><br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/10515</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proposed<br>Endangered                      |
| <ul> <li>West Indian Manatee Trichechus manatus         There is final critical habitat for this species. Your location does not overlap the critical habitat.         This species is also protected by the Marine Mammal Protection Act, and may have additional consultation requirements.         Species profile: <a href="https://ecos.fws.gov/ecp/species/4469">https://ecos.fws.gov/ecp/species/4469</a>         General project design guidelines:         <a href="https://ipac.ecosphere.fws.gov/project/Z73M3FMV7BGVTAYMWGU7FKNQVQ/documents/generated/7281.pdf">https://ipac.ecosphere.fws.gov/project/Z73M3FMV7BGVTAYMWGU7FKNQVQ/documents/generated/7281.pdf</a></li></ul> | Threatened                                  |

## BIRDS

| NAME                                                                                                                                                                                                                                         | STATUS     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Crested Caracara (audubon''''s) [fl Dps] <i>Caracara plancus audubonii</i><br>Population: FL DPS<br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/8250</u>               | Threatened |
| Eastern Black Rail <i>Laterallus jamaicensis ssp. jamaicensis</i><br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/10477</u>                                             | Threatened |
| Everglade Snail Kite <i>Rostrhamus sociabilis plumbeus</i><br>There is <b>final</b> critical habitat for this species. Your location does not overlap the critical habitat.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/7713</u> | Endangered |
| Florida Scrub-jay <i>Aphelocoma coerulescens</i><br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/6174</u>                                                               | Threatened |

STATUS

Similarity of

Appearance

(Threatened)

Threatened

### REPTILES

#### NAME

American Alligator Alligator mississippiensis No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/776</u>

Eastern Indigo Snake Drymarchon couperi No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/646</u>

### INSECTS

 NAME
 STATUS

 Monarch Butterfly Danaus plexippus
 Candidate

 No critical habitat has been designated for this species.
 Species profile: https://ecos.fws.gov/ecp/species/9743

### **CRITICAL HABITATS**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

## USFWS NATIONAL WILDLIFE REFUGE LANDS AND FISH HATCHERIES

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

## **BALD & GOLDEN EAGLES**

Bald and golden eagles are protected under the Bald and Golden Eagle Protection Act<sup>1</sup> and the Migratory Bird Treaty Act<sup>2</sup>.

Any person or organization who plans or conducts activities that may result in impacts to bald or golden eagles, or their habitats<sup>3</sup>, should follow appropriate regulations and consider implementing appropriate conservation measures, as described in the links below. Specifically, please review the <u>"Supplemental Information on Migratory Birds and Eagles"</u>.

- 1. The <u>Bald and Golden Eagle Protection Act</u> of 1940.
- 2. The <u>Migratory Birds Treaty Act</u> of 1918.

3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

There are likely bald eagles present in your project area. For additional information on bald eagles, refer to <u>Bald Eagle Nesting and Sensitivity to Human Activity</u>

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, see the PROBABILITY OF PRESENCE SUMMARY below to see when these birds are most likely to be present and breeding in your project area.

| NAME                                                                                      | BREEDING SEASON |
|-------------------------------------------------------------------------------------------|-----------------|
| Bald Eagle Haliaeetus leucocephalus                                                       | Breeds Sep 1 to |
| This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention     | Jul 31          |
| because of the Eagle Act or for potential susceptibilities in offshore areas from certain |                 |
| types of development or activities.                                                       |                 |
| https://ecos.fws.gov/ecp/species/1626                                                     |                 |

## **PROBABILITY OF PRESENCE SUMMARY**

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read <u>"Supplemental Information on Migratory Birds and Eagles"</u>, specifically the FAQ section titled "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

#### **Probability of Presence** ()

Green bars; the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during that week of the year.

#### Breeding Season (

Yellow bars; liberal estimate of the timeframe inside which the bird breeds across its entire range.

#### Survey Effort ()

Vertical black lines; the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

#### No Data (-)

A week is marked as having no data if there were no survey events for that week.

■ probability of presence ■ breeding season | survey effort − no data

| SPECIES               | JAN | FEB | MAR     | APR | MAY | JUN  | JUL  | AUG  | SEP | OCT | NOV | DEC |
|-----------------------|-----|-----|---------|-----|-----|------|------|------|-----|-----|-----|-----|
| Bald Eagle<br>Non-BCC |     |     | • + + + | + + |     | -+++ | ++-+ | ++++ |     |     | ,   |     |
| Vulnerable            |     |     |         |     |     |      |      |      |     |     |     |     |

Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/</u> <u>collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/</u> <u>documents/nationwide-standard-conservation-measures.pdf</u>
- Supplemental Information for Migratory Birds and Eagles in IPaC <u>https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action</u>

## **MIGRATORY BIRDS**

Certain birds are protected under the Migratory Bird Treaty Act<sup>1</sup> and the Bald and Golden Eagle Protection Act<sup>2</sup>.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats<sup>3</sup> should follow appropriate regulations and consider implementing appropriate conservation measures, as described in the links below. Specifically, please review the <u>"Supplemental Information on Migratory Birds and Eagles"</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, see the PROBABILITY OF PRESENCE SUMMARY below to see when these birds are most likely to be present and breeding in your project area.

|                                                                                           | BREEDING        |
|-------------------------------------------------------------------------------------------|-----------------|
| NAME                                                                                      | SEASON          |
| American Kestrel Falco sparverius paulus                                                  | Breeds Apr 1 to |
| This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions | Aug 31          |
| (BCRs) in the continental USA                                                             | 0               |
| https://ecos.fws.gov/ecp/species/9587                                                     |                 |

| NAME                                                                                                                                                                                                                                                                                                             | BREEDING<br>SEASON         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Bachman's Sparrow <i>Peucaea aestivalis</i><br>This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA<br>and Alaska.<br><u>https://ecos.fws.gov/ecp/species/6177</u>                                                                                                           | Breeds May 1 to<br>Sep 30  |
| Bald Eagle Haliaeetus leucocephalus<br>This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention<br>because of the Eagle Act or for potential susceptibilities in offshore areas from certain types<br>of development or activities.<br><u>https://ecos.fws.gov/ecp/species/1626</u> | Breeds Sep 1 to<br>Jul 31  |
| Chimney Swift Chaetura pelagica<br>This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA<br>and Alaska.<br><u>https://ecos.fws.gov/ecp/species/9406</u>                                                                                                                       | Breeds Mar 15<br>to Aug 25 |
| Great Blue Heron Ardea herodias occidentalis<br>This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions<br>(BCRs) in the continental USA<br><u>https://ecos.fws.gov/ecp/species/10590</u>                                                                                      | Breeds Jan 1 to<br>Dec 31  |
| Painted Bunting Passerina ciris<br>This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions<br>(BCRs) in the continental USA<br><u>https://ecos.fws.gov/ecp/species/9511</u>                                                                                                    | Breeds Apr 25<br>to Aug 15 |
| Prairie Warbler <i>Setophaga discolor</i><br>This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.<br><u>https://ecos.fws.gov/ecp/species/9513</u>                                                                                                                | Breeds May 1 to<br>Jul 31  |
| Red-headed Woodpecker <i>Melanerpes erythrocephalus</i><br>This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA<br>and Alaska.<br><u>https://ecos.fws.gov/ecp/species/9398</u>                                                                                               | Breeds May 10<br>to Sep 10 |
| Swallow-tailed Kite <i>Elanoides forficatus</i><br>This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA<br>and Alaska.<br><u>https://ecos.fws.gov/ecp/species/8938</u>                                                                                                       | Breeds Mar 10<br>to Jun 30 |

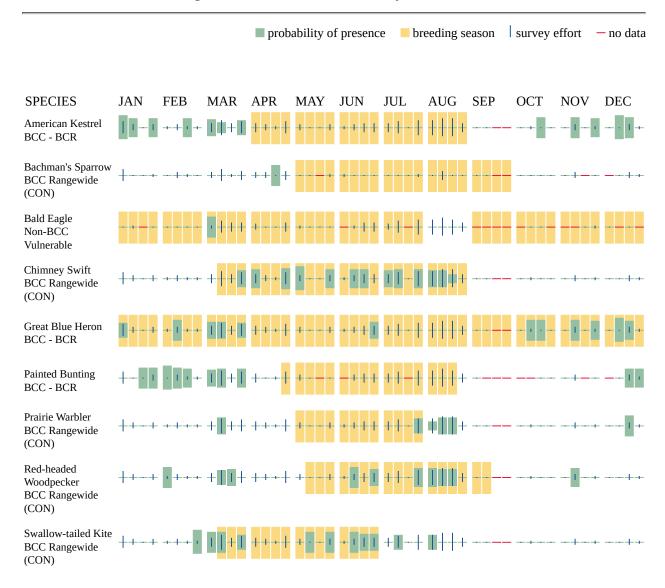
## **PROBABILITY OF PRESENCE SUMMARY**

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read <u>"Supplemental Information on Migratory Birds and Eagles"</u>, specifically the FAQ section titled "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

#### **Probability of Presence** (

Green bars; the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during that week of the year.

#### Breeding Season (=)


Yellow bars; liberal estimate of the timeframe inside which the bird breeds across its entire range.

#### Survey Effort (|)

Vertical black lines; the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

#### No Data (-)

A week is marked as having no data if there were no survey events for that week.



Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/</u> <u>collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/</u> <u>documents/nationwide-standard-conservation-measures.pdf</u>
- Supplemental Information for Migratory Birds and Eagles in IPaC <u>https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action</u>

## MARINE MAMMALS

Marine mammals are protected under the <u>Marine Mammal Protection Act</u>. Some are also protected under the Endangered Species  $Act^{1}$  and the Convention on International Trade in Endangered Species of Wild Fauna and Flora<sup>2</sup>.

The responsibilities for the protection, conservation, and management of marine mammals are shared by the U.S. Fish and Wildlife Service [responsible for otters, walruses, polar bears, manatees, and dugongs] and NOAA Fisheries<sup>3</sup> [responsible for seals, sea lions, whales, dolphins, and porpoises]. Marine mammals under the responsibility of NOAA Fisheries are **not** shown on this list; for additional information on those species please visit the <u>Marine Mammals</u> page of the NOAA Fisheries website.

The Marine Mammal Protection Act prohibits the take of marine mammals and further coordination may be necessary for project evaluation. Please contact the U.S. Fish and Wildlife Service Field Office shown.

- 1. The <u>Endangered Species Act</u> (ESA) of 1973.
- 2. The <u>Convention on International Trade in Endangered Species of Wild Fauna and Flora</u> (CITES) is a treaty to ensure that international trade in plants and animals does not threaten their survival in the wild.
- 3. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

NAME

West Indian Manatee *Trichechus manatus* Species profile: <u>https://ecos.fws.gov/ecp/species/4469</u>

## WETLANDS

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

FRESHWATER EMERGENT WETLAND

- PEM1Cx
- PEM1Fx
- PEM1Cd
- PEM1Ax

RIVERINE

- R5UBH
- R2UBH
- R2ABHx
- R4SBC
- R2UBHx
- R5UBFx

FRESHWATER FORESTED/SHRUB WETLAND

- PFO1Cd
- PFO2Ad
- PFO2Fd
- PFO1/3Cd
- PSS1/3Cd
- PFO2Cd
- PFO1Fd
- PFO4Cd
- PSS1Fx
- PFO2/1Fd

FRESHWATER POND

- PAB4Fx
- PAB4Fd
- PUBHx

- PAB4Hx
- PUBKx

## **IPAC USER CONTACT INFORMATION**

Agency:LaBelle cityName:Morgan FrenchAddress:1496 Highway 90City:ChipleyState:FLZip:32428Emailmfrench@woodardcurran.comPhone:8507033000

You have indicated that your project falls under or receives funding through the following special project authorities:

BIPARTISAN INFRASTRUCTURE LAW (BIL) (OTHER)



### APPENDIX I: CURRENT RATE STRUCTURE



### APPENDIX J: COMMUNITY ENGAGEMENT



#### STATE OF FLORIDA COUNTY OF HENDRY

Before the undersigned authority personally appeared **Katrina Elsken Muros**, who on oath says that she is **Editor in Chief** of the **Lake Okeechobee News**, a weekly newspaper published in **Hendry County, Florida**; that the attached copy of advertisement, being a **Public Notice** matter of

#### **Public Notice**

in the **20th Judicial District of the Circuit Court of Hendry County, Florida,** was published in said newspaper in the issues of

#### 07/24/24

(Print Dates)

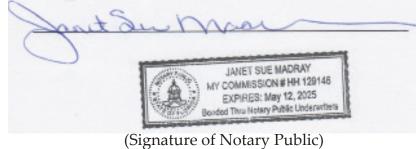
or by publication on the newspaper's website, if authorized, on

#### 07/24 thru 08/06/2024

(Website Dates) Affiant further says that the newspaper complies with all legal requirements for publication in Chapter 50, Florida Statutes. Lake Okeechobee News 313 NW 4th Avenue Okeechobee, FL 34972 863-763-3134

#### NOTICE OF PUBLIC MEETING City of LaBelle, FL

Notice is hereby given, the LaBelle City Commission will hold a 2ubic Meeting located at City Hall in the Commission Chambers at 481 W. Hickpochea Ave., LaBelle, FL 39395 on Thursday, August 3, 2024, at 5:30 P.M. for the purpose of considering the approval of the City of LaBelle drinking water improvements facility planning documents. This meeting will include a discussion of the proposed drinking water improvements. The meeting is intended to afford the opportunity to individuals to be heard on the economic and social effects of the location, design, and environmental impact of the proposed drinking water improvements.


A portion of the funding for this project is anticipated to come rom the State Revolving Fund (SRF) loan program. Financial mpacts on utility users will be presented at the hearing. Reports, documents, and data relevant to the discussion, "Drinking Water "acility Plan", are available for public review at LaBelle City Hall. These reports present infrastructure needs, alternative analyses, and cost comparisons over a 20-year planning period to support the development of drinking water improvements and the City's goals. These documents were prepared to meet the planning requirements for the FDEP Drinking Water State Revolving Fund roorgarms for the purpose of obtaining funding for new facilities in the City of LaBelle. Other business which may properly come before the Commission will also be addressed. All interested persons are invited to attend this meeting.

SPECIAL REQUIREMENTS: If you require special aid or services as addressed in the American Disabilities Act, please contact the City Clerk's Office at (863) 675-2872, no less than five (5) days prior to the above stated meeting date.

City of LaBelle, Florida Julie C. Wilkins, Mayor 3146 LON/Hendry 07/24/2024

8/1m

*Katrina Elsken Muros* Sworn to and subscribed before me by means of Physical Presence X Online Notarization <u>physical presence</u> or <u>online notarization</u>, this 24th day of July, 2024.



STAMP OF NOTARY PUBLIC



# woodardcurran.com