

PLANNING COMMISSION STAFF REPORT CONDITIONAL USE PERMIT USE2025 0007 HEARING DATE: MARCH 25, 2025

(907) 586-0715 CDD_Admin@juneau.gov www.juneau.org/community-development 155 Heritage Way • Juneau, AK 99801

COMMUNITY DEVELOPMENT

DATE: March 17, 2025

TO: Mandy Cole, Chair, Planning Commission

BY:

Ilsa Lund, Planner I Alsa Lund

THROUGH: Jill Lawhorne, Director, AICP

PROPOSAL: Construct a three-story dental clinic.

STAFF RECOMMENDATION: Approval with conditions

KEY CONSIDERATIONS FOR REVIEW:

- The applicant owns multiple lots in this subdivision and this facility will become part of the medical complex.
- The lot is not large enough to accommodate the minimum parking requirement for the use, and a shared parking agreement will be implemented with a lot under the same ownership less than 500 feet away.

GENERAL INFORMATION				
Property Owner	Owner Southeast Alaska Regional Health Consortium			
Applicant	Dawson Construction			
Property Address	3063 Vintage Blvd.			
Legal Description	VINTAGE III LT B1			
Parcel Number	5B1601430016			
Zoning	Light Commercial (LC)			
Land Use Designation	Traditional Town Center (TTC)			
Lot Size	32,689 sq. ft./ 0.75 acre			
Water/Sewer	СВЈ			
Access	Access easement off Vintage Boulevard			
Existing Land Use	Undeveloped			
Associated Applications	N/A			

ALTERNATIVE ACTIONS:

- Amend: require additional conditions, or delete or modify the recommended conditions.
- Deny: deny the permit and adopt new findings for items 1-6 below that support the denial.
- Continue: to a future meeting date if determined that additional information or analysis is needed to make a decision, or if additional testimony is warranted.

ASSEMBLY ACTION REQUIRED:

Assembly action is not required for this permit.

STANDARD OF REVIEW:

- Quasi-judicial decision
- Requires five (5) affirmative votes for approval
- Code Provisions:
 - o **49.15.330**
 - o **49.25.215**
 - o **49.40.215**
 - o **49.80**

The Commission shall hear and decide the case per 49.15.330(a) Conditional Use Permit. A conditional use is a use that may or may not be appropriate in a particular zoning district according to the character, intensity, or size of that or surrounding uses. The conditional use permit procedures is intended to afford the commission the flexibility necessary to make determinations appropriate to individual sites. The commission may attach to the permit those conditions listed in subsection (g) of this section as well as any further conditions necessary to mitigate external adverse impacts. If the commission determines that these impacts cannot be satisfactorily overcome, the permit shall be denied.

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 2 of 10

SITE FEATURES AND ZONING

SURROUNDING ZONING AND LAND USES			
First Bank			
Safeway			
Riverside Drive			
Right-of-Way /			
Commercial			
SEARHC Medical Clinic			

SITE FEATURES	
Anadromous	None
Flood Zone	0.2% annual chance
	flood hazard
Hazard	None
Hillside	No
Wetlands	No
Parking District	No
Historic District	No
Overlay Districts	Mining & Exploration
	Surface Activities
	Exclusion District,
	Urban/ Rural Mining
	District

BACKGROUND INFORMATION

Project Description – The applicant proposes to build a three-story, 19,635 sq. ft. dental clinic on an undeveloped lot as part of the Southeast Alaska Regional Health Consortium (SEARHC) Vintage Park Campus (Attachment A). The façade of the building will match the existing SEARHC medical clinic on the adjacent lot (VINTAGE IV TR A2). Lot B1 is not large enough to accommodate the minimum amount of parking required for a clinic of this size, and the applicant will be required to record a shared parking agreement with a lot under the same ownership on Postal Way in accordance with CBJ 49.40.215(a).

Background – The Vintage Subdivision was initially platted in 1984 (Attachment B), and re-platted into Lots A and B in 2003. (Attachment C). These lots were re-platted again in 2004 to adjust the lot line and enlarge Lot B1 to its current size (Attachment D).

Date	Item	Summary
1984	Plat	Plat 84-117 Vintage Subdivision (Attachment B).
2003	Plat	Plat 2003-29 (Attachment C).
2004	Plat	Plat 2004-45 enlarged lot and added easements for drainage, utilities, access, and
		maintenance (Attachment D).

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 3 of 10

ZONING REQUIREMENTS

Standard		Requirement	Existing	Code Reference
Lot	Size	2,000 sq. ft.	32,689 sq. ft.	CBJ 49.25.400
	Width	20 ft.	~120 ft.	CBJ 49.25.400
Setbacks	Front	25 ft.	N/A	CBJ 49.25.400
	Rear	10 ft.	N/A	CBJ 49.25.400
	Side	10 ft.	N/A	CBJ 49.25.400
	Side	10 ft.	N/A	CBJ 49.25.400
	Street Side	17 ft.	N/A	CBJ 49.25.400
Lot Coverage		None	N/A	CBJ 49.25.400
Height	Permissible	45 ft.	N/A	CBJ 49.25.400
	Accessory	35 ft.	N/A	CBJ 49.25.400
Maximum Dwelling Units (30 units/acre)		N/A	Commercial	CBJ 49.25.500
Use	Use		Undeveloped	CBJ 49.25.300
Vegetative Cover		15% (4,903 sq. ft.)	Unknown	CBJ 49.50.300

SITE PLAN

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 4 of 10

ANALYSIS

Project Site – This undeveloped lot is located near the intersection of Riverside Drive and Vintage Boulevard next to Safeway. The lot is currently being used to stage construction materials while SEARHC builds out their Vintage Park Campus.

Condition: None.

Project Design – The exterior design of the building will match the existing façade of the SEARHC medical clinic on the adjacent lot. The materials are transparent resin and metal.

Condition: None.

Traffic – The Institute of Transportation Trip Generation Manual 9th Edition (TGM) for a facility of this size with approximately 50 staff on site at any given time indicates an average of 446 daily trips. With Lot B1 being in a TTC with a transit station and other amenities close at hand, 446 ADTs does not seem realistic. Adjacent uses, such as a grocery store, bank with drive-through, and post office are likely to generate more traffic.

The Applicant provided a TIA for the SEARHC medical clinic on the adjacent lot in 2022 and it was determined that the four (4) closest intersections did not meet the threshold to require mitigation (Attachment E). Given the results of that recent TIA, combined with the proposed development's projected traffic based upon 50 employees, a traffic impact analysis is not required per the Director's determination [CBJ 49.40.300(a)(3)].

Use	Number of Employees	Trips Generated	Total Trips
Medical-Dental Office Building	50	446	446
		Total ADTs:	446

Condition: None.

Vehicle Parking & Circulation – Primary access to the lot will be through the access easement off Vintage Boulevard, also known as Postal Way Extension. According to CBJ 49.40.210(a), 98 parking spaces are required for a facility of this size. Due to space limitations on the primary lot, the applicant has proposed to provide additional parking off-site on a lot under common ownership (Lot 40A) less than 500 feet away on Postal Way. Lot B1 will provide 51 parking spaces including four (4) ADA-compliant parking spaces. An additional 47 parking spaces will be provided on Lot 40A, providing 100 total parking spaces for this facility. The 47 spaces on Lot 40A are in addition to the ten (10) parking spaces required for the workforce housing multifamily units.

Use	Unit/Total Sq. Ft.	Spaces Required	Total Spaces
Dental Clinic	1/200 sq. ft.	98	98
	ר	otal Parking Requirement:	98

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 5 of 10

Use	Unit/Total Sq. Ft.	Spaces Required	Total Spaces
	Off-Street	t Loading Spaces Required:	1
	ADA Accessible Spaces Required: 4		

Condition: Prior to the issuance of a building permit, a joint use parking agreement under CBJ 49.40.200(5) must be approved by the CBJ Community Development Department, and must be recorded in the State Recorder's Office prior to issuance of a building permit for the structure proposed on VINTAGE III LT B1. The parking agreement must state that the parking agreement may be nullified when the use on VINTAGE III LT B1 is changed and the CBJ Community Development Department Director has approved the nullification of the agreement that is recorded with the State Recorder's Office.

Non-motorized Transportation and Proximity to Transit – The Vintage Park area is designated as a Traditional Town Center in the 2013 Comprehensive Plan, reflecting its strategic location for promoting walkability, mixeduse development, and integration with transit services. Providing secure, covered bicycle parking ensures that bicycles are properly stored and protected from the elements, promoting their use as a mode of transport. With The Valley Transit Station located less than 500 feet away across Riverside Drive, this area is well-positioned to support alternative transportation options, such as bicycling, which aligns with the goals of the plan to foster sustainable, transit-oriented development.

Condition: Prior to the issuance of a Temporary Certificate of Occupancy, one or more covered bicycle racks providing spaces for bicycles shall be provided. The rack(s) shall be permanently affixed to the ground, building, or other permanent fixture, and shall be located so that parked bicycles do not encroach into a pedestrian walkway or vehicle area.

Noise – The facility will contain outpatient dental services. Adjacent uses include a financial institution, a grocery store and gas station, condominiums, senior housing, a memory care facility, professional offices, a large post office distribution center, and other commercial services. The noise anticipated for this facility is not expected to be out of character with the existing neighborhood and Light Commercial zoning.

Condition: None.

Lighting - A lighting plan and light fixture data sheet was submitted with the application. According to CBJ 49.40.230(d), parking areas shall be suitably lit. All proposed fixtures shall be full cut-off design. Based on the submitted materials, staff believes that this requirement has been met.

Condition: None.

Vegetative Cover & Landscaping – The minimum required vegetative coverage for Light Commercial zoning district is 15 percent, or 4,903 sq. ft. for Lot B1. The lot is currently being used as a staging area for construction materials and the majority of the vegetative coverage has been removed or covered with gravel.

Condition: Prior to the issuance of a Temporary Certificate of Occupancy, the vegetative cover areas shown on the plans must be planted.

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 6 of 10

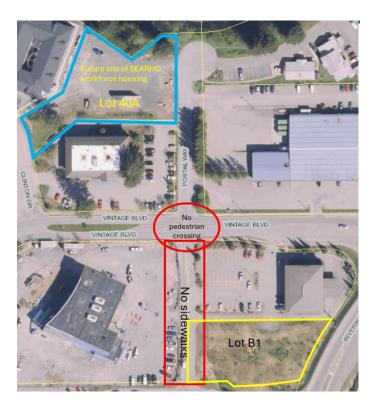
Habitat - No anadromous streams run within 200 feet. No other known habitat regulated by the land use code exists on the site.

Condition: None.

Drainage and Snow Storage – Drainage plans were submitted with the application, but there is no indication of a proposed snow storage location.

Condition: Prior to the issuance of a building permit for the proposed project, the applicant shall submit a site plan indicating proposed snow storage location(s).

Historic District – Not applicable.


Condition: None.

Hazard Zones – Lot B1 is in Flood Zone X which, according to the Federal Emergency Management Agency, has only a one (1) percent chance of annual flooding with an average depth of less than one (1) foot. While the Zone X flood zone is not generally considered high risk, staff recommends that the applicant take into account potential future flood risks. A Flood Zone Development Permit is not required for development in this area.

Condition: None.

Public Health, Safety, and Welfare – The proposed development promotes the public health, safety, and welfare by providing a central location for medical services including primary and urgent care, pediatrics, labs, imaging, behavioral health, optometry, and dental care. This is located within one of Juneau's most populated areas and within 1,000 feet of the Valley Transit Center.

Public safety and welfare came up as a concern of the Fire Marshall's during the CBJ agency review period. The intersection of Postal Way and Vintage Boulevard does not have a pedestrian crossing and there are no sidewalks along the access easement leading to Lot B1. While there is a light pole on the east corner of Postal Way, the area is not well lit especially in the wintertime.

Condition: At the time of building permit application, fire suppression system plans must be submitted. Suppression system design cannot be deferred.

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 7 of 10

Property Value or Neighborhood Harmony – The proposed development is appropriate for Light Commercial zoning. No information has been submitted that suggests the proposal will reduce property values in the surrounding area.

Condition: None.

AGENCY REVIEW

CDD conducted an agency review comment period between February 24, 2025, and March 10, 2025, and received the following responses (Attachment F):

Agency	Summary
CDD Building Division	No response received.
General Engineering	No response received.
Capital City Fire & Rescue (CCFR)	The area is not well lit and CCFR responds to frequent requests for assistance at the Riverview Senior Living Center. A crosswalk is recommended. Fire suppression system plans cannot be deferred.

PUBLIC COMMENTS

CDD conducted a public comment period between February 24, 2025, and March 6, 2025. Public notice was mailed to property owners within 500 feet of the proposed development (Attachment G). A public notice sign was also posted on-site two weeks prior to the scheduled hearing (Attachment H). No public comments were submitted at time of writing this staff report.

CONFORMITY WITH ADOPTED PLANS

The proposed development is in general conformity with the 2009 Non-motorized Transportation Plan, the 2013 Comprehensive Plan, and the 2015 Juneau Economic Development Plan.

PLAN	Chapter	Page No.	Item	Summary
2009 Juneau Non-motorized Transportation Plan	8	73	Policy 10	Provide more bicycle racks. "Secure, covered, well-designed bike racks help encourage residents to take more trips by bicycle and are required for the development of a complete non-motorized network." Require installation of bike racks as part of new building construction.
2013 Comprehensive Plan	5	44	Policy 5.0	To develop and sustain a diverse economy, providing opportunities for employment for all residents.

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 8 of 10

PLAN	Chapter	Page No.	Item	Summary
	5	47	Policy 5.4	To encourage and support regional economic development in other cities and locations in Southeast Alaska to create a local environment of services and offerings attractive to commerce originating from outside the CBJ, and to actively participate in development and implementation of regional sustainable development goals.
	10	140	Policy 10.13	To provide for and encourage mixed use development that integrates residential, retail, and office use in downtown areas, shopping centers, along transit corridors, and in other suitable areas.
	11	157	Map 11.8 – TTC	Complies with the TTC designation of the 213 Comprehensive Plan.
	13	213	Policy 13.3	To promote quality medical and social services in the CBJ to ensure the safety, health, well-being, and self-sufficiency of its residents.
2015 Juneau Economic Development Plan	5	58	Objective 2	Increase the breadth and depth of skilled local healthcare workers and services for seniors.
	5	58	Objective 4	Improve senior access to community- based services and activities.

FINDINGS

Conditional Use Permit Criteria – Per CBJ 49.15.330 (e) & (f), Review of Director's & Commission's Determinations, the Director makes the following findings on the proposed development:

1. Is the application for the requested Conditional Use Permit complete?

Analysis: No further analysis needed.

Finding: Yes. The application contains the information necessary to conduct a review of the proposed operations. The application submittal by the applicant, including the appropriate fees, substantially conforms to the requirements of CBJ Chapter 49.15.

2. Is the proposed use appropriate according to the Table of Permissible Uses?

Analysis: The application is for a 19,635 square foot, three-story, dental facility. The use is listed at CBJ 49.25.300(7.150) for the LC zoning district.

Finding: Yes. The requested permit is appropriate according to the Table of Permissible Uses.

Dawson Construction File No: USE2025 0007 March 17, 2025 Page 9 of 10

3. Will the proposed development comply with the other requirements of this chapter?

Analysis: No further analysis needed.

Finding: Yes. With the recommended conditions, the proposed development will comply with Title 49, including parking, lighting, vegetative cover, and flood development standards.

4. Will the proposed development materially endanger the public health, safety, or welfare?

Analysis: The proposed dental offices provide needed medical services in an accessible location. This proposed facility provides an essential community service and promotes the public health, safety, and welfare.

Finding: No. There is no information to suggest that with appropriate conditions, the requested medical facility, in an LC zoning district, will materially endanger the public health or safety.

5. Will the proposed development substantially decrease the value of or be out of harmony with property in the neighboring area?

Analysis: The surrounding area contains a variety of uses. The proposed development is in harmony with the existing developments in the LC zoning district.

Finding: No. There is no evidence to suggest that with appropriate conditions, the requested dental facility in an LC zoning district will substantially decrease the value or be out of harmony with the property in the neighboring area.

6. Will the proposed development be in general conformity with the Land Use Plan, Thoroughfare Plan, or other officially adopted plans?

Analysis: No additional analysis required.

Finding: Yes. The proposed dental facility, with the recommended conditions, will be in general conformity with the 2009 Juneau Non-motorized Transportation Plan, the 2013 Comprehensive Plan, and the 2015 Economic Development Plan.

RECOMMENDATION

Staff recommends the Planning Commission adopt the Director's analysis and findings and APPROVE WITH CONDITIONS the requested Conditional Use Permit. The permit would allow the development of a 19,635 square foot dental facility in a Light Commercial Zone.

The approval is subject to the following conditions:

 Prior to the issuance of a building permit, a joint use parking agreement under CBJ 49.40.200(5) must be approved by the CBJ Community Development Department, and must be recorded in the State Recorder's Office prior to issuance of a building permit for the structure proposed on VINTAGE III LT B1. The parking agreement must state that the parking agreement may be nullified when the use on VINTAGE III LT B1 is changed and the CBJ Community Development Department Director has approved the nullification of the agreement that is recorded with the State Recorder's Office. Dawson Construction File No: USE2025 0007 March 17, 2025 Page 10 of 10

- 2. Prior to the issuance of a Temporary Certificate of Occupancy, one or more covered bicycle racks providing spaces for bicycles shall be provided. The rack(s) shall be permanently affixed to the ground, building, or other permanent fixture, and shall be located so that parked bicycles do not encroach into a pedestrian walkway or vehicle area.
- 3. Prior to the issuance of a Temporary Certificate of Occupancy, the vegetative cover areas shown on the plans must be planted.
- 4. Prior to the issuance of a building permit for the proposed project, the applicant shall submit a site plan indicating proposed snow storage location(s).
- 5. At the time of building permit application, fire suppression system plans must be submitted. Suppression system design cannot be deferred.

Item	Description
Attachment A	Application Packet
Attachment B	Plat 84-117 Vintage Subdivision
Attachment C	Plat 2003-29
Attachment D	Plat 2004-45
Attachment E	March 2022 Traffic Impact Analysis
Attachment F	Agency Comments
Attachment G	Abutters Notice
Attachment H	Public Notice Sign Photo
Attachment I	Site Photos

STAFF REPORT ATTACHMENTS

DEVELOPMENT PERMIT APPLICATION

NOTE: Development Permit Application forms must accompany all other Community Development Department land use applications. This form and all documents associated with it are public record once submitted.

PROPERTY LOCATION	A Company of the second second	
Physical Address None assigned		
Legal Description(s) (Subdivision, Survey, Block, Tract, Lot)	Subdivision, L	ot B1
Parcel Number(c)		
5B1601430016		
This property is located in the downtown historic distric This property is located in a mapped hazard area, if so, v		,
LANDOWNER/ LESSEE		
Property Owner Southeast Alaska Regional Health Consortium	Contact Person Scott	G Martin
Mailing Address 3100 Channel Drive, Suite 312N, Juneau,	AK 99801	Phone Number(s) 907.463.0400
E-mail Address smartin@searhc.org		
Required for Planning Permits, not needed on Building/ Engineering Permits. Consent is required of all landowners/ lessees. If submitted with the applica include the property location, landowner/ lessee's printed name, signature,	ition, alternative writter	
A. This application for a land use or activity review for development on my		
B. I (we) grant permission for the City and Borough of Juneau officials/empl Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name)		_ ssee}
Southeast Alaska Regional Health Consortium	andowner	-
Southeast Alaska Regional Health Consortium	_andowner tle (e.g.: Landowner, Le	_ ssee}
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) X Landowner/Lessee (Signature) Southeast Alaska Regional Health Consortium L	_andowner tle (e.g.: Landowner, Le	
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) X Landowner/Lessee (Signature) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name)	andowner tle (e.g.: Landowner, Le Landowner	
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) X Landowner/Lessee (Signature) Southeast Alaska Regional Health Consortium L	andowner tle (e.g.: Landowner, Le Landowner	
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) X Landowner/Lessee (Signature) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) X	_andowner tle (e.g.: Landowner, Le _andowner tle (e.g.: Landowner, Le	The system of t
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Signature) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Landowner/Lessee (Signature) NOTICE: The City and Borough of Juneau staff may need access to the subject contact you in advance, but may need to access the property in your absence and commission may visit the property before a scheduled public hearing date.	ANDOWNER tle (e.g.: Landowner, Le _ANDOWNER tle (e.g.: Landowner, Le ct property during regula nd in accordance with th	(insee) $\frac{1 - 23 - 25}{Date}$ (insee) $\frac{1 - 23 - 25}{Date}$ ar business hours. We will make every effort to e consent above. Also, members of the Planning
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Landowner/Lessee (Signature) NOTICE: The City and Borough of Juneau staff may need access to the subject contact you in advance, but may need to access the property in your absence an Commission may visit the property before a scheduled public hearing date. APPLICANT If same as LANDOWNER Applicant (Printed Name) Dawson Construction	ANDOWNER tle (e.g.: Landowner, Le _ANDOWNER tle (e.g.: Landowner, Le ct property during regula nd in accordance with th	(insee) $\frac{1 - 23 - 25}{Date}$ (insee) $\frac{1 - 23 - 25}{Date}$ ar business hours. We will make every effort to e consent above. Also, members of the Planning
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Signature) X Landowner/Lessee (Printed Name) The Landowner/Lessee (Signature) NOTICE: The City and Borough of Juneau staff may need access to the subject contact you in advance, but may need to access the property in your absence and commission may visit the property before a scheduled public hearing date. Applicant (Printed Name) Dawson Construction Mailing Address 8401 Airport Blvd, Juneau, AK 99801	_andowner tle (e.g.: Landowner, Le _andowner tle (e.g.: Landowner, Le ct property during regula nd in accordance with th	(insee) $\frac{1 - 23 - 25}{Date}$ (insee) $\frac{1 - 23 - 25}{Date}$ ar business hours. We will make every effort to e consent above. Also, members of the Planning
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Landowner/Lessee (Signature) NOTICE: The City and Borough of Juneau staff may need access to the subject contact you in advance, but may need to access the property in your absence an Commission may visit the property before a scheduled public hearing date. APPLICANT If same as LANDOWNER Applicant (Printed Name) Dawson Construction	ANDOWNER tle (e.g.: Landowner, Le _ANDOWNER tle (e.g.: Landowner, Le ct property during regula nd in accordance with th	Insee) I - 23 - 25 Date I - 23 - 25 Date I - 23 - 25 Date ar business hours. We will make every effort to e consent above. Also, members of the Planning Catschke
Southeast Alaska Regional Health Consortium L Landowner/Lessee (Printed Name) Landowner/Lessee (Printed Name) Southeast Alaska Regional Health Consortium L Landowner/Lessee (Signature) X Landowner/Lessee (Printed Name) The Landowner/Lessee (Signature) NOTICE: The City and Borough of Juneau staff may need access to the subject contact you in advance, but may need to access the property in your absence and commission may visit the property before a scheduled public hearing date. Applicant (Printed Name) Dawson Construction Mailing Address 8401 Airport Blvd, Juneau, AK 99801	ANDOWNER tle (e.g.: Landowner, Le _ANDOWNER tle (e.g.: Landowner, Le ct property during regula nd in accordance with th	Insee) I - 23 - 25 Date I - 23 - 25 Date I - 23 - 25 Date ar business hours. We will make every effort to e consent above. Also, members of the Planning Catschke

INCOMPLETE APPLICATIONS WILL NOT BE ACCEPTED

Case Number	Date Received
USE 25-007	2/13/25
	Lindated 6/2022- Page 1 of 1

Intake Initials

٦

For assistance filling out this form, contact the Permit Center at 586-0770.

I:\FORMS\PLANFORM\DPA_Final Draft.docx

ALLOWABLE/CONDITIONAL USE PERMIT APPLICATION

See reverse side for more information regarding the permitting process and the materials required for a complete application.

COMMUNITY DEVELOPMENT

NT NOTE: Must be accompanied by a DEVELOPMENT PERMIT APPLICATION form.

PROJECT SUMMARY

Construction of a Medical Office Building, CBJ Parcel 5B1601430016
TYPE OF ALLOWABLE OR CONDITIONAL USE PERMIT REQUESTED
Q Accessory Apartment – Accessory Apartment Application (AAP)
Use Listed in 49.25.300 – Table of Permissible Uses (USE)
Table of Permissible Uses Category: 7.150 Health care clinics, other medical treatment facilities IS THIS A MODIFICATION or EXTENSION OF AN EXISTING APPROVAL? OYES - Case #
UTILITIES PROPOSED WATER: V Public On Site SEWER: V Public On Site
SITE AND BUILDING SPECIFICS
Total Area of Lot 32,689 square feet Total Area of Existing Structure(s) square feet
Total Area of Proposed Structure(s) <u>19,635</u> square feet
Existing to remain No Yes – Provide fixture information, cutoff sheets, and location of lighting fixtures Proposed Yes – Provide fixture information, cutoff sheets, and location of lighting fixtures
ALL REQUIRED DOCUMENTS ATTACHED If this is a modification or extension include:
✓ Narrative including:
✓ Current use of land or building(s)
Description of project, project site, circulation, traffic etc.
Proposed use of land or building(s)
I How the proposed use complies with the Comprehensive Plan before expiration date
✓ Plans including:
☑ Site plan
✓ Floor plan(s)
Elevation view of existing and proposed buildings
✓ Proposed vegetative cover
Existing and proposed parking areas and proposed traffic circulation
✓ Existing physical features of the site (e.g.: drainage, habitat, and hazard areas)
DEPARTMENT USE ONLY BELOW THIS LINE

ALLOWABLE/CONDITIONAL USE FEES				
	Fees	Check No.	Receipt	Date
Application Fees	\$ <u>750.00</u>			
Admin. of Guarantee	\$			
Adjustment	\$			
Pub. Not. Sign Fee	<u>\$ 50.00</u>			
Pub. Not. Sign Deposit	\$ 100.00			
Total Fee	<u>\$ 900.00</u>			

This form and all documents associated with it are public record once submitted.

INCOMPLETE APPLICATIONS WILL NOT BE ACCEPTED

Case Number	Date Received
USE25-007	2/13/25

For assistance filling out this form, contact the Permit Center at 586-0770.

Allowable/Conditional Use Permit Application Instructions

Allowable Use permits are outlined in CBJ 49.15.320, Conditional Use permits are outline in CBJ 49.15.330

<u>Pre-Application Conference</u>: A pre-application conference is required prior to submitting an application. There is no fee for a preapplication conference. The applicant will meet with City & Borough of Juneau and Agency staff to discuss the proposed development, the permit procedure, and to determine the application fees. To schedule a pre-application conference, please contact the Permit Center at 586-0770 or via e-mail at permits@juneau.org.

<u>Application</u>: An application for an Allowable/Conditional Use Permit will not be accepted by the Community Development Department until it is determined to be complete. The items needed for a complete application are:

- 1. Forms: Completed Allowable/Conditional Use Permit Application and Development Permit Application forms.
- 2. Fees: Fees generally range from \$350 to \$1,600. Any development, work, or use done without a permit issued will be subject to double fees. All fees are subject to change.
- 3. **Project Narrative:** A detailed narrative describing the project.
- 4. Plans: All plans are to be drawn to scale and clearly show the items listed below:
 - A. Site plan, floor plan and elevation views of existing and proposed structures
 - B. Existing and proposed parking areas, including dimensions of the spaces, aisle width and driveway entrances
 - C. Proposed traffic circulation within the site including access/egress points and traffic control devices
 - D. Existing and proposed lighting (including cut sheets for each type of lighting)
 - E. Existing and proposed vegetation with location, area, height and type of plantings
 - F. Existing physical features of the site (i.e. drainage, eagle trees, hazard areas, salmon streams, wetlands, etc.)

Document Format: All materials submitted as part of an application shall be submitted in either of the following formats:

- 1. Electronic copies in the following formats: .doc, .txt, .xls, .bmp, .pdf, .jpg, .gif, .xlm, .rtf (other formats may be preapproved by the Community Development Department).
- 2. Paper copies 11" X 17" or smaller (larger paper size may be preapproved by the Community Development Department).

Application Review & Hearing Procedure: Once the application is determined to be complete, the Community Development Department will initiate the review and scheduling of the application. This process includes:

Review: As part of the review process the Community Development Department will evaluate the application for consistency with all applicable City & Borough of Juneau codes and adopted plans. Depending on unique characteristics of the permit request the application may be required to be reviewed by other municipal boards and committees. During this review period, the Community Development Department also sends all applications out for a 15-day agency review period. Review comments may require the applicant to provide additional information, clarification, or submit modifications/alterations for the proposed project.

Hearing: All Allowable/Conditional Use Permit Applications must be reviewed by the Planning Commission for vote. Once an application has been deemed complete and has been reviewed by all applicable parties the Community Development Department will schedule the requested permit for the next appropriate meeting.

Public Notice Responsibilities: Allowable/Conditional Use requests must be given proper public notice as outlined in CBJ 49.15.230:

The Community Development Department will give notice of the pending Planning Commission meeting and its agenda in the local newspaper a minimum of 10-days prior to the meeting. Furthermore, CDD will mail notices to all property owners within 500-feet of the project site.

The Applicant will post a sign on the site at least 14 days prior to the meeting. The sign shall be visible from a public rightof-way or where determined appropriate by CDD. Signs may be produced by the Community Development Department for a preparation fee of \$50, and a \$100 deposit that will be refunded in full if the sign is returned within seven days of the scheduled hearing date. If the sign is returned between eight and 14 days of the scheduled hearing \$50 may be refunded. The Applicant may make and erect their own sign. Please contact the Community Development Department for more information.

INCOMPLETE APPLICATIONS WILL NOT BE ACCEPTED

(907) 586-0715 CDD_Admin@juneau.gov www.juneau.org/community-development 155 Heritage Way • Juneau, AK 99801

SEARHC Dental

Case Number:	PAC2025 0002
Applicant:	RESPEC, Dawson Construction, SEARHC
Property Owner:	Southeast Alaska Regional Health Consortium
Property Address:	Unassigned (0 Riverside Drive)
Parcel Code Number:	5B1601430016
Site Size:	32,689 sq. ft./ 0.75 acre
Zoning:	Light Commercial (LC)
Existing Land Use:	Vacant

Conference Date:	January 22, 2025		
Report Issued:	January 27, 2025		
DISCLAIMED, Dro m	anligation conferences are a	conducted for the nurness of providing applicants wit	

DISCLAIMER: Pre-application conferences are conducted for the purpose of providing applicants with a preliminary review of a project and timeline. Pre-application conferences are not based on a complete application and are not a guarantee of final project approval.

List of Attendees

Note: Copies of the Pre-Application Conference Report will be emailed, instead of mailed, to participants who have provided their email address below.

Name	Title	Email address
Jen Kemp		Jennifer.Kemp@respec.com
Kevin Puustinen		Kevin.Puustinen@respec.com
Nate Katschke		NKatschke@dawson.com
Scott Veerman	Applicant	Scott@northformak.com
Ilsa Lund		Ilsa.Lund@juneau.gov
Jolene Murphy	Planning	Jolene.Murphy@juneau.gov
Sydney Hawkins	Permitting	Sydney.Hawkins@juneau.gov
Jeff Hedges	Building	Jeffrey.Hedges@juneau.gov
Theresa Ross	CCFR, Fire Marshal	Theresa.Ross@juneau.gov

Revised 5/31/2024

I:\DOCUMENTS\CASES\2025\PAC\PAC25-02 SEARHC Dental\PAC25-02 SEARHC Dental Final Draft.doc

Conference Summary

Questions/issues/agreements identified at the conference that weren't identified in the attached reports.

The following is a list of issues, comments and proposed actions, and requested technical submittal items that were discussed at the pre-application conference.

Q: How long does the Conditional Use permitting process take? A: Generally, 5-6 weeks because we are required to provide public notice regarding the meeting according to the Alaska Open Meetings Act.

If a complete application is submitted the week of January 27th, the case could make it onto the March 11, 2025 Planning Commission Agenda. If the application is received between February 1-10, the case will be heard at the March 25, 2025 Planning Commission. Below is an overview of the Conditional Use Permit process.

Conditional Use Permit Process:

- Submit the application and back-up materials (listed on ten back of the application).
 - Electronic submissions accepted at <u>Permits@juneau.gov</u>. Note that the permit center will call you for payment when the application is processed. Applications are submitted in the order in which they are received, and it may be a few days before you get a call.
- The project will be assigned to a planner. They will review submitted materials, and coordinate where necessary. When the planner assesses the file is complete, they will schedule a hearing before the Planning Commission.
 - o A notice will be sent to property owners within 500 feet of the project.
 - There will be two newspaper ads for the case.
 - The Applicant is required to post a Public Notice sign, which will be provided by CDD. The sign must be posted two weeks before the hearing.
 - Staff will prepare a report analyzing the project, and make a recommendation to the Commission. The report will be publicly available the week before the hearing.
- At the Planning Commission meeting, the project can be:
 - o On the Consent Agenda, where it will be passed without discussion.
 - On the Regular Agenda:
 - The Director will briefly describe the project.
 - The Applicant has 15 minutes to describe the project.
 - The public has the opportunity to comment. There is usually a time limit of two to three minutes.
 - The Applicant has time to respond to issues raised.
 - Public comment is closed and there is no additional opportunity to participate.
- The Planning Commission will:
 - o Approve the project
 - Approve the project with conditions (the most common outcome)
 - o Deny the project
 - Continue the project if more information is required or if the Commission runs out of time.
- The decision can be appealed for 20 days after the Notice of Decision is filed with the City Clerk. If the decision is appealed, the Applicant can continue with their project at their own risk.

Pre-Application Conference Final Report

Videos of the Planning Commission activities are posted on Assembly's Minutes and Agendas site. <u>https://juneau-ak.municodemeetings.com/</u>

Project Overview

Southeast Alaska Regional Health Consortium (SEARHC) is proposing to build a three-story dental clinic in the Vintage Park Subdivision. Some of the parking will be on site, but some will be on a lot across Vintage Boulevard where SEARHC is building workforce housing.

A shared parking agreement will be required for parking to be located off-site, even with the lots being under the same ownership. The agreement will need to be reviewed an approved by the Director of Community Development and, once approved, the agreement will need to be recorded with the Alaska Department of Natural Resources Recorder's Office. This document will help ensure that all parking requirements are met, particularly if one of the lots undergoes a change of ownership or use.

Planning Division

- 1. **Zoning** Light Commercial
- 2. Table of Permissible Uses 7.150- Health care clinics, other medical treatment facilities providing outpatient care
- 3. Subdivision N/A
- 4. Setbacks -

Yard	Setback minimum (in feet)
Front	25
Rear	10
Side	10
Street side	17

- 5. Height 45 feet maximum
- 6. Access Postal Way
- 7. Parking & Circulation One (1) parking space required for every 200 square feet of gross floor area.
 - a. 19,635/200 = 98 parking spaces
 - b. 4 ADA accessible parking spaces required
 - c. 51 provided on site, 47 required in shared parking agreement with lot designated for workforce housing on Postal Way behind True North FCU.

- (a) Joint use. Joint use occurs when the same off-street parking space is used to meet the parking requirement of different uses at different times. Joint use of off-street parking spaces may be authorized when the developer demonstrates there is no substantial conflict in the principal operating hours of the structures and uses involved and subject to the following requirements:
 - (1) Any structure or use sharing the off-street parking facilities of another structure or use must be located within 500 feet of such parking facilities, unless a lesser radius is identified in this chapter. A developer may apply to provide off-street parking in an area greater than 500 feet distant, if approved by the commission.
 - (2) The developer demonstrates with appropriate analysis or data that there is no substantial conflict in the principal operating hours of the structures or users for which joint use of off-street parking facilities is proposed.

The developer must present to the director a written instrument, proposed by the parties concerned, providing for joint use of off-street parking facilities. Upon approval by the director, such instrument must be recorded by the developer and documentation of recording provided to the director.

- d. One (1) loading space is required
- 8. Lot Coverage There are no restrictions on lot coverage in LC except for what is required for parking and vegetative coverage.
- 9. Vegetative Coverage 15% minimum

10. Lighting – Exterior lighting may not shed light or glare above the roofline of the building or beyond the property line of the site.

Prior to issuance of a building permit, the applicant shall submit a lighting plan illustrating the location and type of exterior lighting proposed for the development. Exterior lighting shall be designed and located to minimize offsite glare. Approval of the plan shall at the discretion of the Community Development Department, according to the requirements at §49.40.230(d)

All exterior lighting fixtures shall be of a "full cutoff" design.

- 11. Noise Noise is not expected to be out of character with the surrounding uses in the same zoning district.
- 12. Flood This property is located within Flood Zone X. No Flood Zone Development Permit will be required.
- 13. Hazard/Mass Wasting/Avalanche/Hillside Endorsement There are no mapped hazards in this area.
- 14. Wetlands There are no wetlands on this site according to the National Wetlands Inventory.
- 15. Habitat The proposed development narrative indicates that there are no eagles' nests within 600 feet of the development.
- 16. Plat or Covenant Restrictions N/A
- 17. Traffic Traffic is not expected to be significant enough to require a Traffic Impact Analysis.
- 18. Nonconforming situations N/A

Building Division

- 19. Building Project requires Alaska licensed design professionals for all elements of the building.
- 20. Outstanding Permits N/A

General Engineering/Public Works

21. Engineering – The submittals shall include fixture schedules for water (water fixture units) and for sanitary sewer (drainage fixture units). Any stormwater structures or features shall be shown on the Site Plan.

The site is flat, however call out any slopes and retaining structures where applicable.

A **Utility Site Plan** shall be submitted showing the locations of water and sewer lines and shall include sizes and materials, valves and cleanouts, as well as unions, wye's as well as location of water meter.

Any Right of Way work will require a **ROW permit and Bond**.

22. Drainage – The Site or Grading Plan shall show how the drainage is managed on the site. The stormwater shall be controlled within the property or divert only to approved drainage ways.

All catch basins culverts and swales shall be shown on the plan and water flow direction to be expressed with squiggled arrows (see Grading Plan checklist).

23. Utilities -

- a. Water The submitted Utility Plan shall show the water and sewer. It appears that a few water system configurations are being examined. Coordinate with the Water Department and GE for the plan that works best.
 Configurations that require a new service line will need ROW permit and Bond. This option is only available if there is not an existing service. A fire line will be subject to CBJ Fireline certification.
- b. Sewer It appears that, based on your narrative that the sewer service has been located for connection. The Utility Plan must be submitted with the desired configuration and approved by Water Dept, Wastewater Dept and GE prior to permitting and work.

Fire Marshal

- 1. Fire Items/Access Please verify that access meets IFC Appendix D specifically D104.1
- 2. Fire (Suppression/alarm) system plans must be submitted with the building permit application. These system designs cannot be deferred. Per the designer this will be a fully sprinklered and alarmed building. Knox Box location will be reviewed and approved during the review process.

Other Applicable Agency Review

24. N/A

List of required applications

Based upon the information submitted for pre-application review, the following list of applications must be submitted in order for the project to receive a thorough and speedy review.

- 1. Development Permit Application
- 2. Conditional Use Permit
- 3. Any signs are required to be permitted.

Additional Submittal Requirements

Submittal of additional information, given the specifics of the development proposal and site, are listed below. These items will be required in order for the application to be determined Counter Complete.

1. A copy of this pre-application conference report.

Exceptions to Submittal Requirements

Submittal requirements that staff has determined **not** to be applicable or **not** required, given the specifics of the development proposal, are listed below. These items will **not** be required in order for the application to be reviewed.

1. N/A

Fee Estimates

The preliminary plan review fees listed below can be found in the CBJ code section 49.85.

Based upon the project plan submitted for pre-application review, staff has attempted to provide an accurate estimate for the permits and permit fees which will be triggered by your proposal.

Pre-Application Conference Final Report

- 1. \$750.00 for Class III Conditional Use Permit (based on size of facility)
- 2. \$150.00 for public notice sign (\$100 of which is a refundable deposit)

For informational handouts with submittal requirements for development applications, please visit our website at www.juneau.org/community-development.

Submit your Completed Application

You may submit your application(s) online via email to <u>permits@juneau.gov</u> OR in person with payment made to:

City & Borough of Juneau, Permit Center 230 South Franklin Street Fourth Floor Marine View Center Juneau, AK 99801

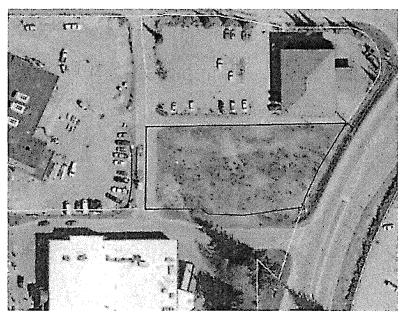
Phone: (907) 586-0715 Web: <u>www.juneau.org/community-development</u>

Attachments:

49.15.330 – if a Conditional Use Permit 49.45 – Signs Development Permit Application Conditional Use Permit Application

January 2, 2025

City and Borough of Juneau Community Development Department 155 Heritage Way Juneau, AK 99801


 Attention:
 CBJ Building Department

 Subject:
 SEARHC Dental Clinic – Lot B1, Vintage III Subdivision

 Site Grading and Foundation Permit Narrative

To Whom It May Concern,

On behalf of the applicant, Dawson Construction, please consider this permit request to allow for site grading, installation of underground utilities, and foundation construction for a proposed SEARHC Dental Clinic building to be located in Juneau, Alaska. The project site is located on vacant Lot B1, Vintage III Subdivision, identified as 0 Riverside Drive. The lot is zoned light commercial and is 32,689 square feet. A future building permit application will be submitted for architectural, structural, mechanical, electrical, and civil design.

Project Site Location - SEARHC Dental Clinic

Project Narrative

The proposed project includes the construction of a three-story metal building for SEARHC dental offices. The planned total gross building area is 19,635 square feet. The zoning setbacks for light commercial are as follows:

9109 MENDENHALL MALL RD. Suite 4 Juneau, Ak 99801 907.780.6060

respec.com

// 2 Searhc Dental Clinic Site Grading, utilities and foundation permit January 2, 2025

- 25' minimum front yard
- 17' minimum street side
- 10' minimum rear and side yard

Site Utilities

Record drawings indicate there is an existing 6" PVC sewer service that is stubbed out and capped near the southeast corner of the project site from a manhole located in Riverside Drive. Sanitary sewer from the dental clinic is planned to be a gravity connection to this existing 6" PVC line.

Two options are being studied for providing domestic/fire protection water to the site. The first option is to extend a new service line approximately 250' north and connect to an existing 12" ductile iron CBJ water main located in Vintage Boulevard near the intersection with Postal Way. The second option is to connect to the Safeway feed line before the Safeway valve, approximately 110' south of the project site. There are 4 existing fire hydrants located within 200' surrounding the project site.

Stormwater runoff from parking surfaces and building roof drains will be collected onsite in a new underground storm drain system. The new storm drain system will connect to an existing storm drain system in Postal Way, located immediately west of the project site. The existing storm drain system drains toward the north for approximately 600' where there is an outfall into the Mendenhall River oxbow.

Electrical and communication utilities for the site will be provided overhead from a utility pole located in Riverside Drive near the northeast corner of the project site.

Parking and Site Access

51 parking stalls (8.5' \times 17') are planned onsite, 4 of which will be reserved for ADA. The future SEARHC workforce housing project that will be located 450' north of the proposed dental clinic has 49 parking stalls that have been designated for the dental clinic. A total of 100 parking stalls will be available for the dental clinic building. All Accessible parking stalls and access routes will be graded and signed to meet current ADA guidelines.

Flood Zone

The property is located within Flood Zone X according to the FEMA Flood Zone Panel Maps 02110C1526E and 02110C1527E. The project site is located west of Riverside Drive, between Safeway Grocery and First Bank.

Other Site Discussion Items

No eagle nesting trees are located within 600' radius to this property.

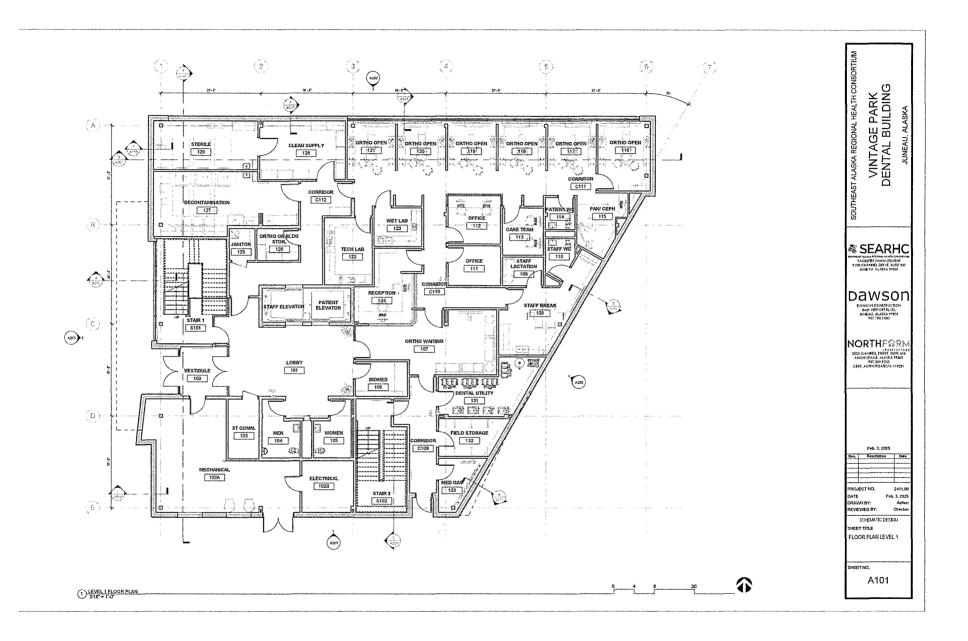
ATTACHED TO THIS NARRATIVE PLEASE FIND THE FOLLOWING:

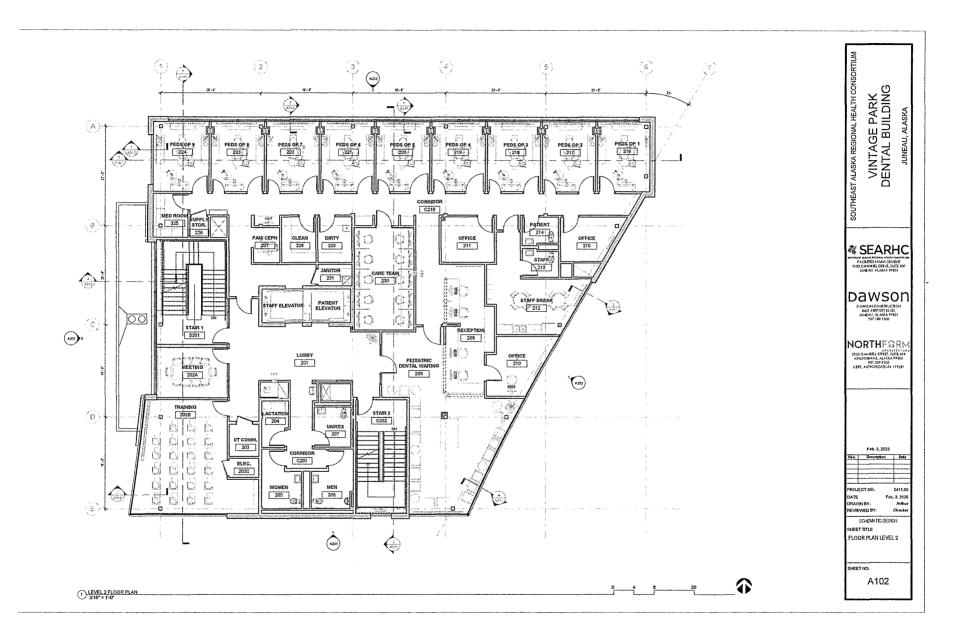
- Conceptual Site Plan
- Conceptual Building Floor Plans and Elevation Views

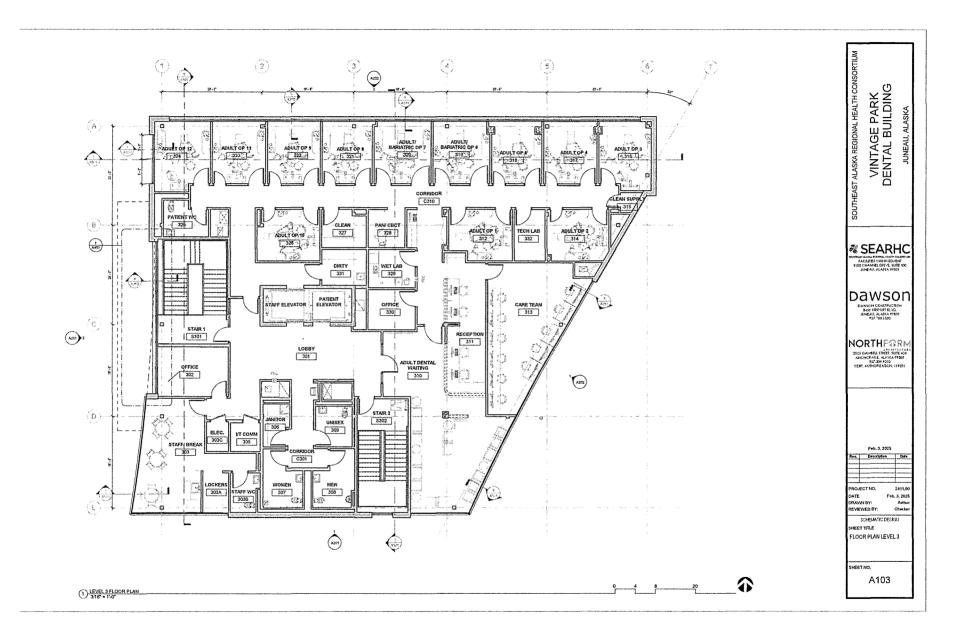
We appreciate your review of this project narrative. Should you have any questions or need additional information please do not hesitate to contact me at (907) 780-6060.

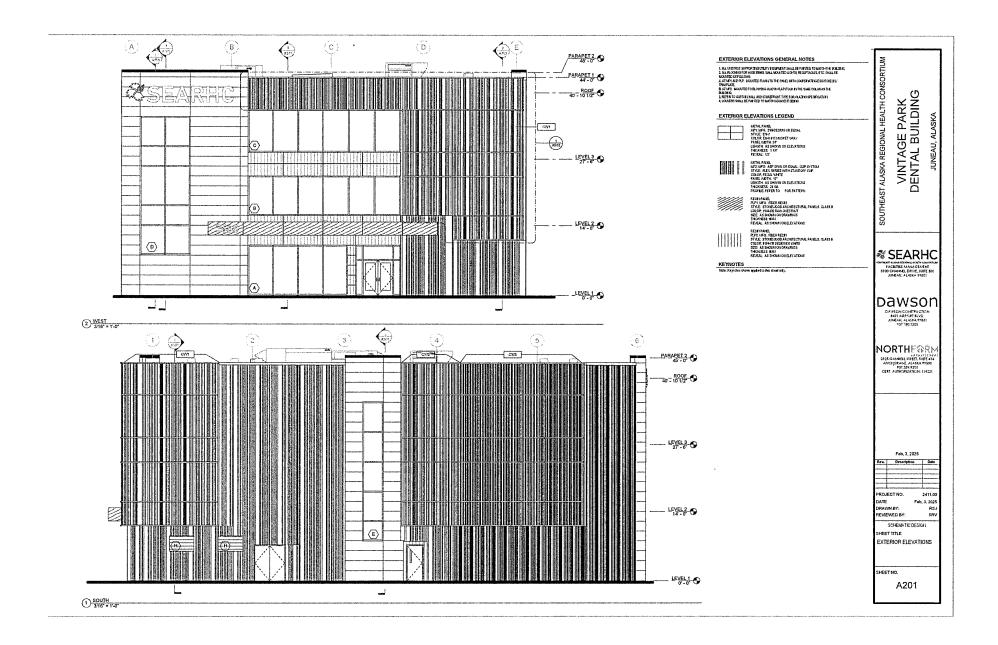
9109 MENDENHALL MALL RD. SUITE 4 IUNFAIL AK 99801

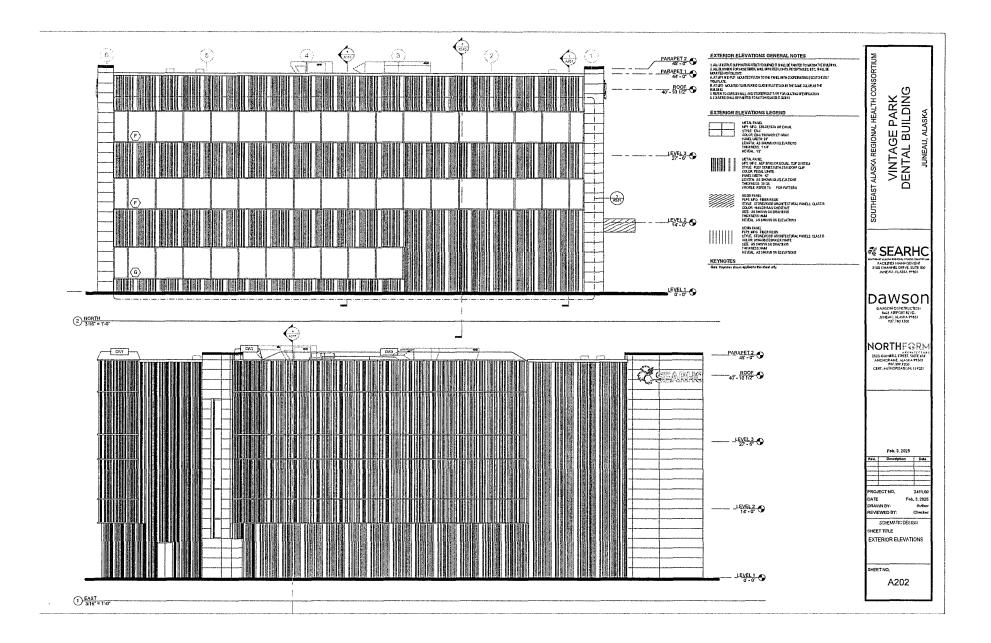
Sincerely, RESPEC

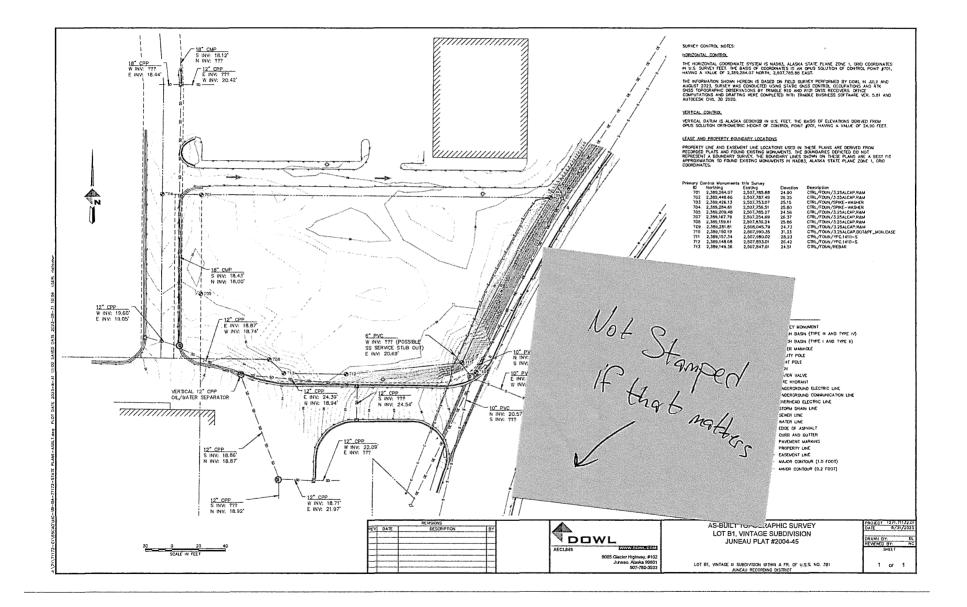

1

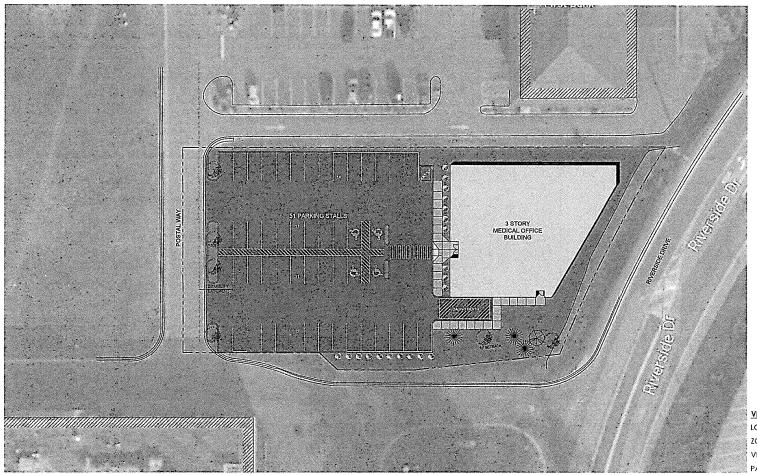

Kevin Puustinen, PE

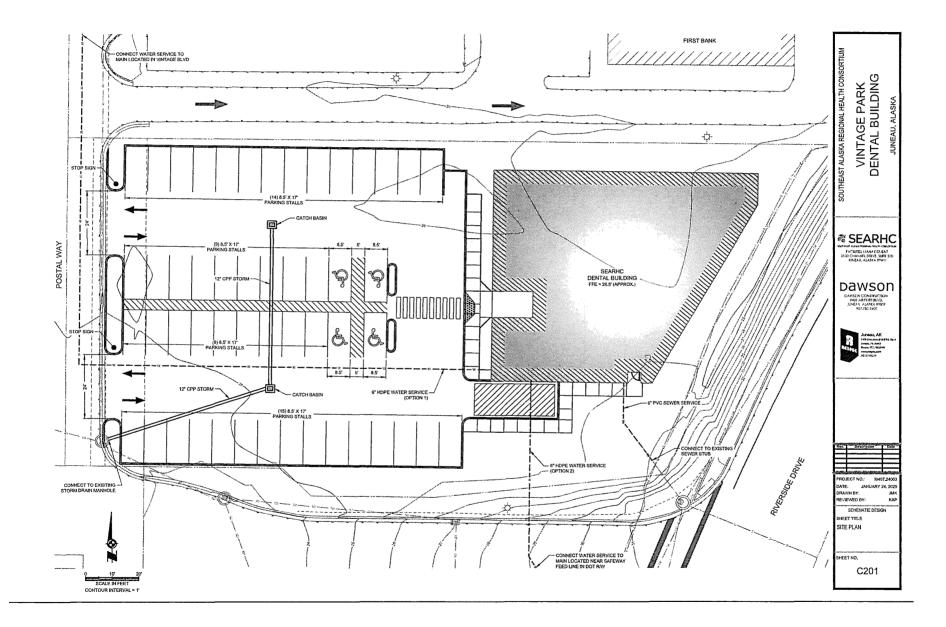

Attachments

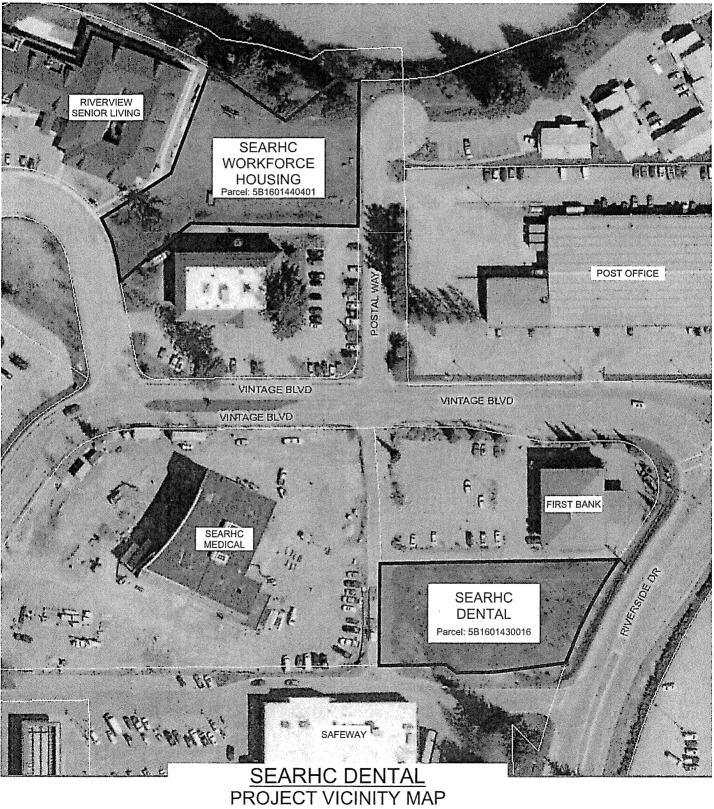

respec.com

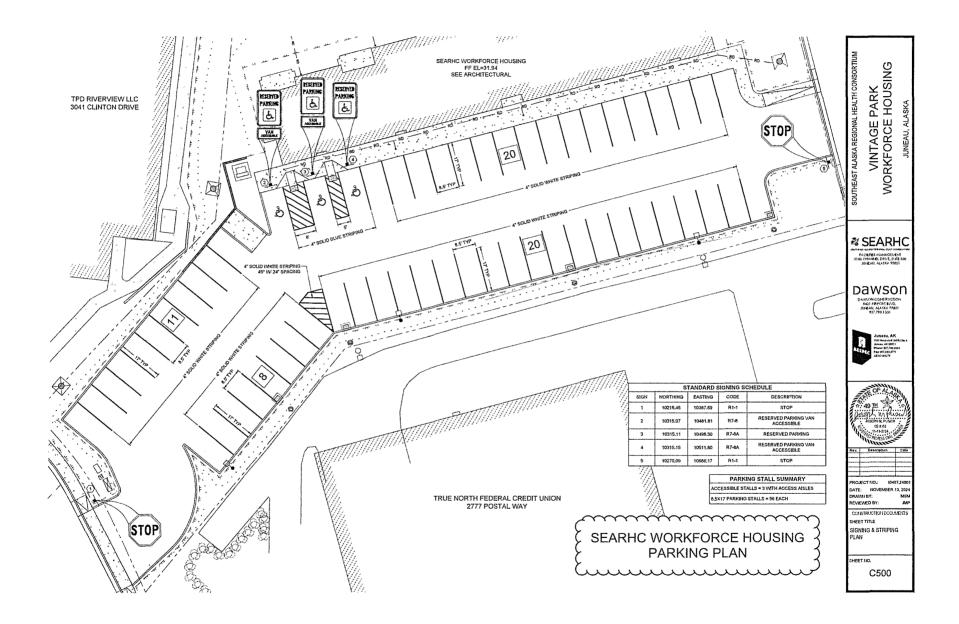

907,780,6060

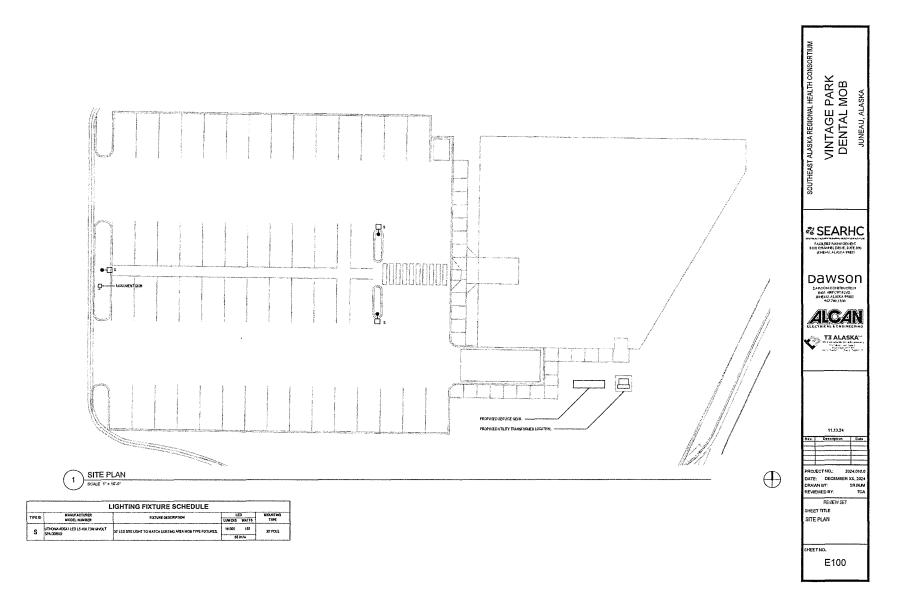


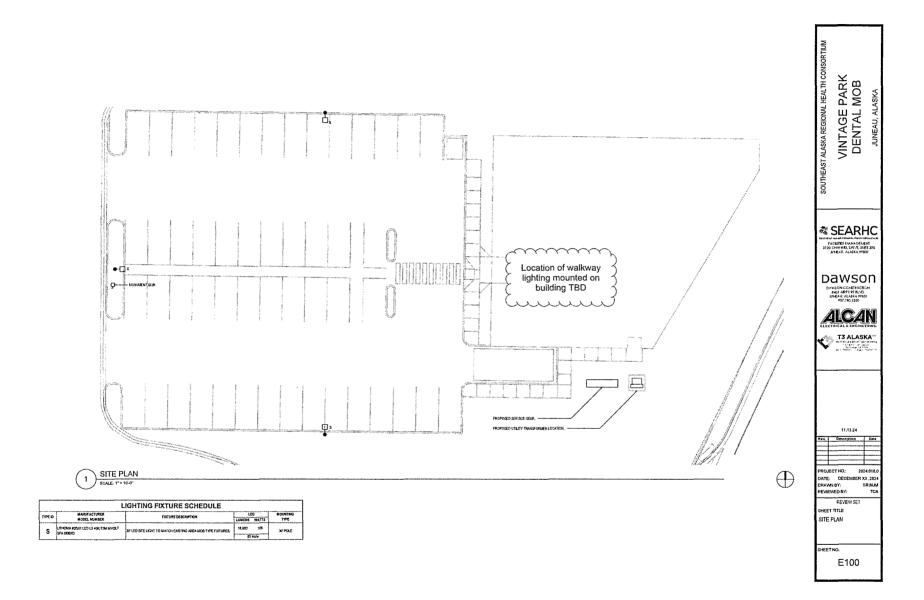







VINTAGE III SUBDIVISION, LOT B1 LOT SQUARE FEET: 32,689 ZONE: LIGHT COMMERCIAL (LC) VEGETATED COVER: 15% MIN. PARKING STALLS: 1 PER 200 GSF


SEARHC SOUTHEAST ALASKA REGIONAL HEALTH CONSORTIUM Dawson S


DAWSON VINTAGE PARK DENTAL BUILDING

.

Submittal Cover Sheet

Contractor Agency Name: Southeast Alaska Regional Health Consortium (SEARHC) Project Name: SEARHC Vintage Park Medical Office Building Contractor Name: Dawson Construction, LLC Subcontractor Name: Alcan Electrical & Engineering Alcan Job #: 22-0008 Supplier: Graybar Electrical Company, 5501 Anchorage, AK 99518 Manufacturer: Various please refer to the product data sheets Specification Section: 26 50 00 Specification Paragraph: 1.4.C Submittal: Light Fixtures – Site Lighting & Core and Shell Variation: Type: Notes:

Variations:

Submittal prepared by: Cassandra Simpson (Barsalou) <u>csimpson@alcanelectric.com</u>


SEARCH Juneau Vintage Park

Alcan Electric

·			
	LASKA Project 22-28191-2 RCHITECTURAL SEARHC Juneau Vintage Par		
1.00 A 20 20 20 1.	CHING SEARIC Julieau Village Fall		
	Submitted By		
	ALASKA ARCHITECTURAL L	GHTING	
Туре	Manufacturer/Brand	Catalog Number	
1,190	5 Manalasianon Stand		
SITE		SITE	
SA	ABL-Lithonia Lighting	DSX1 LED P5 40K T5W MVOLT	
		SPA DDBXD	
SB	ABL-Lithonia Lighting	DSX1 LED P5 40K T4M MVOLT	
SC		SPA DDBXD	
30	ABL-Lithonia Lighting	DSX1 LED P5 40K T3M MVOLT SPA DDBXD	
SD	ABL-Lithonia Lighting	DSX1 LED P5 40K T5M MVOLT	
		SPA DDBXD	
P1	ABL-Lithonia Lighting	SSS 30 4G DM19AS VD DBLXD	
P2	ABL-Lithonia Lighting	SSS 30 4G DM28AS VD DBLXD	
COR	RE AND SHELL	CORE AND SHELL	
A	ABL-Lithonia Lighting	ZL1N L48 5000LM FST MVOLT 40K	
er foren filman		80CRI WH	
AE	ABL-Lithonia Lighting	ZL1N L48 5000LM FST MVOLT 40K	
SE		80CRI E10WLCP WH WDGE3 LED P2 40K 70CRI RFT	
3E	ABL-Lithonia Lighting	MVOLT SRM DDBXD	
SK	BEGA/US	55 942-K4	
SKĖ	and a second	55 942-K4	
SKE		EMS-55-LC-V3-S	
EXW	the set when the set of the set o	LE S 1 R EL N SD	
	0		

Site Lighting

SEARHC Juneau Vintage Park

2

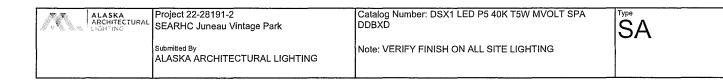
Note: VERIFY FINISH ON ALL SITE LIGHTING

D-Series Size 1 LED Area Luminaire d"series Buy American

Project 22-28191-2

ALÁSKA ARCHITECTURAL LIGHTING

1.01 ft² (0.09 m³) EPA: 33" Length: (83.8 cm) 13″ (33.0 cm) Width: 7-1/2" (19.0 cm) HILLIN H2 Height H1: H1 咽 3-1/2" Height H2: Weight 27 lbs (12.2kg) (max):


Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Orderi DSX1 LED	ing Information		EXAMPLE:	DSX1 LED P7 40	ж тзм м	IVOLT SPA NLT/	AIR2 PIRHN DDBXD
Series	LEDS	Colortemperature	Distribution	Volta	age	Mounting	4 T.
DSX1 LED	Forward optics P1 P41 P71 P2 P51 P8 P3 P61 P91 Rotated optics P102 P122 P112 P1312 P1312	30K 3000 K 40K 4000 K 50K 5000 K	(Automotive) TSS T T2S Fype II short TSM T T2M Type II medium TSW T T3S Type III short BLC E T3M Type III medium LCCO L	Ivpe V short 'XVOL	7V-480V) ^{6,7,8} 9 9 9 9 9	RPA Round p WBA Wall bra SPUMBA Square p RPUMBA Round p Shipped separately KMA8 DDBXD U Mast arr	vole mounting ele mounting ³⁰ cket ' cket universal mounting adaptor ¹¹ cde universal mounting adaptor ⁹ n mounting bracket adaptor finish) ¹²
Control optic	ms	•	·	•	Otheroptio	ms	Hinish (equiva)
Shipped installed NITAR2 n.Light AIR generation 2 enabled ¹⁴ PIRN Network, high/low motion/ambient sensor ¹⁴ PER NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ PER5 Five-pin receptacle only (controls ordered separate) ^{15,16} PER7 Seven-pin receptacle only (controls ordered separate) ^{15,16} DMG 0-10 of umming writes pulled outside fixture (for use with an external control, ordered separately) ¹⁷ DS Dual switching ^{11,18,20}			ambient sensor enabled at: PIRH High/low, motion/ambient ambient sensor enabled at: PIR1FC3V High/low, motion/ambient ambient sensor enabled at	rsensor, 15-30' mounting height, Sfc. ³⁰¹ tsensor, 8-15' mounting height, 1fc. ³⁰²¹ ensor, 15-30' mounting height, 1fc. ³⁰²¹	SF Sing DF Douil L90 Left R90 Righ HA 50°C BAA Buy Shipped se BS Bird	se-side shield ²⁴ le fuse (120, 277, 347V) ⁶ ble fuse (208, 240, 480V) ⁶ rotated optics ² trotated optics ⁷ C ambient operations ¹ America(n) Act Compliant	DDBXD Dark bronze DBLXD Black DNAXD Natural aluminum DWHXD White DDBTXD Textured dark bronze DBLBXD Textured black DNATXD Textured hatural aluminum DWHGXD Textured white
				PLEAS	SE VE	RIFY FINIS	H
	LOUTDOOR		Conyers, Georgia 30012 • Phone: nds Lighting, Inc. All ríghts reserved,	1-800-705-SERV (7378) •	www.hthomaa.t		DSX1-LED Rev. 07/19/21 Page 1 of 8

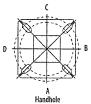
COMMERCIAL OUTDOOR

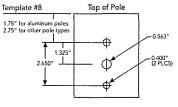
Ordering Information

MARGEREE		NOTES
	Accessories	1 HA not available with P4, P5, P6, P7, P9 and P13.
Orde	ered and shipped separately.	2 P10. P11. P12 or P13 and rotated optics (LSO, R90) only available together. 3 Any Type 5 distribution with photocell, is not available with WBA.
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) ²⁵	Mot available with HG. MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
DLL347F 1.5 CULJU	Photocell - SSL twist-lock (347V) ²⁵	3 million of the specials of a single rouse and the rouse in the rouse
DLL480F1.5 CULJU	Photocell - SSL twist-lock (480V) 23	7 XVCC UNVOIS WITH any voltage between 277V and 480V
DSHORT SBK U	Shorting cap 25	8 XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIR1FC3V, PIR1FC3V,
DSX1HS 30C U	House-side shield for P1, P2, P3, P4 and P5 ²¹	 Single fuse (SF) requires 120V, 277V, or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF.
DSX1HS 40C U	House-side shield for P6 and P7 23	10 Suitable for mounting to round poles between 3.5" and 12" diameter.
DSX1HS 60C U	House-side shield for P8, P9, P10, P11 and P12 3	11 Universal mounting brackets intended for retroff on existing, pre-drilled poles only, 1.5 G vibration lead rating per ANG C135 31. Only usable when pole's drill pattern is NOT Lirkon's template #8 12 Mast order future with RSA option. Mast be ordered as a separate accessory is separate sinformation. For use with 2-30F diameter mast arm front included.
PUMBA DDBXD U*	Square and round pole universal mounting bracket (specify finish) ²⁴	13 Must be ordered with PHRN. Sensor core available only in disclost bronze, black, white and natural aluminum colors. 14 Must be ordered with NTAIR2. For more information on nLicht Air 2 vibil file (2) vibil (2) vib
KMAS DOBXD U	Mast arm mounting bracket adaptor (specify finish) 12	15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included. 16 if ROAM node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.
DSX1EGS (FINISH) U	External glare shield	17 DMG not available with PIRHN, PERS, PER7, PIR, PIRH, PIRH, PIRHERSV or PIRH1FC3V, FAO.
For more contr	ol options, visit () "i, and #()451 online.	18 Provides 50/505/ture operation via (2) independent drives. Not available with PER, PERS, PER7, PIR or PRH. Not available P1, P2, P3, P4 or P5. 19 Required (2) separately svinted circuit with bioland neuron. 20 Reference Controls Option Default settings table on page 4. 21 Reference Kotion Sersor table on page 4 to see in Annotania. 22 Not available with full, Curco and RCCC defaultion. Also available as a separate accessory; see Accessories information. 23 Not available with full, Curco and RCCC defaultion. Also available as a separate accessory; see Accessories information. 24 Must be ordend with future for factory pre-dilling. 25 Requires Laminairs to be specified with REP REPS for PER7 gration. See Control Option Table on page 4. 26 For retrofit use only. Only usable when pole's drill pattern is NOT Litionis template #8.

Options

EGS - External Glare Shield





Drilling

HANDHOLE ORIENTATION

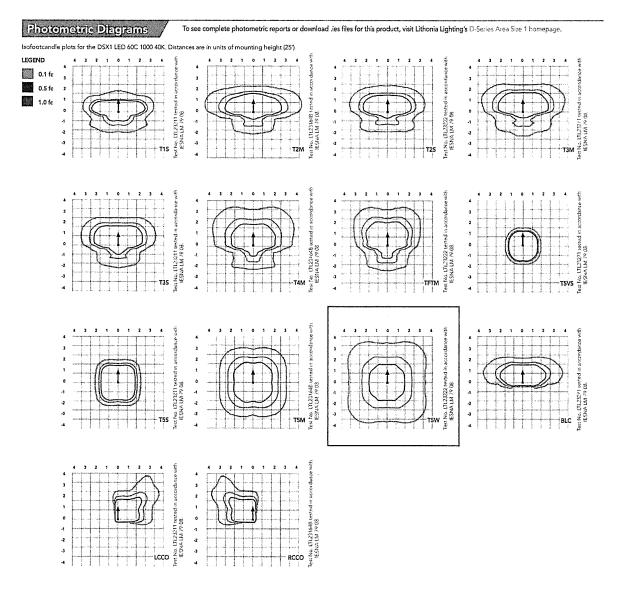
Tenon Mounting Slipfitter

Tenon O.D.	Mounting	SingleUnit	2(@180)	21@90	3(0190)	3.0120	4@90
2-3/8"	RPA	A\$3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA.	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-8		Ē.		×	
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3@120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.


	Fixture Quantity & Mounting Configuration	Single DM 19)	2@180DM28	2 (# 90 DM29	3(@1901DM39	31@1200832	41-190 DM49
	Mounting Type				₹"		Y	=∦=
-	DSX1 LED	1.013	Ţ	2.025	1.945	3,038	2.850	3.749

fing Template Minimum Acceptable Outside Pole Dimension	
ing complete segmentation Acceptable durance concerning is in	Π.

•	Drilling Template	¥ .	- Win	mum Acceptable O	lutside Pole Dime	nsion	
SPA	#8	2-7/8"	2-7/8"	3.5*	3.5"	3″	3.5"
RPA	#8	2-7/8"	2-7/8*	3.5*	3.5*	3″	3.5″
SPUMBA	#5	2-7/8"	3*	4″	4*	3.5*	4"
RPUMBA	#5	2-7/8"	3.5"	5″	5″	3.5″	5″

$\mathcal{M}_{\mathcal{M}}$	ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD	SA
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING	

DSX1-LED Rev. 07/19/21 Page 3 of 8

ALASKA ARCHITECTURAL LIGHTING		Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

	mbient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C.	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30*C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C amblent, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LUF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating flours	
offensionalis	Lunien Maintenance Pactor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dweli Time	Ramp-up Time	Ramp-down Time
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min

Electrical	Load
------------	------

		_					Que	mt(())		
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0,52	0.46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0,34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires 190 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

	· · · · · · · · · · · · · · · · · · ·	Controls Options		Sec. 3 - Contraction and the second
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PERS or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

^{Type} SA

ALASKA ARCHITECTURAL UGHTING		Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD	^{Type} SA
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING	

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward 0	ptilos																		
(ED Count	Drive	Power Package	System Watts	ölse.		(130)00	30K K. 70 CRI)	1			(4000	40K K, 70 (R)	N. State			មេណា	50K) K, 70 (R)	n	
	Corrent	Padkage	Watts	Type	Lumens	8	U	G	Lew	Lumens			G	LPW	Lumens:	B	U	G	LPW
				115 T25	6,457 6,450	2	0	2	120 119	6,956	2	0	2	129	7,044 7,037	2	0	2	130 130
				TZM	6,450	2	0	1	120	6,949 6,984	2	0	2	129	7,037	2	0	2	131
				T35	6,279	2	0	2	116	6,764	2	0	2	125	6,850	2	0	2	127
				T3M T4M	6,468 6,327	1	0	2	120 117	6,967 6,816	1	0	2	129 126	7,056 6,902	1	0	2	131 128
30	530	P1	54W	TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131
50	220			TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136
				T5S TSM	6,728 6,711	2	0	1	125 124	7,248 7,229	2	0	1	134	7,340 7,321	2	0	1 2	136
				TSW	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135
				BLC LCCO	5,299 3,943	1	0	1	98 73	5,709 4,248		0	2	106 79	5,781 4,302	1-1-	0	2	107
				RCCO	3,943	1	Ō	2	73	4,248	1	0	2	79	4,302	1	0	2	80
				TIS	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129
				T2S T2M	8,240 8,283	2	0	2	118 118	8,877 8,923	2	0	2	127	8,989 9,036	2	0	2	128
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125
				T3M T4M	8,263	2	0	2	118	8,901	2	0	2	127	9,014	2	0	2	129
		-		TEIM	8,083 8,257	2	0	2	115 118	8,708 8,896	2	0	2	124 127	8,818 9,008	2	0	2	126
30	700	P2	70W	T5VS	8,588	3	0	0	123	9,252	3	0	0	132	9,369	3	0	0	134
	de la bilita de la constante			T5S T5M	8,595 8,573	3	0	1	123 122	9,259 9,236	3	00	1 2	132 132	9,376 9,353	3	0	1	134
				TSW	8,517	3	0 0	2	122	9,175	4	0	2	131	9,291	4	0	2	133
				BLC	6,770	1	0	2	97	7,293	1	0	2	104	7,386	1	0	2	106
				LCCO RCCO	5,038 5,038	1	0	2	72 72	5,427 5,427	1	0	2	78 78	5,496 5,496	1	0	2	79
				TIS	11,661	2	0	2	114	12,562	3	0	3	123	12,721	3	0	3	125
				T2S T2M	11,648	2	0	2	114	12,548	3	0	3	123	12,707	3	0	3	125
				T2M T3S	<u>11,708</u> 11,339	2	0 0	2	115 111	12,613 12,215	2	0	<u>2</u> 3	124	12,773 12,370	3	0	2	125
	en egi			T3M	11,680	2	0	2	115	12,582	2	0	2	123	12,742	2	0	2	125
				T4M TFTM	11,426 11,673	2	0 0	3	112 114	12,309 12,575	2	0	3	121	12,465 12,734	2	0	3	122
30	1050	P3	102W	T5VS	12,140	3	0	ī	119	13,078	3	0	1	128	13,244	3	0	1	130
				<u>155</u>	12,150	3	0	1	119	13,089	3	0	_1_	128	13,254	3	0	1	130
			말을 한다	T5M T5W	12,119 12,040	4	0 0	2 3	119 118	13,056 12,970	4	0	2 3	128 127	13,221 13,134	4	0	2	130 129
	ar an an an an An an an an an			BLC	9,570	1	0	2	94	10,310	1	0	2	101	10,440	1	0	2	102
				LCCO RCCO	7,121 7,121	1	0	3	70 70	7,671 7,671	1	0	3	75	7,768	1	0	3	76
en de este de de aneder	inite output and the second	ar an air an an an an an air	antination ta a same	TIS	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117
				T25	13,421	3	0	3	107	14,458	3	0	3	116	14,641	3	0	3	117
				T2M T35	13,490 13,064	2	0	2	108 105	14,532 14,074	3	0	3	116	14,716 14,252	3	0	3	118
				T3M	13,457	2	0	2	108	14,497	2	0	2	116	14,681	2	0	2	117
				T4M TFTM	13,165 13,449	2	0	3	105 108	14,182	2	0	3	113	14,362	2	0	3	115
30	1250	P4	125W	TSVS	13,449	4	0	1	108	14,488 15,068	4	0	3 1	116	14,672 15,259	4	0	3	122
				TSS	13,999	3	0	1	112	15,080	3	0	1	121	15,271	3	0	1	122
				TSM TSW	13,963 13,872	4	0	2	112 111	15,042 14,944	4	0	2	120 120	15,233 15,133	4	0	2	122
				BLC	11,027	1	0 0	2	88	11,879	1	0	2	95	12,029	1	0	2	96
				LCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72
				RCCO T1S	8,205 14,679	1	0	3	66 106	8,839 15,814	1	0	3	71	8,951 16,014	1	0	3	72
				T2S	14,664	3	0	3	106	15,797	3	0	3	114	15,997	3	0	3	116
				T2M T35	14,739 14,274	3	0	3	107 103	15,878 15,377	3	0	3	115	16,079	3	0	3	117
	<u> </u>			T3M	14,274 14,704	3 2	0	3	103	15,377 15,840	3	U O	, 3	115	15,572 16,040	3	0	3	116
				T4M	14,384	2	0	3	104	15,496	3	0	3	112	15,692	3	0	3	114
30	1400	P5	138W	TFTM TSVS	14,695 15,283	2 4	0	3	106 111	15,830 16,464	4	0	3	115	16,030 16,672	3	0	3	116
				1585	15,285	3	0	1	111	16,477	4	0	1	119	16,686	4	0	1	121
				T5M	15,257	4	0	2	111	16,435	4	0	2	119	16,644	4	0	2	121
				T5W BLC	15,157 12,048	4	0	3	110 87	16,328 12,979	4	0	3	<u>118</u> 94	16,534 13,143	4	0	3	120
				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71
				RCCO	8,965	1	0	3	65	9,657	1 1	0	3	70	9,780	1	0	3	71

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 5 of 8

N.	ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD	SA
	,	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING	

Lumen Output

Forward O	ptics	·*•,					· · ·		•			n.	• •					
LEDCount	Orive	Power	System Walts	Dist		30K (3000 K, 70 CR	br		,	(4000	40K 1K, 70 CRI)				(500)	50K) K, 70 CR)	
	Current	Package	0.000	Type	lumens	B U	6	LPW	Lumens	6		6	LPW	Lumens	B	U	6	LPW
			1	TIS	17,654	3 0	3	108	19,018	3	0	3	117	19,259	3	0	3	118
				T2S	17,635	3 0	3	108	18,998	3	0	3	117	19,238	3	0	3	118
	-	- 공기 영감		T2M	17,726	3 0	3	109	19,096	3	0	3	117	19,337	3	0	3	119
		1.1.2.2		TBS	17,167	3 0	3	105	18,493	3	0	3	113	18,727	3	0	3	115
			£ .	ТЗМ	17,683	3 0	3	108	19,049	3	0	3	117	19,290	3	0	3	118
			l.	T4M TFTM	17,299	3 0	3	106 108	18,635	3	0	4	114	18,871 19,279	3	0	4	116 118
40	1250	P6	163W	TSVS	17,672 18,379	4 0	1 1	108	19,038 19,800	4	0	1	11/	20,050	4	0	1	123
			1.	TSS	18,394	4 0	2	113	19,816	4	0	2	122	20,050	4	0	2	123
	1	and a second		TSM	18,348	4 0	2	113	19,766	4	0	2	121	20,016	4	0	2	123
	1			TSW	18,228	5 0	3	112	19,636	5	0	3	120	19,885	5	0	3	122
	1	[· · · ·		BLC	14,489	2 0	2	89	15,609	2	0	3	96	15,806	2	0	3	97
		and a second second	and the second second	LCCO	10,781	1 0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
100			194 1.4	RCCO	10,781	1 0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
				TIS	19,227	3 0	3	105	20,712	3	0	3	113	20,975	3	0	3	115
				T2S	19,206	3 0	3	105	20,690	3	0	3	113	20,952	3	0	3	114
			1	T2M	19,305	3 0	3	105	20,797	3	0	3	114	21,060	3	0	3	115
			er en	T35	18,696	3 0	3	102	20,141	3	0	3	110	20,396	3	0	4	111
				T3M	19,258	3 0	3	105	20,746	3	0	3	113	21,009	3	0	3	115
			1	T4M	18,840	3 0	4	103	20,296	3	0	4	111	20,553	3	0	4	112
40	1400	P7	183W	TFTM	19,246	3 0	4	105	20,734	3	0	4	113	20,996	3	0	4	115
				TSVS	20,017	4 0	1_1_	109	21,564	4	0	1	118	21,837	4	0	1	119
			the second se	TSS	20,033	4 0	2	109	21,581	4	0	2	118	21,854	4	0	2	119
	***			T5M T5W	19,983	4 0 5 0	2	109 108	21,527 21,386	5	0	3	118	21,799 21,656	5	0	3	119 118
			1	BLC	19,852 15,780	2 0	3	86	16,999	5	0	3	93	17,214	2	0	3	94
			and the second se	100	11,742	2 0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
				RCCO	11,742	2 0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
	19 1			TIS	22,490	3 0	3	109	24,228	13	0	3	117	24,535	3	0	3	119
		전 직장품	No. Contraction	T25	22,466	3 0	4	109	24,202	3	0	4	117	24,509	3	0	4	118
		1. 4820		T2M	22,582	3 0	3	109	24,327	3	0	3	118	24,635	3	0	3	119
				T3S	21,870	3 0	4	106	23,560	3	0	4	114	23,858	3	0	4	115
				T3M	22,527	3 0	4	109	24,268	3	0	4	117	24,575	3	0	4	119
			1863), TA	T4M	22,038	3 0	4	106	23,741	3	0	4	115	24,041	3	0	4	116
60	1050	P8	207W	IFTM	22,513	3 0	4	109	24,253	3	0	4	117	24,560	3	0	4	119
				TSVS	23,415	5 0	1	113	25,224	5	0	1	122	25,543	5	0	1	123
				<u>155</u>	23,434	4 0	2	113	25,244	4	0	2	122	25,564	4	0	2	123
				TSM	23,374	5 0 5 0	3	113	25,181	5	0	3	122	25,499	5	0	3	123 122
		物的影响		TSW BLC	23,221 18,458	<u>5</u> 0 20	4	112 89	25,016 19,885	5	0	4	121 96	25,332 20,136	5	0	4	97
	拉马马拉	Paris S.		LCCO	13,735	2 0	3	66	19,865	2	0	4	71	14,983	2	0	4	72
		[사람님, 1		RCCO	13,735	2 0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
	della site and significant	****	eter minister milier, milier i i	TIS	25,575	3 0	3	106	27,551	3	0	3	114	27,900	3	0	3	116
	-			T2S	25,548	3 0	4	106	27,522	3	0	4	114	27,871	3	0	4	116
	10000		-	T2M	25,680	3 0	3	107	27,664	3	0	3	115	28,014	3	0	3	116
		1		T3S	24,870	3 0	4	103	26,791	3	0	4	111	27,130	3	0	4	113
		1		T3M	25,617	3 0	4	106	27,597	3	0	4	115	27,946	3	0	4	116
	1			T4M	25,061	3 0	4	104	26,997	3	0	4	112	27,339	3	0	4	113
60	1250	P9	241W	TFTM	25,602	3 0	4	106	27,580	3	0	4	114	27,929	3	0	4	116
	1250		1	TSVS	26,626	5 0	1	110	28,684	5	0	1	119	29,047	5	0	1	121
		1	-	T55	26,648	4 0	2	111	28,707	5.	0	2	119	29,070	5	0	2	121
				T5M	26,581	5 0	3	110	28,635	5	0	3	119	28,997	5	0	3	120
		1		TSW	26,406	5 0	4	110	28,447	5	0	4	118	28,807	5	0	4	120
			Construction of the local distribution of th	BLC	20,990	2 O	3	87	22,612	2	0	3	94	22,898	2	0	3	95
	Campone And		Call Second	LCCO	15,619	2 0	4	65	16,825	2	0	4	70	17,038	2	0	4	71
	1	1	L	RCCO	15,619	2 0	4	<u>i 65</u>	16,825	2	0	4	70	17,038	2	0	4	71

ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD	^{Type} SA
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING	

Lumen Output

Lurnen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated O	pues			;	,	<u></u>												
LEDComte	Qrive	Poyrer	System Watts	0161e		(800	<u>30k</u> 1 k, 70 cr	8			INTER	40K) K. 70 (R)	5		150	50K Xo K. 70 CR	m	
(1994)(Jahr	Content	Patkage	Watte	The	Lumens		U	(G.	Lew	Lumens		U	.6	LPW	Lumens B		6	I LPW
	12.10			T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228 3	0	3	134
				125	12,967	4	0	4	122	13,969	4	0	4	132	14,146 4	0	4	133
		-	i.	T2M	13,201	3	0	.3.	125	14,221	3	0	3	134	14,401 3	0	3	136
				T3S	12,766	4	0	4	120	13,752	4	0	4	130	13,926 4	0	4	131
		1		T3M T4M	13,193	4	0	4	124	14,213	4	0	4	134	14,393 4	0	4	136
		1.1		TFTM	12,944 13,279	4	0	4	122 125	13,945 14,305	4	0	4	132	14,121 4 14,486 4		4	133
60	530	P10	106W	TSVS	13,372	3	0	1	125	14,405	4	0	1	136	14,588 4	0	1	13
		1 · · · ·	1	TSS	13,260	3	0	1	125	14,284	3	0	1	135	14,465 3	0	1	13
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462 4	0	2	13
			1	T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332 4	0	3	13
	ļ.,			BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898 3	0	3	11
	a she she she she			1000	7,789	1	0	3	73	8,391	1	0	3	79	8,497 1	0	3	80
			firmina mon	RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486 4	0	4	80
	l.		e per se construction de la constru	TIS	16,556	3	0	3	121	17,835	3	0	3	130	18,061 4	0	4	13
				TZS	16,461	4	0	4	120	17,733	4	0	4	129	17,957 4	0	4	13
	***			T2M T35	16,758 16,205	4	0	4	122 118	18,053 17,457	4	0	4	132	18,281 4 17,678 4	0	4	13
				T3M	16,205	4	0	4	122	17,457	4	0	4	132	17,678 4 18,271 4	0	4	13
	-			T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926 4	0	4	13
	1			TFIM	16,857	4	0	4	123	18,159	4	0	4	133	18,389 4	0	4	1
60	700	P11	137W	T5VS	16,975	4	0	1	124	18,287	4	0	1	133	18,518 4	1 0	1	13
				TSS	16,832	4	0	1	123	18,133	4	0	2	132	18,362 4	0	2	13
			-	T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358 4	0	2	13
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193 5	0	3	13
	-			BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103 3	0	3	11
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787 2	0	3	7
		Lucio con tra		RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773 4	0	4	7
				TIS	22,996	4	0	4	111	24,773	4	0	4	120	25,087 4	0	4	12
	12.233		Sec. Sec.	T25	22,864	4	0	4	110	24,631	5	0	5	119	24,943 5	0	5	12
				T2M T3S	23,277 22,509	4	0	4	112	25,075 24,248	4	0	4	121	25,393 4 24,555 5	0	4	12
		일하였으나		T3M	23,263	4	0	4	112	24,246	4	0	4	121	25,378 4	0	4	12
				T4M	22,824	5	Ō	5	110	24,588	5	0	5	119	24,899 5		5	12
1.20				TFTM	23,414	5	0	5	113	25,223	S	0	5	122	25,543 5	0	5	12
60	1050	P12	207W	TSVS	23,579	5	0	1	114	25,401	5	0	Ĩ	123	25,722 5	0	1	12
		医尿道口	1996 - 1995 1996 - 1995	TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506 4	0	2	12
		1943-17		T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499 5	0	3	12
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271 5	0	4	12
14 3.K	1.		la substantina	BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979 4	0	4	10
				LCCO	13,734	2	0	3	66	14,796	2	0	4	71	14,983 2	0	4	7
	4		<u> </u>	RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963 4	0	4	7
			-	TIS	25,400	4	0	4	110	27,363	4	0	4	118	27,709 4	0	4	12
				T2S T2M	25,254	5	0	5	109	27,205	5	0	5	118 120	27,550 5 28,047 4	0	5	11
			-	12m	25,710 24,862	5	0	5	108	27,696 26,783	4	0	5	116	28,047 4 27,122 5	0	5	11
	-	1		T3M	25,695	5	0	5	111	20,783	5	0	5	120	28,031 5	0	5	12
				T4M	25,210	5	0	5	109	27,080	5	0	5	118	27,502 5	0	5	11
				TFTM	25,861	5	0	5	112	27,860	5	l o	5	121	28,212 5	0	5	12
60	1250	P13	231W	TSVS	26,043	5	0	1	113	28,056	5	0	1	121	28,411 5	0	11	12
		1	- teacher	TSS	25,824	4	0	2	112	27,819	5	0	2	120	28,172 5	0	2	12
		1	6	T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165 5	0	3	17
	-			TSW	25,586	5	0	4	111	27,563	5	0	4	119	27,912 5	0	4	12
	1			BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172 4	0	4	10
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549 2	0	4	7
		1	-	RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527 5	0	5	7.

DSX1-LED Rev. 07/19/21 Page 7 of 8

ALASKA ARCHITECTURAL LIGHTING		Catalog Number: DSX1 LED P5 40K T5W MVOLT SPA DDBXD	Type SA
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: VERIFY FINISH ON ALL SITE LIGHTING	

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly[™] product, meaning it is consistent with the LEED^{*} and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to LB5/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling patterm (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information:

WARRANTY

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.cithon.ai.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 8 of 8

COMMERCIAL OUTDOOR

DDBXD

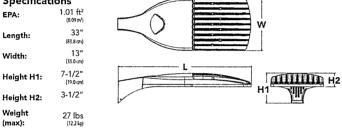
Note:

SB

Page 1 of 8

Project 22-28191-2

Submitted By


SEARHC Juneau Vintage Park

ALASKA ARCHITECTURAL LIGHTING

ALASKA ARCHITECTURAL

GHTING

ų,

Introduction

、鎌田を始め

Catalog

Number Notes

Type

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

"你是你是能够不能。

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

ies LEDs	Color-temperature	Distribution		Voltage	Mounting		
Forward optics. 30K 3000 K P1 P41 P71 P2 P51 P8 P3 P61 P91 Rotated optics P102 P122 P112 P1312 P1312		T1S Type I short (Automotive) TSVS Type V very short ' T2S Type II short TSK Type V medium ' T2M Type II medium TSW Type V medium ' T3M Type III short TSW Type V vide ' T3M Type III short BLC Backlight control * T4M Type IV medium RCCO Right corner cutoff * TFTM Forward throw medium Forward throw Forward throw		MV0LT5 XV0LT (277V-480V) «2.4 120° 208° 240° 277° 347° 480°	Shipped included SPA Square pole mounting RPA Round pole mounting ³⁰ WBA Wall bracket ' SPUMBA Square pole universal mounting adaptor ¹¹ RPUMBA Round pole universal mounting adaptor ¹⁰ Shipped separately KMA8 DDBXD U KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) ¹²		
trol options				Otheropt	lotis	Finish (sund)	
PERS Five-pin receptacle only (co PER7 Seven-pin receptacle only (ambient sensor ¹⁴ only (controls ordered separate) ¹⁵ ntrols ordered separate) ^{15,16} controls ordered separate) ^{15,16} d outside fixture (for use with an	amblent sensi PIRH High/low, mo amblent sensi PIR1FC3V High/low, mo amblent sensi	tion/ambient sensor, 8-15' mounting i or enabled at 5fc $x_{0,1}^{x_{0,1}}$ or enabled at 5fc $x_{0,1}^{x_{0,1}}$ or enabled at 5fc $x_{0,1}^{x_{0,1}}$ ino/ambient sensor, 8-15' mounting or enabled at fc $x_{0,1}^{x_{0,1}}$ on/ambient sensor, 15-30' mounting f or enabled at 1fc $x_{0,1}^{x_{0,1}}$	héight, HS Ho SF Sin height, DF Do L90 Lef R90 Rig HA S0 BAA Bu Shipped : BS Bir	installed use-side shield ²⁴ ugle fuse (120, 277, 347V) ⁹ uble fuse (208, 240, 480V) ⁶ ft rotated optics ² ⁹ C ambient operations ¹ y America(n) Act Compliant separately d spikes ²⁴ ternal glare shield	DDBXD Dark bronze DBLXD Black DMAXD Natural aluminum DWHXD White DDBTXD Textured dark bronze DBLRXD Textured dark bronze DBLBXD Textured black DNATXD Textured natural aluminum DWHGXD Textured white	
			PL	EASE VE	RIFY FINIS	H	

ALASKA ARCHITECTURAL DIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD	^{Type} SB
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Ordering Information

	Accessories	NOTES 1 HA not available with P4, P5, P6, P7, P9 and P13.
Ord	ered and shipped separately.	2 P10, P11, P12 or P13 and rotated optics (150, R90) only available together, 3 Any Type 5 distribution with photocell, is not available with WBA.
DL1127F 1.5 JU DL1347F 1.5 CUL JU DL340F 1.5 CUL JU DSHORT SNU DSK1H5 30C U DSK1H5 40C U DSK1H5 40C U DSK1H5 40C U DSK1H5 40C U DSK1H5 40C U DSK1H5 (FINISH) U DSK1H5 (FINISH) U For more cont	Photocell - SSL twist-lock (120-277V) ^{III} Photocell - SSL twist-lock (120-277V) ^{III} Photocell - SSL twist-lock (480V) ^{III} Shorting cap ^{III} House-side shield for Fan AP ^{III} House-side shield for Fan AP ^{III} House-side shield for Fan AP ^{III} House-side shield for PA, PP, PIO, P11 and P12 ^{III} Square and round pole mix-main monuting backet (peet) frish ^{III} Mast am monumbrg bracket sdaptor (spectify mask) ^{III} External glare shield ol options, visit (1 ^{IIII} and FCLEASL confine.	 3 Arry Type 5 distribution with photoell, in not available with WBA. 4 Not a validable with HS 5 MOCL drive operates on any time voltage from 120-277V (SVK0 H4). 6 WOCL or drive operates on any time voltage from 120-277V (SVK0 H4). 7 XVOCL work with P3 P5, P6, P7, PP and P13. 7 XVOCL work with P3 Voltage between 277V and 4580. 8 XVOCL more validable with fragge 56 PC and not available with RP, PIRH, PRITECXV, PIRHTECXV. 9 Single face (SP) requires 120, 277V or 371V Double face (DP) requires 2087, VAIV or 480V, XVOLT not available with fusing (SF or DF. 10 Sintable for compiter to round poles between 35° and 12° diamater. 11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 15 G voltation load rating per AVCI C136:31. Only usable when pole's drill pattern is NOT Libronia template #8 12 Must order forture with SPA option, Must be ordered as a separate accessory are Accessories information. For use with 297X of 270° Single face with TMAIR2, For more information on rollegt AW 2 wait the inten. 13 Must be ordered with PIRHS, PIRK, PIRCEXV and Anatal Aurima colors. 14 Must be ordered with NITAIR2, For more information on rollegt AW 2 wait the inten. 15 Protocel ordered and intension, PERK PIRK PIRCEXV APRIHECEXV, See accessories. Shorting op included. 16 If ROAM⁴ node required, itmat be ordered and singhed as a separate line item from Acatity Branck Controls. Node with integral dimming. 17 DWG not available with MIRK, PEBK, PERT, PIRK, PIRCEXV PIRK, PEREX PERS, PERY, PIR or PIRH, Not available PI, P2, P3, P4 or P5. 18 Protode 50 Stoffscare operation via (jundependent driver). 19 Required (jundependent driver). 10 Reference Controls Option Default strings table on page 4. 21 Reference Controls Option Default strings table on page 4.
		22 Not available with other dimming controls options.

- 22 viot avalaate mui ouer domming control quotos. 23 Not avalable vii bl.C., (CCO and RCCO distribution. Also available as a separate accessory, see Access 24 Must be ordered with fituum for factory pre-diffing. 25 Registres luminate to be specified with FEP, FERS or FER? option. See Control Option Table on page 4, 26 For retrofit use only. Only usable when pole's drill pattern is NOT Litboria template #8.

Options

EGS - External Glare Shield

Drilling

HANDHOLE ORIENTATION

A Handhole

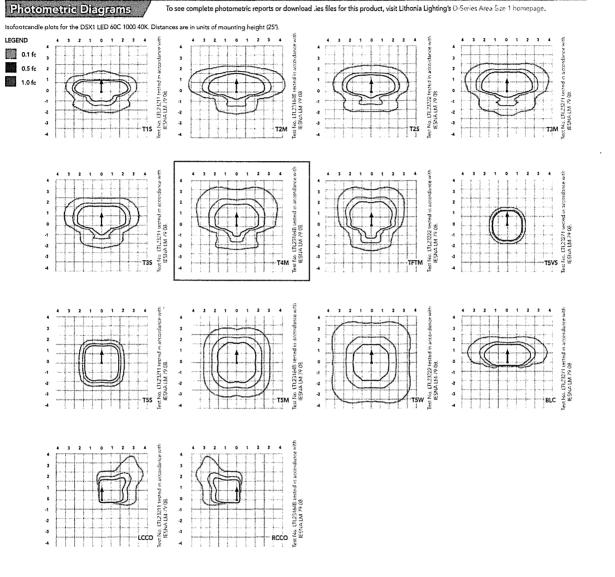
Top of Pole Template #8 1.75" for aluminum poles 2.75" for other pole type -0.563* Φ 1.325* -0.400" (2 PLCS) T 2.650" Ø

Tenon	Mounting	Slipfitter
-------	----------	------------

Tenon O.D.	Mounting	SingleUniti	2 (@ 180)	2)@90	3 @ 90	3 ca 120	4@90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-#		۴.,	<u>.</u>	Y	
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3@120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA


*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2@1800M28	2 @ 90 DM29	3 (#190 DM39	3@1200M32	4.0 90 DM49
Mounting Type	-#			₩ .	¥	****
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749
	QU	OTING BC	TH OPTI	ONS		

•	Drilling Template	. K		num Acceptable (Jutside Pole Dimer	nston	
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"
RPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3″	3.5″
SPUMBA	#5	2-7/8"	3*	4"	4"	3.5"	4″
RPUMBA	#5	2-7/8"	3.5"	5″	5*	3.5*	5*

	SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD	SB
1	ALASKA ARCHITECTURAL LIGHTING	Note:	

DSX1-LED Rev. 07/19/21 Page 3 of 8

$\mathcal{M}_{\mathcal{N}}$	ALASKA ARCHITECTURAL LIGHTING	•	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD	^{Type} SB
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

į į	Ambient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1,01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1,00
25,000	0.96
50,000	0.92
100,000	0.85

Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ SFC	5 min	3 sec	5 min
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min

Electrical	Load

							(QU)	int((A))		
	Performance Package	NEO County	Drive Currenti	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
Forward Optics (Non-Rotated)	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0,52	0.46	0.37	0.27
	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

· · · · · ·	Controls Options											
Nomenclature	Description	Functionality	Primary control device	Notes								
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads								
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.								
PERS or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire								
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.								
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.								

818

Æ.	SEARHC Juneau Vintage Park Submitted By	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD Note:	SB
	ALASKA ARCHITECTURAL LIGHTING		

Lumen Output

.

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

ForwardO	ptics	1. 1. 1. A.							-		· · · · ·								
	Orive	Power	System	Olst,		Gun	30K DK. 70 GR				(15)	40K (K, 70 CR))				16000	50K K. 70 CRI		
(IE) County	Orive Corrent	Power Package	System Watts	Tipe	Lumens	6	U	6	LPWI -	Lumens	6	0	G	LEW	Lumens		U	. (đ	LPW
	1999 - 1999 -	(TIS	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130
1.1				T2S T2M	6,450 6,483	2	0	2	119 120	6,949 6,984	2	0	2	129 129	7,037 7,073	2	0	2	130 131
1.0			-	T35	6,279	2	0	2	116	6,764	2	0	2	125	6,850	2	0	2	127
				T3M T4M	6,468 6,327	1	0	2	120	6,967 6,816	1	0	2	129 126	7,056 6,902	1	0	2	131
30	530	P1	54W	TETM	6,464	1	0	2	120	6,963	1	0	2	120	7,051	1	0	2	131
ĴŲ.	30	- FI		TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136
				T5S T5M	6,728 6,711	2	0	1	125 124	7,248 7,229	2	0	1	134 134	7,340 7,321	2	0	1	136 136
				T5W	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135
	n a station	ļ		BLC LCCO	5,299 3,943		0	1	98 73	5,709 4,248	1	0	2	106 79	5,781 4,302	1	0	2	107
			-	RCCO	3,943	1	0	2	73	4,248	t i	0	2	79	4,302	1	0	2	80
				T15	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129
				T2S T2M	8,240 8,283	2	0	2	118 118	8,877 8,923	2	0	2	127 127	8,989 9,036	2	0	2	128 129
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125
			den en e	T3M T4M	8,263	2	0	2	118 115	8,901	2	0	2	127 124	9,014	2	0	2	129 126
				TFTM	8,083 8,257	2	0	2	115	8,708 8,896	2	0	2 2	124	8,818 9,008	2	0	2	120
30	700	P2	70W	TSVS	8,588	3	0	0	123	9,252	3	0	0	132	9,369	3	0	0	134
				T5S T5M	8,595 8,573	3	0	1	123	9,259 9,236	3	0	1 2	132 132	9,376 9,353	3	0	1	134 134
				TSW	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0 0	2	133
				BLC	6,770	1	0	2	97	7,293	1	0	2	104	7,386	1	0	2	106
				LCCO RCCO	5,038 5,038	1-1-	0	2	72 72	5,427 5,427	1	0	2	78	5,496 5,496	1	0	2	79 79
				T15	11,661	2	O	2	114	12,562	3	0	3	123	12,721	3	0	3	125
				T2S T2M	11,648 11,708	2	0	2	114 115	12,548 12,613	3	0	3	123 124	12,707 12,773	3	0 0	<u>3</u> 2	125 125
				T3S	11,339	2	0	2	111	12,215	3	0	्रे	120	12,370	3	0	3	121
				T3M	11,680	2	0	2	115	12,582	2	0	2	123	12,742	2	0	2	125
				T4M TFTM	11,426 11,673	2	0	3	112 114	12,309 12,575	2	0	3	121 123	12,465 12,734	2	0 0	3	122
30	1050	P3	102W	TSVS	12,140	3	0	1	119	13,078	3	0	1	128	13,244	3	0	1	130
				T5S T5M	12,150 12,119	3	0	1	119 119	13,089 13,056	3	0	-1 2	128	13,254 13,221	3	0	1	130
				TSW	12,040	4	0	3	118	12,970	4	0	3	127	13,134	4	0	3	129
220				BLC LCCO	9,570	1	0	2	94	10,310	1	0	2	101	10,440	1	0	2	102
				RCCO	7,121 7,121	$\begin{bmatrix} 1\\1 \end{bmatrix}$	0	3	70	7,671 7,671	1	0	3	75	7,768 7,768	1	0	3	76
	nganatik Marak (Mathemagarin danasa			T15	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117
				T2S T2M	13,421 13,490	3	0	3	107 108	14,458 14,532	3	0	3	116	14,641 14,716	3	0	3	117
				T3S	13,064	3	0	3	105	14,074	3	0	3	113	14,252	3	0	3	114
				T3M	13,457	2	0	2	108	14,497	2	0	2	116	14,681	2	0	2	117
				T4M TFTM	13,165 13,449	2	0	3	105 108	14,182 14,488	2	0	3 3	113	14,362 14,672	2	0	3	115
30	1250	P4	125W	TSVS	13,987	4	0	1	112	15,068	4	0	1	121	15,259	4	0	1	122
			and the second se	T5S T5M	13,999 13,963	3	0	1	112 112	15,080 15,042	3	0	1 2	121 120	15,271 15,233	3	0	1	122
				T5W	13,872	4	Ō	3	111	14,944	4	0	3	120	15,133	4	0	3	121
		a i a di		BLC	11,027	1	0	2	88	11,879	1	0	2	95	12,029	1	0	2	96
				LCCO RCCO	8,205 8,205	1	0	3	66 66	8,839 8,839	1	0	3	71	8,951 8,951	1	0	3	72
		[TIS	14,679	3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116
			-	T2S T2M	14,664 14,739	3	0	3	106 107	15,797 15,878	3	0	3	114	15,997 16,079	3	0	3	116
		-		T3S	14,274	3	0	3	103	15,377	3	0	3	111	15,572	3	0	3	113
		[1	T3M T4M	14,704	2	0	3	107	15,840	3	0	3	115	16,040	3	0	3	116
1	1400		138W	TEL TEL	14,384 14,695	2	0	3	104 106	15,496 15,830	3	0	3	112	15,692 16,030	3	0	3	114 116
30	1400	P5	138W	T5VS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121
L		1	ļ	T5S T5M	15,295 15,257	3	0	1	111	16,477 16,435	4	0	1 2	119 119	16,686 16,644	4	0	1	121
				T5W	15,157	4	0	3	110	16,328	4	0	3	118	16,534	4	0	3	120
				BLC	12,048 8,965	1	0	2	87 65	12,979	1	0	2	94	13,143 9,780	1	0	2	95 71
				RCCO	8,965	1	0	3	65	9,657 9,657	1	0	3	70	9,780		0	3	71
				n an an an an Allen Charles ann an an Anna an Allen		*****			and a constrained		nen släff (1916) e Draffs							e orion anaeografiana	

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 5 of 8

M.	ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD	SB
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Forward O	ptics									1	÷.,		,		•		•	- 11		
(ED Count	Orive Current	Rower Package	System Watts	Disp. Type			30K DK, 70 CR	b			(400)	40K) K, 70 CRI)				50K K, 70 CRI)	,	
	actualt.	ix della	лтир	Lana and the second	Lumens	0	U	6	15MA	lumens		U	6		Lamens	6	Ū	6	New	
				TIS	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118	
1		-		T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118	
				T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119	
	-			T35	17,167	3	0	3	105	18,493	3	0	3	113	18,727	3	0	3	115	
		1		T3M T4M	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118	
			1	TETM	17,299 17,672	3	0	3	106 108	18,635 19,038	3	0	4	114	18,871 19,279	3	0	4	116	
40	1250	P6	163W	TSVS	18,379	4	0	1	113	19,038	4	0	1	121	20,050	4	0	1	123	
				T55	18,394	4	0	2	113	19,800	4	0	2	122	20,050	4	0	2	123	
				TSM	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123	
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122	
	40.	-		BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97	
1. S. S.	1	a see a se		LCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72	
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72	
1	1	1		T15	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115	
1				T2S	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114	
1				T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115	
				TBS	18,696	3	0	3	102	20,141	3	0	3	110	20,396	3	0	4	111	
				T3M	19,258	3	0	3	105	20,746	3	0	3	113	21,009	3	0	3	115	
		An even		T4M	18,840	3	0	4	103	20,296	3	0	4	111	20,553	3	0	4	112	
40	1400	P7	183W	TFTM	19,246	3	0	4	105	20,734	3	0	4	113	20,996	3	0	4	115	
				TSVS	20,017	4	0	1	109	21,564	4	0	1	118	21,837	4	0	1	119	
				TSS	20,033	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119	
1	1	2		T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	119	
		1		TSW	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118	
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94	
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70	
				RCCO T1S	11,742	2	0	3	64 109	12,649	2	0	3	69 117	12,809	2	0	3	70	
				TIS	22,490 22,466	3	0	4	109	24,228 24,202	3	0	4	117	24,535 24,509	3	0	4	119	
			N 181	T2M	22,400	3	0	3	109	24,202	3	0	3	118	24,305	3	0	3	110	
	E 전 사람은				T3S	21,870	3	0	4	105	23,560	3	0	4	114	23,858	1 3	0	4	115
		la serie		TBM	22,527	3	0	4	109	24,268	3	0	4	117	24,575	3	0	4	119	
				T4M	22,038	3	0	4	106	23,741	3	0	4	115	24,041	3	0	4	116	
				TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119	
60	1050	P8	207W	TSVS	23,415	5	0	1	1 113	25,224	5	0	1	122	25,543	5	0	1	123	
				TSS	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123	
[1] 사람명				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123	
日本語る				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122	
			1	BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97	
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72	
an una cina casa cata ca			C	RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72	
1	1			TIS	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	116	
				T25	25,548	3	0	4	106	27,522	3	0	4	114	27,871	3	0	4	116	
				T2M	25,680	3	0	3	107	27,664	3	0	3	115	28,014	3	0	3	116	
				T3S	24,870	3	0	4	103	26,791	3	0	4	111	27,130	3	0	4	113	
1				T3M	25,617	3	0	4	106	27,597	3	0	4	115	27,946	3	0	4	116	
		P9 241W	T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113		
60	1250		TFTM TSVS	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116		
			1545	26,626 26,648	5	0	2	110 111	28,684 28,707	5	0	1	119 119	29,047 29,070	5	0	2	121		
				T5M	26,581	5	0	3	110	28,707	5	0	3	119	29,070	5	0	3	121	
				TSW	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120	
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95	
				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71	
	1			RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71	
er en antaña a casa ana sena antañ	L			i nuu	13,017	t	1	1	1	10,023		v		1	1 17,030	, i	i		d	

ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD	^{Type} SB
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Rotated O	ptics						•••	•																		
(ED Count-	Drive	Rower	System Watts	DISN.		.000	30K DK, 70 CRI	Ð			165505	40K 1K, 70 CRI	1	a aprila a		(670	50K 3 K. 70 CRI	1								
of the collector	Commit	Parkage	Watte	Туре	tiomens	18	I U	6	LPW	Lumens	8		G.	I LPW	humens-	10 6		6	I LOW							
	(Internet Service and the other		d topologi w sources	T15	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134							
				T2S	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133							
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136							
				TBS	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131							
			-	T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136							
				T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	133							
60	530	P10	106W	TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	137							
	1			TSVS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	138							
			1	T5S	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	136							
	· ·	1		T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136							
			re lann	TSW	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	135							
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112							
and the second second				1000	7,789	1	0	3	73	8,391		0	3	79	8,497	1	0	3	80							
	+		-	RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80							
	1		-	T15 T25	16,556	3	0	3	121 120	17,835 17,733	3	0	3	130 129	18,061 17,957	4	0	4	132							
			-	125 T2M	16,461	4	0	4	120		4	0	4	129	17,957	4	0	4	131							
	1		-	T3S	16,758 16,205	4	0	4	122	18,053 17,457	4	0	4	132	18,281	4	0	4	133							
			1000000	T3M	16,748	4	0	4	118	17,457	4	0	4	132	17,078	4	0	4	133							
				T3M T4M	16,432	4	0	4	122	17,702	4	0	4	129	17,926	4	0	4	131							
				TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4	134							
60	700	P11	137W	TSVS	16,975	4	0	1	123	18,287	4	0	1	133	18,518	4	0	1	135							
	1			TSS	16,832	4	0	1	124	18,133	4	0	2	132	18,362	4	0	2	134							
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	134							
			-	T5W	16,677	4	0	3	123	17,966	5	0	3	131	18,193	5	0	3	133							
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	110							
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0 0	3	79							
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79							
		1.1	1.1.1	TIS	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121							
		126							T2S	22.864	4	0	4	110	24,631	5	0	5	119	24,943	5	0	5	120		
						T2M	23,277	4	0	4	112	25,075	4	0	4	121	25,393	4	0	4	123					
												T3S	22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5
			1	T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123							
	l sub the		1 10	T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	S	120							
6	1050		DOTU	TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123							
60	1050	P12	207W	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124							
		1 T .		TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123							
		t.	1	T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123							
	1 - 2 - 4 - 2	1.		T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	122							
		1		BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	101							
				1000	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72							
	ļ			RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4	72							
				TIS	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	120							
				T2S	25,254	5	0	5	109	27,205	5	0	5	118	27,550	5	0	5	119							
	1		-	T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0	4	121							
				T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117							
		50 P13 231W		T3M	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0	5	121							
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119							
60	1250		TETM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122								
	1			T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123							
				TSS	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122							
			-	T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122							
			-	T5W	25,586	S	0	4	111	27,563	5	0	4	119	27,912	5	0	4	121							
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4	100							
					LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4	72						
]			RCCO	15,150	5	0	5	66	16,321	1 5	0	5	71	16,527	5	0	5	72							

	SEÁRHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T4M MVOLT SPA DDBXD Note:	^{Type} SB
--	----------------------------	---	--------------------

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly[™] product, meaning it is consistent with the LEED[®] and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ OPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(h) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuivbrands.com/buy-smercan for additional information.

WARRANTY

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

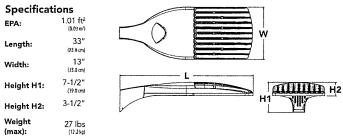
Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

One Lithonia Way • Convers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 8 of 8

SEARHC Juneau Vintage Park Note:


Submitted By ALASKA ARCHITECTURAL LIGHTING DDBXD

SC

D-Series Size 1 LED Area Luminaire nii nii And d"series Buy American

Project 22-28191-2

ALASKA ARCHITECTURAL

Introduction

Catalog

Number Notes

Type

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

sinte.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

DSX1 LED	g Information		EXAN	IPLE: DSX1 LED P	7 40K T3M	MVOLT SPA NLT	AIR2 PIRHN DDBXD
jetles	LED 5	Coloritemperature	Distribution		Voltage	Mounting	
DSX1 LED	Forward optics P1 P41 P71 P2 P51 P8 P3 P61 P91 Rotated optics P102 P122 P112 P1312 P1312	30K 3000 K 40K 4000 K 50K 5000 K	TIS Type I short (Automotive) T2S Type II short T2M Type II short T3M Type II short T3M Type II medium T4M Type IV medium TFTM Forward throw medium	TSVS Type V very short ' TSS Type V short ' TSM Type V medium ' TSW Type V medium ' TSW Type V wide ' BLC Backlight control ' LCCO Left corner cutoff ' RCCO Right corner cutoff '	MVOLT 5 XVOLT (277V-480V) 624 120 ⁹ 208 ⁹ 240 ⁹ 277 ⁹ 347 ⁹ 480 ⁹	RPA Round WBA Wall br. SPUMBA Square RPUMBA Round Shipped separately KMA8 DDBXD U	pole mounting pole mounting ¹⁶ acket ¹ pole universal mounting adaptor ¹¹ pole universal mounting adaptor ⁹ m mounting bracket adaptor finish) ¹²
ontroloptions Shipped instal		* * *	PIR High/low, mo	tion/ambient sensor, 8-15' mounting h	Otherop aight Shipped	itons i installed	Thishneen and bonze
NLTAIR2 nLig PIRHN Nett PER NEA PER5 Five PER7 Sev DMG 0-11 exte	with AIR generation 2 enabled ¹¹ work, high/low motion/ambient s MA twist-lock receptade only (cor 2-pin receptade only (controls or en-pin receptade only (controls o 0V dimming wires pulled outside ernal control, ordered separately) al switching ^{16,19,20}	ntrols ordered separate) ¹⁵ lered separate) ^{15,16} irdered separate) ^{15,16} fixture (for use with an	ambient sense PIRH High/low, mo ambient sense PIR1FC3V High/low, mo ambient sense PIRH1FC3V Bi-level, motic	or enabled at Sfc. ³⁶²¹ tion/ambient sensor, 15–30' mounting lo or enabled at Sfc. ³⁶²¹ enabled at Tfc. ³⁶²¹ an/ambient sensor, 15–30' mounting he or enabled at Tfc. ³⁶²¹	HS H height, SF Si eight, DF D L90 Let ight, R90 Ri HA SO BAA Bi Shipped BS Bi	Instanted ouse-side shield ²⁴ ingle fuse (120, 277, 347V) * ouble fuse (208, 240, 480V) * eft rotated optics ² ght rotated optics ² 9°C ambient operations ¹ uy America(n). Act Compliant iseparately ird spikes ²⁴ cternal glare shield	DBLXD Black DBLXD Black DNAXD Natural aluminum DWHXD White DDBTXD Textured dark bronze DBLBXD Textured black DNATXD Textured black DNATXD Textured natural aluminum DWHGXD Textured white
				PL	EASE VE	ERIFY FINIS	H
	THONIA GHTING		Conyers, Georgia 30012 nds Lighting, Inc. All rights	Phone: 1-800-705-SERV (73 reserved:	78) • www.litterne	û 2 Å.179	DSX1-LED Rev. 07/19/21 Page 1 of 8

M	ALASKA ARCHITECTURAL LIGHTING		Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA DDBXD	^{Type} SC
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

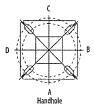
Ordering Information

•	
Accessories	1 HA not available with P4, P5, P6, P7, P9 and P13.
Ordered and shipped separately	2 PTU, PTI, PT2 or PT3 and rotated optics (LSO, KSUF only available together.
Dill 127 F 1.5 JU Photocell - SSL twist-look (120-227V) ³ Dill 377 F 1.5 JU JU Photocell - SSL twist-look (120-227V) ³ Dill 347 F 1.5 (UL) Photocell - SSL twist-look (120-277V) ³ Dill 347 F 1.5 (UL) Photocell - SSL twist-look (120-277V) ³ DSH08T SSU Shorting cap ³ DSX1HS 30C U House-side shield for P1, P2, P3, P4 and P5 ¹⁰ DSX1HS 40C U House-side shield for P6, P0, P1 11 and P12 ²⁰ DSXHS 60C U House-side shield for P6, P0, P1 11 and P12 ²⁰ PUMBA DBXD U ⁵ Spatta and round pole universal mounting bracket deptor (fresh) ³ WAAB DBXD U Mast am mounting bracket adaptor (specify fresh) ⁴	 2 Fig. F1, F1 and F1 and F0 and F1 and
DSX1EGS (FINISH) U External glare shield	17 DMG not available with PIRHN, PER5, PER7, PIR, PIRH, PIRHC3V or PIRH1FC3V, FAO,
For more control options, visit $GF_{\rm U}$ and $\langle OAV_{\rm U}$ online.	18 Provides SUSSitute operation via (2) independent drivers. Not available with PER, PERS, PER7, PIR or PRH. Not available P1, P2, P3, P4 or P5, 19 Requires (2) expanding should drive this indicated neurol. 20 Reference Controls Option Default settings table on page 4, 21 Reference Motion Sensor table on page 4 to see functionality. 22 Not available with the driver intiming controls options. 23 Not available with B2, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information. 24 Mot the ordered with fortune function for function.

24 Must be ordered with foture for factory pre-drilling. 25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4. 26 for retroff use only. Only usable when poles drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield



Drilling

HANDHOLE ORIENTATION

Top of Pole Template #8 1.75" for aluminum poles 2.75" for other pole types -0.563" Φ 1.325* -0.400" (2 PLCS) T Ø 2.650* ഷ്

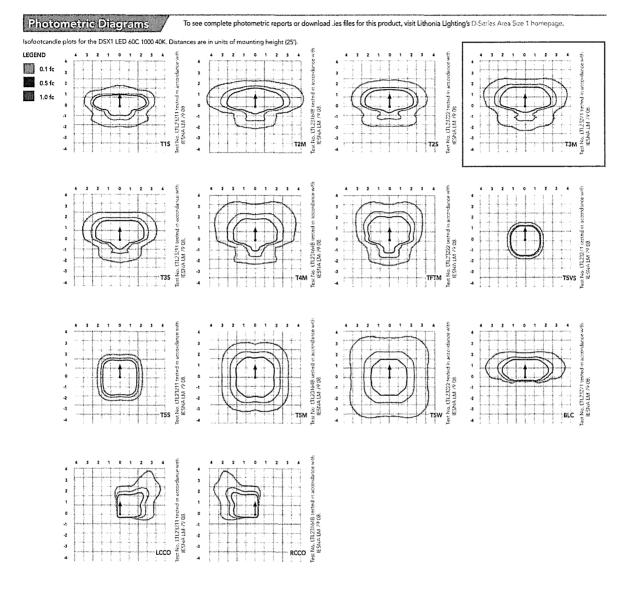
Tenon	Mounting	Slipfitter	
and the second section of the second s	reliabling, to deed an Grand adding his running beaution	Contraction of the second s	and a second

Tenon O.D.	Mounting	Single Unit	2 @ 180	2:#90	3.@90	3ro120	4.0.90
2-3/8"	RPA	AS3-5 190	A\$3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	A5T25-390	AST25-320	AST25-490
4ª	RPA	A5T35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

				Ľ.		Y	-
Mounting Option	Drilling Template	Single	2@180	2 @ 90	3@90	3@120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.


Fixture Quantity & Mounting Configuration	Single DM19	2@180DM28	2:@90 DM29	4@90DM39	3@12010/632	4:090 DM49
Mounting Type			∎_∎ }		**	≡ ∏ ≡

2.00								Ľ.
DSX1 LED	1.013	Ι	2.025	1.945	\backslash	3.038	2.850	3.749
	01	i				ŃS		

QUOTING BOTH OPTIONS								
	Orilling Template	¥	10	mum Acceptable (Dutside Pole Dime	nsion		
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"	
RPA	#8	2-7/8"	2-7/8*	3.5″	3.5*	3"	3.5"	
SPUMBA	#5	2-7/8"	3"	4*	4"	3.5"	4″	
RPUMBA	#5	2-7/8″	3.5"	5"	5"	3.5"	5"	

$\mathcal{M}_{\mathcal{A}}$	ALASKA ARCHITECTURAL CIGHTING		Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA DDBXD	SC	
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:		

DSX1-LED Rev, 07/19/21 Page 3 of 8

ALASKA ARCHITECTURAL	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA DDBXD	SC
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Amb	ient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68"F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

. Operating Hours	Lumen Maintenance Pactor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

		speate of the	sorDelaulis	21.111.12		
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min

Electrical Load

							ione	mtr(A)		
	Performance Package	LED Co rme	Drive Currente	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	PZ	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0,86	0.50	0.44	0,38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0.52	0,46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1,16	0.67	0.58	0.51	0.40	0.29
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

		Controls Options	: , t · · ·	and the second
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell, PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLìght Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

ALASKA	Project 22-28191-2	Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA	Type
ARCHITECTURAL	SEARHC Juneau Vintage Park	DDBXD	
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

LED Coont	ibrive Current	Power Package	· System																
	Corrent	discharte 1		Dist	,	FRAM	30K 0 K, 70(CRI)	,			(nda	40K) K, 70 (RI)				1600	50K 9K, 70 GR	υ,	
norde and the second second second second		1.000001-	 System Watts. 	Dist. Type	Lumens	6		6	(PW)	Lumens	l e		G	1. Dem	Lumens.			G	LPW
				<u>115</u>	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130
1				125 T2M	6,450 6,483	2	0	2	119 120	6,949 6,984	2	0	2	129	7,037	2	0	2	130 131
				T3S	6,279	2	0	2	116	6,764	2	0	2	125	6,850	2	0	2	127
				T3M T4M	6,468 6,327	1	0	2	120	6,967 6,816	1	0	2	129	7,056 6,902	1	0	2	131
30	530	P1	54W	TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	11	0	2	131
		F.1	2771	TSVS	6,722	2	0	0	124 125	7,242	3	0	0	134	7,334	3	0	0	136
			-	T5S T5M	6,728 6,711	2	0	1	125	7,248 7,229	2	0	1	134	7,340	2	0	1	136 136
				T5W	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135
				BLC LCCO	5,299 3,943	1	0	1	98 73	5,709 4,248	1	0	2	106	5,781 4,302	1	0	2	107 80
				RCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80
				T15 T25	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129
				T2M	8,240 8,283	2	0	2 2	118 118	8,877 8,923	2	0	2	127	8,989 9,036	2	0	2	128
				T35	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125
				T3M T4M	8,263 8,083	2	0	2	118 115	8,901 8,708	2	0	2	127 124	9,014 8,818	2	0	2	129 126
30	700	P2	70W	TFIM	8,257	2	0	2	118	8,896	2	0	2	127	9,008	2	0	2	120
50	700	Г4	7011	TSVS	8,588	3	0	0	123	9,252	3	0	0	132	9,369	3	0	0	134
-				155 15M	8,595 8,573	3		1 2	123	9,259 9,236	3	0	1	132 132	9,376 9,353	3	0	1	134 134
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	Z	133
				BLC	6,770 5,038	1	0	2	97 72	7,293 5,427	1	0	2	104 78	7,386	1	0	2	106 79
				RCCO	5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79
				TIS	11,661	2	0	2	114	12,562	3	0	3	123	12,721	3	0	3	125
			영국 관람	T2S T2M	11,648 11,708	2	0	2	114 115	12,548 12,613	3	0	3	123	12,707 12,773	3	0	2	125
				T3S	11,339	2	0	2	111	12,215	3	0	3	120	12,370	3	0	3	121
				T3M T4M	11,680 11,426	2	0	2	115 112	12,582 12,309	2	0	2	123	12,742 12,465	2	0	2	125
30	1050	P3	102W	TFTM	11,673	2	0	2	114	12,575	2	0	3	123	12,734	2	0	3	125
50	1050	14	17211	TSVS TSS	12,140 12,150	3	0	1	119 119	13,078 13,089	3	0	1	128	13,244 13,254	3	0		130
	1			TSM	12,150	3	0	2	119	13,089	3	0	2	128	13,254	3	0	2	130
				T5W	12,040	4	0	3	118	12,970	4	0	3	127	13,134	4	0	3	129
				BLC LCCO	9,570 7,121	1	0	2	94 70	10,310 7,671	1	0	2	101 75	10,440 7,768	1	0	2	102 76
				RCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76
				T15 T25	13,435 13,421	3	0	3	107	14,473 14,458	3	0	3	116	14,657 14,641	3	0	3	117
1				T2M	13,421	2	0	2	107	14,438	3	0	3	116	14,041	3	0	3	118
-				135	13,064	3	0	3	105	14,074	3	0	3	113	14,252	3	0	3	114
				T3M T4M	13,457 13,165	2	0	2	108	14,497 14,182	2	0	2	116	14,681 14,362	2	0	2	117
30	1250	P4	125W	TFTM	13,449	2	0	3	108	14,488	2	0	3	116	14,672	2	0	3	117
				TSVS TSS	13,987 13,999	4	0	1	112 112	15,068 15,080	4	0	1	121 121	15,259 15,271	4	0	1	122
-				T5M	13,963	4	0	2	112	15,080	4	0	2	120	15,233	4	0	2	122
				TSW BLC	13,872	4	0	3	111	14,944	4	0	3	120	15,133	4	0	3	121
				LCCO	11,027 8,205	1	0	2	88 66	11,879 8,839	1	0	2	95 71	12,029 8,951	1	0	2	96 72
				RCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72
And a second				T15 T25	14,679 14,664	3	0	3	106	15,814 15,797	3	0	3	115	16,014 15,997	3	0	3	116
an and deserv			ан на селото на селот	T2M	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117
(contractor)				T3S T3M	14,274	3	0	3	103 107	15.377	3	0	3	111	15,572	3	0	3	113
			1	T4M	14,704 14,384	2	0	3	107	15,840 15,496	3	0	3	115	16,040 15,692	3	0	3	116
30	1400	P5	138W	TFTM	14,695	2	0	3	106	15,830	3	0	3	115	16,030	3	0	3	116
				<u>T5VS</u> T5S	15,283 15,295	4	0	1	111	16,464 16,477	4	0	1	119	16,672 16,686	4	0	1	121
				T5M	15,257	4	Ð	2	111	16,435	4	0	2	119	16,644	4	0	2	121
	-			TSW BLC	15,157 12,048	4	0	3	110 87	16,328 12,979	4	0	3	118 94	16,534 13,143	4	0	3	120 95
- contraction of the second				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71
			L	RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lith-on-a com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 5 of 8

COMMERCIAL OUTDOOR

ARCHITECTURAL SE	EÁRHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA DDBXD Note:	SC
------------------	---------------------------	---	----

Lumen Output

Forward 0	phics	· · · · ·										,							
LED County	Gitte	Power Package	System-	Dist.			30K 1K. 701CRI	1				40 <u>K</u> IK, 70(CRI)				(SU)	50K 1K, 70.CRI		
0000000	(corrent)	Padkage	System Watts	Type	Lumens	8	0	6	1000	kunens			G	LEW	Lumens	B		G	Tew
	and the second	Contraction of the		TIS	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118
		1 .		T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118
				T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119
				T3S	17,167	3	0	3	105	18,493	3	D	3	113	18,727	3	0	3	115
				T3M	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	116
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4	118
40	1250	ro	10244	TSVS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	123
				TSS	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123
		1	-	TSW	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122
		-		BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97
				LCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
	-		ļ	RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
				<u>T15</u>	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115
				T25	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114
1		4000 L		T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115
		and other states		T35	18,696	3	0	3	102	20,141	3	0	3	110	20,396	3	0	4	111
				T3M	19,258	3	0	3	105	20,746	3	0	3	113	21,009	3	0	3	115
				T4M	18,840	3	0	4	103	20,296	3	0	4	111	20,553	3	0	4	112
40	1400	P7	183W	TFTM	19,246	3	0	4	105	20,734	3	0	4	113	20,996	3	0	4	115
				TSVS	20,017	4	0	1	109	21,564	4	0	1	118	21,837	4	0	1	119
1	1			155	20,033	4.	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119
		1		T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	119
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94 70
	and the second se			LCCO	11,742	2	0	3	64	12,649	2	of the second second second	3	69	12,809			3	70
				RCCO	11,742	2	0	3	64 109	12,649	2	0	3	69 117	12,809 24,535	2	0	3	119
		14792.gr		TIS	22,490		0	4	109	24,228	3	0	4	117		3	0	4	119
		「「「「「「「」」」		T2S T2M	22,466	3	0	3	109	24,202 24,327	3	0	3	118	24,509 24,635	3	0	3	119
				12m T3S	21,870	3	0	4	109	23,560	3	0	4	114	24,055	3	0	4	115
		1 이 사람이 것		T3M	22,527	3	0	4	109	24,268	3	0	4	117	24,575	3	0	4	119
			- · · ·	T4M	22,038	3	0	4	105	23,741	3	0	4	115	24,041	3	0	4	116
				TETM	22,030	3	0	4	100	24,253	3	0	4	117	24,560	3	0	4	119
60	1050	P8	207W	TSVS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123
		1 - XC 0 -		1545	23,415	4	0	2	113	25,224	4	0	2	122	25,564	4	0	2	123
			E - 1	TSM	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
				TSW	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97
ľ i		1	1	LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
	and the second			RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
processing and a subscription of the		1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	TIS	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	116
				T2S	25,548	3	0	4	106	27,522	3	0	4	114	27,871	3	0	4	116
		the second second	Ì	T2M	25,680	3	0	3	107	27,664	3	0	3	115	28,014	3	0	3	116
		-		T3S	24,870	3	0	4	103	26,791	3	0	4	111	27,130	3	0	4	113
				T3M	25,617	3	0	4	106	27,597	3	0	4	115	27,946	3	0	4	116
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113
20	1270	Pa	74944	TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121
1		-		TSS	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121
		61		T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120
		-		T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120
			1	BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95
																Concernance of the second			71
		i.		LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	1 71

1	ALASKA ARCHITECTURAL LIGHTING		Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA DDBXD	SC
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Rotated 0	ptice										•								
(LED Count)	Orive Current	Power Package	System Watts	081.		(300)	30K 1K, 70 CRI	h				40K 1 K, 70 CR I	1			(500)	50K 1K, 70.CRI	1	
	Contrant,	I water	1000	Type	Lumens	ß	0	(d	LPW/	Lumens	B	0	6	LPW/	Lumens		E U	6	IPW
	-			T15	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134
		1 . ·		T25	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133
		-		T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136
				T3S	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131
				T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136
	ala a second	1		T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	133
60	530	P10	106W	TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	137
00	550		10011	TSVS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	138
	1			TSS	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	136
			-	T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136
	1	-		T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	135
		and the second se	1	BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3	80
	1		1	RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80
		and the second	ł	TIS	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	132
	1	1		T25	16,461	4	0	4	120	17,733	4	0	4	129	17,957	4	0	4	131
	Aug land			T2M	16,758	4	0	4	122	18,053	4	0	4	132	18,281	4	0	4	133
				T3S	16,205	4	0	4	118	17,457	4	0	4	127	17,678	4	0	4	129
				T3M	16,748	4	0	4	122	18,042	4	0	4	132	18,271	4	0	4	133
		(January)		T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926	4	0	4	131
60	700	P11	137W	TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4	134
60	700	rii Pil	13/14	TSVS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1	135
				TSS	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2	134
			- the second sec	T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	134
			-	T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	133
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	110
		-		LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3	79
			11111	RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79
		1	1	TIS	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121
	1		199	T25	22,864	4	0	4	110	24,631	5	0	5	119	24,943	5	0	5	120
				T2M	23,277	4	0	4	112	25,075	4	0	4	121	25,393	4	0	4	123
				T3S	22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5	119
		1 - C - E - L - L	1	T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	120
				IFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123
60	1050	P12	207W	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124
			1	T5S	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123
		1 - 11 A.A.		T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
	(1.26	ł	T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	122
	4.	1.	1	BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	101
		1 · · · ·		LCCO	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	Ū.	4	72
	1			RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4	72
nonat Monetonia a spin	and the second second			TIS	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	120
	-			T2S	25,254	5	0	5	109	27,205	5	0	5	118	27,550	5	0	5	119
				T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0	4	121
				T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117
			1	T3M	25,695	5	0	5	111	27,680	5	Ō	5	120	28,031	5	0	5	121
	ļ			T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119
	1			TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122
60	1250	P13	231W	TSVS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123
	-		1	TSS	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122
				TSM	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122
	1			T5W	25,586	5	0	4	111	27,563	S	0	4	119	27,912	5	0	4	122
				BLC	25,586	4	0	4	92	27,505	4	0	4	99	23,172	4	0	4	121
	1		1	LCCO		2	0	4	66			0	4	71		2	0	4	72
	1	1		RCCO	15,170	5	0	5		16,342	2		5	71	16,549	5	0	4	72
	L	Landerson	5	KLLU	15,150	1 2	<u> </u>	<u> </u>	66	16,321	1 2	0	<u> </u>	1 /1	16,527	1.	<u>t</u> U	1 >	1 12

ALASKA		Catalog Number: DSX1 LED P5 40K T3M MVOLT SPA	^{Type}
ARCHITECTURAL		DDBXD	SC
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology, It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED* and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient, U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

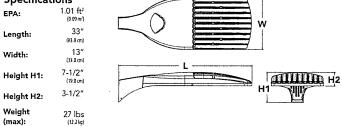
Specifications subject to change without notice.

COMMERCIAL OUTDOOR

One Lithonia Way • Convers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithone.com © 2011-2021 Acuity Brands Lighting, inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 8 of 8

×.	ALASKA ARCHITECTURAL

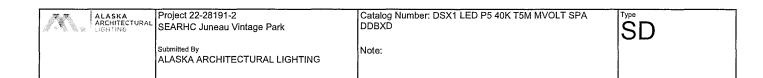
Project 22-28191-2 SEARHC Juneau Vintage Park Submitted By


Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA DDBXD

Note:

SD

ALASKA ARCHITECTURAL LIGHTING


Catalog Number Notes Type -18-1 and (骨)间的 动口的 计加入公司

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

iles LEDs	Color temperature	Distribution	Voltage	Mounting
P2 P51	Forward optics 30K 3000 K T1S Type I short (Automotive) T5VS Type V very short' P1 P41 P71 50K 5000 K T1S Type I short (Automotive) T5S Type V very short' P2 P51 P8 50K 5000 K T2S Type II short T5M Type V wery short' Rotated optics P12 ² P13 ² T3M Type II medium T5W ToW Type V wide* P11 ² P13 ^{3,2} T3M Type IV medium TCO Left comer cutoff* TFM Forward throw medium TFM Forward throw Forward throw State		MV0L7 5 XV0LT (277V-480V) 6.7.4 120 7 208 8 240 7 277 7 347 7 480 7	Shipped included SPA Square pole mounting RPA Round pole mounting * WBA Wall bracket * SPUMBA Square pole universal mounting adaptor ** RPUMBA Round pole universal mounting adaptor * Shipped separately KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) **
5 Five-pin receptacle only (cor 7 Seven-pin receptacle only (c	nbient sensor ¹⁴ mly (controls ordered separate) ¹⁵ trols ordered separate) ^{15,16}	PIR High/low, motion/ambient sensor, 8-15' mounting frambient sensor enabled at 51c ^{-0,21} PIRH High/low, motion/ambient sensor, 15-30' mounting ambient sensor enabled at 51c ^{-0,21} PIRHFG3V High/low, motion/ambient sensor, 8-15' mounting ambient sensor enabled at 15c ^{-0,21} PIRHFG3V High/low, motion/ambient sensor, 8-15' mounting framework ambient sensor enabled at 15c ^{-0,21} PIRHFG3V Bi-level, notion/ambient sensor, 15-30' mounting framework ambient sensor enabled at 15c ^{-0,21} PIRHFG3V Bi-level, notion/ambient sensor, 15-30' mounting framework ambient sensor enabled at 15c ^{-0,21} FAO Field adjustable output -5c ⁻¹	HS Ho height, SF Sir eight, DF Do L90 Let sight, R90 Rig HA 50 BAA Bu Shipped BS Bir	
		Conyers, Georgia 30012 • Phone: 1-800-705-SERV (73 trands Lighting, Inc. All rights reserved.	alle Maria de calla calla de c	RIFY FINISH

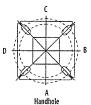
Ordering Information

	ered and shipped separately.
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) ²³
DLL347F 1.5 CUL JU	Photocell - SSL twist-lock (347V) ²⁵
DLL480F 1.5 CUL JU	Photocell - SSL twist-lock (480V) 25
DSHORT SBK U	Shorting cap ²⁵
DSX1HS 30C U	House-side shield for P1, P2, P3, P4 and P5 ²³
DSX1HS 40C U	House-side shield for P6 and P7 ²⁰
DSX1HS 60C V	House-side shield for P8, P9, P10, P11 and P12 ²⁹
PUMBA DDBXD U*	Square and round pole universal mounting bracket (specify finish) 의
KMA8 DOBXO U	Mast arm mounting bracket adaptor (specify finish) 12
DSX1EGS (FINISH) U	External glare shield

1 NOTES
1 HA not available with P4, P5, P6, P7, P9 and P13,
2 P10 P11 P12 or P13 and rotated optics # 91 P30 only available together.
3 Any Type 5 distribution with photocell, is not available with WBA
4 Not projekte with HS
5 MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
6 XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.
7 XVOLT works with any voltage between 277V and 480V.
8 XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIR IFC3V, PIRH1FC3V.
9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF)
10 Suitable for mounting to round poles between 3.5" and 12" diameter.
11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8
12 Must order fixture with SPA option. Must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included).
13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.
14 Must be ordered with NLTAR2. For more information on nlight Air 2 visit to a kine,
15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories, Shorting cap included,
16 If ROAM [®] node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.
17 DMG not available with PIRHN, PERS, PERZ, PIR, PIRH, PIRHEC3V or PIRHIFC3V, FAO.

essories. Shonting cap included, y Brands Controls. Node with integral domining. 17 DMG not available with PRHN, PERS, PER7, PIR, PRH, PRH, PRH/FCSV or PRH/FCSV FAQ. 18 Provides 50/55/taure operation via (2) independent chress. Not available with PER, PERS, PER7, PIR or PRH. Not available P1, P2, P3, P4 or P5, 19 Anguine (2) aparatoly withched clarks with isolater lendor. 20 Reference Andreas Section Default settings table on page 4. 21 Reference Andreas Section Section Default settings table on page 4. 21 Reference Andreas Section Section Default settings table on page 4. 21 Reference Andreas Section Default settings table on page 4. 21 Not available with other dimension and RECO distributionality. 21 Not available with other dimension and RECO distribution. Not available as a separate accessory: see Accessories information. 24 Matte be ordered with future for factory pre-drilling. 26 Requires lammate table specified with FER, PEES or PER7 option. See Control Option Table on page 4. 26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options


EGS - External Glare Shield

Drilling

HANDHOLE ORIENTATION

Top of Pole Template #8 1.75" for aluminum poles 2.75" for other pole types -0.563 Ф Ť 1.325" - 0.400" (2 PLCS) Φ* 2.650 ¢

Tenon O.D.	Mounting	Single Unit	2:@180*	2:090	3 (190)	3)@120	4@90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4°	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

12.48

•		-8		Ľ.		Y	
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3@120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29A5	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

#8

#3

2-7/8'

2-7/8

2-7/8

SPA RPA

SPUMBA RPUMBA

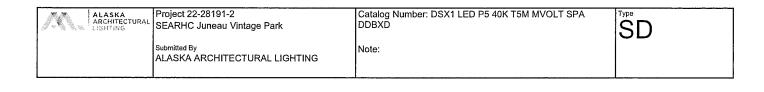
Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

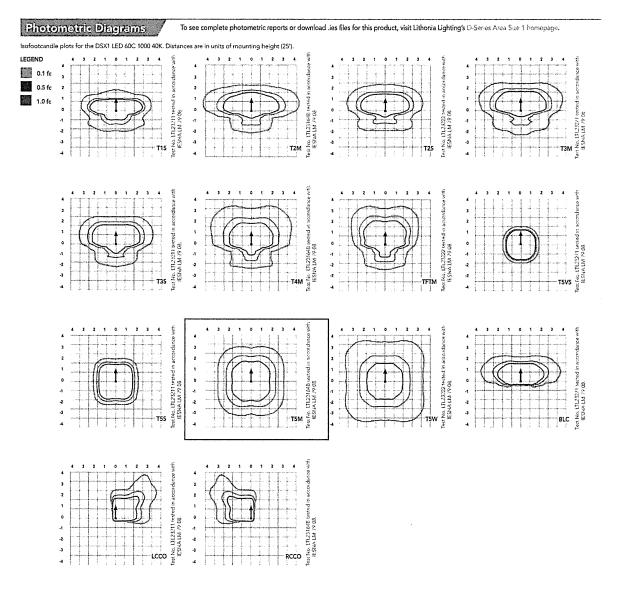
Fixture Quantity & Mounting Configuration	Single DM19	2.@180 DM28	2@9010M29	3 @ 90 DN39	316 120 DM32	41@9010M49
Mounting Type	-=\	161161	Ľ		Y	***
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

ban		1,413	2.023	115 15	1 3.030	2.050	2
		αυά	TING BC	TH OPTI	ONS		
	Drilling Template	· *	100	mum Acceptable(Dulside Pole Din	ension	
	#4	3 7/07	2.7/0/	3.57	3.65	27	2

3.5

3.5'


,


3.5

2-7/8

	LITHONIA LIGHTING
COMMERC	IAL OUTDOOR

One Lithonia Way • Convers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithoma.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithunu.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 3 of 8

M.	ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA DDBXD	Type SC
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Ami	ilgili	Lumen Multiplier
0°C	32°F	1.04
5°C	41 ° F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25*C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LLU use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	lumen Maintenante Forto-
0	1,00
25,000	0.96
50,000	0.92
100,000	0.85

		Motion Ser	sor Default Si	Unop		
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min

Electrical Load

							ത്ത	mit(A))		
	Performance Package	LEO Counti	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	PZ	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0,60	0.52	0.46	0.37	0 0.12 0 0.16 0 0.22 7 0.27 0 0.29 7 0.34 3 0.38 4 0.49 0 0.51 3 0.27 2 0.32 0 0.46
Forward Optics (Non-Rotated)	P5	30	1400	138	1,16	0.67	0.58	0.51	0.40	0.29
	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0,90	0.52	0.47	0.43	0.33	0.27
Rotated Optics (Requires L90	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

in the second		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & S to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

ALASKA ARCHITECTURAL CIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA DDBXD	SD
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward 0	ptics						, ···					•							<u>.</u>
(Drowt)	Orive Current	Power Patkage	System Watts	Dist.		(BOOD	10K K. 70.CRI)				(46)76	40K 1K,70(TRI)				15000	50K K. 70 (RI)		
LED Count	Contraction	Patkage	Watts	1) pie	Lumens	B		G	LAW	Aumenis			6	LPW	Lumens	10	U	G	Lew
	-			TIS	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130
		adra www.		T2S T2M	6,450 6,483	2	0	2	119 120	6,949 6,984	2	0	2	129 129	7,037 7,073	2	0	2	130 131
				T35	6,279	2	0	2	116	6,764	2	0	2	125	6,850	2	0	2	127
				T3M	6,468	1	0	2	120	6,967	1	0	2	129	7,056		0	2	131
				T4M TFTM	6,327 6,464	1	0 0	2	117 120	6,816 6,963	1	0 0	2	126	6,902 7,051	1	0	2	128
30	530	P1	54W	TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136
	a		-	T5S T5M	6,728	2	0	1	125	7,248 7,229	2	0	1	134 134	7,340 7,321	2	0	1 2	136
		C density of		TSW	6,711 6,667	3	0	1	124 123	7,182	3	0	2	133	7,321	3	0	2	135
				BLC	5,299	1	0	1	98	5,709	1	0	2	106	5,781	1	0	2	107
				LCCO RCCO	3,943 3,943	1	0	2 2	73 73	4,248 4,248	1	0	2	79 79	4,302 4,302	1	0	2	80 80
				TIS	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129
				T2S	8,240	2	0	2	118	8,877	2	0	. 2	127	8,989	2	0	2	128
				T2M T3S	8,283 8,021	2	0	2 2	118 115	8,923 8,641	2	0	2	127 123	9,036 8,751	2	0	2	129
				T3M	8,263	2	0	2	118	8,901	2	0	2	127	9,014	2	0	2	129
	and the same			T4M TFTM	8,083 8,257	2	0	2	115 118	8,708 8,896	2	0	2	124	8,818 9,008	2	0	2	126 129
30	700	P2	70W	TSVS	8,588	2	0	0	123	9,252	3	0	0	132	9,008	3	0	0	134
				TSS	8,595	3	0	1	123	9,259	3	0	1	132	9,376	3	0	1	134
				T5M T5W	8,573 8,517	3	0	2	122 122	9,236 9,175	3	0	2	132	9,353 9,291	3	0 0	2	134 133
			e - 1946.0	BLC	6,770	1	Ū	2	97	7,293	1	0	2	104	7,386	1	0	2	106
				LCCO	5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79
				RCCO T1S	5,038 11,661	1	0	2	72 114	5,427 12,562	1	0	2	78 123	5,496 12,721	1	0	2	79
				T25	11,648	2	0	2	114	12,548	3	0	3	123	12,707	3	0	3	125
				<u>T2M</u> T3S	11,708 11,339	2	0 0	2	115 111	12,613 12,215	2	00	2	124 120	12,773 12,370	2	0	2	125
				T3M	11,539	2	0	2	115	12,215	2	0	2	120	12,742	2	0	2	121
				T4M	11,426	2	0	3	112	12,309	2	0	3	121	12,465	2	0	3	122
30	1050	P3	102W	TFTM TSVS	11,673 12,140	2	0	2	114 119	12,575 13,078	2	0	3 1	123 128	12,734 13,244	2	0 0	3	125
				T5S	12,150	3	0	1	119	13,089	3	Ō	1	128	13,254	3	0	1	130
				T5M	12,119	4	0	2	119	13,056	4	0	2	128	13,221	4	0	2	130
				T5W BLC	12,040 9,570	4	0	3	118 94	12,970 10,310	4	0	3	127	13,134 10,440	4	0	3	102
		1		LCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76
				RCCO T15	7,121	1	0	3	70 107	7,671 14,473	1	0	3	75	7,768	1	0	3	76
				T2S	13,435	3	0	3	107	14,458	3	0	3	116	14,641	3	0	3	117
				T2M	13,490	2	0	2	108	14,532	3	0	3	116	14,716	3	0	3	118
				T3S T3M	13,064 13,457	3	0	3	105 108	14,074 14,497	3	0	3 2	113 116	14,252 14,681	3	0	3	114
		-		T4M	13,165	2	0	3	105	14,182	2	0	3	113	14,362	2	Ō	3	115
30	1250	P4	125W	TEIM	13,449	2	0	3	108	14,488	2	0	3 1	116	14,672	2	0	3	117
			acception of	TSVS TSS	13,987 13,999	4	0	1	112 112	15,068 15,080	4	0	1	121	15,259 15,271	4	0 0	1	122
	al and the second s			T5M	13,963	4	0	2	112	15,042	4	0	2	120	15,233	4	0	2	122
	And a second sec	dis defendina in	- line where a	T5W BLC	13,872 11,027	4	0	3 2	111 88	14,944 11,879	4	0	3 2	120	15,133 12,029	4	0	3	121 96
		1000	and the second se	LCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72
		ļ		RCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72
	- white and the second s			T1S T2S	14,679 14,664	3	0	3 3	106 106	15,814 15,797	3	0	3	115	16,014 15,997	3	0	3	116
			-	T2M	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117
		and photos and		T35	14,274	3	0	3	103	15,377	3	0	3	111	15,572	3	0	3	113
	4-	1		T3M T4M	14,704 14,384	2	0 0	3	107 104	15,840 15,496	3	0	3	115 112	16,040 15,692	3	0	3	116 114
30	1400	P5	138W	TFIM	14,695	2	0	3	106	15,830	3	0	3	115	16,030	3	0	3	116
				T5VS T55	15,283	4	0	1	111 111	16,464 16,477	4	0	1	119	16,672 16,686	4	0	1	121
				TSM	15,295	4	0	2	111	16,477	4	0	2	119	16,644	4	0	2	121
	The second se	ride dimes		T5\¥	15,157	4	0	3	110	16,328	4	0	3	118	16,534	4	0	3	120
		A Discounted		BLC	12,048 8,965	1	0	2 3	87 65	12,979 9,657	1	0	2	94	13,143 9,780	1	0	2	95 71
		L	1	RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71
																.,			

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.bthania.com © 2011-2021 Acuity Brands Lighting, Inc. All rights reserved. DSX1-LED Rev. 07/19/21 Page 5 of 8

ALASKA ARCHITECTURAL LIGHUNG	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA DDBXD	^{тур} в SD	
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:		t

Lumen Output

Forward 0	ofic	· · · ·	÷		4														
(LED COURT)	Drive	Power	System Watts	036.		(8000	30Ki Ki, 70 CRI	1				40K) K, 70 (RI)	1				50K I K., 70 CRI		
	Omente	Package	Walts	ûpe -	Lumens	6	0	G	LPW 1	Lumens	ß		6	LPW	Lumens	(6)		G	I UPW
				TIS	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118
· · .				T25	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118
	}			T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119
				T3S	17,167	3	0	3	105	18,493	3	0	3	113	18,727	3	0	3	115
	ĺ			T3M	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	116
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4	118
	120	10	10511	TSVS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	123
		•		TSS	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123
		1		T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123
-				TSW	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5.	0	3	122
		1		BLC	14,489	2	0	Z	89	15,609	2	0	3	96	15,806	2	0	3	97
· · · · ·	2.1			LCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
			+	RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
				T15	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115
		de marca		T25	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114
		1011		T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115
				135	18,696	3	0	3	102	20,141	3	0	3	110	20,396	3	0	4	111
				T3M	19,258	3	0	3	105	20,746	3	0	3	113	21,009	3	0	3	115
				T4M TFTM	18,840	3	0	4	103	20,296	3	0	4	111	20,553	3	0	4	112
40	1400	P7	183W	TSVS	19,246 20,017	3	0	1 1	105 109	20,734	3	0	1	113	20,996 21,837	4	0	4	115 119
	and the second se			TSS		4	0	2	109	21,564	4	0	2	118		4	0	2	119
2				TSM	20,033 19,983	4	0	2	109	21,581 21,527	4	0		118	21,854 21,799	5	0	3	119
				T5W	19,852	5	0	3	109	21,327	5	0	3	117	21,755	5	0	3	118
			1	BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
		18.1		TIS	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3	119
				T2S	22,466	3	0	4	109	24,202	3	0	4	117	24,509	3	0	4	118
1.				T2M	22,582	3	0	3	109	24,327	3	0	3	118	24,635	3	0	3	119
				T3S	21,870	3	0	4	106	23,560	3	0	4	114	23,858	3	0	4	115
				T3M	22,527	3	0	4	109	24,268	3	0	4	117	24,575	3	0	4	119
		1.1.1	1997 - 1997 -	T4M	22,038	3 -	0	4	106	23,741	3	0	4	115	24,041	3	0	4	116
	1050		20711	TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119
60	1050	P8	207W	T5VS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123
1.1			1.1	T5S	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123
		1		T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
	1 m 1 m 1		[] Sector	TSW	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122
			F.	BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97
		1		LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
		historica	1. January and the second s	RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	D	4	72
				TIS	25,575	3	0	3	106	27,551	3	0	3	114	27,900	3	0	3	116
	1			T25	25,548	3	0	4	106	27,522	3	0	4	114	27,871	3	0	4	116
	ļ	50 P9 24		TZM	25,680	3	0	3	107	27,664	3	0	3	115	28,014	3	0	3	116
			1	T35	24,870	3	0	4	103	26,791	3	0	4	111	27,130	3	0	4	113
			1	T3M	25,617	3	0	4	106	27,597	3	0	4	115	27,946	3	0	4	116
	1		1	T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	-113
60	1250		241W	IFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116
			1	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121
				T55	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120
			1	TSW	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120
			1	BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95
				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71
I	t Lange of the second	1	L	RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71

ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA DDBXD	SD
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Lumen Output

Rotated O	otics		- <u>.</u>			• • •						· · ·								
United	Office	Power	System	ilist.	· · ·	67.10	30K 1K, 70 GRI					40K K, 70 (R)					- <u>50</u> K D K. 70 CRI			
(ED Counti	Concat	Package	System Watts	Type	luntens	(5)001		6	I (ew)	lumens	6	ANOLISI Malaka	G	1. UPW	Lumens	(5000 B		6	I LEW	
				TIS	13,042	3		3	123	14,050	3	0	3	133	14,228	3	0	3	134	
			l.	125	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133	
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136	
				T3S	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131	
		Í.	1	T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136	
			ŀ	T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	133	
60	530	P10	106W	TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	137	
00	230	PIU	1004	TSVS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	138	
		1	-	T55	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	136	
				TSM	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136	
		-		TSW	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	135	
		1		BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112	
		1		1000	7,789	ļ.	0	3	73	8,391	1	0	3	79	8,497	1	0	3	80	
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80	
			Projet and Projet	T15 T25	16,556	3	0	3	121	17,835	3	0	3	130 129	18,061	4	0	4	132	
			1	T2M	16,461 16,758	4	0	4	120	17,733 18,053	4	0	4	129	17,957 18,281	4	0	4	133	
				T35	16,205	4	0	4	118	17,457	4	0	4	132	10,201	4	0	4	133	
				T3M	16,748	4	0	4	122	18,042	4	0	4	132	18,271	4	0	4	133	
		a de la companya de la	}	T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926	4	0	4	131	
				TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4	134	
60	60 700 P11	700	P11	137W	TSVS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1	135
		u Meri - Shake maharingaker ala cadana ke				TSS	16,832	4	0	i	123	18,133	4	0	2	132	18,362	4	0	
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0			
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	133	
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0 2 134 0 3 133 0 3 110 0 3 79			
			-	LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3	79	
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79	
				TIS	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121	
				T25	22,864	4	0	4	110	24,631	5	0	5	119	24,943	S	0	5	120	
				T2M	23,277	4	0	4	112	25,075	4	0	4	121	25,393	4	0	4	123	
			1.	T3S	22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5	119	
			1	T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123	
				T4M IFTM	22,824	5	0	5	110	24,588	5	0	5 5	119	24,899	5	0	5	120	
60	1050	P12	207W	TSVS	23,414 23,579	5	0	5	113 114	25,223 25,401	5	0	3	122	25,543	s S	0	1	123	
			le s	TSS	23,379	4	0	2	113	25,401	4	0	2	123	25,506	4	0	2	124	
an tha star		le distante de la companya de la com		TSM	23,374	5	0	3	113	25,187	5	0	3	122	25,499	5	0	3	123	
1		1.1.1	1 · · · · · · · · · · · · · · · · · · ·	TSW	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	123	
	1		1.	BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	101	
		al al c	and the second se	LCCO	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72	
			1	RCCO	13,716	4	0	4	66	14,776	4	O	4	71	14,963	4	0	4	72	
	and the second	T	1	TIS	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	120	
		1	larrow of the second	T2S	25,254	5	0	5	109	27,205	5	0	5	118	27,550	5	0	5	119	
		-		T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0	4	121	
			1	T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117	
	an son af i generation of the source of the		1	ТЗМ	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0	5	121	
		1	1	T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119	
60	1250	P13	231W	TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122	
				TSVS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123	
				<u>155</u>	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122	
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122	
			1	T5W	25,586	5	0	4	111	27,563	5	0	4	119	27,912	5	0	4	121	
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4	100	
		auto de	_	LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4	72	
			la la companya da sera	RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5	72	

ALASKA		Catalog Number: DSX1 LED P5 40K T5M MVOLT SPA	^{Type}
ARCHITECTURAL		DDBXD	SD
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED[®] and Green Globes[™] criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERIS™ series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ GPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.eculybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. Complete warranty terms located at: www.aquitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

COMMERCIAL OUTDOOR

One Lithonia Way

Convers, Georgia 30012

Phone: 1-800-705-SERV (7378)

Waydithorea.com

2011-2021 Acuity Brands Lighting, Inc, All rights reserved.

DSX1-LED Rev. 07/19/21 Page 8 of 8

ALASKA ARCHITECTURAL SEARHC Juneau Vintage Park

Submitted By ALASKA ARCHITECTURAL LIGHTING

Note:

🕼 LITHONIA LIGHTING

FEATURES & SPECIFICATIONS

INTENDED USE — These specifications are for USA standards only. Square Straight Steel is a general purpose light pole for up to 39-foot mounting heights. This pole provides a robust yet cost effective option for mounting area lights and floodlights.

CONSTRUCTION — Pole Shaft: The pole shaft is of uniform dimension and wall thickness and is made of a weldable-grade, hot-rolled, commercial-quality steel tubing with a minimum yield of 55 KSI (11-gauge, .1196°), or 50 KSI (7-gauge, .1793°). Shaft is one-piece with a full-length longitudinal highfrequency electric resistance weld. Uniformly square in cross-section with flat sides, small corner radii and excellent torsional qualities. Available shaft widths are 4°, 5° and 6°.

Pole Top: A flush non-metalic black top cap is provided for all poles that will receive drilling patterns for side-mount luminaire arm assemblies or when ordered with PT option.

Handhole: A reinforced handhole with grounding provision is provided at 18" from the base on side A. Positioning the handhole lower may not be possible and requires engineering review; consult Tech Support-Outdoor for further information. Every handhole includes a cover and cover attachment hardware. The handhole has a nominal dimension of 2.5" x 5".

Base Cover: A durable ABS plastic two-piece full base cover, finished to match the pole, is provided with each pole assembly. Additional base cover options are available upon request.

Anchor Base/ Bolts: Anchor base is fabricated from steel that meets ASTM A36 standards and can be altered to match existing foundations; consult factory for modifications. Anchor bolts are manufactured to ASTM F1554 Standards grade 55, (55 KSI minimum yield strength and tensile strength of 75-95 KSI). Top threaded portion (nominal 12') is hot-dipped galvanized per ASTM A-153.

HARDWARE – All structural fasteners are high-strength galvanized carbon steel. All non-structural fasteners are galvanized or zinc-plated carbon steel or stainless steel.

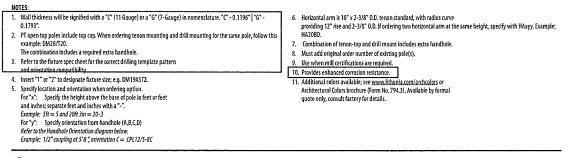
FINISH – Extra durable standard powder-coat finishes include Dark Bronze, White, Black, Medium Bronze and Natural Aluminum colors. Classic finishes include Sandstone, Charcoal Gray, Tennis Green, Bright Red and Steel Blue colors. Architectural Colors and Special Finishes are available by quote and include, but are not limited to Hot-dipped Galvanized, Paint over Hot-dipped Galvanized, RAL Colors, Custom Colors and Extended Warranty Finishes. Factory-applied primer paint finish is available for customer field-paint applications.

WARRANTY - 1-year limited warranty. Complete warranty terms located at:

www.acuitybrands.com/support/warranty/terms-and-conditions

NOTE: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.

Anchor Base Poles


SQUARE STRAIGHT STEEL

See footnotes next page.

///	ARCHITECTURAL	SEARHC Juneau Vintage Park		P1
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

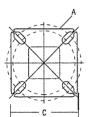
SSS Square Straight Steel Poles

555						
Series	Nominal fixture mounting height	Nominal shaft base size/wall thickness ¹	Mounting ²		Options	Finish ¹⁰
222	10'-39' (for 1/2 ft increments, add-6 to the pole height. Ex: 20-6 equals 20ft 6in.) See technical information table for complete ardering information.) 30'	4C 4" 11g (.1196") 4G 4" 7g (.1793") 5C 5" 11g (.1196") 5G 5" 7g (.1793") 6G 6" 7g (.1793") See technical information table for complete ordering information.)	Tenon mounting PT Open top (includes top cap) T20 2-3/8" 0.D. (2" NPS) T25 2-7/8" 0.D. (2" NPS) T25 2-7/8" 0.D. (2-1/2" NPS) T30 3-1/2" 0.D. (3" NPS) T35 4" 0.D. (3-1/2" NPS) KACKAD/KSE/KSE/KVE/KKVE Drill mounting" DM19 1 at 90° DM28 2 at 180" with one side plugged DM29 2 at 90° DM39 3 at 90° DM49 4 at 90° DM39 2 at 90° DM39 3 at 90° DM494 2 at 90° DM395 3 at 90° DM395 3 at 90° DM395 3 at 90° DM395 3 at 90° DM3955 3 at 90° DM397AD 3 at 90° DM398AD 3 at 90° DM397AD 3 at 90° DM397AD <td>AERIS[®] Suspend drill mounting^{1,4} DM19AST_ 1 at 90° DM28AST_ 2 at 180° DM39AST_ 3 at 90° DM49AST_ 4 at 90° OM49AST_ 4 at 90° OM49AST_ 2 at 180° DM19MRT_ 2 at 180° DM29MRT_ 2 at 180° DM29MRT_ 3 at 90° DM39MRT_ 3 at 90°</td> <td>Shipped installed L/AB Less anchor bolts (Include when anchor bolts are not needed) VD Vibration damper TP Tamper resistant handhole cover fasteners HAxy Horizontal arm bracket (1 fixture)^{5,4} FDLxy Festoon outlet less electrical⁵ CPL1/xy 1/2" coupling⁵ CPL1/xy 1/2" coupling⁵ NPL12/xy 1/2" threaded nipple⁴ NPL1/xy 1/2" threaded nipple⁴ NPL1/xy 1/2" threaded nipple⁴ NPL1/xy 1" threaded nipple⁴ NEX Match existing⁴ USPOM United States point of manufacture⁹ IC Interior coating⁶ UL<td>Standard colors DDBXD Dark bronze DBLXD Black DBLXD Black DMBXD Metium bronze DNAXD Natural aluminum Classic colors DGC Charcoal gra DTG Tennis green DBR Bright red DSB Steel blue Architectural Colors and Special Finishes¹⁴ Galvanized, Paint over Galvanized, Paint over Gal</td></td>	AERIS [®] Suspend drill mounting ^{1,4} DM19AST_ 1 at 90° DM28AST_ 2 at 180° DM39AST_ 3 at 90° DM49AST_ 4 at 90° OM49AST_ 4 at 90° OM49AST_ 2 at 180° DM19MRT_ 2 at 180° DM29MRT_ 2 at 180° DM29MRT_ 3 at 90° DM39MRT_ 3 at 90°	Shipped installed L/AB Less anchor bolts (Include when anchor bolts are not needed) VD Vibration damper TP Tamper resistant handhole cover fasteners HAxy Horizontal arm bracket (1 fixture) ^{5,4} FDLxy Festoon outlet less electrical ⁵ CPL1/xy 1/2" coupling ⁵ CPL1/xy 1/2" coupling ⁵ NPL12/xy 1/2" threaded nipple ⁴ NPL1/xy 1/2" threaded nipple ⁴ NPL1/xy 1/2" threaded nipple ⁴ NPL1/xy 1" threaded nipple ⁴ NEX Match existing ⁴ USPOM United States point of manufacture ⁹ IC Interior coating ⁶ UL <td>Standard colors DDBXD Dark bronze DBLXD Black DBLXD Black DMBXD Metium bronze DNAXD Natural aluminum Classic colors DGC Charcoal gra DTG Tennis green DBR Bright red DSB Steel blue Architectural Colors and Special Finishes¹⁴ Galvanized, Paint over Galvanized, Paint over Gal</td>	Standard colors DDBXD Dark bronze DBLXD Black DBLXD Black DMBXD Metium bronze DNAXD Natural aluminum Classic colors DGC Charcoal gra DTG Tennis green DBR Bright red DSB Steel blue Architectural Colors and Special Finishes ¹⁴ Galvanized, Paint over Galvanized, Paint over Gal

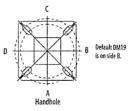
🕼 LITHONIA LIGHTING

OUTDOOR: One Lithonia Way Conyers, GA 30012 Phone: 800-705-SERV (7378) www.lithonia.com

POLE-SSS


SSS Square Straight Steel Poles

				TECHNIC	.45. 141.0114	Allon	PA (ft2) wit						
	Nominal	Pole Shaft Size	Wall thick				EPA (ft²) wi				Bolt	Bolt size	Approximate
Catalog Number	Shaft Length (ft.)*	(Base in. x Top in. x ft.)	(in)	Gauge	80 MPH	Max. weight	90 MPH	Max. weight	100 MPH	Max. weight	cìrcle (in)	(in.xin.xin.)	ship weight (lbs.)
SSS 10 4C	10	4.0 x 10.0	0.1196	11	30.6	765	23.8	595	18.9	473	89	3/4x18x3	75
SSS 12 4C	12	4.0 x 12.0	0.1196	11	24.4	610	18.8	470	14.8	370	89	3/4 x 18 x 3	90
SSS 14 4C	14	4.0 x 14.0	0.1196	11	19.9	498	15.1	378	11.7	293	89	3/4 x 18 x 3	100
SSS 16 4C	16	4.0 x 16.0	0.1196	11	15.9	398	11.8	295	8.9	223	89	3/4 x 18 x 3	115
SSS 18 4C	18	4.0 x 18.0	0.1196	11	12.6	315	9.2	230	6.7	168	89	3/4x18x3	125
SSS 20 4C	20	4.0 x 20.0	0.1196	11	9.6	240	6.7	167	4.5	150	89	3/4 x 18 x 3	140
SSS 20 4G	20	4.0 x 20.0	0.1793	7	14	350	11	275	8	200	89	3/4 x 30 x 3	198
SSS 20 5C	20	5.0 x 20.0	0.1196	11	17.7	443	12.7	343	9,4	235	1012	1x36x4	185
SSS 20 5G	20	5.0 x 20.0	0.1793	7	28.1	703	21.4	535	16.2	405	1012	1 x 36 x 4	265
SSS 25 4C	25	4.0 x 25.0	0.1196	11	4.8	150	2.6	100		50	89	3/4 x 18 x 3	170
SSS 25 4G	25	4.0 x 25.0	0.1793	7	10.8	270	7.7	188	5.4	135	89	3/4x30x3	245
SSS 25 5C	25	5.0 x 25.0	0.1196	11	9.8	245	6.3	157	3.7	150	10-12	1x36x4	225
SSS 25 5G	25	5.0 x 25.0	0.1793	7	18.5	463	13.3	333	9.5	238	1012	1x36x4	360
SSS 30 4G	30	4.0 x 30.0	0.1793	7	6.7	168	4,4	110	2.6	65	89	3/4x30x3	295
555 30 5C	30	5.0 x 30.0	0.1196	11	4.7	150	2	50	-	-	1012	1x36x4	265
SSS 30 5G	30	5.0 x 30.0	0.1793	7	10.7	267	6.7	167	3.9	100	1012	1 x 36 x 4	380
SSS 30 6G	30	6.0 x 30.0	0.1793	7	19	475	13.2	330	9	225	1113	1 x 36 x 4	520
SSS 35 5G	35	5.0 x 35.0	0.1793	. 7	5.9	150	2.5	100	-		1012	1x36x4	440
SSS 35 6G	35	6.0 x 35.0	0.1793	7	12.4	310	7.6	190	4.2	105	1113	1x36x4	540
SSS 39.6G	39	6.0 x 39.0	0.1793	7	7.2	180	3	75	-	-	11-13	1 x 36 x 4	605


* EPA values are based ASCE 7-93 wind map. For 1/2 ft increments, add -6 to the pole height. Ex: 20-6 equals 20ft 6in.

BASE DETAIL

Shaft base size	Bolt circle A	Bolt projection B	Base diameter C	Base plate thickness	Template description	Anchor bolt description	Anchor bolt and template number	Anchor bolt description
4"C	8" ~ 9"	3.25"- 3.75"	8"- 8.25"	0.75"	ABTEMPLATE PJ50004	AB18-0	ABSSS-4C	3/4"x18"x3"
4"G	8" - 9"	3.38"- 3.75"	8"- 8.25"	0.875"	ABTEMPLATE PJ50004	AB30-0	ABSSS-4G	3/4"x30"x3"
5"	10" - 12"	3.5"- 4"	11"	1"	ABTEMPLATE PJ50010	AB36-0	ABSSS-5	1"x36"x4"
6"	11" 13"	4"- 4.50"	12.5"	1"	ABTEMPLATE PJ50011	AB36-0	N/A	1"x36"x4"

HANDHOLE ORIENTATION

IMPORTANT INSTALLATION NOTES:

· Do not erect poles without having fixtures installed.

Factory-supplied templates must be used when setting anchor bolts. Lithonia Lighting will not accept claim for incorrect anchorage placement due to failure to use Lithonia Lighting factory templates.

If poles are stored outside, all protective wrapping must be removed immediately upon delivery to prevent finish damage.

Lithonia Lighting is not responsible for the foundation design.

ALITHONIA LIGHTING

OUTDOOR: One Lithonia Way Convers, GA 30012 Phone: 800-705-SERV (7378) www.lithonia.com

POLE-SSS

ALASKA ARCHITECTURAL VGHT1916 SEARHC Juneau Vintage Park

no Juneau Vinage Faik

Submitted By ALASKA ARCHITECTURAL LIGHTING

🕼 LITHONIA LIGHTING

FEATURES & SPECIFICATIONS

INTENDED USE — These specifications are for USA standards only. Square Straight Steel is a general purpose light pole for up to 39-foot mounting heights. This pole provides a robust yet cost effective option for mounting area lights and floodlights.

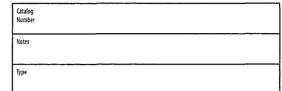
CONSTRUCTION — Pole Shaft: The pole shaft is of uniform dimension and wall thickness and is made of a weldable-grade, hot-rolled, commercial-quality steel tubing with a minimum yield of 55 KSI (11-gauge, .1196"), or 50 KSI (7-gauge, .1793"). Shaft is one-piece with a full-length longitudinal highfrequency electric resistance weld. Uniformly square in cross-section with flat sides, small corner radii and excellent torsional qualities. Available shaft widths are 4", 5" and 6".

Pole Top: A flush non-metalic black top cap is provided for all poles that will receive drilling patterns for side-mount luminaire arm assemblies or when ordered with PT option.

Handhole: A reinforced handhole with grounding provision is provided at 18" from the base on side A. Positioning the handhole lower may not be possible and requires engineering review; consult Tech Support-Outdoor for further information. Every handhole includes a cover and cover attachment hardware. The handhole has a nominal dimension of 2.5" x 5".

Base Cover: A durable ABS plastic two-piece full base cover, finished to match the pole, is provided with each pole assembly. Additional base cover options are available upon request.

Anchor Base/ Bolts: Anchor base is fabricated from steel that meets ASTM A36 standards and can be altered to match existing foundations; consult factory for modifications. Anchor bolts are manufactured to ASTM F1554 Standards grade 55, (55 KSI minimum yield strength and tensile strength of 75-95 KSI). Top threaded portion (nominal 12') is hot-dipped galvanized per ASTM A-133.


HARDWARE – All structural fasteners are high-strength galvanized carbon steel. All non-structural fasteners are galvanized or zinc-plated carbon steel or stainless steel.

FINISH – Extra durable standard powder-coat finishes include Dark Bronze, White, Black, Medium Bronze and Natural Aluminum colors. Classic finishes include Sandstone, Charcoal Gray, Tennis Green, Bright Red and Steel Blue colors. Architectural Colors and Special Finishes are available by quote and include, but are not limited to Hot-dipped Galvanized, Paint over Hot-dipped Galvanized, RAL Colors, Custom Colors and Extended Warranty Finishes. Factory-applied primer paint finish is available for customer field-paint applications.

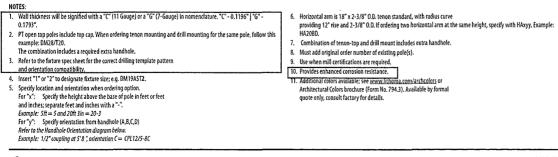
WARRANTY — 1-year limited warranty. Complete warranty terms located at:

www.acuitybrands.com/support/warranty/terms-and-conditions

NOTE: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.

Catalog Number: SSS 30 4G DM28AS VD DBLXD

Anchor Base Poles


SQUARE STRAIGHT STEEL

See footnotes next page.

$\Delta C_{\rm ex}$	ALASKA ARCHITECTURAL	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: SSS 30 4G DM28AS VD DBLXD	P2
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

SSS Square Straight Steel Poles

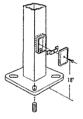
SSS						
Series	Nominal fixture mounting height	Nominal shaft base size/wall thickness ¹	Mounting ²		Options	Finish ¹⁰
555	10'-39' (for 1/2 ft increments, add-6 to the pole height. Ex: 20-6 equals 20ft 6in.) See technical information table for complete ordering information.) 30'	4C 4" 11g (.1196") 4G 4" 7g (.1793") 5C 5" 11g (.1196") 5G 5" 7g (.1793") 6G 6" 7g (.1793") 5E etchnical information table for complete ordering information.)	Tenon mounting PT Open top (includes top cap) T20 2-3/8" 0.D. (2" NPS) T25 2-7/8" 0.D. (2-1/2" NPS) T35 4" 0.D. (2-1/2" NPS) T35 4" 0.D. (3-1/2" NPS) T35 4" 0.D. (3-1/2" NPS) KACKADXSEXSEXSEX/KVKKKE Drill mounting* DM19 DM28 2 at 180° with one side plugged DM29 2 at 90° DM39 3 t 90° DM39 3 t 90° DM39 2 at 90° DM39 3 t 90° DM39AS 2 at 90° DM39AS 2 at 90° DM39AS 2 at 90° DM39AS 3 at 90° DM39AD 3 at 90° DM39RAD 3 at 90° DM3	AERIS ^{III} Suspend drill mounting ^{3,4} DM19AST_ 1 at 90° DM28AST_ 2 at 180° DM39AST_ 3 at 90° DM39AST_ 3 at 90° DM49AST_ 4 at 90° OM49AST_ 4 at 90° DM49MRT_ 1 at 90° DM28MRT_ 2 at 180° DM29MRT_ 2 at 180° DM39MRT_ 3 at 90° DM39MRT_ 4 at 90°	Shipped installed L/AB Less anchor bolts (Include when anchor bolts are not needed) YD Vibration damper TP Tamper resistant handhole cover fasteners HAxy Horizontal arm bracket (1 fixture) ^{5.4} FDLxy Festoon outlet less electrical ⁵ CPL12/xy 1/2" coupling ⁵ CPL1/xy 1/2" coupling ⁵ CPL1/xy 1/2" threaded nipple ³ NPL34/xy 3/4" threaded nipple ⁵ NPL134/xy 3/4" threaded nipple ⁵ NPL14/xy 1" threaded nipple ⁵ NPL15/xy 1" threaded nipple ⁵ NPL34/xy 3/4" threaded nipple ⁵ USPOM United States point of manufacture ⁹ IC Interior coating ¹⁹ UL UL tisted with label (includes NEC compliant cover) NEC NEC 410.3 compliant gasketed handhole (Not UL Labeled) Shipped separately (replacement kit available) (blank) FBC Full base cover (plastic) (blank) HH	Standard colors DDBXD Dark bronze DWHXD White DBLXD Black DMBXD Medium bronze DNAXD Natural aluminum Classic colors DSS Sandstone DGC Charcoal gra DTG Tennis greer DBR Bright red DSB Steel blue Architectural Colors an Special Finishes ¹¹ Galvanized, Paint over Galvanized, Paint over Galvanized, Paint over Finishes available.

🕼 LITHONIA LIGHTING

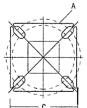
OUTDOOR: One Lithonia Way Conyers, GA 30012 Phone: 800-705-SERV (7378) www.lithonia.com

Attachment A - Application Packet

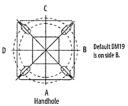
POLE-SSS


ARCHITECTURAL	Project 22-28191-2 SEARHC Juneau Vintage Park ^{Submitted} By ALASKA ARCHITECTURAL LIGHTING	Catalog Number: SSS 30 4G DM28AS VD DBLXD Note:	P2
	ALASKA ARCHITECTURAL LIGHTING		

SSS Square Straight Steel Poles


	Constraints of the second s			10000000000000000000000000000000000000			EPA (ft ²) wi	ith 1 3 aust			0.0000000000000000000000000000000000000		
Catalog Number	Nominal Shaft Length (ft.)*	Pole Shaft Size (Base in . x Top in . x ft.)	Wall thick (in)	Gauge	80 MPH	Max. weight	90 MPH	Max. weight	100 MPH	Max. weight	Bolt circle (in)	Bolt size (in. x in. x in.)	Approximate ship weight (lbs.)
SSS 10 4C	10	4.0 x 10.0	0.1196	11	30.6	765	23.8	595	18.9	473	89	3/4x18x3	75
SSS 12 4C	12	4.0 x 12.0	0.1196	11	24.4	610	18.8	470	14.8	370	89	3/4 x 18 x 3	90
SSS 14 4C	14	4.0 x 14.0	0.11%	11	19.9	498	15.1	378	11.7	293	89	3/4x18x3	100
SSS 16 4C	16	4.0 x 16.0	0.1196	11	15.9	398	11.8	295	8.9	223	89	3/4 x 18 x 3	115
SSS 18 4C	18	4.0 x 18.0	0.1196	11	12.6	315	9.2	230	6.7	168	89	3/4×18×3	125
SSS 20 4C	20	4.0 x 20.0	0.1196	11	9.6	240	6.7	167	4.5	150	89	3/4x18x3	140
555 20 4G	20	4.0 x 20.0	0.1793	7	14	350	11	275	8	200	89	3/4 x 30 x 3	198
SSS 20 5C	20	5.0 x 20.0	0.1196	11	17.7	443	12.7	343	9.4	235	1012	1x36x4	185
SSS 20 5G	20	5.0 x 20.0	0.1793	7	28.1	703	21.4	535	16.2	405	1012	1 x 36 x 4	265
SSS 25 4C	25	4.0 x 25.0	0.1196		4.8	150	2.6	100	See 1	50	89	3/4 x 18 x 3	170
SSS 25 4G	25	4.0 x 25.0	0.1793	7	10.8	270	7,7	188	5.4	135	89	3/4x30x3	245
SSS 25 5C	25	5.0 x 25.0	0.1196	11	9.8	245	63	157	3.7	150	1012	1 x 36 x 4	225
SSS 25 5G	25	5.0 x 25.0	0.1793	7	18.5	463	133	333	9.5	238	1012	1x36x4	360
SSS 30 4G	30	4.0 x 30.0	0.1793	7	6.7	168	4.4	110	2.6	65	89	3/4x30x3	295
SSS 30 5C	30	5.0 x 30.0	0.1196	11	4.7	150	2	50		-	1012	1 x 36 x 4	265
SSS 30 5G	30	5.0 x 30.0	0.1793	7	10.7	267	6.7	167	3.9	100	1012	1 x 36 x 4	380
SSS 30 6G	30	6.0 x 30.0	0.1793	7	19	475	13.2	330	9	225	1113	1 x 36 x 4	520
SSS 35 5G	35	5.0 x 35.0	0.1793	7	5.9	150	2.5	100		19 9	1012	1 x 36 x 4	440
SSS 35 6G	35	6.0 x 35.0	0,1793	7	12.4	310	7.6	190	4.2	105	1113	1 x 36 x 4	540
SSS 39 6G	39	6.0 x 39.0	0.1793	7	7.2	180	3	75	-	-	1113	1 x 36 x 4	605

* EPA values are based ASCE 7-93 wind map. For 1/2 ft increments, add -6 to the pole height. Ex: 20-6 equals 20ft 6in.


BASE DETAIL

POLE DATA	POLE DATA								
Shaft base size	Bolt circle A	Bolt projection B	Base diameter C	Base plate thickness	Template description	Anchor bolt description	Anchor bolt and template number	Anchor bolt description	
4"C	8" – 9"	3.25"- 3.75"	8"- 8.25"	0.75"	ABTEMPLATE PJ50004	AB18-0	ABSSS-4C	3/4"x18"x3"	
4"G	8" 9"	3.38"- 3.75"	8"- 8.25"	0.875"	ABTEMPLATE PJ50004	AB30-0	ABSSS-4G	3/4"x30"x3"	
5"	10" 12"	3,5"-4"	11"	1"	ABTEMPLATE PJ50010	AB36-0	ABSSS-5	1"x36"x4"	
6"	11" - 13"	4"- 4.50"	12.5"	1"	ABTEMPLATE PJ50011	AB36-0	N/A	1"x36"x4"	

HANDHOLE ORIENTATION

IMPORTANT INSTALLATION NOTES:

• Do not erect poles without having fixtures installed. Factory-supplied templates must be used when setting anchor bolts. Lithonia Lighting will not accept claim for incorrect anchorage placement due to failure to use Lithonia Lighting factory templates.

If poles are stored outside, all protective wrapping must be removed immediately upon delivery to prevent finish damage.

Lithonia Lighting is not responsible for the foundation design.

A LITHONIA LIGHTING

OUTDOOR: One Lithonia Way Conyers, GA 30012 Phone: 800-705-SERV (7378) www.lithonia.com

POLE-SSS

Core and Shell

Project 22-28191-2 AL SEARHC Juneau Vintage Park

Submitted By ALASKA ARCHITECTURAL LIGHTING Note:

A

LITHONIA LIGHTING

FEATURES & SPECIFICATIONS

INTENDED USE — Built on the compact, low-profile Z strip channel, this LED strip offers long maintenance-free life, several color temperatures, lumen outputs and lengths. Ideal for new construction and retrofit applications in TS and T8 lengths. Ideal for uplight and downlight in commercial, retail, manufacturing, warehouse, cove and display applications. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. <u>Click here for Acrylic-Polycarbonate</u> <u>Compatibility table for suitable uses</u>.

CONSTRUCTION — Compact-design channel and cover are formed from code-gauge cold-rolled steel. Easy to install row aligner included for continuous row mounting.

Finish: Paint options include high-gloss, baked white enamel (WH), galvanized (GALV), matte black (MB) and smoke gray (SKGY). After fabrication, five-stage iron phosphate pre-treatment ensures superior paint adhesion and rust resistance.

OPTICS — Standard diffuse snap on/snap off lens eliminates pixels, improves uniformity and minimizes glare. L/LENS option available.

ELECTRICAL — L70>60,000 hours. Utilizes high-output LEDs integrated on a two-layer circuit board, ensuring cool-running operation. Optional internal pluggable wiring harness for reduced labor cost in row mounting applications. (See PLR_ ordering information on page 2.) Electronic LED driver is rated for 75 input watts maximum (see Operational Data on page 4 for actual wattage consumption), multi-volt input and 0-10V dimming standard. This fixture is designed to withstand a maximum line surge of 2.5kV at 0.75kA combination wave for indoor locations, for applications requiring higher level of protection additional surge protection must be provided.

LEDs provide nominal 80 CRI at 3000 K, 3500 K, 4000 K, or 5000 K.

Lumen output up to 2,000 lumens per foot. In 86°F (30°C) ambient environments. Luminaire should be installed in applications where ambient temperatures do not exceed 86°F (30°C).

INSTALLATION ---- Tool-less channel cover for easy installation.

Fixture may be surface mounted (with or without ZSPRG hanger), pendant or stem mounted with appropriate mounting options. Three-point aligner locks in place for easy continuous row mounting. **LISTINGS** — CSA certified to US and Canadian safety standards. For use in damp locations between -40°F (-40°C) and 86°F (30°C).

DesignLights Consortium[®] (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at <u>www.designlights.org</u> to confirm which versions are qualified.

BUY AMERICAN — Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to <u>www.acuitybrands.com/buy-american</u> for additional information.

www.acuitybrands.com/support/warranty/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice. Caldg Number Notes Type LED Striplight SERVES SERVES LUIN 24", 48" and 96" Lengths

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+ Certified solution for nLight* control networks marked by a shaded background*
- To learn more about A+, visit www.acuitybrands.com/aplus.

*See ordering tree for details

		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI WH	A
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

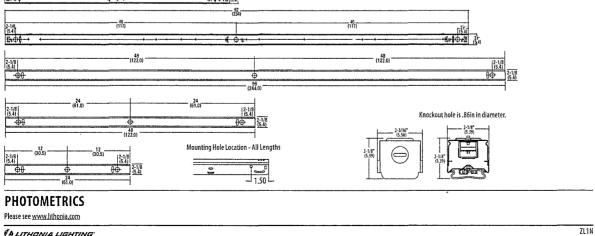
A+ Capable options indicat by this color background. ORDERINGINFORMATION		r depending on options selected. Consult w	ith your sales representative.		Example: ZL1N L48 3000L	M FST M	IVOLT 40K 80CRI V
Series	Length	Reflectors‡	Nominal lumens‡	D	Diffuser	Voltage	
ZL1N LED striplight	L24 24" ≠ L46 46" L48 48" L92 92" L96 96"	(blank) Less reflector SMR Symmetric (blank) Less reflector ASR Asymmetric (L48 only) SMR Symmetric (blank) Less reflector SMR Symmetric	1500LM 1,500 lumens 2500LM 2,500 lumens 3500LM 3,500 lumens 3000LM 3,000 lumens 5000LM 5,000 lumens 7000LM 7,000 lumens 6000LM 6,000 lumens 10000LM 10,000 lumens 14000LM 14,000 lumens		FST Snap on frosted, diffuse L/LENS No diffuser SBL FST Straight blade louver with snap on frosted, diffuse	MVOLT 120 208 240 277 347 480	120-277V 120V 208V 240V 277V 347V ‡ 480V ‡
Color temperature Color r	endering index	Options		<u>l</u>			Paint finish
300 K 3000 K <u>80CRI</u> 35K 3500 K 40K 4000 K 50K 5000 K	80 CRI 90 CRI	Title 20 non-compliant (L 2E7W Two Power Sentry* PS7SC batteries, CA Title 20 non- E10WLCP Power Sentry* PS105LCP, certified in CA Title 20 MA 2E10WLCP Two Power Sentry* PS105 batteries, Certified in CA Title 20 MA	watt emergency battery, CA INK) ‡ L, 7 watt emergency compliant (LINK) ‡ 10 watt emergency battery, EDBS (LINK) ‡ SLCP, 10 watt emergency file 20 MAEDBS (LINK) ‡ 15 watt emergency battery, EDBS (LINK) ‡ of fixture liant enabled, 360° low mount LINK) enabled, 360° low mount LINK) enabled, 360° low mount LINK)	Individua LBOZU LBHOSZU LBHOSZU LBMOSZU LBMOSZU CSTW CS3W CS3W CS1W CS1W CS25W CS97W CS93W	al Controls ‡ 360° low mount LSXR PIR sensor, (7-15' mounti- heights), ON/OFF occupancy, pre-wired (LINK) ‡ 360° low mount LSXR PIR sensor, (7-15' mounti- ing heights), high/low occupancy dimming, pre-wired (LINK) ‡ 360° low mount LSXR PIR sensor, (7-15' mounti- heights), ON/OFF photocell, pre-wired (LINK) ‡ 360° low mount LSXR PIR sensor, (7-15' mounti- ing heights), dimming and switching photocell pre-wired (LINK) ± 25 Cord with NEMA 5-15P, 120V straight blade plug 18 gauge, 3 conductors, white, 6ft Cord with NEMA L5-15P, 120V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L7-15P, 277V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L2-32P, 347V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L2-32P, 347V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L8-20P, 440V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L8-20P, 440V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L8-20P, 440V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord with NEMA L8-20P, 440V twist lock plug, 1 gauge, 3 conductors, white, 6ft Cord only (no plug), 18 gauge, 3 conductors, white, 6ft	ng , , 8 9, 8	WH White GALV Galvanized MB Matte black SKGY Smoke gray

HC36 M12	Hanger chain, 36" (1 pair)	ZLR L24 SYM UPL WH	24" symmetric reflector with uplight, white finish
ZACVH M100 ZLANGBKT	Adjustable 10' aircraft cable with Y hanger (1 pair) Luma-tilt™ angle bracket for shelf or ledge mounting only	ZLR L24 SYM WH ZLR L46 SYM UPL WH ZLR L46 SYM WH	24" symmetric reflector, white finish 46" symmetric reflector with uplight, white finish 46" symmetric reflector, white finish
SQ_	Swivel stem hanger (specify length in 2" increments up to 48")	ZLR L48 ASY WH ZLR L48 SYM UPL WH	48" asymmetric reflector, white finish 48" symmetric reflector with uplight, white finish
NPP16D	nLight [®] wired power/relay pack, 0-10VDC dimming output (<u>LINK</u>)	ZLR L48 SYM WH ZLR L92 SYM UPL WH	48" symmetric reflector, white finish 92" symmetric reflector with uplight, white finish
RPP20D	nLight [®] air Generation 2 enabled, power/ relay pack, 0-10V dimming output (<u>LINK</u>)	ZLR 192 SYM WH ZLR 196 SYM UPL WH	92" symmetric reflector, white finish 96" symmetric reflector with uplight, white finish
LSXR	Sensor Switch* LSXR occupancy sensor (LINK)	ZLR L96 SYM WH	96" symmetric reflector, white finish
ZSPRG J2	Tong and T-grid hanger, for 15/16" T-grid (Order quantity required in multiples of 2)	UNIVERSAL REFL ALIGNER	Universal reflector aligners, quantity 1
WGZ24	24" wireguard, white ‡		
WGZ48	48" wirequard, white ‡		

COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com www.lithonia.com

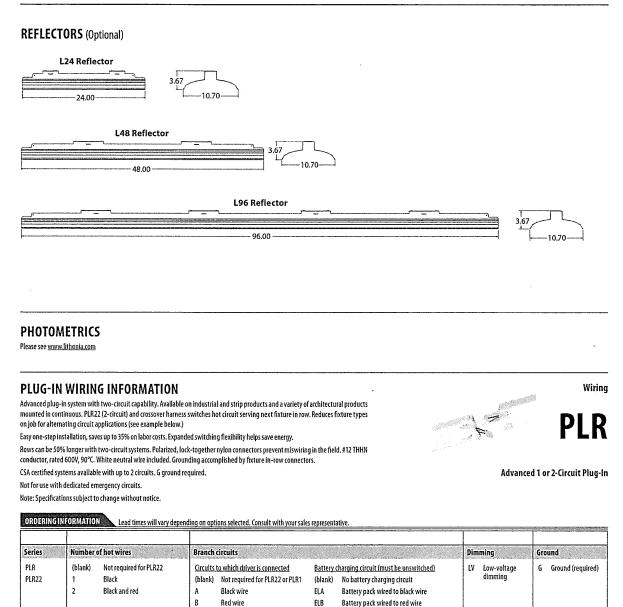
ZL1N

^{© 2013-2021} Acuity Brands Lighting, Inc. All rights reserved. Rev. 12/02/21 Page 2 of 7


	SEARHC Juneau Vintage Park	Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI WH Note:	Type A
1 1		NOTE:	

	# Option Value Ordering Restrictions					
Option value	Restriction					
2E7W	MVOLT required. Available with L92 or L96 only. Not available with L24, L46, L48, L92 6000LM, L96 6000LM or any cordset that includes a plug.					
2E10WLCP	MVOLT required. Available with L92 or L96 with 10,000LM or 14000LM only. Not available with L24, L46, L48, L92 6000LM, L96 6000LM or any cordset that includes a plug.					
347,480	Utilizes step down transformer.					
Cord Sets	Must specify voltage when plug is inlcuded. Cordsets exit back of fixture unless OUTEND option is specified.					
E7W	MVOLT required. Available with L46, L48, L92 or L96 with 10000LM or 14000LM only. Not available with L24 or any cordset that includes a plug.					
E10WLCP	MVOLT required. Available with L46, L48, L92 or L96 only. Not available with L24 or any cordset that includes a plug.					
E15WLCP	MVOLT required. Available with L92 or L96 only. Not available with L24, L46, L48 or any cordset that inlcudes a plug.					
HTZL1N	Tandem fixture ships as two L46 or L48 fixtures.					
Individual Controls	Available with MVOLT, 347 or 480 only. See ordering information on page 6 for more configurations. This sensor configuration is suitable for minimum ambient temperature of 14°F (-10°C). See page 5 for low temperature option providing -4°F (-20°C) minimum ambient. When choosing Sensor and PLR for same fixture, consult the factory. Sensors come prewired, they must be snapped into place at time of installation.					
L24	Not available with 347V, 480V or emergency batteries.					
nLight* Wireless	See LINK in sensor description to RLSXR specification sheet for more configurations. When choosing a sensor and PLR for same fixture, consult the factory. Sensors come prewired, they must be snapped into place at time of installation.					
NLTAIR2 RLSXR10EM	Not available with 347 or 480. MVOLT required.					
Nominal Lumens	See Operational Data on page 2 for actual lumens.					
PLR	Not available with cordset options. See ordering information on page 5. When choosing a sensor and PLR for the same fixture, consult the factory.					
PLR1LVG	Not available with cordset options.					
Reflectors	Optional. Reflectors ship separately.					
WGHZ24	Not available with ASR or SMR reflector options.					
WGHZ48	Not available with ASR or SMR reflector options. Order a Qty of 2 for L92 or L96 tandem fixtures.					

ZL1N


ALASKA ARCHITECT LIGH ING	URAL Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI WH	A
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

	ATIONAL DAT Nominal Jumen	Length (inches)	(CT@77°F()	umens 3000 K 25°C) ambient erature	(CT@77°F(7	mens 3500 K 15°C) ambient erature	(CT@77°F(umens 4000 K 25°C) ambient erature	CCT@77°F()	umens 5000 K 25°C) ambient erature	Wattage @ 120V/277V	Comparable Lig	ht Source
	package	(mane)	80 CRI	90 CRI	80 CRI	90 CRI	80 CRI	90 CRI	80 CRI	90 CRI	C. C		
	1500LM	24	1738	1409	1777	1467	1804	1494	1871	1528	15	1-lamp 17	W T8
	2500LM	24	2265	1846	2315	1900	2351	1947	2438	1991	19	1-lamp 17	W T8
	3500LM	24	3586	2924	3666	3026	3723	3084	3860	3152	31	1-lamp 32W T8, 1-lamp 5	4W T5H0, 50W HID
	3000LM	46 or 48	3172	2586	3243	2677	3293	2728	3415	2788	25	1-lamp 32W T8, 1-lamp 5	4W T5H0, 50W HIE
Lensed	5000LM	46 or 48	4417	3601	4515	3727	4585	3798	4754	3882	34	2-lamp 32W T8, 1-lamp 5	54W T5H0, 70W HIC
<u>-</u> [7000LM	46 or 48	6535	5328	6681	5515	6785	5619	7035	5744	52	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI
	6000LM	92 or 96	6561	5349	6708	5537	6812	5642	7063	5767	48	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI
	10000LM	92 or 96	8687	7082	8881	7331	9019	7470	9351	7636	68	4-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI
	14000LM	92 or 96	12457	10513	12735	10665	12933	10711	13409	10949	104	4-lamp 32W T8, 3-lamp 5	4W T5H0, 150W HI
	1500LM	24	1881	1534	1923	1588	1953	1618	2025	1654	15	1-lamp 17	W T8
	2500LM	.24	2452	1999	2506	2069	2545	2108	2639	2155	19	1-lamp 17	W T8
	3500LM	24	3882	3165	3969	3276	4031	3338	4179	3412	31	1-lamp 32W T8, 1-lamp 5	4W T5H0, 50W HIL
p	3000LM	46 or 48	3434	2800	3511	2898	3565	2953	3697	3019	25	1-lamp 32W T8, 1-lamp 5	4W T5H0, 50W HIL
Unlensed	5000LM	46 or 48	4781	3898	4888	4035	4964	4111	5147	4203	34	2-lamp 32W T8, 1-lamp 5	4W T5H0, 70W HIE
E .	7000LM	46 or 48	7075	5768	7233	5971	7345	6083	7616	6219	52	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI
- 4 - 1	6000LM	92 or 96	7103	5791	7261	5995	7374	6108	7646	6243	48	3-lamp 32W T8, 2-lamp 54W T5H0, 100W	
1	10000LM	92 or 96	9404	7667	9614	7937	9764	8087	10123	8266	68	4-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI
	14000LM	92 or 96	13485	10994	13786	11381	14001	11596	14516	11853	104	4-lamp 32W T8, 3-lamp 5	
٥D	JECTED			perating Hour			0	15.000		30,000	45.000	60,000	100.000
	NTENAN		Sector -	imen Mainten	A A A A A A A A A A A A A A A A A A A		1	0.94		0.89	0.83	0.79	0.67
							 	1			· · · · · · · · · · · · · · · · · · ·		
IM	ENSION	5					PA	LLET DIMENS	ONS	Sidelar Anti-Language	ana tana atau a		opporte Jacob d'Alertane
	rsions are shown tions subject to c			therwise noted.			Le	ength App	roximate wei	ght Fixture	s per pallet	Approximate pallet dime	ensions (L x W x H
								L24	7 lbs.		408	46" X 51" X 32	11/16"
								L46	11 lbs.		176	46" X 51" X 32	1/16"
								L48	12 ibs.		176	46" X 51" X 3	1 3/8"
							1	L92	22 lbs.		176	46" X 98 1/2" X	31 1/16"
			46					L96	24 lbs.		176	46" X 98 1/2" X 3	11/16"

COMMERCIAL INDOOR: One Lithonía Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com www.lithonia.com © 2013-2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. 12/02/21 Page 4 of 7

M	ALASKA ARCHITECTURAL LIGHTING SEARHC Juneau Vintage Park		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI WH	^{Туре}
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Typical Applications

Multiple-circuit and single-circuit for longer continuous rows

Multiple-circuit with alternating fixtures on separate circuits, 2-circuit (PLR22)

Multiple circuit with night-lights located along row as desired

A LITHONIA LIGHTING

COMMERCIAL INDOOR: One Lithonia Way, Conyers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoorgeouitybrands.com www.lithonia.com © 3013-2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. 12/02/21

Page 5 of 7

\mathcal{M}_{i}	ALASKA ARCHITECTURAL LIGHTING		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI WH	Type A
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

- LSXR Fixture Mount Occupancy Sensor (see <u>www.</u> AcuityControls.com for additional information)
- Three interchangeable lens options to satisfy multiple mounting
 heights and coverage pattern requirements.
- Integrated mounting bracket drops lens down 3" from chase nipple.
- Single or dual relay versions designed with robust protection from the harsh switching requirements of T5 and LED loads.
- Photocell and 0-10VDC dimming options.
- No PIR field calibration or sensitivity adjustments required.
- Sensor ambient temperature rating of 14°F (-10°C) to 131°F (55°C).

LSXR configuration	Comparable CMRB sensor	Old style sensor nomenclature
For shortest lead t	imes use one of the fol	lowing LSXR configurations
LCOZU	CMRB 50	MSI
LCHOSZU	CMRB 50 D	MSID
LCPZU	CMRB 50 P	MSIPED
LAOZU	CMRB 6	MS1360
LAHOSZU	CMRB 6 D	MSI360D
LAPZU	CMRB 6 P	MS1360PED

SELECTIONS BELOW WILL EXTEND ORDER LEAD TIME. CONSULT YOUR SALES REPRESENTATIVE FOR DETAILS.

Series	Lens option	Dimming/Photocell	Max. dim level	Min. dim level	Temp/Humidity	Default occupancy time delay
L LSXR passive infrared indoor occupancy sensor	A High mount, 360° B Low mount, 360° C High mount aisleway	0 None ¹ H High/low occupancy operation P Switching photocell (on/off) ¹ M Dimming and switching photocell with high/low oc- cupancy operation	0 10 VDC 9 9 VDC 8 8 VDC 7 7 VDC	S Minimum dim level of ballast 1 1 VDC 2 2 VDC 3 3 VDC 4 4 VDC 5 5 VDC 6 6 VDC	Z None T Low temperature ²	 i 30 sec D 2.5 min X 5.0 min R 7.5 min U 10.0 min (with minimum 15 minute on time) V 15.0 min W 20.0 min Y 30.0 min

Notes

Notes

1 Max and min dim levels not applicable with this option.

4

2 Ambient temperature rating of -4°F (-20°C) to 131°F (55°C).

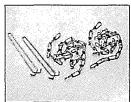
1 Amblent temperature rating of -4°F (-20°C) to 131°F (55°C).

DUAL RELAY (Available with 120, 277, and 347V only)

Series	Lens option	Poles	Operating mode	Temp/Humidity	Default occupancy time delay
L LSXR passive infrared indoor occupancy sensor	A High mount, 360° B Low mount, 360° C High mount aisleway	2 Dual relay	J None K Alternating off relays (promotes even lamp wear) O Alternating off relays w/photocell P Switching photocell(on/off) E Photocell on/off (pole 1 only) F Photocell on/off - both poles (dual set-point)	Z None T Low tempera- ture ¹	I 30 sec D 2.5 min X 5.0 min R 7.5 min U 10.0 min (with minimum 15 minute on time) V 15.0 min W 20.0 min Y 30.0 min

Example: LENS 50 J100

Series Lens type Package quantity LENS 6 High mount 360° [blank] Single Lens 10 Low mount 360° J10 10-pack 50 High mount aisleway J100 100-pack


COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com www.lithonia.com © 2013-2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. 12/02/21 Page 6 of 7

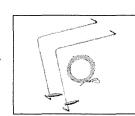
ZL1N

ALASKA	Project 22-28191-2	Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI	Type
ARCHITECTURA	SEARHC Juneau Vintage Park	WH	A
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

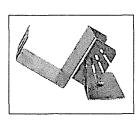
OPTIONS AND ACCESSORIES

The Z Series fixture offers numerous options for almost every electrical and optical component, including a long list of field-installable accessories.

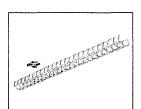
HANGER CHAIN 36" chain with Y hanger. Order as:


HC36

Z SPRING HANGER


Snap 'n' lock design requires no fasteners and can be used on T-grid ceiling or universal mounting systems.

Order as: ZSPRG J2


ZACVH HANGER 10' Aircraft cable with Y hanger.

Order as: ZACVH

ANGLE MOUNTING BRACKET Luma-tilt™ angle bracket ships as a pair

Order as: ZLANGBKT

Order as: WGZ24 WGZ48

WIRE GUARD

ZL1N

1631

Project 22-28191-2 ALASKA ARCHITECTURAL SEARHC Juneau Vintage Park

> Submitted By ALASKA ARCHITECTURAL LIGHTING

Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH

Note:

Catalog Number Notes

Туре

AE

🕼 LITHONIA LIGHTING*

FEATURES & SPECIFICATIONS

INTENDED USE ---- Built on the compact, low-profile Z strip channel, this LED strip offers long maintenance-free life, several color temperatures, lumen outputs and lengths. Ideal for new construction and retrofit applications in T5 and T8 lengths. Ideal for uplight and downlight in commercial, retail, manufacturing, warehouse, cove and display applications. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. <u>Click here for Acrylic-Polycarbonate</u> Compatibility table for suitable uses.

CONSTRUCTION --- Compact-design channel and cover are formed from code-gauge cold-rolled steel. Easy to install row aligner included for continuous row mounting.

Finish: Paint options include high-gloss, baked white enamel (WH), galvanized (GALV), matte black (MB) and smoke gray (SKGY). After fabrication, five-stage iron phosphate pre-treatment ensures superior paint adhesion and rust resistance.

OPTICS — Standard diffuse snap on/snap off lens eliminates pixels, improves uniformity and minimizes glare, L/LENS option available.

ELECTRICAL - L70>60,000 hours. Utilizes high-output LEDs integrated on a two-layer circuit board, ensuring cool-running operation. Optional internal pluggable wiring harness for reduced labor cost in row mounting applications. (See PLR_ ordering information on page 2.) Electronic LED driver is rated for 75 input watts maximum (see Operational Data on page 4 for actual wattage consumption), multi-volt input and 0-10V dimming standard. This fixture is designed to withstand a maximum line surge of 2.5kV at 0.75kA combination wave for indoor locations, for applications requiring higher level of protection additional surge protection must be provided.

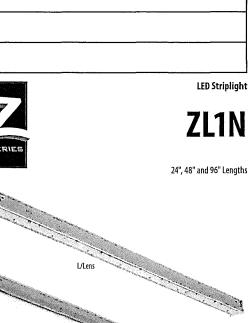
LEDs provide nominal 80 CRI at 3000 K, 3500 K, 4000 K, or 5000 K.

Lumen output up to 2,000 lumens per foot. In 86°F (30°C) ambient environments. Luminaire should be installed in applications where ambient temperatures do not exceed 86°F (30°C).

INSTALLATION ---- Tool-less channel cover for easy installation.

Fixture may be surface mounted (with or without ZSPRG hanger), pendant or stem mounted with appropriate mounting options. Three-point aligner locks in place for easy continuous row mounting. LISTINGS ----- CSA certified to US and Canadian safety standards. For use in damp locations between -40°F (-40°C) and 86°F (30°C).

DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified


BUY AMERICAN ---- Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY ----- 5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at:

www.acuitybrands.com/support/warranty/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

And a start in Lensed (D)

4 Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+ Certified solution for nLight* control networks marked by a shaded background*

To learn more about A+, visit www.acuitybrands.com/aplus.

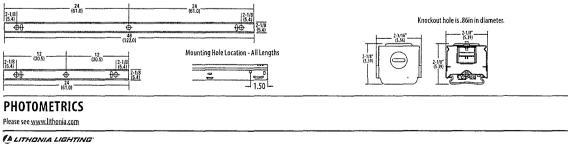
*See ordering tree for details

ALASKA ARCHITECTURAL		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Series	Length	Reflectors;	Nominal lumens‡		Diffuser	Voltag	e
ZLIN LED striplight TZLIN LED striplight ‡	L24 24" ‡ L46 46" L48 48" L92 92" L96 96"	(blank) Less reflector SMR Symmetric (blank) Less reflector ASR Asymmetric (L48 only) SMR Symmetric (blank) Less reflector SMR Symmetric	1500LM 1,500 lumens 2500LM 2,500 lumens 3500LM 3,500 lumens 3000LM 3,000 lumens 5000LM 5,000 lumens 7000LM 7,000 lumens 6000LM 6,000 lumens 10000LM 10,000 lumens	-	FST Snap on frosted, diffuse L/LENS No diffuser SBL FST Straight blade louver with snap on frosted, diffuse	MVOLT 120 208 240 277 347 480	120-277V 120V 208V 240V 277V 347V ‡ 480V ‡
Color.temperature Color 30K 3000 K 80C1 35K 3500 K 90C1 40K 4000 K 50K 50K 5000 K 1000 K		Title 20 non-compliant (2E7W Two Power Sentry' P575 batteries, CA Title 20 non- E10WLCP Power Sentry' P51055LC Certified in CA Title 20 M 2E10WLCP Iwo Power Sentry' P510 batteries, Certified in CA	watt emergency battery, CA <u>UNKS</u> 0L, 7 watt emergency -compilant (<u>UNK</u>)‡ 7.10 watt emergency battery, AEDBS (<u>LINK</u>)‡ 55CUF, 10 WAEDBS (<u>LINK</u>)‡ 7.15 watt emergency battery, AEDBS (<u>LINK</u>)‡	Individ LBOZU LBHOSZU LBHOSZU LBMOSZ LBMOSZ CSTW CS3W	ing heights), high/low occupancy dimming, pre-wired (LNK)‡ 360° low unout LSXR PIR sensor, (7-15' mour heights), ON/OFF photocell, pre-wired (LINK) U 360° low mount LSXR PIR sensor, (7-15' mour ing heights), dimming and switching photoce pre-wired (LINK) ‡) ‡ itt= tting tti tti ell, lug,	Paint finish WH White GALV Galvanize MB Matte blav SKGY Smoke gra
		RLSXR10 sensor, (7 to 15' heights) NLTAIR2 nLight® Air Generation 2	enabled, 360° low mount ,UL 924 Emergency Opera- detection (not available	CS7W CS11W CS25W CS97W CS93W	conductor, white, 6ft Cord with NEMA 7-15P, 277V straight blade pi 18 gauge, 3 conductors, white, 6ft Cord with NEMA 12-15P, 277V twist lock plug gauge, 3 conductors, white, 6ft Cord with NEMA 12-30P, 347V twist lock plug 18 gauge, 3 conductors, white, 6ft Cord with NEMA 18-20P, 480V twist lock plug gauge, 3 conductors, white, 6ft Cord only (no plug), 18 gauge, 3 conductors, white, 6ft	lug, , 18 g,	

Accessories, Dider	as separate catalog number.		
HC36 M12	Hanger chain, 36" (1 pair)	ZLR L24 SYM UPL WH	24" symmetric reflector with uplight, white finish
ZACVH M100	Adjustable 10' aircraft cable with Y hanger	ZLR L24 SYM WH	24" symmetric reflector, white finish
	(1 pair)	ZLR L46 SYM UPL WH	46" symmetric reflector with uplight, white finish
ZLANGBKT	Luma-tilt™ angle bracket for shelf or ledge mounting only	ZLR L46 SYM WH	46" symmetric reflector, white finish
SQ	Swivel stem hanger (specify length in 2" increments up to 48")	ZLR L48 ASY WH ZLR L48 SYM UPL WH	48" asymmetric reflector, white finish 48" symmetric reflector with uplight, white finish
NPP16D	nLight® wired power/relay pack, 0-10VDC dimming output (<u>LINK</u>)	ZLR L48 SYM WH ZLR L92 SYM UPL WH	48" symmetric reflector, white finish 92" symmetric reflector with uplight, white finish
RPP20D	nLight [®] air Generation 2 enabled, power/ relay pack, 0-10V dimming output (<u>LINK</u>)	ZLR 192 SYM WH ZLR 196 SYM UPL WH	92" symmetric reflector, white finish 96" symmetric reflector with uplight, white finish
LSXR	Sensor Switch*LSXR occupancy sensor (LINK)	ZLR L96 SYM WH	96" symmetric reflector, white finish
ZSPRG J2	Tong and T-grid hanger, for 15/16" T-grid (Order quantity required in multiples of 2)	UNIVERSAL REFL ALIGNER	Universal reflector aligners, quantity 1
WGZ24	24" wireguard, white ‡		
WGZ48	48" wireguard, white ‡		

COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com vww.lithonia.com


ZL1N

ALASKA ARCHITECTURAL UGHTING		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

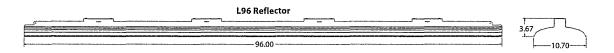
	toption Value Ordering Restrictions
Option value	Restriction
2E7W	MVOLT required. Available with L92 or L96 only. Not available with L24, L46, L48, L92 6000LM, L96 6000LM or any cordset that includes a plug.
2E10WLCP	MVOLT required. Available with 1.92 or L96 with 10,000LM or 14000LM only. Not available with 1.24, L46, L48, L92 6000LM, L96 6000LM or any cordset that includes a plug.
347,480	Utilizes step down transformer.
Cord Sets	Must specify voltage when plug is inlcuded. Cordsets exit back of fixture unless OUTEND option is specified.
E7W	MVOLT required. Available with L46, L48, L92 or L96 with 10000LM or 14000LM only. Not available with L24 or any cordset that includes a plug.
E10WLCP	MVOLT required. Available with L46, L48, L92 or L96 only. Not available with L24 or any cordset that includes a plug.
E15WLCP	MVOLT required. Available with L92 or L96 only. Not available with L24, L46, L48 or any cordset that inlcudes a plug.
HTZL1N	Tandem fixture ships as two L46 or L48 fixtures.
Individual Controls	Available with MVOLT, 347 or 480 only. See ordering information on page 6 for more configurations. This sensor configuration is suitable for minimum ambient temperature of 14°F (-10°C). See page 5 for low temperature option providing -4°F (-20°C) minimum ambient. When choosing Sensor and PLR for same fixture, consult the factory. Sensors come prewired, they must be snapped into place at time of installation.
L24	Not available with 347V, 480V or emergency batteries.
nLight* Wireless	See LINK in sensor description to RLSXR specification sheet for more configurations. When choosing a sensor and PLR for same fixture, consult the factory. Sensors come prewired, they must be snapped into place at time of installation.
NLTAIR2 RLSXR10EM	Not available with 347 or 480. MVOLT required.
Nominal Lumens	See Operational Data on page 2 for actual lumens.
PLR	Not available with cordset options. Not available with sensor options. See ordering information on page 5.
PLR1LVG	Not available with cordset options. Not available with sensor options.
Reflectors	Optional. Reflectors ship separately.
WGHZ24	Not available with ASR or SMR reflector options.
WGHZ48	Not available with ASR or SMR reflector options. Order a Qty of 2 for L92 or L96 tandem fixtures.

XV.	ALASKA ARCHITECTURAL		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

	ATIONAL DATA Nominal Iumen	Length (inches)	(CT@77°F()	imens 3000 K 25°C) ambient erature	CCT@77°F(2	imens 3500 K 25°C) ambient erature	CCT@77°F	Lumens 4000 K (25°C) ambient perature	CCT@77°F(2	imens 5000 K 15°C) ambient erature	Wattage @ 120V/277V	Comparable Li	ght Source		
	package	(incres)	80 CRI	90 CRI	80 CRI	90 CRI	80 CRI	90 CRI	80 CRI	90 CRI	@ 1204/2/74				
	1500LM	24	1738	1409	1777	1467	1804	1494	1871	1528	15	1-lamp 17	W T8		
	2500LM	24	2265	1846	2315	1900	2351	1947	2438	1991	19	1-lamp 17	W T8		
	3500LM	24	3586	2924	3666	3026	3723	3084	3860	3152	31	1-lamp 32W T8, 1-lamp	SAW T5HO, SOW HID		
	3000LM	46 or 48	3172	2586	3243	2677	3293	2728	3415	2788	25	1-lamp 32W T8, 1-lamp	54W TSHO, SOW HID		
Dacija	SOOOLM	46 or 48	4417	3601	4515	3727	4585	3798	4754	3882	34	2-lamp 32W T8, 1-lamp	54W TSHO, 70W HID		
	7000LM	46 or 48	6535	5328	6681	5515	6785	5619	7035	5744	52	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI		
	6000LM	92 or 96	6561	5349	6708	5537	6812	5642	7063	5767	48	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI		
	10000LM	92 or 96	8687	7082	8881	7331	9019	7470	9351	7636	68	4-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI		
	14000LM	92 or 96	12457	10513	12735	10665	12933	10711	13409	10949	104	4-lamp 32W T8, 3-lamp 5	4W T5H0, 150W HI		
	1500LM	24	1881	1534	1923	1588	1953	1618	2025	1654	15	1-lamp 17	W T8		
	2500LM	24	2452	1999	2506	2069	2545	2108	2639	2155	19	1-lamp 17	W T8		
	3500LM	24	3882	3165	3969	3276	4031	3338	4179	3412	31	1-lamp 32W T8, 1-lamp	54W T5H0, 50W HI		
	3000LM	46 or 48	3434	2800	3511	2898	3565	2953	3697	3019	25	1-lamp 32W T8, 1-lamp	1-lamp 32W T8, 1-lamp 54W T5H0, 50W HI		
	5000LM	46 or 48	4781	3898	4888	4035	4964	4111	5147	4203	34	2-lamp 32W T8, 1-lamp 54W T5H0, 70W I			
	7000LM	46 or 48	7075	5768	7233	5971	7345	6083 ,	7616	6219	52	3-lamp 32W T8, 2-lamp 54W T5H0, 100W			
	6000LM	92 or 96	7103	5791	7261	5995	7374	6108	7646	6243	48	3-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI		
	10000LM	92 or 96	9404	7667	9614	7937	9764	8087	10123	8266	68	4-lamp 32W T8, 2-lamp 5	4W T5H0, 100W HI		
	14000LM	92 or 96	13485	10994	13786	11381	14001	11596	14516	11853	104	4-lamp 32W T8, 3-lamp 5	4W T5H0, 150W HI		
	IFCTED	IIIII			aller to an				лт		1	1	1		
	JECTED		1000.00	erating Hour			0	15,000)	30,000	45,000	60,000	100,000		
41	NTENAN	CE .	1 Lu	men Mainten	ance Factor		1	0.94		0.89	0.83	0.79	0.67		
м	ENSION	s					P	ALLET DIMENS	ONS						
	isions are shown tions subject to c			therwise noted.			L	ength App	roximate wei	ght Fixture	s per pallet	Approximate pallet dim	ensions (L x W x H		
		ange mineur						L24	7 lbs.		408	46" X 51" X 32	11/16"		
								L46	11 lbs.		176	46" X 51" X 32	1/16"		
								L48	12 lbs.		176	46" X 51" X 3	1 3/8"		
							1	L92	22 lbs.		176	46" X 98 1/2" X	31 1/16"		
	23		46 (58)	23.				L96	24 lbs.		176	46" X 98 1/2" X	31 1/16"		
÷∳-	• ••	······		(36) N	·····	120 ⊕ ≠∃{20									
						92 (234)					**				
1									46 (117)			riš\$1			
Þ¢-	• •			-++	**		+			•	•4+	⊕ +3 (3)			
31			(122	.0)						(122.0)		2-1/8 15.41			
1												[15.4]]			


COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com www.lithonia.com © 2013-2022 Acuity Brands Lighting, Inc. All tights reserved. Rev. 07/11/22 Page 4 of 7

Attachment A - Application Packet


ZL1N

M	ALASKA ARCHITECTURAL		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
		Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

REFLECTORS (Optional)

PHOTOMETRICS

Please see www.lithonia.com

PLUG-IN WIRING INFORMATION

Advanced plug-in system with two-circuit capability. Available on industrial and strip products and a variety of architectural products mounted in continuous. PLR22 (2-circuit) and crossover harness switches hot circuit serving next fixture in row. Reduces fixture types on job for alternating circuit applications (see example below.)

Easy one-step installation, saves up to 35% on labor costs. Expanded switching flexibility helps save energy.

Rows can be 50% longer with two-circuit systems. Polarized, lock-together nylon connectors prevent miswiring in the field. #12 THHN conductor, rated 600V, 90°C. White neutral wire included. Grounding accomplished by fixture in-row connectors.

CSA certified systems available with up to 2 circuits. G ground required.

Not for use with dedicated emergency circuits.

Note: Specifications subject to change without notice.

ORDERINGINFORMATION Lead times will vary depending on options selected. Consult with your sales representative

									1	
Series	Number o	of hot wires	Branch	circuits			Dim	ming	Gro	und
PLR	(blank)	Not required for PLR22	<u>Circuits</u>	to which driver is connected	Battery	harging circuit (must be unswitched)	LV	Low-voltage	G	Ground (required)
PLR22	1	Black -	(blank)	Not required for PLR22 or PLR1	(blank)	No battery charging circuit		dimming		
	2	Black and red	A	Black wire	ELA	Battery pack wired to black wire				
			В	Red wire	ELB	Battery pack wired to red wire				

Typical Applications

Multiple-circuit and single-circuit for longer continuous rows

Multiple-circuit with alternating fixtures on separate circuits, 2-circuit (PLR22) •

Multiple circuit with night-lights located along row as desired

A LITHONIA LIGHTING

COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercial indoor@acuitybrands.com www.lithonia.com © 2013-2022 Acuity Brands Lighting, Inc. All rights reserved. Rev. 07/11/22 Page 5 of 7

ZL1N

Wiring

R

Advanced 1 or 2-Circuit Plug-In

\mathcal{N}^{\dagger}	ALASKA ARCHITECTURAL LIGHTING		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
	1	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

- LSXR Fixture Mount Occupancy Sensor (see <u>www.</u> AcuityControls.com for additional information)
- Three interchangeable lens options to satisfy multiple mounting heights and coverage pattern requirements.
- Integrated mounting bracket drops lens down 3" from chase nipple.
- Single or dual relay versions designed with robust protection from the harsh switching requirements of T5 and LED loads.
- Photocell and 0-10VDC dimming options.
- No PIR field calibration or sensitivity adjustments required.
- Sensor ambient temperature rating of 14°F (-10°C) to 131°F (55°C).

DUAL RELAY (Available with 120, 277, and 347V only)

LSXR configuration	Comparable CMRB sensor	Old style sensor nomenclature
For shortest lead ti	mes use one of the fol	owing LSXR configurations
LCOZU	CMRB 50	MSI
LCHOSZU	CMRB 50 D	MSID
LCPZU	CMRB 50 P	MSIPED
LAOZU	CMRB 6	MS1360
LAHOSZU	CMRB 6 D	MSI360D
LAPZU	CMRB 6 P	MSI360PED

SELECTIONS BELOW WILL EXTEND ORDER LEAD TIME. CONSULT YOUR SALES REPRESENTATIVE FOR DETAILS.

SINGLE RELAY ORDERING INFORMATION Example: LAHOSZU Default occupancy time delay Series Lens option Dimming/Photocell Max. dim level Temp/Humidity Min. dim level L LSXR passive infrared indoor 10 VDC A High mount, 0 None¹ 0 S Minimum dim Z None 1 30 sec level of ballast Н High/low occupancy 9 9 VDC T Low temperature² D 2.5 min occupancy sensor Low mount, 360° 1 VDC B 1 operation 8 VDC χ 5.0 min 8 Switching photocell Ρ 2 2 VDC 7 7 7 7 000 R 7.5 min High mount aisleway C (on/off) 3 3 VDC U 10.0 min . Dimming and М 4 VDC (with minimum 15 4 switching photocell minute on time) 5 5 VDC Dimming and switching photocell with high/low oc-cupancy operation G ۷ 15.0 min 6 6 VDC W 20.0 min 30.0 min Y

Notes

Notes

1 Max and min dim levels not applicable with this option.

2 Ambient temperature rating of -4°F (-20°C) to 131°F (55°C).

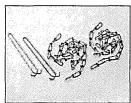
1 Ambient temperature rating of -4°F (-20°C) to 131°F (55°C).

ORDERING INFORMATION Example: LA2KZU Poles Operating mode Temp/Humidity Default occupancy time delay Series Lens option L LSXR passive infrared A High mount, 360° 30 sec 2 Dual relay None Z None 1 1 indoor occupancy sensor Alternating off relays (promotes even lamp wear) Low tempera-ture¹ 2.5 min B Low mount, 360° T K D C High mount aisleway 0 Alternating off relays w/photocell Х 5.0 min Switching photocell(on/off) 7.5 min Р R Photocell on/off (pole 1 only) 10.0 min (with minimum U Е 15 minute on time) F Photocell on/off - both poles (dual set-point) ۷ 15.0 min 20.0 min W Y 30.0 min

Example: LENS 50 J100

Replacement	lenses: Ord	ler as separate catalog numbe	ઝ	
Series	Lens	type	Package	quantity
LENS	6	High mount 360°	[blank]	Single Lens
	10	Low mount 360°	J10	10-pack
	50	High mount aisleway	J100	100-pack

A LITHONIA LIGHTING


COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoon@acuitybrands.com www.lithonia.com ©2013-2022 Acuity Brands Lighting, Inc. All rights reserved. Rev. 07/11/22 Page 6 of 7

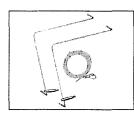
ZL1N

ALAS ARCH	SKA HITECTURAL TING		Catalog Number: ZL1N L48 5000LM FST MVOLT 40K 80CRI E10WLCP WH	AE
	1	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

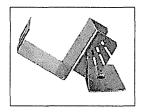
OPTIONS AND ACCESSORIES

The Z Series fixture offers numerous options for almost every electrical and optical component, including a long list of field-installable accessories.

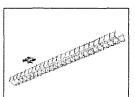
HANGER CHAIN 36" chain with Y hanger. Order as:


HC36

Z SPRING HANGER


Snap 'n' lock design requires no fasteners and can be used on T-grid ceiling or universal mounting systems.

Order as: ZSPRG J2


ZACVH HANGER 10' Aircraft cable with Y hanger. Order as:

ZACVH

ANGLE MOUNTING BRACKET Luma-tilt™ angle bracket ships as a pair

Order as: ZLANGBKT

Order as: WGZ24 WGZ48

WIRE GUARD

COMMERCIAL INDOOR: One Lithonia Way, Convers, GA 30012 Phone: 800-705-SERV (7378) techsupport-commercialindoor@acuitybrands.com www.lithonia.com © 2013-2022 Acuity Brands Lighting, Inc. All rights reserved. Rev. 07/11/22. Page 7 of 7

ZL1N

Project 22-28191-2 SEARHC Juneau Vintage Park Submitted By

ALASKA ARCHITECTURAL LIGHTING

Catalog Number: WDGE3 LED P2 40K 70CRI RFT MVOLT SRM DDBXD

Catalog Number

Notes

Type

Note:

SE

WDGE3 LED Architectural Wall Sconce 107 **M** n G **Buy American** 111LE 20 Specifications 凸

Depth (D1):	8"		
Depth (D2):	1.5"		
Height:	9"		
Width:	18 "		
Weight: (without options)	19.5 lbs	W	D1

Introduction The WDGE LED family is designed to meet specifier's every wall-mounted lighting need in a widely accepted shape that blends with any architecture. The dean rectilinear design comes in four sizes with lumen packages ranging from 1,200 to 25,000 lumens, providing a true site-wide solution. Embedded with nLight® AIR wireless controls, the WDGE family provides additional energy savings and code compliance.

WDGE3 has been designed to deliver up to 12,000 lumens through a precision refractive lens with wide distribution, perfect for augmenting the lighting from pole mounted luminaires.

WDGE LED Family Overview

umbrain	for and a Difference	Graffith DVC		Lumens (4000K)								
Luminaire	Standard EM, 0°C	(010 EM) -20 (. Sensor	(P1)	12	(93)	P4	P5	P6			
WDGE1 LED	4W		-	1,200	2,000			-	-			
WDGE21ED	10W	18W	Standalone / nLight	1,200	2,000	3,000	4,500	6,000				
WDGE3 LED	15W	18W	Standalone / nLight	7,500	8,500	10,000	12,000	-				
WDGE4 LED	-		Standalone / nLight	12,000	16,000	18,000	20,000	22,000	25,000			

Ordering Information

EXAMPLE: WDGE3 LED P3 40K 70CRI R3 MVOLT SRM DDBXD

eries	Package	Color Tempera	iture (Ri	Distri	bution	Voltage	Mount	(09)	·	
WDGE3 LEE	D P1 P2 P3 P4	30K 3000 40K 4000 50K 5000	K 80		Type 2 Type 3 Type 4 Forward Throw	MVOLT 3471 4801	Shipp SRM ICW	ed included Surface mounting bracket Indirect Canopy/Ceiling Washer bracket (dry/ damp locations only) ³	Shipped AWS PBBW	Iseparately 3/8inch Architectural wall spacer Surface-mounted back box (top, left right conduit entry). Use when there is no junction box available.
ptions							•		Finish	
E15WH	Emergency battery backup, Cert Title 20 MAEDBS (15W, 5°C mir	ו)	Standalone S PIR		motion sensor for 8-15		intended f	or use on switched	DDBXD DBLXD	Dark bronze Black
E20WC	Emergency battery backup, Cert Title 20 MAEDBS (18W, -20°C n		PIRH	circuits with external dusk to dawn switching. Bi–level (100/35%) motion sensor for 15–30' mounting heights. Intended for use on switched			for use on switched	DNAXD DWHXD	Natural aluminum White	
PE² DMG³	Photocell, Button Type 0-10V dimming wires pulled o fixture (for use with an externa		PIR1FC3V	circuits with external dusk to dawn switching Bi-level (100/35%) motion sensor for 8–15' mounting heights with photocell pre-programmed for dusk to dawn operation.				DSSXD DDBTXD	Sandstone Textured dark bronze	
BCE	ordered separately) Bottom conduit entry for back (PBBW). Total of 4 entry points		PIRH1FC3V		Bi-level (100/35%) motion sensor for 15-30' mounting heights with photocell pre-program for dusk to dawn operation.			céll pre-programmed	DBLBXD DNATXD DWHGXD	Textured black Textured natural aluminum Textured white
SPD10KV BAA	10kV Surge pack. Buy America(n) Act Compliant		NLTAIR2 PIR NLTAIR2 PIR NLTAIR2 PIRH See page 4 for out	nLightAIR Wireless e nLightAIR Wireless e	mabled bi-level motion/ mabled bi-level motion/				DSSTXD	Textured sandstone
	Accessori		See page 4101 0011	n box toschonanty			NOTE	ES		
DGEAWS DDB) DGE3PBBW DC		ral Wall Spacer (spe					E1 2 PE	47V and 480V not available 15WH and E20WC. E not available in 480V and ensors/controls.		DMG option not available wit sensors/controls. Not qualified for DLC. Not available with emergency bat backup or sensors/controls

ALASKA ARCHITECTURAL LIGHTING		Catalog Number: WDGE3 LED P2 40K 70CRI RFT MVOLT SRM DDBXD	SE
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Performance	(here-stime	(1)10 Teter		30K (3000K, 70 CRI)		40K (4000K, 70 CRI)			50K (5000K, 70 CRI)								
Patikaje	System Watts	Dist.Type	1.0mens	(LPW)	B	U	G	Uniterits	(IPW/	6	(1)	6	lumens	(UPW)	ß	U	ଓ
		R2	7,037	136	1	0		7,649	148	2	Q	ð,	7,649	148	2	0	
P1	52W	R3 "	6,922	134	1	0	2	7,524	145	1	0	2	7,524	145	1	0	2
F1	5244	R4	7,133	138		0	2	7,753	150	1	0	2	7,753	150	100	0	2
		RFT	6,985	135		0	2	7,592	147	1	0	2	7,592	147		0	2
		R2	7,968	135	2	0	1	8,661	147	2	0	1	8,661	147	2	0	1
0.0	P2 59W	R3	7,838	133	1	0	2	8,519	144	1	0	2	8,519	144	1	0	2
F2		R4	8,077	137	1	0	2	8,779	149	1	0	2	8,779	149	1	0	2
		RFT	7,909	134	1	0	2	8,597	146	2	0	2	8,597	146	2	0	2
		R2	9,404	132	2	0	1	10,221	143	2	0	1	10,221	143	2	0	1
P3	71W	R3	9,250	130	2	0	2	10,054	141	2	0	2	10,054	141	2	0	2
гэ		R4	9,532	134	2	0	2	10,361	145	2	0	2	10,361	145	2	0	2
		RFT	9,334	131	2	0	2	10,146	142	2	0	2	10,146	142	2	0	2
		R2	11,380	129	2	0	1	12,369	140	2	0	1	12,369	140	2	0	1
P4	88W	R3	11,194	127	2	0	2	12,167	138	2	0	2	12,167	138	2	0	2
F4	00W	R4	11,535	131	2	0	2	12,538	142	2	0	2	12,538	142	2	0	2
		RFT	11,295	128	2	0	2	12,277	139	2	0	2	12,277	139	2	0	2

Electrical Load

Performance	Carrie (1)min	(Orrept (A)						
Package	System Watts	120V/	20/81/	2401/	277,11	3477.	4800	
P1	52W	0.437	0.246	0.213	0.186	0.150	0.110	
P2	59W	0.498	0.287	0.251	0.220	0.175	0.126	
P3	71W	0.598	0.344	0,300	0.262	0.210	0.152	
P4	88W	0.727	0.424	0.373	0.333	0.260	0.190	

Lumen Output in Emergency Mode (4000K, 70 CRI)

Option	Oist: Type	Lomens
	R2	3,185
E15WH	R3	3,133
	R4	3,229
	RFT	3,162
	R2	3,669
E20WC	R3	3,609
	R4	3,719
	RFT	3,642

Lumen Multiplier for 80CRI

· ((d)	Multiplier
30K	0.891
40K	0.906
50K	0.906

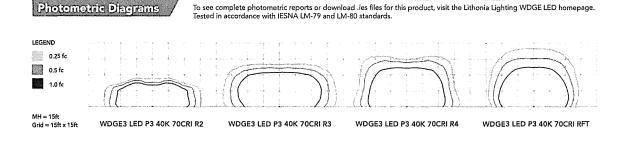
Lumen Ambient Temperature (LAT) Multipliers Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Amt	plent	Lumen Multiplier
0°C	32°F	1.05
10°C	50°F	1.03
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11). To calculate LUF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
lumen Maintenance Factor	1.0	>0.98	>0.97	>0.92



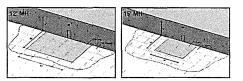
COMMERCIAL OUTDOOR

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • waveletherhold com © 2019-2022 Acuity Brands Lighting, Inc. All rights reserved.

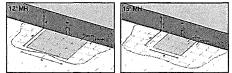
WDGE3 LED Rev. 03/01/22

ALASKA ARCHITECTURAL UGHTING SEARHC Juneau Vintage Park Submitted By ALASKA ARCHITECTURAL LIGHTING	Catalog Number: WDGE3 LED P2 40K 70CRI RFT MVOLT SRM DDBXD Note:	SE
---	--	----

Emergency Egress Options


Emergency Battery Backup

Grid = 10ft x 10ft


The emergency battery backup is integral to the luminaire — no external housing required! This design provides reliable emergency operation while maintaining the aesthetics of the product. All emergency battery backup configurations include an independent secondary driver with an integral relay to immediately detect loss of normal power and automatically energize the luminaire. The emergency battery will power the luminaire for a minimum duration of 90 minutes (maximum duration of three hours) from the time normal power is lost and maintain, minimum of 60% of the light output at the end of 90minutes.

Applicable codes: NFPA 70/NEC – section 700.16, NFPA 101 Life Safety Code Section 7.9

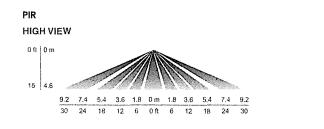
The examples below show illuminance of 1 fc average and 0.1 fc minimum in emergency mode with E15WH or E20WC and R4 distribution.

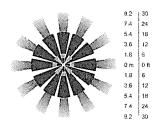
WDGE3 LED xx 40K 70CRI R4 MVOLT E15WH

WDGE3 LED xx 40K 70CRI R4 MVOLT E20WC

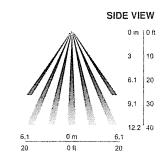
One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.ithcinva.com © 2019-2022 Acuity Brands Lighting, Inc. All rights reserved.

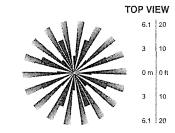
ARCHITECTURAL	•	Catalog Number: WDGE3 LED P2 40K 70CRI RFT MVOLT SRM DDBXD Note:	SE


Control / Sensor Options


Motion/Ambient Sensor (PIR_, PIRH_)

Motion/Ambeint sensor (Sensor Switch MSOD) is integrated into the the luminaire. The sensor provides both Motion and Daylight based dimming of the luminaire. For motion detection, the sensor utilizes 100% Digital Passive Infrared (PIR) technology that is tuned for walking size motion while preventing false tripping from the environment. The integrated photocell enables additional energy savings during daytime periods when there is sufficient daylight. Optimize sensor coverage by either selecting PIR or PIRH option. PIR option of the sensor lens that is optimized to provide maximum coverage for mounting heights between 8-15ft, while PIRH is optimized for 15-40ft mounting height.


Networked Control (NLTAIR2)

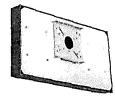

nLight® AIR is a wireless lighting controls platform that allows for seamless integration of both indoor and outdoor luminaires. Five-tier security architecture, 900 MHz wireless communication and app (CLAIRITY™ Pro) based configurability combined together make nLight® AIR a secure, reliable and easy to use platform.

PIRH

Motion/Ambient Sensor Default Settings


Option	(Qim(Leve)	High Level (when triggered	Photocell Operation	Motion Time Delay	Ramp-down Time	Ramp-up Time
PIR or PIRH	Motion - 3V (37% of full output) Photocell - 0V (turned off)	10V (100% output)	Enabled @ 5fc	5 min	5 min	Motion - 3 sec Photocell - 45 sec
PIR1FC3V, PIRH1FC3V	Motion - 3V (37% of full output) Photocell - 0V (turned off)	10V (100% output)	Enabled @ 1fc	5 min	5 min	Motion - 3 sec Photocell - 45 sec
NLTAIR2 PIR, NLTAIR2 PIRH (out of box)	Motion - 3V (37% of full output) Photocell - OV (turned off)	10V (100% output)	Enabled @ Sfc	7.5 min	5 min	Motion - 3 sec Photocell - 45 sec

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com © 2019-2022 Acuity Brands Lighting, Inc. All rights reserved. WDGE3 LED Rev. 03/01/22


ALASKA ARCHITECT JGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: WDGE3 LED P2 40K 70CRI RFT MVOLT SRM DDBXD	Type SE
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

Mounting, Options & Accessories

NLTAIR2 PIR - nLight AIR **Motion/Ambient Sensor** D = 8"

H=11" W = 18"

PBBW – Surface-Mounted Back Box Use when there is no junction box available. D = 1.75 H=9" W = 18'

A universal mounting plate with integral mounting support arms allows the fixture to hinge down for easy access while making wiring connections. The 3/8" Architectural Wall Spacer (AWS) can be used to create a floating appearance or to accommodate small imperfections in the wall surface. The ICW option can be used to mount the luminaire

inverted for indirect lighting in dry and damp locations. Design can withstand up to a 1.5 G vibration load rating per ANSI C136.31.

CSA certified to U.S. and Canadian standards. Light engines are IP66 rated; luminaire is

Less retentier to the state of the state of

Product with the BAA option is assembled in the USA and meets the Buy America(n) government

WARKAN I S-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed, Complete warranty terms located at: www.activitybranab.com/support/warranty/terms.and.canto.tums

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

procurement requirements under FAR, DFARS and DOT. Please refer to

AWS - 3/8inch Architectural Wall Spacer

D = 0.38 H = 4.4"W = 7.5'

FEATURES & SPECIFICATIONS

INTENDED USE Common architectural look, with clean rectilinear shape, of the WDGE LED was designed to blend with any type of construction, whether it be tilt-up, frame or brick. Applications include commercial offices, warehouses, hospitals, schools, malls, restaurants, and other commercial buildings.

CONSTRUCTION

The single-piece die-cast aluminum housing to optimize thermal transfer from the light engine and promote long life. The driver is mounted in direct contact with the casting for a low operating temperature and long life. The die-cast door frame is fully gasketed with a one-piece solid silicone gasket to keep out moisture and dust, providing an IP65 rating for the luminaire.

FINISH

Exterior painted parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Standard Super Durable colors include dark bronze, black, natural aluminum, sandstone and white. Available in textured and non-textured finishes

OPTICS

Individually formed acrylic lenses are engineered for superior application efficiency which maximizes the light in the areas where it is most needed. Light engines are available in 3000 K, 4000 K or 5000 K configurations. The WDGE LED has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

ELECTRICAL Uight engine consists of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L92/100,000 hours at 25°C). The electronic driver has a power factor of >90%, THD <20%. Luminaire comes with built in 6KV surge protection, which meets a minimum Category C low exposure (per ANSI/IEEE C62.41.2). Fixture ships standard with 0-10v dimmable driver.

COMMERCIAL OUTDOOR

One Lithonia Way · Conyers, Georgia 30012 · Phone: 1-800-705-SERV (7378) · varie lithonia com © 2019-2022 Acuity Brands Lighting, Inc. All rights reserved.

WDGE3 LED Rev. 03/01/22

INSTALLATION

LISTINGS

mounting only. BUY AMERICAN

WARRANTY

ALASKA ARCHITECTURAL	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: 55 942-K4	SK
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

LED semi-recessed ceiling downlight - partially frosted crystal glass

Application

LED semi-recessed ceiling luminaire with partially frosted crystal glass and symmetrical wide beam light distribution designed for downlighting atriums, passages and other interior and exterior locations.

Materials

Luminaire housing constructed of die-cast marine grade, copper free (≤0.3% copper content) A360.0 aluminum alloy Stainless steel trim ring Partially frosted crystal glass Reflector made of pure anodized aluminum High temperature silicone gasket Stainless steel screw clamps Galvanized steel rough in ceiling pan with through wiring box NRTL listed to North American Standards, suitable for wet locations Protection class IP 65 Weight: 1.4 lbs Electrical Operating voltage 120-277VAC -30°C 8.7W Minimum start temperature LED module wattage System wattage 11W Controllability 0-10V dimming down to 0.1% Ra > 85 744 lumens (3000K) Color rendering index

420,000 h (L70) 260,000 h (L70) Type: **BEGA Product:** Project: Modified:

LED color temperature

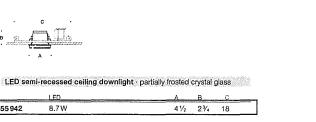
Luminaire lumens Lifetime at Ta = 15° C

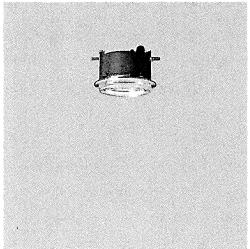
Lifetime at Ta = 40° C

□ 4000K - Product number + K4 □ 3500K - Product number + K35

3000K - Product number + K3 2700K - Product number + K27

BEGA can supply you with suitable LED replacement modules for up to 20 years after the purchase of LED luminaires - see website for details


Finish


55942

8.7 W

#4 brushed stainless steel.

Custom colors are not available. Stainless steel requires regular cleaning and maintenance, much like household appliances to maintain its luster and prevent tarnishing or the appearance of rust like stains.

BEGA 1000 BEGA Way, Carpinteria, CA 93013 (805) 684-0533 info@bega-us.com

Due to the dynamic nature of lighting products and the associated technologies, luminaire data on this sheet is subject to change at the discretion of BEGA North America. For the most current technical data, please refer to bega-us.com © copyright BEGA 2018

BEGA

ALASKA ARCHITECTURAL LIGHTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: 55 942-K4	SKE
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note: USE INVERTER BELOW	

Type:

Project:

Modified:

BEGA Product:

LED semi-recessed ceiling downlight - partially frosted crystal glass

Application

LED semi-recessed ceiling luminaire with partially frosted crystal glass and symmetrical wide beam light distribution designed for downlighting atriums, passages and other interior and exterior locations.

Materials

Luminaire housing constructed of die-cast marine grade, copper free (≤0.3% copper content) A360.0 aluminum alloy Stainless steel trim ring Partially frosted crystal glass Reflector made of pure anodized aluminum High temperature silicone gasket

High temperature silicone gasket Stainless steel screw clamps Galvanized steel rough in celling pan with through wiring box NRTL listed to North American Standards, suitable for wet locations Protection class IP65

Weight: 1.4 lbs

Electrical

Operating voltage Minimum start temperature LED module wattage System wattage Controllability Color rendering index Luminaire lumens Lifetime at Ta = 15° C Lifetime at Ta = 40° C 120-277VAC -30°C 8.7W 11W 0-10V dimming down to 0.1% Ra > 85 744 lumens (3000K) 420,000 h (L70) 260,000 h (L70)

LED color temperature

□ 4000K - Product number + K4 □ 3500K - Product number + K35

□ 3000K - Product number + K3 □ 2700K - Product number + K27

BEGA can supply you with suitable LED replacement modules for up to 20 years after the purchase of LED luminaires - see website for details

Finish

#4 brushed stainless steel.

Custom colors are not available.

Stainless steel requires regular cleaning and maintenance, much like household appliances to maintain its luster and prevent tarnishing or the appearance of rust like stains.

LED semi-recessed ceiling downlight · partially frosted crystal glass

	LED	A	В	<u> </u>
55942	8.7 W	47	2 23	4 18

BEGA 1000 BEGA Way, Carpinteria, CA 93013 (805) 684-0533 info@bega-us.com

Due to the dynamic nature of lighting products and the associated technologies, luminaire data on this sheet is subject to change at the discretion of BEGA North America. For the most current technical data, please refer to bega-us, com © copyright BEGA 2018

Attachment A - Application Packet

BEGA

ALASKA ARCHITECTURAL UCHTING SEARHC Juneau Vintage Park

Catalog Number: EMS-55-LC-V3-S

Submitted By ALASKA ARCHITECTURAL LIGHTING

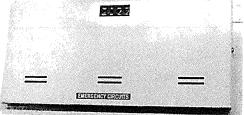
Note:

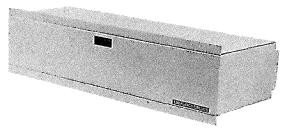
EMS

Emergency Micro Power Inverters

The EMS Series is designed to provide 20- to 55- Watts of emergency power to incandescent, fluorescent, and/or LED fixtures. The EMS unit provides clean, sinusoidal AC output power allowing it to be remotely mounted up to 1,000 feet away from the controlled fixture(s).

Unlike a ballast fluorescent emergency pack, the EMS provides power to the input side of the fixture, (including the ballast) eliminating any chance of incompatibility. EMS Series models are available for surface, recessed or ceiling T-Grid mounting if required. All EMS systems will provide emergency power output for a minimum of 90 minutes.


FEATURES


- For powering incandescent, fluorescent, and LED fixtures
- True sinusoidal AC pulse width modulated (PWM) design provides clean 60 Hz. emergency output
- Universal 120/277 VAC, 60Hz. input/output
- Unit capacities of 20 to 55 Watts
- "Soft Start" design reduces fixture inrush current
- Surface, recessed or T-Grid mount models
- Lumen output from fixture is 100% of nominal
- Unique design eliminates compatibility problems with LED drivers as well as fluorescent ballasts
- Normally ON, Normally OFF, or switched outputs
- Temperature compensated, dual-mode charger includes low voltage disconnect feature to provide protection against battery deep discharge

2572 Metropolitan Drive, Trevose, PA 19053 USA TEL: (800) 872 0879 * FAX:(215) 244 4208 * www.evenlite.com

- Maintenance-free Lead-Calcium and premium grade Nickel-Cadmium battery models offered
- Control panel with momentary test switch, AC-ON, Charge-ON and Inverter-ON LED indicators
- Battery circuit fuse protected
- Reverse battery and AC lockout protection
- Knockouts in back
- White powder coat finish

Project name:	Approved By:
Catalog No:	Туре No:

Submitted By ALASKA ARCHITECTURAL LIGHTING

EMS - Emergency Micro Power Inverters

Specifications

INPUT

Voltage:	120 or 277VAC ± 10%
Frequency:	120 or 277VAC ± 10%
Protection:	Provided by Service Panel, Rated 20A max.

OUTPUT

120 or 277VAC (60Hz)
98% at full rate load (line)
Sinusoidal (digitally controlled, PWM design)
± 5% during battery discharge. 0-100% linear load
60 Hz \pm 0.3Hz during emergency cycle
Less than 3% THD (linear load)
Less than 1.0 second
0.44 Lead to 0.44 Lag
0% of rated system capacity
Inverter fuse
9W

Mounting

- Surface MountSurface mount models are designed for mounting to walls by means of keyhole slots provided in the back of the unit housing.
- Recess MountRecess models provide recess mounting holes on both sides of the enclosure.
- T-Grid Mount: Housing design allows simple drop-in installation between t-grid runs. Safety wires (supplied by others) are required for attachment to building structure.

Warranty / Listing

- · Unit: 3 years limited coverage against defects in materials and workmanship from date of shipment.
- · Battery:Lead-Acid 3 years, one full and two pro-rated Nickel cadmium 5 years one full and four pro-rated
- · All models are UL924 Listed and meet NFPA 101 Life Safety Code, NEC, OSHA, Local and State Codes. Optional T-Grid models are plenum rated.

Housing

· Heavy duty steel cabinet has a white powder coat finish providing scratch and corrosion resistance.

SYSTEM SPECIFICATIONS

Model	System Weight Lbs.	Battery Type	Temp. Range (°C)	DC Input Current (VDC)	Input	Current	Thermal Output in BTUs		
					120VAC (max)	277VAC (max)	Standby	Emergency	
EMS-32	14.0	Lead-Calc	20-30°	3.4	0.34A	0.15A	7	32	
EMS-55	18.0	Lead-Calc	20-30°	5.7	0.54A	0.23A	7	47	
EMS-20	11.0	NiCad	0-50°	2.1	0.25A	0.11A	31	22	
EMS-35	12.0	NiCad	0-50°	3.8	0.37A	0.16A	31	35	

ORDERING GUIDE

Model	VA Rating	Battery Type	Input/Output		Options
EMS	32	LC	V3 120/277	5	Surface Mount
I	55	LC		RE	Recess Mount
	20	NiCad		ΤВ	T-Grid Mount
	35	NiCad			

2572 Metropolitan Drive, Trevose, PA 19053 USA TEL: (800) 872 0879 • FAX:(215) 244 4208 • www.evenlite.com

Submitted By ALASKA ARCHITECTURAL LIGHTING

EMS - Emergency Micro Power Inverters

Batteries and Charger

BATTERY

Battery: Choice of Maintenance Free Sealed Lead Calcium or Sealed Nickel-Cadmium

Battery Voltage: 12VDC for all EMS models

Runtime:90 minutes standard. Other runtimes available, consult factory.

Battery:Low Voltage Battery Disconnect protects the battery from being severely damaged by deep discharge during prolonged power failures.

DC Overload and Short Circuit Protection provided by a DC input fuse. Battery voltage (VDC) 12

CHARGER

Charger Type: Fully automatic, temperature compensated, dual-mode charger

Power Consumption: 9W max (All models)

Recharge Duty Cycle: Meets UL924 requirements

Controls:Momentary test switch, AC-On, Charge-On and inverter-On LED indicator lights

Safety Circuitry: AC lockout prevents battery discharge prior to initial unit power-up.

Brownout Protection automatically switches the unit to emergency mode when utility voltage is significantly reduced.

ENVIRONMENTAL

Altitude:< 10,000 feet (3,000m) above sea level without derating.

Operating Temperature Range: Lead-Calcium Models: 68°F to 86°F (20°C to 30°C) Nickel-Cadmium Models: 32°F to 122°F (0°C to 50°C)

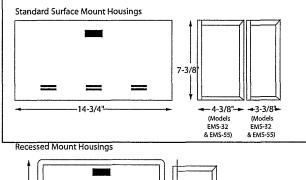
NOTE: Optimum system performance between 20°C (68°F) and 30°C (86°F); temperatures outside of the range will affect battery performance and life.

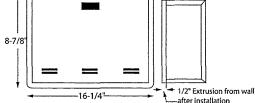
Relative Humidity95% non-condensing

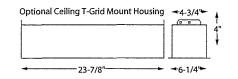
OPERATION

Upon failure of the normal utility power the EMS unit is automatically turned on by a solid state switching circuit and provides a minimum of 90 minutes of emergency power to the connected load. Lumen output will be maintained at 100% of the lamp's rating throughout the entire duration.

A solid state low voltage disconnect circuit is used to protect the battery from being severely damaged by a deep discharge. When normal utility power is restored, the unit switches the load back to normal utility operation and the fully automatic, temperature compensated, dual mode charger begins to restore the battery; bringing it to full charge within UL 924 specified parameters. A brownout sensing circuit insures proper operation during "low line" conditions.


Improved Aesthetics


The EMS system's sinusoidal AC output design eliminates voltage drop and proximity concerns. This allows added flexibility in installation location as EMS units can be installed hundreds of feet from the units they power. This means EMS units to be located conveniently out of sight in closets or utility rooms without interrupting architectural aesthetics.


EMS System Advantages

Compared to traditional discrete emergency lighting units, the EMS Series provides emergency illumination from a single power source resulting in lower maintenance overhead and routine testing expenses. EMS units lower installation costs by powering existing lighting fixtures during emergencies. And because connected fixtures are driven at full brilliance, they provide far superior egress lighting and deliver improved occupant safety

Dimensions

2572 Metropolitan Drive, Trevose, PA 19053 USA TEL: (800) 872 0879 • FAX:(215) 244 4208 • www.evenlite.com

V.	ALASKA ARCHITECTURAL	Project 22-28191-2 SEARHC Juneau V
		Submitted By

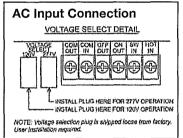
EMS - Emergency Micro Power Inverters

Note:

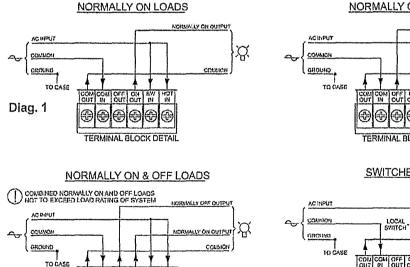
Suggested Specifications

An inverter system with sinusoidal output shall be supplied capable of powering any combination of lighting fixtures, including incandescent, fluorescent, induction and/or LED light sources without compatibility problems.

The system shall transfer in less than 1.0 second to reliably back up lighting fixtures without loss of illumination and operate any and all connected lighting fixtures at full lumen output during the complete 90 minute discharge cycle.

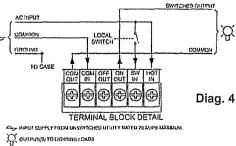

The input voltage shall be the same as the output voltage and shall be single phase 1201277 volts, 60 Hz. Output capacity will be 20/35 VA with NiCad Batteries or 32/55 VA with lead Acid Batteries to order for a minimum duration of 90 minutes.

The design shall be a standby, off-line inverter with on-line efficiency of 98%; on-line double conversion UPS systems shall not be considered acceptable alternatives EMS system output shall be a PWM generated sine wave with less than 3% total harmonic distortion. The system shall also provide short circuit and overload protection as standard.


An intuitive three LED display shall provide system operational information at a glance and alert user to any malfunction in system performance. Authorized maintenance personnel shall have access to the system's controls while being protected from any live exposed connections.

Protective devices shall include DC input fuse, AC input overcurrent protection for live circuits to be provided by service panel rated 20A maximum. AC lockout, reverse battery connection, low voltage battery disconnect (LVD), short circuit and overload protection shall be provided standard on all models. The entire EMS system, including batteries, shall be provided in compact cabinetry which shall have provisions or (surface)(recessed)(T-Grid) mounting.

System shall utilize a (sealed lead calcium battery with a 10 year design life)(sealed Nickel-Cadmium battery with a 15 year design life). The charger shall be temperature compensated, dual mode type, and recharge the batteries as per UL 924 guidelines. Entire system shall be tested, approved, and labeled to UL924 Emergency Lighting and Power Systems standards. T-Grid models will be plenum rated.


Wiring Diagrams

NORMALLY OFF LOADS

NORMALLY OFF DUIPOR COMMON Diag. 2 ERMINAL BLOCK DETAIL

FRMINAL BLOCK

Diag. 3

2572 Metropolitan Drive, Trevose, PA 19053 USA TEL: (800) 872 0879 • FAX:(215) 244 4208 • www.evenlite.com

FMS 10/15

ALASKA ARCHITECTURAL SEARHC Juneau Vintage Park

Catalog Number: LE S 1 R EL N SD

Submitted By ALASKA ARCHITECTURAL LIGHTING

Notes

Type

FEATURES & SPECIFICATIONS

 $\label{eq:intermediation} \textbf{INTENDED USE} \longrightarrow \textbf{Ideal for applications requiring attractive die-cast aluminum signage, superior illumination and low energy consumption.}$

CONSTRUCTION — Precision-molded, die-cast aluminum construction — ultra-slim, compact housing. Fine-grain brushed aluminum faceplate with matte black electrostatic polymeric trim. Clear lacquer finish on brushed face inhibits fingerprints and other surface contaminants.

All electronics located inside housing.

Fully overlapping light seal prevents light leaks. Universal directional chevron knockouts are completely concealed and easily removed. Hinged faceplate and spring latches for easy lamp compartment access, no exposed hardware.

Letters 6" high with 3/4" stroke, with 100 ft viewing distance rating, based upon UL924 standards. U.S. Patent No. 5,739,639, 5,954,423 and 6,502,044. Canada Patent No. 2,204,218. Other patents pending.

OPTICS — Lamp is constructed using new LED technology. Provides perfectly uniform illumination to meet 3/4" letter stroke required by code.

The typical life of the exit LED lamp is 10 years, based on continuous operation. Unique LED lamp platform accommodates both single-face and double-face exits.

Low energy consumption — red exit consumes std. 81W, 1.3W (120V), green exit consumes std is 1W, 1.5W (120V). Universal input voltage capabilities (120V through 277V, 50 or 60 HZ).

ELECTRICAL — Solid-state electronic elements to eliminate risk of electromechanical failures.

Surge protection meets ANSI/IEEE C62.41 category B and IEC 1000 immunity standards for high voltage surges, electrostatic discharges, high frequency electrical fast transients and line voltage dips/swells. Emergency Operation (for EL N option only): Battery: Sealed, maintenance-free nickel-cadmium battery delivers 90 minutes capacity to lamp.

Self-diagnostics (SD option only): Two-state constant-current charger maximizes battery life and automatically recharges after battery discharge. Test switch provided for manual testing.

Self-diagnostic testing for five minutes every 30 days, 30 minutes at 180-day interval, and 90 minutes annually.

Diagnostic evaluation of LED light source, AC to DC transfer, charging and battery condition. Continuously monitors AC functionality.

Low voltage disconnect prevents excessive deep discharge that can permanently damage the battery. Single-point microcomputer control for all electronic features.

Crystal oscillator timing system with watchdog protection for precision accuracy.

AC/LVD reset allows battery connection before AC power is applied and prevents battery damage from deep discharge.

Brownout protection is automatically switched to emergency mode when supply voltage drops below 80% of nominal.

Single multi-chromatic LED indicator to display two-state charging, test activation and three-state diagnostic status.

Test switch provides manual activation of 30-second diagnostic testing for on-demand visual inspection.

Die-Cast Aluminum Exits

NEMA

LE and LRE

LRE recessed

INSTALLATION — Universal mounting (top, end or back). Double face available with top or end mounting only. LRE: Trim ring has 3/4" depth adjustment to ensure a flush fit against the surface. Protrudes 1/10" from the surface. No exposed hardware.

Die-cast aluminum canopy provided for surface mount only.

LISTINGS — UL damp location listed 50°F - 104°F (10°C - 40°C). Meets UL 924, NFPA 101 (current Life Safety Code), NEC and 05HA illumination standards. North Carolina Department of Insurance. NEMA Premium certified.

WARRANTY — 5-year limited warranty. (Battery is prorated.) Complete warranty terms located at www.acuitybrands.com/CustometResources/Terms_and_conditions

Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Note: Specifications subject to change without notice,

ORDERING IN	FORMATION	For she	ortest lead tin	nes, con	figure products	using	bolded o	ptions.						Example: LE S 1 R EL N SD
Series LE LED, surface mount LRE LED, re- cessed	Face type S Stencil P Panel 1	Housing (blank) BZ W B	color Matte black, brushed aluminum face Dark bronze White Matte black	1	ber of faces Single face Double face ²	Lett R G	er color Red Green	Input vo	to one the diversity of the	Soperatic (blank) EL N X2	Physics and a second second		R I FA I	None Two tamper proof Torx-head screws Vandal-resistant shield (1/8" thick polycarbonate) ⁴ Field selectable fire alarm interface or flashing emergency operation with intermittent audible alarm (one flash per minute) ³ Fire alarm flashing interface ⁴ Flashing emergency operation and intermittent audible alarm ⁷ Self-diagnostics ⁷
Accessories: (ELA US12 ELA WG1 ELA WGEXT ELA WGEXE	Drder as separate 12" stem kit (se Back-mount wi Top-mount wir End-mount wir	e spec sheet re guard (se e guard (see	ELA-StemKi e spec sheet spec sheet <u>E</u>	ELA-WG LA-WG)) ² ELA ER		D/277 N	90 minute (see spec s	s of 11.1W ca heet <u>ELA-LEH</u> unting rough	pacity for re <u>10</u>) ^{2,8}		C	2 1 3 1 4 1 5 <i>1</i> 6 <i>1</i> 7 <i>1</i>	s anel face available for special wording only see Custom Signage spec sheet). Yot available with LRE models. It Listed as emergency lighting. Re contains tamper proof screws. Available with SD option only. Available with SD option only. Available with RE N option only. Add W for white.

EMERGENCY

LE-LRE

ALASKA ARCHITECTUR 210HTING	Project 22-28191-2 SEARHC Juneau Vintage Park	Catalog Number: LE S 1 R EL N SD	EXW
	Submitted By ALASKA ARCHITECTURAL LIGHTING	Note:	

LE-LRE LED, Signature

SPECIFICATIONS

ELECTRICAL							
Primary circuit							
Туре	Typical LED life'	Supply voltage	Input watts	Max. amps			
D. U.S. J.	10.1	120	0.81	0.05			
Red LED AC only	10 Years	277	1.2	0.06			
C 170 1C 1		120	1.05	0.05			
Green LED AC only	10 Years	277	1.32	0.06			
A 1155		120	1.3	0.06			
Red LED emergency	10 Years	277	1.4	0.07			
<	10.1	120	1.5	0.07			
Green LED emergency	10 Years	277	1.7	0.07			

BATTERY						
ealed Nickel-Cad	mium					
Shelf life ²	Typical life ²	Maintenance ³	Optimum temperature ⁴			
	7.0		50°F - 104°F			
3 years	7-9 years	none	(10°C - 40°C)			

Notes

1 The typical life of the exit LED lamp is 10 years, based on continuous operation.

2 At 77°F (25°C).

3 All life safety equipment, including emergency lighting for path of egress must be maintained, serviced, and tested in accordance with all National Fire Protection Association (NFPA) and local codes. Failure to perform the required maintenance, service, or testing could jeopardize the safety of occupants and will void all warranties. 4. Optimum ambient temperature range where unit will provide capacity for 90 minutes. Higher and lower

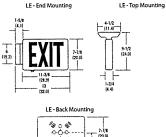
temperatures affect life and capacity.

SELF-DIAGNOSTICS (SD option only)

- Five-minute test every 30 days • .
- 30-minute test every six months
- 90-minute test annually •
- Diagnostics evaluate the battery, lamp, charger and AC to DC transfer.

Condition	Indication
Normal mode	Steady green
Self-testing	Flashing green
Emergency mode	Off
Hi-charge	Steady red
Battery failure	Single-flash red
Lamp failure	Double-flash red
Circuit failure	Triple-flash red

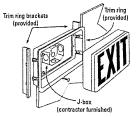
KEY FEATURE

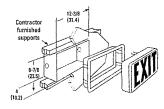


The typical life of the exit LED lamp is 10 years.

MOUNTING

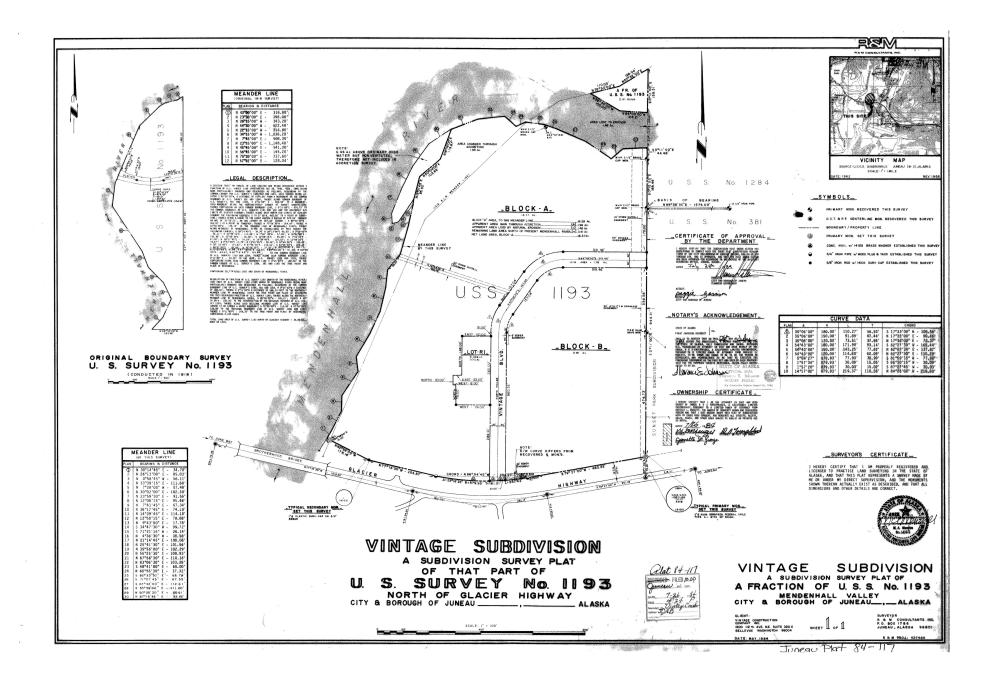
All dimensions are in inches (centimeters). For VR option, add 1/4" to height and width. Add 1/8" depth for single face; 1/4" depth for double face. Shipping weight: LE - 4 lbs (1.8 kas)


reignt:	LE - 4 IDS (1.8 Kgs)
	LE EL N- 5 lbs (2.3 kgs)
	LRE - 4 lbs (1.8 kgs)
	LRE EL N - 5 lbs (2.3 kgs)


STANDARD MOUNTING

Wall opening dimensions: 8-3/4" H x 12-3/8" W x 1-3/4" D

MOUNTING WITH OPTIONAL BOUGH-IN KIT (ELA ERK)



Wall opening dimensions: 8-7/8" H x 12-3/8" W x 4" D

A LITHONIA LIGHTING

EMERGENCY: One Lithonia Way, Conyers, GA 30012 Phone: 800-334-8694 www.lithonia.com

LE-LRE

Attachment B - Plat 84-117 Vintage Subdivision

CERTIFICATION OF PAYMENT OF TAXES

AND SPECIAL ASSESSMENTS

I, the undersigned, being duly appointed, qualified Treasurer or Deputy Treasurer for the City and Borough of Juneau, First Judicial District, State of Alaska, do hereby certify that, according to the records of the City and Borough of Juneau, the following described property is carried on the tax records in the name of:

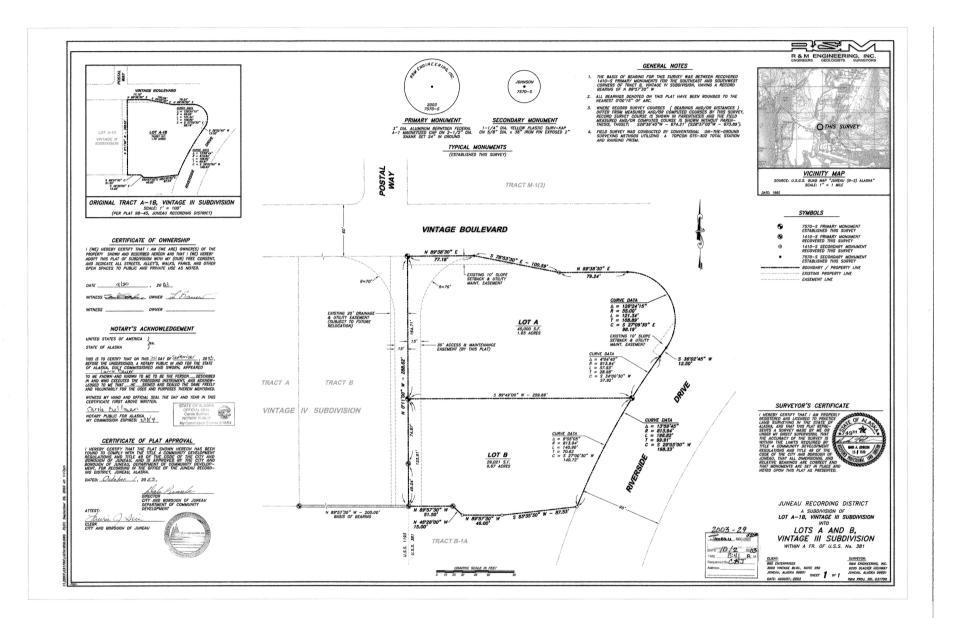
CQ Enterprises/ Vintage Construction Company

Description:

Fraction of U.S. Survey 1193

Parcel Code Number:

6


5-2-022-000-00A-1193

and that, according to the records in my possession, all taxes and special assessments assessed against said lands and in favor of the City and Borough of Juneau are paid in full; that current taxes of the year 1985 will be due on or before 09-30-85


Deputy Treasurer or Treasurer City and Borough of Juneau

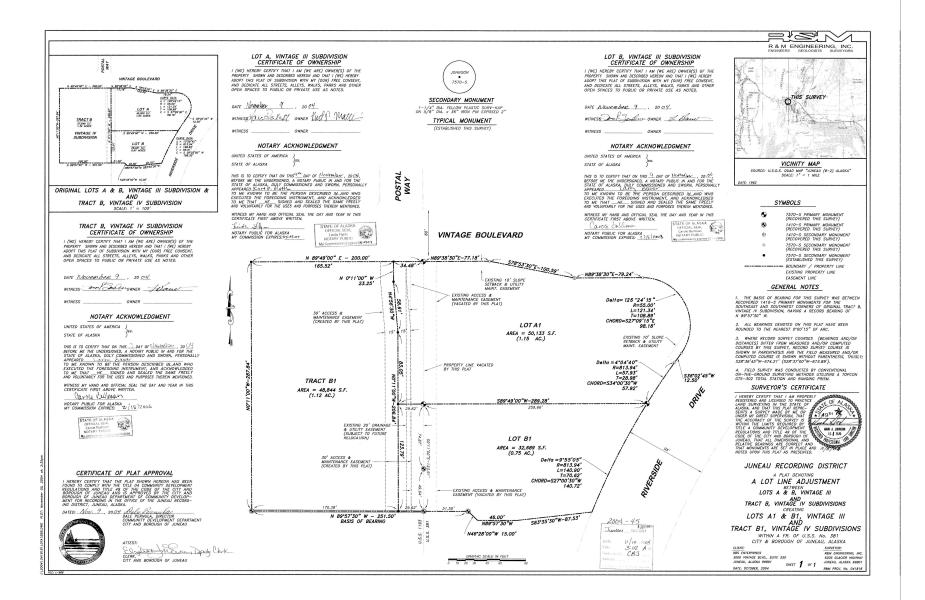
6 84-117

84-007122 IDNEAU REC. DISTRICT JUL 26 4 24 PM '84 REQUESTED BY JC. B ADDRESS

Juneau 2003-29

CERTIFICATION OF PAYMENT OF TAXES

I, the undersigned, being duly appointed, qualified Treasurer for the City and Borough of Juneau, First Federal District, State of Alaska, do hereby certify that, according to the records of the City and Borough of Juneau, the following described property is carried on the tax records in the name of:


BBS Enterprises
Current Owner
Vintage 3 L A-1B
Description
5-B16-0-143-001-2
Parcel Code Number

and that, according to the records in my possession, all taxes assessed against said lands and in favor of the City and Borough of Juneau are paid in full; that current 2003 taxes due on or before <u>September 30, 2003</u>, have been paid.

oye Barbara J. Rolfe, Tre

September 29, 2003 Date

155 So. Seward Street, Juneau, Alaska 99801-1397 -

Junen 2004-45

CITY/BOROUGH OF JUNEAU ALASKÁ'S CAPITAL CITY

CERTIFICATION OF PAYMENT OF TAXES

I, the undersigned, being duly appointed, qualified Deputy Treasurer for the City and Borough of Juneau, First Federal District, State of Alaska, do hereby certify that, according to the records of the City and Borough of Juneau, the following described property is carried on the tax records in the name of:

BBS Enterprises	
Current Owner	
VINTAGE 3 L B	
Description	
5-B16-0-143-001-6	
Parcel Code Number	

and that, according to the records in my possession, all taxes assessed against said lands and in favor of the City and Borough of Juneau are paid in full; that current 2004 taxes due on or before September 30, 2004, have been paid.

Calvin L. Kubota, Deputy Treasurer November 8, 2004

Date

— 155 So. Seward Street, Juneau, Alaska 99801-1397 —

TWEAN ZOOQ-45

CITY/BOROUGH OF JUNEAU ALASKA'S CAPITAL CITY

CERTIFICATION OF PAYMENT OF TAXES

I, the undersigned, being duly appointed, qualified Deputy Treasurer for the City and Borough of Juneau, First Federal District, State of Alaska, do hereby certify that, according to the records of the City and Borough of Juneau, the following described property is carried on the tax records in the name of:

 Dock Street Building Corporation

 Current Owner

 VINTAGE 3 L A

 Description

 5-B16-0-143-001-5

 Parcel Code Number

and that, according to the records in my possession, all taxes assessed against said lands and in favor of the City and Borough of Juneau are paid in full; that current 2004 taxes due on or before <u>September 30, 2004</u>, have been paid.

Calvin L. Kubota, Deputy Treasurer November 8, 2004

Date

- 155 So. Seward Street, Juneau, Alaska 99801-1397 ---

Junear 2004-45

CITY/BOROUGH OF JUNEAU ALASKÁS CAPITAL CITY

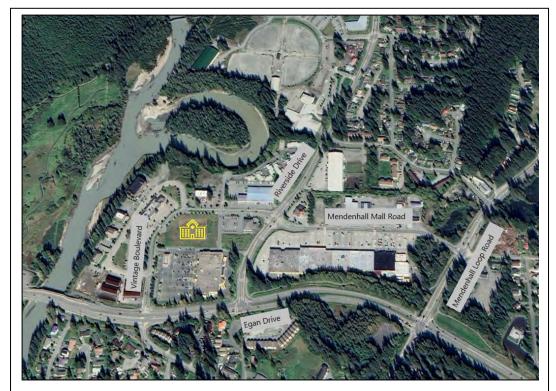
CERTIFICATION OF PAYMENT OF TAXES

I, the undersigned, being duly appointed, qualified Deputy Treasurer for the City and Borough of Juneau, First Federal District, State of Alaska, do hereby certify that, according to the records of the City and Borough of Juneau, the following described property is carried on the tax records in the name of:

Vintage Enterprises	
Current Owner	
VINTAGE 4 TR B	
Description	
5-B16-0-143-001-4	
Parcel Code Number	

and that, according to the records in my possession, all taxes assessed against said lands and in favor of the City and Borough of Juneau are paid in full; that current 2004 taxes due on or before <u>September 30, 2004</u>, have been paid.

Calvin L. Kubota, Deputy Treasurer November 9, 2004


Date

155 So. Seward Street, Juneau, Alaska 99801-1397 ----

Juneau SEARHC Medical Office Traffic Impact Analysis Final Report

May 2022

Prepared By: Randy Kinney, PE, PTOE Kinney Engineering, LLC 3909 Arctic Blvd, Ste 400 Anchorage, AK 99503 907-346-2373 AECL1102

Attachment E - March 2022 Traffic Impact Analysis

Table of Contents

Execu	tive Su	mmary	1
1	Introc	luction and Development Background	4
	1.1	Development Description	4
	1.2	City and Borough of Juneau Traffic Impact Analysis Requirements	5
	1.3	Site Plan	7
	1.4	Design Year and Design Hour	8
2	Proje	ct Area Background	9
	2.1	Surrounding Land Zoning	9
	2.2	Surrounding Land Uses And Site Land Use	10
	2.3	Traffic Improvements Already Funded, Programmed, Or Planned	10
	2.4	Other Committed Projects	11
3	Trans	portation System Elements	12
	3.1	Streets	12
	3.2	Intersections	13
	3.3	Pedestrian and Bicycle Facilities	16
	3.4	Transit	17
4	Traffi	c Data	20
	4.1	Average Annual Daily Traffic	20
	4.2	Riverside Drive Continuous Count Station	21
	4.3	Intersection Counts Used For Background Traffic Estimates	23
5	Crash	Analysis	26
6	Traffi	c Forecasting	
	6.1	Design Conditions	
	6.2	Background Traffic	
	6.3	Site Development Traffic	35
7	Traffi	c and Safety Analysis	
	7.1	Intersection Operation Impacts	
	7.2	Safety Impacts	58
	7.3	Transit System Impacts	58
	7.4	Pedestrian and Bicycle Impacts	58
	7.5	Driveway Impacts	59
8	Mitig	ation and Recommendations	62
	8.1	Egan Drive and Mendenhall Loop Road	62

8.2	Completion of the Vintage Boulevard Sidewalk Fronting the SEARHC Me	dical
	Offices	63
8.3	Demand Management Policies By SEARHC	63
8.4	Recommendations	64
Appendix A-	- Excerpts from ITE Trip Generation Manual for Project Land Uses	A
Appendix B-	AM Base Traffic Capacity Analysis Report	B
Appendix C-	PM Base Traffic Capacity Analysis Reports	C
Appendix D-	- AM Base + Site Traffic Capacity Analysis Report	D
Appendix E-	PM Base + Site Traffic Capacity Analysis Report	E
Appendix F-	Meeting Summary; CBJ and Kinney Engineering, LLC; July 27, 2021	F
Appendix G-	- Review Meeting Summary	G

Figures

Exhibit 1: TIA Study Area 1
Figure 2: SEARHC Medical Office Location Map 4
Figure 3: TIA Study Area 6
Figure 4: Proposed Site Plan (revised May 2022) 7
Figure 5: Existing Site Conditions
Figure 6: Area Zoning
Figure 7: Egan Drive and Riverside Drive
Figure 8: Egan Drive and Mendenhall Loop Road14
Figure 9: Riverside Drive and Vintage Boulevard/Mendenhall Mall Road 15
Figure 10: Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive
Figure 11: Egan Drive and Vintage Boulevard/Glacier Highway 16
Figure 12: Continuous Count Station Locations
Figure 13: Observed AM Study Area Intersection Movement Traffic Volumes
Figure 14: Observed PM Study Area Intersection Movement Traffic Volumes
Figure 15: AM Peak TMVs – Factored Base Condition 2019 30
Figure 16: PM Peak TMVs – Factored Base Condition 2019 31
Figure 17: AM Condo and Senior Site Trip Distribution to Near Intersections
Figure 18: PM Condo and Senior Site Trip Distribution to Near Intersections
Figure 19: AM Peak TMVs – Base Condition 2023 34
Figure 20: PM Peak TMVs – Base Condition 2023 35
Figure 21: AM Peak TMVs – Build Condition 2023 37

Attachment E - March 2022 Traffic Impact Analysis

Figure 22: PM Peak TMVs – Build Condition 2023	. 38
Figure 23: TIA Study Area Intersections	40
Figure 24: Egan Drive and Vintage Boulevard/Glacier Highway	. 42
Figure 25: Riverside Drive and Vintage Boulevard/Mendenhall Mall Road	. 44
Figure 26: Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive	. 48
Figure 27: Egan Drive and Mendenhall Loop Road	51
Figure 28: Egan Drive and Riverside Drive	. 55
Figure 29: Driveway Performance Measures	. 59
Figure 30: Departure Sight Triangles	60

Tables

Table 1: Weekday ADT for Proposed SEARHC Medical Offices 5
Table 2: Functional Classifications
Table 3: Capital Transit Routes and Service Near Proposed SEARHC Medical Office Facility 17
Table 4: AADT for Streets Within Study Area 20
Table 5: AADT by Year at CCS Juneau-Riverside Drive 22
Table 6: Riverside Drive CCS Monthly ADT by Year
Table 7: Intersections and Crash Types, 2013 to 2017
Table 8: Intersection Crash Severity, 2013 to 2017
Table 9: Intersection Crash Rates, 2013 to 2017 27
Table 10: Monthly Factor to Adjust 2019 Original Traffic Count Month to Peak Month
Table 11: 98 bed Senior Housing Trip Generation Calculation 32
Table 12: 11 Condos with 11 Commercial Garages Trip Generation Calculation 32
Table 13: 45,924 square foot Medical Office Building AM and PM Trip Generation Calculation
Table 14: Signalized and Unsignalized Intersection LOS Based on Control Delay
Table 15: AM Peak at Egan Drive-Vintage Boulevard Intersection, Base Condition 2023
Table 16: AM Peak at Egan Drive-Vintage Boulevard Intersection, Build Condition 2023 42
Table 17: AM Peak at Egan Drive-Vintage Boulevard Intersection Queue Lengths 43
Table 18: PM Peak at Egan Drive-Vintage Boulevard Intersection, Base Condition 2023
Table 19: PM Peak at Egan Drive-Vintage Boulevard Intersection, Build Condition 2023
Table 20: PM Peak at Egan Drive-Vintage Boulevard Intersection Queue Lengths
Table 21: AM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023.45
Table 22: AM Peak at Riverside Drive-Vintage Boulevard Intersection, Build Condition 2023 45

Table 23: AM Peak at Riverside Drive-Vintage Boulevard Intersection Queue Lengths
Table 24: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023 46
Table 25: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Build Condition 2023.46
Table 26: PM Peak at Riverside Drive-Vintage Boulevard Intersection Queue Lengths
Table 27: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection, BaseCondition 2023
Table 28: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection, BuildCondition 2023
Table 29: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection Queue Lengths
Table 30: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023 49
Table 31: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Build Condition 2023. 50
Table 32: PM Peak at Mendenhall Loop Road-Atlin Road Intersection Queue Lengths
Table 33: AM Peak at Egan Drive-Mendenhall Loop Road Intersection, Base Condition 2023. 52
Table 34: AM Peak at Egan Drive-Mendenhall Loop Road Intersection, Build Condition 2023 52
Table 35: AM Peak at Egan Drive-Mendenhall Loop Road Intersection Queue Lengths 53
Table 36: PM Peak at Egan Drive and Mendenhall Loop Road Intersection, Base Condition 2023
Table 37: PM Peak at Egan Drive and Mendenhall Loop Road Intersection, Build Condition2023
Table 38: PM Peak at Egan Drive-Mendenhall Loop Road Queue Lengths 54
Table 39: AM Peak at Egan Drive and Riverside Drive Intersection, Base Condition 2023 56
Table 40: AM Peak at Egan Drive and Riverside Drive Road Intersection, Build Condition 2023
Table 41: AM Peak at Egan Drive and Riverside Drive Intersection Queue Lengths 56
Table 42: PM Peak at Egan Drive and Riverside Drive Intersection, Base Condition 2023 57
Table 43: PM Peak at Egan Drive and Riverside Drive Intersection, Build Condition 2023 57
Table 44: PM Peak at Egan Drive and Riverside Drive Queue Lengths 57

Abbreviations

AADT	Annual Average Daily Traffic
AASHTO	American Association of State Highway and Transportation Officials
ASCT	Adaptive Signal Control Technology
CBJ	City and Borough of Juneau
CCS	Continuous Count Station
DOT&PF	Alaska Department of Transportation and Public Facilities
HCM	Highway Capacity Manual
ISD	Intersection Sight Distance
ITE	Institution of Transportation Engineers
KE	Kinney Engineering
LOS	Level of Service (intersection performance grade)
mph	miles per hour
PHF	Peak hour factor
SSD	Stopping Sight Distance
ST	Short term station
RIRO	Right-in-right-out
TIA	Traffic Impact Analysis
V/C	Volume to capacity ratio

N, S, E, W are north, south, east, and west

NB, SB, EB, WB are northbound, southbound, eastbound, and westbound

R, L, T are right, left, through (thru)

RT and LT, right (-) turn(ing) and left (-) turn(ing)

Definition of Terms

Access: Ability to enter and exit a given location from a public roadway.

Actuated Pedestrian Signal: Signal, which is activated, usually with a button, by pedestrians and bicyclists.

Adaptive Signal Control: Type of traffic signal that uses sensors and algorithms to give green time in a continuous and equitable manner.

Annual Average Daily Traffic (AADT): Measurement of the number of vehicles traveling on a segment of highway each day, averaged over the year.

Capacity: Value of the maximum flow rate

Continental Style Cross Walk: Style of pedestrian crossing which enhances the visibility of pedestrians to drivers. A series of stripes are installed perpendicular to the intersection creating a pattern similar to a zebra or ladder.

Crash Rate: Number of crashes per a unit of exposure. Common units of exposure include million vehicle miles traveled for roadway segments and million entering vehicles for intersections.

Crash Severity: Scale of bodily harm up to and including death, suffered by the occupants of a vehicle involved in a crash. There are four level of crash severity used: property damage only non-incapacitating/possible injury, incapacitating injury, and fatal.

Daily Delay: Sum of delay all drivers undergo in a day, given in vehicle-hours per day.

Flow: Rate which describes how many vehicles pass a given point within a set amount of time, usually an hour.

Interchange: Set of ramps and intersections used to allow traffic to travel to and from a controlled access freeway facility.

Level of Service (LOS): Performance measure concept used to quantify the operational performance of a facility and present the information to users and operating agencies. The actual performance measure used varies by the type of facility; however, all use a scale of A (best conditions for individual users) to F (worst conditions). Often, LOS C or D in the most congested hours of the day will provide the optimal societal benefits for the required construction and maintenance costs

Mobility: Ability of people and goods to move from one place to another.

Off-peak: Any period of the day which is not the peak hour

Peak Hour: Hour long period in which the volume of a given road is the highest for the day or given period. Morning, evening, and noon peak hours are often used for analysis, although peak hours may occur at other times, such as school dismissals.

Peak Hour Factor: Measure of traffic variability over an hour period calculated by dividing the hourly flowrate by the peak 15-minute flowrate. PHF values can vary from 0.25 (all traffic for the hour arrives in the same 15-minute period) to 1.00 (traffic is spread evenly throughout the hour).

Permanent Traffic Recorder: Vehicle counting device that remains in the same place throughout the years.

Safety: Count of crashes by severity at a given location

Upper Control Limit (UCL): Statistical measure used in crash rate analysis to determine statistical significance. If the crash rate of the location in question is above the upper control limit for that location, the crash rate is above the average crash rate for similar facilities to a statistically significant level.

Volume to Capacity Ratio (v/c): Measure of how much of the available capacity of a facility is being used, calculated by dividing the demand volume by the capacity of a facility. Values of 0.85 or less indicate adequate capacity to serve the demand volume. When v/c is greater than 0.85, drivers begin to feel uncomfortably crowded.

Executive Summary

This final report, completed in May 2022, revised the draft report submitted in March 2022. The final report retains computations, calculations, and conclusions, as well as addresses the minor comments or observations resulting in reviews and as described in letter from PND Engineers, Inc. to City and Borough of Juneau Community Development. The final report also includes the most recent 65% site plan, updated from the draft report site plan.

This Traffic Impact Analysis (TIA) Report addresses the potential traffic impacts of the proposed SEARHC medical office building development to be located along Vintage Boulevard in an area of Juneau listed as Traditional Town Center in the City and Borough of Juneau 2013 Comprehensive Plan Update. The property, shown in Exhibit 1Figure 3, is located on an empty 2.9-acre lot north of Safeway and across the street from the Post Office. This TIA evaluates the following labeled intersections during the AM and PM peak time period for the build year of 2023.

- 1. Egan Drive and Vintage Boulevard/Glacier Highway
- 2. Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road
- 3. Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive
- 4. Mendenhall Loop Road and Egan Drive
- 5. Riverside Drive and Egan Drive

Exhibit 1: TIA Study Area

Traffic counts taken in 2012, 2015 and 2016 were used to determine traffic movements for each of the studied intersections. These counts were factored to the peak month of May in 2023 as a base condition by using the Juneau-Riverside Drive TMAS 000807 continuous count station annual average daily traffic (AADT) and monthly average daily traffic (ADT) data to calculate the estimated annual traffic growth rate as well as factor the counts from the month they were

taken to the peak month. Also, there is a proposed 11 condominium complex with 11 commercial garages development with an estimated ADT of 108 at 3011 Clinton Drive as well as a proposed 98-bed senior housing development at 3041 Clinton Drive with an estimated ADT of 269, both of which are planned for construction in 2022. All traffic generated by these facilities will use Vintage Boulevard and flow through the study area. The Institute of Transportation (ITE) Trip Generation Manual 10th edition was used to determine the estimated traffic generated by the proposed medical office building.

The intersection of Egan Drive and Vintage Boulevard/Glacier Highway is a stop controlled, right-in, right-out intersection with minor differences in queue length in the PM peak hour, there is no change in the AM peak hour and no change to level of service (LOS) with the additional site traffic. No mitigation is required by the CBJ Code of Ordinances.

The intersection of Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road is a fourway signalized intersection with one left, thru and right turn lane in each direction. There are pedestrian signals and crosswalks across all four approaches of the intersection. The left turns phases on all approaches are permissive-protected. With the additional site traffic, there is a slight increase in the queue lengths for some of the approach lanes and a one second delay increase in the AM and PM peak hours. There is no LOS change. No mitigation is required by the CBJ Code of Ordinances.

Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive is a four-way signalized intersection. The northbound approach has a thru lane, a thru/right turn lane and a left turn lane. The southbound approach has two thru lanes, a left turn lane and a right turn lane. The westbound approach has a shared thru/left turn lane and a right turn lane. The eastbound approach has a shared thru/left turn lane and a right turn lane. The northbound and southbound left turn phases are protected. The eastbound and westbound left turn phases are permissive. There are pedestrian signals and crossings across three of the four approaches. There is a 1 second delay change and no LOS change to the AM peak hour and a 6 second delay change and a LOS change from C to D for the entire intersection for the PM peak hour. No mitigation is required by the CBJ Code of Ordinances.

The intersection of Egan Drive and Mendenhall Loop Road is a four-way signalized intersection with left, thru and right turn lanes. The left turns are all protected split phase. There are pedestrian signals and crossings across all four approaches of the intersection. The LOS for this intersection is F for the AM peak hour and E for the PM peak hour both for pre-build and build conditions. The site traffic impact is minimal with a one second increase for both the AM and PM peak hours. There is no LOS change for the intersection with the additional traffic. The CBJ Code of Ordinances requires mitigation for this intersection because it is currently operating below a level of service of D. However, the site traffic has a negligible impact on the operations of the intersection and the CBJ Code of Ordinances provides conditions for mitigation waiver.

Riverside Drive and Egan Drive is a signalized T-intersection with two thru eastbound and westbound lanes, westbound left turn phasing, eastbound channelized right turn and two southbound left turn lanes and one right turn lane. There are pedestrian signals and crosswalks on two of the three approaches at this intersection. There are no changes to the LOS or queue delays for this intersection caused the proposed site traffic. No mitigation is required by the CBJ Code of Ordinances.

In addition to intersections, site impacts were evaluated for transit, pedestrians and bicycles, and traffic safety.

Mitigations for impacts include the following:

- CBJ Code of Ordinances would require mitigation of the Egan Drive and Mendenhall Loop Road intersection as it has a LOS less than D prior to the additional site traffic. Reconstruction would include require expansion of northbound and southbound approaches, and cost millions of dollars. However, the site traffic has only a negligible impact on operations, and a mitigation waiver may be granted due to the excessive cost. Moreover, the adaptive signal control at this intersection will provide optimization of timing and serve as a mitigation.
- There is a missing sidewalk segment on Vintage Boulevard directly fronting the SEARHC medical office site. Installation of the sidewalk improves pedestrian mobility and safety impacts and would promote walking and transit as alternative commuting modes, thus reducing site vehicular demand. Note that this improvement is now presented in the 65% Design Site Plan (May 2022).
- Demand management policies may promote mode changes from vehicles to active transportation modes (biking, walking, transit) or reducing demand by promoting carpools. These include:
 - Incentivize transit use (potential 4% to 5% vehicle trip reduction, see Section 3.4)
 - Incentivize carpooling (potential 14% to 15% vehicle trip reduction, see Section 3.4)
 - Provide bicycle racks. (Vehicle trip reduction isn't quantifiable).

DOT&PF and CBJ have reviewed this report when in draft. CBJ had no comments. DOT&PF's comments are addressed in a summary letter that is under Appendix G. CBJ and DOT&PF have concurred with the above stated mitigations.

1 Introduction and Development Background

This final report, completed in May 2022, revised the draft report submitted in March 2022. The final report retains computations, calculations, and conclusions, as well as addresses the minor comments or observations resulting in reviews and as described in letter from PND Engineers, Inc. to City and Borough of Juneau Community Development. The final report also includes the most recent 65% site plan, updated from the draft report site plan.

1.1 Development Description

Southeast Alaska Regional Health Consortium (SEARHC) proposes a 45,924 square-foot gross floor area (GFA, *area as of March 2022*) medical office facility located on Vintage Boulevard between the intersections with Riverside Drive and Egan Drive in Juneau, Alaska. The facility is located on a 2.9-acre empty tract with access only by Vintage Boulevard. The vicinity map is presented in the Figure 2.

Background Photo Source- Google Earth Figure 2: SEARHC Medical Office Location Map

1.2 City and Borough of Juneau Traffic Impact Analysis Requirements

City and Borough of Juneau (CBJ) Code of Ordinances, 49.40.300 Applicability, states that a traffic impact analysis (TIA) shall be required when a development is projected to generate 500 or more average daily trips (ADT).

The proposed SEARHC medical office facility aligns with the Institute of Transportation Engineer's (ITE) Trip Generation Manual Land Use 720- Medical/Dental Office Building. Based on the gross floor area of 45,924 gross floor area, the Trip Generation Manual, and the companion Trip Generation Handbook 3rd Ed. estimates that the traffic generated upon full build out of the facility exceeds 1,600 ADT, as shown in Table 1, below. As such, a TIA for the facility is required.

Table 1: Weekday ADT for Proposed SEARHC Medical Offices

Land Use Classification	Gross Floor Area (1000 square feet)	Equation Type	Equation and Trip Computations	DD% (In/ Out)	Trips In	Trips Out
720 – Medical- Dental Office Building	X=45.924	Regression	T=38.42(X) - 87.62 T=38.42(45.924) - 87.62= <u>1,677</u>	50/50	838	838

The street system around the facility is urbanized with movements through intersections controlled by a signs or signals. As such, it is within an interrupted flow regime, and traffic operation quality is generally dependent upon intersection operations and performance. For this TIA, vehicular impact analyses are focused on intersections.

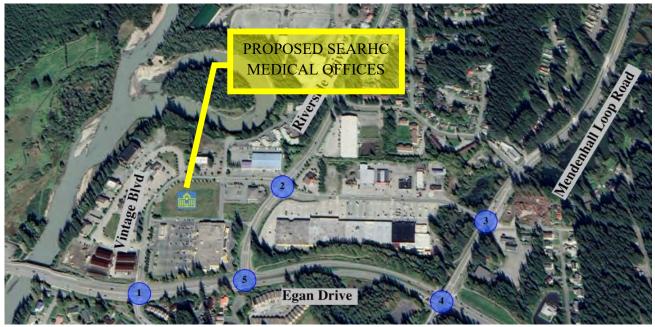
CBJ Code of Ordinances, <u>49.40.305 Traffic impact analysis (TIA) requirements</u> indicates that the study area for the TIA shall include those intersections with approaches where the proposed development will increase ADT by five percent or more. Required mitigation for intersections within the study area is addressed by CBJ Code of Ordinances as follows:

• CBJ Code of Ordinances, 49.40.310 Traffic; minimum standards.

(a) The minimum acceptable (level of service) LOS for a roadway segment or intersection within the area affected by the development, on the projected opening date of the development, or full build out of the development, is LOS D.

• CBJ Code of Ordinances, 49.40.340 Traffic impact mitigation.

(a) Except as provided in 49.40.340, an applicant shall make improvements to a roadway or intersection to achieve or maintain an acceptable LOS if a roadway or intersection has an:


(1) LOS D without traffic generated by the development; and would drop below LOS D with traffic generated by the development at the opening date of the development or full build out;

(2) If a roadway has an LOS below D without traffic generated by the development at the opening date of the development; or

(3) If the intersection or roadway segment has a pattern of accidents resulting in personal injuries, and the development would aggravate this accident pattern, then mitigation shall be required regardless of the LOS.

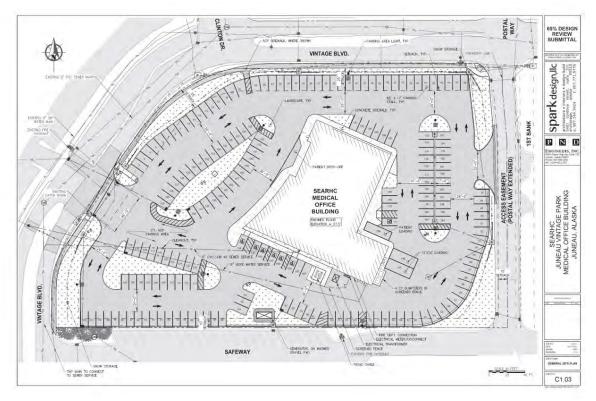
The term "level of service" or LOS is defined in Section 7.1 on page 39 and Table 14 on page 41.

In a July 2021 meeting between Randy Kinney, Kinney Engineering, LLC (KE) and Allison Eddins from CBJ's Community Development Department, the study area presented in Figure 3 was discussed. This study area was later presented in a second meeting focusing on traffic in January 2022 that included CBJ and the Department of Transportation and Public Facilities (DOT&PF) staff; and address a wider range of traffic impact issues. In addition, there have been two pre-application meetings with CBJ, but these meeting only addressed traffic issues in general.

Background Photo Source- Google Earth Figure 3: TIA Study Area

As proposed in these meetings, an initial analysis of impacts would include the following intersections (numbered as shown in the figure):

- 1. Egan Drive and Vintage Boulevard/Glacier Highway
- 2. Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road
- 3. Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive
- 4. Mendenhall Loop Road and Egan Drive
- 5. Riverside Drive and Egan Drive


This starting point was deemed sufficient although it preceded the detail analysis that would form a final study area required by CBJ Code of Ordinances, 49.40.305. The process for trip generation and distribution of site traffic is an iterative process, and thus cannot be completed without a substantial effort. However, in meeting discussions, KE indicated that adding any intersections (expanding the study area) would occur as the analysis progressed to evaluate and confirm the link ADT thresholds in CBJ Code of Ordinances, 49.40.305.

The completion of the analyses of site traffic distribution to other intersection approaches outside of the study area found all others be under the 5% threshold discussed above. As such, the study area shown satisfies CBJ Code of Ordinances.

Ultimately, KE chose to prepare operational and safety analysis for all five of the listed intersections with and without site traffic, irrespective of the 5% ADT increase requirements in CBJ Code of Ordinances, 49.40.305.

1.3 Site Plan

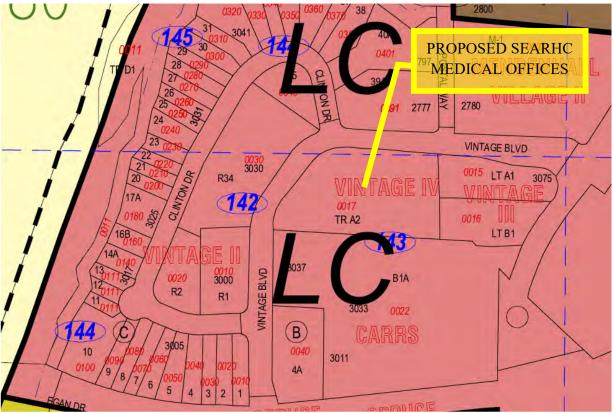
Figure 4 below presents the conceptual site plan (current as of 2-22-22) showing parking layout, access aisle, and site access locations. There will be minor changes to this plan as the design develops.

Source- PND Engineers Inc. Figure 4: Proposed Site Plan (revised May 2022)

The site plan presents two access points onto Vintage Boulevard, both of which are existing and established as shown in Figure 5 below. Both of these have auxiliary left-turn lanes, a significant benefit for crash prevention and roadway capacity by removing stopped or slowing left turn cars from the though lane.

Background Photo Source- Google Earth Figure 5: Existing Site Conditions

1.4 Design Year and Design Hour


The SEARHC medical office facility will be completed in 2023. As agreed upon in the traffic meetings with CBJ and DOT&PF, 2023 will be considered the design year for the analysis. The design hours for the facility will include morning and evening commuting peak hours. Additional analyses period for weekend traffic was discussed and dismissed.

Because of seasonal traffic fluctuations, KE decided to further define the design hours as those expected during the summer season instead of an average condition.

2 Project Area Background

2.1 Surrounding Land Zoning

The proposed SEARHC medical office facility is located within areas zoned Light Commercial, or LC. The zoning in the immediate area is presented in the Figure 6.

Source-Zoning Atlas City and Borough of Juneau Figure 6: Area Zoning

The CBJ Code of Ordinances, 49.25.230 - Commercial districts states:

"The LC, light commercial district, is intended to accommodate commercial development that is less intensive than that permitted in the general commercial district. Light commercial districts are primarily located adjacent to existing residential areas. Although many of the uses allowed in this district are also allowed in the GC, general commercial district, they are listed as conditional uses in this district and therefore require commission review to determine compatibility with surrounding land uses. A lower level of intensity of development is also achieved by stringent height and setback restrictions. Residential district."

The proposed SEARHC medical office facility is consistent with the existing zoning. As such, no changes in zoning will be required.

2.2 Surrounding Land Uses And Site Land Use

The adjacent, existing development is largely commercial. A Safeway grocery store and related shopping center businesses, including an automotive fuel station, are located directly south of the site. Other immediate or nearby land uses include a bank, credit union, US Post Office, and numerous private and agency offices. Residential developments are also nearby.

The City and Borough of Juneau 2013 Comprehensive Plan Update indicates that the site is within a Traditional Town Center, described as follows:

"These lands are characterized by high density residential and non-residential land uses in downtown areas and around shopping centers, the University, major employment centers and public transit corridors, as well as other areas suitable for a mixture of retail, office, general commercial, and high-density residential uses at densities at 18 or more residential units per acre. Residential and non-residential uses could be combined within a single structure, including off-street parking. Ground floor retail space facing roads with parking behind the retail and housing above would be an appropriate and efficient use of the land."

The proposed medical office facility is consistent with the adjoining development and Tradition Town Center land use.

2.3 Traffic Improvements Already Funded, Programmed, Or Planned

A survey of agency websites found the following committed or planning projects within the immediate area of the proposed facility.

2.3.1 CBJ Capital Improvement Program 2021 to 2026

This six-year plan shows a total of about \$1.5 million planned for Vintage Boulevard Street Reconstruction in FY23. A scan of the document found no other CBJ projects planned for the immediate area.

2.3.2 DOT&PF State Transportation Improvement Program (STIP)

The April 2020 Original STIP and Amendment 3 issued in November 2021 have been scanned with no projects planned in the immediate area of the proposed facility.

2.3.3 Juneau Egan Drive & Riverside Intersection Improvements

KE completed this study in the spring of 2016 for the DOT&PF. The study focused on the Egan Drive and Riverside Intersection and prepared an analysis of several signalized and roundabout alternatives, including extending Riverside Drive to the south of Egan Drive. The proposed medical offices do not affect the recommendations of this study. Moreover, if any of the alternatives were to be implemented, site travel patterns and routes would not be changed over the current system travel patterns.

This traffic impact analysis uses morning and evening peak hour intersection traffic count data from this study. The 2020-2022 pandemic has depressed travel, meaning that current counts may be underrepresenting actual or future demands. As such the counts in the 2016 study were the base of this analysis and factored to estimate current and future demand conditions.

2.3.4 West Egan Drive Corridor Study

This study, completed in 2003 for DOT&PF, proposes grade separation interchanges for the Egan Drive intersections with Mendenhall Loop Road and with Riverside Drive. It is not clear if Vintage Drive inbound and outbound access from Egan Drive would be maintained as is now, because Vintage Boulevard connects to the Riverside Interchange westbound on-ramp.

Regardless of the Vintage Boulevard connection to Egan Drive, the proposed SEARHC medical offices would be compatible with the improvements proposed in the West Egan Drive Corridor Study.

2.4 Other Committed Projects

CBJ Community Development planners provided additional developments that are or will be completed prior to the design year 2023, but whose traffic was not captured during the intersection counts that provide the basis of background traffic (see Section 4.3 on page 23).

There is a proposed 11 condominium complex with 11 commercial garages development with an estimated ADT of 108 at 3011 Clinton Drive. Also, there is a proposed 98-bed senior housing development at 3041 Clinton Drive with an estimated ADT of 269 planned for construction by 2022. All traffic generated by these facilities will use Vintage Boulevard (Both ends of Clinton Drive connects to Vintage Boulevard) and flow through the study area.

3 Transportation System Elements

The traffic study area for this report, shown in Figure 3 on page 6, consist of five intersections and the connecting streets. The streets are discussed in more detail in Section 3.1. There are four signalized intersections (intersections 2-5) and one stop-controlled intersection (intersection 1), which are discussed further in Section 3.2.

3.1 Streets

Egan Drive is a principal arterial roadway which primarily serves to carry traffic between downtown Juneau, the Mendenhall Valley, Auke Bay, and other outlying areas of the CBJ. It is Route 4 on the National Highway System, connecting the Juneau International Airport and the Auke Bay Ferry Terminal to other areas of the CBJ. Between downtown Juneau and the Mendenhall Valley, Egan Drive is a four-lane divided highway with a posted speed limit of 50 mph.

Riverside Drive is a two-lane minor arterial roadway that connects Egan Drive with businesses, residences, schools, and community centers in the Mendenhall Valley. Riverside Drive is posted at 35 mph.

Mendenhall Loop Road is a minor arterial roadway with two lanes and a center turn lane south of Egan Drive, four lanes with a designated left turn lane between Egan Drive and Mendenhall Mall Road, and four lanes north of Mendenhall Mall Road to Nancy Street. Mendenhall Loop Road has a posted speed limit of 40 mph.

Mendenhall Mall Road is a two-lane local access roadway with no curbing connecting Riverside Drive and Mendenhall Loop Road, serving as access to the businesses on both sides of the roadway. Mendenhall Mall Road has a posted speed limit of 20 mph.

Atlin Drive is a two-lane local access roadway that provides access to a church and residential neighborhood with a posted speed limit of 20 mph.

Vintage Boulevard is a two-lane divided local access roadway connecting Egan Drive and Riverside Drive that provides access to businesses and residences. Vintage Boulevard posted speed limit is 20 mph.

Glacier Highway is a two-lane minor collector roadway from Egan Drive/Vintage Boulevard to Mendenhall Loop Road with a right turn only at the intersection with Egan Drive. Glacier Highway is posted at 35 mph.

3.1.1 Functional Classification

The three major functional classes include:

- Local Road Local roads are oriented towards access to homes and businesses at the terminal ends of a trip.
- Collector Collector roads gather and distribute trips between local streets and arterials.

• Arterial - Arterials emphasize mobility and are designed to carry large volumes at an efficient speed.

Table 2 presents the DOT&PF functional classifications for the roads in the study area.

Roadway	Classification
Egan Drive	Principal Arterial
Glacier Highway (Vintage Boulevard to Mendenhall Loop Road)	Minor Collector
Mendenhall Loop Road	Minor Arterial
Riverside Drive	Minor Arterial
Vintage Boulevard	Major Collector
Atlin Drive	Local Road
Mendenhall Mall Road	Local Road

Table 2: Functional Classifications

3.2 Intersections

The study area contains four signalized intersections and one stop-controlled intersection. The following four signals are coordinated:

- Egan Drive and Riverside Drive
- Egan Drive and Mendenhall Loop Road
- Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road
- Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive

The intersections are discussed in the following sections. Most of the information presented in these sections, including the diagram with background aerial photography was extracted from the 2016 Juneau Egan Drive & Riverside Intersection Improvements Study.

3.2.1 Egan Drive / Riverside Drive

Figure 7: Egan Drive and Riverside Drive

3.2.2

Egan Drive / Mendenhall Loop Road

The intersection of Egan Drive with Riverside Drive is a signalized T-intersection (Figure 7). On westbound Egan Drive, the approach to the signal has two through lanes and a channelized right turn lane. For eastbound Egan Drive, the approach has two through lanes and a left turn lane/U-turn, with protected left turn phasing. The Riverside Drive approach has two left turn lanes and one right turn lane. There are also pedestrian signals and crosswalks across the inbound Egan Drive and Riverside Drive approaches; however, there are no pedestrian crossings of the outbound Egan Drive approach.

Esan Drive All Solution of the solution of the

The intersection of Egan Drive and Mendenhall Loop Road (Figure 8) is a four-way signalized intersection. The southbound approach has a right turn, left turn and center shared left turn/through lane. The southbound approach consists of a left turn, a center shared left/through, and a right turn lane. The eastbound approach has two through lanes, a right turn lane and a left turn lane. The westbound approach also has two through lanes, a channelized right turn lane and a left turn lane. All left turns have protected left turn split phasing. There are pedestrian signals and crosswalks across all four approaches of the intersection.

Figure 8: Egan Drive and Mendenhall Loop Road

3.2.3 Riverside Drive / Vintage Boulevard / Mendenhall Mall Road

The intersection of Riverside Drive with Vintage Boulevard and Mendenhall Mall Road (Figure 9) is a four-way signalized intersection. Each approach has a left turn, a through lane and a separated right turn lane. The left turns phases on all approaches are permissive-protected. There are pedestrian signals and crosswalks across all four approaches of the intersection.

Figure 9: Riverside Drive and Vintage Boulevard/Mendenhall Mall Road

3.2.4 Mendenhall Loop Road / Mendenhall Mall Road / Atlin Road

The intersection of Mendenhall Loop Road with Mendenhall Mall Road and Atlin Road (

Figure 10) is a four-way signalized intersection. The northbound approach has two through lanes and a left turn lane. The southbound approach has two through lanes, a left turn lane and a right turn lane. The westbound approach from Atlin Road has a shared through/left turn lane and a right turn lane. The eastbound approach from Mendenhall Mall Road has a shared through/left turn lane and a right turn lane. The northbound and southbound left turn phases are protected. The eastbound and westbound left turn phases are signed as permissive. There are pedestrian signals and crosswalks across the

southbound, eastbound, and westbound approaches to the intersection. There is no pedestrian crossing allowed on the northbound approach.

Figure 10: Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive

3.2.5 Egan Drive / Vintage Boulevard / Glacier Highway

The intersection of Egan Drive and Vintage Boulevard/Glacier Highway (Figure 11) is stop controlled with right-in-right-out restricted movements on the north and southbound approaches. The eastbound approach along Egan Drive has two through lanes and a right turn lane, while the westbound approach has two through lanes, a left turn lane and a right turn lane. There are unsignalized pedestrian crosswalks along the northbound and southbound approaches.

Figure 11: Egan Drive and Vintage Boulevard/Glacier Highway

3.3 Pedestrian and Bicycle Facilities

The CBJ has been named a bronze level bicycle friendly community since 2011 and has also received honorable mention as a walk friendly community.

3.3.1 Pedestrian Facilities

The pedestrian facilities for the main streets in the study area include:

- A separated multiuse pathway on the north side of Egan Drive;
- Continuous attached pavement pathways on both sides of Riverside Drive;
- Separated paved pathways on both sides of Mendenhall Loop Road, and;
- A separated sidewalk on the west and north sides of Vintage Boulevard and a discontinuous separated sidewalk on the east and south side of Vintage Boulevard.

There is no sidewalk immediately fronting the parcel that will contain the proposed SEARHC medical facilities. Also, there are no sidewalks on Mendenhall Mall Road and pedestrians are required to use the roadway shoulders or parking lots.

There are push-button actuated pedestrian signals and crosswalks at all the signalized intersections in the study area, with pedestrians prohibited from crossing the inbound approach of the intersection of Egan Drive and Glacier Highway intersection, the outbound approach of the Egan Drive/Riverside Drive intersection, and the northbound approach of the Atlin Road/Mendenhall Mall Road/Mendenhall Loop Road intersection.

3.3.2 Bicycle Facilities

Riverside Drive has bicycle lanes. On other streets, bicyclists ride in the travel lanes, on shoulders or on pathways where provided.

3.4 Transit

The proposed Medical Center will be located in close proximity to 10 CBJ Capitol Transit routes. Boarding and alighting for all routes would be within ¹/₄- to ¹/₂-mile walking distance to and from the site, depending upon walking patterns of the transit patron. A survey of the state of the practice on acceptable walking distances indicate that most people are willing to walk ¹/₄- to ¹/₂- miles to a transit stop (see FHWA's Pedestrian Safety Guide for Transit Agencies <u>https://safety.fhwa.dot.gov/ped_bike/ped_transit/ped_transguide/index.cfm#toc</u>).

Table 3 summarizes, in general, nearby Capital Transit routes and their service frequency daily and during commuting peak hours.

		Nearest Bus	Morning Commute Peak (7 AM to 9 AM)		Evening Commute Peak (4 PM to 6 PM)	
Route	Service	Stop	Headway	Buses	Headway	Buses
	Monday-Saturday, Early					
	Commute to Late	431-				
3 Mendenhall	Evening	Mendenhall				
Loop	Sunday 8 AM hour	Mall Road and				
Counterclockwise	through 6 PM Hour	Riverside Drive	60 minutes	2	60 minutes	2
	Monday-Saturday, Early	477-				
	Commute to Late	Mendenhall				
	Evening	Mall Road at				
4 Mendenhall	Sunday 8 AM hour	Mendenhall	90-60			
Loop Clockwise	through 6 PM Hour	Mall	minutes	2	60 minutes	2
		431-				
		Mendenhall				
		Mall and				
		Riverside				
		477- Mendenhall				
		Mall Road at				
5 I I:	Mandan Eviden 7 AM	Mail Road at Mendenhall				
5 University Express	Monday-Friday, 7 AM Hour through 6 PM Hour	Mall	60 minutes	4	60 minutes	4
Парісья	Hour through of Wi Hour	477-	00 minutes		00 minutes	
		Mendenhall				
		Mall Road at				
6 Riverside	Monday-Friday, 8 AM	Mendenhall				
Express	Hour through 6 PM Hour	Mall	60 minutes	1	60 minutes	2
L		431-				
8 Valley Express	Monday-Friday, 2 PM Hour through 5 PM hour	431- Mendenhall	NA	NA	30 minutes	2
o valicy Express	110ur unougn 5 1 wi noui	wiellucillali	INA	11/1	50 mmutes	Z

Table 3: Capital Transit Routes and Service Near Proposed SEARHC Medical Office Facility

		Nearest Bus	Morning C Peak (7 A AM	M to 9	Evening Commute Peak (4 PM to 6 PM)	
Route	Service	Stop	Headway	Buses	Headway	Buses
		Mall Road and Riverside Drive				
9 Mendenhall	Monday-Friday, 7 AM	477- Mendenhall Mall Road at Mendenhall				
Valley Express	Hour	Mall 477-	NA	1	NA	NA
10 Mendenhall	Monday-Friday, 6 AM	Mendenhall Mall Road at Mendenhall				
Valley Commuter	and 7 AM Hours	Mall	NA	1	NA	NA
14 Mendenhall Riverside Commuter	Monday-Friday, 6 AM Hour	On Street Riverside at Vintage	NA	1	NA	NA
15 Valley/UAS	Monday-Friday, 7 AM	477- Mendenhall Mall Road at Mendenhall				
Express	and 8 AM Hours	Mall	NA	1	NA	NA
	Monday-Friday, 6 AM	On Street Riverside at				
16 Taku Express	Hour	Vintage	NA	1	NA	NA 12

Source: juneaucapitaltransit.org

As indicated in the table above, there are 14 buses providing morning commuting service and 12 buses providing evening commuting service, making public transit a viable work trip alternative for employees. In addition, there is consistent and continuous service during business hours and on weekends, with at least one bus per hour in each inbound and outbound direction for patients to use instead of driving individual cars.

The US Census Bureau American Community Survey *Table S0802 Means Of Transportation To Work By Selected Characteristics* for 2013 through 2019 (5 most recent years published) indicates that the average public transportation work trip mode share is about 4.6% of commuting trips. (Source of this data is:

https://data.census.gov/cedsci/table?q=Juneau%20city%20and%20borough,%20Alaska&t=Com muting&tid=ACSST5Y2019.S0802). The margin of error for this estimate is 1.3% (meaning the actual mode share likely falls between 3.3% and 5.9%. The data indicates that public transportation users tend to be within lower income brackets as well.

The American Community Survey also provides data on carpooling for Juneau, indicating that carpools comprise about 14.6% of the 2013 to 2019 work trips with a margin of error of about 2%.

4 Traffic Data

4.1 Average Annual Daily Traffic

Average annual daily traffic (AADT) is obtained from the DOT&PF websites:

https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp and

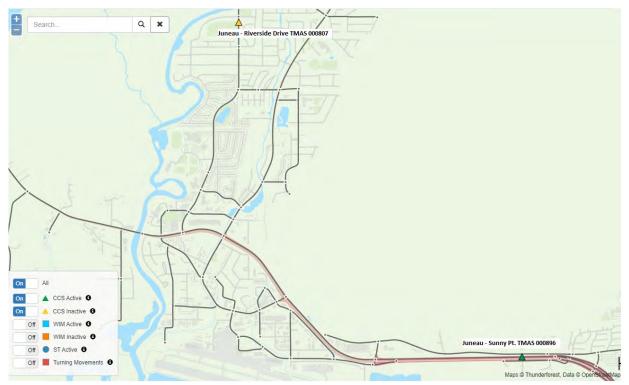
https://akdot.maps.arcgis.com/home/index.html

AADT will be used in computing crash rates in determining the study area for the TIA. Also, AADT will be used to finalize those intersections within the study area that require mitigation. CBJ Code of Ordinances, 49.40.305, indicates that the study area for the TIA shall include those intersections with approaches where the proposed development will increase ADT by five percent or more.

The following table presents street system AADT in the proximity of the proposed SEARHC medical office facility. The 2013-2017 average AADT will be applied to the crash rate computation.

Street/Segment	2013	2014	2015	2016	2017	2018	2019	2020	2013- 2017 average
Egan Drive									
Glacier-Mendenhall Loop	26,195	26,332	26,776	27,844	26,884	25,115	26,134	21,700	26,806
Between Mendenhall Loop Road & Riverside Drive	14,315	14,479	14,698	15,284	14,757	16,126	15,769	12,500	14,707
Between Riverside Drive and Vintage Blvd	13,500	13,654	13,861	14,514	16,904	13,524	15,752	13,200	14,364
Between Vintage Boulevard & Engineers Cutoff Road	11,715	11,850	12,030	15,480	15,709	13,524	16,454	13,200	13,357
		Μ	endenhal	l Loop R	ood				
Glacier Highway North- Egan Drive	8,655	-	8,655	9,192	9,095	8,410	9,334	-	8,890
Between Egan Drive/Glacier Highway & Atlin Drive	21,485	20,950	21,268	22,729	22,489	18,565	18,073	14,800	21,784
Mall Access-James Road	15,440	-	-	16,789	16,612	15,361	16,476	-	16,136
Glacier Highway North									
Glacier Highway North - Between Glacier Nugget & Del Rae Road	2,820	2,317	2,363	1,775	1,997	1,889	2,085	1,690	2,254

Table 4: AADT for Streets Within Study Area


Street/Segment	2013	2014	2015	2016	2017	2018	2019	2020	2013- 2017 average
Vintage Blvd									
Vintage Boulevard - Between Clinton Drive & Egan Drive/Glacier Highway	2,135	-	2,135	1,965	2,181	2,380	2,305	1,980	2,104
Vintage Boulevard - Near Junction with Riverside Drive	5,597	5,604	5,694	6,109	5,762	5,181	6,175	5,070	5,753
		Μ	endenhal	l Mall Ro	oad				
Mendenhall Mall Access Road - Near Junction with Riverside Drive	6,445	6,217	6,340	6,498	7,153	4,502	4,700	3,860	6,531
Riverside Drive									
Egan Drive to Vintage Blvd	13,225	-	13,225	14,275	14,124	13,060	14,495	-	13,712
Riverside Drive - Between Vintage Boulevard & James Boulevard	8,110	7,962	7,961	10,074	9,967	8,449	8,619	7,080	8,815

4.2 Riverside Drive Continuous Count Station

Continuous count stations (CCS) provide continuous data that can be used to factor temporary counts collected at separate times to a count that represents a design year and hour condition. *Source: https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp*

Figure 12 presents the two closest CCS to the project site.

The closest CCS, Juneau - Riverside Drive TMAS 000807, was used to convert past counts to a common year and month. In addition to being the closest in proximity to the project, it is also on the street system that is most alike to the local, collector, and minor arterial streets of the study area and probably shares similar seasonal and diurnal traffic patterns. Annual AADT for the Riverside Drive CCS is shown in Table 5, and the average annual growth rate is calculated as 1.30%.

Source: https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp Figure 12: Continuous Count Station Locations

Year	AADT					
Ital						
2012	3,920					
2013	3,969					
2014	3,967					
2015	3,861					
2016	3,915					
2017	4,042					
2018	4,045					
2019	4,291					
Estimated Annual						
Traffic Growth						
Rate= 1.30%						

Table 5: AADT by Year at CCS Juneau-Riverside Drive

To develop estimated base condition traffic volumes for each horizon year, the estimated annual traffic growth rate was applied to existing intersection traffic volume counts that were collected from 2012, 2015 and 2016. Because the intersection traffic flow counts were taken in non-peak months, the values were factored to the peak month of May using the ADT values in

Table 6. The cells highlighted in yellow represent the year and month that the counts were conducted. The cells highlighted in green are the corresponding May ADT values.

Juneau - Ri	Juneau - Riverside Drive TMAS 000807								
Year → Month	2012	2013	2014	2015	2016	2017	2018	2019	
Jan	3,561	3,485	3,542	3,566	3,509	3,390	3,554	3,578	
Feb	3,754	3,590	3,699	3,653	3,718	3,594	3,636	3,938	
Mar	3,787	3,668	3,654	3,639	3,819	3,399	3,574	4,015	
Apr	4,160	3,944	3,964	3,980	4,110	4,164	4,117	4,426	
May	4,312	4,441	4,608	4,547	4,445	4,479	4,563	4,740	
Jun	4,283	4,280	4,306	4,013	4,222	4,258	4,347	4,424	
Jul	4,196	4,164	4,267	3,819	4,001	4,347	4,399	4,370	
Aug	4,240	4,294	4,217	4,100	4,190	4,428	4,408	4,523	
Sep	4,037	4,194	4,094	3,950	4,047	4,514	4,333	4,291	
Oct	3,842	4,235	4,025	3,899	3,890	4,440	4,046	4,153	
Nov	3,459	3,735	3,668	3,568	3,561	3,775	3,807	4,027	
Dec	3,407	3,596	3,643	3,603	3,470	3,719	3,758	4,129	
AADT-	3,920	3,969	3,967	3,861	3,915	4,042	4,045	4,291	

Table 6: Riverside Drive CCS Monthly ADT by Year

Source: https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp

From the Riverside CCS data, the month of May experiences the highest monthly AADT. As such, the design hour for the TIA analyses is expected to follow the same monthly ADT patterns as occurred at the CCS, and intersection movements will be factored to a summer peak condition occurring in May.

4.3 Intersection Counts Used For Background Traffic Estimates

Turning movement counts were collected by DOT&PF Southcoast Region between 2012 and 2016 during different months for each of the intersections in the study area, as shown in Figure 13 and Figure 14. These intersection movements were presented in the Juneau Egan Drive & Riverside Intersection Improvements study prepared by KE in 2016. The 2020-2022 pandemic has depressed travel, meaning that conducting current counts may be underrepresenting actual or future demands. As such the counts in the 2016 study were the base of this analysis and factored to estimate current and future demand conditions.

The AM and PM commuting peak hours were found to occur, generally, between the hours of 7:15 to 8:15 in the morning and 4:30 to 5:30 in the evening. Traffic primarily travels inbound in the AM peak hour, and outbound during the PM peak hour.

These counts in Figure 13 and Figure 14 will be factored to represent a common design period for the summer peak of May and for 2023.

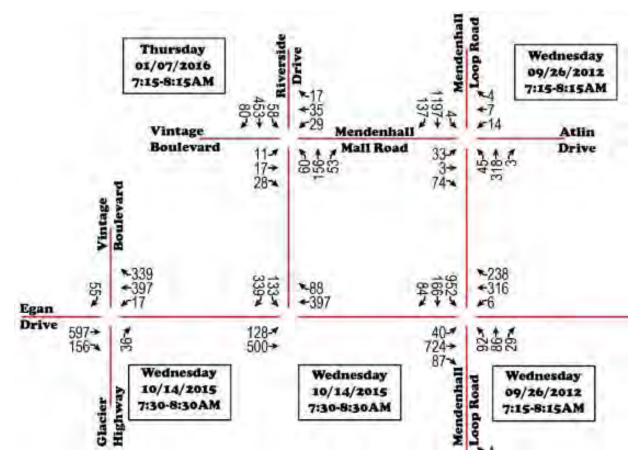


Figure 13: Observed AM Study Area Intersection Movement Traffic Volumes

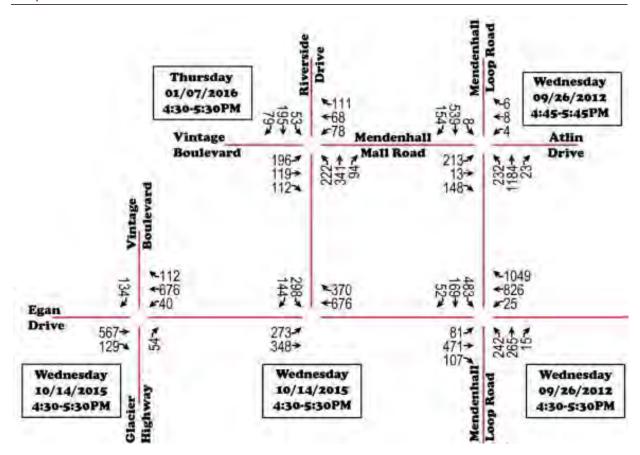


Figure 14: Observed PM Study Area Intersection Movement Traffic Volumes

5 Crash Analysis

DOT&PF provided crash data for the five individual intersections in the study area for the 5-year period from 2013 through 2017 (most recent years available). Crash types are summarized for each of the intersections in the study area in Table 7 below. The proportion of crash types, with majority as rear-end (front to rear) and angle are consistent with expectations for intersections.

Crash Type	Egan Dr. and Mendenhall Loop Road	Egan Dr. and Riverside Dr.	Egan Dr. and Vintage Blvd.	Mendenhall Loop Road and Mall Access Road	Riverside Dr. and Vintage Blvd.	Grand Total
Angle	8	7		6	4	25
Front-To-Front	3	1			2	6
Front-To-Rear	34	5	4	10	3	56
Not a Collision with a Motor Vehicle In- Transport						
Ditch	1		1			2
Guardrail Face	1					1
Motor Vehicle In- Transport Strikes or is Struck by Cargo /Persons/ Objects Set-In- Motion From/ By Another Motor Vehicle In-Transport				1		1
Other Post/Other Pole/Other Support	1					1
Other Traffic Barrier		1				1
Pedalcycle	3					3
Traffic Sign Support			1			1
Utility Pole/Light Support	1				1	2
Other		2			2	4
Sideswipe - Opposite Direction	1			1		2
Sideswipe - Same Direction	1			1	1	3
Unknown	2	1				3
Grand Total	56	17	6	19	13	111

Table 7:	Intersections	and	Crash	Types,	2013	to 2017
----------	---------------	-----	-------	--------	------	---------

Table 8 summarizes crash severity for the intersections between 2013 and 2017. In general, this severity is low since there was only one major injury crash and no fatalities.

Intersect	ion Location				
Street 1	Street 2	Property Damage Only	Minor Injury	Major Injury	Fatal
Egan Drive	Vintage Boulevard	4	2		
Riverside Drive	Vintage Boulevard	9	4		
Mendenhall Loop Road	Mall Access Road	15	3	1	
Egan Drive	Mendenhall Loop Road	36	20		
Egan Drive	Riverside Drive	13	4		

Table 8: Intersection Crash Severity, 2013 to 2017

KE calculated intersection crash rates based on the number of crashes, the number of years of analysis, and entering AADT. KE then compared the actual crash rates to average statewide crash rates for similar facilities and calculated upper control limits (UCLs) for each facility. The upper control limit, or critical limit, is a threshold above which the observed rate is considered statistically significant at a 95% confidence level.

Intersecti	on Location							
Street 1	Street 2	Entering AADT 5 Year Average	Total Crashes	Millions of Entering Vehicles (MEV) in Study Period	Crash Rate (Crashes per MEV)	*State Average Crash Rate (Crashes per MEV)	Upper Control Limit Rate (Crashes per MEV)	Critical Rate Exceeded?
Egan Drive	Vintage Boulevard	16,039	6	29.272	0.20	0.55	0.80	No, Actual is 26% of UCL
Riverside Drive	Vintage Boulevard	17,405	13	31.765	0.41	1.57	1.95	No, Actual is 21% of UCL
Mendenhall Loop Road	Mall Access Road	22,225	19	40.561	0.47	1.57	1.91	No, Actual is 25% of UCL
Egan Drive	Mendenhall Loop Road	36,094	56	65.871	0.85	1.57	1.83	No, Actual is 46% of UCL
Egan Drive	Riverside Drive	21,391	17	39.039	0.44	1.02	1.30	No, Actual is 33% of UCL

 Table 9: Intersection Crash Rates, 2013 to 2017

*Population rates are from the Intersection HSIP Handbook FY 18 Screening Process Spreadsheets

In summary, traffic safety performance of the intersections is good. The crash rates for intersections are below upper critical limit by a significant margin, and actually are less than the average rates for similar intersections. Also, crash severities for the intersections are low.

6 Traffic Forecasting

6.1 Design Conditions

Of most concern regarding site traffic generation by the proposed SEARHC medical office facility is the impacts during peak hours of the street network, typically commuter peak periods. Operationally, these periods are the most congestive, and in fact are the design condition.

In order to estimate traffic impacts of the development, a no-build condition background traffic is determined. Since we are concerned with a future design year, the background traffic is expected to increase at an annual growth rate, which, for this project, is assumed to be similar to the recent past year's observed growth rate from the Riverside Drive CCS. Site-generated traffic is projected onto the background traffic to estimate the build condition and the incremental impacts of the new facility. Unlike background traffic, which is assumed to increase over time, site traffic levels are static and will remain the same for entire life of the facility absent of additions or renovations.

The anticipated build year for the proposed SEARHC medical office building is 2023. As previously discussed, intersection traffic counts were not performed in 2020-2022 because of pandemic depressed travel. Instead, historic traffic counts were for the peak AM and peak PM time periods, and past data from the Riverside CCS was used to factor past traffic to a design year and hour condition. Institute of Transportation Engineers Trip Generation (10th edition) website was used to calculate the ADT and peak hour traffic generated by the proposed development.

6.2 Background Traffic

6.2.1 Normalization to 2019

The traffic counts collected in 2012, 2015 and 2016, discussed in Section 4.3 on page 23, were used as a basis for the normalization of 2019 traffic flow counts, that were then used to calculate the 2023 base traffic flow counts. 2019 was used as the normalization year, as it is pre-pandemic and is the last year published for the CCS Juneau - Riverside Drive TMAS 000807, which is the closest CCS (see Section 4.2, on page 21). The CCS AADT between 2012 and 2019, shown in Table 5 on page 22, yields an average annual growth rate of 1.30%.

To develop the estimated traffic volumes for 2019, the estimated annual traffic growth rate of 1.30% was applied to existing traffic volumes gathered from 2012 through 2016 to derive the annual growth factor, which was then applied to the movement volumes presented in in Figure 13 and Figure 14. The factors are computed as:

Factor for converting 2012 counts to 2019 baseline: $F = (1.013)^{(2019-2012)} = 1.095$ Factor for converting 2015 counts to 2019 baseline: $F = (1.013)^{(2019-2015)} = 1.053$ Factor for converting 2016 counts to 2019 baseline: $F = (1.013)^{(2019-2016)} = 1.040$ To further explain, the turning movement volumes collected in 2012 would be factored to 2019 by multiplying the 2012 volume by 1.095.

An additional step is required to factor volumes collected during the year to a summer "peak" condition. The apex of the monthly ADT is May as is clearly exhibited in Table 6 on page 23. Table 10, below, shows how monthly factors are computed. The factored traffic flow counts for 2019 are shown in Figure 15 and Figure 16.

		Original Traffic	CCS Count	Design	CCS	
Intersection	Year	Count Month	Month ADT	Summer Month	May ADT	Monthly Factor
Riverside/Vintage	2016	January	3,509	May	4,445	4445/3509=1.267
Egan/Mendenhall Loop	2012	September	4,037	May	4,312	4312/4037=1.068
Egan/Riverside	2015	October	3,899	May	4,547	4547/3899=1.166
Egan/Vintage Mendenhall Loop/Mendenhall	2015	October	3,899	May	4,547	4547/3899=1.166
Mall/Atlin	2012	September	4,037	May	4,312	4312/4037=1.068

 Table 10: Monthly Factor to Adjust 2019 Original Traffic Count Month to Peak Month

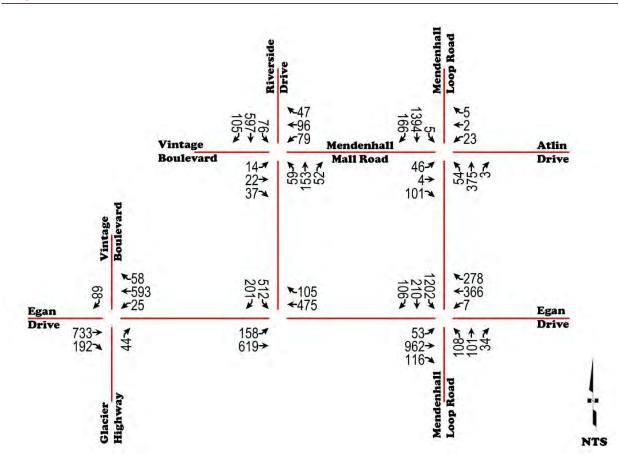


Figure 15: AM Peak TMVs – Factored Base Condition 2019

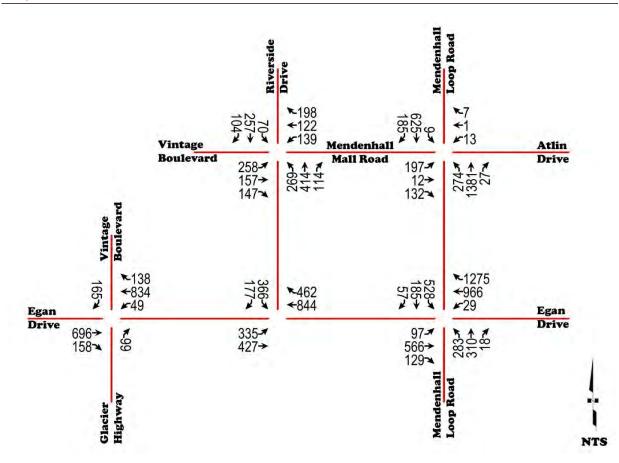


Figure 16: PM Peak TMVs – Factored Base Condition 2019

6.2.2 Estimated Background Traffic Growth for Design Year (2023)

The 2023 intersection movement volumes were calculated by growing the factored 2019 counts by the historical trend of 1.30%. The factor is computed as:

Factor for converting 2019 counts to 2023 counts: $F = (1.013)^{(2023-2019)} = 1.053$

6.2.3 Traffic Generated by Committed Developments

According to CBJ planners, there is a proposed 11 condominium complex with 11 commercial garages development with an estimated ADT of 108, and a proposed senior housing development with 98 beds and an estimated ADT of 269 planned for construction in 2022. Both facilities are located on Clinton drive, which exits on both ends to Vintage Boulevard. CBJ planners have requested that these facilities be added to the background traffic for intersection traffic movements occurring without the proposed SEARHC medical offices.

In order to develop AM and PM peak hour volumes to apply to the design hours, we need average rates or a function to which we would input independent variables to estimate trips.

However, CBJ did not provide weekday hourly traffic counts, nor did they provide independent variables for the developments that can be used to calculate peak hour traffic. As such, an alternative method was used to convert ADT volumes to the AM and PM hours that will be added to background traffic. Institute of Transportation Engineers Trip Generation (10th edition) website was used to find the weekday peak hour average rate and the weekday average rate based on the land use classification. These values were then used in the below formula to estimate the weekday AM and PM peak hour traffic trips:

Hourly Traffic = (Weekday Peak Hour Average Rate/Weekday Average Rate)/ADT

Table 11 and Table 12, below, show the calculated values for the trips in and out of the proposed developments based on the directional distribution (DD%) also found from the Institute of Transportation Engineers Trip Generation (10th edition) website. More information from ITE Trip Generation website can be found in Appendix B.

Land Use Classification	ADT	Peak Hour	Equation	DD% (In/Out)	Trips In	Trips Out
252 - Senior	2(0	AM	(0.2 / 3.7) / 269 = 15	35/65	15*35% = 5	15*65% = 10
Adult Housing	269	PM	(0.26 / 3.7) / 269 = 19	55/45	19*55% = 10	19*45% = 9

 Table 11: 98 bed Senior Housing Trip Generation Calculation

				- 10	
	 	 	 	• •	

Table 12: 11 Co	ndos with 11 Com	mercial Garages Trip Ge	neration Cal	culation

Land Use Classification	ADT	Peak Hour	Equation	DD% (In/Out)	Trips In	Trips Out
221 – Multifamily	108	AM	(0.36 / 5.44) / 108 = 7	26/74	7*26% = 2	7*74% = 5
Housing (mid-rise)	108	РМ	(0.44 / 5.44) / 108 = 9	61/39	9*61% = 5	9*39% = 3

6.2.3.1 Trip Distribution for Condominiums and Senior Housing

The AM and PM peak hour traffic from these facilities are not accounting for the turning movement volumes presented in Figure 15 and Figure 16 shown above. The state of practice for site traffic trip distribution methodology is to assume the inbound and outbound trips will follow the existing background traffic travel patterns. As such, trip distribution for the proposed senior housing and condominiums was calculated assuming traffic divides at intersections in the inbound and outbound proportions exhibited in Figure 15 and Figure 16 would be similar to existing traffic flows throughout the traffic network. Figure 17 and Figure 18 presents the AM and PM trip distribution of the condominium and senior housing traffic for the intersections of Vintage Boulevard with Egan Drive and Riverside Drive, based on 2019 base traffic. The remaining three intersections in the study area used this methodology to overlay site trips on the base traffic movements.

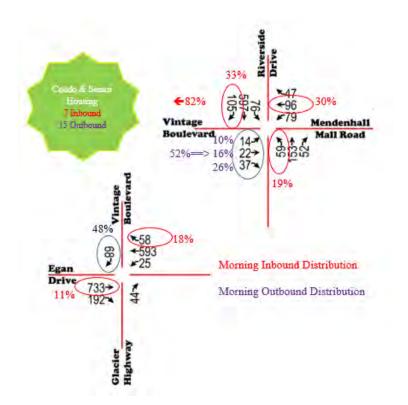


Figure 17: AM Condo and Senior Site Trip Distribution to Near Intersections

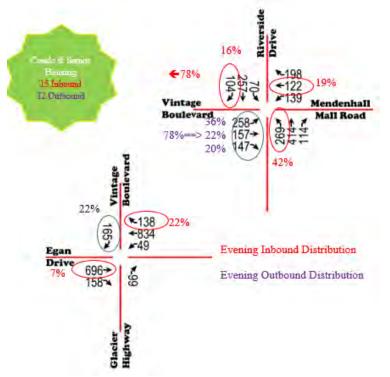


Figure 18: PM Condo and Senior Site Trip Distribution to Near Intersections

6.2.4 Composite Design Year 2023 without Medical Office

Opening year, 2023, base traffic conditions are presented as AM and PM peak hour turning movements in Figure 19 and Figure 20. As stated in previous sections, these turning movement counts were calculated by taking the original counts and projecting them to year 2019 using the historical AADT and then factoring the counts from the month they were taken to the peak month of 2019, which was May. The 2019 turning movement volumes were then factored to 2023 as discussed in Section 6.2.2 on page 31. The site traffic from the proposed condominiums and senior housing turning movements expected to be built before the medical offices are open was distributed to the intersections as discussed in Section 6.2.3.1 above.

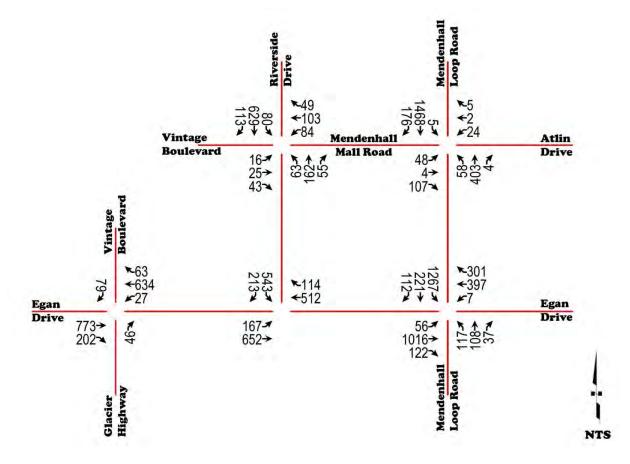


Figure 19: AM Peak TMVs – Base Condition 2023

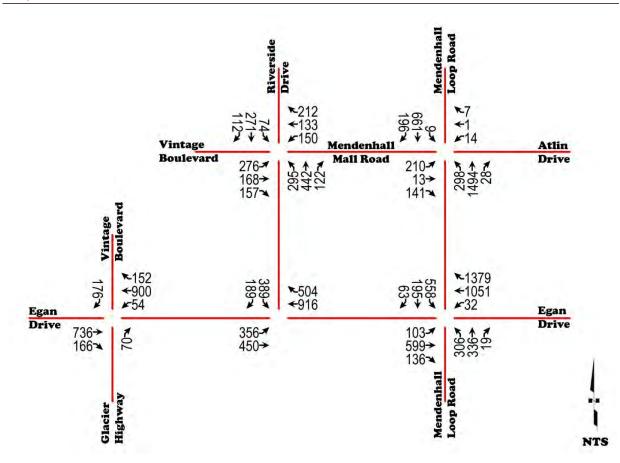


Figure 20: PM Peak TMVs – Base Condition 2023

6.3 Site Development Traffic

6.3.1 Trip Generation

The Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 10th Edition, provides trip generation for Land Use 720, Medical Dental Offices using gross floor area as the independent variable in an average trip rate or using a fitted curve. The methodology in the *Trip Generation Handbook*, 3rd Edition, was followed the fitted curve equation (regression) to calculate estimated trips. The trip generation time periods were the AM peak hour of the adjacent street (7AM to 9 AM) and the PM peak hour of adjacent street (4PM to 6PM) which would occur during the commuting peak and is the typical design condition for streets and intersections. Peak hour trip generation rates are presented in Table 13.

Land Use Classification	Gross Floor Area (1000 square feet)	Peak Hour	Equation Type	Equation and Trip Computations	DD% (In/ Out)	Trips In	Trips Out
720 – Medical-	V-45.024	AM Peak (7AM - 9AM)	Regression	Ln(T)=0.89Ln(X)+1.31 Ln(T)=0.89Ln(45.924)+1.31 = 112	78/22	87	25
Dental Office Building	X=45.924	PM Peak (4PM - 6PM)	Regression	T=3.39(X)+2.02 T=3.39(45.924)+2.02 = <u>158</u>	28/72	44	114

Table 13: 45,924 square foot Medical Office Building AM and PM Trip Generation Calculation

6.3.1.1 Trip Distribution

Trip distribution for the proposed medical office building was calculated assuming the site traffic patterns are the same as the background base traffic flows throughout the traffic network. Distribution patterns and assignments are essentially the same as discussed for the condominium and senior housing traffic discussed in Section 6.2.3.1.

6.3.2 Composite Design Year 2023 with Medical Offices

Figure 21 and Figure 22, below, show the traffic flow counts at the adjacent five intersections for build year 2023 with the addition to the anticipated increase in traffic flow from the medical office building. These turning movement counts were calculated by taking the 2023 traffic count turn percentages and factoring the anticipated medical center trips accordingly.

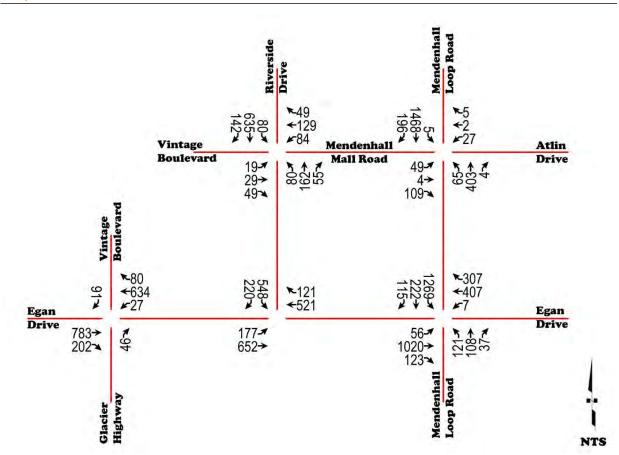


Figure 21: AM Peak TMVs – Build Condition 2023

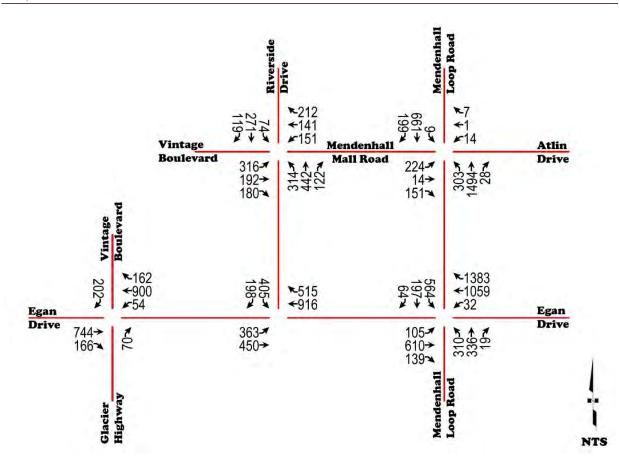


Figure 22: PM Peak TMVs – Build Condition 2023

7 Traffic and Safety Analysis

7.1 Intersection Operation Impacts

The 2023 base condition AM and PM peak hour traffic flow counts for the five adjacent intersections were analyzed using Synchro 11 software, using Highway Capacity Manual (HCM) 2000 methodologies for the signalized intersections and HCM 2010 methodologies for the unsignalized intersection. HCM 2010 requires National Electrical Manufacturers Association (NEMA) phasing to analyze signal operations. The Egan Drive and Mendenhall Loop Road intersection cannot be modeled as NEMA phasing because of the split-phased timing. Additionally, the Egan Drive and Riverside Drive intersection has an exclusive pedestrian phase which cannot be modeled as NEMA phasing. For equal comparison among the signalized intersections in the study area, HCM 2000 was used to analyze all signals.

The signalized intersections were analyzed using existing signal timings provided by DOT&PF for the 2016 Juneau Egan Drive & Riverside Intersection Improvements project. The Egan Drive at Mendenhall Loop Road intersection and the Riverside Drive at Vintage Boulevard / Mendenhall Mall Road intersection are configured with at least one channelized right-turn movement. It was assumed that channelized right-turn movements at an intersection do not affect signal operations. Therefore, these right-turn movements were removed from the signal models at the Egan Drive and were analyzed separately as an unsignalized intersection. Approach and intersection delays at these intersections consider delays at the signal and delays for the channelized right-turn lanes.

It should be noted that this analysis may not be using the most current signal timing plans. DOT&PF stated in their review of this report that adaptive signal control is used at the study intersections. However, DOT&PF did not require revaluation of the signalized intersection operations since, as present in the sections below, the additional delay impact caused by the development is not significant. Moreover, adaptive signal control is a mitigation to decrease delay.

Observed intersection AM and PM peak hour factors (PHFs) from the collected turning movement counts discussed in Section 4.3 on page 23. PHFs ranged from 0.77 to 0.91 during the AM peak and 0.91 to 0.97 during the PM peak.

Average heavy vehicle percentages were estimated using continuous count stations and shortterm stations with historical vehicle classification data gathered from the DOT&PF traffic data portal. Heavy vehicles made up approximately 5% of traffic on Egan Drive, 2% of traffic on Riverside Drive, and 7% of traffic on Vintage Boulevard. Roadways without vehicle classification data were given a default heavy vehicle percentage of 2%.

The intersections that are evaluated in this section are presented in Figure 23 and listed below.

SEARHC Medical Center Traffic Impact Analysis May 2022

Background Photo Source- Google Earth Figure 23: TIA Study Area Intersections

The analyzed intersections (numbered as shown in the figure) include:

- 1. Egan Drive and Vintage Boulevard/Glacier Highway
- 2. Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road
- 3. Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive
- 4. Mendenhall Loop Road and Egan Drive
- 5. Riverside Drive and Egan Drive

The site traffic distributed to other intersection approaches outside of the study area were found to be under the 5% threshold discussed in Section 1.2. As such, the study area shown satisfies CBJ Code of Ordinances.

Under each subsection below, the operation performance measures are presented for the 2023 AM and PM peak hours, for both cases of with and without the SEARHC medical offices. Operational performance measures include:

- Movement and intersection average control delay in seconds per vehicle (sec/veh);
- Movement and Overall Level of Service (LOS) based on control delay, and as presented in the HCM for signalized and unsignalized intersection;
- Volume to Capacity Ratio (v/c) for movements, where v/c > 1 indicates demand exceeds capacity, and;
- Queue Lengths in feet, 95th percentile queue is reported, signifying the approximate length exceeded by queues about 5% of the time.

Table 14 presents level of service (LOS) criteria for signalized and unsignalized intersections. Level of service for signals is applied to individual movements, approaches, and the intersection. Unsignalized LOS is applied only to movements and approaches that yield to other movements and unimpeded movements are not analyzed since they do not experience delay.

Level of	Signalized Intersection Control	Unsignalized Intersection
Service	Delay (seconds/vehicle)	Control Delay (seconds/vehicle)
А	0-10	0-10
В	>10-20	>10-15
С	>20-35	>15-25
D	>35-55	>25-35
Е	>55-80	>35-50
F	>80	>50

Table 14: Signalized and Unsignalized Intersection LOS Based on Control Delay

Queue lengths (95th percentile) for controlled turning movements are evaluated to determine if the queues exceed available auxiliary lane storage lane. Signalized through movement queues are evaluated to determine if they block entrances to auxiliary lanes, denying turning vehicle access to the auxiliary lane. Queue storage for all movements may be limited by upstream intersections, which is whether they will spill back through an upstream intersection and interfere with the upstream intersection operations.

7.1.1 Egan Drive and Vintage Boulevard/Glacier Highway

This intersection, discussed in detail under Section 3.2.5, on page 16 and depicted below in Figure 24 is a two-way stop-controlled intersection.

SEARHC Medical Center Traffic Impact Analysis May 2022

Figure 24: Egan Drive and Vintage Boulevard/Glacier Highway

7.1.1.1 Egan-Vintage-Glacier AM Peak Hour

The following tables summarize intersection LOS performance measures for the AM peak hour in the design year without the SEARHC medical offices and with the medical offices.

Existing Base Condition	WB	NB	SB
AM Peak	LT	R	R
Delay (sec/veh)	10	13	12
LOS	В	В	В
v/c Ratio	0.05	0.10	0.15
Queue Length (ft)	<25	<25	<25

Table 15: AM Peak at Egan Drive-Vintage Boulevard Intersection, Base Condition 2023

2023 Build Condition	WB	NB	SB
AM Peak	LT	R	R
Delay (sec/veh)	10	13	13
LOS	В	В	В
v/c Ratio	0.05	0.10	0.20
Queue Length (ft)	<25	<25	<25

There are only minor differences in performance measures for the AM intersection operations with and without the development. The following table summarizes queue impacts.

			8			
2023 Build Condition AM		WB			EB	SB
Peak	LT	Thru	R	Thru	R	R
Available Storage Length (ft)	200	Free	400	Free	360	240
No-Build Queue Length (ft)	<25	Free	Free	Free	<25	<25
Build Queue Length (ft)	<25	Free	Free	Free	<25	<25

 Table 17: AM Peak at Egan Drive-Vintage Boulevard Intersection Queue Lengths

The are no queue impacts caused by the proposed development.

7.1.1.2 Egan-Vintage-Glacier PM Peak Hour

The following tables summarize intersection LOS performance measures for the PM peak hour in the design year without the SEARHC medical offices and with the medical offices.

Existing Base Condition	WB	NB	SB
PM Peak	LT	R	R
Delay (sec/veh)	10	12	15
LOS	А	В	С
v/c Ratio	0.05	0.15	0.35
Queue Length (ft)	<25	<25	50

Table 18: PM Peak at Egan Drive-Vintage Boulevard Intersection, Base Condition 2023

Table 19: PM Peak at Egan Drive-Vintage Boulevard I	Intersection, Build Condition 2023
---	------------------------------------

2023 Build Condition	WB	NB	SB
PM Peak	LT	R	R
Delay (sec/veh)	10	12	17
LOS	А	В	С
v/c Ratio	0.05	0.15	0.40
Queue Length (ft)	<25	<25	50

There are only minor differences in performance measures for the PM intersection operations with and without the development. The following table summarizes queue impacts.

Table 20: PM Peak at Egan Drive-Vintage Boulevard Intersection Queue Lengths

		WB			EB	SB
	LT	Thru	R	Thru	R	R
Available Queue Length (ft)	200	Free	400	Free	360	240
No-Build Queue Length (ft)	<25	Free	Free	Free	<25	50

		WB			EB	SB
	LT	Thru	R	Thru	R	R
Build Queue Length (ft)	<25	Free	Free	Free	<25	50

The are no queue impacts caused by the proposed development.

7.1.1.3 Egan-Vintage-Glacier Summary

Intersection operation measures and queue lengths are not significantly impacted by the traffic generated by the proposed SEARHC medical office development. The operational performance measures with the development do not exceed CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements).

7.1.2 Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road

This intersection, discussed in detail under Section 3.2.3 on page 15 and depicted below in Figure 25 is a signalized intersection.



Figure 25: Riverside Drive and Vintage Boulevard/Mendenhall Mall Road

7.1.2.1 Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road AM Peak Hour

The following tables summarize intersection LOS performance measures for the AM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2023 Base		EB			WB			NB		SB		
Condition AM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
Delay (sec/veh)	36	38	18	29	36	10	12	10	9	7	23	10
LOS	D	D	С	С	D	А	В	А	А	А	С	В
v/c Ratio	0.15	0.25	0.15	0.45	0.55	0.10	0.30	0.20	0.10	0.15	0.85	0.20
Queue Length (ft)	25	50	25	100	125	< 25	50	100	< 25	50	575	25
Internetien		20 sec/veh										
Intersection						LO	S B					

Table 21: AM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023

Table 22: AM Peak at Riverside Drive-Vintage Boulevard Intersection, Build Condition 2023

2023 Build		EB			WB			NB			SB		
Condition AM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	
Delay (sec/veh)	36	38	19	29	37	10	14	10	9	8	26	11	
LOS	D	D	С	С	D	А	В	В	А	А	С	В	
v/c Ratio	0.15	0.25	0.20	0.40	0.60	0.10	0.40	0.20	0.10	0.15	0.85	0.25	
Queue Length (ft)	50	50	25	100	150	< 25	50	125	< 25	50	625	25	
T		21 sec/veh											
Intersection						LO	S C						

Although the intersection LOS is B without development traffic and C with it, the average delay only increases by one second in the build case. As such, individual movement and overall intersection performance measures will not change significantly with the additional traffic generated by the SEARHC medical offices. The following table summarizes queue impacts.

Table 23: AM Peak at Riverside Drive-Vintage Boulevard Intersection Queue Lengths

	······································													
		EB		WB				NB			SB			
	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)		
Available Storage Length (ft)	260	190*	190	140	110*	110	170	140*	140	180	140*	140		
No-Build Queue Length (ft)	25	50	25	100	125	< 25	50	100	< 25	50	575	25		
Build Queue Length (ft)	50	50	25	100	150	< 25	50	125	< 25	50	625	25		

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

With site development traffic the westbound 150-foot through queue will occasionally block the entrance of the westbound right turn lane. However, that is not a significant issue, since right-turns and throughs will proceed on the same signal phase. Right-turns on other phases may be impacted on occasion. The westbound left-turn lane is 140 feet, and the adjacent westbound through queue is 150 feet. However, the channelization is formed by striping, and vehicles may enter the auxiliary left-turn lane behind the through queue by driving over the painted taper.

The no-build southbound queues will block access to the adjacent auxiliary turn lanes. For the right-turn lane, this may not be a significant issue as discussed above, but the blockage to the left-turn lane may starve the left-turn phase during green indications. The build condition lengthens the southbound through queue by approximately 50 feet but does not create any additional impacts.

7.1.2.2 Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road PM Peak Hour

The following tables summarize intersection LOS performance measures for the PM peak hour in the design year without the SEARHC medical offices and with the medical offices.

		8										
2023 Base		EB			WB			NB		SB		
Condition PM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
Delay (sec/veh)	22	30	13	21	30	25	15	23	11	18	27	13
LOS	С	С	В	С	С	D	В	С	В	В	С	В
v/c Ratio	0.65	0.60	0.30	0.40	0.50	0.55	0.65	0.70	0.15	0.25	0.65	0.20
Queue Length (ft)	225	175	50	125	150	100	175	375	25	50	250	25
Intersection		21 sec/veh										
Intersection						LO	S C					

Table 24: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023

2023 Build Condition		EB			WB			NB			SB	
PM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
Delay (sec/veh)	23	30	14	22	32	28	17	25	11	19	28	13
LOS	С	С	В	С	С	D	В	С	В	В	С	В
v/c Ratio	0.70	0.60	0.30	0.40	0.55	0.60	0.70	0.70	0.15	0.25	0.65	0.20
Queue Length (ft)	250	200	50	125	150	100	200	375	25	50	250	25
Intersection		23 sec/veh										
Intersection	LOS C											

There are only minor differences of two seconds in vehicle delay in performance measures for the PM intersection operations with and without the development and the LOS remains C in both cases. The following table summarizes queue impacts.

		EB			WB			NB			SB	
	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
Available	260	190*	190	140	110*	110	170	140*	140	180	140*	140
Storage												
Length (ft)												
No-Build												
Queue	225	175	50	125	150	100	175	375	25	50	250	25
Length (ft)												
Build												
Queue	250	200	50	125	150	100	200	375	25	50	250	25
Length (ft)												

Table 26: PM Peak at Riverside Drive-Vintage Boulevard Intersection Queue Lengths

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Upon opening of the development, the eastbound right-turn lane may be blocked on occasion by the through queue, but as mentioned previously it is not expected to be an issue. Similarly, the westbound left-turn may have to be accessed by vehicle entering the lane behind through queue over the painted channelization. Both northbound and southbound through queues block access to the adjoining acceleration lanes, but the additional site traffic does not worsen the queuing conditions.

7.1.2.3 Riverside Drive and Vintage Boulevard/ Mendenhall Mall Road Summary

Intersection operation measures and queue lengths are not significantly impacted by the traffic generated by the proposed SEARHC medical office development. The operational performance measures with the development do not exceed CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements).

7.1.3 Mendenhall Mall Road and Mendenhall Loop Road/Atlin Drive

This intersection, discussed in detail under Section 3.2.4 on page 15 and depicted below (Figure 26) is a signalized intersection.

SEARHC Medical Center Traffic Impact Analysis May 2022

Figure 26: Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive

7.1.3.1 Mendenhall Loop Road and Mendenhall Mall Road/Atlin Drive AM Peak Hour

The following tables summarize intersection LOS performance measures for the AM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2020												
2023 Base		EB			WB			NB			SB	
Condition AM Peak	LT	Thru	R)	LT	Thru	R	LT	Thru	R)	LT	Thru	R)
Delay (sec/veh)	5	3	50	51		49	65		6	64	12	6
LOS	I)	D	D		D]	E	А	Е	В	А
v/c Ratio	0.	50	0.15	0.25		0.00	0.	65	0.20	0.35	0.70	0.20
Queue Length (ft)	10	00	75	50		< 25	12	25	200	25	550	75
Turta una atta u						15 se	c/veh					
Intersection						LOS B						

Table 27: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection, Base Condition	
2023	

contaition 20		ED WD ND SD											
2023 Build		EB			WB			NB			SB		
Condition AM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	
Delay (sec/veh)	5	53 50		51		49	53		6	64	13	7	
LOS	[D D		D		D	D		А	Е	В	А	
v/c Ratio	0.	50	0.20	0.30		0.00	0.60	0.20		0.35	0.75	0.20	
Queue Length (ft)	10	100 75		50 <		< 25	125	1	L75	25	550	75	
Intersection				16 sec/veh									
Intersection		LOS B											

 Table 28: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection, Build

 Condition 2023

There is only a minor difference of 1 second in vehicle delay in performance measures for the AM intersection operations with and without the development and the LOS is B in both cases. The following table summarizes queue impacts.

									2				
		EB			WB			NB			SB		
	LT	Thru	R	LT	Thru	R)	LT	Thru	R	LT	Thru	R	
Available Storage	2	50	120	70		40	190	590		110	110*	130	
Length (ft) No-Build	100			75 50			105						
Queue Length (ft)	10	100			50	< 25	125	2	.00	25	550	75	
Build Queue Length (ft)	100 7		75	50		< 25	125	175		25	550	75	

Table 29: AM Peak at Mendenhall Loop Road-Mendenhall Mall Road Intersection Queue Lengths

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

With site development traffic the southbound 550-foot through queue will occasionally block the entrance of the southbound left and right turn lanes. However, the build condition does not lengthen the southbound through queue.

7.1.3.2 Mendenhall Loop Road-Mendenhall Mall Road/Atlin Drive PM Peak Hour

The following tables summarize intersection LOS performance measures for the PM peak hour in the design year without the SEARHC medical offices and with the medical offices.

Table 30: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Base Condition 2023

2023 Base		EB			WB			NB			SB	
Condition AM Peak	LT	Thru	R (Yield)									
Delay (sec/veh)	6	3	32	3	1	31	14	45	15	54	19	16

SEARHC Medical Center Traffic Impact Analysis May 2022

2023 Base		EB			WB			NB			SB	
Condition AM Peak	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
LOS]	E	C		С]	F	В	D	В	В
v/c Ratio	0.	90	0.20	0.05		0.00	1.	15	0.80	0.45	0.45	0.15
Queue Length (ft)	2'	75	75	25 < 25 525					625	25	200	50
Internetion				33 sec/veh								
Intersection	LOS C											

Table 31: PM Peak at Riverside Drive-Vintage Boulevard Intersection, Build Condition 2023

2023 Build		EB			WB			NB			SB	
Condition AM Peak	LT	LT Thru		LT	Thru	R (Yield)	LT	Thru	R (Yield)	LT	Thru	R (Yield)
Delay (sec/veh)			32	3	1	30	19	98	16	54	19	16
LOS]	E C		(5	С]	F	В	D	В	В
v/c Ratio	0.	90	0.20	0.05		0.00	1.	30	0.80	0.45	0.45	0.15
Queue Length (ft)	30	300 100		25		< 25	52	25	625	25	200	50
Internetien			39 sec/veh									
Intersection				LOS D								

For the PM peak hour, there is a six second vehicle delay increase between the 2023 no build and build conditions. The LOS changes from C to D, but does not exceed CBJ Code of Ordinances mitigation thresholds.

		EB		WB				NB		SB			
	LT	Thru	R	LT	Thru	R	LT	Thru	R	LT	Thru	R	
Available Storage Length (ft)	12	20*	120	7	70	40	190	5	590	110	110*	130	
No-Build Queue Length (ft)	2	275		75 25		< 25	525	e	525	25	200	50	
Build Queue Length (ft)	300 100		25 < 25		< 25	525	525 625		25	200	50		

Table 32: PM Peak at Mendenhall Loop Road-Atlin Road Intersection Queue Lengths

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Upon opening of the development, the eastbound approach queue lengths are increased for the shared left turn/thru and right turn lanes. The eastbound right-turn lane may be blocked on occasion by the left turn/through queue. While the eastbound shared left turn/thru lane

anticipated queue length for no-build and build conditions is longer than the storage length to where it would impact the entrance for the right turn lane, the queue lengths for the eastbound lanes are only increased by 25 feet. This is mitigated in part because the right turn movements occur simultaneously with the shared left-through phase. Both northbound and southbound through queues block access to the adjoining acceleration lanes, but the additional site traffic does not worsen the queuing conditions. The eastbound, westbound, and southbound right turn lane available queue length storages are all longer than the expected no build and build queue lengths.

7.1.3.3 Mendenhall Loop Road-Mendenhall Mall Road/Atlin Drive Summary

The operational performance measures with the development do not exceed the CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements).

7.1.4 Egan Drive and Mendenhall Loop Road

This intersection, discussed in detail under Section 3.2.2 and depicted below in Figure 27 is a signalized intersection.

Figure 27: Egan Drive and Mendenhall Loop Road

7.1.4.1 Egan Drive and Mendenhall Loop Road AM Peak Hour

The following tables summarize intersection LOS performance measures for the AM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2023 Base		EB			WB			NB			SB	
Condition AM Peak	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R	LT	Thru	R
Delay (sec/veh)	64	141	34	90	45	0	65	57	49	81	84	25
LOS	Е	F	С	F	D	Free	Е	Е	D	F	F	С
v/c Ratio	0.65	1.20	0.10	0.55	0.55	-	0.75	0.65	0.05	1.10	1.10	0.10
Queue Length (ft)	100	800	75	25	250	-	175	150	< 25	950	975	50
Intersection						82 se	c/veh					
Intersection	LOS F											

Table 33: AM Peak at Egan Drive-Mendenhall Loop Road Intersection, Base Condition 2023

Table 34: AM Peak at Egan	Drive-Mendenhall Loop	Road Intersection ,	Build Condition 2023
	· · · · · · · · · · · · · · · · · · ·		

2023 Build		EB			WB			NB		SB		
Condition AM Peak	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R	LT	Thru	R
Delay (sec/veh)	64	147	34	90	46	0	66	57	48	80	83	24
LOS	Е	F	С	F	D	Free	Е	Е	D	F	F	С
v/c Ratio	0.65	1.20	0.10	0.55	0.60	-	0.75	0.65	0.05	1.10	1.10	0.10
Queue Length (ft)	100	800	75	25	250	-	175	150	< 25	950	975	50
Intersection		83 sec/veh										
LOS F							S F					

The Mendenhall Loop and Mendenhall Mall Road/Atlin Drive intersection has a no-build intersection LOS of F. The build condition is also LOS F, with a 1 second increase in delay. The following table summarizes queue impacts.

		EB			WB			NB	SB			
	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R	LT	Thru	R
Available Storage Length (ft)	700	150*	150	720	720*	980	300	300*	470	960	280*	280
No-Build Queue Length (ft)	100	800	75	25	250	-	175	150	< 25	950	975	50
Build Queue Length (ft)	100	800	75	25	250	-	175	150	< 25	950	975	50

Table 35: AM Peak at Egan Drive-Mendenhall Loop Road Intersection Queue Lengths

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Queues are not increased with the additional site traffic.

7.1.4.2 Egan Drive and Mendenhall Loop Road PM Peak Hour

The following tables summarize intersection LOS performance measures for the PM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2023 Base		EB			WB			NB		SB		
Condition PM Peak	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R)	LT	Thru	R
Delay (sec/veh)	42	24	19	49	168	Free	75	85	33	75	71	30
LOS	D	С	В	D	F	Free	Е	F	С	Е	Е	С
v/c Ratio	0.65	0.60	0.10	0.50	1.25	Free	0.95	1.00	0.00	1.00	1.00	0.05
Queue Length (ft)	125	250	50	75	625	Free	375	425	< 25	475	475	< 25
Intersection		65 sec/veh										
mersection	LOS E											

 Table 36: PM Peak at Egan Drive and Mendenhall Loop Road Intersection, Base Condition 2023

						1-			-) -				
2023 Build		EB			WB			NB			SB		
Condition PM Peak	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R	LT	Thru	R	
Delay (sec/veh)	43	24	18	49	172	Free	79	85	33	78	74	30	
LOS	D	С	В	D	F	Free	Е	F	С	Е	Е	С	
v/c Ratio	0.65	0.60	0.10	0.50	1.30	Free	0.95	1.00	0.00	1.05	1.00	0.05	
Queue Length (ft)	125	225	75	75	625	Free	375	425	< 25	500	500	< 25	
T				66 sec/veh									
Intersection		LOS E											

Table 37: PM Peak at Egan Drive and Mendenhall Loop Road Intersection, Build Condition 2023

There is a one second vehicle delay increase at this intersection; however, the LOS remains E for both the no-build and build conditions. Through queue will occasionally block the entrance of the left and right turn lanes. The following table summarizes queue impacts.

		EB			WB			NB			SB	
	LT	Thru	R	LT	Thru	R (Yield)	LT	Thru	R	LT	Thru	R
Available Storage Length (ft)	700	150*	150	720	720*	980	300	300*	470	960	280*	280
No-Build Queue Length (ft)	125	250	50	75	625	Free	375	425	< 25	475	475	< 25
Build Queue Length (ft)	125	225	75	75	625	Free	375	425	< 25	500	500	< 25

Table 38: PM Peak at Egan Drive-Mendenhall Loop Road Queue Lengths

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Upon opening of the development, the eastbound, northbound, and southbound right-turn lane may be blocked on occasion by the through queue, but the additional site traffic does not significantly worsen the queuing conditions. There is a 25-foot increase in southbound left and through turning movements as well as a 25-foot increase in length in the eastbound right turn queue.

7.1.4.3 Egan Drive and Mendenhall Loop Road Summary

If interpreted correctly, the operational performance measures with the development may exceed CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements) simply because the base condition without site traffic falls below

SEARHC Medical Center Traffic Impact Analysis May 2022

LOS D. However, intersection operation measures and queue lengths are not significantly impacted by the traffic generated by additional traffic from the proposed SEARHC medical office development.

7.1.5 Egan Drive and Riverside Drive

This intersection, discussed in detail under Section 3.2.1 on page 14 and depicted below in Figure 28, is a signalized intersection.

Figure 28: Egan Drive and Riverside Drive

7.1.5.1 Egan Drive and Riverside Drive AM Peak Hour

The following tables summarize intersection LOS performance measures for the AM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2023 Base Condition	F	EB	١	WB	S	SB
AM Peak	LT	Thru	Thru	R (Yield)	LT	R (Yield)
Delay (sec/veh)	27	9	24	18	22	18
LOS	С	Α	С	В	С	В
v/c Ratio	0.60	0.45	0.70	0.10	0.65	0.30
Queue Length (ft)	175	150	225	50	225	100
Internetien			19	9 sec/veh		
Intersection				LOS B		

Table 39: AM Peak at Egan Drive and Riverside Drive Intersection, Base Condition 2023

Table 40: AM Peak at Egar	Drive and Riverside	Drive Road Intersection	. Build Condition 2023
Tuble 10. This I can at Egal	Diffe and inversion	Diffe Road Intel Section	y Duna Contantion 2020

2023 Base Condition	H	EB		WB	SB		
AM Peak	LT	Thru	Thru	R (Yield)	LT	R (Yield)	
Delay (sec/veh)	28	9	25	19	23	19	
LOS	С	А	С	В	С	В	
v/c Ratio	0.65	0.45	0.70	0.10	0.70	0.30	
Queue Length (ft)	175	175	225	50	225	100	
Intersection			19	9 sec/veh			
Intersection				LOS B			

The intersection LOS is B with both no-build and build conditions and no change in average delay. The following table summarizes queue impacts.

Table 41: AM Peak at Egan	Drive and Riverside Drive	Intersection Queue Lengths

	ŀ	E B	V	VB	SB		
	LT	Thru	Thru	R (Yield)	LT	R(Yield)	
Available Queue Length (ft)	370	370*	530*	530	460	230	
Pre-Build	175	150	225	50	225	100	
Post-Build	175	175	225	50	225	100	

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Through queue should not block the entrance of the left or right turn lanes. The build condition has insignificant impact on any of the left, right or through queues.

7.1.5.2 Egan Drive and Riverside Drive PM Peak Hour

The following tables summarize intersection LOS performance measures for the PM peak hour in the design year without the SEARHC medical offices and with the medical offices.

2023 Base Condition	F	E B	N	VB	S	B
AM Peak	LT	Thru	Thru	R (Yield)	LT	R (Yield)
Delay (sec/veh)	38	5	15	34	44	36
LOS	D	А	В	С	D	D
v/c Ratio	0.75	0.20	0.75	0.35	0.75	0.15
Queue Length (ft)	325	75	175	< 25	175	75
Intersection			25	5 sec/veh		
Intersection				LOS C		

Table 42: PM Peak at Egan Drive and Riverside Drive Intersection, Base Condition 2023

2023 Base Condition AM Peak	EB		WB		SB				
	LT	Thru	Thru	R (Yield)	LT	R (Yield)			
Delay (sec/veh)	38	5	15	38	44	35			
LOS	D	А	В	D	D	D			
v/c Ratio	0.75	0.20	0.80	0.35	0.75	0.15			
Queue Length (ft)	350	75	175	< 25	175	75			
Intersection	26 sec/veh								
	LOS C								

There are only minor differences in performance measures for the PM intersection operations with and without the development. The following table summarizes queue impacts.

Table 44: PM Peak at Egan Drive and Riverside Drive Queue Lengths

	EB		WB		SB	
	LT	THRU	LT	R (Yield)	LT	R
Available Queue Length (ft)	370	740	1200	530	460	230
Pre-Build	325	75	175	< 25	175	75
Post-Build	350	75	175	< 25	175	75

*Through queue storage is unlimited, but the lengths presented in the table are the shortest length of the adjoining auxiliary lanes to address the likelihood of through queues blocking the auxiliary lane.

Through queue should not block the entrance of the left or right turn lanes. The build condition has insignificant impact on any of the left, right or through queues.

7.1.5.3 Egan Drive and Riverside Drive Summary

Intersection operation measures and queue lengths are not significantly impacted by the traffic generated by the proposed SEARHC medical office development. The operational performance measures with the development do not exceed CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements).

7.2 Safety Impacts

Crash experience is discussed under Section 5 on page 26. The crash rates and severity are low for the intersections within the study area. The site traffic may increase crash frequency (number per year) for the study intersections, but crash rates (crashes per volume exposure) is not expected to increase and in fact, may be reduced (rates tend to fall as traffic increases). Similarly, crash severity (major injuries and fatalities) are low, and would not be subject to an increase with the additional site traffic.

7.3 Transit System Impacts

Section 3.4 discusses transit service in the area. As a community, Juneau has an average public transportation work trip mode share is about 4.6% of commuting trips. As US Census Bureau American Community Survey *Table S0802* shows CBJ transit patrons tend to be lower income. As such, there is a potential and benefit of incentivizing transit so that all income levels employed by the medical office consider transit as alternative mode for commutes.. If so, and applying the community 4.6% usage, we would expect to see about 4 to 10 work trips use transit during the morning and evening commuting hours.

Moreover, about 70 to 80 trips daily (of 1677 total) would probably use transit if the mode share were applied to the total site traffic.

Section 3.4 indicates that the current transit system routes and schedules have adequate capacity to carry the patrons generated by the proposed SEARHC medical offices.

7.4 Pedestrian and Bicycle Impacts

The proposed SEARHC medical offices will generate additional pedestrian and bicycle use. In addition to the commuter and patient mode share (in place of automobiles), there will be short-trip opportunities for staff walkers or cyclists during the day to shop or visit restaurants.

The study area has pedestrian and bicycle facilities in place, as discussed under Section 3.3, although not every street has sidewalks or pathways. However, the study area pedestrian and bicycle network will accommodate walking or biking between the proposed medical offices and study area destinations study area or external origins/destinations.

Within the immediate area of the proposed offices, there is a missing sidewalk segment fronting the medical office parcel which, if left unimproved, impacts pedestrian circulation and affects the

quality of walking experience. Completion of this sidewalk would enhance the connectivity of the non-motorized network facilities for pedestrian staff and patients, reduce unsignalized midblock street crossings, and provide an improved walking route for commuters or patients who walk between the offices and the Mendenhall Mall stops to board or alight transit buses. However, the walking route along Mendenhall Mall road is on shoulders or parking areas.

7.5 Driveway Impacts

7.5.1 Operational Impacts

Composite driveway volumes were estimated for the AM and PM peak hours in 2023 using data extracted and interpreted from Figure 21, Figure 22, and Table 13 (counts are not available). Of primary concerns are the left-turn queues for traffic entering the site be contained in the existing storage lanes, and that delay for the driveway egress traffic is not excessive, which if so, may result in drivers accepting inadequate gaps and increase the likelihood of crashes.

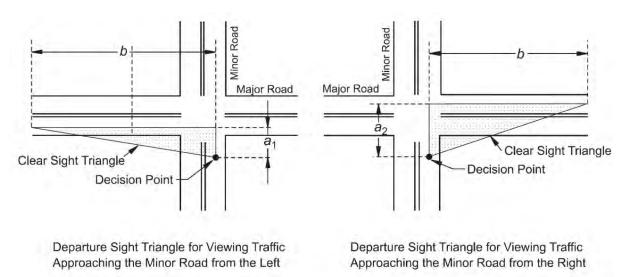
Figure 29, below, presents these performance measures. Queues will be contained in the leftturn storage lanes and delays for the outbound approach traffic onto Vintage will not be excessive.

Background Photo Source- Google Earth Figure 29: Driveway Performance Measures

7.5.2 Driveway Sight Distance

Sight distance is required for main street left-turning vehicles and for driveway egress vehicles. The American Association of State Highway and Transportation Officials (AASHTO) *A Policy on the Geometric Design of Highways and Streets (GDHS)* provides guidance on intersection and driveway sight distance. The sight distance requirements are based upon Vintage Boulevard's posted speed limit of 20 mph.

Sight distance will have to be evaluated and incorporated during site design. The discussion below only presents the criteria that should be observed.


7.5.2.1 Vintage Boulevard Left-Turns Into Site

AASHTO requires 115 feet minimum for sight distance that will allow vehicles traveling in the opposing direction enough sight distance to come to a full stop from 20 mph, and avoid a left turning vehicle. However, a desirable sight distance is 165 feet, allowing the left-turning vehicle enough sight distance to judge oncoming gaps and complete the turn without impeding the opposite direction vehicle.

7.5.2.2 Driveway Departure Sight Distance

AASHTO requires 115 feet minimum for departure sight distance that will allow vehicles on Vintage Boulevard enough sight distance to come to a full stop from 20 mph, and avoid the driveway departure (egress) vehicle. The desirable sight distance is 225 feet.

Departure sight triangles are shown below.

Source: AASHTO GDHS Figure 9-17

Notes: The distance a_1 is distance from center of near lane to the decision point located 15 feet from edge of travel way. The distance a_2 is distance from center of far lane to the decision point located 15 feet from edge of travel way. The distance b is the sight distance, minimum 115 feet or desirable 225 feet.

Figure 30: Departure Sight Triangles

All objects within the clear sight triangle should be less than the plane formed by the driver's eye at 3.5 feet above the driveway surface and at the lane vertices, 3.5 above the roadway surfaces.

8 Mitigation and Recommendations

8.1 Egan Drive and Mendenhall Loop Road

Without site traffic, intersection AM average delay per vehicle is 82 seconds with a LOS F and the PM average delay per vehicle is 65 seconds with LOS E. Adding site traffic only increases delay be 1 second per vehicle in both AM and PM peak hours with no changes in LOS.

If interpreted correctly, the operational performance measures with the development may exceed CBJ Code of Ordinance thresholds requiring mitigations (see Section 1.2 on page 5 for discussion of requirements) simply because the base condition without site traffic falls below LOS D. However, intersection operation measures and queue lengths are not significantly impacted by the traffic generated by additional traffic from the proposed SEARHC medical office development. Furthermore, DOT&PF uses adaptive signal control at this intersection, and that capability to respond to changing demands is a mitigation.

A sketch-level evaluation of the intersection capacity analysis indicates that engineering and construction mitigation would likely require expanding the northbound and southbound approaches with additional left-turn and through capacity. This essentially involves an entire intersection and signal reconstruction, with likely unforeseen utility and right-of-way impacts, and would likely cost several million dollars. Moreover, the West Egan Drive Corridor Study, discussed in Section 2.3.4, indicates that the long-term solution for this intersection is a grade separated interchange. As such, any reconstruction efforts required by this project would eventually be superseded.

CBJ Code of Ordinances, 49.40.340 Mitigation waiver, discusses mitigation waivers:

- (a) The planning commission or community development department director may, in their discretion, waive or partially waive the requirements for mitigation under this section if the planning commission finds at a public hearing, or the director finds in writing after reviewing a permit which does not require planning commission approval, that either of the following circumstances is true:
 - (1) (A) Existing roadway facilities are only marginally achieving an LOS D without the traffic generated by the development, and would likely fall below LOS D within five years;
 - *(B) Traffic generated by the development would result in an LOS below D without mitigation; and*
 - (C) The costs of mitigating the impacts outweighs the benefits; or
 - (2) (A) If the LOS is below D. before the development's opening date;
 - (B) If the operation of the roadway or intersection, within the affected area, would not deteriorate more than five percent in terms of delay time, a minimum LOS, LOS E may be acceptable;
 - (C) Does not result in an LOS below E; and

(D) The costs of mitigating the impacts outweighs the benefits.

The CBJ Code of Ordinances will allow mitigation to be waived, based on clause (D).

8.2 Completion of the Vintage Boulevard Sidewalk Fronting the SEARHC Medical Offices

As part of the site design and construction for the SEARHC medical offices, the missing sidewalk segment fronting this parcel could be completed, thus minimizing impacts to pedestrians generated by the facility. This segment completion enhances pedestrian mobility and safety and promotes transit use by improving the walking route between the bus stops and the medical offices. It should be noted that part of the transit walking route along Mendenhall Mall Road between the bus stops and the intersection of Riverside-Vintage-Mendenhall Mall is on roadway shoulders.

This improvement would mitigate the safety and mobility impacts caused by the missing sidewalk segment. It provides continuous and connecting pedestrian walking routes in the vicinity of the medical offices and reduce the need for mid-block unsignalized pedestrian crossings on Vintage Boulevard.

This improvement could also be a mitigation for the Egan Drive and Mendenhall Loop Road operational issues discussed above. The improvement may promote mode changes to walking and transit, and reduce vehicular demand generated by the site.

8.3 Demand Management Policies By SEARHC

Site vehicular traffic and parking demand may be reduced by SEARHC with the implementation of policies that promote changes to active the active transportation modes of transit, walking, or biking, and by encouraging car-pools. These include:

- Incentivize transit use (potential 4% to 5% vehicle trip reduction, see Section 3.4)
- Incentivize carpooling (potential 7% to 8% vehicle trip reduction, see Section 3.4)
- Provide bicycle racks. (Vehicle trip reduction isn't quantifiable).

8.4 Recommendations

Both DOT&PF and CBJ have reviewed the draft TIA and concur with the above discussed mitigations. Recommendations are as follows:

- Adaptive signal control capability at Egan Drive and Mendenhall Loop Road will be adequate to address the computed 1 second of delay increase at this intersection because of site traffic, and no other mitigation is required.
- Construct the missing segment of the Vintage Boulevard sidewalk that fronts the SEARHC Medical Offices (this has been adopted and shown in the May 2022 site plan).
- Include demand management policies that include incentivizing transit use and carpooling, and provide bicycle racks.

Appendix A- Excerpts from ITE Trip Generation Manual for Project Land Uses

Land Use: 720 Medical-Dental Office Building

Description

A medical-dental office building is a facility that provides diagnoses and outpatient care on a routine basis but is unable to provide prolonged in-house medical and surgical care. One or more private physicians or dentists generally operate this type of facility. Clinic (Land Use 630) is a related use.

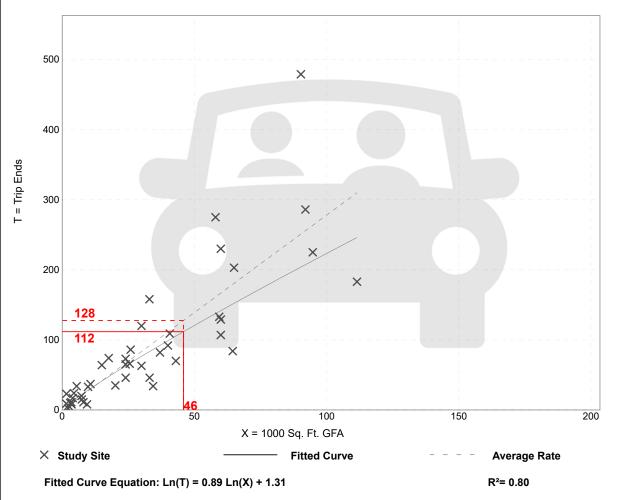
Additional Data

Time-of-day distribution data for this land use for a weekday, Saturday, and Sunday are presented in Appendix A. For the 19 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 9:30 and 10:30 a.m. and 2:15 and 3:15 p.m., respectively.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Connecticut, Kentucky, Maryland, Minnesota, New Jersey, New York, Ohio, Oregon, Pennsylvania, South Dakota, Texas, Virginia, Washington, and Wisconsin.

Source Numbers

104, 109, 120, 157, 184, 209, 211, 253, 287, 294, 295, 304, 357, 384, 404, 407, 423, 444, 509, 601, 715, 867, 879, 901, 902, 908, 959, 972

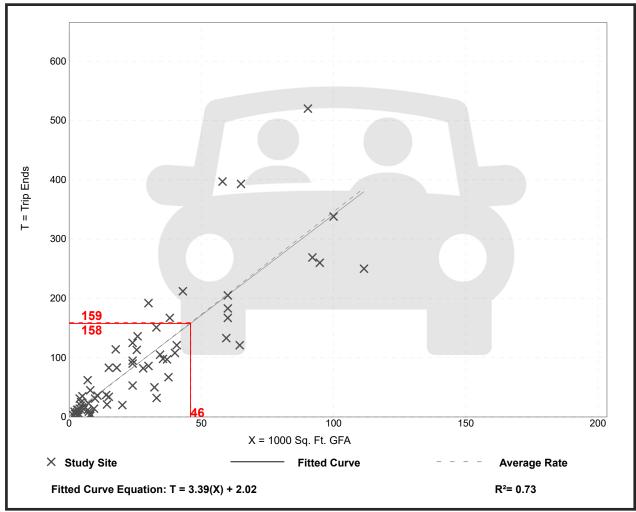

Medical-Dental Office Building (720)

	,
Vehicle Trip Ends vs:	•
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	44
Avg. 1000 Sq. Ft. GFA:	32
Directional Distribution:	78% entering, 22% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.78	0.85 - 14.30	1.28

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers


Medical-Dental Office Building (720)

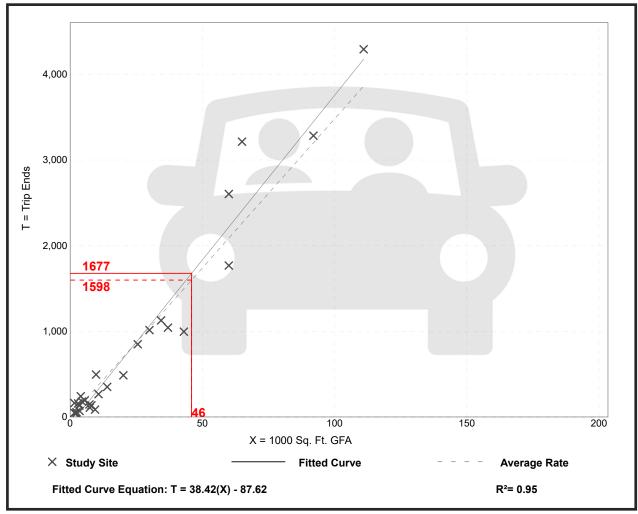
Vehicle Trip Ends vs:1000 Sq. Ft. GFAOn a:Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.Setting/Location:General Urban/SuburbanNumber of Studies:65Avg. 1000 Sq. Ft. GFA:28Directional Distribution:28% entering, 72% exiting	· · · · · · · · · · · · · · · · · · ·	/
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.Setting/Location: Number of Studies: Avg. 1000 Sq. Ft. GFA:65 28	Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
One Hour Between 4 and 6 p.m.Setting/Location:General Urban/SuburbanNumber of Studies:65Avg. 1000 Sq. Ft. GFA:28	On a:	Weekday,
Setting/Location: General Urban/Suburban Number of Studies: 65 Avg. 1000 Sq. Ft. GFA: 28		Peak Hour of Adjacent Street Traffic,
Number of Studies: 65 Avg. 1000 Sq. Ft. GFA: 28		One Hour Between 4 and 6 p.m.
Avg. 1000 Sq. Ft. GFA: 28	Setting/Location:	General Urban/Suburban
	Number of Studies:	65
Directional Distribution: 28% entering, 72% exiting		
	Directional Distribution:	28% entering, 72% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.46	0.25 - 8.86	1.58

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Medical-Dental Office Building (720)


Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	28
Avg. 1000 Sq. Ft. GFA:	24
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
34.80	9.14 - 100.75	9.79

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Land Use: 221 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have between three and 10 levels (floors). Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), off-campus student apartment (Land Use 225), and mid-rise residential with 1st-floor commercial (Land Use 231) are related land uses.

Additional Data

In prior editions of *Trip Generation Manual*, the mid-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of vehicle trip data found no clear differences in trip making patterns between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated.

For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.46 residents per occupied dwelling unit.

For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 95.7 percent of the total dwelling units were occupied.

Time-of-day distribution data for this land use are presented in Appendix A. For the eight general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:00 and 8:00 a.m. and 4:45 and 5:45 p.m., respectively.

For the four dense multi-use urban sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:15 and 5:15 p.m., respectively. For the three center city core sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 6:45 and 7:45 a.m. and 5:00 and 6:00 p.m., respectively.

For the six sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.46 residents per occupied dwelling unit.

For the five sites for which data were provided for both occupied dwelling units and total dwelling units, an average of 95.7 percent of the units were occupied.

The average numbers of person trips per vehicle trip at the five center city core sites at which both person trip and vehicle trip data were collected were as follows:

- 1.84 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.94 during Weekday, AM Peak Hour of Generator
- 2.07 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.59 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 32 dense multi-use urban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.90 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.90 during Weekday, AM Peak Hour of Generator
- 2.00 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.08 during Weekday, PM Peak Hour of Generator

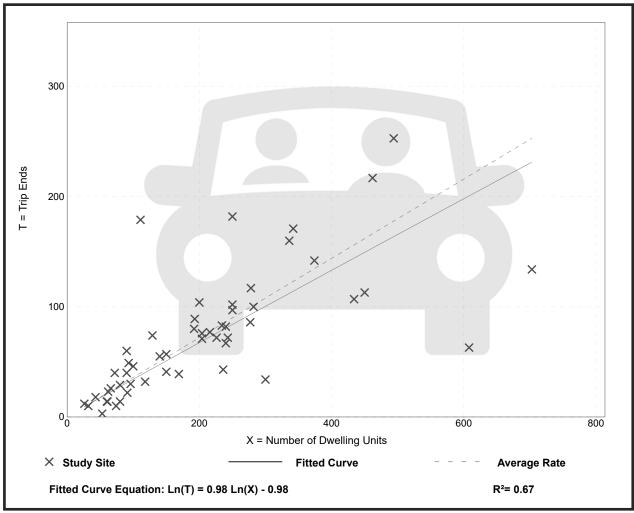
The average numbers of person trips per vehicle trip at the 13 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.56 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.88 during Weekday, AM Peak Hour of Generator
- 1.70 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.07 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), British Columbia (CAN), California, Delaware, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, Ontario, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Utah, Virginia, and Wisconsin.

Source Numbers

168, 188, 204, 305, 306, 321, 357, 390, 436, 525, 530, 579, 638, 818, 857, 866, 901, 904, 910, 912, 918, 934, 936, 939, 944, 947, 948, 949, 959, 963, 964, 966, 967, 969, 970

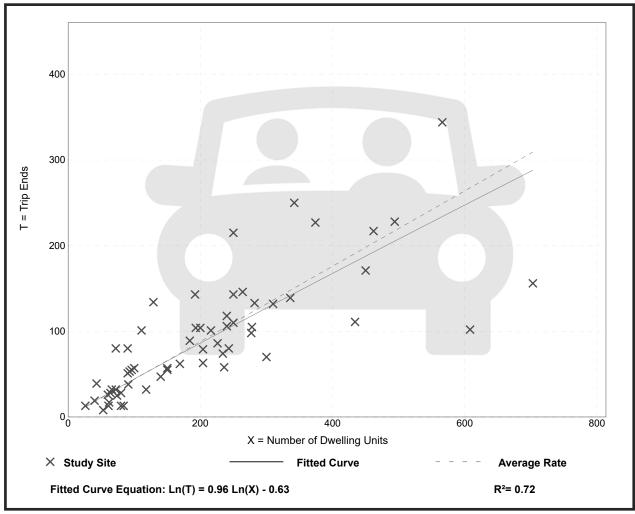

Multifamily Housing (Mid-Rise) (221)

() (
Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	53
Avg. Num. of Dwelling Units:	207
Directional Distribution:	26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	0.06 - 1.61	0.19

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers


Multifamily Housing (Mid-Rise) (221)

\ \	/
Vehicle Trip Ends vs:	Dwelling Units
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	60
Avg. Num. of Dwelling Units:	
Directional Distribution:	61% entering, 39% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	0.15 - 1.11	0.19

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Multifamily Housing (Mid-Rise) (221)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	27
Avg. Num. of Dwelling Units:	205
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
5.44	1.27 - 12.50	2.03

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Land Use: 252 Senior Adult Housing—Attached

Description

Senior adult housing consists of attached independent living developments, including retirement communities, age-restricted housing, and active adult communities. These developments may include limited social or recreational services. However, they generally lack centralized dining and onsite medical facilities. Residents in these communities live independently, are typically active (requiring little to no medical supervision) and may or may not be retired. Senior adult housing— detached (Land Use 251), congregate care facility (Land Use 253), assisted living (Land Use 254), and continuing care retirement community (Land Use 255) are related uses.

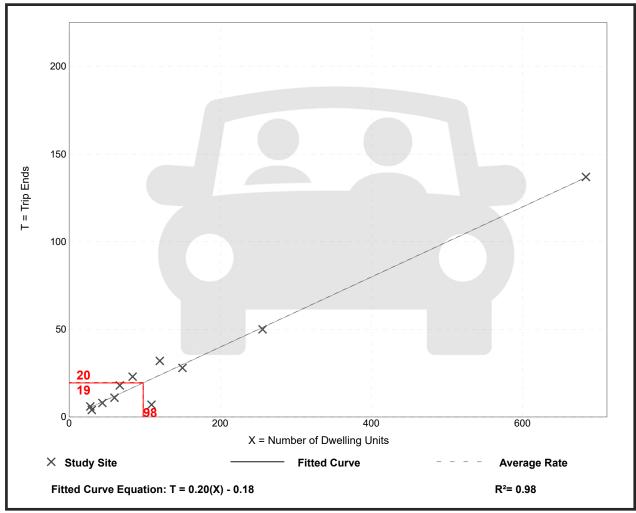
Additional Data

Time-of-day distribution data for this land use are presented in Appendix A. For the one general urban/suburban site with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 11:45 a.m. and 12:45 p.m. and 12:00 and 1:00 p.m., respectively.

The sites were surveyed in the 1980s, the 1990s, and the 2000s in Alberta (CAN), California, Illinois, New Hampshire, New Jersey, New York, and Pennsylvania.

Source Numbers

272, 501, 576, 602, 703, 734, 741, 902, 970

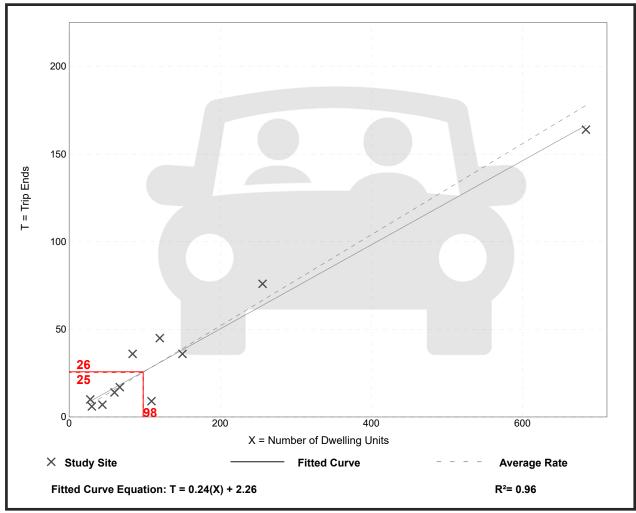

Senior Adult Housing - Attached (252)

()	- /
Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Setting/Location.	General Orbali/Suburbali
Number of Studies:	11
Avg. Num. of Dwelling Units:	148
Directional Distribution:	35% entering, 65% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.20	0.06 - 0.27	0.05

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

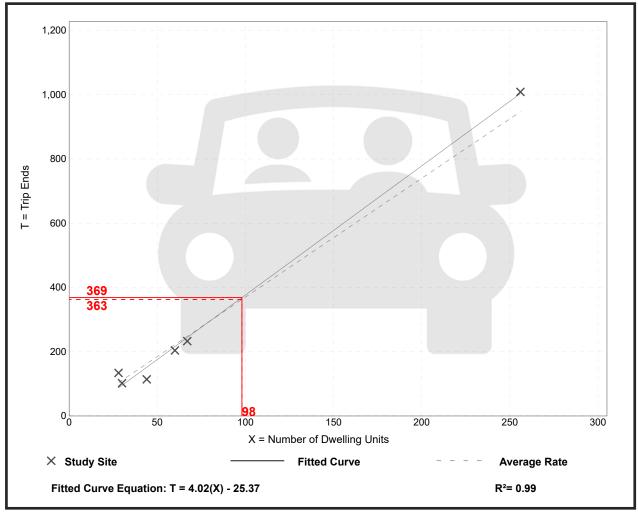

Senior Adult Housing - Attached (252)

()	- /
Vehicle Trip Ends vs: On a:	Dwelling Units Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	11
Avg. Num. of Dwelling Units:	
Directional Distribution:	55% entering, 45% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.26	0.08 - 0.43	0.08

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers


Senior Adult Housing - Attached (252)

Vehicle Trip Ends vs: On a:	Dwelling Units Weekday
Setting/Location:	General Urban/Suburbar
Number of Studies:	6
Avg. Num. of Dwelling Units:	81
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
3.70	2.59 - 4.79	0.53

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Appendix B- AM Base Traffic Capacity Analysis Report

Intersection

													_
Int Delay, s/veh	1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	1	5	^	1			1			1	
Traffic Vol, veh/h	0	773	202	27	634	63	0	0	46	0	0	79	
Future Vol, veh/h	0	773	202	27	634	63	0	0	46	0	0	79	
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	Free	-	-	Free	-	-	Stop	-	-	Stop	
Storage Length	-	-	375	300	-	475	-	-	0	-	-	0	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80	
Heavy Vehicles, %	2	5	2	0	5	2	0	0	2	0	0	7	
Mvmt Flow	0	966	253	34	793	79	0	0	58	0	0	99	

Major/Minor	Major1		N	lajor2		М	inor1		М	inor2			
Conflicting Flow All	-	0	-	971	0	0	-	-	493	-	-	402	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	-	4.1	-	-	-	-	6.94	-	-	7.04	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	2.2	-	-	-	-	3.32	-	-	3.37	
Pot Cap-1 Maneuver	0	-	0	718	-	0	0	0	522	0	0	584	
Stage 1	0	-	0	-	-	0	0	0	-	0	0	-	
Stage 2	0	-	0	-	-	0	0	0	-	0	0	-	
Platoon blocked, %		-			-								
Mov Cap-1 Maneuve	r -	-	-	715	-	-	-	-	518	-	-	582	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	0.4	12.8	12.4	
HCM LOS			В	В	

Minor Lane/Major Mvmt	NBLn1	EBT	WBL	WBT SE	3Ln1
Capacity (veh/h)	518	-	715	-	582
HCM Lane V/C Ratio	0.111	-	0.047	-	0.17
HCM Control Delay (s)	12.8	-	10.3	-	12.4
HCM Lane LOS	В	-	В	-	В
HCM 95th %tile Q(veh)	0.4	-	0.1	-	0.6

JNU Medical Center Base PM (2023+housing) BAM

Queues 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٠	-	1	-	1	Ť	4	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	21	32	109	134	82	210	104	817	
v/c Ratio	0.11	0.22	0.42	0.51	0.25	0.20	0.13	0.81	
Control Delay	28.0	42.9	33.4	41.5	7.6	11.9	6.2	27.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.0	42.9	33.4	41.5	7.6	11.9	6.2	27.3	
Queue Length 50th (ft)	9	17	49	61	14	58	17	382	
Queue Length 95th (ft)	24	41	81	113	30	99	36	#573	
Internal Link Dist (ft)		693		1080		707		271	
Turn Bay Length (ft)	200		75		150		100		
Base Capacity (vph)	374	421	357	442	449	1030	890	1005	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.08	0.31	0.30	0.18	0.20	0.12	0.81	
Interportion Summony									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٠	-	7	4	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	1	٦	1	1	٦	+	1	٦	1	1
Traffic Volume (vph)	16	25	0	84	103	0	63	162	0	80	629	0
Future Volume (vph)	16	25	0	84	103	0	63	162	0	80	629	0
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Lane Width	12	12	16	12	12	16	12	12	16	12	12	16
Total Lost time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		0.99	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1705	1729		1710	1814		1723	1762		1706	1762	
Flt Permitted	0.67	1.00		0.44	1.00		0.14	1.00		0.63	1.00	
Satd. Flow (perm)	1204	1729		798	1814		260	1762		1125	1762	
Peak-hour factor, PHF	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Adj. Flow (vph)	21	32	0	109	134	0	82	210	0	104	817	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	21	32	0	109	134	0	82	210	0	104	817	0
Confl. Peds. (#/hr)	5	02	5	5	101	5	5	210	5	5	011	5
Heavy Vehicles (%)	2%	7%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8	T CITI	ρπι ρτ 7	4	T OIIII	5	2	T OIIII	pm·pt 1	6	T OIIII
Permitted Phases	8	v	8	4	•	4	2	-	2	6	v	6
Actuated Green, G (s)	8.7	6.5	•	18.7	12.2		56.0	48.8	_	53.6	47.6	Ū
Effective Green, g (s)	8.7	6.5		18.7	12.2		56.0	48.8		53.6	47.6	
Actuated g/C Ratio	0.10	0.07		0.21	0.14		0.64	0.56		0.62	0.55	
Clearance Time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		3.0	2.0		3.0	2.0	
Lane Grp Cap (vph)	133	129		254	254		288	988		733	964	
v/s Ratio Prot	0.00	0.02		c0.04	c0.07		c0.02	0.12		0.01	c0.46	
v/s Ratio Perm	0.00	0.02		0.05	00.01		0.16	0.12		0.08	00.10	
v/c Ratio	0.16	0.25		0.43	0.53		0.28	0.21		0.14	0.85	
Uniform Delay, d1	35.7	37.9		28.8	34.7		11.4	9.5		6.8	16.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.4		0.4	0.9		0.5	0.0		0.1	6.7	
Delay (s)	35.9	38.3		29.2	35.6		12.0	9.6		6.9	23.4	
Level of Service	D	D		C	D		В	A		A	C	
Approach Delay (s)		37.3		-	32.7		_	10.2			21.5	
Approach LOS		D			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			21.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.74									
Actuated Cycle Length (s)			87.0		um of lost				17.8			
Intersection Capacity Utiliza	ation		61.7%	IC	CU Level o	of Service	9		В			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Base PM (2023+housing) BAM

Queues 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	→	7	+	*	1	Ť	5	ŧ	~	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	62	127	31	6	69	485	6	1748	210	
v/c Ratio	0.51	0.52	0.26	0.03	0.57	0.18	0.07	0.70	0.19	
Control Delay	64.1	18.1	53.1	0.2	68.8	6.5	56.2	13.2	4.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	
Total Delay	64.1	18.2	53.1	0.2	68.8	6.5	56.2	13.4	4.8	
Queue Length 50th (ft)	47	9	23	0	44	18	5	371	27	
Queue Length 95th (ft)	78	52	46	0	#107	152	18	530	64	
Internal Link Dist (ft)	362		281			230		391		
Turn Bay Length (ft)		75		50	150		75		90	
Base Capacity (vph)	245	379	236	338	125	2750	100	2494	1079	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	6	0	0	0	0	0	203	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.34	0.13	0.02	0.55	0.18	0.06	0.76	0.19	

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	٠	-	7	4	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		ŧ	7	٢	† 1+		7	† †	7
Traffic Volume (vph)	48	4	107	24	2	5	58	403	4	5	1468	176
Future Volume (vph)	48	4	107	24	2	5	58	403	4	5	1468	176
ldeal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.97		1.00	0.98	1.00	1.00		1.00	1.00	0.95
Flpb, ped/bikes		0.99	1.00		0.99	1.00	1.00	1.00		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected		0.96	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1722	1499		1721	1511	1723	3439		1723	3446	1460
Flt Permitted		0.72	1.00		0.69	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		1298	1499		1251	1511	1723	3439		1723	3446	1460
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	57	5	127	29	2	6	69	480	5	6	1748	210
RTOR Reduction (vph)	0	0	104	0	0	5	0	0	0	0	0	24
Lane Group Flow (vph)	0	62	23	0	31	1	69	485	0	6	1748	186
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4						6
Actuated Green, G (s)		11.3	11.3		11.3	11.3	7.3	92.0		1.2	85.9	85.9
Effective Green, g (s)		11.3	11.3		11.3	11.3	7.3	92.0		1.2	85.9	85.9
Actuated g/C Ratio		0.09	0.09		0.09	0.09	0.06	0.77		0.01	0.72	0.72
Clearance Time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Vehicle Extension (s)		1.5	1.5		1.5	1.5	2.0	2.0		2.0	2.0	2.0
Lane Grp Cap (vph)		122	141		117	142	104	2636		17	2466	1045
v/s Ratio Prot							c0.04	0.14		0.00	c0.51	
v/s Ratio Perm		c0.05	0.02		0.02	0.00						0.13
v/c Ratio		0.51	0.16		0.26	0.00	0.66	0.18		0.35	0.71	0.18
Uniform Delay, d1		51.7	50.0		50.5	49.3	55.1	3.8		59.0	9.8	5.6
Progression Factor		1.00	1.00		1.00	1.00	0.94	1.64		1.00	1.00	1.00
Incremental Delay, d2		1.2	0.2		0.4	0.0	11.6	0.2		4.5	1.8	0.4
Delay (s)		52.9	50.2		50.9	49.3	63.5	6.4		63.6	11.6	5.9
Level of Service		D	D		D	D	E	А		E	В	А
Approach Delay (s)		51.1			50.7			13.5			11.1	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.68									
Actuated Cycle Length (s)			120.0		um of lost				15.5			
Intersection Capacity Utilizati	on		69.2%	IC	CU Level o	of Service	l.		С			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Base PM (2023+housing) BAM

Queues 4: Mendenhall Loop Road & Egan Drive

03/02/2022	,
------------	---

	٦	-	7	*	-	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	62	1116	134	8	436	129	119	41	807	828	123	
v/c Ratio	0.55	1.06	0.25	0.11	0.55	0.73	0.64	0.15	1.08	1.09	0.17	
Control Delay	72.1	84.3	9.3	58.9	46.4	74.6	66.3	1.2	81.6	84.6	4.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	
Total Delay	72.1	84.3	9.3	58.9	46.4	74.6	66.3	1.2	81.6	85.2	4.7	
Queue Length 50th (ft)	47	428	5	6	154	99	90	0	~699	~724	15	
Queue Length 95th (ft)	#100	#778	61	23	#238	156	144	0	#932	#954	m27	
Internal Link Dist (ft)		1356			1654		696			316		
Turn Bay Length (ft)	540		120	550		290		390	280			
Base Capacity (vph)	123	1057	532	72	792	277	291	348	749	762	727	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	1	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.50	1.06	0.25	0.11	0.55	0.47	0.41	0.12	1.08	1.09	0.17	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 4: Mendenhall Loop Road & Egan Drive

03/02/2022

	٨	→	7	4	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	1	٦	- ++	1	7	+	1	٦	4	1
Traffic Volume (vph)	56	1016	122	7	397	0	117	108	37	1267	221	112
Future Volume (vph)	56	1016	122	7	397	0	117	108	37	1267	221	112
ldeal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00		1.00	1.00	1.00	*1.00	*1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.97	1.00
Satd. Flow (prot)	1723	3524	1481	1723	3524		1723	1814	1509	1723	1752	1511
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.97	1.00
Satd. Flow (perm)	1723	3524	1481	1723	3524		1723	1814	1509	1723	1752	1511
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	62	1116	134	8	436	0	129	119	41	1392	243	123
RTOR Reduction (vph)	0	0	92	0	0	0	0	0	37	0	0	69
Lane Group Flow (vph)	62	1116	42	8	436	0	129	119	4	807	828	54
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Heavy Vehicles (%)	2%	5%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases	-	-	6	-	_	2	-	-	3	-		4
Actuated Green, G (s)	6.9	31.9	31.9	1.0	26.0	_	12.3	12.3	12.3	52.2	52.2	52.2
Effective Green, g (s)	6.9	31.9	31.9	1.0	26.0		12.3	12.3	12.3	52.2	52.2	52.2
Actuated g/C Ratio	0.06	0.27	0.27	0.01	0.22		0.10	0.10	0.10	0.44	0.44	0.44
Clearance Time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Vehicle Extension (s)	2.0	0.5	0.5	2.0	0.5		0.5	0.5	0.5	2.0	2.0	2.0
Lane Grp Cap (vph)	99	936	393	14	763		176	185	154	749	762	657
v/s Ratio Prot	c0.04	c0.32	000	0.00	0.12		c0.07	0.07	104	0.47	c0.47	001
v/s Ratio Perm	0.04	00.02	0.03	0.00	0.12		00.07	0.07	0.00	0.77	00.47	0.04
v/c Ratio	0.63	1.19	0.00	0.57	0.57		0.73	0.64	0.03	1.08	1.09	0.04
Uniform Delay, d1	55.3	44.0	33.3	59.3	42.0		52.3	51.7	48.5	33.9	33.9	19.9
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	0.88	0.88	1.26
Incremental Delay, d2	8.6	97.2	0.6	30.5	3.1		12.7	5.6	0.0	51.5	54.6	0.0
Delay (s)	63.9	141.2	33.8	89.8	45.1		65.0	57.4	48.5	81.2	84.3	24.9
Level of Service	60.5 E	F	00.0 C	55.0 F	-5.1 D		60.0 E	E	-0.0 D	F	64.5 F	24.5 C
Approach Delay (s)	L	126.6	U	•	45.9		L	59.5	U	•	78.7	U
Approach LOS		120.0						55.5 E			E	
								Ľ.			L.	
Intersection Summary			00.0		014 0000		<u>,</u>					
HCM 2000 Control Delay	-16 C		89.9	H		Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.09	<u>^</u>		£			00.0			
Actuated Cycle Length (s)	£		120.0		um of lost				22.6			
Intersection Capacity Utiliza	tion		101.1%	IC	U Level o	of Service			G			
Analysis Period (min)			15									

c Critical Lane Group

JNU Medical Center Base PM (2023+housing) BAM

Queues 5: Egan Drive & Riverside Drive

	٨	→	←	*	4	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	201	786	617	137	654	257
v/c Ratio	0.62	0.44	0.71	0.29	0.68	0.45
Control Delay	36.1	10.5	28.9	6.6	26.4	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.1	10.5	28.9	6.6	26.4	10.9
Queue Length 50th (ft)	73	90	115	0	116	24
Queue Length 95th (ft)	159	150	204	33	206	83
Internal Link Dist (ft)		694	1356		707	
Turn Bay Length (ft)	350			900	225	145
Base Capacity (vph)	793	3218	2115	960	2111	626
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.24	0.29	0.14	0.31	0.41
Intersection Summary						

HCM Signalized Intersection Capacity Analysis 5: Egan Drive & Riverside Drive

03/02/2022

	٦	-	+	*	4	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	٦	† †	<u>†</u> †	1	ኘካ	1	
Traffic Volume (vph)	167	652	512	114	543	213	
Future Volume (vph)	167	652	512	114	543	213	
deal Flow (vphpl)	1850	1850	1850	1850	1850	1850	
Total Lost time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1674	3348	3348	1453	3343	1542	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1674	3348	3348	1453	3343	1542	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	
Adj. Flow (vph)	201	786	617	137	654	257	
RTOR Reduction (vph)	0	0	0	100	0	123	
Lane Group Flow (vph)	201	786	617	37	654	134	
Confl. Peds. (#/hr)	5			5	5	5	
Heavy Vehicles (%)	5%	5%	5%	5%	2%	2%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		4	8	
Permitted Phases				2			
Actuated Green, G (s)	13.0	36.0	17.7	17.7	19.3	19.3	
Effective Green, g (s)	13.0	36.0	17.7	17.7	19.3	19.3	
Actuated g/C Ratio	0.20	0.54	0.27	0.27	0.29	0.29	
Clearance Time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Vehicle Extension (s)	1.0	0.5	0.5	0.5	2.0	2.0	
Lane Grp Cap (vph)	327	1815	892	387	971	448	
v/s Ratio Prot	c0.12	0.23	c0.18		c0.20	0.09	
v/s Ratio Perm				0.03			
v/c Ratio	0.61	0.43	0.69	0.09	0.67	0.30	
Uniform Delay, d1	24.4	9.1	21.9	18.3	20.8	18.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.4	0.1	1.9	0.0	1.5	0.1	
Delay (s)	26.8	9.2	23.8	18.4	22.2	18.4	
Level of Service	С	А	С	В	С	В	
Approach Delay (s)		12.8	22.8		21.2		
Approach LOS		В	С		С		
Intersection Summary							
HCM 2000 Control Delay			18.5	H	CM 2000	Level of Service	В
HCM 2000 Volume to Cap	acity ratio		0.69				
Actuated Cycle Length (s)			66.4	Si	um of lost	time (s)	18.4
Intersection Capacity Utiliz	zation		53.6%	IC	U Level c	of Service	А
Analysis Period (min)			15				
c Critical Lane Group							

c Critical Lane Group

JNU Medical Center Base PM (2023+housing) BAM

03/02	/20	22
-------	-----	----

Intersection	on
Int Dolov	~

Intereestern						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1			1	
Traffic Vol, veh/h	0	43	0	0	713	0
Future Vol, veh/h	0	43	0	0	713	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Free	Free
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e,#0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	56	0	0	926	0

Major/Minor	Minor2		Major2	
Conflicting Flow All	-	926	-	0
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	6.22	-	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	3.318	-	-
Pot Cap-1 Maneuver	0	326	-	0
Stage 1	0	-	-	0
Stage 2	0	-	-	0
Platoon blocked, %			-	
Mov Cap-1 Maneuver	-	326	-	-
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Approach	EB		SB	
Approach				
HCM Control Delay, s	18.3		0	
HCM LOS	С			
Minor Lane/Major Mvm	nt	EBLn1	SBT	
Capacity (veh/h)		326	-	
		0 4 7 4		

HCM Control Delay (s) 18.3 - HCM Lane LOS C - HCM 95th %tile Q(veh) 0.6 -	HCM Lane V/C Ratio	0.171	-	
	HCM Control Delay (s)	18.3	-	
HCM 95th %tile Q(veh) 0.6 -	HCM Lane LOS	С	-	
	HCM 95th %tile Q(veh)	0.6	-	

JNU Medical Center Base PM (2023+housing) BAM

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	•			
Traffic Vol, veh/h	0	49	178	0	0	0
Future Vol, veh/h	0	49	178	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	64	231	0	0	0

Major/Minor	Minor1		Major1	
Conflicting Flow All	-	231	0	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	6.22	-	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	3.318	-	-
Pot Cap-1 Maneuver	0	808	-	0
Stage 1	0	-	-	0
Stage 2	0	-	-	0
Platoon blocked, %			-	
Mov Cap-1 Maneuver	· -	808	-	-
Mov Cap-2 Maneuver	· -	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Approach	WB	NB
HCM Control Delay, s	9.8	0
HCM LOS	А	

Minor Lane/Major Mvmt	NBTWBLn1
Capacity (veh/h)	- 808
HCM Lane V/C Ratio	- 0.079
HCM Control Delay (s)	- 9.8
HCM Lane LOS	- A
HCM 95th %tile Q(veh)	- 0.3

JNU Medical Center Base PM (2023+housing) BAM Synchro 11 Report Page 11

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1					۲
Traffic Vol, veh/h	105	0	0	0	0	55
Future Vol, veh/h	105	0	0	0	0	55
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	136	0	0	0	0	71

Major1		Minor1		
0	-	-	136	
-	-	-	-	
-	-	-	-	
-	-	-	6.22	
-	-	-	-	
-	-	-	-	
-	-	-	3.318	
-	0	0	913	
-	0	0	-	
-	0	0	-	
-				
	-	-	913	
-	-	-	-	
-	-	-	-	
-	-	-	-	
			0	0 - - 136 - - - - - - - - - - - - - - - 6.22 - - - - - - - - - - - - - - - 3.318 - 0 0 913 - 0 0 - - - 913 - - - - 913 - - - 913 - - - -

Approach	EB	NB	
HCM Control Delay, s	0	9.3	
HCM LOS		А	

Minor Lane/Major Mvmt	NBLn1	EBT
Capacity (veh/h)	913	-
HCM Lane V/C Ratio	0.078	-
HCM Control Delay (s)	9.3	-
HCM Lane LOS	А	-
HCM 95th %tile Q(veh)	0.3	-

JNU Medical Center Base PM (2023+housing) BAM

Intersection

Int Delay, s/veh	4.2					
, _, _, _						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			1			1
Traffic Vol, veh/h	0	0	167	0	0	113
Future Vol, veh/h	0	0	167	0	0	113
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# 7-	405568	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	217	0	0	147

Major/Minor	Major2	Mi	nor2	
Conflicting Flow All		0	_	217
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-	-	3.318
Pot Cap-1 Maneuver	-	0	0	823
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuver	-	-	-	823
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Approach	WB		SB	
HCM Control Delay, s	0		10.3	
HCM LOS	0		B	
			D	

Minor Lane/Major Mvmt	WBT SBLn1	
Capacity (veh/h)	- 823	
HCM Lane V/C Ratio	- 0.178	
HCM Control Delay (s)	- 10.3	
HCM Lane LOS	- B	
HCM 95th %tile Q(veh)	- 0.6	

JNU Medical Center Base PM (2023+housing) BAM

Appendix C- PM Base Traffic Capacity Analysis Reports

Intersection

Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	1	5	^	1			1			1
Traffic Vol, veh/h	0	736	166	54	900	152	0	0	70	0	0	176
Future Vol, veh/h	0	736	166	54	900	152	0	0	70	0	0	176
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	Free	-	-	Stop	-	-	Stop
Storage Length	-	-	375	300	-	475	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	5	2	2	5	2	2	2	2	0	0	7
Mvmt Flow	0	783	177	57	957	162	0	0	74	0	0	187

Major/Minor	Major1	Major2				Minor1			Minor2				
Conflicting Flow All	-	0	-	788	0	0	-	-	402	-	-	484	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	-	4.14	-	-	-	-	6.94	-	-	7.04	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	2.22	-	-	-	-	3.32	-	-	3.37	
Pot Cap-1 Maneuver	0	-	0	827	-	0	0	0	598	0	0	516	
Stage 1	0	-	0	-	-	0	0	0	-	0	0	-	
Stage 2	0	-	0	-	-	0	0	0	-	0	0	-	
Platoon blocked, %		-			-								
Mov Cap-1 Maneuver	r -	-	-	824	-	-	-	-	593	-	-	514	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	0.5	11.9	16	
HCM LOS			В	С	

Minor Lane/Major Mvmt	NBLn1	EBT	WBL	WBT SBL	_n1
Capacity (veh/h)	593	-	824	- 5	514
HCM Lane V/C Ratio	0.126	-	0.07	- 0.3	364
HCM Control Delay (s)	11.9	-	9.7	-	16
HCM Lane LOS	В	-	А	-	С
HCM 95th %tile Q(veh)	0.4	-	0.2	-	1.7

JNU Medical Center Base PM (2023+housing) BAM

Queues 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٠	-	-	-	1	Ť	1	ŧ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	297	181	161	143	317	475	80	291
v/c Ratio	0.64	0.59	0.38	0.52	0.64	0.71	0.24	0.67
Control Delay	25.9	39.4	20.2	38.9	19.2	29.2	13.8	34.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.9	39.4	20.2	38.9	19.2	29.2	13.8	34.6
Queue Length 50th (ft)	97	76	48	62	86	192	19	124
Queue Length 95th (ft)	213	175	116	140	175	364	48	229
Internal Link Dist (ft)		693		1080		707		271
Turn Bay Length (ft)	200		75		150		100	
Base Capacity (vph)	515	490	526	514	528	1158	536	1158
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.37	0.31	0.28	0.60	0.41	0.15	0.25
Intersection Summary								

HCM Signalized Intersection Capacity Analysis 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٦	-	7	4	+	*	1	t	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	7	1	1	7	•	1	٦	1	1
Traffic Volume (vph)	276	168	0	150	133	0	295	442	0	74	271	0
Future Volume (vph)	276	168	0	150	133	0	295	442	0	74	271	0
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Lane Width	12	12	16	12	12	16	12	12	16	12	12	16
Total Lost time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		0.99	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1713	1729		1707	1814		1723	1814		1718	1814	
Flt Permitted	0.52	1.00		0.62	1.00		0.33	1.00		0.39	1.00	
Satd. Flow (perm)	940	1729		1108	1814		591	1814		700	1814	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	297	181	0	161	143	0	317	475	0	80	291	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	297	181	0	161	143	0	317	475	0	80	291	0
Confl. Peds. (#/hr)	5	-	5	5		5	5	-	5	5		5
Heavy Vehicles (%)	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Actuated Green, G (s)	26.0	13.2		22.2	11.3		37.0	27.3		24.5	19.1	
Effective Green, g (s)	26.0	13.2		22.2	11.3		37.0	27.3		24.5	19.1	
Actuated g/C Ratio	0.35	0.18		0.30	0.15		0.50	0.37		0.33	0.26	
Clearance Time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Vehicle Extension (s)	2.0	2.0		3.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	460	305		417	274		499	663		303	464	
v/s Ratio Prot	c0.11	0.10		0.06	0.08		c0.12	c0.26		0.02	0.16	
v/s Ratio Perm	c0.11			0.06			0.20			0.07		
v/c Ratio	0.65	0.59		0.39	0.52		0.64	0.72		0.26	0.63	
Uniform Delay, d1	19.2	28.2		20.3	29.2		12.6	20.3		17.8	24.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.3	2.1		0.6	0.8		1.9	3.1		0.2	1.9	
Delay (s)	21.6	30.3		20.9	30.0		14.6	23.4		17.9	26.5	
Level of Service	С	С		С	С		В	С		В	С	
Approach Delay (s)		24.9			25.2			19.9			24.7	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			22.8	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.73									
Actuated Cycle Length (s)			74.6		um of lost	· · ·			17.8			
Intersection Capacity Utilization	ation		69.5%	% ICU Level of Service C								
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Base PM (2023+housing) BAM

Queues 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/	2022
--------	------

Lane GroupEBTEBRWBTWBRNBLNBTSBLSBTSBRLane Group Flow (vph)245155168327167310726215v/c Ratio0.880.370.060.021.160.740.100.450.27Control Delay68.111.929.80.1145.113.946.418.33.2Queue Delay0.00.00.00.00.40.00.00.0Total Delay68.111.929.80.1145.114.446.418.33.2Queue Delay0.00.00.00.00.40.00.00.0Total Delay68.111.929.80.1145.114.446.418.33.2Queue Length 50th (ft)1481780~34726261385Queue Length 95th (ft)#26368250m#508m#6232318140Internal Link Dist (ft)362281230391111136832543328322621201819868Starvation Cap Reductn0000000000000Spillback Cap Reductn00000000000000000Starvation Cap Reductn000<		-	7	-	*	1	†	1	Ŧ	-
v/c Ratio0.880.370.060.021.160.740.100.450.27Control Delay68.111.929.80.1145.113.946.418.33.2Queue Delay0.00.00.00.00.00.40.00.00.0Total Delay68.111.929.80.1145.114.446.418.33.2Queue Delay68.111.929.80.1145.114.446.418.33.2Queue Length 50th (ft)1481780~34726261385Queue Length 95th (ft)#26368250m#508m#6232318140Internal Link Dist (ft)362281230391391Turn Bay Length (ft)75501507590Base Capacity (vph)32346532543328322621201819868Starvation Cap Reductn000000000Spillback Cap Reductn000000000Storage Cap Reductn000000000	Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Control Delay68.111.929.80.1145.113.946.418.33.2Queue Delay0.00.00.00.00.00.40.00.00.0Total Delay68.111.929.80.1145.114.446.418.33.2Queue Length 50th (ft)1481780~34726261385Queue Length 95th (ft)#26368250m#508m#6232318140Internal Link Dist (ft)362281230391391Turn Bay Length (ft)75501507590Base Capacity (vph)32346532543328322621201819868Starvation Cap Reductn0000000000Storage Cap Reductn0000000000	Lane Group Flow (vph)	245	155	16	8	327	1673	10	726	215
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td>0.88</td><td>0.37</td><td>0.06</td><td>0.02</td><td>1.16</td><td>0.74</td><td>0.10</td><td>0.45</td><td>0.27</td></th<>	v/c Ratio	0.88	0.37	0.06	0.02	1.16	0.74	0.10	0.45	0.27
Total Delay 68.1 11.9 29.8 0.1 145.1 14.4 46.4 18.3 3.2 Queue Length 50th (ft) 148 17 8 0 ~347 262 6 138 5 Queue Length 95th (ft) #263 68 25 0 m#508 m#623 23 181 40 Internal Link Dist (ft) 362 281 230 391 391 Turn Bay Length (ft) 75 50 150 75 90 Base Capacity (vph) 323 465 325 433 283 2262 120 1819 868 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control Delay	68.1	11.9	29.8	0.1	145.1	13.9	46.4	18.3	3.2
Queue Length 50th (ft) 148 17 8 0 ~347 262 6 138 5 Queue Length 95th (ft) #263 68 25 0 m#508 m#623 23 181 40 Internal Link Dist (ft) 362 281 230 391 391 Turn Bay Length (ft) 75 50 150 75 90 Base Capacity (vph) 323 465 325 433 283 2262 120 1819 868 Starvation Cap Reductn 0 0 0 0 203 0 0 0 Spillback Cap Reductn 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0
Queue Length 95th (ft) #263 68 25 0 m#508 m#623 23 181 40 Internal Link Dist (ft) 362 281 230 391	Total Delay	68.1	11.9	29.8	0.1	145.1	14.4	46.4	18.3	3.2
Internal Link Dist (ft) 362 281 230 391 Turn Bay Length (ft) 75 50 150 75 90 Base Capacity (vph) 323 465 325 433 283 2262 120 1819 868 Starvation Cap Reductn 0 0 0 0 203 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0	Queue Length 50th (ft)	148	17	8	0	~347	262	6	138	5
Turn Bay Length (ft)75501507590Base Capacity (vph)32346532543328322621201819868Starvation Cap Reductn0000203000Spillback Cap Reductn00000000Storage Cap Reductn00000000	Queue Length 95th (ft)	#263	68	25	0	m#508	m#623	23	181	40
Base Capacity (vph) 323 465 325 433 283 2262 120 1819 868 Starvation Cap Reductn 0 0 0 0 203 0 0 0 Spillback Cap Reductn 0 <td>Internal Link Dist (ft)</td> <td>362</td> <td></td> <td>281</td> <td></td> <td></td> <td>230</td> <td></td> <td>391</td> <td></td>	Internal Link Dist (ft)	362		281			230		391	
Starvation Cap Reductn 0 0 0 0 0 203 0 <td>Turn Bay Length (ft)</td> <td></td> <td>75</td> <td></td> <td>50</td> <td>150</td> <td></td> <td>75</td> <td></td> <td>90</td>	Turn Bay Length (ft)		75		50	150		75		90
Spillback Cap Reductn 0	Base Capacity (vph)	323	465	325	433	283	2262	120	1819	868
Storage Cap Reductn 0	Starvation Cap Reductn	0	0	0	0	0	203	0	0	0
	Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio 0.76 0.33 0.05 0.02 1.16 0.81 0.08 0.40 0.25	Storage Cap Reductn	0	0	0	0	0	0	0	0	0
	Reduced v/c Ratio	0.76	0.33	0.05	0.02	1.16	0.81	0.08	0.40	0.25

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	٠	-	7	4	+	*	1	Ť	1	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		ŧ	1	٢	* T+		7	^	1
Traffic Volume (vph)	210	13	141	14	1	7	298	1494	28	9	661	196
Future Volume (vph)	210	13	141	14	1	7	298	1494	28	9	661	196
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.98		1.00	0.98	1.00	1.00		1.00	1.00	0.95
Flpb, ped/bikes		0.99	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1721	1513		1726	1513	1723	3434		1723	3446	1469
Flt Permitted		0.73	1.00		0.73	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		1310	1513		1319	1513	1723	3434		1723	3446	1469
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	231	14	155	15	1	8	327	1642	31	10	726	215
RTOR Reduction (vph)	0	0	95	0	0	6	0	1	0	0	0	105
Lane Group Flow (vph)	0	245	60	0	16	2	327	1672	0	10	726	110
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4						6
Actuated Green, G (s)		21.3	21.3		21.3	21.3	16.5	61.9		1.3	46.7	46.7
Effective Green, g (s)		21.3	21.3		21.3	21.3	16.5	61.9		1.3	46.7	46.7
Actuated g/C Ratio		0.21	0.21		0.21	0.21	0.16	0.62		0.01	0.47	0.47
Clearance Time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Vehicle Extension (s)		1.5	1.5		1.5	1.5	2.0	2.0		2.0	2.0	2.0
Lane Grp Cap (vph)		279	322		280	322	284	2125		22	1609	686
v/s Ratio Prot							c0.19	c0.49		0.01	0.21	
v/s Ratio Perm		c0.19	0.04		0.01	0.00						0.07
v/c Ratio		0.88	0.19		0.06	0.01	1.15	0.79		0.45	0.45	0.16
Uniform Delay, d1		38.1	32.2		31.4	31.0	41.8	14.1		49.0	18.0	15.4
Progression Factor		1.00	1.00		1.00	1.00	1.07	0.85		1.00	1.00	1.00
Incremental Delay, d2		24.6	0.1		0.0	0.0	100.5	3.0		5.3	0.9	0.5
Delay (s)		62.7	32.3		31.4	31.0	145.2	15.1		54.3	18.9	15.9
Level of Service		Е	С		С	С	F	В		D	В	В
Approach Delay (s)		50.9			31.3			36.3			18.6	
Approach LOS		D			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			33.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.90									
Actuated Cycle Length (s)			100.0		um of lost				15.5			
Intersection Capacity Utilization	on		80.6%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Base PM (2023+housing) BAM

Queues 4: Mendenhall Loop Road & Egan Drive

03/02/2022	
------------	--

	٦	-	7	*	-	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	106	618	140	33	1084	315	346	20	385	391	65	
v/c Ratio	0.66	0.56	0.24	0.32	1.27	0.95	0.99	0.05	1.02	1.00	0.14	
Control Delay	53.5	23.3	4.2	53.3	163.5	79.4	87.1	0.2	77.8	73.8	1.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.5	23.3	4.2	53.3	163.5	79.4	87.1	0.2	77.8	73.8	1.8	
Queue Length 50th (ft)	47	204	20	21	~474	200	222	0	~267	~267	4	
Queue Length 95th (ft)	#101	227	50	51	#606	#366	#403	0	#471	#471	11	
Internal Link Dist (ft)		1356			1654		696			316		
Turn Bay Length (ft)	540		120	550		290		390	280			
Base Capacity (vph)	186	1104	590	117	854	332	350	414	379	390	466	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.57	0.56	0.24	0.28	1.27	0.95	0.99	0.05	1.02	1.00	0.14	

Intersection Summary

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 4: Mendenhall Loop Road & Egan Drive

03/02/2022

	٨	-	7	•	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	† †	1	٦	††	1	ሻ	+	1	۳	÷.	1
Traffic Volume (vph)	103	599	136	32	1051	0	306	336	19	558	195	63
Future Volume (vph)	103	599	136	32	1051	0	306	336	19	558	195	63
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00	1.00	1.00	0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.98	1.00
Satd. Flow (prot)	1723	3348	1486	1723	3348		1723	1814	1511	1637	1682	1513
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.98	1.00
Satd. Flow (perm)	1723	3348	1486	1723	3348		1723	1814	1511	1637	1682	1513
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	106	618	140	33	1084	0	315	346	20	575	201	65
RTOR Reduction (vph)	0	0	97	0	0	0	0	0	16	0	0	50
Lane Group Flow (vph)	106	618	43	33	1084	0	315	346	4	385	391	15
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Heavy Vehicles (%)	2%	5%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	1	6	-	5	2	-	3	3	-	4	4	-
Permitted Phases			6			2			3			4
Actuated Green, G (s)	9.4	30.9	30.9	4.0	25.5		19.3	19.3	19.3	23.2	23.2	23.2
Effective Green, g (s)	9.4	30.9	30.9	4.0	25.5		19.3	19.3	19.3	23.2	23.2	23.2
Actuated g/C Ratio	0.09	0.31	0.31	0.04	0.26		0.19	0.19	0.19	0.23	0.23	0.23
Clearance Time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Vehicle Extension (s)	2.0	0.5	0.5	2.0	0.5		0.5	0.5	0.5	2.0	2.0	2.0
Lane Grp Cap (vph)	161	1034	459	68	853		332	350	291	379	390	351
v/s Ratio Prot	c0.06	0.18	100	0.02	c0.32		0.18	c0.19	201	c0.24	0.23	001
v/s Ratio Perm	00.00	0.10	0.03	0.02	00.02		0.10	00.10	0.00	00.21	0.20	0.01
v/c Ratio	0.66	0.60	0.09	0.49	1.27		0.95	0.99	0.01	1.02	1.00	0.04
Uniform Delay, d1	43.7	29.3	24.6	47.0	37.2		39.9	40.2	32.6	38.4	38.4	29.8
Progression Factor	0.79	0.73	0.77	1.00	1.00		1.00	1.00	1.00	0.67	0.67	1.00
Incremental Delay, d2	7.0	2.5	0.4	2.0	131.1		35.4	44.5	0.0	48.9	44.8	0.0
Delay (s)	41.8	23.9	19.2	49.0	168.3		75.2	84.7	32.7	74.6	70.6	29.8
Level of Service	D	C	B	D	F		E	F	C	E	E	C
Approach Delay (s)	U	25.4	2	D	164.8		-	78.8	Ũ	_	69.3	Ũ
Approach LOS		C			F			E			E	
Intersection Summary								_			_	
HCM 2000 Control Delay			90.8	Н	CM 2000	Level of S	ervice		F			
HCM 2000 Volume to Capa	city ratio		90.0 1.05	11		Level 01 3						
Actuated Cycle Length (s)	iony ratio		100.0	C.	um of losi	time (c)			22.6			
Intersection Capacity Utiliza	ation		93.8%			of Service			22.0 F			
Analysis Period (min)			93.0% 15	IC.					F			
C Critical Lane Group			10									

c Critical Lane Group

JNU Medical Center Base PM (2023+housing) BAM

Queues 5: Egan Drive & Riverside Drive

	٦	-	-	*	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	371	469	954	525	405	197
v/c Ratio	0.76	0.19	0.75	0.60	0.73	0.47
Control Delay	43.2	5.0	16.5	4.2	47.4	9.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.2	5.0	16.5	4.2	47.4	9.0
Queue Length 50th (ft)	215	43	71	5	127	0
Queue Length 95th (ft)	316	72	m165	m0	169	57
Internal Link Dist (ft)		694	1356		707	
Turn Bay Length (ft)	350			900	225	145
Base Capacity (vph)	489	2420	1264	872	1026	420
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.76	0.19	0.75	0.60	0.39	0.47
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 5: Egan Drive & Riverside Drive

03/02/2022

	٦	→	+	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	۲	† †	† †	1	ኘካ	1	
Traffic Volume (vph)	356	450	916	504	389	189	
Future Volume (vph)	356	450	916	504	389	189	
deal Flow (vphpl)	1850	1850	1850	1850	1850	1850	
Total Lost time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1674	3348	3348	1446	3343	1542	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1674	3348	3348	1446	3343	1542	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	
Adj. Flow (vph)	371	469	954	525	405	197	
RTOR Reduction (vph)	0	0	0	327	0	164	
Lane Group Flow (vph)	371	469	954	198	405	33	
Confl. Peds. (#/hr)	5			5	5	5	
Heavy Vehicles (%)	5%	5%	5%	5%	2%	2%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		4	8	
Permitted Phases				2			
Actuated Green, G (s)	29.2	72.3	37.8	37.8	16.6	16.6	
Effective Green, g (s)	29.2	72.3	37.8	37.8	16.6	16.6	
Actuated g/C Ratio	0.29	0.72	0.38	0.38	0.17	0.17	
Clearance Time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Vehicle Extension (s)	1.0	0.5	0.5	0.5	2.0	2.0	
Lane Grp Cap (vph)	488	2420	1265	546	554	255	
v/s Ratio Prot	c0.22	0.14	c0.28		c0.12	0.02	
v/s Ratio Perm				0.14			
v/c Ratio	0.76	0.19	0.75	0.36	0.73	0.13	
Uniform Delay, d1	32.2	4.5	27.1	22.4	39.6	35.5	
Progression Factor	1.00	1.00	0.53	1.50	1.00	1.00	
Incremental Delay, d2	6.2	0.2	0.4	0.2	4.3	0.1	
Delay (s)	38.4	4.6	14.7	33.9	43.8	35.6	
Level of Service	D	А	В	С	D	D	
Approach Delay (s)		19.6	21.5		41.2		
Approach LOS		В	С		D		
Intersection Summary							
HCM 2000 Control Delay			25.0	H	CM 2000	Level of Service	
HCM 2000 Volume to Capa	acity ratio		0.77				
Actuated Cycle Length (s)			100.0	Si	um of lost	time (s)	
Intersection Capacity Utilization	ation		71.3%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

c Critical Lane Group

JNU Medical Center Base PM (2023+housing) BAM

03/02/	2022
--------	------

Intersection Int Delay, s/veh						
Int Dolay						
int Delay, Siven	3.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	NDL			ODIX
	٥	157	0	٥	420	٥
Traffic Vol, veh/h	0	157	0	0	420	0
Future Vol, veh/h	0	157	0	0	420	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Free	Free
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	e, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	169	0	0	452	0

Major/Minor	Minor2			Major2	
Conflicting Flow All	-	452		, 	0
Stage 1	-	-		-	-
Stage 2	-	-		-	-
Critical Hdwy	-	6.22		-	-
Critical Hdwy Stg 1	-	-		-	-
Critical Hdwy Stg 2	-	-		-	-
Follow-up Hdwy	-	3.318		-	-
Pot Cap-1 Maneuver	0	608		-	0
Stage 1	0	-		-	0
Stage 2	0	-		-	0
Platoon blocked, %				-	
Mov Cap-1 Maneuver		608		-	-
Mov Cap-2 Maneuver	-	-		-	-
Stage 1	-	-		-	-
Stage 2	-	-		-	-
Approach	EB			SB	
HCM Control Delay, s				0	
HCM LOS	B			Ū	
	_				
	.1		ODT		
Minor Lane/Major Mvn	nt	EBLn1	SBT		
Capacity (veh/h)		608	-		
HCM Lane V/C Ratio		0.278	-		
HCM Control Delay (s))	13.2	-		
HCM Lane LOS	,	В	-		
HCM 95th %tile Q(veh)	1.1	-		

JNU Medical Center Base PM (2023+housing) BAM

Intersection						
Int Delay, s/veh	5.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	†			
Traffic Vol, veh/h	0	212	718	0	0	0
Future Vol, veh/h	0	212	718	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	228	772	0	0	0

Major/Minor	Minor1	N	/lajor1	
Conflicting Flow All	-	772	0	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	6.22	-	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	3.318	-	-
Pot Cap-1 Maneuver	0	400	-	0
Stage 1	0	-	-	0
Stage 2	0	-	-	0
Platoon blocked, %			-	
Mov Cap-1 Maneuver	-	400	-	-
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Approach	WB	NB
HCM Control Delay, s	25.3	0
HCM LOS	D	

Minor Lane/Major Mvmt	NBTWBLn1
Capacity (veh/h)	- 400
HCM Lane V/C Ratio	- 0.57
HCM Control Delay (s)	- 25.3
HCM Lane LOS	- D
HCM 95th %tile Q(veh)	- 3.4

JNU Medical Center Base PM (2023+housing) BAM

Intersection						
Int Delay, s/veh	3.6					
	FDT			WDT		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	+					1
Traffic Vol, veh/h	242	0	0	0	0	122
Future Vol, veh/h	242	0	0	0	0	122
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None		None		Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	260	0	0	0	0	131

Major/Minor	Major1		Minor1		
Conflicting Flow All	0	-	-	260	
Stage 1	-	-	-	-	
Stage 2	-	-	-	-	
Critical Hdwy	-	-	-	6.22	
Critical Hdwy Stg 1	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	
Follow-up Hdwy	-	-	-	3.318	
Pot Cap-1 Maneuver	-	0	0	779	
Stage 1	-	0	0	-	
Stage 2	-	0	0	-	
Platoon blocked, %	-				
Mov Cap-1 Maneuve		-	-	779	
Mov Cap-2 Maneuve	· -	-	-	-	
Stage 1	-	-	-	-	
Stage 2	-	-	-	-	

Approach	EB	NB
HCM Control Delay, s	0	10.6
HCM LOS		В

Minor Lane/Major Mvmt	NBLn1	EBT
Capacity (veh/h)	779	-
HCM Lane V/C Ratio	0.168	-
HCM Control Delay (s)	10.6	-
HCM Lane LOS	В	-
HCM 95th %tile Q(veh)	0.6	-

JNU Medical Center Base PM (2023+housing) BAM

Intersection

2.6					
EBL	EBT	WBT	WBR	SBL	SBR
		•			1
0	0	428	0	0	112
0	0	428	0	0	112
0	0	0	0	0	0
Stop	Stop	Free	Free	Stop	Stop
-	None	-	None	-	Yield
-	-	-	-	-	0
, # -	-	0	-	0	-
-	0	0	-	0	-
93	93	93	93	93	93
2	2	2	2	2	2
0	0	460	0	0	120
	EBL 0 0 Stop - ,# - 93 2	EBL EBT 0 0 0 0 0 0 Stop Stop Stop None - - ,# - 0 93 93 2 2	EBL EBT WBT 0 0 428 0 0 428 0 0 428 0 0 7 Stop Stop Free None - - - - , # - 0 0 93 93 93 2 2 2	EBL EBT WBT WBR 0 0 428 00 0 0 428 0 0 0 428 0 0 0 428 0 0 0 7 7 Stop Stop Free Free None - None - 0 0 - # - 0 0 - # 0 0 - - 93 93 93 93 93 2 2 2 2 2	EBL EBT WBT WBR SBL 0 0 428 0 0 0 0 428 0 0 0 0 428 0 0 0 0 428 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Free Free Stop - None - None - - - - - - ,# - 0 0 - 0 93 93 93 93 93 93 2 2 2 2 2 2

Major/Minor	Major2	Mi	nor2	
Conflicting Flow All	-	0	-	460
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-	-	3.318
Pot Cap-1 Maneuver	-	0	0	601
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuver	-	-	-	601
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Approach	WB		SB	
			12.5	
HCM Control Delay, s	0			
HCM LOS			В	
Minor Lane/Major Mvmt	WBT SBLn1		_	
Capacity (veh/h)	- 601			

	- 001	
HCM Lane V/C Ratio	- 0.2	
HCM Control Delay (s)	- 12.5	
HCM Lane LOS	- B	
HCM 95th %tile Q(veh)	- 0.7	

JNU Medical Center Base PM (2023+housing) BAM

Appendix D- AM Base + Site Traffic Capacity Analysis Report

Intersection

Int Delay, s/veh 1.3		
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	SBT	T SBF
Lane Configurations		5
Traffic Vol, veh/h 0 783 202 27 634 80 0 0 46 0	0	0 9
Future Vol, veh/h 0 783 202 27 634 80 0 0 46 0	0	0 9
Conflicting Peds, #/hr 5 0 5 5 0 5 5 0 5 5	0	0
Sign Control Free Free Free Free Free Stop Stop Stop Stop	Stop	p Sto
RT Channelized Free Free Stop -	-	- Sto
Storage Length 375 300 - 475 0 -	-	-
Veh in Median Storage, # - 0 0 0	0	0
Grade, % - 0 0 0	0	0
Peak Hour Factor 80 80 80 80 80 80 80 80 80 80 80	80	80 8
Heavy Vehicles, % 2 5 2 0 5 2 0 0 2 0	0	0
Mvmt Flow 0 979 253 34 793 100 0 0 58 0	0	0 11

Major/Minor	Major1		Μ	lajor2		Mi	nor1		М	inor2			
Conflicting Flow All	-	0	-	984	0	0	-	-	500	-	-	402	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	-	4.1	-	-	-	-	6.94	-	-	7.04	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	2.2	-	-	-	-	3.32	-	-	3.37	
Pot Cap-1 Maneuver	0	-	0	710	-	0	0	0	516	0	0	584	
Stage 1	0	-	0	-	-	0	0	0	-	0	0	-	
Stage 2	0	-	0	-	-	0	0	0	-	0	0	-	
Platoon blocked, %		-			-								
Mov Cap-1 Maneuver	r -	-	-	707	-	-	-	-	512	-	-	582	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
olugo z													

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	0.4	12.9	12.7	
HCM LOS			В	В	

Minor Lane/Major Mvmt	NBLn1	EBT	WBL	WBT SBLn1
Capacity (veh/h)	512	-	707	- 582
HCM Lane V/C Ratio	0.112	-	0.048	- 0.195
HCM Control Delay (s)	12.9	-	10.3	- 12.7
HCM Lane LOS	В	-	В	- B
HCM 95th %tile Q(veh)	0.4	-	0.1	- 0.7

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٠	-	-	-	1	Ť	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	25	38	109	168	104	210	104	825	
v/c Ratio	0.12	0.22	0.40	0.58	0.33	0.20	0.14	0.83	
Control Delay	28.4	42.6	32.7	43.4	9.0	12.6	6.9	29.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.4	42.6	32.7	43.4	9.0	12.6	6.9	29.6	
Queue Length 50th (ft)	11	21	50	80	18	58	18	391	
Queue Length 95th (ft)	27	46	83	140	39	105	39	#623	
Internal Link Dist (ft)		693		1080		707		271	
Turn Bay Length (ft)	200		75		150		100		
Base Capacity (vph)	379	416	364	436	419	1043	869	999	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.09	0.30	0.39	0.25	0.20	0.12	0.83	
Intersection Summary									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

Movement EBL EBT EBR WBL WBT WBL NBL NBT NBR SBL SBL SBR Lane Configurations 1 <t< th=""><th></th><th>٦</th><th>-</th><th>7</th><th>1</th><th>+</th><th>*</th><th>1</th><th>Ť</th><th>1</th><th>4</th><th>ŧ</th><th>~</th></t<>		٦	-	7	1	+	*	1	Ť	1	4	ŧ	~
Traffic Volume (vph) 19 29 0 84 129 0 80 162 0 80 635 0 Future Volume (vph) 1850 180 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 19 29 0 84 129 0 80 162 0 80 635 0 Future Volume (vph) 1850 180 100	Lane Configurations	7	1	1	٦	•	1	٦	•	1	٦	^	1
ideal Flow (vphp) 1850 100 100 100							-		162	-			
ideal Flow (vphp) 1850 100 100 100				0	84					0			0
Lane Width 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 12 12 16 10 100	· · · /			1850	1850		1850	1850		1850	1850		1850
Total Last time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Lane Util, Factor 1.00													
Lane Util. Factor 1.00 <td></td> <td>-</td>													-
Fripb. ped/bikes 1.00													
Fipb, ped/bikes 0.99 1.00 0.99 1.00													
Frit 1.00 <th1.00< th=""> 1.00 1.00</th1.00<>													
Fit Protected 0.95 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.077 0.77<													
Satd. Flow (prot) 1706 1729 1709 1814 1723 1814 1706 1814 FIP Fermitted 0.65 1.00 0.48 1.00 0.12 1.00 0.63 1.00 Satd. Flow (perm) 1169 1729 857 1814 213 1814 1125 1814 Peek-hour factor, PHF 0.77 <td></td>													
Fit Permitted 0.65 1.00 0.48 1.00 0.12 1.00 0.63 1.00 Satu. Flow (perm) 1169 1729 857 1814 213 1814 1125 1814 Peak-hour factor, PHF 0.77													
Satd. Flow (perm) 1169 1729 857 1814 213 1814 1125 1814 Peak-hour factor, PHF 0.77													
Peak-hour factor, PHF 0.77													
Adj. Flow (vph) 25 38 0 109 168 0 104 210 0 104 825 0 RTOR Reduction (vph) 0				0.77			0.77			0.77			0.77
RTOR Reduction (vph) 0	,												
Lane Group Flow (vph) 25 38 0 109 168 0 104 210 0 104 825 0 Confl. Peds. (#/hr) 5													
Confl. Peds. (#/hr) 5													
Heavy Vehicles (%) 2%						100			2.0			020	
Turn Type pm+pt NA Perm pm+pt NA Perm pm+pt NA Perm pm+pt NA Perm Protected Phases 3 8 7 4 5 2 1 6 Permitted Phases 8 4 4 2 2 6 6 Actuated Green, G (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Effective Green, g (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0	. ,		7%			2%			2%			2%	
Protected Phases 3 8 7 4 5 2 1 6 Permitted Phases 8 8 4 4 2 2 6 6 Actuated Green, G (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Effective Green, g (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 27.3 280 274 999 711 958 v/s Ratio Prot 0.00 0.02 0.05 0.21 0.01 co.45 v/s Ratio Prot 0.08 2.1 0.	,	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Actuated Green, G (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Effective Green, g (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Port 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Port 0.02 0.05 0.21 0.08 0.45 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<													
Effective Green, g (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Perm 0.02 0.02 c0.04 c0.09 c0.3 0.12 0.01 c0.45 V/s Ratio Perm 0.02 0.05 0.21 0.08 0.4 c.83 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Permitted Phases	8		8	4		4	2		2	6		6
Effective Green, g (s) 10.3 8.0 20.4 13.8 57.2 49.1 53.2 47.1 Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Perm 0.02 0.02 c0.04 c0.09 c0.3 0.12 0.01 c0.45 V/s Ratio Perm 0.02 0.05 0.21 0.08 0.4 c.83 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Actuated Green, G (s)	10.3	8.0		20.4	13.8		57.2	49.1		53.2	47.1	
Actuated g/C Ratio 0.12 0.09 0.23 0.15 0.64 0.55 0.60 0.53 Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Prot 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Perm 0.02 0.05 0.21 0.08 v/v/rescretee 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00	Effective Green, g (s)		8.0		20.4	13.8		57.2	49.1		53.2	47.1	
Clearance Time (s) 4.3 4.5 4.3 4.5 4.3 4.7 4.3 4.7 Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 3.0 2.0 Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Prot 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Perm 0.02 0.05 0.21 0.08 v/creation 0.08 v/creation 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 <td< td=""><td></td><td>0.12</td><td>0.09</td><td></td><td>0.23</td><td>0.15</td><td></td><td>0.64</td><td>0.55</td><td></td><td>0.60</td><td>0.53</td><td></td></td<>		0.12	0.09		0.23	0.15		0.64	0.55		0.60	0.53	
Lane Grp Cap (vph) 148 155 273 280 274 999 711 958 v/s Ratio Prot 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Perm 0.02 0.05 0.21 0.08 v/c Ratio 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00		4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
v/s Ratio Prot 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Perm 0.02 0.05 0.21 0.08 0.08 0.01 c0.45 v/c Ratio 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B A C Approach LOS 0 C D C B C C Intersection Summary 23.7 HCM 2000 Level of Service C C C HCM 2000 Volume to Capacity ratio 0.75 0.75 1	Vehicle Extension (s)	2.0	2.0		2.0	2.0		3.0	2.0		3.0	2.0	
v/s Ratio Prot 0.00 0.02 c0.04 c0.09 c0.03 0.12 0.01 c0.45 v/s Ratio Perm 0.02 0.05 0.21 0.08 v/c Ratio 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B A C Approach LOS 37.1 34.0 11.5 23.9 23.9 A C Intersection Summary Z3.7 HCM 2000 Level of Service C C HCM 2000 Volume to Capacity ratio 0.75 39.1 Sum of lost time (s) 17.8 17.8 <td>Lane Grp Cap (vph)</td> <td>148</td> <td>155</td> <td></td> <td>273</td> <td>280</td> <td></td> <td>274</td> <td>999</td> <td></td> <td>711</td> <td>958</td> <td></td>	Lane Grp Cap (vph)	148	155		273	280		274	999		711	958	
v/s Ratio Perm 0.02 0.05 0.21 0.08 v/c Ratio 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B A C Approach Delay (s) 37.1 34.0 11.5 23.9 Approach LOS D C B C C Intersection Summary 23.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.75 C C C Actuated Cycle Length (s) 89.1 Sum of lost time (s) 17.8 T <t< td=""><td></td><td>0.00</td><td>0.02</td><td></td><td>c0.04</td><td>c0.09</td><td></td><td>c0.03</td><td>0.12</td><td></td><td>0.01</td><td>c0.45</td><td></td></t<>		0.00	0.02		c0.04	c0.09		c0.03	0.12		0.01	c0.45	
v/c Ratio 0.17 0.25 0.40 0.60 0.38 0.21 0.15 0.86 Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B A C Approach Delay (s) 37.1 34.0 11.5 23.9 23.9 Approach LOS D C B C C HCM 2000 Control Delay 23.7 HCM 2000 Level of Service C C HCM 2000 Volume to Capacity ratio 0.75	v/s Ratio Perm										0.08		
Uniform Delay, d1 35.4 37.7 28.4 35.1 13.3 10.2 7.7 18.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B B A C Approach Delay (s) 37.1 34.0 11.5 23.9 23.9 Approach LOS D C B C C C HCM 2000 Control Delay 23.7 HCM 2000 Level of Service C C HCM 2000 Volume to Capacity ratio 0.75 C C C C Actuated Cycle Length (s) 89.1 Sum of lost time (s) 17.8 T C Intersection Capacity Utilization 66.5% ICU Level of Service C C C		0.17	0.25		0.40	0.60		0.38	0.21		0.15	0.86	
Progression Factor 1.00 <td></td> <td>35.4</td> <td></td> <td></td> <td>28.4</td> <td>35.1</td> <td></td> <td></td> <td>10.2</td> <td></td> <td></td> <td>18.2</td> <td></td>		35.4			28.4	35.1			10.2			18.2	
Incremental Delay, d2 0.2 0.3 0.4 2.3 0.9 0.0 0.1 7.8 Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B B A C Approach Delay (s) 37.1 34.0 11.5 23.9 Approach LOS D C B C Intersection Summary D C B C HCM 2000 Control Delay 23.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.75 C Intersection Capacity lulization 66.5% ICU Level of Service C Analysis Period (min) 15 15 23.9 15 15		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Delay (s) 35.6 38.0 28.8 37.4 14.2 10.2 7.8 25.9 Level of Service D D C D B B A C Approach Delay (s) 37.1 34.0 11.5 23.9 Approach LOS D C B C Intersection Summary Z C B C HCM 2000 Control Delay 23.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.75 C Actuated Cycle Length (s) 89.1 Sum of lost time (s) 17.8 Intersection Capacity Utilization 66.5% ICU Level of Service C C Analysis Period (min) 15 15 15 16 16	•												
Level of ServiceDDCDBBACApproach Delay (s)37.134.011.523.9Approach LOSDCBCIntersection SummaryHCM 2000 Control Delay23.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.75		35.6	38.0		28.8	37.4		14.2	10.2		7.8	25.9	
Approach LOSDCBCIntersection SummaryHCM 2000 Control Delay23.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.75		D			С				В		А		
Intersection SummaryHCM 2000 Control Delay23.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.75Actuated Cycle Length (s)89.1Sum of lost time (s)17.8Intersection Capacity Utilization66.5%ICU Level of ServiceCAnalysis Period (min)15	Approach Delay (s)		37.1			34.0			11.5			23.9	
HCM 2000 Control Delay23.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.75Actuated Cycle Length (s)89.1Sum of lost time (s)17.8Intersection Capacity Utilization66.5%ICU Level of ServiceCAnalysis Period (min)151515	•••••••••••••••••••••••••••••••••••••••		D			С			В			С	
HCM 2000 Volume to Capacity ratio0.75Actuated Cycle Length (s)89.1Sum of lost time (s)17.8Intersection Capacity Utilization66.5%ICU Level of ServiceCAnalysis Period (min)1515C	Intersection Summary												
HCM 2000 Volume to Capacity ratio0.75Actuated Cycle Length (s)89.1Sum of lost time (s)17.8Intersection Capacity Utilization66.5%ICU Level of ServiceCAnalysis Period (min)1515C	HCM 2000 Control Delay			23.7	Н	CM 2000	Level of	Service		С			
Actuated Cycle Length (s)89.1Sum of lost time (s)17.8Intersection Capacity Utilization66.5%ICU Level of ServiceCAnalysis Period (min)1515	,	acity ratio											
Intersection Capacity Utilization 66.5% ICU Level of Service C Analysis Period (min) 15					S	um of lost	time (s)			17.8			
Analysis Period (min) 15		ation						Э					

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	→	7	+	*	1	Ť	5	ŧ	~	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	63	130	34	6	77	485	6	1748	233	
v/c Ratio	0.51	0.53	0.29	0.03	0.59	0.18	0.07	0.73	0.22	
Control Delay	64.2	19.0	53.8	0.2	67.5	6.6	56.2	14.5	5.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	
Total Delay	64.2	19.0	53.8	0.2	67.5	6.6	56.2	14.8	5.1	
Queue Length 50th (ft)	48	11	25	0	46	18	5	387	32	
Queue Length 95th (ft)	79	55	50	0	#124	151	18	530	71	
Internal Link Dist (ft)	362		281			230		391		
Turn Bay Length (ft)		75		50	150		75		90	
Base Capacity (vph)	244	379	236	338	133	2747	100	2409	1049	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	6	0	0	0	0	0	207	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.35	0.14	0.02	0.58	0.18	0.06	0.79	0.22	
Internetion Common										

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	٠	-	7	4	+	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		र्स	1	7	1		7	††	1
Traffic Volume (vph)	49	4	109	27	2	5	65	403	4	5	1468	196
Future Volume (vph)	49	4	109	27	2	5	65	403	4	5	1468	196
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.97		1.00	0.98	1.00	1.00		1.00	1.00	0.95
Flpb, ped/bikes		0.99	1.00		0.99	1.00	1.00	1.00		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected		0.96	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1721	1499		1720	1511	1723	3439		1723	3446	1460
Flt Permitted		0.72	1.00		0.69	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		1293	1499		1248	1511	1723	3439		1723	3446	1460
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	58	5	130	32	2	6	77	480	5	6	1748	233
RTOR Reduction (vph)	0	0	104	0	0	5	0	0	0	0	0	28
Lane Group Flow (vph)	0	63	26	0	34	1	77	485	0	6	1748	205
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4						6
Actuated Green, G (s)		11.4	11.4		11.4	11.4	9.2	91.9		1.2	83.9	83.9
Effective Green, g (s)		11.4	11.4		11.4	11.4	9.2	91.9		1.2	83.9	83.9
Actuated g/C Ratio		0.10	0.10		0.10	0.10	0.08	0.77		0.01	0.70	0.70
Clearance Time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Vehicle Extension (s)		1.5	1.5		1.5	1.5	2.0	2.0		2.0	2.0	2.0
Lane Grp Cap (vph)		122	142		118	143	132	2633		17	2409	1020
v/s Ratio Prot							c0.04	0.14		0.00	c0.51	
v/s Ratio Perm		c0.05	0.02		0.03	0.00						0.14
v/c Ratio		0.52	0.18		0.29	0.00	0.58	0.18		0.35	0.73	0.20
Uniform Delay, d1		51.7	50.0		50.5	49.2	53.5	3.8		59.0	11.0	6.3
Progression Factor		1.00	1.00		1.00	1.00	0.92	1.64		1.00	1.00	1.00
Incremental Delay, d2		1.5	0.2		0.5	0.0	4.2	0.2		4.5	1.9	0.4
Delay (s)		53.2	50.2		51.0	49.2	53.2	6.4		63.6	13.0	6.8
Level of Service		D	D		D	D	D	А		Е	В	А
Approach Delay (s)		51.2			50.7			12.8			12.4	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			15.7	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.69									
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)			15.5			
Intersection Capacity Utilizat	ion		69.4%	IC	U Level o	of Service	•		С			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 4: Mendenhall Loop Road & Egan Drive

03/02/2022	2
------------	---

	٦	-	7	*	-	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	62	1121	135	8	447	133	119	41	809	830	126	
v/c Ratio	0.55	1.07	0.26	0.11	0.57	0.74	0.63	0.15	1.08	1.09	0.17	
Control Delay	72.1	87.6	9.5	58.9	46.9	75.1	65.4	1.2	80.9	83.9	4.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	
Total Delay	72.1	87.6	9.5	58.9	46.9	75.1	65.4	1.2	80.9	84.5	4.7	
Queue Length 50th (ft)	47	432	5	6	159	102	90	0	~702	~727	13	
Queue Length 95th (ft)	#100	#782	63	23	#247	160	144	0	#933	#959	m27	
Internal Link Dist (ft)		1356			1654		696			316		
Turn Bay Length (ft)	540		120	550		290		390	280			
Base Capacity (vph)	123	1051	529	72	787	277	291	348	749	762	727	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	1	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.50	1.07	0.26	0.11	0.57	0.48	0.41	0.12	1.08	1.09	0.17	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 4: Mendenhall Loop Road & Egan Drive

03/02/2022

	۶	→	7	4	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	††	1	٦	† †	1	٦	+	1	٦	र्स	1
Traffic Volume (vph)	56	1020	123	7	407	0	121	108	37	1269	222	115
Future Volume (vph)	56	1020	123	7	407	0	121	108	37	1269	222	115
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00		1.00	1.00	1.00	*1.00	*1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.97	1.00
Satd. Flow (prot)	1723	3524	1481	1723	3524		1723	1814	1509	1723	1752	1511
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.97	1.00
Satd. Flow (perm)	1723	3524	1481	1723	3524		1723	1814	1509	1723	1752	1511
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	62	1121	135	8	447	0	133	119	41	1395	244	126
RTOR Reduction (vph)	0	0	92	0	0	0	0	0	37	0	0	71
Lane Group Flow (vph)	62	1121	43	8	447	0	133	119	4	809	830	55
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Heavy Vehicles (%)	2%	5%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases			6			2			3			4
Actuated Green, G (s)	6.9	31.7	31.7	1.0	25.8		12.5	12.5	12.5	52.2	52.2	52.2
Effective Green, g (s)	6.9	31.7	31.7	1.0	25.8		12.5	12.5	12.5	52.2	52.2	52.2
Actuated g/C Ratio	0.06	0.26	0.26	0.01	0.22		0.10	0.10	0.10	0.44	0.44	0.44
Clearance Time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Vehicle Extension (s)	2.0	0.5	0.5	2.0	0.5		0.5	0.5	0.5	2.0	2.0	2.0
Lane Grp Cap (vph)	99	930	391	14	757		179	188	157	749	762	657
v/s Ratio Prot	c0.04	c0.32		0.00	0.13		c0.08	0.07		0.47	c0.47	
v/s Ratio Perm			0.03						0.00			0.04
v/c Ratio	0.63	1.21	0.11	0.57	0.59		0.74	0.63	0.03	1.08	1.09	0.08
Uniform Delay, d1	55.3	44.1	33.5	59.3	42.4		52.2	51.6	48.3	33.9	33.9	19.9
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	0.83	0.83	1.19
Incremental Delay, d2	8.6	102.6	0.6	30.5	3.4		13.5	5.0	0.0	52.0	55.1	0.0
Delay (s)	63.9	146.8	34.0	89.8	45.7		65.7	56.6	48.3	80.2	83.4	23.6
Level of Service	E	F	С	F	D		E	E	D	F	F	С
Approach Delay (s)		131.3			46.5			59.6			77.6	-
Approach LOS		F			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			91.0	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.09									
Actuated Cycle Length (s)			120.0	Si	um of lost	time (s)			22.6			
Intersection Capacity Utiliza	ation		101.5%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 5: Egan Drive & Riverside Drive

	٦	-	←	*	4	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	213	786	628	146	660	265
v/c Ratio	0.64	0.43	0.72	0.30	0.69	0.46
Control Delay	37.0	10.5	29.8	6.6	27.3	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.0	10.5	29.8	6.6	27.3	11.3
Queue Length 50th (ft)	80	91	122	0	121	27
Queue Length 95th (ft)	171	154	214	35	215	88
Internal Link Dist (ft)		694	1356		707	
Turn Bay Length (ft)	350			900	225	145
Base Capacity (vph)	772	3181	2060	942	2057	622
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.25	0.30	0.15	0.32	0.43
Intersection Summary						

HCM Signalized Intersection Capacity Analysis 5: Egan Drive & Riverside Drive

03/02/2022

	٦	→	←	*	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	۲	^	† †	1	ኘካ	1	
Traffic Volume (vph)	177	652	521	121	548	220	
Future Volume (vph)	177	652	521	121	548	220	
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	
Total Lost time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1674	3348	3348	1453	3343	1542	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1674	3348	3348	1453	3343	1542	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	
Adj. Flow (vph)	213	786	628	146	660	265	
RTOR Reduction (vph)	0	0	0	107	0	126	
Lane Group Flow (vph)	213	786	628	39	660	139	
Confl. Peds. (#/hr)	5			5	5	5	
Heavy Vehicles (%)	5%	5%	5%	5%	2%	2%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		4	8	
Permitted Phases				2			
Actuated Green, G (s)	13.8	37.4	18.3	18.3	19.9	19.9	
Effective Green, g (s)	13.8	37.4	18.3	18.3	19.9	19.9	
Actuated g/C Ratio	0.20	0.55	0.27	0.27	0.29	0.29	
Clearance Time (s)	5.3	5.8	5.8	5.8	5.3	5.3	
Vehicle Extension (s)	1.0	0.5	0.5	0.5	2.0	2.0	
Lane Grp Cap (vph)	337	1830	895	388	972	448	
v/s Ratio Prot	c0.13	0.23	c0.19		c0.20	0.09	
v/s Ratio Perm				0.03			
v/c Ratio	0.63	0.43	0.70	0.10	0.68	0.31	
Uniform Delay, d1	25.0	9.2	22.6	18.9	21.4	18.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.8	0.1	2.1	0.0	1.5	0.1	
Delay (s)	27.8	9.2	24.6	18.9	22.9	19.0	
Level of Service	С	А	С	В	С	В	
Approach Delay (s)		13.2	23.6		21.8		
Approach LOS		В	С		С		
Intersection Summary							
HCM 2000 Control Delay			19.1	H	CM 2000	Level of Service	
HCM 2000 Volume to Cap	acity ratio		0.70				
Actuated Cycle Length (s)			68.4	Si	um of lost	time (s)	
Intersection Capacity Utiliz	zation		54.6%	IC	U Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

c Critical Lane Group

JNU Medical Center Build PM (2023+housing+med center) BAM

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	LDL		INDL	INDI	301	JUIN
Lane Configurations		C.			T	
Traffic Vol, veh/h	0	49	0	0	719	0
Future Vol, veh/h	0	49	0	0	719	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Free	Free
RT Channelized	-	Yield		None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e,#0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	64	0	0	934	0

Major/Minor	Minor2			Major2		 			
Conflicting Flow All	-	934		-	0				
Stage 1	-	-		-	-				
Stage 2	-	-		-	-				
Critical Hdwy	-	6.22		-	-				
Critical Hdwy Stg 1	-	-		-	-				
Critical Hdwy Stg 2	-	-		-	-				
Follow-up Hdwy		3.318		-	-				
Pot Cap-1 Maneuver	0	322		-	0				
Stage 1	0	-		-	0				
Stage 2	0	-		-	0				
Platoon blocked, %				-					
Mov Cap-1 Maneuver		322		-	-				
Mov Cap-2 Maneuver	-	-		-	-				
Stage 1	-	-		-	-				
Stage 2	-	-		-	-				
Approach	EB			SB					
HCM Control Delay, s	18.9			0					
HCM LOS	С								
Minor Lane/Major Mvn	nt I	EBLn1	SBT			_			
Capacity (veh/h)		322	-						
HCM Lane V/C Ratio		0.198	-						
HCM Control Delay (s))	18.9	-						
HCM Lane LOS)	10.9 C	-						
		U	-						

HCM 95th %tile Q(veh)

0.7

_

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	†			
Traffic Vol, veh/h	0	49	181	0	0	0
Future Vol, veh/h	0	49	181	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	64	235	0	0	0

Major/Minor	Minor1		Major1	
Conflicting Flow All	-	235	0	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	6.22	-	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	3.318	-	-
Pot Cap-1 Maneuver	0	804	-	0
Stage 1	0	-	-	0
Stage 2	0	-	-	0
Platoon blocked, %			-	
Mov Cap-1 Maneuver	· -	804	-	-
Mov Cap-2 Maneuver	• -	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Minor Lane/Major Mvmt	NBTWBLn1
Capacity (veh/h)	- 804
HCM Lane V/C Ratio	- 0.079
HCM Control Delay (s)	- 9.9
HCM Lane LOS	- A
HCM 95th %tile Q(veh)	- 0.3

Intersection						
Int Delay, s/veh	3.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1					1
Traffic Vol, veh/h	109	0	0	0	0	55
Future Vol, veh/h	109	0	0	0	0	55
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage	, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	142	0	0	0	0	71

Major/Minor	Major1		Minor1	
Conflicting Flow All	0	-	-	142
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-	-	3.318
Pot Cap-1 Maneuver	-	0	0	906
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuve	r -	-	-	906
Mov Cap-2 Maneuve	r -	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Approach	EB	NB	
HCM Control Delay, s	0	9.3	
HCM LOS		А	

Minor Lane/Major Mvmt	NBLn1	EBT
Capacity (veh/h)	906	-
HCM Lane V/C Ratio	0.079	-
HCM Control Delay (s)	9.3	-
HCM Lane LOS	А	-
HCM 95th %tile Q(veh)	0.3	-

Intersection

Int Delay, s/veh	4.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			1			1
Traffic Vol, veh/h	0	0	209	0	0	142
Future Vol, veh/h	0	0	209	0	0	142
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# 93	306112	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	271	0	0	184

Major/Minor	Major2	Mi	inor2	
Conflicting Flow All	1viaj0i2 -	0	-	271
Stage 1	-	U	-	211
Stage 2		-	-	-
	-	-	-	6 00
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-		3.318
Pot Cap-1 Maneuver	-	0	0	768
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuver	-	-	-	768
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Approach	WB		SB	
HCM Control Delay, s	0		11.2	
HCM LOS			В	
Minor Lane/Major Mvmt	WBT SBLn1			
Capacity (veh/h)	- 768			

	100	
HCM Lane V/C Ratio	- 0.24	
HCM Control Delay (s)	- 11.2	
HCM Lane LOS	- B	
HCM 95th %tile Q(veh)	- 0.9	

JNU Medical Center Build PM (2023+housing+med center) BAM

Appendix E- PM Base + Site Traffic Capacity Analysis Report

Intersection

Int Delay, s/veh	2.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1	7		1			1			1
Traffic Vol, veh/h	0	744	166	54	900	162	0	0	70	0	0	202
Future Vol, veh/h	0	744	166	54	900	162	0	0	70	0	0	202
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	Free	-	-	Stop	-	-	Stop
Storage Length	-	-	375	300	-	475	-	-	0	-	-	0
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	5	2	2	5	2	2	2	2	0	0	7
Mvmt Flow	0	791	177	57	957	172	0	0	74	0	0	215

Major/Minor	Major1		Ν	/lajor2		М	inor1		М	inor2			
Conflicting Flow All	-	0	-	796	0	0	-	-	406	-	-	484	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	-	4.14	-	-	-	-	6.94	-	-	7.04	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	2.22	-	-	-	-	3.32	-	-	3.37	
Pot Cap-1 Maneuver	0	-	0	822	-	0	0	0	594	0	0	516	
Stage 1	0	-	0	-	-	0	0	0	-	0	0	-	
Stage 2	0	-	0	-	-	0	0	0	-	0	0	-	
Platoon blocked, %		-			-								
Mov Cap-1 Maneuver	r -	-	-	819	-	-	-	-	589	-	-	514	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	0.6	12	16.9	
HCM LOS			В	С	

Minor Lane/Major Mvmt	NBLn1	EBT	WBL	WBT SBLn1
Capacity (veh/h)	589	-	819	- 514
HCM Lane V/C Ratio	0.126	-	0.07	- 0.418
HCM Control Delay (s)	12	-	9.7	- 16.9
HCM Lane LOS	В	-	А	- C
HCM 95th %tile Q(veh)	0.4	-	0.2	- 2

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٠	-	*	-	1	Ť	5	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	340	206	162	152	338	475	80	291	
v/c Ratio	0.71	0.60	0.39	0.54	0.70	0.72	0.25	0.68	
Control Delay	29.5	38.9	20.3	39.9	22.3	30.2	14.4	35.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.5	38.9	20.3	39.9	22.3	30.2	14.4	35.8	
Queue Length 50th (ft)	115	88	48	67	97	198	19	127	
Queue Length 95th (ft)	#241	197	116	148	187	364	48	229	
Internal Link Dist (ft)		693		1080		707		271	
Turn Bay Length (ft)	200		75		150		100		
Base Capacity (vph)	494	467	525	490	507	1103	516	1103	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.69	0.44	0.31	0.31	0.67	0.43	0.16	0.26	
Interspection Summary									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: Riverside Drive & Vintage Boulevard/Mendenhall Mall Drive

03/02/2022

	٨	-	7	4	+	*	1	t	1	4	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	1	7	†	1	7	1	1	٦	1	1
Traffic Volume (vph)	316	192	0	151	141	0	314	442	0	74	271	0
Future Volume (vph)	316	192	0	151	141	0	314	442	0	74	271	0
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Lane Width	12	12	16	12	12	16	12	12	16	12	12	16
Total Lost time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		0.99	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1715	1729		1706	1814		1723	1814		1718	1814	
Flt Permitted	0.44	1.00		0.63	1.00		0.32	1.00		0.38	1.00	
Satd. Flow (perm)	801	1729		1126	1814		573	1814		690	1814	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	340	206	0	162	152	0	338	475	0	80	291	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	340	206	0	162	152	0	338	475	0	80	291	0
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Heavy Vehicles (%)	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Actuated Green, G (s)	29.8	15.4		22.8	11.9		37.8	28.1		24.8	19.4	
Effective Green, g (s)	29.8	15.4		22.8	11.9		37.8	28.1		24.8	19.4	
Actuated g/C Ratio	0.38	0.20		0.29	0.15		0.49	0.36		0.32	0.25	
Clearance Time (s)	4.3	4.5		4.3	4.5		4.3	4.7		4.3	4.7	
Vehicle Extension (s)	2.0	2.0		3.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	477	343		412	278		488	656		292	453	
v/s Ratio Prot	c0.13	0.12		0.06	0.08		c0.13	c0.26		0.02	0.16	
v/s Ratio Perm	c0.14			0.06			0.21			0.07		
v/c Ratio	0.71	0.60		0.39	0.55		0.69	0.72		0.27	0.64	
Uniform Delay, d1	18.6	28.3		21.4	30.4		13.8	21.4		19.0	26.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.2	2.0		0.6	1.2		3.4	3.4		0.2	2.3	
Delay (s)	22.8	30.3		22.0	31.5		17.2	24.8		19.2	28.3	
Level of Service	С	С		С	С		В	С		В	С	
Approach Delay (s)		25.6			26.6			21.6			26.4	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			24.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)			77.6		um of lost				17.8			
Intersection Capacity Utiliza	ation		73.2%	IC	U Level o	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

Lane Group EBT EBR WBT WBR NBL NBT SBL SBT SBR Lane Group Flow (vph) 261 166 16 8 333 1673 10 726 219 v/c Ratio 0.90 0.39 0.05 0.02 1.28 0.75 0.10 0.45 0.27
v/c Ratio 0.90 0.39 0.05 0.02 1.28 0.75 0.10 0.45 0.27
Control Delay 70.6 12.8 29.5 0.1 192.2 14.5 46.4 18.0 3.2
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Total Delay 70.6 12.8 29.5 0.1 192.2 14.9 46.4 18.0 3.2
Queue Length 50th (ft) 157 22 8 0 ~372 274 6 138 5
Queue Length 95th (ft) #288 77 25 0 m#518 m#623 23 181 40
Internal Link Dist (ft) 362 281 230 391
Turn Bay Length (ft) 75 50 150 75 90
Base Capacity (vph) 323 465 325 433 260 2233 120 1819 870
Starvation Cap Reductn 0 0 0 0 183 0
Spillback Cap Reductn 0
Storage Cap Reductn 0
Reduced v/c Ratio 0.81 0.36 0.05 0.02 1.28 0.82 0.08 0.40 0.25

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 3: Mendenhall Loop Road & Mendenhall Mall Road/Atlin Road

03/02/2022

	٠	-	7	4	+	*	1	Ť	1	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		र्स	1	7	1		٦	††	1
Traffic Volume (vph)	224	14	151	14	1	7	303	1494	28	9	661	199
Future Volume (vph)	224	14	151	14	1	7	303	1494	28	9	661	199
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.98		1.00	0.98	1.00	1.00		1.00	1.00	0.95
Flpb, ped/bikes		0.99	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1721	1513		1726	1513	1723	3434		1723	3446	1469
Flt Permitted		0.73	1.00		0.73	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		1310	1513		1317	1513	1723	3434		1723	3446	1469
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	246	15	166	15	1	8	333	1642	31	10	726	219
RTOR Reduction (vph)	0	0	95	0	0	6	0	1	0	0	0	106
Lane Group Flow (vph)	0	261	71	0	16	2	333	1672	0	10	726	113
Confl. Peds. (#/hr)	5	201	5	5	10	5	5	1012	5	5	120	5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	-	Prot	NA	Perm
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8	-	8	4		4	-				-	6
Actuated Green, G (s)		22.2	22.2		22.2	22.2	15.1	61.0		1.3	47.2	47.2
Effective Green, g (s)		22.2	22.2		22.2	22.2	15.1	61.0		1.3	47.2	47.2
Actuated g/C Ratio		0.22	0.22		0.22	0.22	0.15	0.61		0.01	0.47	0.47
Clearance Time (s)		5.3	5.3		5.3	5.3	5.0	5.2		5.0	5.2	5.2
Vehicle Extension (s)		1.5	1.5		1.5	1.5	2.0	2.0		2.0	2.0	2.0
Lane Grp Cap (vph)		290	335		292	335	260	2094		22	1626	693
v/s Ratio Prot							c0.19	c0.49		0.01	0.21	
v/s Ratio Perm		c0.20	0.05		0.01	0.00						0.08
v/c Ratio		0.90	0.21		0.05	0.01	1.28	0.80		0.45	0.45	0.16
Uniform Delay, d1		37.8	31.8		30.6	30.3	42.5	14.8		49.0	17.7	15.1
Progression Factor		1.00	1.00		1.00	1.00	1.07	0.85		1.00	1.00	1.00
Incremental Delay, d2		28.2	0.1		0.0	0.0	152.3	3.3		5.3	0.9	0.5
Delay (s)		66.0	31.9		30.7	30.3	197.7	15.9		54.3	18.6	15.6
Level of Service		Е	С		С	С	F	В		D	В	В
Approach Delay (s)		52.7			30.5			46.1			18.3	
Approach LOS		D			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			39.0	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.93									
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)			15.5			
Intersection Capacity Utilizat	ion		81.4%	IC	U Level o	of Service	•		D			
Analysis Period (min)			15									
c Critical Lane Group												

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 4: Mendenhall Loop Road & Egan Drive

	٠	-	7	*	-	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	108	629	143	33	1092	320	346	20	389	395	66	
v/c Ratio	0.67	0.57	0.24	0.32	1.28	0.96	0.99	0.05	1.03	1.01	0.14	
Control Delay	53.9	23.2	4.2	53.3	168.1	82.6	87.1	0.2	80.9	76.7	1.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.9	23.2	4.2	53.3	168.1	82.6	87.1	0.2	80.9	76.7	1.8	
Queue Length 50th (ft)	47	208	22	21	~481	204	222	0	~282	~273	4	
Queue Length 95th (ft)	#106	225	53	51	#612	#375	#403	0	#477	#478	11	
Internal Link Dist (ft)		1356			1654		696			316		
Turn Bay Length (ft)	540		120	550		290		390	280			
Base Capacity (vph)	186	1104	590	117	853	332	350	414	379	390	466	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.58	0.57	0.24	0.28	1.28	0.96	0.99	0.05	1.03	1.01	0.14	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 4: Mendenhall Loop Road & Egan Drive

03/02/2022

	٨	-	7	•	+	*	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	1	7	††	1	ሻ	+	1	ሻ	र्स	1
Traffic Volume (vph)	105	610	139	32	1059	0	310	336	19	564	197	64
Future Volume (vph)	105	610	139	32	1059	0	310	336	19	564	197	64
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Total Lost time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00	1.00	1.00	0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.98	1.00
Satd. Flow (prot)	1723	3348	1486	1723	3348		1723	1814	1511	1637	1682	1513
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	0.98	1.00
Satd. Flow (perm)	1723	3348	1486	1723	3348		1723	1814	1511	1637	1682	1513
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	108	629	143	33	1092	0	320	346	20	581	203	66
RTOR Reduction (vph)	0	0	99	0	0	0	0	0	16	0	0	51
Lane Group Flow (vph)	108	629	44	33	1092	0	320	346	4	389	395	15
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Heavy Vehicles (%)	2%	5%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	1	6		5	2		3	3		. 4	4	
Permitted Phases			6			2			3			4
Actuated Green, G (s)	9.4	30.9	30.9	4.0	25.5		19.3	19.3	19.3	23.2	23.2	23.2
Effective Green, g (s)	9.4	30.9	30.9	4.0	25.5		19.3	19.3	19.3	23.2	23.2	23.2
Actuated g/C Ratio	0.09	0.31	0.31	0.04	0.26		0.19	0.19	0.19	0.23	0.23	0.23
Clearance Time (s)	5.2	5.9	5.9	5.2	5.9		5.7	5.7	5.7	5.8	5.8	5.8
Vehicle Extension (s)	2.0	0.5	0.5	2.0	0.5		0.5	0.5	0.5	2.0	2.0	2.0
Lane Grp Cap (vph)	161	1034	459	68	853		332	350	291	379	390	351
v/s Ratio Prot	c0.06	0.19		0.02	c0.33		0.19	c0.19		c0.24	0.23	
v/s Ratio Perm			0.03						0.00			0.01
v/c Ratio	0.67	0.61	0.10	0.49	1.28		0.96	0.99	0.01	1.03	1.01	0.04
Uniform Delay, d1	43.8	29.4	24.6	47.0	37.2		40.0	40.2	32.6	38.4	38.4	29.8
Progression Factor	0.79	0.72	0.73	1.00	1.00		1.00	1.00	1.00	0.68	0.68	1.00
Incremental Delay, d2	8.1	2.6	0.4	2.0	135.1		39.3	44.5	0.0	51.7	47.4	0.0
Delay (s)	42.6	23.8	18.3	49.0	172.3		79.3	84.7	32.7	77.9	73.6	29.8
Level of Service	D	С	В	D	F		E	F	С	E	E	С
Approach Delay (s)		25.2			168.7			80.7			72.2	
Approach LOS		С			F			F			E	
Intersection Summary												
HCM 2000 Control Delay			92.8	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.06									
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)			22.6			
Intersection Capacity Utiliza	ation		94.4%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

JNU Medical Center Build PM (2023+housing+med center) BAM

Queues 5: Egan Drive & Riverside Drive

	٠	-	+	*	1	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	378	469	954	536	422	206
v/c Ratio	0.75	0.20	0.78	0.62	0.74	0.47
Control Delay	42.6	5.2	17.1	4.6	47.1	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.6	5.2	17.1	4.6	47.1	8.7
Queue Length 50th (ft)	217	44	72	5	132	0
Queue Length 95th (ft)	#329	74	m157	m0	174	58
Internal Link Dist (ft)		694	1356		707	
Turn Bay Length (ft)	350			900	225	145
Base Capacity (vph)	501	2403	1223	868	1026	434
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.20	0.78	0.62	0.41	0.47
Intersection Summary						

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 5: Egan Drive & Riverside Drive

03/02/2022

	٦	-	-	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	1	^	† †	1	ኘካ	1		
Traffic Volume (vph)	363	450	916	515	405	198		
Future Volume (vph)	363	450	916	515	405	198		
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850		
Total Lost time (s)	5.3	5.8	5.8	5.8	5.3	5.3		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00		
Frpb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1674	3348	3348	1446	3343	1542		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1674	3348	3348	1446	3343	1542		
· · · · ·						0.96		
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	206		
Adj. Flow (vph)	378	469	954	536 340	422	206 171		
RTOR Reduction (vph)	0 270	0	0		0			
Lane Group Flow (vph)	378	469	954	196	422	35		
Confl. Peds. (#/hr)	5 5%	E0/	E0/	5	5 2%	5 2%		
Heavy Vehicles (%)		5%	5%	5%				
Turn Type	Prot	NA	NA	Perm	Prot	Prot		
Protected Phases	1	6	2	0	4	8		
Permitted Phases	00.0	74.0	26.6	2	17 4	17 1		
Actuated Green, G (s)	29.9	71.8	36.6	36.6	17.1	17.1		
Effective Green, g (s)	29.9	71.8	36.6	36.6	17.1	17.1		
Actuated g/C Ratio	0.30	0.72	0.37	0.37	0.17	0.17		
Clearance Time (s)	5.3	5.8	5.8	5.8	5.3	5.3		
Vehicle Extension (s)	1.0	0.5	0.5	0.5	2.0	2.0		_
Lane Grp Cap (vph)	500	2403	1225	529	571	263		
v/s Ratio Prot	c0.23	0.14	c0.28	0.11	c0.13	0.02		
v/s Ratio Perm	. =.	0.00	0 =0	0.14	0 = 1	0.40		
v/c Ratio	0.76	0.20	0.78	0.37	0.74	0.13		
Uniform Delay, d1	31.7	4.6	28.1	23.3	39.3	35.2		
Progression Factor	1.00	1.00	0.53	1.64	1.00	1.00		
Incremental Delay, d2	5.7	0.2	0.5	0.2	4.3	0.1		
Delay (s)	37.5	4.8	15.4	38.3	43.6	35.3		
Level of Service	D	A	B	D	D	D		
Approach Delay (s)		19.4	23.6		40.9			
Approach LOS		В	С		D			
Intersection Summary								
HCM 2000 Control Delay			26.1	H	CM 2000	Level of Service		С
HCM 2000 Volume to Capa	acity ratio		0.78					
Actuated Cycle Length (s)			100.0	Si	um of lost	time (s)	1	8.4
Intersection Capacity Utiliz	ation		72.2%	IC	U Level c	of Service		С
Analysis Period (min)			15					
c Critical Lane Group								

c Critical Lane Group

JNU Medical Center Build PM (2023+housing+med center) BAM

Intersection						
Int Delay, s/veh	4.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EDL	EDR	INDL	INDI	301	SDK
Lane Configurations					- †	
Traffic Vol, veh/h	0	180	0	0	421	0
Future Vol, veh/h	0	180	0	0	421	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Free	Free
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	194	0	0	453	0

Major/Minor I	Minor2			Major2	
Conflicting Flow All	-	453		-	0
Stage 1	-	-		-	-
Stage 2	-	-		-	-
Critical Hdwy	-	6.22		-	-
Critical Hdwy Stg 1	-	-		-	-
Critical Hdwy Stg 2	-	-		-	-
Follow-up Hdwy	-	3.318		-	-
Pot Cap-1 Maneuver	0	607		-	0
Stage 1	0	-		-	0
Stage 2	0	-		-	0
Platoon blocked, %				-	
Mov Cap-1 Maneuver	-	607		-	-
Mov Cap-2 Maneuver	-	-		-	-
Stage 1	-	-		-	-
Stage 2	-	-		-	-
Approach	EB			SB	
HCM Control Delay, s	13.7			0	
HCM LOS	В			-	
Miner Long/Major Mum	-+	EBLn1	SBT		
Minor Lane/Major Mvm	<u>n</u>				
Capacity (veh/h)		607	-		
HCM Lane V/C Ratio		0.319	-		
HCM Control Delay (s)		13.7	-		
HCM Lane LOS	۱ ۱	B	-		
HCM 95th %tile Q(veh))	1.4	-		

Intersection						
Int Delay, s/veh	6.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	1			
Traffic Vol, veh/h	0	212	758	0	0	0
Future Vol, veh/h	0	212	758	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	228	815	0	0	0

Major/Minor	Minor1		Major1	
Conflicting Flow All	-	815	0	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	6.22	-	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	3.318	-	-
Pot Cap-1 Maneuver	0	377	-	0
Stage 1	0	-	-	0
Stage 2	0	-	-	0
Platoon blocked, %			-	
Mov Cap-1 Maneuver	-	377	-	-
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Approach	WB	NB
HCM Control Delay, s	28.1	0
HCM LOS	D	

Minor Lane/Major Mvmt	NBTWBLn1
Capacity (veh/h)	- 377
HCM Lane V/C Ratio	- 0.605
HCM Control Delay (s)	- 28.1
HCM Lane LOS	- D
HCM 95th %tile Q(veh)	- 3.8

Intersection						
Int Delay, s/veh	3.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1					1
Traffic Vol, veh/h	266	0	0	0	0	122
Future Vol, veh/h	266	0	0	0	0	122
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	286	0	0	0	0	131

Major/Minor	Major1		Minor1	
Conflicting Flow All	0	-	-	286
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-	-	3.318
Pot Cap-1 Maneuver	-	0	0	753
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuver	• -	-	-	753
Mov Cap-2 Maneuver	• -	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-

Approach	EB	NB
HCM Control Delay, s	0	10.8
HCM LOS		В

Minor Lane/Major Mvmt	NBLn1	EBT
Capacity (veh/h)	753	-
HCM Lane V/C Ratio	0.174	-
HCM Control Delay (s)	10.8	-
HCM Lane LOS	В	-
HCM 95th %tile Q(veh)	0.6	-

JNU Medical Center Build PM (2023+housing+med center) BAM

Synchro 11 Report Page 12

Intersection

Int Delay, s/veh	2.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations			1			1	
Traffic Vol, veh/h	0	0	455	0	0	119	
Future Vol, veh/h	0	0	455	0	0	119	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Stop	Stop	1
RT Channelized	-	None	-	None	-	Yield	
Storage Length	-	-	-	-	-	0	
Veh in Median Storage,	# -	-	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	93	93	93	93	93	93	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	489	0	0	128	

Major/Minor	Major2	Mi	nor2	
Conflicting Flow All	-	0	-	489
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Critical Hdwy	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-
Follow-up Hdwy	-	-		3.318
Pot Cap-1 Maneuver	-	0	0	579
Stage 1	-	0	0	-
Stage 2	-	0	0	-
Platoon blocked, %	-			
Mov Cap-1 Maneuver	-	-	-	579
Mov Cap-2 Maneuver	-	-	-	-
Stage 1	-	-	-	-
Stage 2	-	-	-	-
Approach	WB		SB	
HCM Control Delay, s	0		13	
HCM LOS			В	
Minor Lane/Major Mvmt	WBT SBLn1			
Capacity (veh/h)	- 579			
HCM Lane V/C Ratio	- 0.221			
HCM Control Delay (s)	- 13			

JNU Medical Center Build PM (2023+housing+med center) BAM

В

-

- 0.8

HCM Lane LOS

HCM 95th %tile Q(veh)

Synchro 11 Report Page 13 Appendix F- Meeting Summary; CBJ and Kinney Engineering, LLC; July 27, 2021

MEETING SUMMARY

Project:	Juneau Medical Office Building
Meeting Purpose:	Traffic Impact Analysis (TIA) Requirements
Date/Time:	10:30, July 27, 2021
Location:	Zoom
Attendees:	City & Borough of Juneau, AK (CBJ): Allison Eddins Planner II Community Development Department Kinney Engineering, LLC on behalf of JL Properties, Inc (Developer) : Randy Kinney

Tonio	
Topic	Is TIA required?
Discussed:	
CBJ Requirements	 Discussions with DOT&PF (David Epstein) indicate that CBJ is primary approving agency for a TIA (if required) since proposed site fronts Vintage Boulevard. In this meeting, Ms. Eddins indicates CBJ requires TIAs as part of a Conditional Use Permit or Building Permit if traffic thresholds are exceeded. TIA will be reviewed by CBJ staff, but approved by CBJ Planning Commission. DOT&PF review will be coordinated by CBJ. CBJ Code of Ordinances, 49.40.300 Applicability. (a) A traffic impact analysis (TIA) shall be required as follows: (1) A development projected to generate 500 or more average daily trips (ADT) shall be required to have a traffic impact analysis. "(2) A development projected to generate fewer than 250 ADT shall not be required to have a traffic impact analysis. (3) A development projected to generate more than 250 ADT but fewer than 500 ADT shall be required to have a traffic impact analysis.
	Development Department Director determines that an analysis is necessary based on the type of development, its location, the likelihood of future expansion, and other factors found relevant by the director.
Proposed	 Legal Description: Vintage IV TR A2
Site	• Tax ID: 5B1601430017
	• 2.9 Acres, 127,336 SF
	Zoning: (LC) Light Commercial
	 Street Fronting: Vintage Boulevard, CBJ owned, LOCATION below.

Juneau Medical Office TIA Requirements Meeting

	VINICE BUD VINICE BUD BUD VINICE BUD VINICE
Development Trip Generation	 3-level, 41,000 SF Medical Office Building (source: Sparks Design LLC plans) ITE Trip Generation Manual Land Use: LU 720 (Medical-Dental Offices, see attached). Choose trip estimation method for site generated weekday ADT (a. Line at Cluster, b. Average Rate, c. Fitted Curve Equation) per Trip Generation Manual, 3rd Ed: Result is Fitted Curve Equation. Weekday ADT T=38.42(X)-87.62; for X=41, T=1,488 trips in and out per day.
Conclusion	 50%/50% entering/exiting. TIA will be required.
Торіс	Design Year/Design Hour
Discussed:	
CBJ Requirements	 CBJ Code of Ordinances, 49.40.330 Traffic impact mitigation (a) (1) Summarized as: Design Year: Opening year and at full build out (if phased). Design Hour: Not discussed at meeting, but would likely be the morning and evening commuting peak hours.
Topic Discussed:	Study Area
CBJ Requirements	 CBJ Code of Ordinances, 49.40.305 Traffic impact analysis (TIA) requirements. (a) The study area for the TIA shall be that area in which it is anticipated that the proposed development will increase ADT by five percent or more. CBJ Code of Ordinances, 49.40.305 (c)

	(1) Intersections and segments of roadways where the ADT on any approach to an intersection is anticipated to increase by five percent or more due to the proposed development
Study Area Methodology	 Not discussed at the meeting. Propose to distribute traffic to/from site Juneau based on AADT weight. DOT&PF has an AADT map of area, https://akdotmaps.arcals.com/apps/mapviewer/index.html?webmap=?c1e1029/db84d7a88449d55ef05e21c. We will cordon that map as shown and assign site inbound and outbound trips according to AADT weight were cordon line crosses major links.
Topic Discussed:	LOS Standards
CBJ Requirements	 CBJ Code of Ordinances, 49.40.310 Traffic; minimum standards. (a) The minimum acceptable LOS for a roadway segment or intersection within the area affected by the development, on the projected opening date of the development, or full build out of the development, is LOS D. CBJ Code of Ordinances, 49.40.340 Traffic impact mitigation. (a) Except as provided in 49.40.340, an applicant shall make improvements to a roadway or intersection to achieve or maintain an acceptable LOS if a roadway or intersection has an: (1) LOS D without traffic generated by the development; and would drop below LOS D with traffic generated by the development at the opening date of the development or full build out;

	CBJ Code of Ordinances, 49.40.340 Mitigation waiver. Section indicates conditions in which the requirements above may be waived.
Topic Discussed:	Material Provided by Ms. Eddins
	CBJ applicable Codes Example TIA
Additional Topic:	Traffic Data for Intersections .
Discussion	 Because of pandemic, we will use the existing counts published in the Juneau Egan Drive and Riverside Intersection Improvements Traffic Analysis Report. Counts were conducted between 2012 and 2016. They will be factored to 2019 volumes using link AADTs for the respective years, and 2019 AADT. The volumes will then be expanded to the design year using 0.25% per year (DOT&PF recommendations). Observed PM volumes are:
	Thursday 01/07/2016 4130-5130PM Vintage Boulevard 1967 1122 A Boulevard 1967 1124 1124 1125 1125 1125 1125 1125 1125
	Egan 112 128 370 1049 Drive 567+ 273- 348+ 411+ 129* 129* 107 107* Wednesday 10/14/2015 107* 107* 10/14/2015 10/14/2015 4:30-5:30PM 107*
	Observed AM volumes are: Thursday oi/07/2016 7:15-8:15AM Vintage Boulevard 11+ 17+ 14 Mail Road 33+ 456 0
	28° 74° 74° 74° 74° 74° 74° 74° 74° 74° 74
	Egan Drive 597+ 156* Wednesday 10/14/2015 7:30-8:30AM U0/14/2015 7:30-8:30AM U0/14/2015 7:30-8:30AM U0/14/2015 7:30-8:30AM

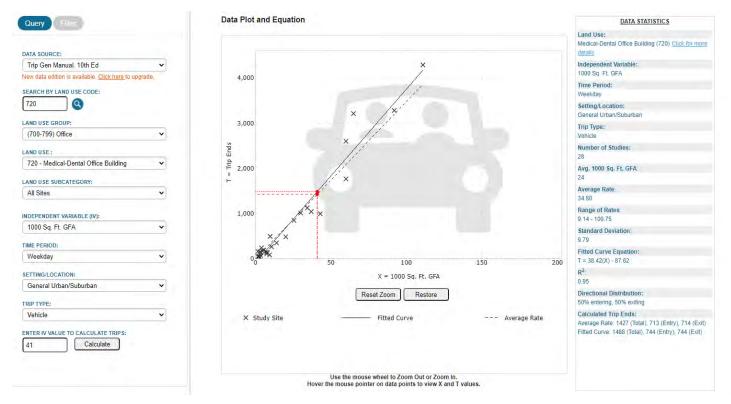
Attachment E - March 2022 Traffic Impact Analysis

Attachments

Land Use: 720 Medical-Dental Office Building

Description

A medical-dental office building is a facility that provides diagnoses and outpatient care on a routine basis but is unable to provide prolonged in-house medical and surgical care. One or more private physicians or dentists generally operate this type of facility. Clinic (Land Use 630) is a related use.


Additional Data

Time-of-day distribution data for this land use for a weekday, Saturday, and Sunday are presented in Appendix A. For the 19 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 9:30 and 10:30 a.m. and 2:15 and 3:15 p.m., respectively.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Connecticut, Kentucky, Maryland, Minnesota, New Jersey, New York, Ohio, Oregon, Pennsylvania, South Dakota, Texas, Virginia, Washington, and Wisconsin.

Source Numbers

104, 109, 120, 157, 184, 209, 211, 253, 287, 294, 295, 304, 357, 384, 404, 407, 423, 444, 509, 601, 715, 867, 879, 901, 902, 908, 959, 972

Attachment E - March 2022 Traffic Impact Analysis

Appendix G- Review Meeting Summary

April 7, 2022

Irene Gallion Senior Planner City and Borough of Juneau Community Development Dept. 230 S. Franklin St. Juneau, AK 99801

Re: SEARHC Vintage Park Medical Office Building, Conditional Use Permit Application – Additional Information on Traffic Impact Analysis

Dear Ms. Gallion,

On Thursday, March 31, 2022, PND submitted to CBJ a conditional use permit application package for the subject project. The permit package included a draft Traffic Impact Analysis, (TIA) developed by Kinney Engineering, (KE). It was noted in the application Project Narrative that the TIA is in draft form due to ongoing coordination with AKDOT. Previously, CBJ requested we review the draft with AKDOT prior to submitting the final TIA. On April 5th, KE and PND met with AKDOT stakeholders to review the TIA and discuss the results and potential traffic impact mitigations that may be warranted. You requested PND summarize the meeting discussion and provide the summary to CBJ as additional information to the CUP application.

PND and KE met with AKDOT on April 5, 2022. In attendance were myself, representing PND and the Owner, Randy Kinney and Jeanne Bowie from KE, and Nathan Purves, Steven Thater and Chrissy McNally from AKDOT.

The TIA was discussed with only minor comments and no objections to the method or results of the analysis. AKDOT voiced no objections to the proposed mitigations and indicated they would not request additional intersection improvements as a result of the proposed project. A main point of discussion was the intersection of Egan Drive and Mendenhall Loop Road. As noted in the TIA, this is the only intersection which may warrant impact mitigation in accordance with the CBJ municipal code, however, the level of service (LOS) under existing conditions is within the CBJ threshold for mitigation and the proposed traffic impact is minimal; there is no LOS change for the intersection with the additional proposed site traffic. As described in the TIA Section 8.1. "Without site traffic, intersection AM average delay per vehicle is 82 seconds with a LOS F and the PM average delay per vehicle is 65 seconds with LOS E. Adding site traffic only increases delay by 1 second per vehicle in both AM and PM peak hours with no changes in LOS."

Mr. Thater observed that under AKDOT criteria as specified in 17 AAC 10.070, Traffic Impact Analysis, mitigation of impacts from the proposed SEARHC Medical Facility would likely not be required as the change in operational performance resulting from the site is minimal and appears to be beneath the AKDOT threshold triggering code required mitigation. He went on to make the additional points that, the existing traffic signals currently employ adaptive software technology, which will mitigate potential impacts proactively and the Department regularly reviews and updates signalization parameters, further minimizing project impacts.

Additional comments, included support for the proposed pedestrian mitigations, including the addition of the perimeter sidewalk along Vintage Boulevard.

During our telephone conversation on April 5th, you requested that the TIA remain in draft form until CBJ Engineering has reviewed the CUP application and draft TIA, then update and provide the final TIA prior to the Planning Commission meeting, yet to be scheduled. As requested, the final TIA is pending CBJ internal review.

Attachment E - March 2022 Traffic Impact Analysis

Please contact me if you have any questions or require further information.

Sincerely, PND Engineers, Inc. | Juneau Office

Then Bladdraw

Tyler Bradshaw, P.E. | Senior Engineer

cc: Ed Zernia, SEARHC Director of Construction, Facilities Admin Deanna Wlad, AIA, Architect, Spark Design Randy Kinney, PE, Kinney Engineering Dick Somerville, PE, PND Engineers Steven Thater, Alaska Department of Transportation Nathan Purves, Alaska Department of Transportation Chrissy McNally, Alaska Department of Transportation

(907) 586-0715 CDD_Admin@juneau.gov www.juneau.org/community-development 155 Heritage Way • Juneau, AK 99801

COMMUNITY DEVELOPMENT DEPARTMENT - REQUEST FOR AGENCY COMMENT

DEPARTMENT:

STAFF PERSON/TITLE:

DATE:

APPLICANT: Dawson Construction on behalf of SEARHC

TYPE OF APPLICATION: Conditional Use Permit

PROJECT DESCRIPTION:

The applicant proposes to build a three-story, 19,635 sq. ft. dental clinic in the Vintage Park area between Safeway and First Bank.

LEGAL DESCRIPTION:	VINTAGE III LT BL 1
PARCEL NUMBER(S):	5B1601430016
PHYSICAL ADDRESS:	3063 Vintage Blvd.

SPECIFIC QUESTIONS FROM PLANNER:

The site is not large enough to accommodate the minimum parking requirement for a facility of this size. The applicant intends to use Title 49 provisions for a shared parking agreement with SEARHC workforce housing located across Vintage Blvd off Postal Way (behind True North). Are there any concerns about pedestrian safety with clients potentially having to cross Vintage Blvd at the Postal Way intersection?

AGENCY COMMENTS:

AGENCY COMMENTS (CONTINUED):

llsa Lund

From:	Theresa Ross
Sent:	Tuesday, February 25, 2025 6:36 AM
То:	llsa Lund
Subject:	Re: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Good morning,

Just so you are in the loop, I am trying to work with the new program we are going to, Tyler Tech, to find a way to allow deferred submittals for fire systems. We are not there yet but I am pretty confident we will be able to find a way to track them so the applicants can submit projects without full fire systems plans like past practice. My concern is that projects are being approved with a deferred submittal and there is no way to track that those system come in for review and approval before installation.

I am just anticipating that concerns to come up with this project. You can send them my way if they have any questions.

Thank you,

Theresa Ross, Fire Marshal Capital City Fire Rescue 820 Glacier Avenue Juneau AK 99801 907-586-5322 ext. 4323 https://www.juneau.org/fire

From: Ilsa Lund <Ilsa.Lund@juneau.gov>
Sent: Monday, February 24, 2025 2:44 PM
To: Theresa Ross <Theresa.Ross@juneau.gov>
Subject: RE: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Thanks for your input from afar!

Gunalchéesh!

Ilsa Lund | Planner I

<u>Community Development Department</u> | City & Borough of Juneau, AK Location: 230 S. Franklin Street, 4th Floor Marine View Building Office: 907.586.0753 ext. 4128

Fostering excellence in development for this generation and the next.

From: Theresa Ross <Theresa.Ross@juneau.gov>
Sent: Monday, February 24, 2025 1:43 PM
To: Ilsa Lund <Ilsa.Lund@juneau.gov>
Subject: Re: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Awesome. That worries me, we run over to the Riverview senior center frequently and the thought of people darting out across the road is a bit unnerving. Not to mention just regular traffic through that area.

Theresa Ross, Fire Marshal Capital City Fire Rescue 820 Glacier Avenue Juneau AK 99801 907-586-5322 ext. 4323 https://www.juneau.org/fire

From: Ilsa Lund <<u>Ilsa.Lund@juneau.gov</u>>
Sent: Monday, February 24, 2025 2:36 PM
To: Theresa Ross <<u>Theresa.Ross@juneau.gov</u>>
Subject: RE: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Hi Theresa!

I was wondering the same thing. There is nothing in the plans submitted that indicates they are. It will likely be a recommended condition of the conditional use permit.

Gunalchéesh!

Ilsa Lund | Planner I

<u>Community Development Department</u> | City & Borough of Juneau, AK Location: 230 S. Franklin Street, 4th Floor Marine View Building Office: 907.586.0753 ext. 4128

Fostering excellence in development for this generation and the next.

From: Theresa Ross <<u>Theresa.Ross@juneau.gov</u>>
Sent: Monday, February 24, 2025 1:28 PM
To: Ilsa Lund <<u>Ilsa.Lund@juneau.gov</u>>
Subject: Re: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Are they adding a crosswalk? I am just curious, it is really dark right there during winter months and the area is pretty busy.

Theresa Ross, Fire Marshal Capital City Fire Rescue 820 Glacier Avenue Juneau AK 99801 907-586-5322 ext. 4323 https://www.juneau.org/fire

From: Ilsa Lund <<u>Ilsa.Lund@juneau.gov</u>> Sent: Monday, February 24, 2025 12:59 PM Subject: Please comment- USE25-07 SEARHC dental clinic in Vintage Park

Hello CBJ Team,

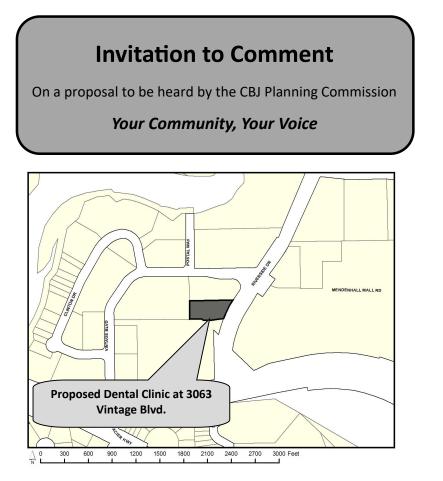
We have received an application from Dawson Construction to build at three-story, 19,635 sq. ft. SEARHC dental clinic between Safeway and First Bank in the Vintage Park area. As part of the review

З

process, we are circulating the application amongst CBJ departments for input that will be provided to the Planning Commission for review.

Attached is the application. Later this week, you can also find information at the short-term planning web site: <u>https://juneau.org/community-development/short-term-projects</u>

We have the case scheduled for the Planning Commission meeting on March 25th. If you could provide feedback by **March 10, 2025**, that would be very helpful. I've attached an Agency Comment Form for your use.


Please let me know if you have any questions. Warm regards,

Ilsa Lund | Planner I

<u>Community Development Department</u> | City & Borough of Juneau, AK Location: 230 S. Franklin Street, 4th Floor Marine View Building Office: 907.586.0753 ext. 4128

Fostering excellence in development for this generation and the next.

то

A Conditional Use Permit application has been submitted for consideration and public hearing by the Planning Commission for a three-story dental clinic at 3063 Vintage Blvd. in a Light Commercial zoning district.

PROJECT INFORMATION: PLANNING COMMISSION DOCUMENTS: Project Information can be found at: Staff Report expected to be posted Monday, March 17, 2025 at https://juneau.org/community-development/short-term-projects https://juneau.org/community-development/planning-commission Find hearing results, meeting minutes, and more here, as well. March 7— noon, March 21 HEARING DATE & TIME: 6:00 pm, March 25, 2025 Now through March 6 March 26 Comments received during This meeting will be held in person and by remote The results of Comments received during the hearing will this period will be sent to this period will be sent to participation. For remote participation: join the Webinar by be posted Commissioners to read in the Planner, Ilsa Lund, to be visiting https://juneau.zoom.us/j/85421744892 and use the preparation for the online. included as an attachment Webinar ID: 854 2174 4892 OR join by telephone, calling: hearing. in the staff report. 1-253-215-8782 and enter the Webinar ID (above). You may also participate in person in City Hall Assembly Chambers, 155 Heritage Way Juneau, Alaska. FOR DETAILS OR QUESTIONS, Phone: (907)586-0753 ext. 4128 Case No.: USE2025 0007 Email: pc_comments@juneau.gov or Ilsa.Lund@juneau.gov Parcel No.: 5B1601430016 Mail: Community Development, 155 Heritage Way, Juneau AK 99801 CBJ Parcel Viewer: http://epv.juneau.org

Printed February 24, 2025

Attachment G - Abutters Notice

Attachment I - Site Photos

Attachment I - Site Photos

