

- DATE: May 1, 2024
- TO: Nick Waldo, Chair Juneau Commission on Sustainability
- FROM: Jeanne Rynne, Chief Architect
- SUBJECT: Sustainability Successes of the Centennial Hall Ballroom Renovation

Executive Summary

In June of 2022, the City Assembly followed JCOS' recommendation to approve a LEED exemption for the Centennial Hall Ballroom Renovation. The request was made because the facility type and scope of the renovations did not meet LEED eligibility criteria. Despite this fact, CBJ Engineering strove to incorporate sustainable features in the project to the extent possible. The purpose of this memo is to inform the Commission of the successful sustainability efforts on the Centennial Hall Ballroom Renovation project.

Background

Demolition work for the Centennial Hall Ballroom Renovation Project started in December of 2021. The hall reopened for its first event in September 2023 and achieved final completion in March 2024. The project was successful in achieving its sustainability goals.

Sustainable Element Project Successes

Despite the eligibility challenges for LEED certification, we incorporated green building practices to the extent possible. These are the outcomes:

- HVAC
 - The new system is zoned by individual ballrooms. This promotes energy efficiency as the ballrooms can be scheduled independently with the heating/cooling only provided to the individual zone.
 - Air source heat pump units were installed to provide the heating/cooling of the (3) separate ballroom spaces via variable refrigerant flow type duct coils installed in the existing ductwork.
 - The original air handling unit was replaced with a new, more efficient unit, utilizing variable frequency drives.
 - The new air handling system uses demand control ventilation strategies to provide only minimal outdoor air when the space is not occupied. Outdoor ventilation air is increased as the occupant load increases.
 - The new system reused the existing ducts to reduce construction waste.
 - We anticipate that this work will reduce the Ballroom EUI (Energy Use Intensity [1]) by 61% from 131 to 51. Based on current data we are trending this way, but it's too early to provide specific information. Moreover, with the use of Centennial Hall being altered during the COVID Pandemic, we will need to be careful about what years we compare to. This analysis is a work in progress.
- Products with low to no VOC (volatile organic compounds) were provided to improve indoor air quality. (Interior paint, resilient flooring, grout, and sound absorbing wall panels.)
- The Contractor followed a strict Indoor Air Quality (IAQ) Management plan during construction. This plan lead to a high level of indoor air quality during construction. This enabled the Centennial Hall staff outside the construction area to safely occupy the building during the entire construction period.

- A post construction Indoor Air Quality (IAQ) assessment (See attached report) showed that the indoor air quality levels in the Centennial Hall Ballrooms met the final clearance standards set forth in LEED IEQc4.
 - The total of each targeted compound for each sample was well below the allowable levels and many orders of magnitude below the NIOSH recommended exposure limit. Moreover, particulate levels were far below the LEED requirement of 50 μ g/M³ and several orders of magnitude below the EPA recommended exposure limit.
- 83% of construction waste was diverted from the land fill.
 - Per the Waste Management specification, the Contractor set what they believed to be an achievable goal of diverting 50% of the construction waste from the land fill. Not only did they meet this goal but ended up exceeding it by 33% by diverting 83% of construction waste (by weight) from the land fill. (See attached Waste Management Final Log)

The sustainability improvements implemented with the Centennial Ballroom Renovation will support the potential for LEED Certification of a future full building renovation.

FINAL IAQ SAMPLING REPORT

CENTENNIAL HALL RENOVATION 2022 CBJ Contract BE22-204

as required by Section 018113 and for LEED IAQc4

Prepared for

Carver Construction, LLC 1012 Second Street Douglas, AK 99824

25 March 2024

Table of Contents

INTRODUCTION	3
CONTAMINANTS OF CONCERN	3
HVAC SYSTEM PROTECTION DURING CONSTRUCTION	4
BALLROOM AIR FLUSHING	4
IAQ MEASUREMENTS	4
CONCLUSION	6
THIRD-PARTY SAMPLER COMFIRMATION	6

INTRODUCTION

The subject project is a renovation of the ballrooms at Centennial Hall in Juneau, AK undertaken as CBJ project BE22-204. Construction activities performed for this project include demolition and/or removal of concrete, wood, gypsum board, acoustical wall and ceiling panels, doors, operable walls, along with associated trims and finishes, followed by replacement with new materials and finishes. Work was generally restricted to Ballrooms 1-3 which received structural and acoustical upgrades at both floor and catwalk levels. In addition, upgrades to the HVAC system were provided for the ballrooms.

This Final Indoor Air Quality (IAQ) Sampling Report summarizes the activities performed to protect the health and safety of workers and building occupants during and after construction and to decrease emissions of indoor air contaminants. Additionally, it provides the results from indoor air quality assessments of standard indoor air contaminants of concern. The sampling is also intended to provide an IAQ Indoor Air Quality Assessment in accordance with LEED IEQ v4.

Note that the overall LEED credits for NC IEQ v4 can be achieved either by following a full building flush-out procedure (Option 1, Path 2) or by performing air testing that verifies that the building air quality meets the LEED standards (Option 2, Path 1 and/or Path 2). On this project, both flushing and air testing were performed. The building was partially occupied during construction, so assessments were selected to be suitable for occupied buildings.

CONTAMINANTS OF CONCERN

All construction projects that include demolition of existing materials and installation of new materials have the to potential to release contaminants into the building and to cause exposure to current or future occupants. Contaminants of concern on this project include dust and debris, welding fumes, and fumes or vapors from volatile products used in installation and cleaning as well as in paints and other finishes.

Construction activities with a potential to generate contaminants include:

- Grinding of concrete;
- Demolition and patching of walls, both operable and fixed;
- Welding for structural upgrades;
- Removal and replacement of interior finishes;
- Removal and replacement of exterior finishes;
- Removal and installation of acoustical wall and ceiling panels;
- Installation of spray-on fireproofing; and
- Miscellaneous other tasks required to complete the contract work.

Activities that are particularly prone to creating dust or fumes include grinding concrete and welding. Installation of new finishes is the most likely source of volatile organic compounds. All activities were planned to be performed in a manner that minimized the release of contaminants and exhausted air from the work areas outside the building.

HVAC SYSTEM PROTECTION DURING CONSTRUCTION

A common concern during construction projects is contamination of the building HVAC system by particulates or fumes generated as part of the work activities. To prevent this from occurring, the building HVAC system in the work areas was not used during construction. All supply and return grilles in the work area were sealed with 6-mil polyethylene sheeting which remained in place for the duration of the project. Note that the HVAC system was still in use in other areas of the building that were occupied throughout the construction period.

Heat was provided to the work areas using space heaters. Active work areas were ventilated using negative air machines to filter contaminants from the air (MERV17-20 level filtration), provide adequate air exchange for worker occupancy, and creating a slight negative pressure in the work area to assure that no dust or fumes could migrate from the active work area into the occupied areas of the building.

BALLROOM AIR FLUSHING

After installation of the new HVAC components was completed and all new finishes had been applied in the work areas, the building flush-out activities were performed and filtration media for the HVAC system were replaced with new media in accordance with the requirements of the mechanical system components.

The Centennial Hall ballrooms have a total volume of 12,300 square feet and the new HVAC system has a capacity of 17,400 cubic feet pr minute. The duration of time required to meet the contract requirement of 14,000 cubic feet per square foot of space is:

<u>14,000 cf/sf x 12,300 sf</u> = 9,869 minutes = 6.8 days 17,400 sf

Flushing was carried out starting on 21 August 2023 with the system on full supply air and full exhaust with no recirculation. A few interruptions took place to adjust equipment, with the cumulative flushing volume was completed by 31 August. Fortunately, weather conditions were favorable during the flushing event, allowing temperature and humidity requirements (temperature at or above 60F and relative humidity no higher than 60%) to be met. This flushing event satisfies the requirements set forth for the new HVAC system components as well as for the LEED NC IAQ v4 qualification.

IAQ MEASUREMENTS

Measurements were taken on 31 January 2024 with one sample collected in each ballroom. The new partition walls were put in position to divide the ballrooms into three separate sampling spaces. Samples were collected from the center of each ballroom.

Volatile organic chemicals were measured using the EPA TO-15 method, collecting air samples from each ballroom into a 6-liter vacuum cannister (Summa cannister) with regulated inflow over a period of 8 hours. Cannisters were returned to EMSL Laboratory's LA Testing location for analysis via gas chromatography/mass spectrometry (GC/MS).

Sample results are included in Appendix A. Table 1 includes values for all target compounds with a measurable detection (often referred to as a "hits-only" table).

Compounds that were detected include freon 12, butane, isopropyl alcohol, ethanol, acetone, cyclohexane, toluene (not detected in the Ballroom 2 sample), and styrene. All of these are common contaminants found in new materials, adhesives, and cleaning compounds. The sampling goal is for none of these compounds to exceed NIOSH Recommended Exposure Limit and for the total of all the measurable hits to be less than 500 micrograms per cubic meter (ug/m³).

TABLE 1. Centennial Hall TO-15 Cannister - Measurable Compounds											
Taract Compound	Results in ug/m ³										
laiger compound	Ballroom 1	Ballroom 2	Ballroom 3	NIOSH REL							
Freon 12	4.3	3.4	4.1	4,900,000							
n-Butane	11	7.8	10	1,900,000							
Ethanol	40	30 37		1,900,000							
lsopropyl alcohol	4.6	6.3	3.8	980,000							
Acetone	20	12	18	590,000							
Cyclohexane	5.1	5.1 4.7 5		1,000,000							
Toluene	2.4	2.4 ND 2.2		380,000							
Styrene	3.3	2.9	3.7	210,000							
totals	90.7	67.1	83.8	NA							

REQUIREMENT: total of all measured compounds no more than 500 ug/m³ and no compound above the NIOSH REL (recommended exposure limit) NOTE: All other target compounds were not detected in the samples (ND).

Totals for each sample were well below the allowable levels and many orders of magnitude below the NIOSH recommended exposure limit.

Particulates were measured with a Quest Technologies EVM-series meter, with each sample run for 15 minutes. Particulates were measured in the PM-10 and the PM-2.5 size ranges. Particulate levels were far below the LEED requirement of 50 ug/m³ and several orders of magnitude below the EPA recommended exposure limit. Measurements are presented in Table 2.

TABLE 2. Centennial Hall Particulate Measurements										
Particulate Size		Results in ug/m ³								
Famiculate Size	Ballroom 1	EPA REL								
PM-10	0.003	0.004	0.002	150						
PM-2.5 0.001 0.001 0.001										

REQUIREMENT: PM-10 less than 50 micrograms per cubic meter (ug/m³) and less than the EPA REL (recommended exposure limit)

Carbon monoxide was also measured in all three ballrooms using the Quest Technologies meter. Carbon monoxide was not detected in any of the ballrooms at a concentration of 1 part per million or higher. The LEED requirement for carbon monoxide measurements matches the EPA recommended exposure limit, which is less than 9 parts per million and no more than 2 parts per million higher than outdoor levels. Measurements are presented in Table 3.

TABLE 3. Centennial Hall Particulate Measurements												
Particulate Size Results in ppm												
	Ballroom 1	Ballroom 2	Ballroom 3	EPA REL								
Carbon monoxide	Carbon monoxide <1 <1 <1 9											
PEOLIDEMENT, loss that	^o ^o nom and r	na mara than	2 ppm over a	utdoor lovols								

REQUIREMENT: less than 9 ppm and no more than 2 ppm over outdoor levels.

NOTE: Outdoor level of carbon monoxide was <1 ppm.

<u>CONCLUSION</u>

Flushing activities meet project requirements for both mechanical system purposes and for LEED IAQc4 purposes.

Based on the results of IAQ measurements, indoor air quality levels in the Centennial Hall ballrooms meet the final clearance standards set forth in LEED IEQc4 and no further sampling is necessary.

THIRD-PARTY SAMPLER COMFIRMATION

I certify that all measurements and assessments on this project were performed by Dahlberg Design, LLC, a third-party firm, and subcontract laboratories, without any intervention from the Contractor or any other party with a vested interest in the outcome of this sampling.

Sigrid Dahlberg, P.E

Principal Engineer for Dahlberg Design, LLC

APPENDIX A ANALYTICAL LABORATOR RESULTS

Dahlberg Design

222 Seward Street Suite 205

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Collected:	01/31/2024 08:34
Phone:	907-723-8896	Received:	02/09/2024 10:25
Email:	sigrid@dahlberg.design	Analyzed:	See Results
	5 5 5	Reported:	2/15/2024

Laboratory Report- Sample Summary

EMSL Sample ID.	Client Sample ID.	Start Sampling Date	Start Sampling Time
332402243-0001	BALLROOM 1	1/31/2024	8:34 AM
332402243-0002	BALLROOM 3	1/31/2024	8:39 AM
332402243-0003	BALLROOM 2	1/31/2024	8:38 AM

If "Preliminary Report" is displayed in the signature box; this indicates that there are samples that have not yet been analyzed, that are in a preliminary state, or that analysis is in progress but not completed at the time of report issue.

Report Date Report 2/15/2024

Report Revision R0 Revision Comments Initial Report

michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

Test results meet all AIHA-LAP,LLC requirements unless otherwise specified. Laboratory ID 101650

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone:907-723-8896Email:sigrid@dahlberg.design

Dahlberg Design

222 Seward Street Suite 205

Juneau, AK 99801-1239

Collected: Received: Analyzed: Reported:

01/31/2024 08:34 02/09/2024 10:25 See Results 2/15/2024

Case Narrative

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Column</u>

Restek RTX-502.2, 60m, 0.25mm ID, 1.4um

Concentrator Traps:

Entech Dual Cold Traps: (1) 1/8" No Packing, (2) 1/8" Tenax.

Gas Standards:

Certified Gas standards were used for all analyses.

Sample Volumes:

Sample volume aliquots for this procedure are 250cc for indoor/ ambient air and 25cc for soil gas. Other volumes for sample dilutions are reflected on each result page.

Holding Times:

Standard holding times of 30 days were met for all samples.

Sampling Pressures:

All samples were received at acceptable pressure/vacuum unless listed below.

Sample Dilutions:

Dilutions reported are designated by the sample # with a "DL" suffix resulting from initial analysis having compounds exceeding calibration as reported with an "E" qualifier. Ethanol and Isopropanol are not diluted for and may be reported with an "E" qualifier on the final result.

QA/QC criteria outside method specifications are listed below (if applicable).

Initial Calibration

All Initial Calibration criteria met method specification.

Initial Calibration Verification Standard (ICVS)- Second Source

ICVS met method specification with 70-130% recovery for 100% of compounds.

Laboratory Control Sample (LCS)

LCS met method specification with 70-130% recovery for 100% of compounds.(*If the LCS does not meet criteria but any compounds which have recoveries >130% are not found in the samples, samples may be reported*)

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75

Attention: Sigrid Dahlberg Dahlberg Design 222 Seward Street Suite 205 Juneau, AK 99801-1239

Phone: 907-723-8896 Email: sigrid@dahlberg.design Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Collected: 01/31/2024 08:34 Received: Analyzed: Reported:

02/09/2024 10:25 See Results 2/15/2024

Case Narrative

Continuing Calibration Verification Standard (CCVS)

CCVS met method specification with all compounds within 30% deviation.

Ending Calibration Verification Standard (ECVS)

ECVS met method specification with all compounds within 30% deviation.

Method Blanks (MB)

Method Blank met method specification.

Reporting Limit Laboratory Control Samples (RLLCS)

RLLCS met method specification with 90% of compounds within the 60-140% recovery range. Individual compounds outside of the recovery range may be listed below.

Manual Integration : -Listed below if applicable. Before and after documentation provided in extended deliverable packages.

The following data qualifiers that may have been reported with the data,

ND- Non Detect. This notation would be used in the results column in lieu of a "U" qualifier.

U- Compound was analyzed for but not detected at a listed and appropriately adjusted reporting level.

J (Target)- Concentration estimated between Reporting Limit and MDL.

J- Estimated value reported below adjusted reporting limit for target compounds or estimating a concentration for TICs where a 1:1 response is assumed

B- Compound found in associated method blank as well as in the sample.

E- Estimated value exceeding upper calibration range of instrument. Ethanol and isopropyl alcohol are not specifically targeted to dilute within calibration range.

D- Compound reported from additional diluted analysis.

N- indicates presumptive evidence of a compound based on library search match.

EMSL Analytical, Inc. certifies that this data package is in compliance with the terms and conditions of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer -readable data submitted on diskette has been authorized by the laboratory manager or his/her designee, as verified by the following signature.

michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

Analysis Initial

Suite 205

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Phone: Email:	907-723-88 sigrid@dah	396 hlberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024)8:34 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2158.D	E15530	250 cc	1

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.86	0.50		4.3	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.8	0.50		11	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	21	0.50		40	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.9	0.50		4.6	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	8.4	0.50		20	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50	1	ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50	1	ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50	1	ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.5	0.50		5.1	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 08 02/09/2024 10 See Results 2/15/2024	8:34 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2158.D	E15530	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MIN	Result	RL	0	Result	RL	Commonts
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50	L V	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.63	0.50		2.4	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.78	0.50		3.3	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			40	ppbv		91	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Spike</u>

10

Recovery

93%

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahll	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	18:34 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.86		4.3	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	7000000		7000000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	4.8		11	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	21		40	1900000		1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.9		4.6	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	8.4		20	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC		87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200		4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.		N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000		790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000		1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000		400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000		N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000		590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000		790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000		1400000
Chloroform	С	67-66-3	119.4	ND		ND	9800		240000
Tetrahydrofuran	NC	109-99-9	72.11	ND		ND	590000		590000
1,1,1-Trichloroethane	NC	71-55-6	133.4	ND		ND	1900000		1900000
Cyclohexane	NC	110-82-7	84.16	1.5		5.1	1000000		1000000
2,2,4-Trimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.		N.E.
Carbon tetrachloride	C	56-23-5	153.8	ND		ND	13000		63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000		2000000
1,2-Dichloroethane	C	107-06-2	98.96	ND		ND	4000		200000
Benzene	C	71-43-2	78.11	ND		ND	320		3200
I richloroethene	C	79-01-6	131.4	ND		ND	130000	Ц	540000
1,2-Dichloropropane	C	78-87-5	113.0	ND	L	ND	LFC	Ц	350000
Methyl Methacrylate	NC	80-62-6	100.1	ND		ND	410000	Ц	410000
Bromodichloromethane	C	75-27-4	163.8	ND	L	ND	N.E.	Ц	N.E.
1,4-Dioxane	C	123-91-1	88.11	ND	L	ND	3600	Ц	360000
4-Methyl-2-pentanone(MIBK)	NC	108-10-1	100.2	ND		ND	200000	Ц	410000
cis-1,3-Dichloropropene**	C	10061-01-5	111.0	ND		ND	4500		N.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	e: 907-723-8896 I: sigrid@dahlberg.design		Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:34 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.63		2.4	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane		124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.78		3.3	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene		541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added if	multiple	isomers are	-	The > colun	nn is us	ed to flag ex	ceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

- \mathbf{B} = Compound also found in method blank. ND = Non Detect
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial Suite 205

Dahlberg Design 222 Seward Street EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID T2159 D	Canister ID F0666	Sample Vol.	Dil. Factor

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.82	0.50		4.1	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.1	0.50		10	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	20	0.50		37	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.5	0.50		3.8	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	7.6	0.50		18	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.5	0.50		5.0	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Phone: Email:	907-723-88 sigrid@dah	396 hlberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	01/31/2024 08:39 02/09/2024 10:25 See Results 2/15/2024					
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor				
02	/13/2024	HP	T2159.D	E0666	250 cc	1				

Target Compound Results Summary

Target Compounds	CAS#	MIM	Result	RL	0	Result	RL	Commonts
A-Methyl-2-pentapone(MIBK)	108-10-1	100.2		0.50	لع ا		2.0	Comments
cis-1 3-Dichloropropene	10061-01-5	111.0		0.50			2.0	
Toluene	108-88-3	92 14	0.58	0.50		22	1.0	
trans-1 3-Dichloropropene	10061-02-6	111.0		0.00			23	
1 1 2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.0	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1.2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xvlene (p.m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.87	0.50		3.7	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			37	vdqq		84	ua/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

Recovery

93%

<u>Spike</u>

10

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-8896 sigrid@dahlberg.design		Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 1 See Results 2/15/2024	8:39 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor
Initial	02	2/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.82		4.1	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	7000000		700000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	4.1		10	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	20		37	1900000		1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.5		3.8	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	7.6		18	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC	_	87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200	_	4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.	-	N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000	4	790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000	_	1800000
1,1-Dichloroethane	C	75-34-3	98.96	ND		ND	400000	_	400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000	_	N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000	-	590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	_	790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	-	1400000
Chloroform	0	67-66-3	119.4	ND		ND	9800	-	240000
	NC	109-99-9	72.11	ND		ND	590000	-	590000
1,1,1-1 richloroethane	NC	/1-55-6	133.4	ND		ND	1900000	-	1900000
Cyclohexane	NC	110-82-7	84.16	1.5		<u>5.0</u>	100000	_	100000
2,2,4-1 rimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	-	N.E.
		56-23-5	153.8	ND		ND	13000	-	63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	-	200000
		107-06-2	98.96	ND		ND	4000	-	200000
Benzene		71-43-2	78.11	ND		ND	320	-	3200
		79-01-6	131.4	ND		ND	130000	-	540000
1,2-Dichloropropane		/8-8/-5	113.0				LFC 410000	+	350000
IVIEITIYI IVIETNACTYIATE	NC	80-62-6	100.1				410000	-	410000
		10-21-4	103.8				N.E.	┥	IN.E.
1,4-DIOXANE		123-91-1	88.11				300000	┥	300000
4-ivieuriyi-2-pentanone(IVIIBK)		108-10-1	1111.2				200000	+	410000
cis-1,s-Dichloropropene		10001-01-5	111.0	טאו (- טאו	4500		IN.⊏.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-889 sigrid@dahlk	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
<u>Analysis</u>	<u>Ana</u>	l <u>lysis Date</u>	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.58		2.2	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane		124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.87		3.7	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene		541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added if	multiple	isomers are		The > colun	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

- \mathbf{B} = Compound also found in method blank. ND = Non Detect
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial

Suite 205

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
An	alysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
0	2/13/2024	HP	T2160.D	E15526	250 cc	1

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.69	0.50		3.4	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	3.3	0.50		7.8	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	16	0.50		30	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	2.6	0.50		6.3	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	5.0	0.50		12	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.4	0.50		4.7	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2160.D	E15526	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MIN	Result	RL	0	Result	RL	Commonts
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50	L V	ND	2.0	Comments
cis-1 3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.0	
Toluene	108-88-3	92.14	ND	0.50		ND	1.9	
trans-1.3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.68	0.50		2.9	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			30	ppbv		67	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.4

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

Recovery

94%

<u>Spike</u>

10

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	e: 907-723-8896 : sigrid@dahlberg.design		Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	01/31/2024 08:38 02/09/2024 10:25 See Results 2/15/2024			
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor		
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1		

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.69		3.4	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	700000		700000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	3.3		7.8	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	16		30	1900000		1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	2.6		6.3	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	5.0		12	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC		87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200		4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.		N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000		790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000		1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000		400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000		N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000		590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000		790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000		1400000
Chloroform	С	67-66-3	119.4	ND		ND	9800		240000
Tetrahydrofuran	NC	109-99-9	72.11	ND		ND	590000		590000
1,1,1-Trichloroethane	NC	71-55-6	133.4	ND		ND	1900000		1900000
Cyclohexane	NC	110-82-7	84.16	1.4		4.7	100000		1000000
2,2,4-Trimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.		N.E.
Carbon tetrachloride	С	56-23-5	153.8	ND		ND	13000		63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000		2000000
1,2-Dichloroethane	С	107-06-2	98.96	ND		ND	4000		200000
Benzene	С	71-43-2	78.11	ND		ND	320		3200
Trichloroethene	C	79-01-6	131.4	ND		ND	130000		540000
1,2-Dichloropropane	С	78-87-5	113.0	ND		ND	LFC		350000
Methyl Methacrylate	NC	80-62-6	100.1	ND		ND	410000		410000
Bromodichloromethane	C	75-27-4	163.8	ND		ND	N.E.		N.E.
1,4-Dioxane	С	123-91-1	88.11	ND		ND	3600		360000
4-Methyl-2-pentanone(MIBK)	NC	108-10-1	100.2	ND		ND	200000		410000
cis-1,3-Dichloropropene**	С	10061-01-5	111.0	ND		ND	4500		N.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 332402243 EMSL CUSTOMER ID: DAHL75 EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-889 sigrid@dahlt	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
<u>Analysis</u>	<u>Ana</u>	l <u>lysis Date</u>	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	ND		ND	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane		124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.68		2.9	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene		541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added if	multiple	isomers are		The > colun	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

- \mathbf{B} = Compound also found in method blank. ND = Non Detect
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

	LA Tes	sting Or	Exte der Nur Onlv):	e rnal nber (L	Chain ab Use	U of C	SEP/ usto #	A TO dy/ F 3 3	-15 Field Tes 2 4 0 2	st [2	Data : 4 3	Shee	<u>t</u>		LA Tes 5431 Huntir Ph. (80 Fax (7	stin ndu ngto D0) 14)	g, In Istria on Be 755- 828-	c. il Dri each 1794 -494	ive I, CA I 4	92.64	19	
Company/Cust. ID:	DAHLE	>ERC	1 DES	SIGN		Compa	ny/Billin	giD;	DAHLBE	26	, Dee	-IGN		Sampled i	By (Sigr	n): 2	5	<u> </u>	102	2	<u> </u>	
Contact Name:	Signat	s Da	HLBE	ERCA		Billing	Contac	t:	- 64	in				Sampled i	By (Narr	ne):	Ś	Ze	I cr	DA	جانه	ERE
Street Address:	222 9	لاسعد	eo S	т #	205	Street	Addres	5:						Total # of	Sample	s:	3				. (
City, State, Zip:	JUNEA	4 ت	×4 e	3980)	City, S	tate, Zip):	Rei Strang og Mite Stranger Stranger		(이나바) 영어에 (이나바) 영어에			Date Ship	ped:	1 1	Ξb	, 21	224		-	
Phone: 907	23.58	96	Fax: -		An An	Phone	:				Fax:			Sample C	ollectio	n Zi	p Co	ode:	99	180	>t	
Email Results To:	Slavid	e da	عطاطح	era.e	esian	Proi	ect N	ame:	CENTE	57 U.		Hon .	7012	Purchase	Order	-						
Turnaround Time (in Busine	ss Day	s): Ď	 ≰10 Day :	Standard		richter (fil mainterne	Repor	ting Format	terrange av	Result	Only (Stan	idard Lab Re	l port)		Γ	· A	nalv	/sis	T	Mi	atrix
☐ 5 Day		l Day	an Tablan A Tablan		∐ 3 Day			E Full C	Deliverables (Surcha	arge n	nay apply)						T	,		\dashv	5	<u> </u>
2 Day		ο Δίι	Inform	ation 5						ile Set RASS		b lleo (Johr				12	De la	Othe (Spec)	er ifv)	I	
	Samplir	an Start	Inform	ation	Samplir	na Ston	Inform	<u>続きやい</u> ofion				Gau	viuy⊚ iao #	가려는 것이 가지가 가지? 		22	ė	<u>اي</u> (.0000	" <i>"</i>	Der	Ħ
<u></u>	Barometric	Pres. ("Ha):		Barometric	: Pres. ('	'Ha): 29	.34	Canister Ir	nforn	nation	41920	2191,24	Flow Co	ntoller	P		≿			a A	≥
Client Field Sample	Start Date	Time (24	Canister Pressure	Interior Temp.	Step Data	Time (24	Canister Pressure	Interior Temp.	O-minter ID	Size	Can Cert	Outgoing Pressure	Incoming Pressure	Der ID	Cal Flow	ISEPA	UDEP	IBRAF			idoor/ oil Ga	andfill
BALLROOM 1	31 Jan 2024	0934	- 292		31 Tous 2024	1638	(ng) -32	(F) 71	E15530	<u>ري</u> ک	89 A	- 30	12 2	07978	(111/111)	P		╧╋		┝╌╀		┼╍┼
BALLROOM Z	ĸ	0839	-292	70	1	1640	-22	71	E0666	و (89 A	- 30	-7 W	15114	11.0	-					<u>,</u>	++
BAURDOM \$2	14	0838	-29'	70	0	1639	-2-	71	E 155 26	6	87 A	- 30	-20	15116	11.0			+		\vdash	<u>_</u>	++
															1			-			1	
-																			1.			
											148	07/13	124									
												7	1.1									
															1			1		\square		
	-																			\square		
Comments:												Check Seal	Box if Intact	Lab Caniste Analyst Sig	er Certific nature (T	atio	n 5):					
Relinquished	by:	Đ	ate/ Tin	ie 👘	F	Receive	d by:		Date/	Tim	ië	Seal #	/ Intact	Reaso	n for E	xcl	nang	je (c	ircle	app	ropri	iate)
Rob Hansen		19	99.9	3	Siga	KJ	Sur		5 Jan 20	2A	4am		rç/	Shipping	Courier	Rece	iving	Sam	pling	Oth	ər:	
Syncon	email	68	-1-20	24	Emitin	Under	alma	1/1+x)	2/9/24/	0:2	SAM		Г	Shipping	Courier	Rece	iving	Sam	pling	Oth	ər:	
\bigcirc					r=	<u> </u>	<u> </u>	024					.	Shipping	Courier	Rece	iving	Sam	pling	Oth	ər:	
	$- \bigcirc$												L.	Shipping	Courier	Rece	iving	Sam	pling	Oth	er:	
					 				<u> </u>				Г	Shipping	Courier	Rece	ivina	Sam	mina	Oth	 er:	<u></u>

a service and the service

#332402243

TO-FM-12 Sample Information Revision 13 Effective Date: December 20, 2022

TO-15 Sample Information

Please fill out this worksheet in addition to the Chain of Custody form. This information helps us to best analyze your samples, achieve requested TAT, and provide you with helpful interpretation information.

	· · · · · · · · · · · · · · · · · · ·	
Name: SIGRIDD	AHLBERG	
E-mail: Sigrided	anlberg. de:	sign
Additional 5 mails Sdahlk	sera gole gm	ail.com
Auditional c-mails:		
Telephone #: 501. 123.	2226	·
your sample. Sample Type:		
запре туре:		
[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [JOther: Public りい	lding (non-of	[] Soll Gas/Sub Slab
[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [「Other: アルトルC 日ル Sample Description: <u>Reoccur</u>	Iding /non-of	[] soll Gas/sub slab fice g after renovation at convention
 Indoor Air Quality (Home/Office) IAQ (Industrial) 「Other: P いら IIC しい Sample Description: Personal PLEASE NOTE: The result forms we provide agency. If you would like that information, 	Iding (non - of anay sampling e will not indicate whether your resu please check off below which regu	[] Soll Gas/Sub Slab fice <u>g after renovation</u> at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive.
 Indoor Air Quality (Home/Office) IAQ (Industrial) JOther: Public bui Sample Description: Pecoccup PLEASE NOTE: The result forms we provide agency. If you would like that information, [V] OSHA PELs/NIOSH RELs 	Iding /non-of pancy samplin e will not indicate whether your res please check off below which regu combined form	 [] Soll Gas/Sub Slab Gree g after veneration at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample
 Indoor Air Quality (Home/Office) IAQ (Industrial) JOther: Public build Sample Description: Recoccut PLEASE NOTE: The result forms we provide agency. If you would like that information, OSHA PELs/NIOSH RELs EPA RSLs - 11/2022; default is THQ 0.1 	Iding (non - of ancy sampling e will not indicate whether your res please check off below which regu combined form Residentiai Industriai	 [] Soll Gas/Sub Slab frice g after renexation at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format)
 Indoor Air Quality (Home/Office) IAQ (Industrial) JOther: Public buy Sample Description: <u>Recording</u> PLEASE NOTE: The result forms we provide agency. If you would like that information, OSHA PELs/NIOSH RELS EPA RSLS - 11/2022; default is THQ 0.1 EPA VISLS - 3/2012 	Iding (non-of anay sampling e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG	 [] Soll Gas/Sub Slab Gree Gree
 Indoor Air Quality (Home/Office) IAQ (Industrial) IAQ (Industrial) IAQ (Industrial) IAQ (Industrial) IAQ (Industrial) Sample Description: Provide the provided agency. PLEASE NOTE: The result forms we provided agency. If you would like that information, IM OSHA PELs/NIOSH RELs Image: Performance of the provided agency of the provided agenc	e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG VI-Indoor AQ VI-Soil Gas	 [] Soll Gas/Sub Slab Gree Gree
 Indoor Air Quality (Home/Office) IAQ (Industrial) IAQ (Industrial)	e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG VI-Indoor AQ VI-Soil Gas Residential Non-residential	 [] Soll Gas/Sub Slab fice g after renovation at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018
 Indoor Air Quality (Home/Office) IAQ (Industrial) IAQ (Industrial)<td>e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG VI-Indoor AQ VI-Soil Gas Residential Non-residential Indoor Air</td><td> [] Soll Gas/Sub Slab Grice g after renexation at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only) </td>	e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG VI-Indoor AQ VI-Soil Gas Residential Non-residential Indoor Air	 [] Soll Gas/Sub Slab Grice g after renexation at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only)
 Indoor Air Quality (Home/Office) IAQ (Industrial) JOther: Public build Sample Description: <u>Reconcurp</u> PLEASE NOTE: The result forms we provide agency. If you would like that information, OSHA PELs/NIOSH RELS EPA RSLs - 11/2022; default is THQ 0.1 EPA VISLs - 3/2012 I DEPA VISLs - 3/2012 N DEPA - 5/2021 - Circle one: NC DENR - 2/2018 - Circle one: PA DEP - 11/2016 PA DEP - 11/2015: Sub Slab Soil Gas OR 	e will not indicate whether your res please check off below which regu combined form Residentiai Industriai IA/SG VI-Indoor AQ VI-Soil Gas Residential Non-residential Indoor Air I Near Source Soil Gas	 [] Soll Gas/Sub Slab Grice g after venexation at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only) [] California OEHHA - 2/2012
 Indoor Air Quality (Home/Office) IAQ (Industrial) JOther: Public bus Sample Description: Recording PLEASE NOTE: The result forms we provide agency. If you would like that information, OSHA PELs/NIOSH RELS EPA RSLS - 11/2022; default is THQ 0.1 EPA VISLS - 3/2012 IS DEPA VISLS - 3/2012 N DEPN - 5/2021 - Circle one: NC DENR - 2/2018 - Circle one: PA DEP - 11/2016 PA DEP - 11/2016: Sub Slab Soil Gas OR CA HHSL - 9/2010 - Circle one: 	e will not indicate whether your res please check off below which regu combined form Residential Industrial IA/SG VI-Indoor AQ VI-Soil Gas Residential Non-residential Indoor Air I Near Source Soil Gas Indoor Air Soil Gas	 [] Soll Gas/Sub Slab Grice g after veneration at convention sults have exceeded any Exposure Limit criteria established by any regulatory latory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only) [] California OEHHA - 2/2012 [] Other; these are the compounds i want reported:

*Very Important Information for Clients! Hold time for sulfur gases is 1 day from collection. Please schedule your sample collection so samples are received in the lab prior to noon on Friday. Analysis performed out of hold time will have a notation in the report.

US EPA TO-3 via GC/FID:	ASTM-D5504 via GC/SCD: *
[] C ₁ -C ₆ hydrocarbons	[] Sulfur Scan (H ₂ S, COS, MeSH, EtSH, DMS)
[] Methane only	[] H ₂ S only

We can provide the following CMS tests from your canisters at the Cinnaminson and Huntington Beach laboratories. Please note these tests are to be used for IAQ/Screening purposes ONLY. EMSL recommends alternate field sampling techniques for these parameters (with the exception of water vapor); please contact your sales rep for the proper media. Please note: There is an additional charge for any of the tests below.

Draeger A	nalyzer:				
[]00	[]CO ₂	[] NH ₃	[]02	ſ	1 Water Vapor

Sample Retention Policy: All canisters are guaranteed to be retained for one day after results are reported. Please review your results promptly to ensure your project scope is fully addressed. Cans may be retained for a longer period of time, but arrangements to hold your cans must be made through your customer account representative quickly. Thank you.

Controlled Document Confidential Business Information/Property of EMSL Analytical, Inc.

Heads up! We need your Approval of the following Submittals, Due on 02/29/2024.

General Information:

~

1050033 - 132 Construction Waste Management Final Report (Revision)

Project:	Centennial Hall Ballroom Reno
	Centennial Hall - Ballroom
	155 South Seward Street, Juneau, AK 99801
Manager:	James Malapanis, Project Manager
	Carver Construction, LLC
	1800 Greenwood Crest, Comox, BC V9M 4C8
Requested by:	James Malapanis, Project Manager

Request For Approval:

Subr Date	nitted :	02/15/2024												
Resp	oonders:	- City & Borou - Jensen Yorb	City & Borough of Juneau - Gen Term - Lisa Eagan-Lagerquist (Project Manager) Jensen Yorba Wall Inc Dan Fabrello (Construction Administrator)											
Com	Commenters: - Carver Construction LLC - James Malapanis (Project Manager)													
Instr	uctions:													
ltem	Rev	Reference	Phase	Cost Code	Subject	Туре	Critical Date							
107	1			017400	Construction Waste	General	02/29/2024	Details						

Management Final Report

(Revision)

Documentation

Centennial Hall Ballroom Renovation BE22-204 Final Report

WASTE MANAGEMENT RECEIPT LOGpdated: 2-15-2024

NOTE: UOM - TONS

GOAL: DIVERT 50% BY WEIGHT OF TOTAL CONSTRUCTION & DEMOLISION WASTE GENERATED ON-SITE.

TARGET MATERIALS: CONCRETE 40 T, METALS 4 T, WOOD 5 T, CARDBOARD 1 T, ALUMINUM/PLASTICS 0.1 T, NON-RECYCLABLES 50 T

							SOUND		NON	
DATE	FACILITY	FACILITY ID	METALS	CONCRETE	GRAVEL	WOOD	PANELS	CARDBOARD	RECYCLABLES	NOTES
12/12/22	D&S Recycling	Recycle	0.62							
12/21/22	Capitol Disposal	Landfill							1.45	
12/21/22	Capitol Disposal	Landfill							1.02	
12/21/22	Capitol Disposal	Landfill							0.48	
12/22/22	Scookum	Recycle	1.65							
12/22/22	Scookum	Recycle	0.93							
12/22/22	Capitol Disposal	Landfill							0.69	
12/26/22	D&S Recycling	Recycle	0.63							
12/28/22	Capitol Disposal	Landfill							1.2	
1/2/23	Capitol Disposal	Landfill							1.15	
1/6/23	Bobcat	Repurpose	4.39							
1/6/23	Bobcat	Repurpose	3.91							
1/6/23	Bobcat	Repurpose	3.8							
1/6/23	Bobcat	Repurpose	4.93							
1/6/23	Capitol Disposal	Landfill							1.03	
1/17/23	Capitol Disposal	Landfill							0.64	
1/18/23	Capitol Disposal	Landfill							0.35	
1/19/23	Bobcat	Repurpose	1.59							
1/25/23	Capitol Disposal	Landfill							1.48	
1/25/23	Capitol Disposal	Landfill							1.84	
2/11/23	Carver's Lot	Recycle		3.46						
2/11/23	Carver's Lot	Recycle		2						
2/11/23	Carver's Lot	Recycle		3.03						
2/11/23	Carver's Lot	Recycle		2.16						
2/11/23	Carver's Lot	Recycle		2.08						

2/18/23	Bobcat	Repurpose	3.37				
2/18/23	Carver's Lot	Recycle		2.83			
2/18/23	Carver's Lot	Recycle		2.41			
2/18/23	Carver's Lot	Recycle		2.84			
2/18/23	Carver's Lot	Recycle		2.5			
2/18/23	Carver's Lot	Recycle			2.45		
2/18/23	Carver's Lot	Recycle			3.57		
2/18/23	Carver's Lot	Recycle			4.04		
2/18/23	Carver's Lot	Recycle			2.99		
2/18/23	Carver's Lot	Recycle			3.36		
2/18/23	Carver's Lot	Recycle			3.5		
2/18/23	Carver's Lot	Recycle			2.95		
2/18/23	Carver's Lot	Recycle			3.63		
2/25/23	Carver's Lot	Recycle			3.51		
2/25/23	Carver's Lot	Recycle			3.025		
2/25/23	Carver's Lot	Recycle			3.025		
2/25/23	Carver's Lot	Recycle			3.04		
2/25/23	Carver's Lot	Recycle			3.51		
2/25/23	JAC & Others	Repurpose				0.36	
2/25/23	Carver's Lot	Recycle			3.31		
2/25/23	Carver's Lot	Recycle			1.48		
2/25/23	Carver's Lot	Recycle	1.19				
2/25/23	Capitol Disposal	Landfill					
2/28/23	Carver's Lot	Recycle			3.95		
3/9/23	Capitol Disposal	Landfill					
3/9/23	Capitol Disposal	Recycle	0.67				
3/17/23	Individuals	Repurpose				0.36	
3/17/23	CBJ	Repurpose				0.82	
4/28/23	Capitol Disposal	Landfill					
4/21/23	Capitol Disposal	Landfill					
4/28/23	Capitol Disposal	Recycle	0.8				

0.87

0.97

0.98 1.41

5/11/23	Capitol Disposal	Recycle	0.24							
5/11/23	Capitol Disposal	Landfill							0.84	
5/16/23	Capitol Disposal	Landfill							0.44	
6/2/23	Bobcat	Repurpose	0.57							
6/5/23	Capitol Disposal	Landfill							0.69	
6/15/23	Capitol Disposal	Landfill							0.38	
6/15/23	Capitol Disposal	Landfill							0.73	
7/10/23	Capitol Disposal	Landfill							0.33	
7/10/23	Capitol Disposal	Recycle						0.05		
7/20/23	Capitol Disposal	Recycle							0.36	
7/21/23	Capitol Disposal	Landfill							0.83	
7/21/23	Capitol Disposal	Recycle						0.05		
7/24/23	Capitol Disposal	Landfill							0.23	
7/25/23	Capitol Disposal	Landfill							0.31	
7/25/23	Capitol Disposal	Recycle							0.31	
7/27/23	Skookum	Recycle	1.9							
7/27/23	Skookum	Recycle	1.55							
8/1/23	Individuals	Repurpose				1				
8/1/23	Individuals	Repurpose				1.75				
8/1/23	Individuals	Repurpose	1.5							
8/8/23	Capitol Disposal	Landfill							0.19	
8/16/23	Capitol Disposal	Landfill							0.51	
8/23/23	Capitol Disposal	Landfill							0.59	
										Alcan
										estimate at
2/14/24	Capitol Disposal	Landfill							0.025	completion
			34.24	23.31	51.34	2.75	1.54	0.1	22.325	
	Total Waste:	135.605	TONS							
Vaste Diverted from Landfill:		113.28	TONS							
Percentage (%) Diverted:		83.54%								