Preliminary Drainage Report

Revere North Filing No. 1
J ohnstown, Colorado

Project No. 1060-08

Submittal: 1st: April 8, 2022

Prepared For
Forestar Group Inc.
9555 S. Kingston Court, Suite 200
Englewood, CO 80112

Prepared By:
Innovative Land Consultants, Inc.
12071 Tejon Street, Suite 470 Westminster, CO 80234
(303) 421-4224

CERIIRCATIONS

CERTIFICATION OF ENG INEER

"I hereby certify that this Preliminary Drainage Report for Revere North at Johnstown Filing No. 1 was prepared under my direct supervision in accordance with the provisions of the Town of J ohnstown Storm Draina ge Criteria for the owners thereof".

Teresa Ra e Hogan, PE
Registered Professional Engineer
State of Colorado No. 28789
For and on behalf of
\qquad

Prepared by
Alex Asa dulla ev, PE
Senior Project Engineer

CERTIFICATION OF Owner

Forestar, Inc. hereby certifies the drainage facilities for Revere North at Johnstown Filing No. 1 shall be constructed according to the design presented in this report. We understand that the Town of Johnstown does not and will not assume liability for dra inage facilities designed and/or certified by our engineer. We also understand that the Town of Johnstown relies on the representation of others to establish that drainage facilities are designed and constructed in compliance with Town of Johnstown guidelines, standards or specifications. Review by the Town of J ohnstown can therefore in no way limit or diminish any liability, which we or any other party may have with respect to the design or construction of such facilities."

Attest:

Na me of Responsible Party

Notary Public

Authorized Signature

TABLE OF CONTENTS

A. Introduction 4

1. Description of Site. 4
B. Description of Basin and Sub-basins 5
C. Drainage Design Criteria 7
2. Hydrologic Criteria 7
D. Drainage Facility Design 8
E. Conclusion 12
F. List of References 13
APPENDICES
A. Hydrologic Computations 14
B. Hydraulic and Detention Pond Computations 20
C. Referenced Information 37
D. Proposed Drainage Map 98

A. Introduction

1. Description of Ste

a. Area, Adjac entStreets, Subdivision Name, Lotand Block, Site Plan Name

Revere at Johnstown Filing No. 1 is a proposed single-family residential subdivision located within the Great Plains Village Master Planned community in Johnstown, Colorado. The site is located in the southwest quarter of Section 36, Township 5 North, Range 68 West of the $6^{\text {th }}$ Principal Meridian, Weld County Colorado. The site is located approximately 1.3 miles east of the Interstate Highway 25, and is located adjacent to and north of Larimer Country Road 14 (also known as Weld County Road 50), and approximately 0.6 miles west of the South County Line Road in the Town of J ohnstown, Colorado. See the below Vicinity Map for reference.

Vicinity Map
b. Sumounding Developments

Revere North Filing 1 is located within the Great Plains Village Master Planned Community. Undeveloped la nd currently surrounds the site on the east, north and west side of the site. The site is adjacent to the existing home and farm along the south portion of its westem property. The south side of the site is adja cent to the existing East County Road 14 and is also surrounds an existing structures that shall be removed with this project.

The project, inclusive of the proposed major roadways, local roads, single family and multi fa mily housing, a club house and two proposed drainage pondsis approximately 107 a cres in size. Currently, the site is used for agricultural farming purposes. The site contains a 24 inch imigation line bisecting the southeast comer of the site as well as existing imgation ditch flowing through the northeast comer of the site.

The existing topography of the proposed site consists of slopes varying from 1 to 5% slopes. Majority of the site sopes to the north with a southeastem comer portion of the
site sloping to the southeast. Per the NRCS Soils Survey the site consist of Type A, type B, and Type C Hydrologic Soils. The northem portion of the site consists of Ascalon Sandy Loam soils that belong to the Hydrologic Soil Group B and shall be evaluated as such. Wiley Silt Loam soils are present on site in the southem portion of the site, and is also classified as Soil Hydrologic Type B. The area of the site occupied by Hydrologic Soil Type B is ap proximately 45% of the total project site area.

The predominant type of soil on this site is Weld Silt Loam occupying central portion of the site. These soils belong to Hydrologic Soil Group C. As the present soil type A a reas are neg ligible the 55% of the site a rea outside of Soil Type B shall be evaluated as Type C soils within this report.

Please reference appendix C for the soil information obtained from the United States Department of Agriculture (USDA) for soil information and map reflecting the soil locationsas well as the site soil area tables.

Great Plains Villa ge Master Planned Community is comprised of 15 planning a reas in total. Filing 1 North includes the development of parts of PA-4, PA-5, and PA-7 and all of PA-6. These areas have a conceptual layout which includes 244 single-family dwellings, 98 duplex dwellings, public park spaces, sidewalks, two drainage ponds, club house, a nd public rights-of-ways.

B. Description of Basin and Sub-basins

a. Major Drainageways

There are no majordrainagewayslocated on oradjacent to the project site.
The project site is not within a FEMA regulated floodplain. It is located within unshaded Zone X as shown on the FEMA Firm Map 08069C 1405g, dated January 15, 2021, included in the Appendix C of this report.

b. Compliance with Stom Water Master Plan for Town of J ohnstown

The proposed development is located within the two major basins from the Storm Water Master Plan for the Town of Johnstown, hence forth referred to as Johnstown Master Plan. The two basins containing this property are the Elwell Basin and Twin Mounds Basin of the Johnstown Master Plan with both major basins ultimately discharging into the Big Thompson River. As recommended in the Johnstown Master Plan, on-site ponds are provided for detention and water quality with release rates in accordance with Table IV-1 from the Johnstown Master Plan. Majority of the site is located within the Twin Mounds Basin with a minor portion of the southeastem site comer as part of the Elwell Basin. The proposed development will continue to drain in the pattem of these designated basins with two proposed ponds on site that will continue to release the flows per the Johnstown Master Plan. Please find the relevant references from Johnstown Master Plan included in Appendix C of this report.

c. Nearby Drainage and Imigation Features

An existing imigation canal line runs through the northeastem comer of the property and shall remain undisturbed. The existing site was used as the farmland and contains some ingation pipes that were used for site farm ingation only. These pipes shall be capped/ abandoned in place during the construction. An existing 24 inch irigation pipe bisecting the proposed development in south east comer. It shall be realigned
with the construction of the project and the realignment plans shall be part of the construction drawings. The representation of the alignment is represented on the Drainage Plan in the back of this report.

d. Historic Drainage Pattems

Aspreviously mentioned, the existing topography of the proposed site consistsof slopes between 1% to 5%, with the majority of the site sloping to the north of the site. A ridge separating site into two drainage areas islocated through the southeast comer of the site and the south east comerdrains generally to the southeast. Please reference the Historic Drainage Exhibit located in the back of this report for the onsite drainage pattem representation.

e. Off-Site Drainage Pattems

The east property edge of the site is located at the top of the drainage basinsand the offsite flows are not expected to be delivered into this site from the east. The area generally slopes away from the site in current conditions.

An outparcel, as described in Great Planes Village report, located north of the Weld County Road 50 and represented in the Great Planes Village masterplan is located at the southem edge of the site and issurrounded by the site. The flowsfrom thisoutparcel will be entering the site and shall be accommodated within the drainage. As this outparcel is located at the top of the drainage ridge the flows here are split to the north and to the east. The outparcel is represented by basinsOS-1 (Design point 8) and OS-2 (Design Point 10). Please referto the Draina ge Fa cility design section of this report for the discussion of the drainage capture of this area.

The southem boundary of thissite isWeld County Road 50. A portion of the Twin Mounds Basin from the Storm Water Master Plan for the Town of Johnstown topographic ally is draining north across the Weld County Road 50 at the design point 5 . This area is designated as Basin Offsite South (Basin OS-S) on the Twin Mounds Basin exhibit included in the back of this report. The total portion of Twin Mounds Basin coming from the south is a pproximately 103.5 Acres. Curently this area is undeveloped. Northem portion of the proposed Revere Filing 1 Development lies within this area and upon construction will provide a detention pond (Pond C) that will be detaining the flows to the J ohnstown Ma sterplan criteria. Current historic flows coming a cross the road at the design point 5 are 37.3 cfs in a 5 year stom and 94.2 cfs in a 100 year storm. With the development of the Revere Filing 1 North project the historic flows from this a rea shall be accommodated to pass through the site. The storm system will be extended to fully accommodate the 5 year historic flows from this portion of the Twin MoundsBasin. 100 year flows shall be accommodated within the right of way of the proposed streets continuing to the north from WCR 50.

Off-site drainage from the westem portion of Great Plains Village basinslocated north of Weld County Road 50 is partially tributary to the proposed site. The portion of the Twin Mounds basin located to the west and draining toward the proposed site is designated asBasin Offsite West (Basin OS-W) and is represented by BasinsOS-W1, OSW2, and OS-W3 on the Twinn Mounds Drainage exhibit located at the back of this report. This portion of Twin Mounds basin is approximately 405 Acres in size and contributes peak flows of approxima tely 145.7 cfs in a 5 Year Storm and 368.4 cfs in a 100 Year stom. The low point of this area is designated as Design Point 2 on the Twin MoundsDrainage Exhibit. With the development of the site and the storm infrastructure Ba sin OS-W shall be subdivided into appropriate areasdraining toward the site. Several
low points shall be used along the westem edge of the site to collect the offsite flows as appropriate to provide the storm path through the system and through the proposed Pond. Temporary swales and area inlets will be provided for the interim condition (final condition of the Phase 1 construction) to capture the undeveloped runoff from these areasalong the west side of the proposed road to direct the flows to Design Point 2. Storm system and swales shall be constructed to collect the 5 year storm within the storm system and bypass it through the site. In a 100 year event the storm shall be caried via combination of storm and street capacities to direct the 100 year flowsthrough the proposed site.

While the proposed pond within the site may provide additional storage for some of the area located within the Great Planesvillage, it shall not be responsible forproviding Detention to any portion of Twin Mounds Basin. Any future development of this basin upstream of the site shall provide drainage evaluation to the Town of Johnstown and comply with the original Master Study of releasing no more than 0.91 cfs per acre in a 100 year storm.

Storm infrastructure provided at the westem boundary of the proposed site shall be sized for future minor flows from the basins to the west.

The northem boundary of the project islocated at the lowest elevation of the site and the topography generally sopes away from the site to the north. No offsite flows are antic ipated to enter the site from the north.

C. Drainage Design Criteria

1. Hydrologic Criteria

a. Rainfall Source

Per Mile High Flood District (MHFD, formerly UDFCD) NOAA Atlas 14 was used to obta in the 5-year and 100-year 1-hour point rainfall, respectively. The minorstorm isthe 5 -year event; the majorstorm is the 100-year event.

5 -year $P_{1}=1.11$ in
100 -year $P_{1}=2.80$ in
The obtained Rainfall Frequency Data is included in Appendix C of this report.

b. Calculation Method

The rational method was utilized to calculate peak runoff values for drainage basins. Impervious coefficients were determined for each basin based on land use. Time of concentrations were calculated by combining the initial time or overland flow time with the travel time in the swale, gutter, and stom sewer. The one-hour rainfall and time of concentrations were used to calculate rainfall intensities. Basin peak runoff calculations can be found in Appendix A of this report.

c. Detention Volume Computation Method

Detention is provided in the proposed full spectrum detention pondslocated at the north and southeast comer of the proposed site. The required volumes for the ponds were calculated using the MHFD-Detention Version 4.05 (February 2022). The pond release rates are calc ula ted using Table IV-1 from the J ohnstown' Master Plan.

d. Peak Runoff

Peak runoff was calculated for the minor 5-yearand major 100-year stom events.

D. Drainage Facility Design

a. Drainage Pattems and Basin Disc ussion

Perthe historic drainage analysisand plan provided in the Preliminary Drainage Report for Great Plains Village, J ohnstown Colora do - henc eforth referred to asG reat Planes Study (please see Appendix C for reference), prepared by Core Consultants, Inc., the site islocated within portion of the historic basin EX-3 and entire ba sin EX-4 (EX-3 sloping to the north and EX-2 sloping to the southeast). The proposed drainage map, prepared by Core Consultants Inc., subdivides the existing basin EX-3 into multiple basins na med E through K. Existing basin EX-4 is the proposed Basin L of the that are represented within the study comprise the Southeastem portion of the site located within Elwel Basin. This outpa rcel is represented by basins OS-1 and OS-2 of the provided Drainage Plan.

As previously mentioned, the existing topography of the site is split with the northem portion of the site sloped to the north This area shall be named Major Basin A within this report. The Major Basin A is a portion of the Historic Basin EX-3 of Great Planes Study. The Major Basin A is also comprised of parts of proposed basinsl, J, and K of the Great Planes study. A proposed Pond A shall be provided to collect and detain the flows from this a rea. It will release the flows to the north in their historic pattem as part of the Twin Mound Basin per the criteria set in the Johnstown Master Plan.

The southeastem comer portion of the site sloped to the southeast and this basin shall be named Major Basin B within this report. Major Basin B is represented in the Great Planes Study as existing basin EX-4 and as Proposed Basin L. The entirety of this proposed Major Basin B will drain and the stom flows be detained in the proposed Pond B . The release flowsfrom thispond will be directed to the east along Weld County Road 50, into the Elwel Basin.

Asper the assumption stated in the Great Pla ins Study each planning a rea will require on-site detention pond. This will remain true for the Master Basin B. Proposed Pond A shall be providing the detention for the entire Major Basin A. As the proposed ste does not match the boundaries of the planning areas used in the Great Planes Study the proposed pond A within the Major Basin A will be providing detention for the parts of Planning Areas 2 through 8 of the Great Planes Study.

The proposed reconfiguration of the drainage basins of the Great Pla nes Study driven by the development of this site does not alter the standardsforstorm conveyance and detention set forth in the J ohnsto wn Master Plan and in the Great Pla nes Study.

Pond A shall be constructed to provide the detention for the entire proposed Filing 1 for Revere North. The outlet structure shall be designed to function for the proposed conditions of the Filing 1 being completely built out. The proposed pond A will have additiona l built in stora ge within its volume that will be utilized above the 100 yearsto $\mathbf{r m}$ as a temporary emergency volume prior to the emergency spillway. This additional volume will be utilized upon upstream development to the west of Filing 1 (Basin I of
the Great Planes Study.) The provision of the additional storage does not exempt the remainder of Basin I of the Great Pla nes Study from the stom evaluation and original sta ndards set forth in Johnstown Master Plan. Provision of the additional storage may be utilized upon properevaluation of Pond A, redesign a nd reconstruction of the outlet structure within Pond A , and storm system extension and evaluation with construction of the upstream projects. With the development of the site in the future, if the provided storage is found insufficient for the la nd use, an additional detention may be required upstream of this project. The pond volumes and areas discussed below in the Detention section of this report isconditional on the future development, area use, and densities of the remainder of Basin I of the Great Planes Study upon its development.

The proposed drainage concept for Revere North Filing No. 1 maintains the overall concept from the 'Master' Preliminary Drainage Report prepared by Core. The proposed preliminary drainage plan splits basins of the Great Planes Study into onsite and offsite basins for the puposes of this report and site development. An exhibit is provided in Appendix C, representing the information discussing the basins.

Major Basin A is a pproximately 98.8 a cresin size and consists of single-family and singlefamily duplex units. A storm system is provided from Pond A through the streets at low points and to ensure the minor stom street capacity is not exceeded. Swales are provided along the westem boundary to divert flows to area inlets. Storm stubs are provided for the future developments to the west and south to convey the flows of Twin Mound Basin. The flows from a portion of the outparcel of Great Planes Study located at the south end of Major Basin A a re expected to be received and conveyed through this Basin.

Major Basin B is approximately 8.2 acres that primarily consists of single-family deta ched units a nd Pond B. A storm system within this basin shall drain to Pond B. Pond B shall provide the necessary full spectrum detention for the entire basin and convey offsite flows from the portion of the outparcel of Great Planes Study located west of Major Basin B. Please refer to the Drainage Map located in the back of this report for the Basin location and drainage pattems.

Peak basin runoff calculations are provided in Appendix A. All major basins will be further subdivided in the Final Drainage Report for stormwater routing and hydraulic analysis.

b. Conveyance of Off-Site Drainage

The proposed draina ge infrastructure for Revere at Johnsto wn will be sized to convey the future developed flowsfrom the off-site basinsto the west and south aswell asthe outparcel located adjacent to the southem property line of this site. The proposed drainage plan ensures that all current/undeveloped off-site flows are accounted for and conveyed prior to the developments that will occur in the future. In the interim condition, swalesare provided along the west portion of the site to collect the existing storm runoff.

Future development to the west will require on-site detention ponds asperJohnstown Master Plan. Release rates from the future ponds will be a nalyzed based on Table IV-1 from the Johnstown Master Plan.

c. Preliminary Detention Pond Sizing and Site Outfall Discussion

MHFD detention spreadsheets were used to size the on-site detention ponds. The table below summarizes the volumes required for the on-site ponds based on the proposed site plan.

Preliminary Pond Sizing			
Pond Designation	Proposed Site Area Tributary to the Pond (Acre)	Basin Imperviousness (\%)	Calculated Required Volume (alft)
Pond A	95.29	46	9.08
Pond B	8.84	54	0.94

To maintain consistency with the existing drainage pattems and Johnstown Master Plan, future off-site ponds from the south, across Weld County Road 50 will be routed through Pond A assumed stom release rates at this point shall be sized per the standards set in the J ohnstown Master Plan. The storm shall be sized to convey the curent historic flows from the south and the future allowable release rates from the detention pond that will be provided upon the development of this portion of Twin Mound Basin, per the historic draina ge analysis provided in the Johnstown Master Plan.

Proposed release rates out of ponds A and B are set based on the c riteria set in the Johnstown Drainage Plan. As mentioned previously, Table IV-1(Provided in Appendix C) is used to determine pond release ratesfor the detention ponds. The table below summarizes the allowable release rates from the proposed ponds.

Preliminary Pond Release Calculations per Johnstown				
Criteria			(Pond
:---:				
Designation		5 Year Release Rate	100 Year Release Rate	
:---:	:---:	:---:		
	(cfs)	(cfs)		
Pond A	34.30	$\underline{86.71}$		
Pond B	2.83	$\underline{\underline{8.22}}$		

It should be noted that although the minorstorm release rate wascalculated per Table IV-1, actual minor storm release ratesfor each pond will be determined in the final design asthis is typic ally controlled by the Water Qua lity (WQ) and Excess Urban Runoff Volume (EURV) orific e platesin order to provide the required EURV for the developed site. Final design of PondsA and B will ensure that minor storm flows to the outfall points do not exceed the historic flows currently seen at these points.

For the major stom event the ponds will be designed to pass the allowable 100-year release rates plus the 100-year allowable release rates from upstream tributary areas. The table below comparesthe total developed 100-year runoff at the pondsagainst the historic runoff.

Developed Pond Release Rates			
Pond Designation	100 Year Historic Release (cfs)	100 Year Allowable Release (cfs)	100 Year Proposed Release (cfs)
Pond A	124.60	86.71	85.4
Pond B	13.50	8.22	7.9

Per the table above, total 100-year runoff to each ultimate design point is less than historic.

d. Drainage Impacts to Surrounding Developments

The drainage design of the proposed development isconsistent with historic drainage pattems and the J ohnstown Master Plan. The proposed onsite detention shall improve the flow pattems in the basins to the proposed conditions of the Master Study and no negative impacts to surrounding and downstream infra structure are expected.

e. Proposed Drainage Facilities

Drainage facilities proposed with this project include Type C Inlets, Type R Inlets, concrete flared end sections, stom forebays, Type III RCP storm systems, drainage swales, low flow pans, and outlet structures. Inlets a re proposed at low points a nd ongrade where minor stom street capacity is exceeded. Temporary swales are proposed along the westem border of the project to collect the offsite storm runoff. Proposed swale shall consists of grass swales sloped at 2\%orabove and collected into Type C Inlets and the flows will be conveyed to Pond A. As mentioned previously, two on-site detention ponds will be constructed with this development and will provide water quality and storm detention.

All inlets and swales will need to be kept free from debris and trash. The detention pond trash racks, and outlet pipes will also require regular maintenance to ensure properdrainage.

f. Phasing of Construction and Provisions for Drainage

No phasing isproposed for this site construction project.

E. Conclusion

The drainage concept for Revere North Filing No. 1 was derived from the 'Master' Prelimina ry Draina ge Plan forGreat PlainsVillage. The proposed site drainage pattems are in conformance with the existing topography and surrounding developments. There are no expected negative impacts to the surrounding developmentsor existing streets.

This preliminary drainage report is in conformance with the Town of Johnstown Storm Dra inage Criteria, the Storm Water Master Plan for the Town of Johnstown, and Mile High Flood District Sto m Drainage Criteria Manuals.

F. List of References

- Town of J ohnstown Storm Drainage Criteria
- Storm Water Master Plan for the Town of J ohnstown as prepa red by TEC, Inc., April 2001
- Preliminary Drainage Report Great Plains Village, prepared by Core Consultants Inc., November 2019;
- Mile High Flood District Dra ina ge Criteria Manual Volumes 1, 2, \& 3, current version;
- Natural ResourcesConservation Service Web Soil Survey, United States Department of Agriculture
- Federal Emergency Management Agency Flood Insurance Rate Map, Community-Panel Number 08069C 1405F; dated Dec ember 19, 2006

APPENDIX A

Hydrologic Computations

Single Family Lots (51' x 110')				
03/29/22				
Single Lot Area (sf): 5,610.0				
Surface	Area (sf)	C_{5}	C_{100}	Impervious (\%)
Lawn Roof Concrete Drive/Walk	$\begin{gathered} 2,330.00 \\ 2,740.00 \\ 540.00 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.77 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.85 \\ & 0.85 \end{aligned}$	$\begin{gathered} 2 \% \\ 90 \% \\ 90 \% \end{gathered}$
Composite Site Values: Composite \%Impervious Used:		$\begin{aligned} & \hline 0.47 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.71 \end{aligned}$	$\begin{aligned} & \hline \hline 53 \% \\ & 55 \% \end{aligned}$
Single Family Lots (61' x 110')				
Single Lot Area (s): 6,710.0				
Surface	Area (s)	C_{5}	C_{100}	Impervious (\%)
Lawn Roof Concrete Drive/Walk	$\begin{gathered} 3,430.00 \\ 2,740.00 \\ 540.00 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.77 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.85 \\ & 0.85 \end{aligned}$	$\begin{gathered} 2 \% \\ 90 \% \\ 90 \% \end{gathered}$
Composite Site Values: Composite \%Impervious Used:		$\begin{aligned} & \hline \hline 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & 0.67 \end{aligned}$	$\begin{aligned} & \hline \hline 45 \% \\ & 45 \% \end{aligned}$

Duplex $03 / 29 / 22$				
Single Lot Area (sf): Surface	2,625.0			
	Area (s)			Impervious (\%)
		C_{5}	C_{100}	
Lawn	1,002.50	0.05	0.49	2\%
Roof	1,420.00	0.77	0.85	90\%
Concrete Drive/Walk	202.50	0.77	0.85	90\%
Composite Site Values: Composite \% Impervious Used:		0.50	0.72	56\%
		0.56	0.75	65\%

APPENDIX B

Hydraulic and Detention Pond Calc ulations

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Revere North Filing 1
I nlet ID: Collector Street

Sized Capacity calclated in this spreadsheet is for one half of the street.

The total street Capacity is 139.2 cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Revere North Filing 1
Inlet ID: Res St w Mountable Curb

Gutter Geometry:				
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\text {BACK }}=$	21.0	$\{\mathrm{ft}$	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$\mathrm{S}_{\text {BACK }}=$	0.020		
Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $\quad \mathrm{n}_{\text {BACK }}=0.020$				
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$\mathrm{H}_{\text {CURB }}=$	4.00	inches ft ft $\mathrm{ft} / \mathrm{ft}$ $\mathrm{ft} / \mathrm{ft}$ $\mathrm{ft} / \mathrm{ft}$	
		18.0		
	$\begin{aligned} \mathrm{T}_{\text {CROWN }} & = \\ \mathrm{W} & = \end{aligned}$	2.00		
	$\begin{aligned} & \mathrm{W}= \\ & \mathrm{S}_{\mathrm{x}}= \end{aligned}$	0.020		
	$\mathrm{S}_{\mathrm{w}}=$	0.083		
	$\mathrm{S}_{0}=$	0.008		
	$\mathrm{n}_{\text {STREET }}=$	0.016		
		nor Storm	Major Storm	
Max. Allowable Spread for Minor \& Major Storm	$\begin{aligned} & \mathrm{T}_{\mathrm{MAX}}= \\ & \mathrm{d}_{\mathrm{MAX}}= \end{aligned}$	18.0	18.0	ft inches
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm		4.0	6.6	
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Г	Γ	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm		Major Storm	
MAJ OR STORM Allowable Capacity is based on Spread Criterion	$\mathbf{Q}_{\text {allow }}=$	2.9	11.7	cfs
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	t Manag t Manag	$\begin{aligned} & \text { nent' } \\ & \text { nent' } \end{aligned}$	

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Revere North Filing 1
Inlet ID: Res St w Vertical Curb

Gutter Geometry:				
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\mathrm{BACK}}=$ $\mathrm{S}_{\mathrm{BACK}}=$ $\mathrm{n}_{\mathrm{BACK}}=$	21.0	$f \mathrm{ft}$	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)		0.020		
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)		0.020		
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=6.00$		inches	
Distance from Curb Face to Street Crown	$\mathrm{T}_{\text {Crown }}=18.0$			
Gutter Width	$\mathrm{W}=$	2.00	inches ft	
Street Transverse Slope	$\mathrm{S}_{\mathrm{X}}=$	0.020	$\mathrm{ft} / \mathrm{ft}$	
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$	
Street Longitudinal Slope - Enter 0 for sump condition	$\begin{aligned} \mathrm{S}_{0} & = \\ \mathrm{n}_{\text {STREET }} & = \end{aligned}$	0.008	$\mathrm{ft} / \mathrm{ft}$	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)		0.016		
		or Storm	Major Storm	
Max. Allowable Spread for Minor \& Major Storm	$\begin{aligned} & \mathrm{T}_{\text {MAX }}= \\ & \mathrm{d}_{\text {MAX }}= \end{aligned}$	18.0	18.0	ft inches
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm		6.0	8.6	
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Γ	Γ	
MINOR STORM Allowable Capacity is based on Spread Criterion		or Storm	Major Storm	
MAJ OR STORM Allowable Capacity is based on Spread Criterion	$\mathbf{Q}_{\text {allow }}=$	10.8	10.8	cfs
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	Manag Manag	$\begin{aligned} & \text { nent' } \\ & \text { nent' } \end{aligned}$	

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (J anuary 2022)

Calculated Parameters for Underdrain
User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth	$=$$\mathrm{N} / \mathrm{A}$ ft Underdrain Orifice Diameter$=$$\mathrm{N} / \mathrm{A}$ inches

	Calculated Parameters for Underdrain
Underdrain Orifice Area	$=$$\mathrm{N} / \mathrm{A}$ ft^{2} Underdrain Orifice Centroid $=$ N / A feet

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	Stage of Orifice Centroid (ft)	0.00	0.99	1.99				

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A					

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.83	1.10	1.39	1.87	2.30	2.81	4.23
CUHP Runoff Volume (acre-ft) $=$	1.552	4.117	2.723	4.188	6.252	10.434	13.975	18.540	30.753
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	2.723	4.188	6.252	10.434	13.975	18.540	30.753
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.7	6.8	21.8	59.8	87.0	124.6	216.6
OPtional Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cff/acre) =	N/A	N/A	0.01	0.07	0.23	0.63	0.91	1.31	2.27
Peak Inflow Q (cfs) =	N/A	N/A	30.9	48.6	73.7	131.2	174.7	229.3	373.0
Peak Outflow Q (cfs) =	0.8	1.1	0.9	1.1	12.8	43.6	70.6	85.4	102.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.2	0.6	0.7	0.8	0.7	0.5
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	0.1	0.3	0.5	0.7	0.8
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	66	53	68	70	66	63	60	53
Time to Drain 99\% of Inflow Volume (hours) $=$	40	71	56	73	76	74	73	71	68
Maximum Ponding Depth (ft) $=$	2.14	2.98	2.52	2.94	3.24	3.60	3.84	4.25	5.42
Area at Maximum Ponding Depth (acres) $=$	2.15	3.95	2.94	3.84	4.46	5.16	5.63	6.29	7.76
Maximum Volume Stored (acre-ft) $=$	1.571	4.134	2.514	3.939	5.228	6.960	8.255	10.649	19.031

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.48	2.68
	0:15:00	0.00	0.00	0.72	2.19	3.53	3.18	5.03	5.72	11.69
	0:20:00	0.00	0.00	6.06	9.74	13.38	10.64	14.47	17.75	33.94
	0:25:00	0.00	0.00	17.30	26.72	40.56	27.49	39.62	52.07	100.77
	0:30:00	0.00	0.00	27.42	42.84	65.67	76.39	105.98	135.82	235.49
	0:35:00	0.00	0.00	30.94	48.62	73.70	116.71	157.78	205.62	340.32
	0:40:00	0.00	0.00	30.21	46.88	70.27	131.18	174.67	229.31	372.99
	0:45:00	0.00	0.00	27.82	43.08	64.81	127.33	168.62	224.76	364.07
	0:50:00	0.00	0.00	25.24	39.49	59.02	120.56	159.40	213.52	345.03
	0:55:00	0.00	0.00	23.06	36.23	53.89	110.54	146.28	198.39	320.77
	1:00:00	0.00	0.00	21.34	33.37	49.69	100.71	133.62	184.48	298.58
	1:05:00	0.00	0.00	19.76	30.69	45.84	91.96	122.29	172.64	279.48
	1:10:00	0.00	0.00	17.90	28.13	42.13	82.75	110.38	155.92	252.85
	1:15:00	0.00	0.00	16.03	25.52	38.75	73.06	97.82	136.28	222.06
	1:20:00	0.00	0.00	14.56	23.23	35.82	63.46	85.20	116.51	191.42
	1:25:00	0.00	0.00	13.52	21.43	32.81	56.16	75.47	101.00	166.91
	1:30:00	0.00	0.00	12.67	19.92	29.81	49.84	66.92	88.28	146.55
	1:35:00	0.00	0.00	11.92	18.56	27.07	44.28	59.39	77.60	129.38
	1:40:00	0.00	0.00	11.19	16.98	24.58	39.19	52.50	68.05	113.94
	1:45:00	0.00	0.00	10.47	15.28	22.23	34.62	46.30	59.29	99.74
	1:50:00	0.00	0.00	9.74	13.61	19.96	30.26	40.39	51.03	86.36
	1:55:00	0.00	0.00	8.71	12.03	17.64	26.11	34.78	43.31	73.86
	2:00:00	0.00	0.00	7.52	10.50	15.22	22.23	29.56	36.27	62.48
	2:05:00	0.00	0.00	6.17	8.64	12.39	17.67	23.46	28.44	49.64
	2:10:00	0.00	0.00	4.96	6.95	9.97	13.32	17.82	21.42	38.10
	2:15:00	0.00	0.00	4.02	5.63	8.10	10.22	13.76	16.31	29.39
	2:20:00	0.00	0.00	3.29	4.59	6.62	8.00	10.80	12.57	22.90
	2:25:00	0.00	0.00	2.70	3.74	5.39	6.28	8.49	9.64	17.75
	2:30:00	0.00	0.00	2.21	3.04	4.36	4.94	6.67	7.36	13.72
	2:35:00	0.00	0.00	1.79	2.46	3.49	3.88	5.22	5.56	10.48
	2:40:00	0.00	0.00	1.44	1.96	2.75	3.00	4.03	4.15	7.93
	2:45:00	0.00	0.00	1.16	1.54	2.15	2.31	3.09	3.14	6.07
	2:50:00	0.00	0.00	0.93	1.21	1.67	1.80	2.39	2.44	4.73
	2:55:00	0.00	0.00	0.74	0.95	1.31	1.42	1.89	1.95	3.79
	3:00:00	0.00	0.00	0.58	0.74	1.02	1.11	1.47	1.54	2.99
	3:05:00	0.00	0.00	0.44	0.56	0.78	0.85	1.13	1.19	2.28
	3:10:00	0.00	0.00	0.32	0.41	0.57	0.63	0.83	0.87	1.68
	3:15:00	0.00	0.00	0.22	0.28	0.40	0.44	0.58	0.61	1.16
	3:20:00	0.00	0.00	0.14	0.19	0.25	0.29	0.38	0.39	0.74
	3:25:00	0.00	0.00	0.08	0.11	0.14	0.17	0.22	0.22	0.41
	3:30:00	0.00	0.00	0.04	0.05	0.06	0.08	0.10	0.10	0.18
	3:35:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.03	0.04
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.05 (J anuary 2022)
Project: Revere North Filing 1
Basin ID: Pond B

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth $=$	
Underdrain Orifice Diameter $=$	N/A
Nt (distance below the filtration media surface)	
inches	

	Calculated Parameters for Underdrain	
Underdrain Orifice Area =	N/A	ft^{2}
Underdrain Orifice Centroid $=$	N/A	feet

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Stage of Orifice Centroid (ft)Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	0.59	1.17					
	1.50	1.50	1.50					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area = Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	eet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	0.25	N/A	
	18.00	N/A	
Restrictor Plate Height Above Pipe Invert $=$	10.00		inches Half-Central Angle

	Zone 3 Restrictor	Not Selected	
Outlet Orifice Area $=$	1.01	N/A	ft^{2}
Outlet Orifice Centroid $=$	0.48	N/A	eet
f Restrictor Plate on Pipe $=$	1.68	N/A	radians

Spillway Design Flow Depth	$=\square$ Calculated Parameters for Spillway
Stage at Top of Freeboard	$=\square$
Basin Area at Top of Freeboard	$=\square$
Basin Volume at Top of Freeboard	$=\square$

Routed Hydrograph Results

outed Hydrograph Results	user can	rride the default C	hydrogra	noff vo	sy entering new	alues in the Inflow	Hydrographs table	Columns W thro	h AF).
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	0.83	1.10	1.39	1.87	2.30	2.81	4.23
CUHP Runoff Volume (acre-ft) =	0.160	0.454	0.296	0.442	0.635	1.014	1.339	1.752	2.862
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.296	0.442	0.635	1.014	1.339	1.752	2.862
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.8	2.4	6.5	9.5	13.5	23.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.09	0.27	0.74	1.07	1.53	2.65
Peak Inflow Q (cfs) =	N/A	N/A	4.3	6.5	9.5	15.6	20.6	26.9	43.2
Peak Outflow Q (cfs) =	0.1	0.2	0.1	0.2	0.7	3.1	5.7	7.9	9.3
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.2	0.3	0.5	0.6	0.6	0.4
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.2	0.4	0.6	0.7
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	62	52	62	67	64	61	57	51
Time to Drain 99\% of Inflow Volume (hours) =	40	67	55	66	73	72	71	69	66
Maximum Ponding Depth (ft) =	1.05	1.76	1.37	1.68	1.97	2.32	2.56	2.89	3.91
Area at Maximum Ponding Depth (acres) $=$	0.31	0.52	0.40	0.49	0.58	0.63	0.66	0.70	0.84
Maximum Volume Stored (acre-ft) =	0.162	0.455	0.275	0.414	0.570	0.783	0.931	1.156	1.947

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.12	0.69
	0:15:00	0.00	0.00	0.19	0.57	0.91	0.82	1.22	1.38	2.53
	0:20:00	0.00	0.00	1.45	2.14	2.84	2.19	2.88	3.52	6.48
	0:25:00	0.00	0.00	3.41	5.13	7.64	5.21	7.38	9.52	17.61
	0:30:00	0.00	0.00	4.31	6.50	9.47	13.43	18.03	22.61	37.14
	0:35:00	0.00	0.00	4.08	6.13	8.80	15.64	20.58	26.93	43.21
	0:40:00	0.00	0.00	3.70	5.43	7.78	15.25	19.91	25.93	41.36
	0:45:00	0.00	0.00	3.21	4.71	6.89	13.67	17.82	23.85	37.98
	0:50:00	0.00	0.00	2.78	4.22	5.99	12.47	16.25	21.63	34.42
	0:55:00	0.00	0.00	2.42	3.65	5.19	10.76	14.03	19.12	30.40
	1:00:00	0.00	0.00	2.14	3.21	4.58	9.23	12.06	16.90	26.93
	1:05:00	0.00	0.00	1.95	2.91	4.19	8.09	10.61	15.28	24.42
	1:10:00	0.00	0.00	1.73	2.68	3.88	6.99	9.23	12.97	20.85
	1:15:00	0.00	0.00	1.53	2.39	3.59	6.07	8.05	10.99	17.77
	1:20:00	0.00	0.00	1.34	2.07	3.14	5.08	6.73	8.90	14.43
	1:25:00	0.00	0.00	1.16	1.78	2.60	4.21	5.54	7.06	11.50
	1:30:00	0.00	0.00	1.00	1.53	2.13	3.33	4.37	5.46	8.94
	1:35:00	0.00	0.00	0.90	1.36	1.83	2.58	3.39	4.13	6.89
	1:40:00	0.00	0.00	0.85	1.20	1.65	2.09	2.77	3.29	5.61
	1:45:00	0.00	0.00	0.82	1.09	1.53	1.80	2.38	2.71	4.81
	1:50:00	0.00	0.00	0.80	1.00	1.45	1.61	2.13	2.41	4.25
	1:55:00	0.00	0.00	0.71	0.94	1.36	1.47	1.96	2.16	3.86
	2:00:00	0.00	0.00	0.63	0.87	1.24	1.38	1.84	1.98	3.57
	2:05:00	0.00	0.00	0.49	0.68	0.96	1.06	1.41	1.48	2.69
	2:10:00	0.00	0.00	0.38	0.51	0.72	0.79	1.05	1.08	1.98
	2:15:00	0.00	0.00	0.29	0.39	0.54	0.59	0.78	0.80	1.47
	2:20:00	0.00	0.00	0.22	0.29	0.40	0.44	0.58	0.60	1.10
	2:25:00	0.00	0.00	0.16	0.22	0.29	0.33	0.43	0.45	0.82
	2:30:00	0.00	0.00	0.12	0.16	0.22	0.24	0.31	0.33	0.60
	2:35:00	0.00	0.00	0.09	0.11	0.16	0.17	0.23	0.24	0.44
	2:40:00	0.00	0.00	0.06	0.08	0.11	0.13	0.16	0.17	0.32
	2:45:00	0.00	0.00	0.04	0.05	0.08	0.09	0.11	0.12	0.21
	2:50:00	0.00	0.00	0.02	0.03	0.05	0.05	0.07	0.07	0.13
	2:55:00	0.00	0.00	0.01	0.02	0.02	0.03	0.04	0.04	0.07
	3:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.03
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Revere North Basin Weighted Runoff Coeffic ient Calc ulations							
							04/05/22
NRCS Soil Group	C		Imperviousness	C_{2}	C_{5}	C_{10}	C_{100}
A (Existing Conditions)	Twin Mound Basin Undeveloped Area		2\%	0.01	0.05	0.15	0.49
Basin	Total Area	A	Weighted Imp.	Weighted Runoff Coeffic ients			
ID	(Ac.)	Area (Ac.)	1 (\%)	C_{2}	C_{5}	C_{10}	C_{100}
Historic/Existing							
A	95.29	95.29	2\%	0.01	0.05	0.15	0.49
B	8.84	8.84	2\%	0.01	0.05	0.15	0.49
OS-1	5.50	5.50	2\%	0.01	0.05	0.15	0.49
OS-2	4.50	4.50	2\%	0.01	0.05	0.15	0.49
OS-S1	54.02	54.02	2\%	0.01	0.05	0.15	0.49
OS-S2	24.78	24.78	2\%	0.01	0.05	0.15	0.49
OS-S3	24.73	24.73	2\%	0.01	0.05	0.15	0.49
OS-W1	138.20	138.20	2\%	0.01	0.05	0.15	0.49
OS-W2	191.64	191.64	2\%	0.01	0.05	0.15	0.49
OS-W3	75.00	75.00	2\%	0.01	0.05	0.15	0.49

Time of Concentration																
Sh. 1 of 3 4, 4/22																
Basin ID	C_{5}	Initial Flow Time T_{i}			Travel Time T_{t}							Tc Check				Final T_{c} (min)
		Length (ft)	Slope (\%)	T_{i} (min)	Length (ft)	Slope (\%)	Convey. Element	Convey. Coeff. K	Vel. (fps)	(\min)	Total T_{c} (min)	Imp. (dec)	Travel Length (ft)	Avg. Trave Slope (\%)	$\left\|\begin{array}{c} T_{c}=26-17 i+ \\ {\left[L \left\{\left\{00^{*}(14 i+9) *\left(5^{0.5}\right)\right\}\right.\right.} \\ (\mathrm{min}) \end{array}\right\|$	
Developed																
A	0.05	500	4.00	26.8	2270	1.40	Native Grass	7	0.8	45.7	72.5	0.02	2270	1.4	60.1	60.1
B	0.05	500	2.50	31.3	425	3.00	Native Grass	7	1.2	5.8	37.2	0.02	425	3.0	30.1	30.1
OS-1	0.05	500	4.00	26.8	190	5.00	Native Grass	7	1.6	2.0	28.9	0.02	190	5.0	27.2	27.2
OS-2	0.05	500	2.00	33.7	260	4.00	Native Grass	7	1.4	3.1	36.8	0.02	260	4.0	28.0	28.0
OS-S1	0.05	500	4.00	26.8	2750	0.80	Native Grass	7	0.6	73.2	100.0	0.02	2750	0.8	80.9	80.9
OS-S2	0.05	500	1.00	42.4	1100	1.00	Native Grass	7	0.7	26.2	68.6	0.02	1100	1.0	45.4	45.4
OS-S3	0.05	500	2.00	33.7	1900	0.90	Native Grass	7	0.7	47.7	81.4	0.02	1900	0.9	61.6	61.6
os-w1	0.05	500	4.00	26.8	3475	3.00	Native Grass	7	1.2	47.8	74.6	0.02	3475	3.0	61.7	61.7
os-w2	0.05	500	2.00	33.7	3175	4.00	Native Grass	7	1.4	37.8	71.5	0.02	3175	4.0	54.2	54.2
OS-W3	0.05	500	2.00	33.7	3500	2.00	Native Grass	7	1.0	58.9	92.6	0.02	3500	2.0	70.1	70.1

APPENDIX C

Referenced Information

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for

Larimer County Area, Colorado; and Weld County, Colorado, Southern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
Soil Map 5
Soil Map 6
Legend7
Map Unit Legend 9
Map Unit Descriptions. 9
Larimer County Area, Colorado 12
7-Ascalon sandy loam, 0 to 3 percent slopes 12
8-Ascalon sandy loam, 3 to 5 percent slopes 13
78-Otero sandy loam, 3 to 5 percent slopes 15
79-Otero sandy loam, 5 to 9 percent slopes 16
102-Stoneham loam, 3 to 5 percent slopes 17
115-Weld silt loam, 0 to 3 percent slopes 19
119-Wiley silt loam, 3 to 5 percent slopes 21
Weld County, Colorado, Southern Part. 23
79-Weld loam, 1 to 3 percent slopes 23
83-Wiley-Colby complex, 3 to 5 percent slopes 24
References 27

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Larimer County Area, Colorado Survey Area Data: Version 16, Sep 2, 2021

Soil Survey Area: Weld County, Colorado, Southern Part Survey Area Data: Version 20, Aug 31, 2021

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

MAP LEGEND

MAP INFORMATION

Soil map units are labeled (as space allows) for map scales $1: 50,000$ or larger.

Date(s) aerial images were photographed: Aug 11, 2018—Aug 2, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Larimer County Area, Colorado

7-Ascalon sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2swl3
Elevation: 3,870 to 5,960 feet
Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 46 to 57 degrees F
Frost-free period: 135 to 160 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Ascalon and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Interfluves
Landform position (two-dimensional): Summit
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits

Typical profile

Ap-0 to 6 inches: sandy loam
Bt1-6 to 12 inches: sandy clay loam
Bt2-12 to 19 inches: sandy clay loam
Bk - 19 to 35 inches: sandy clay loam
C - 35 to 80 inches: sandy loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 7.7 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: B
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Minor Components
Olnest
Percent of map unit: 10 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No
Vona
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

8—Ascalon sandy loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2tInt
Elevation: 3,550 to 5,970 feet
Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 46 to 57 degrees F
Frost-free period: 135 to 160 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Ascalon and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Interfluves
Landform position (two-dimensional): Shoulder, summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits

Typical profile

Ap - 0 to 6 inches: sandy loam
Bt1-6 to 12 inches: sandy clay loam
Bt2 - 12 to 19 inches: sandy clay loam

Bk-19 to 35 inches: sandy clay loam
C-35 to 80 inches: sandy loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline (0.1 to 1.9 mmhos $/ \mathrm{cm}$)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 6.9 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: B
Ecological site: R067BY024CO - Sandy Plains, R072XY111KS - Sandy Plains
Hydric soil rating: No

Minor Components

Stoneham

Percent of map unit: 10 percent
Landform: Interfluves
Landform position (two-dimensional): Shoulder, summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains, R072XY100KS - Loamy Tableland
Hydric soil rating: No

Vona

Percent of map unit: 8 percent
Landform: Interfluves
Landform position (two-dimensional): Backslope, footslope, shoulder
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY024CO - Sandy Plains, R072XY111KS - Sandy Plains
Hydric soil rating: No

Platner

Percent of map unit: 2 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains, R072XY100KS - Loamy Tableland
Hydric soil rating: No

78-Otero sandy loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: jpxs
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Otero and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Otero

Setting

Landform: Fans
Landform position (three-dimensional): Base slope, side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium and/or eolian deposits

Typical profile

H1-0 to 15 inches: sandy loam
H2-15 to 60 inches: sandy loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to $4.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Moderate (about 6.3 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: A
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Minor Components

Ascalon

Percent of map unit: 5 percent
Ecological site: R067AY122WY - Loamy (Ly) 12-17" PZ
Hydric soil rating: No
Nelson
Percent of map unit: 5 percent
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No
Kim
Percent of map unit: 5 percent
Ecological site: R067BZ902CO - Loamy Plains
Hydric soil rating: No

79—Otero sandy loam, 5 to 9 percent slopes

Map Unit Setting

National map unit symbol: jpxt
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Not prime farmland

Map Unit Composition

Otero and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Otero

Setting

Landform: Fans
Landform position (three-dimensional): Base slope, side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium and/or eolian deposits

Typical profile

H1-0 to 14 inches: sandy loam
H2-14 to 60 inches: sandy loam
Properties and qualities
Slope: 5 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to $4.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Moderate (about 6.3 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 6 e
Hydrologic Soil Group: A
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Minor Components

Kim

Percent of map unit: 9 percent
Ecological site: R067BZ902CO - Loamy Plains
Hydric soil rating: No

Nelson

Percent of map unit: 6 percent
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Tassel

Percent of map unit: 5 percent
Ecological site: R067BY056CO - Sandstone Breaks
Hydric soil rating: No

102—Stoneham loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2x0j1
Elevation: 3,500 to 6,500 feet
Mean annual precipitation: 12 to 18 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 115 to 155 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Stoneham and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stoneham

Setting

Landform: Interfluves, low hills
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Mixed alluvial and/or eolian tertiary aged pedisediment

Typical profile

Ap-0 to 4 inches: loam
Bt - 4 to 9 inches: clay loam
Btk - 9 to 13 inches: clay loam
Bk1-13 to 18 inches: loam
Bk2-18 to 34 inches: loam
C - 34 to 80 inches: loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 12 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 0.5
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: C
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Minor Components

Satanta

Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Weld

Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit

Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Kimst

Percent of map unit: 5 percent
Landform: Low hills, interfluves
Landform position (two-dimensional): Backslope, shoulder
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

115—Weld silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: $2 x 0 h x$
Elevation: 3,600 to 6,000 feet
Mean annual precipitation: 12 to 18 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 115 to 155 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Weld and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Weld

Setting

Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous loess

Typical profile

Ap-0 to 3 inches: silt loam
Bt1-3 to 11 inches: silty clay
Bt2 - 11 to 15 inches: silty clay
Btk - 15 to 21 inches: silty clay
Bk-21 to 31 inches: silt loam
C - 31 to 80 inches: silt loam
Properties and qualities
Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 14 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water supply, 0 to 60 inches: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: C
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Minor Components

Colby
Percent of map unit: 7 percent
Landform: Hillslopes
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Keith

Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Adena

Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Rago, rarely flooded

Percent of map unit: 2 percent
Landform: Drainageways
Down-slope shape: Linear
Across-slope shape: Concave

Ecological site: R067BY036CO - Overflow
Hydric soil rating: No

Pleasant, ponded

Percent of map unit: 1 percent
Landform: Playas, closed depressions
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R067BY010CO - Closed Upland Depression
Hydric soil rating: Yes

119—Wiley silt loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: jpvf
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Wiley and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wiley

Setting

Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Uniform eolian deposits

Typical profile

H1-0 to 6 inches: silt loam
H2-6 to 15 inches: silt loam
H3-15 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Custom Soil Resource Report

Available water supply, 0 to 60 inches: High (about 11.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: R067BZ902CO - Loamy Plains
Hydric soil rating: No

Minor Components

Keith
Percent of map unit: 10 percent
Ecological site: R067BZ902CO - Loamy Plains
Hydric soil rating: No
Colby
Percent of map unit: 5 percent
Ecological site: R067BZ008CO - Loamy Slopes
Hydric soil rating: No

Weld County, Colorado, Southern Part

79-Weld loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2x0hw
Elevation: 3,600 to 5,750 feet
Mean annual precipitation: 12 to 17 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 115 to 155 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Weld and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Weld

Setting

Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous loess

Typical profile

Ap-0 to 8 inches: loam
Bt1-8 to 12 inches: clay
Bt2-12 to 15 inches: clay loam
Btk - 15 to 28 inches: loam
Bk - 28 to 60 inches: silt loam
C - 60 to 80 inches: silt loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 14 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Sodium adsorption ratio, maximum: 5.0
Available water supply, 0 to 60 inches: High (about 11.3 inches)
Interpretive groups
Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: C
Ecological site: R067BY002CO - Loamy Plains

Hydric soil rating: No

Minor Components

Adena

Percent of map unit: 8 percent
Landform: Interfluves
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Colby

Percent of map unit: 7 percent
Landform: Hillslopes
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Keith

Percent of map unit: 3 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No
Baca
Percent of map unit: 2 percent
Landform: Interfluves
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

83-Wiley-Colby complex, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3644
Elevation: 4,850 to 5,000 feet
Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 135 to 170 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Wiley and similar soils: 55 percent
Colby and similar soils: 30 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wiley

Setting

Landform: Plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous eolian deposits

Typical profile

H1-0 to 11 inches: silt loam
H2-11 to 60 inches: silty clay loam
H3-60 to 64 inches: silty clay loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Description of Colby

Setting

Landform: Plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous eolian deposits

Typical profile

H1-0 to 7 inches: loam
H2-7 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches

Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: High (about 10.6 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: R067BY002CO - Loamy Plains
Hydric soil rating: No

Minor Components

Heldt

Percent of map unit: 9 percent
Hydric soil rating: No

Weld

Percent of map unit: 6 percent
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETALLED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVALLABLE IN DIGITAL FORMAT AT HTTPS://MSC.FEMA.GOV		
SPECIAL FLOOD		Without Base Flood Elevation (BFE) With $B F E$ or Depth Zone $A E, A O, A H, V E, A R$ Regulatory Floodway
OTHER AREAS OF	$1 / 2$	0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1\% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee See Notes. Area with Flood Risk due to Levee Zone D
OTHER AREAS	NOSCREEN	Area of Minimal Flood Hazard Zone X Area of Undetermined Flood Hazard Zone D
GENERAL STRUCTURES		Channel, Culvert, or Storm Sewer Levee, Dike, or Floodwall
$\begin{gathered} \text { OTHER } \\ \text { FEATURES } \end{gathered}$		Cross Sections with 1\% Annual Chance Water Surface Elevation Coastal Transect Coastal Transect Baseline Profile Baseline Hydrographic Feature Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Buundary

NOTES TO USERS

 Cind

End

SCALE

NATIONAL FLOOD INSURANCE PROGRAM FLLOOD INULANCE RATE MAP
 FEMA

NOAA Atlas 14, Volume 8, Version 2
Location name: Johnstown, Colorado, USA*
Latitude: $\mathbf{4 0 . 3 5 2 9}^{\circ}$, Longitude: -104.9605 ${ }^{\circ}$
Elevation: 4936.4 ft** *

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{array}{r} \mathbf{0 . 2 4} \\ (0.186-0 \end{array}$	$\mathbf{0 . 2 8 7}$ $(0.223-0.371)$	$\begin{array}{c\|} \hline \mathbf{0 . 3 8 3} \\ (0.296-0.496) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{0 . 4 8 0} \\ (0.370-0.626) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{0 . 6 4 2} \\ (0.491-0.904) \\ \hline \end{array}$	0.788 $(0.582-1.12)$	$\begin{array}{\|c\|} \hline \mathbf{0 . 9 5 2} \\ (0.678-1.38) \\ \hline \hline \end{array}$	$\begin{gathered} 1.14 \\ (0.777-1.70) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.41 \\ (0.927-2.16) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.64 \\ (1.04-2.52) \\ \hline \end{gathered}$
10-m	$(0.273-0.453)$	(0.326-0.543	$(0.434-0.726)$	$(0.541-0.916)$	0.940 $(0.718-1.32)$	1.15 $(0.852-1.63)$	$\begin{array}{c\|} \hline 1.39 \\ (0.993-2.02) \\ \hline \end{array}$	$(1.14-2.49)$	$\begin{gathered} 2.07 \\ (1.36-3.17) \end{gathered}$	$\begin{gathered} 2.40 \\ (1.52-3.69) \\ \hline \end{gathered}$
15-	0.33	$(0.39$	$\begin{array}{r} 0 \\ (0.52 \\ \hline \end{array}$	$\begin{aligned} & 10.6 \\ & \hline \hline \end{aligned}$	(0.8	$\begin{array}{c\|} \hline 1.41 \\ (1.04-1.99) \\ \hline \hline \end{array}$	(1.2	$\begin{gathered} \hline \mathbf{2 . 0 3} \\ (1.39-3.03) \\ \hline \end{gathered}$	(1.66-3.86)	$\text { . } 50 \text {) }$
30-	$\begin{gathered} 0.571 \\ (0.444-0.737) \\ \hline \end{gathered}$	$(0.529-0.880)$	$\begin{gathered} 0.907 \\ (0.701-1.18) \\ \hline \end{gathered}$	$\begin{gathered} 1.14 \\ (0.875-1.48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (1.16-2.14) \end{gathered}$				$\begin{gathered} \hline 3.34 \\ (2.19-5.12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.89 \\ (2.46-5.96) \\ \hline \end{gathered}$
60	$\mathbf{0 . 7 0 7}$ $(0.550-0.913)$	$\begin{gathered} \hline \mathbf{0 . 8 3 4} \\ (0.648-1.08) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1.11 \\ (0.855-1.43) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.39 \\ (1.07-1.81) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.87 \\ (1.43-2.64) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 3 0} \\ (1.71-3.27 \\ \hline \end{gathered}$	$\begin{gathered} 2.80 \\ (2.00-4.07) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.37 \\ (2.30-5.03) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.21 \\ (2.77-6.46) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.92 \\ (3.12-7.54) \\ \hline \end{gathered}$
2-h	(0.662-1.	$(0.774-1.26)$	$\begin{gathered} 1.30 \\ (1.02-1.6 \end{gathered}$			(2.05-3.86)			$\begin{gathered} 5.08 \\ (3.37-7.70) \\ \hline \end{gathered}$	$\begin{gathered} 5.96 \\ (3.81-9.01) \\ \hline \end{gathered}$
3	$\begin{gathered} \hline 0.928 \\ (0.732-1.18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (0.849-1.37) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.41 \\ (1.11-1.80) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (1.39-2.27) \\ \hline \end{gathered}$						
6-	$\begin{gathered} 1.10 \\ (0.874-1.38) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (1.01-1.60) \\ \hline \end{gathered}$	$\begin{gathered} 1.65 \\ (1.31-2.08) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 0 6} \\ (1.62-2.61) \\ \hline \end{gathered}$	$\begin{gathered} 2.75 \\ (2.17-3.79) \\ \hline \end{gathered}$	$\begin{gathered} 3.40 \\ (2.58-4.68) \\ \hline \end{gathered}$	$(3.03-5.84)$	$\begin{gathered} 4.98 \\ (3.50-7.21) \\ \hline \end{gathered}$	$\begin{gathered} 6.24 \\ (4.21-9.26) \\ \hline \end{gathered}$	$\begin{gathered} 7.31 \\ (4.75-10.8) \\ \hline \end{gathered}$
12-h	$\begin{gathered} 1.29 \\ (1.04-1.60) \\ \hline \end{gathered}$	$\begin{gathered} 1.53 \\ (1.23-1.90) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 0 0} \\ (1.60-2.49) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 6} \\ (1.95-3.08) \\ \hline \end{gathered}$	$\begin{gathered} 3.19 \\ (2.51-4.27) \end{gathered}$				$\begin{gathered} 6.55 \\ (4.45-9.55) \end{gathered}$	$\begin{gathered} \hline 7.53 \\ (4.95-11.0) \\ \hline \end{gathered}$
24	$\begin{gathered} 1.55 \\ (1.26-1.91) \end{gathered}$	$\begin{gathered} 1.83 \\ (1.48-2.25) \end{gathered}$	$\begin{gathered} 2.35 \\ (1.89-2.89) \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 4} \\ (2.28-3.52) \end{gathered}$	$\begin{gathered} 3.61 \\ (2.85-4.74) \\ \hline \end{gathered}$	$\begin{gathered} 4.28 \\ (3.28-5.66) \end{gathered}$	$\begin{gathered} \hline 5.01 \\ (3.71-6.80) \\ \hline \end{gathered}$	$\begin{gathered} 5.81 \\ (4.14-8.11) \end{gathered}$	$\begin{array}{c\|} \hline 6.97 \\ (4.78-10.00) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 7.93 \\ (5.26-11.4) \\ \hline \end{array}$
2-day	$\begin{gathered} 1.80 \\ (1.47-2.18) \\ \hline \end{gathered}$	$\begin{gathered} 2.13 \\ (1.74-2.58) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 7 1} \\ (2.21-3.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.25 \\ (2.63-3.97) \\ \hline \end{gathered}$					$\begin{gathered} 7.37 \\ (5.10-10.4) \end{gathered}$	$\begin{array}{\|c\|} \hline 8.28 \\ (5.56-11.8) \\ \hline \end{array}$
3-da	$\begin{gathered} 1.96 \\ (1.61-2.36) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (1.88-2.77) \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 8} \\ (2.36-3.49) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (2.79-4.16) \\ \hline \end{gathered}$	$\begin{gathered} 4.24 \\ (3.38-5.42) \\ \hline \end{gathered}$	$\begin{gathered} 4.93 \\ (3.83-6.36) \\ \hline \end{gathered}$	$\begin{gathered} 5.67 \\ (4.26-7.50) \\ \hline \end{gathered}$	$\begin{gathered} 6.47 \\ (4.67-8.80) \\ \hline \end{gathered}$	$\begin{gathered} 7.61 \\ (5.29-10.6) \end{gathered}$	$\begin{array}{c\|} \hline 8.53 \\ (5.76-12.0) \\ \hline \end{array}$
4-day	$\begin{gathered} 2.09 \\ (1.72-2.50) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 2} \\ (2.00-2.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.03 \\ (2.49-3.65) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.58 \\ (2.92-4.33) \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline \hline \mathbf{5 . 1 0} \\ (3.97-6.54) \\ \hline \hline \end{array}$	$\begin{gathered} 5.84 \\ (4.41-7.69) \end{gathered}$	$\begin{gathered} 6.65 \\ (4.82-8.99) \\ \hline \end{gathered}$	$\begin{gathered} 7.79 \\ (5.44-10.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 8.71 \\ (5.91-12.2) \\ \hline \end{array}$
7-day	$\begin{gathered} \hline \mathbf{2 . 3 6} \\ (1.96-2.81) \end{gathered}$	$\begin{gathered} \mathbf{2 . 7 6} \\ (2.29-3.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.45 \\ (2.85-4.11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.05 \\ (3.33-4.85) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.93 \\ (3.95-6.15) \\ \hline \end{gathered}$	$\begin{gathered} 5.64 \\ (4.42-7.13) \end{gathered}$	$\begin{gathered} 6.39 \\ (4.85-8.28) \end{gathered}$	$\begin{gathered} 7.18 \\ (5.24-9.56) \end{gathered}$	$\begin{gathered} \hline 8.28 \\ (5.82-11.3) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.15 \\ (6.26-12.7) \\ \hline \end{array}$
10-day	$\begin{gathered} \hline \mathbf{2 . 6 1} \\ (2.18-3.08) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.06 \\ (2.55-3.62) \\ \hline \end{gathered}$	$\begin{gathered} 3.81 \\ (3.17-4.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.45 \\ (3.68-5.30) \\ \hline \end{gathered}$	$\begin{gathered} 5.37 \\ (4.31-6.62) \end{gathered}$	$\begin{array}{c\|} \hline 6.09 \\ (4.79-7.62) \\ \hline \hline \end{array}$		$\begin{gathered} 7.62 \\ (5.58-10.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.68 \\ (6.13-11.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.51 \\ (6.55-13.1) \\ \hline \end{array}$
20-day	$\begin{gathered} \hline 3.34 \\ (2.81-3.90) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.86 \\ (3.25-4.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.72 \\ (3.96-5.53) \\ \hline \end{gathered}$	$\begin{gathered} 5.44 \\ (4.54-6.40) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.43 \\ (5.20-7.79) \\ \hline \end{gathered}$	$\begin{gathered} 7.19 \\ (5.70-8.85) \\ \hline \end{gathered}$	$\begin{gathered} 7.96 \\ (6.11-10.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.74 \\ (6.46-11.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.78 \\ (6.97-13.0) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 10.6 \\ (7.36-14.3) \\ \hline \end{array}$
30-day	$\begin{gathered} \hline 3.92 \\ (3.32-4.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.51 \\ (3.82-5.23) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.46 \\ (4.61-6.35) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{6 . 2 4} \\ (5.24-7.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.31 \\ (5.94-8.78) \\ \hline \end{gathered}$	$\begin{gathered} 8.13 \\ (6.47-9.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.94 \\ (6.90-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 9.75 \\ (7.24-12.5) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (7.75-14.3) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 11.6 \\ (8.14-15.6) \\ \hline \end{array}$
45-day	$\begin{gathered} 4.61 \\ (3.93-5.31) \\ \hline \end{gathered}$	$\begin{gathered} 5.30 \\ (4.52-6.11) \\ \hline \end{gathered}$	$\begin{gathered} 6.41 \\ (5.44-7.41) \\ \hline \end{gathered}$	$\begin{gathered} 7.31 \\ (6.17-8.48) \\ \hline \end{gathered}$	$\begin{gathered} 8.51 \\ (6.95-10.1) \\ \hline \end{gathered}$	$\begin{gathered} 9.42 \\ (7.54-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (7.99-12.7) \\ \hline \end{gathered}$	$\begin{gathered} 11.2 \\ (8.35-14.2) \end{gathered}$	$\begin{gathered} 12.3 \\ (8.87-16.1) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 13.1 \\ (9.26-17.5) \\ \hline \end{array}$
60	$\begin{gathered} \mathbf{5 . 1 7} \\ (4.42-5.92) \\ \hline \end{gathered}$	$\begin{gathered} 5.97 \\ (5.11-6.85) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.24 \\ (6.17-8.33) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 8.26 \\ (7.01-9.54) \\ \hline \end{gathered}$	$\begin{gathered} 9.61 \\ (7.87-11.4) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 10.6 \\ (8.52-12.7) \\ \hline \hline \end{array}$	$\begin{gathered} 11.6 \\ (9.01-14.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.5 \\ (9.38-15.8) \\ \hline \end{gathered}$	$\begin{gathered} 13.7 \\ (9.91-17.8) \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ (10.3-19.3) \\ \hline \end{gathered}$
${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 40.3529°, Longitude: -104.9605°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
— 100
— 200
— 500
-1000

Duration	
	— ${ }^{2 \text {-day }}$ — 3 -day — 4 -day — 7 -day — 10 -day — 20 -day — 30 -day — 60 -day

NOAA Atlas 14, Volume 8, Version 2
Created (GMT): Thu Mar 24 21:06:30 2022
Back to Top
Maps \& aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center 1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

CONSULTANTS

PRELIMINARY DRAINAGE REPORT GREAT PLAINS VILLAGE JOHNSTOWN, COLORADO

Prepared for:
Platte Land and Water, lLC
201 University Blvd.
CONTACT: TIM WALSH

Prepared by:

CORE CONSULTANTS, INC.
1950 W. Littleton Boulevard, Suite 109
LITtLETON, CO 80120
PHONE: 303-703-4444
Contact: Kevin Rohrbough
CORE PRoject Number: 18-156

November, 2019

I. Description of Site

This site is approximately $+/-502.51$-acres and located at the east side of the intersection of the Interstate 25 Frontage Road and Larimer County Road 14 (Weld County Road 50) in Johnstown, Colorado. It is situated in Sections 35 and 36, Township 5 North, Range 68 West of the 6th Principal Meridian, Larimer County, Colorado and Section 2, Township 4 North, Range 68 West of the 6th Principal Meridian, in Larimer and Weld County, Colorado. The site is bound by Interstate 25 to the west and cultivated land to the north, south, and east; and by residential dwellings to the west and south.

The property will be zoned for Residential, Commercial, and Mixed-Use development and is currently undeveloped and used primarily for agricultural purposes with rotating ground cover of crops. This site is proposed to be developed for commercial, residential, retail, light industrial and office purposes. Improvements include buildings, roadways, parking lots, landscaping, and associated utilities. Multiple detention ponds will be provided throughout the site to control water quality and storm water release rates.

The site generally slopes from west to east at an approximate average grade of 2 percent. An array of irrigation swales and structures exist throughout the site and at locations along the site perimeter.

Soils within the site are included in Hydrologic Soil Groups A, B, and C. Soils maps for the site from the Natural Resources Conversation Service can be found in Appendix A.

The site is located outside of any existing FEMA mapped floodplains or floodways, see FIRM map located in Appendix A.

II. Description of Basins and Sub-Basins

Existing Drainage Basins

Per the Storm Water Master Plan for the Town of Johnstown, April 2001, prepared by TEC, the site falls within two (2) major basins, Twin Mounds and Elwell Basins, which both ultimately discharge to the Big Thompson River located north and east of the site. It is anticipated that runoff will be released to the north, following the existing drainage patterns for the site. See Appendix C for the excerpts from the Storm Water Master Plan, and Appendix D for Existing Drainage Map.

Proposed Drainage Basin

Although site planning is in the preliminary stage, 12 regional detention ponds are anticipated throughout the site to manage developed runoff. The ponds will provide full spectrum detention up to the 100 -year storm event. These locations are approximate and may be combined or additional ponds required based on final site configurations. Further stormwater infrastructure and detailed detention pond design will be included with each phase of the project.

The proposed detention ponds are anticipated to be connected via storm sewer system and conveyance channels. Flows will be discharged at or below the historical peak runoff to mitigate any
impacts to downstream properties. See Appendix B for pond calculations and Appendix D for Proposed Drainage Map.

Offsite flows will continue to be conveyed around the perimeter of the site via existing ditches and/or grass lined swales. These flows will be routed and discharged to maintain historic drainage patterns.

III. Drainage Design Criteria

Rational Method was utilized to determine the peak runoff for the 2-year and 100 -year storm events. These calculations and runoff summary table are included in Appendix B. Due to the preliminary nature of this project imperviousness was determined based on anticipated land use. Once site planning has advanced and land uses have been determined a Final Drainage Report will be prepared for the site during the Site Planning phase to provide further detail and accuracy.

Hydrology

Per the Town of Johnstown Storm Drainage Criteria, the Rational Method was utilized for runoff calculations.

$$
\mathrm{Q}=\mathrm{CIA}
$$

$Q=$ The peak rate of runoff (cfs)
C = Runoff coefficient
I = Average rainfall intensity (inches/hour)
A = Basin Area (ac)
A minimum time of concentration of 5 minutes is utilized for urbanized watersheds.

IV. DRAINAGE FACILITY DESIGN

Detention ponds were calculated and sized using the current Urban Drainage UD-Detention spreadsheet. See Appendix B for preliminary Pond Sizing Calculations.

Detailed onsite Stormwater design will be prepared during the Site Planning process of the project.

V. CONCLUSIONS

The preliminary design of drainage peak runoff and detention pond calculations has been prepared per the Urban Drainage and the Town of Johnstown Storm Drainage Criteria. All concepts are preliminary and will reduce peak runoff from the development to mitigate impacts to downstream property owners. This report presents general drainage concept for the development and further analysis of the site will be prepared as the land planning process progresses and more detailed land uses are identified.

PRELIMINARY DRAINAGE REPORT
GREAT PLAINS VILLAGE
JOHNSTOWN, COLORADO

VI. References

I. Town of Johnstown Storm Drainage Criteria, TST.
2. Town of Johnstown Storm Water Master Plan, TEC, April 2001.
3. Drainage Criteria Manual, Volumes I, 2, \& 3, Urban Drainage and Flood Control District, June 200I, Revised 2008.

GREAT PLAINS VILLAGE

```
CORE Project #: 18-156
Prepared By: DJB
```

COMPOSITE BASIN - WEIGHTED "C" CALCULATIONS - EXISTING CONDITIONS

GREAT PLAINS VILLAGE

CORE Project \#: 18-156

Prepared By: DJB

COMPOSITE DEVELOPED BASIN -WEIGHTED "C" CALCULATIONS - EXISTING CONDITIONS

-REFERENCE UDFCD Vol. 1 RUNOFF Table 6-4

$i=\%$ imperviousness/100 expressed as a decimal
$C_{A}=$ Runoff coefficient for NRCS HSG A soils
$\mathrm{C}_{\mathrm{B}}=$ Runoff coefficient for NRCS HSG B soils
$C_{C D}=$ Runoff coefficient for NRCS HSG C and D soils. Natural Resource Conservation Service (NRCS)

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS		Storm Return Period					
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
A	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.84 i^{1.302} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.86 i^{1.276} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.87 i^{1.232} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.88 i^{1.124} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.85 i+0.025 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.78 i+0.110 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.65 i+0.254 \end{aligned}$
B	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.84 i^{1.169} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.86 i^{1.088} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.81 i+0.057 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.63 i+0.249 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.56 i+0.328 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.47 i+0.426 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.37 i+0.536 \end{aligned}$
C/D	$\begin{aligned} & \mathrm{C}_{\mathrm{C} / \mathrm{D}}= \\ & 0.83 i^{1.122} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{CD}}= \\ & 0.82 i+0.035 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{CD}}= \\ & 0.74 i+0.132 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{C} D \mathrm{D}}= \\ & 0.56 i+0.319 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{CD}}= \\ & 0.49 i+0.393 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{C} / \mathrm{D}}= \\ & 0.41 i+0.484 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{C} D}= \\ & 0.32 i+0.588 \end{aligned}$

Basin ID	\% Imperv.	i	Soil Type	Runoff Coefficients, C				Basin Area	Total Area	Weighted Runoff Coefficients, C			
				2-Year	5-Year	10-Year	100-Year			2-Year	5-Year	10-Year	100-Year
EX-1	2.0\%	0.02	$\begin{gathered} \text { A } \\ \text { B } \\ C \text { or D } \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.07 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.44 \\ & 0.49 \\ & \hline \end{aligned}$	81.00	81.00	0.01	0.05	0.15	0.49
EX-2	2.0\%	0.02	$\begin{gathered} \mathrm{A} \\ \mathrm{~B} \\ \mathrm{C} \text { or } \mathrm{D} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & 0.07 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.44 \\ & 0.49 \\ & \hline \hline \end{aligned}$	57.60	57.60	0.01	0.05	0.15	0.49
EX-3	2.0\%	0.02	$\begin{gathered} \text { A } \\ \text { B } \\ C \text { or D } \end{gathered}$	$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.07 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.44 \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{gathered} 8.52 \\ 63.88 \\ 282.50 \\ \hline \end{gathered}$	354.90	0.01	0.04	0.13	0.47
EX-4	2.0\%	0.02	$\begin{gathered} \text { A } \\ \text { B } \\ C \text { or D } \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & 0.07 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.44 \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.05 \\ & 4.95 \\ & \hline \end{aligned}$	9.00	0.01	0.03	0.11	0.47
OS-1	20.0\%	0.20	$\begin{gathered} \text { A } \\ \text { B } \\ \text { C or D } \end{gathered}$	$\begin{aligned} & \hline 0.10 \\ & 0.13 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \hline 0.11 \\ & 0.15 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \hline 0.12 \\ & 0.22 \\ & 0.28 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.52 \\ & 0.57 \end{aligned}$	5.50	5.50	0.13	0.15	0.22	0.52
OS-2	10.0\%	0.10	$\begin{gathered} \text { A } \\ B \\ C \text { or } D \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.07 \\ & 0.12 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.14 \\ & 0.21 \end{aligned}$	$\begin{aligned} & \hline 0.19 \\ & 0.47 \\ & 0.53 \end{aligned}$	4.50	4.50	0.06	0.07	0.14	0.47

GREAT PLAINS VILLAGE

CORE Project \#: 18-156
Prepared By:
DJB

TIME OF CONCENTRATION CALCULATIONS - EXISTING CONDITIONS

-REFERENCE UDFCD Vol. 1 Section 2.4
NRCS Conveyance factors, K -REFERENCE UDFCD Vol. 1 RUNOFF Table 6-2

SF-2				Heavy Meadow		$\begin{aligned} & 2.50 \\ & 5.00 \end{aligned}$		ass Pastur Nearly	\& Lawn Ground	$\begin{array}{r} 7.00 \\ 10.00 \\ \hline \end{array}$	Grassed Waterway 15.00			
	SUB-BASIN			/ OVE TIME		$T(t)$						T(c) (URBANIZ	$\begin{aligned} & \text { HECK } \\ & \text { ED BASINS) } \end{aligned}$	FINAL T(c)
DRAIN BASIN	AREA ac.	C(5)	Length ft .	$\begin{gathered} \text { Slope } \\ \% \end{gathered}$	$\begin{aligned} & \hline T(i) \\ & \mathrm{min} \end{aligned}$	Length ft .	Slope \%	Coeff.	Velocity fps	$\begin{aligned} & \mathrm{T}(\mathrm{t}) \\ & \mathrm{min} . \end{aligned}$	$\begin{aligned} & \text { COMP. } \\ & \mathrm{T}(\mathrm{c}) \end{aligned}$	\% IMPERVIOUS	$\begin{aligned} & \text { USDCM } \\ & \text { Eq. 6-5 } \end{aligned}$	min.
EX-1	81.00	0.05	500	1.3	38.8	2630	1.6	7.00	0.9	49.5	88.3	2.0\%	63.0	63.0
EX-2	57.60	0.05	500	1.6	36.3	2140	1.5	7.00	0.9	41.6	77.9	2.0\%	57.0	57.0
EX-3	354.90	0.04	500	1.2	40.2	6870	1.5	7.00	0.9	133.6	173.7	2.0\%	126.4	126.4
EX-4	9.00	0.03	500	2.7	31.0	240	2.5	7.00	1.1	3.6	34.6	2.0\%	28.4	28.4
OS-1	5.50	0.15	400	2.0	27.3			7.00			27.3	20.0\%		27.3
OS-2	4.50	0.07	460	2.0	31.7			7.00			31.7	10.0\%		31.7

GREAT PLAINS VILLAGE

CORE Project \#:
18-156
Prepared By:
DJB

RATIONAL METHOD PEAK RUNOFF - EXISTING CONDITIONS

5-YR STORM

SF-3
-REFERENCE UDFCD Vol. 1 EQ 5-1 \& EQ 6-1

BASIN INFORMATON				DIRECT RUNOFF				TOTAL RUNOFF				
DESIGN POINT	DRAIN BASIN	AREA ac.	5yr RUNOFF COEFF	$\begin{aligned} & \mathrm{T}(\mathrm{c}) \\ & \mathrm{min} \end{aligned}$	C×A	$\begin{gathered} \mathrm{I} \\ \mathrm{in} / \mathrm{hr} \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{cfs} \end{gathered}$	T(c) min	$\begin{aligned} & \text { SUM } \\ & C \times A \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{in} / \mathrm{hr} \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{cfs} \end{gathered}$	REMARKS
1	EX-1	81.00	0.05	63.0	4.16	1.08	4.5					
2	EX-2	57.60	0.05	57.0	2.96	1.15	3.4					
3	EX-3	354.90	0.04	126.4	15.35	0.66	10.1					
4	EX-4	9.00	0.03	28.4	0.30	1.78	0.5					
5	OS-1	5.50	0.15	27.3	0.82	1.82	1.5					
6	OS-2	4.50	0.07	31.7	0.32	1.67	0.5					

GREAT PLAINS VILLAGE

CORE Project \#:
18-156

Prepared By:
DJB

RATIONAL METHOD PEAK RUNOFF - EXISTING CONDITIONS

100-YR STORM
SF-3
-REFERENCE UDFCD Vol. 1 EQ 5-1 \& EQ 6-1

BASIN INFORMATON				DIRECT RUNOFF				TOTAL RUNOFF				
DESIGN POINT	DRAIN BASIN	AREA ac.	100yr RUNOFF COEFF	$\begin{aligned} & \mathrm{T}(\mathrm{c}) \\ & \mathrm{min} \end{aligned}$	C×A	$\begin{gathered} \mathrm{I} \\ \mathrm{in} / \mathrm{hr} \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{cfs} \end{gathered}$	T(c) min	$\begin{aligned} & \text { SUM } \\ & C \times A \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{in} / \mathrm{hr} \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{cfs} \end{gathered}$	REMARKS
1	EX-1	81.00	0.49	63.0	39.87	2.75	109.5					
2	EX-2	57.60	0.49	57.0	28.35	2.94	83.3					
3	EX-3	354.90	0.47	126.4	167.93	1.68	282.3					
4	EX-4	9.00	0.47	28.4	4.20	4.55	19.1					
5	OS-1	5.50	0.52	27.3	2.86	4.66	13.3					
6	OS-2	4.50	0.47	31.7	2.13	4.27	9.1					

RUNOFF SUMMARY TABLE - EXISTING CONDITIONS						
DESIGN POINT	BASIN	AREA (AC)	2-YEAR RUNOFF (CFS)	5-YEAR RUNOFF (CFS)	10-YEAR RUNOFF (CFS)	100-YEAR RUNOFF (CFS)
1	EX-I	81.00	0.7	4.5	16.2	109.5
2	EX-2	57.60	0.5	3.4	12.3	83.3
3	EX-3	354.90	1.7	10.1	38.4	282.3
4	EX-4	9.00	0.1	0.5	2.3	19.1
5	OS-1	5.50	1.0	1.5	2.8	13.3
6	OS-2	4.50	0.3	0.5	1.3	9.1

STORM WATER MASTER PLAN

FOR THE
TOWN OF JOHNSTOWN
APRIL 2001

Johnstown to require storm water BMPs (best management practices) in the future in case the EPA regulations become applicable, or the State or county governments require them.

As Johnstown makes the transition from farm community to urban community, inevitably there will be cases where residential developments are built downstream of agricultural operations such as feedlots. Feedlots and other similar operations are regulated by the Environmental Protection Agency, but conflicts may occur.

D. Major Drainage Basins

The study area has been divided into six major drainage basins. Each basin has in turn been divided up into a number of sub-basins. Many of these sub-basins were defined based on drainage reports submitted to the Town by developers. Typically existing geographic features define drainage basins. Where the sub-basins in the drainage reports were based on geography, we incorporated them into the study to allow comparison of results.

Within each major basin, one or more major drainage ways have been defined. The major drainage ways are intended to be corridors into which new development will discharge storm water from their respective detention ponds or other approved facilities. Each drainage way defined in this master plan has associated with it allowable flows, based on the 5-year and 100-year storms. When a parcel of land containing a portion of one of these drainage ways is developed, the developer will be required to set aside an appropriate corridor of right-of-way or easement for the drainage way. In all cases, the major basins are defined based on existing natural topography. In most cases, the drainage ways defined herein are based on existing drainage patterns. Some exceptions have been made where, for example, land planning operations by farmers have obscured natural drainage channels. In such cases, the ultimate alignment of the drainage way may depend in part on land uses proposed by the respective developers. Wherever possible the drainage ways have been aligned on existing sloughs, streambeds, or channels. In those cases where developers wish to redirect flow from one basin to another by grading of the property, they should be required to mitigate the flows to the release rates given in this master plan.

1. Old Town Basin

Of the six major basins, this is the only one that had significant development prior to 1990 . Unlike the other basins, the Baseline Model (see Section III, Drainage Model) for this basin is a mix of pre- and post-development conditions. Old Town Basin is 3,509 acres (5.5 square miles) in area. It drains to both the Little and Big Thompson Rivers, and therefore could have been split into two major basins. However, this would have meant splitting the town in two. It is more relevant that the majority of the basin drains first into the Hillsborough Ditch. Most of the recommendations made in this report regarding this basin address how to pass water across the ditch prior to any discharge to a river.

2. Pulliam Basin

Pulliam Basin lies mostly south of Highway 60, and drains southeasterly to the Little Thompson River. It is 1,695 acres (2.6 square miles) in area. Two drainage ways are proposed for this basin. The first would extend from a point along Highway 60 near the west end of Johnstown Reservoir, southeast in an existing slough to the Little Thompson River. The slough becomes very well defined south of the railroad embankment, crossing WCR 46 via a bridge. The slough crosses the Hillsborough Ditch near the river. The ditch has an existing overflow structure very near to this crossing, and therefore an additional structure would likely not be necessary.

The other major drainage way proposed for this basin would closely parallel WCR 15 on the west side. Existing storm water flows appear to run southeast from the intersection of WCRs 15 and 46, but there is not a defined slough. Therefore it may make more sense to follow WCR 15 all the way to the Little Thompson River. Regardless, establishment of a major drainage way will result in drainage reaching the ditch at a point of concentration, where in the past it has likely entered the ditch as a distributed flow. At the point where this major drainage way crosses the ditch, the downstream bank of the ditch should be protected at minimum with a riprap blanket.

4. Elwell Basin

Elwell Basin begins approximately one mile west of I-25, and extends east and then northeast to the Big Thompson River. It includes many of the existing and proposed developments along the north side of Highway 60. It is 3,140 acres (4.9 acres) in size.

Several detention facilities have been designed for the various subdivisions proposed in this basin. Gateway Center, Carlson Farms, and Potburg Village all contain detention ponds. The pond in Potburg Village appears to outfall to the Rolling Hills subdivision. Rolling Hills has not yet constructed any storm water detention at this time for the portion of the development tributary to this basin (Several small ponds have been constructed for the portion tributary to Old Town Basin). Runoff currently discharges off the end of Rolling Hills Parkway into the adjacent field. Drainage discharged to this field ultimately makes its way to the Big Thompson River, after having crossed the Hillsborough Ditch. There is not a well-defined slough leaving the Rolling Hills property to the north. However, storm water detention should be required for the remainder of Rolling Hills, as it should for all properties lying above the Hillsborough Ditch. For Rolling Hills plans are to construct a basin prior to discharge off-site to the north.

The detention pond in Carlson Farms outfalls into a swale that has been constructed to an existing slough (Thornton Draw), approximately 900 feet north of the property. The slough crosses the Hillsborough Ditch before reaching the Big Thompson River. This slough is the major drainage way for Elwell Basin. The discharge during the 100-year storm from the detention pond in Carlson Farms is well in excess of the capacity of the Hillsborough Ditch. Though the Ditch Company has an turnout structure just

ELWELL BASIN

Exhibit 6

Legend	
\square - Basin Boundary	(310) - Subatahment
\square - Subdivisions	[310 - Subatohment Channel
=- Drainageways	(5100)-Detention Element
\square - Johnstown Stormwater Basins	成- Concentration Point

downstream of where the slough crosses the ditch, its capacity is only about 34 cfs . The existing slough can, in the major storm, see a considerable flow of storm water. Weld County has recently constructed two new bridges across this slough, one on WCR 13, and one on WCR 50. The original culvert under WCR 50, and the flows tributary to it, was one of the subjects of the study by Chang and Associates for Weld County. The Chang study calculated a 100 -year flow of $1,483 \mathrm{cfs}$ at WCR 50 . This is a significantly higher figure than the 534 cfs given in our model. This is due to the application of significantly different methodologies, as well as different goals. Chang used HEC-1 and TR-55, which are programs developed by the U.S. Government to determine maximum flows for the purpose of designing dams and other flood control structures. The Chang study also used a storm duration of 24 hours, with a total storm depth of 5 inches, whereas we have based our analysis on a storm duration of 2 hours, which is the standard for urban drainage design, and a total storm depth of 3.01 inches. Finally, in the method used by Chang the peak rainfall doesn't occur until several hours into the storm, after the ground is saturated. In the two-hour storm typically used in urban drainage design, the peak rainfall occurs early in the storm, when the ground still has significant potential for absorbing water.

5. Twin Mounds Basin

Twin Mounds Basin is almost completely undeveloped at this time. The basin is 1,853 acres (2.9 square miles) in area, and lies almost entirely to the north of WCR 50. The basin extends from a point about one-half mile west of I- 25 , and drains to the Big Thompson River.

One major drainage way has been defined for this basin. An existing slough becomes well-defined west of WCR 13, and crosses that road and WCR 52 via 48 -inch culverts. Just downstream of the point where the slough crosses WCR 52, it crosses the Hillsborough Ditch. There is believed to be a ditch overflow structure near this point. According to the USGS map, there is a pond located near this location on the slough.

6. Johnson's Corner Basin

Johnson's Corner Basin is 2,137 acres (3.3 square miles) in area, and in its upper reach extends nearly one mile southwest of Johnson's Corner, or about one-half mile west of I-25. Like Twin Mounds Basin, this basin is largely undeveloped, and also drains to the Big Thompson River.

One major drainage way has been defined for this basin. Beginning with a 36 "x 48 " culvert under I- 25 , an existing slough extends northeast to the Big Thompson River. The slough crosses the Hillsborough Ditch at a point just west of WCR 13, and just south of SH 402. The ditch has an overflow structure at this point, which discharges into the slough.

TWIN MOUNDS BASIN

Bunyan Basin	2,829	acres
Elwell Basin	3,140	acres
Johnson's Corner Basin	2,137	acres
Old Town Basin	3,509	acres
Pulliam Basin	1,695	acres
Twin Mounds Basin	1,853	acres
Total	15,163	acres (23.7 sq. miles)

Table III-1 - Major Basin Areas

The Old Town Basin incorporates the original basin layout described in the M\&I report (Basins A-J), but has been expanded to include the area bounded by the two rivers to the north, south and east, and County Road 13 to the west. For the Baseline Model, only the development in and around Old Johnstown that existed prior to 1990 is included. For the rest of the study area, pre-development conditions are assumed.

B. Rainfall Analysis

No two rainstorms are the same. Nevertheless, it is necessary to establish a conceptual "design storm" for which drainage plans and facilities are designed. In Colorado, the type of storm that produces heavy runoff is typically short in duration, with intense rainfall early in the storm. Common practice along the Front Range of Colorado is to use a design storm that is two hours in duration, with the assumed rainfall depth based on a "return period." The return period of a storm refers to the probability that a storm of that magnitude might occur in a given year. For example, a storm with a return period of two years (a 2-year storm) has a probability of 1 in 2 of occurring in any given year. The 100 -year storm has a 1 in 100 chance of occurring in any given year. This does not guarantee that two 100-year storms couldn't occur in the same summer. Nature is unpredictable. But the odds are 100 to 1 against it happening in any given year.

The expected rainfall depths for various design storms are based on measurements of actual storms, and statistical analysis of those measurements. This work has been performed by NOAA (National Oceanic and Atmospheric Administration), and compiled in their "Precipitation-Frequency Atlas of the Western U.S., Atlas 2, Vol. 3 - Colorado." The Atlas estimates rainfall depths for storms of six and 24 hours in duration. The Atlas also has formulas for extrapolating rainfall depths for storms of shorter duration. The table below gives the rainfall depths given in the Atlas for the study area, along with the calculated values storms of two hours in duration.
below gives the Horton parameters used for each soil group, along with the other hydrologic parameters used in the model.

Soil Type	Initial Infiltration Rate (in/hr)	Final Infiltration Rate (in/hr)	Decay Rate $(1 / \mathbf{s e c})$
A	7.5	0.38	0.00115
B	4.5	0.23	0.00115
C	2	0.1	0.00115
D	2	0.025	0.00115

Table III-3 - Horton Infiltration Parameters

Basin slopes were calculated from USGS topographical maps, as were basin areas and channel lengths. Physical surveys were not conducted as part of this study.

D. Model Calibration

One of the primary purposes of the Baseline Model is to determine allowable release rates from detention ponds constructed in new housing and commercial developments. To ensure that the results generated by the model are reasonable and accurate, some kind of calibration is required. Calibration is, essentially, the practice of comparing model results with some expected results, and adjusting the model accordingly. Our expectation for the Johnstown area is that runoff rates would be low, compared to most urban systems along the Front Range. There are two reasons for this. The first is that the Soil Conservation Service classifies most soil types in the Johnstown area as Group B. As discussed above, Group B soils readily infiltrate, or absorb, water. Soils closer to the foothills typically have a higher clay content, and therefore they generate more runoff.

The other reason for expecting relatively low runoff rates relates to our definition of the historic condition. Virtually all the undeveloped land in the study area is ground that is currently being farmed, or has been farmed in the recent past. Cultivated ground is conditioned by the plow to absorb as much of the natural rainfall as possible. The top few inches of cultivated soil will have much lower compaction than undisturbed grassland. Low compaction results in much greater void space in the soil in which water can be absorbed and stored.

The model has incorporated within it the characteristics of cultivated farmland, in an effort to produce a physically-based model of each basin. These characteristics include infiltration, surface storage, overland flow characteristics, percent impervious, and numerous other criteria. To calibrate the model, several approaches were considered. We compared our results to the results of the study by Combs and Swift. However, they calibrated their model to a discharge of 1.0 to 1.2 cfs per acre, numbers derived from the UDFCD, and we did not feel that such numbers were representative of the Johnstown area for the reasons discussed above. After inputting the same surface detention (0.3") and percent impervious (40) for Old

Johnstown, our results for that portion of the study area were nearly identical with those in the M\&I report. We finally applied the Rational Method to the catchments in the Twin Mounds basin, and compared our results. The Rational Method incorporates soil parameters, runoff slopes, and other basin characteristics, just as SWMM does, but using completely different sets of calculations. It thus represents a method of generating results completely independent of SWMM. Good correlation was found between the two methods. Twin Mounds basin contains soil types A, B and C in the approximate proportions found throughout the study area. We felt it to be the most representative basin, and therefore the entire model was calibrated based on the calibration of the Twin Mounds Basin model to the Rational Method results.

E. Historic Runoff

The calculated historic runoff for the six major basins are given in the exhibits in Section II of this report, for each sub-basin. The peak runoff rates are for "pre-development" conditions as discussed above, except for Old Town where we have assumed an interim condition dating to approximately the same time as the M\&I study. Peak runoff rates are for the 5 -year and the 100 -year storms. The tables printed on the exhibits also show the 5-year and 100-year runoff rates for current conditions.

The Baseline Drainage Model is a tool to establish allowable release rates from previously undeveloped properties. However, the Town has approved several residential and commercial developments within Johnstown in recent years. To gage the effect of these new developments, another version of the drainage model was constructed to analyze the "as is" condition. The purpose was to any identify current drainage problems, and to generate potential solutions. Town staff had identified some existing problems, and this information was compiled and used to verify model output. It was necessary to determine the conditions that exist now (or in the very near future) in order to identify what the most urgent needs are for the Town.

F. Modeling Assumptions

As discussed previously, a variety of methods were applied by various developers' engineers in determining detention storage, release rates, and other design elements for each new subdivision. It would be extremely difficult, if not impossible, to duplicate all these individual analyses in one model. Therefore, we have assumed that residential developments will increase the impervious area from 7.5% (used for undeveloped land) to 40%. Detention ponds known to exist, or that are under construction, have been added to the developed models. The models were then run with the developed conditions, and resultant flows at critical points generated for the 5-year and 100-year storms.
overchutes could also be used. However, they would be considerably more expensive to construct, and they would have to be somehow designed to allow low flows to enter the ditch. In general the principle to follow should be to mitigate the impacts of development only, and not to try and protect the ditch from all acts of nature.

The standard to which downstream improvements should be held would be dependent on whether they lay within the corporate limits of Johnstown, outside the corporate limits but within the urban growth boundary, or within Larimer or Weld County jurisdiction. Within the corporate limits, drainage is typically conveyed by the combination of storm drains, and curb and gutter. Development occurring within the corporate limits might be required to construct off-site road improvements, or at least participate in their cost, to convey drainage. This is likewise true of areas proposed for annexation. Where drainage ways cross roads under county jurisdiction, development need not upgrade the crossing to Johnstown street standards. As long as the county were to maintain the culvert or bridge, their standards would apply. However, in those cases where the road would eventually be transferred to Johnstown's jurisdiction, then Johnstown's street standards would apply.

As we have stated above, development should pay its own way. In the worst case scenario, this policy may require a developer to acquire drainage easements for two or three miles downstream of his/her property, and to improve the ditch bank at the point where drainage crosses the ditch. It is almost certain that the drainage easements will be along a proposed major drainage way, and downstream property owners should be willing to grant easements. They would be motivated to do so if they plan to develop their property in the future. In any case, if it is an existing drainage slough, then it is an existing path of flow. Under this master plan the downstream property owners would know that eventually the easements would be requested. If the developer is unable to get all the required easements, then the Town may wish to become involved in negotiating easements.

Some drainage improvements are proposed in this report to correct existing problems. The Town would construct these capital projects. Nearly all of them are located in the Old Town Basin. Certain other projects may place a disproportionate burden on developers, such as where the required drainage improvements would ultimately serve multiple developments. In this case the Town may choose to participate in the cost of such improvements, with the intention of gaining reimbursements from future developers. Johnstown will need to be flexible in how it approaches raising and spending revenues of its proposed storm water utility. It should also be recognized that even for those developments that have constructed adequate storm water management systems, the Town will be responsible for ongoing operation and maintenance of those systems. Property assessments by the storm water utility must cover the costs not only of capital projects, but operation and maintenance for the entire system.

A. Design Storms

During this study we made a choice to use the 5 -year storm as the "minor" storm, and the 100 -year storm as the "major" storm. The 100 -year storm is the regional standard for urban drainage design. The 100-
year storm represents an event that is unlikely in any given year, but within the realm of possibility. At any given location, the likelihood that the 100 -year storm will occur during a 40 -year period is one in three.

The definition of the minor storm is not as universal along the Front Range of Colorado. Depending on the jurisdiction, the minor storm may be the $2-$, 5 - or 10 -year storm. Some jurisdictions require the storm water collection system to be designed for the 2-year storm, and storm water detention ponds to be designed for the 10-year storm. UDFCD uses the 2-year storm for residential areas, and the 5-year storm for high-value commercial areas and public buildings.

The major and minor storms relate to the initial and major drainage systems. The initial drainage system is intended to collect storm water from the minor storm. It includes all curbs and gutters, swales, and any storm drains. The initial drainage system should be able to collect and convey storm water, without allowing excessive depth of water in streets, and without causing any property damage. The allowable depth of water in streets during the minor storm may depend on the street. During the 100 -year storm, major thoroughfares must still be able to pass traffic each way, whereas local residential streets may need only to allow access to emergency vehicles. During the major storm, all storm drains are likely to be running full or even surcharged, and the major drainage system will need to carry the rest of the storm water. This would likely require greater depth of flow in all streets, but flowing water should still be contained within street rights-of-way. Overflow channels or other conveyances may be needed to route storm water away from private property.

We propose to use the 5-year storm as the minor storm in Johnstown's drainage criteria. This will afford a higher degree of protection than would be provided by using the 2-year storm, with a moderate impact on costs. Most such costs will be borne by developers in the form of slightly larger pipe sizes in on-site storm drain systems, and/or more storm drain piping. For the Town, it will impact certain capital improvement projects slightly. For example, a storm drain serving the downtown area might be six inches larger in diameter than what would be required for a 2-year storm. However, commercial areas are typically designed for the 5-year storm in most jurisdictions.

B. Detention Ponds and Release Rates

In modeling the six major drainage basins, historic release rates were calculated for each basin, sub-basin and catchment, for the entire study area (see appendices). This data was then used to generate a weighted average historic release rate per acre for each basin. For the Old Town Basin, only the undeveloped portions of the basin were used to generate the allowable release rate per acre for that basin. Release rates are by soil type, similar to table 3-2 of the Urban Drainage and Flood Control District Design Criteria Manual. In some basins, not all soil types were found in significant extent. In such cases a weighted average from the other basins with that soil type was used. Developers should be required to provide detention volume sufficient to contain the difference between the storm runoff prior to development, and
the developed runoff. The rate of release from all detention ponds should not be allowed to exceed the values given in the table below, either during or immediately after the storm event.

	Soil Group			
Control Frequency	A	B	C	D
5-year				
Bunyan	0.31	0.33	0.34	0.35
Elwell	0.30	0.31	0.32	0.35
Johnson's Corner	0.31	0.33	0.33	0.35
Old Town	0.37	0.37	0.40	0.42
Pulliam	0.35	0.35	0.37	0.42
Twin Mounds	0.36	0.36	0.36	0.37
\quad				
100-year				
Bunyan	0.7	0.81	0.93	0.97
Elwell	0.7	0.72	0.93	1.00
Johnson's Corner	0.7	0.76	0.77	1.00
Old Town	0.69	0.81	1.20	1.00
Pulliam	0.69	0.79	0.93	1.17
Twin Mounds	0.7	0.77	0.91	1.00

Table IV-1 - Allowable Release Rates, cfs/acre

We recommend that the Town adopt a variable detention policy. Such a policy is based on the principle that if a property is on a major drainage way and close to a major waterway (the Little or Big Thompson Rivers), peak flows in the major drainage way may actually be reduced by allowing discharge of storm water without detention. This is because runoff from catchments high up in the basin may not reach the outfall until long after the peak of the storm. If catchments near the bottom of the basin are allowed to discharge immediately, they will be done discharging before the runoff from the upper basins reaches the outfall. No developments above the Hillsborough Ditch would be qualified for any reduction in required detention.

In general, any development whose storm water discharge enters the Hillsborough Ditch (or any other ditch, for that matter) should be required to detain storm water. An exception could be made if the developer constructs a siphon or overchute to cross the ditch. The developer would then also need to make improvements to the downstream channel to ensure that it could carry the undetained flows, accounting for all other discharges to that channel. Any requests for variances from the Town's storm water detention policy should be considered on a case-by-case basis to ensure that downstream property owners would not be adversely affected, and to ensure adherence to good engineering practice.

All drainage systems and detention ponds should allow for the maintenance of low flows, which are essential to sustain wetlands. Some developers may propose combination detention/retention ponds. In
addition to detaining storm water flows, these structures maintain permanent pools. Such facilities may impact downstream water rights. Prior to approval by the Town of any facility that may impound water, the developer should be required to get approval of the facility from the State Engineer's Office.

C. Water Quality

As previously discussed, we recommend that the Town enforce some kind of water quality requirements for storm water runoff from urbanized basins. A variety of methods exist, called BMPs (best management practices), and developers can be given the option to choose among them. Typically the most practical method, especially for smaller (less than 160 acres) developments, is to oversize detention ponds slightly so that they provide extended detention for the "first washoff" of storm water. Outlet structures are designed so that the runoff generated by the average afternoon thunderstorm drains very slowly from the detention pond, allowing pollutants to settle out prior to discharge to the receiving waterway. This practice would also provide an additional buffer to mitigate flooding of the Hillsborough Ditch during the minor storm. Other BMPs include constructed wetlands, which can double as an amenity. We recommend that the Town adopt Volume 3 of the Urban Drainage and Flood Control District Drainage Criteria Manual, which includes detailed descriptions and design procedures for water quality BMPs.

D. Major Drainage Ways

Drainage ways were defined earlier in this report for each Major Basin. Regardless of the policies adopted by the Town, during a major storm the water will flow into existing channels, just as it has always done. By identifying these drainage ways in this master plan, and requiring new developments to incorporate them into their land use plans, the Town ensures that the water will always have a place to go.

The drainage ways also provide the opportunity for development of natural corridors. We propose that the width of these drainage ways be 100 feet at a minimum, and greater if warranted by existing topography, expected storm water flows, or other considerations. They can incorporate trail systems and other amenities, act as wildlife corridors, and in general add to the quality of life in Johnstown. When a parcel of land containing a portion of a drainage way applies for annexation and proposes development, the developer should be required to dedicate the drainage way as permanent easement to the Town.

Developers will likely appreciate this arrangement. The amenity provided by a natural corridor would be a good selling point. Existing Federal law would require any existing wetlands to be preserved in any case. Potential developers would also have more guidance as to where they can discharge drainage.

The proposed major drainage ways in the Bunyan, Johnson's Corner and Twin Mounds basins incorporate existing well-defined channels. Only at the very bottom of each basin, just before the channels reach the Little Thompson River in the case of the Bunyan Basin, and the Big Thompson River
for the other two basins, do the established channels lose definition. This is due to farming practices, the effect of the ditch in intercepting low flows, and the natural topography of the river terraces. We have already recommended within this report that a spill structure should be built in Bunyan Basin on the downstream bank of the ditch where the existing channel crosses the ditch. In conjunction with this work, a channel should be established to carry water to the Little Thompson River. Alignment of this channel should be coordinated with the property owner that will be affected, so as not to interfere unduly with agricultural operations. Likewise, as development occurs in the Johnson's Corner and Twin Mounds basins, the developers should be required to construct similar facilities in those basins.

Elwell Basin has two proposed major drainage ways, one of which is an existing channel. The existing channel extends roughly four miles, from Gateway Center down to the Big Thompson River. It is into this channel that we propose to divert flow via a spillway structure. This structure (discussed further in the Recommendations Section) would be located just west of Weld County Road 15, and north of Weld County Road 50. The other major drainage way proposed for this basin is well-defined above the ditch, but not at all defined below the ditch. Without an existing path of flow to the Big Thompson River, could easily be made to follow roadway alignments. The northernmost drainage way for Old Town Basin is also lacking an existing channel, and it would be possible to route the flows from the two drainage ways to a shared channel.

The proposed major drainage way in the northeastern portion of Old Town would primarily serve Sunrise Ridge (including the Knolls), and the eastern two-thirds of Rolling Hills. Given the existing detention pond within Sunrise Ridge, and the proposed ditch spillway structure upstream of this point, a major drainage way may not be required west of Weld County Road 17. East of WCR 17 there appears to be an existing path of flow, but until this land is developed there may not be any need to dedicated a major drainage way.

As discussed previously, of the two major drainage ways proposed for Pulliam Basin, the eastern one is not based on a defined channel, and could therefore be aligned along county roads to minimize impacts on existing land uses.

E. Roadways and Streets

Streets and roadways are an essential element of the storm water collection system. Johnstown currently uses the City of Greeley streets standards for new construction. We recommend that the Town formally adopt these standards for all new construction.

APPENDIX D

Preliminary Drainage Map

