Lake Hills Main Blvd. & Mass Grading

Lift Station Report

Prepared by:

Madden, Moorhead and Stokes, LLC. 431 East Horatio Avenue, Suite 260 Maitland, FL 32751 (407) 629-8330

> Digitally signed by David A Stokes Date: 2024.11.07 13:52:55 -05'00'

David A. Stokes, P.E. #66527 Certificate of Authorization No. EB-0007723

Documents included herein which have been prepared by professionals other than Madden, Moorhead, and Stokes, Inc. are not covered under the above registered engineer's signature and seal

November, 2024

Appendices

- A Lift Station Design Calculations
- B Lift Station Pump Data

LIFT STATION ANALYSIS/FORCE MAIN

The proposed development Lake Hills Main Blvd & Mass Grading consists of a spine road for future development. The future development consists of +/-560 senior living homes. The project will have a gravity collection system, which will connect to 1 lift station. Lift Station 1 is in the center of the site along the spine road. Lift Station 1 is designed to serve the future senior living homes and the future commercial development part of the PUD plan. Lift Station 1 has an average daily flow is 98,700 GPD and the peak hourly flow is 274 GPM.

The force main tie-in location is an existing force main stub located along a maintenance road within the Silver Springs Mission Inn Parcel that connects to the Sewer & Water Plant Investments, LLC parcel. The force main is owned and maintained by the Central Lake Community Development District. The lift station calculations are in Appendix A. The force main velocity calculations are in Appendix A, showing the minimum velocity of 2ft/sec is achieved. A Flygt pump was picked for the Lift Station. The pump curve with operating condition noted is in Appendix B along with other pump information. Lift Station 1 operates at 302 GPM at 61.1 feet TDH.

DEMAND SUMMARY AND CAPACITY ANALYSIS

ADF	Average Daily Flow:	(558 units) x (150 GPD/unit) + (150,000sf) x (0.1GPD/sf)
		= 98,700 GPD = 68.54 GPM
PHF	Peak Hourly Flow:	ADF x $4 = 274.17$ GPM

Pipe Diameter		⁽¹⁾ Manning's Number, n	Area, A ⁽²⁾ Hydraulic [SF] Radius, R _h	⁽²⁾ Hydraulic Radius, R _h	⁽³⁾ Slope, S [FT/FT]	Pipe Capacity Flowing Full, Q		⁽⁴⁾ Pipe Capacity at 75% Full [GPM]	
[IN]	[FT]	Number, n	[51]	Kaulus, Kh	[F 1/F 1]	[CFS] [GPM]			
8	0.67	0.012	0.349	0.167	0.0028	0.69	310.9	255.2	
10	0.83	0.012	0.545	0.208	0.0021	1.09	488.2	400.8	
12	1.00	0.012	0.785	0.250	0.0017	1.59	714.2	586.4	
15	1.25	0.012	1.227	0.313	0.0012	2.42	1,088.0	893.2	

Gravity sewer capacity is given by $Q = (1.486/n)AR_{h}^{2/3}S^{1/2}$

Notes:

(1) Manning's n is 0.013 for PVC pipes

(2) Hydraulic Radius, R = D/4 for full-flowing pipes

(3) Minimum constructed slopes

(4) Gravity sewers shall be designed at no more than 75% full at peak flow.

(5) Per Civil Engineering Reference Manual Appendix 19.C, when d/D = 0.75, then $Q/Q_{full} = 0.82$

APPENDIX A

Lift Station 1 Design Calculations

LIFT STATION CALCULATIONS

Lake Hills

Lift Station #1

Located near Sta. 62+00

DESIGN FLOW RATE CALCULATION:

Units	558 units
Average daily flow per unit	150 gpd/unit
Units (Commercial)	150000 sf
Average daily flow per sf	0.1 gpd/sf
Total average daily flow	98,700 gpd
Peak factor	4
Peak inflow	274.17 gpm

WET WELL DESIGN ELEVATIONS AND CONTROL LEVELS:

В	Wet well diameter	6 ft
Т	Top of wet well	73.28 ft
Р	Influent invert in	55.60 ft
J	High-level alarm	54.95 ft
L	Lag pump ON	54.45 ft
М	Lead pump ON	53.95 ft
	Storage depth	1.85 ft
Ν	Pumps OFF	52.10 ft
	Sump depth	2.00 ft
Ζ	Floor of wet well	50.10 ft
	Wet well depth	23.18 ft

WET WELL BUOYANCY CALCULATION:

Assumptions:

1. SHWT is at wet well top	
2. Unit weight of water	62.4 pcf
3. Unit weight of concrete	150.0 pcf
4. Unit weight of submerged soil	57.6 pcf
Assume SHWT at wet well top.	
Wet well wall thickness	8.00 in
Bottom slab lip width	18.00 in
Bottom slab thickness	12.00 in
Volume of water displaced	1,062.92 cf
Total uplift force	66,326 lbs
Volume of concrete	407.52 cf
Weight of concrete	61,128 lbs
Volume of soil above lip	964.89 cf
Weight of soil above lip	55,578 lbs
Total resistance force	116,705 lbs
Factor of safety	1.8

SYSTEM HEAD CURVE CALCULATION:

STATIC HEAD CALCULATION:

Pressure at tie-in location	25 psi
Elevation at tie-in location	83.00 ft
HGL at tie-in location	140.70 ft
Static head for pump	88.60 ft

SYSTEM HEAD CURVE CALCULATION:

Pipe Length	28 ft	7,700 ft
Pipe Inside Diameter	8.00 in	8.00 in
Pipe Area	0.349 sf	0.349 sf
Roughness C	130	130

Fittings:	K-Value	No.	Tot K	No.	Tot K
Discharge	1.0	1	1	1	1
90 Deg. Bend	0.6	2	1.2	0	0
45 Deg. Bend	0.4	0	0	20	8
Expansion	0.5	1	0.5	0	0
Gate Valve	0.4	1	0.4	15	6
Check Valve	2.5	1	2.5	0	0
Total K-Value	-		5.6		15.0

0	Vfra		TDU A				
Q, gpm	V, fps	Pipe	Fittings	Pipe	Fittings	Total	TDH, ft
270.0	1.7	0.05	0.26	12.43	0.69	13.42	102.02
280.0	1.8	0.05	0.28	13.29	0.74	14.36	102.96
290.0	1.9	0.05	0.30	14.18	0.80	15.33	103.93
300.0	1.9	0.05	0.32	15.10	0.85	16.33	104.93
310.0	2.0	0.06	0.34	16.05	0.91	17.36	105.96
320.0	2.0	0.06	0.36	17.02	0.97	18.41	107.01
330.0	2.1	0.07	0.39	18.01	1.03	19.50	108.10

CYCLE TIME CALCULATION:

Operating point flow	302.00 gpm
Wet well cross-section area	28.27 sf
Storage volume	391.31 gal
Pump on time	14.06 min
Pump off time	1.43 min
Cycle time	15.49 min
Maximum starts per hour	3.9

CHECK MINIMUM WET WELL STORAGE DEPTH:

$V = Q \times T / 4$, where:	
T = Minimum Cycle Time	5 min
Q = Pumped Flow, gpm	
V = Required Wet Well Storage Volu	ıme, gallons
** assume both pumps are operating	5
Minimum volume	377.5 gal
Minimum storage depth	1.78 ft
D 111 1 1	1.05.0.01

CHECK MAXIMUM WET WELL STORAGE DEPTH:

Maximum filling time is 30 minutes under average conditions:

1.85 ft, OK

30 minutes of ADF	2056.25 gal
Maximum storage depth	9.72 ft
Provided storage depth	1.85 ft, OK

FORCE MAIN VELOCITY CALCULATIONS:

Q, gpm = 448.83 x (V, ft/s x A, sf)

Provided storage depth

Minimum velocity	2.0 ft/s
Minimum flow	313.3 gpm
Maximum velocity	10.0 ft/s
Maximum flow	1566.7 gpm
Actual flow	302.0 gpm
Actual velocity	1.93 ft/s

APPENDIX B

Lift Station 1 Pump Data

Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Modular based design with high adaptation grade.

Curves according to: Water, pure Water, pure [100%],39.2 °F,62.428 lb/ft³,1.6889E-5 ft²/s

Technical specification

		135-130 130-11-122 110-11-122 1110-11-122 110-11-122 100-110 100-11-122 100-1	nal (mean) data a	71.89 71.89 400 60	0 800		276mm 25 g.p.m.] 50 9906 ta should
Configuration		Pleas	se consult your lo	cal Flygt repres	sentative for per	formance guarante	ees.
Motor number N3153.185 21-18-4AA-W 20hp Impeller diameter 276 mm	Installation type P - Semi permanent, Wet Discharge diameter 4 inch						
Pump information		Material					
Impeller diameter 276 mm		Impeller Hard-Iron ™					
Discharge diameter 4 inch							
Inlet diameter 150 mm							
Maximum operating speed 1760 rpm							
Number of blades 2							
Max. fluid temperature 40 °C							
ProjectXylect-20111063Block0		Created by Created on	10/28/2024	⁴ Last update	1	0/28/2024	

[ft] Head 135-

User group(s) Xylem: USA - EXT

Technical specification

Motor - General

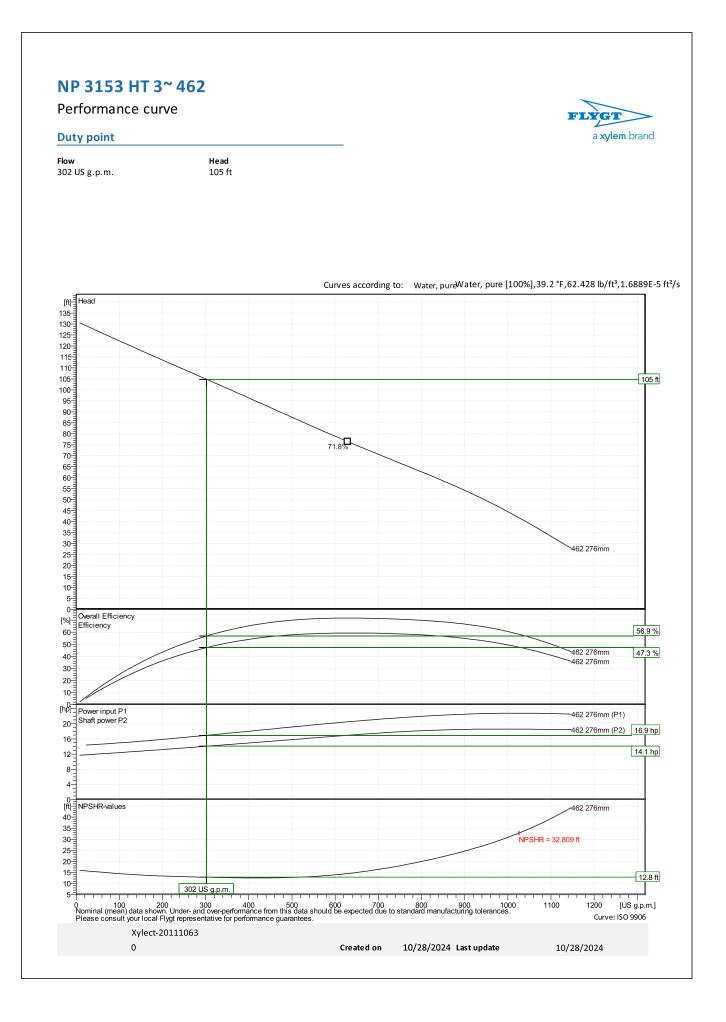
Motor number	Phases	Rated speed	Rated power			
N3153.185 21-18-4AA-W	3~	1760 rpm	20 hp			
20hp						
ATEX approved	Number of poles	Rated current	Stator variant			
Νο	4	58 A	4			
Frequency	Rated voltage	Insulation class	Type of Duty			
60 Hz	208 V	н	S1			
Version code						
185						
Motor - Technical						
Power factor - 1/1 Load	Motor efficiency - 1/1 Load	Total moment of inertia	Starts per hour max.			
0.81	87.5 %	2.38 lb ft^2	30			
0.81	87.5 %	2.38 010	50			
Power factor - 3/4 Load	Motor efficiency - 3/4 Load	Starting current, direct starting				
0.75	89.0 %	345 A				
Power factor - 1/2 Load	Motor efficiency - 1/2 Load	Starting current, star-delta				

0.63

88.5 %

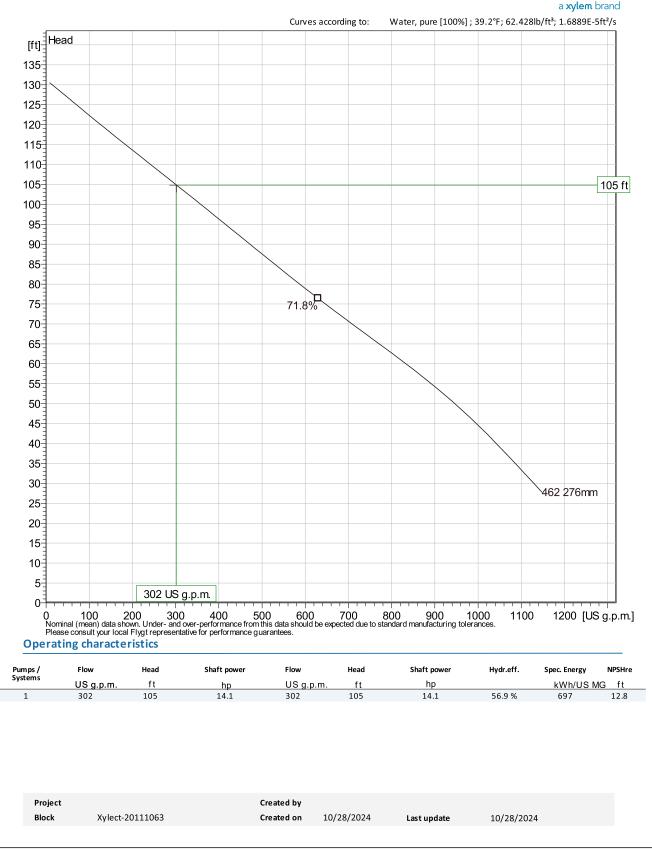
115 A

Project Block


Xylect-20111063 0

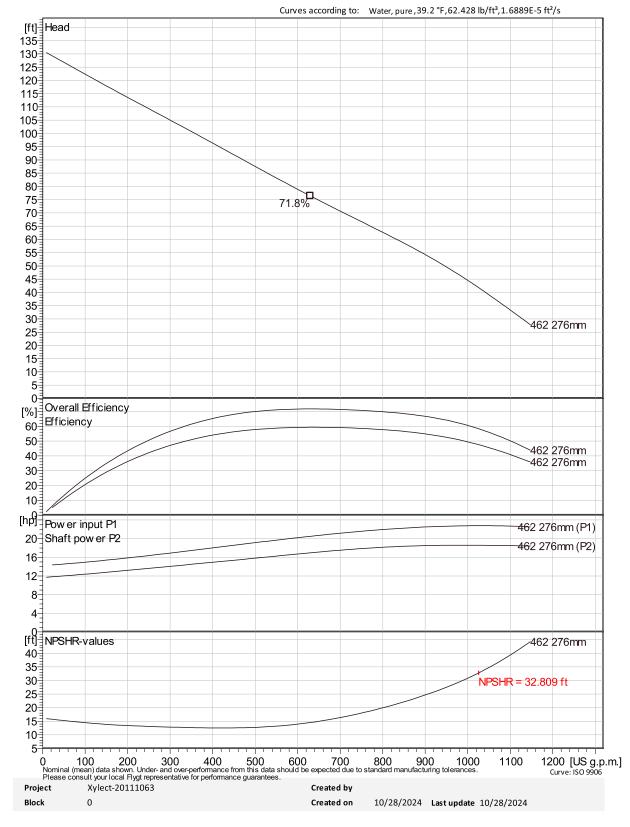
Created by Created on 10/28/2024 Last update

10/28/2024


FLYGT

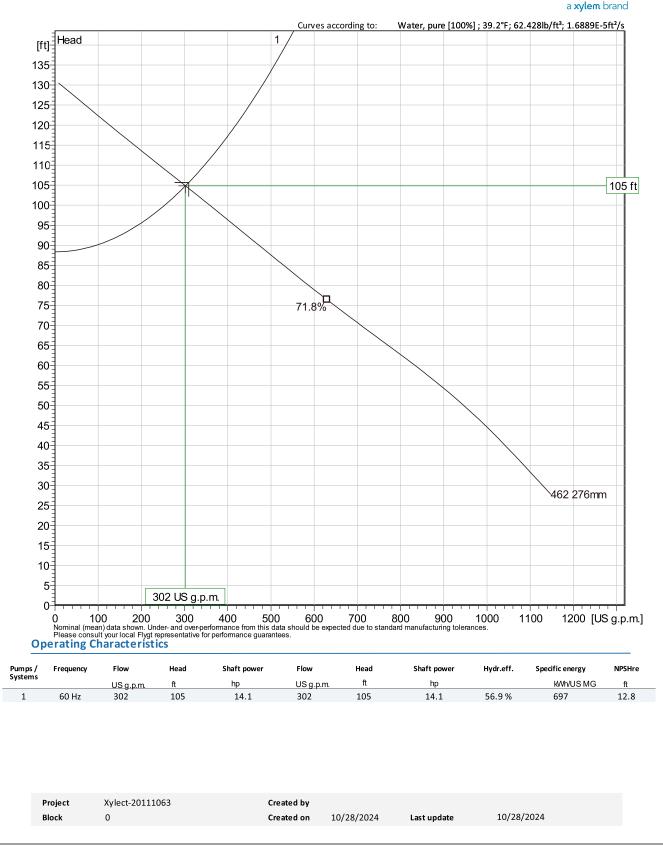
a **xylem** brand

Duty Analysis

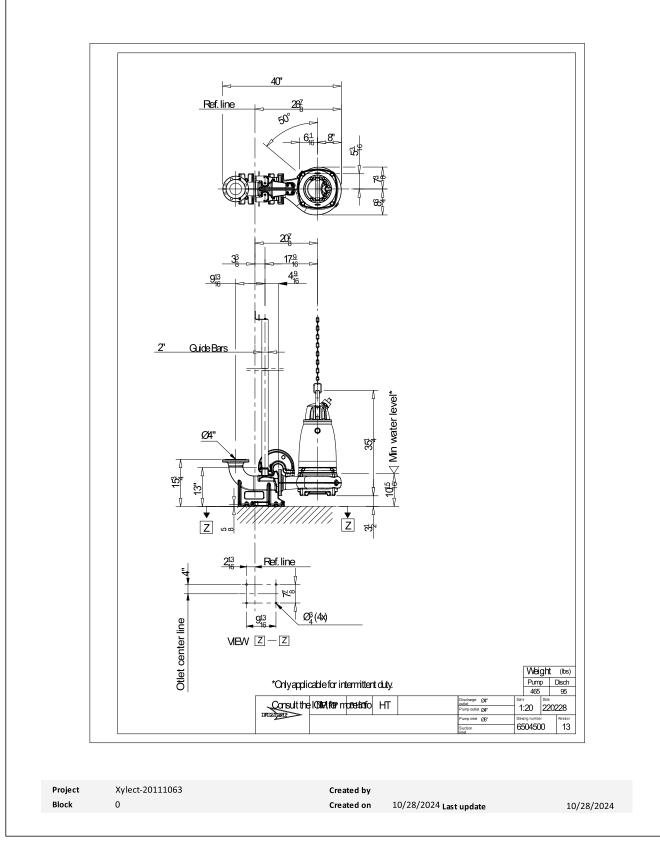


User group(s) Xylem:USA - EXT

VFD Curve



a **xylem** brand



VFD Analysis

Dimensional drawing

