Lake Hills Main Blvd. & Mass Grading

Lift Station Report

Prepared by:

Madden, Moorhead and Stokes, LLC. 431 East Horatio Avenue, Suite 260 Maitland, FL 32751 (407) 629-8330

November, 2024

David A. Stokes, P.E. #66527 Certificate of Authorization No. EB-0007723

Appendices

- A Lift Station Design Calculations
- B Lift Station Pump Data

LIFT STATION ANALYSIS/FORCE MAIN

The proposed development Lake Hills Main Blvd & Mass Grading consists of a spine road for future development. The future development consists of +/-560 senior living homes. The project will have a gravity collection system, which will connect to 1 lift station. Lift Station 1 is in the center of the site along the spine road. Lift Station 1 is designed to serve the future senior living homes and the future commercial development part of the PUD plan. Lift Station 1 has an average daily flow is 98,700 GPD and the peak hourly flow is 274 GPM.

The force main tie-in location is an existing force main stub located along a maintenance road within the Silver Springs Mission Inn Parcel that connects to the Sewer & Water Plant Investments, LLC parcel. The force main is owned and maintained by the Central Lake Community Development District. The lift station calculations are in Appendix A. The force main velocity calculations are in Appendix A, showing the minimum velocity of 2ft/sec is achieved. A Flygt pump was picked for the Lift Station. The pump curve with operating condition noted is in Appendix B along with other pump information. Lift Station 1 operates at 302 GPM at 61.1 feet TDH.

DEMAND SUMMARY AND CAPACITY ANALYSIS

Lift	Station	1
------	---------	---

ADF	Average Daily Flow:	(558 units) x (150 GPD/unit) + (150,000sf) x (0.1GPD/sf)
		= 98,700 GPD = 68.54 GPM
PHF	Peak Hourly Flow:	ADF x 4 = 274.17 GPM

Pi Diai [IN]	ipe meter [FT]	⁽¹⁾ Manning's Number, n	Area, A [SF]	⁽²⁾ Hydraulic Radius, R _h	⁽³⁾ Slope, S [FT/FT]	Pipe C Flowin [CFS]	Capacity g Full, Q [GPM]	⁽⁴⁾ Pipe Capacity at 75% Full [GPM]
8	0.67	0.012	0.349	0.167	0.0028	0.69	310.9	255.2
10	0.83	0.012	0.545	0.208	0.0021	1.09	488.2	400.8
12	1.00	0.012	0.785	0.250	0.0017	1.59	714.2	586.4
15	1.25	0.012	1.227	0.313	0.0012	2.42	1,088.0	893.2

Gravity sewer capacity is given by $Q = (1.486/n)AR_{h}^{2/3}S^{1/2}$

Notes:

(1) Manning's n is 0.013 for PVC pipes

(2) Hydraulic Radius, R = D/4 for full-flowing pipes

(3) Minimum constructed slopes

(4) Gravity sewers shall be designed at no more than 75% full at peak flow.

(5) Per Civil Engineering Reference Manual Appendix 19.C, when d/D = 0.75, then $Q/Q_{full} = 0.82$

APPENDIX A

Lift Station 1 Design Calculations

LIFT STATION CALCULATIONS

Lake Hills

Lift Station #1

Located near Sta. 62+00

DESIGN FLOW RATE CALCULATION:

Residential		
Single Family	Units	GPD/unit
	563	150
	Total (GPD) =	84450
Shopping Center	Units	GPD/unit
Grocery Store (SF)	50,800	0.0727
Grocery Store (SF)	10,500	0.16
Outparcel A		
Conveince Store (SF)	5,000	0.16
Outparcel B		
Restaurant (SEAT)	250	25
Outparcel C		
General Retail (SF)	6,000	0.16
Outparcel D		
General Retail (SF)	25,000	0.16
	Total (GPD) =	17383
<u>Town of Howie-in the-H</u>	<u>Hills</u>	
Water Treatment Pan	1	200
	Total (GPD) =	200
Total average daily flow		102,033 gpd
Peak factor		4
Peak inflow		283.43 gpm

WET WELL DESIGN ELEVATIONS AND CONTROL LEVELS:

В	Wet well diameter	6 ft
Т	Top of wet well	73.28 ft
Р	Influent invert in	55.60 ft
J	High-level alarm	54.95 ft
L	Lag pump ON	54.45 ft
М	Lead pump ON	53.95 ft
	Storage depth	1.85 ft
N	Pumps OFF	52.10 ft
	Sump depth	2.00 ft
Z	Floor of wet well	50.10 ft
	Wet well depth	23.18 ft

WET WELL BUOYANCY CALCULATION:

Assumptions:

- 1. SHWT is at wet well top
- 2. Unit weight of water 62.4 pcf

3. Unit weight of concrete	150.0 pcf
4. Unit weight of submerged soil	57.6 pcf
Assume SHWT at wet well top.	
Wet well wall thickness	8.00 in
Bottom slab lip width	18.00 in
Bottom slab thickness	12.00 in
Volume of water displaced	1,062.92 cf
Total uplift force	66,326 lbs
Volume of concrete	407.52 cf
Weight of concrete	61,128 lbs
Volume of soil above lip	964.89 cf
Weight of soil above lip	55,578 lbs
Total resistance force	116,705 lbs
Factor of safety	1.8

FUTURE FLOW CALCULATIONS:

Provided Wet Well Volume	391.31	gal
Capacity of 8" Force Main	1567	gpm
Used Capacity w/ Residential	302	gpm
Additional Capacity	1265	gpm
Additional Units Based on current Pump Operating condition	28.00	Units
Capacity of 8" Gravity Sewer main	394	gpm
Peak Flow of Residential	283	gpm
Additional Capacity	111	gpm

SYSTEM HEAD CURVE CALCULATION:

STATIC HEAD CALCULATION:

25 psi
00 ft
70 ft
60 ft

SYSTEM HEAD CURVE CALCULATION:

Pipe Length	28 ft	7,700 ft
Pipe Inside Diameter	8.00 in	8.00 in
Pipe Area	0.349 sf	0.349 sf
Roughness C	130	130

Fittings:	K-Value	No.	Tot K	No.	Tot K
Discharge	1.0	1	1	1	1
90 Deg. Bend	0.6	2	1.2	0	0
45 Deg. Bend	0.4	0	0	20	8
Expansion	0.5	1	0.5	0	0
Gate Valve	0.4	1	0.4	15	6
Check Valve	2.5	1	2.5	0	0
Total K-Value	—		5.6		15.0

0	Vfra	Friction Losses in Feet					TDU A
Q, gpm	v, ips	Pipe	Fittings	Pipe	Fittings	Total	IDH, II
270.0	1.7	0.05	0.26	12.43	0.69	13.42	102.02
280.0	1.8	0.05	0.28	13.29	0.74	14.36	102.96
290.0	1.9	0.05	0.30	14.18	0.80	15.33	103.93
300.0	1.9	0.05	0.32	15.10	0.85	16.33	104.93
310.0	2.0	0.06	0.34	16.05	0.91	17.36	105.96
320.0	2.0	0.06	0.36	17.02	0.97	18.41	107.01
330.0	2.1	0.07	0.39	18.01	1.03	19.50	108.10

CYCLE TIME CALCULATION:

302.00 gpm
28.27 sf
391.31 gal
14.06 min
1.43 min
15.49 min
3.9

CHECK MINIMUM WET WELL STORAGE DEPTH:

$V = Q \times T / 4$, where:	
T = Minimum Cycle Time	5 min
Q = Pumped Flow, gpm	
V = Required Wet Well Storage V	Volume, gallons
** assume both pumps are operative states and the second states and the second states are operated as a second state of the second states are operated as a second state are o	ating
Minimum volume	377.5 gal
Minimum storage depth	1.78 ft

CHECK MAXIMUM WET WELL STORAGE DEPTH:

Maximum filling time is 30 minutes under average conditions:

1.85 ft, OK

30 minutes of ADF	2056.25 gal
Maximum storage depth	9.72 ft
Provided storage depth	1.85 ft, OK

FORCE MAIN VELOCITY CALCULATIONS:

Q, gpm = 448.83 x (V, ft/s x A, sf)

Provided storage depth

Minimum velocity	2.0 ft/s
Minimum flow	313.3 gpm
Maximum velocity	10.0 ft/s
Maximum flow	1566.7 gpm
Actual flow	302.0 gpm
Actual velocity	1.93 ft/s

APPENDIX B

Lift Station 1 Pump Data

Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Modular based design with high adaptation grade.

Curves according to: Water, pure Water, pure [100%], 39.2 °F, 62.428 lb/ft³, 1.6889E-5 ft²/s

Technical specification

		130- 125- 120- 115- 110- 105- 90- 95- 90- 85- 80- 95- 90- 85- 75- 70- 65- 50- 45- 40- 35- 50- 45- 40- 35- 20- 15- 10- 10- 10- 10- 10- 10- 10- 10	200 4	71.8%	soo	44 40 1000 Curve	2 276mm [US g.p.m.] a: ISO 9906 data should
Configuration		be exp Please	ected due to stan e consult your loca	dard manufact al Flygt represe	uring tolerance entative for per	es. formance guara	antees.
N3153.185 21-18-4AA-W 20hp Impeller diameter 276 mm Pump information	P - Semi permanent, Wet Discharge diameter 4 inch	Material					
Impeller diameter 276 mm		Impeller Hard-Iron ™					
Discharge diameter 4 inch							
Inlet diameter 150 mm							
Maximum operating speed 1760 rpm							
Number of blades 2							
Max. fluid temperature 40 °C							
Max. fluid temperature 40 °C Project Xylect-20111063		Created by					

[ft] Head 135-

User group(s) Xylem: USA - EXT

Technical specification

Motor - General

	Dharaa	Dete days a d	Data dia amin'ny
Motor number	Phases	Rated speed	Rated power
N3153.185 21-18-4AA-W	3~	1760 rpm	20 hp
20hp			
ATEX approved	Number of poles	Rated current	Stator variant
No	4	58 A	4
Frequency	Rated voltage	Insulation class	Type of Duty
60 Hz	208 V	Н	S1
Version code			
185			
Motor - Technical			
Power factor - 1/1 Load	Motor efficiency - 1/1 Load	Total moment of inertia	Starts per hour max.
0.81	87.5 %	2.38 lb ft ²	30
Power factor - 3/4 Load	Motor efficiency - 3/4 Load	Starting current, direct starting	
0.75	89.0 %	345 A	
Power factor - 1/2 Load	Motor efficiency - 1/2 Load	Starting current, star-delta	

0.63

88.5 %

115 A

Project Block

Xylect-20111063 0

Created by Created on 10/28/2024 Last update

10/28/2024

FLYGT

a **xylem** brand

Duty Analysis

User group(s) Xylem:USA - EXT

VFD Curve

a **xylem** brand

VFD Analysis

Dimensional drawing

