UMATILLA RIVER BRIDGE

PRELIMINARY ENGINEERING REPORT

JULY 2022

Prepared for City of Hermiston, Oregon City of Umatilla, Oregon
Umatilla County, Oregon

DRAFT

UMATILLA RIVER BRIDGE

PRELIMINARY ENGINEERING REPORT

FOR
CITY OF HERMISTON, OREGON CITY OF UMATILLA, OREGON UMATILLA COUNTY, OREGON

ANDERSON PERRY \& ASSOCIATES, INC.

La Grande, Redmond, and Hermiston, Oregon
Walla Walla, Washington

Table of Contents

Executive Summary ES-1
A. Introduction ES-1
B. Transportation System ES-1
C. Land Use and Acquisition ES-2
D. Permitting, Environmental, and Cultural Resources ES-2
E. Selected Improvements and Project Implementation ES-3
Chapter 1 - Introduction and Background 1-1
A. Introduction 1-1
B. Historical Background 1-1
C. Demand for Umatilla River Bridge. 1-1
D. Summary 1-2
Chapter 2 - Transportation Impact Analysis 2-1
A. Introduction. 2-1
B. Data Collection Summary 2-1
C. Existing Traffic Conditions 2-2
D. Projected Traffic Conditions 2-2
No-Build Condition (2032 Projection) 2-2
Punkin Center Road Option (2032 Projection) 2-3
Elm Avenue Option (2032 Projection) 2-3
E. Summary. 2-4
Chapter 3 - Transportation System Improvements 3-1
A. Overview 3-1
Ordinary High Water 3-1
Federal Emergency Management Agency Floodplain and Floodway 3-1
B. Elm Avenue Option 3-2
Bridge Structure 3-2
Roadway Improvements 3-3
C. Punkin Center Road Option 3-5
Bridge Structure 3-5
Roadway Improvements 3-6
D. Summary. 3-9
Chapter 4 - Land Use and Acquisition. 4-1
A. Overview 4-1
B. Elm Avenue Option 4-1
Land and Right-of-Way Acquisition 4-1
Land Use (Zoning) 4-2
C. Punkin Center Road Option 4-3
Land and Right-of-Way Acquisition 4-3
Land Use (Zoning) 4-3
D. Summary 4-4
City of Hermiston, City of Umatilla, and Umatilla County, OregonUmatilla River BridgePreliminary Engineering Report
Table of Contents (cont.)
Chapter 5 - Permitting, Environmental, and Cultural Resources 5-1
A. Overview. 5-1
B. Elm Avenue Option 5-1
Goal 5 Resource Mapping 5-1
Wetlands and Waterways 5-2
Floodplains 5-3
Soils and Farmland 5-3
Protected Species 5-4
Migratory Birds 5-4
Land Use/Zoning 5-5
Stormwater Discharge 5-5
Parks, Green Spaces, and Natural Areas 5-5
Noise and Air Quality 5-5
Hazardous Materials 5-6
Cultural Resources and Historic Properties 5-7
Funding Requirements. 5-8
Advantages. 5-8
Disadvantages 5-8
Permits 5-8
Cost 5-9
C. Punkin Center Road Option 5-10
Goal 5 Resource Mapping 5-10
Wetlands and Waterways 5-11
Floodplains 5-12
Soils and Farmland 5-12
Protected Species 5-12
Migratory Birds 5-13
Land Use/Zoning 5-13
Stormwater Discharge 5-14
Parks, Green Spaces, and Natural Areas. 5-14
Noise and Air Quality 5-14
Hazardous Materials 5-14
Cultural Resources and Historic Properties 5-15
Funding Requirements 5-16
Advantages. 5-16
Disadvantages 5-16
Permits 5-16
Cost 5-17
Chapter 6 - Selected Improvements and Project Implementation 6-1
A. Selected Option 6-1
B. Project Implementation 6-1
Potential Funding Sources 6-1
Action Items 6-1
Chapter 7 - References 7-1
City of Hermiston, City of Umatilla, and Umatilla County, OregonUmatilla River BridgePreliminary Engineering Report
Table of Contents (cont.)
TABLES
Table 2-1 Transportation Analysis Summary 2-5
Table 3-1 Transportation System Improvements Summary 3-10
Table 4-1 Land Use and Acquisition Summary ${ }^{1}$ 4-4
Table 5-1 Soils Found within the Elm Avenue Option 5-3
Table 5-2 Elm Avenue Option Environmental Permits 5-9
Table 5-3 Elm Avenue Option Environmental Costs 5-9
Table 5-4 Soils Found within the Punkin Center Road Option 5-12
Table 5-5 Punkin Center Road Option Environmental Permits 5-17
Table 5-6 Punkin Center Road Option Environmental Costs 5-17
Table 5-7 Advantages and Disadvantages. 5-18

FIGURES

Figure 1-1 Location and Vicinity Maps
Figure 1-2 Aerial Photograph
Figure 3-1 River Crossing Plan and Profile Elm Avenue Option
Figure 3-2 River Crossing Plan and Profile Punkin Center Road Option
Figure 4-1A-D Tax Lot Map Elm Avenue Option
Figure 4-2A-C Tax Lot Map Punkin Center Road Option
Figure 4-3 Elm Avenue Option Right-of-Way Acquisition Cost
Figure 4-4 Punkin Center Road Option Right-of-Way Acquisition Cost
Figure 4-5A City of Hermiston Zoning
Figure 4-5B Umatilla County Zoning
Figure 4-5C Comprehensive Land Use Map
Figure 5-1 Critical Groundwater Areas
Figure 5-2 Wetlands and Waterways
Figure 5-3 Soils Map
Figure 5-4 Protected Species
Figure 5-5 Existing Park System
Figure 5-6 DEQ Permitted Sites

APPENDICES

Appendix A - New East-West Roadway Circulation Analysis Technical Memo by Kittelson \& Associates, Inc.
Appendix B - City of Hermiston, Oregon, Urban Major Arterial Cross Sections
Appendix C - Cost Estimates for Infrastructure Improvements and Land Acquisition

Executive Summary

A. Introduction

This Executive Summary briefly presents the results of the Umatilla River Bridge Preliminary Engineering Report (PER) prepared by Anderson Perry \& Associates, Inc., for the City of Hermiston, Oregon, in partnership with the City of Umatilla and Umatilla County. The findings outlined herein have been developed in cooperation with each of these three benefitting jurisdictions. The focus of this PER is to compare two potential locations for a bridge crossing the Umatilla River. The two locations considered are at W. Punkin Center Road and W. Elm Avenue. This PER includes a high-level analysis of the existing transportation system and how the construction of a bridge would affect the system. This PER discusses recommended improvements to the transportation system based on the traffic analysis and bridge location and provides high-level project cost estimates for each project necessitated by bridge construction for comparison purposes. Additionally, it includes a discussion of the impacts to land use and acquisition and explores environmental, permitting, and cultural resource requirements and recommendations. This Executive Summary includes a brief discussion of the transportation system analysis; recommended improvements to the transportation system; and permitting, environmental, and cultural resource requirements. This PER also includes a summary of the bridge location selected by the benefitting jurisdictions as a result of this PER. For a more detailed discussion of the information presented in this Executive Summary, refer to the individual chapters of this PER.

The benefitting jurisdictions recognize the need for this PER, as installation of an additional bridge over the Umatilla River has been included in the City of Hermiston's Transportation System Plan (TSP) since 1997. Hermiston's TSP has never identified which of the two proposed locations is the best option. This PER will act as a guide to enable the benefitting jurisdictions to ultimately select the most appropriate location for the Umatilla River Bridge.

B. Transportation System

Because constructing a new bridge across the Umatilla River will significantly impact traffic flow conditions, a transportation system analysis was conducted by Kittelson \& Associates, Inc. Four scenarios were analyzed, including existing traffic conditions, projected traffic conditions in the future with no bridge constructed, projected traffic conditions in the future with a bridge constructed in line with W. Elm Avenue, and projected traffic conditions in the future with a bridge constructed in line with W. Punkin Center Road. The travel corridors are depicted on Figures 4-1A through 4-1D and 4-2A through 4-2C in Chapter 4. The Interstate 82 interchange on Powerline Road and U.S. Highway 395 is at the end of the travel corridors and is generally excluded from the scope of this PER. The analysis found that future conditions would exceed the capacity of much of the existing infrastructure. Improvements recommended in this PER include turning lanes, traffic signals, new sections of roadway, and the bridge structure itself. Furthermore, infrastructure improvements necessitate the acquisition of additional right-of-way (ROW). Total estimated project costs, including ROW acquisition, construction, engineering fees, contingencies, etc., for the various improvements discussed in this PER total approximately $\$ 48.82$ million for the Elm Avenue option and approximately $\$ 43.6$ million for the Punkin Center Road option. These costs do not include costs associated with permitting, environmental, and cultural resource requirements.

C. Land Use and Acquisition

A new bridge across the Umatilla River would fundamentally change traffic patterns and future land use. ROW acquisition would be needed to enable construction of the recommended improvements. Estimated costs discussed above include ROW acquisition and are based on properties' real market values. The recommended ROW width of the travel corridor was assumed to be 90 feet. Figures 4-1A through 4-1D and 4-2A through 4-2C in Chapter 4 show ROW acquisition locations for properties adjacent to potential future travel corridors.

Properties adjacent to each potential travel corridor have various zoning designations. Zoning designations encompass the zones identified by the City of Hermiston, City of Hermiston Comprehensive Use Plan, and Umatilla County. In Chapter 4, Figure 4-5A, City of Hermiston Zoning, shows the zoning designations of the land within city limits; Figure 4-5B, Umatilla County Zoning, shows the zoning designations of the land outside city limits and the urban growth boundary (UGB); and Figure 4-5C, Comprehensive Land Use Map, shows the zoning designations of the land outside of city limits but within the UGB. Each potential bridge location would provide access to the west side of the river and has substantial potential to encourage development along the new travel corridor. Much of the new travel corridor would pass through what is now mostly rural farmland. To further encourage development, land use and zoning designations would need to be modified to allow for more urbanized land use types such as commercial, industrial, and residential. The Elm Avenue option would provide a more direct path to the heart of the City of Hermiston, which could be advantageous for connectivity, but would come at the cost of significantly increased traffic. Although connectivity to the city center would not be directly achieved with the Punkin Center Road option, this option would generally provide more favorable traffic conditions than the Elm Avenue option.

D. Permitting, Environmental, and Cultural Resources

New bridge construction, to some extent, will impact local natural resources as defined and discussed in Goal 5 of Umatilla County's Comprehensive Land Use Plan. Goal 5 resources include riparian corridors, wetlands, wildlife habitat, and cultural areas. A new bridge is anticipated to impact wetlands, waterways, floodplains, and farmland. Endangered Species Act-listed species occur within the project corridor options. A new bridge would result in new impervious surfaces. Two parks, Butte Park, which is funded by the Land and Water Conservation Fund, and the disc golf course, are located adjacent to the Elm Avenue option. Several Oregon Department of Environmental Quality permitted sites are located adjacent to the project corridor options, resulting in a chance of contaminated soils being encountered during construction. A Bureau of Land Management (BLM)-owned natural area is located adjacent to the Punkin Center Road option.

Estimated costs for potential permits and environmental clearances that could be required for the new bridge total $\$ 574,000$ for the Elm Avenue option and $\$ 624,000$ for the Punkin Center Road option. The funding agency will determine which environmental permits and consultation will be required for the proposed project. If federal funding is utilized, an Environmental Assessment will be required. Since a portion of the Punkin Center Road option corridor occurs on BLM-owned land, the project may be subject to BLM National Environmental Policy Act requirements and an extensive environmental review process.

E. Selected Improvements and Project Implementation

Forthcoming.

Chapter 1 - Introduction and Background

A. Introduction

The purpose of this Preliminary Engineering Report is to identify and compare the strengths, weaknesses, requirements, high-level planning costs, and implications for constructing a bridge across the Umatilla River in one of two locations. Because inflation is currently unpredictable, all estimated costs are given for the year 2022. Inflation will need to be accounted for depending on the year the bridge is constructed. The two bridge crossing locations considered are at W. Elm Avenue and W. Punkin Center Road. See Figure 1-1 for the location and vicinity maps and Figure 1-2 for an aerial view of the potential project locations. The two bridge options were chosen based on the City of Hermiston's Transportation System Plan (TSP), which identified these locations for potential bridge options. A specific option was not selected in the TSP likely because there was not enough information readily available at the time to make an informed decision. This document will aid all benefitting jurisdictions involved in making an informed decision when selecting a bridge option.

B. Historical Background

In 1985 the U.S. Congress passed a law that created the Chemical Stockpile Emergency Preparedness Program (CSEPP) and directed the Army to dispose of stored aging chemical weapons. This was done with the protection of the public and environment as its primary objective. Federal funding through the CSEPP was available for projects related to stored chemical weapons at the Umatilla Army Depot, approximately 4 miles west of Hermiston. A bridge across the Umatilla River was originally proposed as an emergency evacuation route sometime during the 1990s. The proposal was ultimately not supported by the CSEPP, and a bridge was not constructed at that time. Although construction did not occur during that period, the two bridge options were adopted as part of Hermiston's original TSP in 1997. Although low on the priority list in the 1997 TSP, a bridge across the Umatilla River has become increasingly important as time has passed and urban growth has continued.

C. Demand for Umatilla River Bridge

Although not immediately necessary, the forecasted urban growth within Umatilla County has made apparent the need to plan for an additional bridge across the Umatilla River in the future. As part of this planning, it is prudent that one of the two options for the bridge location be selected well in advance of actual project initiation. Although a time frame for bridge construction is difficult to determine, local officials estimate that bridge construction will not occur until at least the year 2032. Selecting the location this far in advance will enable local officials to make informed decisions about growth and development in Umatilla County.

The City of Hermiston anticipates that their urban growth boundary will eventually include sections of land west of the Umatilla River. A second bridge spanning the Umatilla River would reduce the likelihood of bottlenecking at the current bridge location where Bridge Road becomes West Highland Avenue and would favorably alter local traffic conditions in the City of Hermiston and Umatilla County. The second bridge would also encourage growth on the west side of the Umatilla River. Because growth, especially urban growth, is usually associated with strong economic conditions, growth on the west side of the Umatilla River would benefit both Umatilla County and the City of Hermiston.

Adding a bridge crossing over the Umatilla River would be beneficial to the City of Umatilla because it would encourage further growth, especially at the south end of the City. Many City of Umatilla residents work, shop, recreate, and generally use the amenities available in Hermiston. A bridge would provide another travel route between the two cities that would likely be more direct and lead to decreased travel time. In addition to enabling and promoting growth on the west side of the Umatilla River and in the City of Umatilla, the bridge would also help alleviate current traffic congestion on U.S. 395 and N. 1st Place. Mitigating traffic congestion on U.S. 395 and N. 1st Place is in the best interest of Umatilla County, the City of Umatilla, and the City of Hermiston because it would increase safety and allow better traffic conditions for local residents.

D. Summary

This planning document presents information needed to make a more informed decision on which of the two proposed bridge locations is most appropriate. A bridge crossing the Umatilla River has been discussed since the CSEPP began funding projects in the area, and the need for a bridge has become increasingly important. Selecting a bridge location will help local jurisdictions plan for growth and development. Benefits of the bridge include, but are not limited to, promoting growth in the City of Hermiston, the City of Umatilla, and Umatilla County; decreasing traffic congestion; and increasing traffic safety.

Chapter 2 - Transportation Impact Analysis

A. Introduction

Constructing a new bridge across the Umatilla River will have a significant impact on traffic flow conditions. As such, Kittelson \& Associates, Inc., conducted an analysis of the transportation system. This chapter summarizes their analysis as described in a technical memo dated March 4, 2022, included in Appendix A of this Preliminary Engineering Report (PER), and hereinafter referred to as the Kittelson technical memo. This analysis is intended as a high-level analysis only, and future traffic patterns, traffic volumes, required infrastructure improvements, etc., may differ from those identified herein.

As discussed in Chapter 1, two options exist for the construction of a new bridge. The impacts to the transportation system likely reach far beyond the area of proposed improvements. To maintain cost effectiveness, the analysis area was confined to the major travel corridors that the project will directly affect, with the assumption that impacts on other areas will be minor. The Elm Avenue option consists of a travel corridor beginning at the intersection of Elm Avenue and U.S. 395. The corridor would proceed west of the intersection, span the Umatilla River with a new bridge, extend across what is currently private property, connect to Bellinger Road, turn north at Powerline Road, and terminate at the interchange of Powerline Road and Interstate 82 (I-82). The Punkin Center Road option consists of a travel corridor beginning at the intersection of Punkin Center Road and U.S. 395. The corridor would proceed west of the intersection until intersecting with Sunshine Lane, where it would continue west through what is currently private property. The corridor would continue west, crossing the Union Pacific Railroad and Umatilla River Road, then proceed west, spanning the Umatilla River and connecting with Country Lane, then turn north at Powerline Road and terminate at the same interchange as the Elm Avenue option.

These two options were analyzed under four scenarios, as follows:

- 2021 existing traffic conditions
- 2032 with neither option being constructed (No-Build Condition)
- 2032 with the Punkin Center Road option constructed
- 2032 with the Elm Avenue option constructed

These analyses were used to provide insight on resulting traffic conditions and to determine what improvements may be necessary as part of the bridge construction project. This chapter summarizes the analysis and the insights derived therefrom. Chapter 3 discusses recommended improvements based on the results of the traffic analysis.

B. Data Collection Summary

To analyze existing and future traffic conditions, data were collected to form a basis for the analysis. Manual turning/movement counts were collected at key intersections in October 2021. See Appendix A of the Kittelson technical memo for count data at various key intersections. Counts were collected on a typical weekday (while schools were in session) from 7:00 to 9:00 a.m. and 4:00 to 6:00 p.m. These
times were selected to capture anticipated weekday morning and afternoon peak hour operation conditions.

This information was utilized to assess existing intersection adequacy based on applicable Oregon Department of Transportation (ODOT) mobility targets. After projecting growth and using reasonable traffic redistribution assumptions, this information was used to assess intersection adequacy in the year 2032 under the various conditions previously described.

C. Existing Traffic Conditions

After collecting needed data and accounting for seasonal adjustments using industry standard methods, existing intersections were evaluated. Appendix C of the Kittelson technical memo contains the operations analysis of existing intersections. Four intersections currently experience substantial traffic movements: U.S. 395 and Punkin Center Road, N.W. 11th Street and W. Elm Avenue, N. 1st Place and W. Elm Avenue, and U.S. 395 and W. Elm Avenue, with volume to capacity ratios of $0.55,0.66,0.66$, and 0.64 , respectively. While these intersections do not exceed their ODOT mobility target of 0.9 , they will be critical intersections to analyze under future conditions. ODOT has indicated they are aware of and are anticipating necessary upgrades to the intersections of U.S. 395 and W. Elm Avenue and N. 1st Place and W. Elm Avenue. All other existing intersection studies had volume to capacity ratios of less than or equal to 0.26 . All study intersections meet applicable ODOT mobility targets during the weekday morning and afternoon study hours.

D. Projected Traffic Conditions

To determine needed improvements to the travel corridors for each option, an understanding of future traffic conditions was needed. To accomplish this task, practicable growth assumptions were used in conjunction with assumed traffic redistribution to project existing traffic counts into the year 2032. This year was chosen based on conversations with the City of Hermiston, the City of Umatilla, and Umatilla County and represents a reasonable near-term horizon year for this project. Each scenario was investigated as follows.

No-Build Condition (2032 Projection)

Future traffic was first analyzed assuming no bridge is constructed. Only traffic growth was accounted for, and redistribution of traffic does not occur since the fundamental path of travel does not change in this scenario. Annual traffic growth rates between 1.5 and 3 percent were conservatively applied to account for anticipated local and regional growth. Projected traffic demands associated with several approved development projects listed below were also incorporated into the analysis.

- Ambience Homes Traffic Impact Analysis in Umatilla
- Umatilla Residential Development Traffic Impact Analysis for Vandelay Meadows, Cheryl's Place, and Ballard Property
- McClannahan Summit subdivision

Under projected traffic flow conditions in the year 2032, all intersections except one are anticipated to meet applicable ODOT mobility targets during the weekday morning and afternoon study hours. The single exception is the intersection of U.S. 395 and W. Elm Avenue, which exceeds the required ODOT mobility target by approximately 3.3 percent.

Punkin Center Road Option (2032 Projection)

Using the No-Build Condition scenario as a baseline for projected traffic growth, redistribution assumptions were then made assuming a new bridge is constructed spanning the Umatilla River in line with Punkin Center Road. See pages 17 through 19 of the Kittelson technical memo for traffic redistribution assumptions.

Only one intersection was found to exceed its ODOT mobility target, the intersection of U.S. 395 and W. Elm Avenue. Since the intersection does not meet the required ODOT mobility target in the No-Build Condition, it follows that construction of the Punkin Center Road option would increase intersection traffic movements, lead to a higher volume to capacity ratio, and further exceed the ODOT mobility target. The intersection is projected to exceed the required ODOT mobility target by approximately 6.7 percent, which represents a slight degradation compared to the No-Build Condition.

The intersection of Powerline Road and Country Lane is approximately 275 feet south of the I-82/ Powerline Road interchange. Although not exceeding its ODOT mobility target, this intersection is problematic because the existing spacing of 275 feet does not meet ODOT requirements. ODOT spacing standards require public street intersections to be a minimum of 0.25 mile (1,320 feet) from the interchange ramp terminal. Relocating the intersection farther away from the interchange would have a substantial impact on private landowners and would also need to be coordinated with ODOT and local jurisdictions.

A new intersection would be necessitated if Punkin Center Road is extended to span the Umatilla River. It is anticipated that the new intersection of Umatilla River Road and Punkin Center Road would be located at the existing intersection of Umatilla River Road and Cooney Lane. Since this would be a new intersection, it would have to be constructed to meet an applicable mobility target and operating standards.

While not anticipated to exceed its ODOT mobility target, the intersection of U.S. 395 and Punkin Center Road is projected to have significantly increased turning movements, resulting in long vehicle queues, especially for right-turn movements on the eastbound approach. It would be prudent, but not required, to consider upgrades to this intersection as set forth in Chapter 3.

Although the I-82/Powerline Road interchange is not considered within the scope of this PER, Kittelson \& Associates, Inc., noted that, under this option, the applicable ODOT mobility target would be exceeded by approximately 11.8 percent.

Elm Avenue Option (2032 Projection)

Using the No-Build Condition scenario as a baseline for projected traffic growth, redistribution assumptions were then made assuming a new bridge is constructed spanning the Umatilla River in
line with W. Elm Avenue. See pages 27 through 33 of the Kittelson technical memo for traffic redistribution assumptions.

Under this scenario, several intersections were found to exceed applicable ODOT mobility targets. First, the intersection of U.S. 395 and W. Elm Avenue is projected to have significantly increased traffic movements and is anticipated to exceed its ODOT mobility target by approximately 13.3 percent. This is a substantial increase when compared to the No-Build Condition of 3.3 percent.

Another key intersection that exceeds its mobility target is the intersection of W. Elm Avenue and N.W. 11th Street. Significantly increased traffic, especially on the currently underutilized eastbound approach, is predicted. The intersection is projected to exceed its ODOT mobility target by approximately 4.4 percent.

Analysis indicates that the intersection of W. Elm Avenue and N. 1st Place will operate at 99 percent of its ODOT mobility target with a volume to capacity ratio of 0.89 . Because this intersection will only narrowly operate within the acceptable ODOT mobility target, the intersection has limited longterm flexibility to accommodate additional traffic growth.

The intersection at Powerline Road and Bellinger Road, while not expected to exceed its ODOT mobility target, is expected to see significantly increased turning movements. The Kittelson technical memo indicates that to accommodate increased turning movements and create a safe and efficient intersection, the intersection will need to be upgraded to urban travel standards as set forth in Chapter 3.

Although the I-82/Powerline Road interchange is not considered within the scope of this PER, Kittelson \& Associates, Inc., noted that its estimated volume to capacity ratio of 0.71 would not exceed the applicable ODOT mobility target of 0.85 .

E. Summary

Traffic counts were collected at key intersections to serve as a basis for analyzing existing and projected traffic conditions. After analyzing the current transportation system, reasonable growth rates were applied to project traffic conditions in the year 2032 assuming no bridge is constructed. Reasonable traffic redistribution was then applied to the No-Build Condition to analyze the transportation system under each bridge option.

Projected traffic for the Punkin Center Road option is expected to exceed the applicable ODOT mobility target at the intersection of U.S. 395 and W. Elm Avenue; however, the volume to capacity ratio is only marginally higher than the No-Build Condition scenario. The I-82 interchange is also expected to exceed its ODOT mobility target. The intersection of Country Lane and Powerline Road will have to be reconfigured to meet ODOT spacing requirements. Although meeting its ODOT mobility target, significant queue lengths and delay times are expected for the west leg of the intersection at U.S. 395 and Punkin Center Road unless improvements to the intersection are constructed. A new intersection must be constructed to meet applicable standards at the extension of Punkin Center Road and Umatilla River Road.

Projected traffic for the Elm Avenue option is expected to significantly exceed the ODOT mobility target at the intersection of U.S. 395 and W. Elm Avenue. Traffic at the N.W. 11th Street and W. Elm Avenue
intersection is also expected to exceed its ODOT mobility target. Although not actually exceeding its ODOT mobility target, the intersection of W. Elm Avenue and N. 1st Place is expected to operate at 99 percent of capacity and will not have much flexibility to accommodate increased traffic demands as growth occurs in the surrounding area. In addition, operating standards would necessitate the upgrade of the intersection of Bellinger Road and Powerline Road.

TABLE 2-1
TRANSPORTATION ANALYSIS SUMMARY

Existing (2021)	- No intersections exceed ODOT mobility targets.
No-Build (2032)	- All intersections meet applicable ODOT mobility targets except one. - The U.S. 395/Elm Avenue intersection exceeds the required ODOT mobility target by 3.3 percent.
Punkin Center Bridge (2032)	- The U.S. 395/Elm Avenue intersection exceeds the ODOT mobility target by 6.7 percent. - The Powerline Road/Country Lane intersection violates the ODOT spacing requirement of being farther than 0.25 mile from the nearest interchange ramp terminal. - A new Umatilla River Road/Punkin Center Road intersection is needed. - U.S. 395/Punkin Center Road does not exceed its ODOT mobility target but will likely experience long vehicles queues for right-turn movements on the east-bound approach. - The I-82/Powerline Road interchange exceeds the ODOT mobility target by 11.8 percent.
Elm Avenue Bridge (2032)	- The U.S. 395/W. Elm Avenue intersection exceeds the ODOT mobility target by 13.3 percent. - The W. Elm Avenue/N.W. 11th Street intersection exceeds the ODOT mobility target by 4.4 percent. - The W. Elm Avenue/N. 1st Place intersection will operate at 99 percent of its ODOT mobility target. - Powerline Road/Bellinger Road will not exceed its ODOT mobility target but will require improvements to create a safe and efficient intersection. - The I-82/Powerline Road interchange does not exceed the ODOT mobility target.

Chapter 3-Transportation System Improvements

A. Overview

The intent of this chapter is to identify required improvements to the transportation system for each bridge option. The travel corridor, intersections, bridge structure, grading, and other improvements are considered. Project costs for each improvement are estimated to provide a comparison between bridge options and to aid in the selection process. Estimated project costs in this chapter are high level and are intended for comparison purposes only. They are inclusive of construction costs, engineering fees, land acquisition costs, and other legal and administrative costs. Estimates in this chapter include only right-of-way (ROW) acquisition for intersection improvements when the additional ROW to be acquired is not parallel with the travel corridors. All other ROW acquisition costs are discussed in Chapter 4. Because the year of construction is unknown, inflation is difficult to predict in the current market, and cost estimates are for comparison purposes only, all costs are given in 2022 dollars and are not projected into the future. High-level cost estimates are located in Appendix B of this Preliminary Engineering Report (PER). Detailed cost estimates should be completed as part of the future bridge project.

Ordinary High Water

The ordinary high water (OHW) of a river is the typical or ordinary level that the water surface achieves during a typical year. It is generally determined by locating an OHW mark on the shore. OHW marks are typically identified in the field based on observations such as a clear, natural line impressed on the bank, silt stain lines on trees or leaves, the presence of litter or debris, the lowest extent of woody vegetation, etc. The ordinary high water elevation (OHWE) is the measured elevation at the surface of the OHW. The OHW width is the width of the river measured perpendicular to the banks at the OHWE. The Oregon Department of Fish and Wildlife typically requires a clear span equal to or greater than the OHW width with no bridge element or riprap within this span. If consultation under Section 7 of the Endangered Species Act (ESA) is required for the proposed project, the bridge span, as projected along the OHW width, would need to be 1.5 times the OHW width for a single span structure or 2.2 times the OHW width for a multi-span structure. Additional discussion regarding consultation under Section 7 of the ESA is included in Chapter 5. It is important to note that, for both options, the bridge is assumed to span the entire floodway utilizing a multi-span structure with intermediate supports. Spanning the floodway is a more stringent requirement than spanning 2.2 times the OHW width as discussed in the bridge section of each option below.

Federal Emergency Management Agency Floodplain and Floodway

The Federal Emergency Management Agency (FEMA) is currently in the process of analyzing the Umatilla River reach to revise their Flood Insurance Study (FIS) and corresponding Flood Insurance Rate Map (FIRM). The new FIS and FIRM will adjust flood boundaries, floodway widths, and other characteristics to reflect current topography, hydraulic data, and other items that may be in different conditions than existed at the time the last FIS and FIRM were completed. According to FEMA, the updated FIS is not anticipated to have a significant impact on current boundaries within
this section of the Umatilla River. However, minor changes are likely and large changes are possible. Although not expected, the results of the new FIS could alter some of the recommendations and findings contained in this PER. The most current FIS and corresponding FIRM should be utilized when the bridge design project is initiated.

According to FEMA FIRM Panel No. 41059C0577G, the Elm Avenue and Punkin Center Road bridge options would include infrastructure located within the 500-and 100-year floodplains and within the floodway. Therefore, FEMA development standards apply, and a Floodplain Development Permit would be required. Because typical concrete and steel bridges would not be able to span the large floodway widths at both locations without intermediate supports, bridge piers and associated footings would need to be constructed within the floodway. Any fill, bridge pier, or footing placed within the floodway triggers the requirement for a no-rise certification that must show a 0.00 foot change in the effective 100-year water surface elevation based on a hydraulic analysis. Based on discussions with FEMA representatives, it is unlikely that a no-rise condition can be demonstrated. Because bridge construction will preclude demonstration of a 0.00 foot change in the effective 100-year flood water surface elevation, the project will require a Conditional Letter of Map Revision (CLOMR) and, following construction of the bridge, a Letter of Map Revision (LOMR). Each of these requires a hydraulic/stream analysis that determines where the new flood boundaries will be located based on the increase in the surface water elevation of the 100-year flood. This process, including engineering documentation and agency fees, will be required for both options and is estimated to cost approximately $\$ 150,000$. It is important to note that the process of obtaining a CLOMR and a LOMR will likely be lengthy. It would be prudent to budget at least two years before construction to complete the CLOMR process and another two years after construction to complete the LOMR process.

B. Elm Avenue Option

Bridge Structure

Based on a desktop review, the OHW width for the river at the Elm Avenue Bridge crossing is approximately 120 feet. The bridge is anticipated to cross the river at an approximate 45 -degree skew. The floodway measured along the line of travel is approximately 600 feet wide. The spans for this bridge were chosen based on several criteria. First, the spans had to be symmetrical, which usually lends to a more economical design. Second, the bridge had to cross the entire floodway to minimize environmental impacts and ensure that travel ways would not be damaged during a typical flood event. Third, a single segment of the bridge had to completely span across the OHW width portion of the river (no piers or abutments were assumed to be located in the OHW area). The bridge must also span 2.2 times the OHW width as discussed at the beginning of this chapter, and 2.2 times the OHW width of 120 feet projected onto the bridge travel corridor is approximately 375 feet. Since the total floodway width of approximately 600 feet is much larger than the required span of 375 feet, both span requirements are easily met by spanning the entire floodway. Three equal 250 -foot spans were selected to meet these criteria, as shown on Figure 3-1. The total span of this bridge option is 750 feet.

The approximate bridge profile as shown on Figure 3-1 was determined based on two criteria. First, the bottom (low chord) of the bridge had to be a minimum of 3 feet above the 100-year flood elevation. This is an Oregon Department of Transportation (ODOT) requirement that is typically
deferred to when the local jurisdiction does not have a specific separation requirement. The 3 feet of separation provides sufficient space to enable floating debris to pass under the bridge during the 100 -year flood event. Second, the approximate bridge profile was selected to effectively transition into the existing topography to provide smooth passage for vehicular traffic and to minimize the amount of cut/fill that will be required.

Bridge width was determined assuming two 12 -foot travel lanes, two 6 -foot wide bike/shoulder lanes, and two 6 -foot wide sidewalks. This totals a width of 48 feet. Note that the bike/shoulder lane is one foot wider on the bridge than the rest of the travel corridor. This increased width is intended to create an increased buffer space between pedestrians and vehicular traffic so neither feel constricted as they navigate across the bridge.

Although bridge type was not specifically selected as part of this PER, the bridge is anticipated to be either prestressed concrete or steel. Bridge type should be selected when a preliminary design is completed as part of the actual design process. A planning-level cost of $\$ 490$ per square foot was used to conservatively estimate bridge project costs. The total area of the bridge, given a span of 750 feet and a width of 48 feet, is 36,000 square feet. At $\$ 490$ per square foot, the total project cost for the bridge structure is estimated to be $\$ 17.7$ million. Adding approximately $\$ 1.7$ million for the earthwork required for the roadway on either side of the river brings the total estimated project cost to $\$ 19.4$ million.

Although this PER assumes that the bridge crosses the river at a 45 -degree skew to keep the travel corridor straight, other options exist where the bridge could cross at a much smaller skew provided that the travel corridor geometry is permitted to deviate from a straight line. Decreasing the skew angle means that the floodway width would also be lessened, which would lead to a shorter total bridge span and a reduced cost for the bridge structure.

Roadway Improvements

Chapter 2 discusses impacts to the transportation system from an analysis perspective. Based on those analyses, recommendations to improve the travel corridor were made. Many of the recommended improvements occur at intersections. Additional improvements are needed where no ROW currently exists. Improvements to the driving surface will also be required to increase roadway durability to account for increased traffic.

Discussions with ODOT revealed that this travel corridor is unlikely to ever become a state highway. They indicated that the only way the travel corridor could ever become a state route would be if Umatilla County took over other existing state routes as a trade for ODOT taking over the Elm Avenue option travel corridor. Because this is highly unlikely to occur, City of Hermiston standards were used as a basis for recommended travel corridor improvements.

Intersections

U.S. 395/W. Elm Avenue (OR 207)

Although this intersection was found to exceed capacity, the intersection is anticipated to exceed capacity regardless of a bridge being constructed. However, unlike the Punkin Center

Road option, construction of a bridge under the Elm Avenue option is estimated to significantly worsen capacity deficiencies. Regardless of whether a bridge is constructed, this intersection would need several improvements to the northbound, southbound, and westbound approaches. A northbound right-turn lane, a southbound right-turn lane, and a westbound right-turn lane would result in satisfactory traffic conditions. It is important to note that these improvements would produce an intersection that would meet the ODOT mobility target, but the intersection would be operating at full capacity. This means that any further growth would push the mobility target above acceptable values. All properties abutting the intersection are currently developed, which means acquiring additional ROW for turning lanes would be costly. The estimated project cost for upgrading this intersection is $\$ 11.1$ million. This includes ROW acquisition; see Chapter 4 for a discussion of ROW acquisition. Further improvements may be prudent to plan for further growth; however, they are not considered to contribute to the cost of this project since the improvements, as stated, create an acceptable intersection that will meet the ODOT mobility target.

W. Elm Avenue (OR 207)/N.W. 11th Street

Because this intersection was found to exceed its ODOT mobility target, improvements to the intersection would be needed. Since analysis found that the eastbound approach movements would be significantly increased, an eastbound right-turn lane would be required to enable the intersection to operate within acceptable capacity limits. The estimated project cost for this improvement is $\$ 810,000$.

W. Elm Avenue (OR 207)/N. 1st Street

With a projected volume to capacity ratio of 99 percent of the ODOT mobility target, this intersection would need enhanced to accommodate further traffic growth. The Kittelson technical memo indicates that this intersection would benefit from the construction of a southbound left-turn lane on N. 1st Place and construction of an eastbound right-turn lane on W. Elm Avenue. ODOT is aware that this intersection will need upgraded regardless of whether a new bridge is constructed. They have investigated upgrade options and completed preliminary designs. Based on those preliminary designs, in 2021 ODOT estimated the total project cost for the intersection improvements to be \$6,000,000.

Powerline Road/Bellinger Road

This intersection will change from a rural intersection to a much more heavily used intersection. Since southbound left-turn movements and westbound right-turn movements are expected to substantially increase, construction of a dedicated southbound left-turn lane and a dedicated westbound right-turn lane would be required. The estimated project cost for these upgrades is $\$ 295,000$.

I-82/Powerline Road Interchange

Construction of a bridge on W. Elm Avenue is anticipated to generate increased traffic on the I-82 interchange. While improvements to the interchange are beyond the scope of this project, Kittelson \& Associates, Inc., recommends a study effort called an Interchange Area

Management Plan (IAMP) be completed. The IAMP would formally identify a preferred interchange improvement plan and recommend improvements to the I-82/Powerline Road interchange. The estimated fee for developing an IAMP is $\$ 140,000$.

Travel Corridor

The Kittelson technical memo states that a two-lane travel corridor (one lane each way) would be sufficient to accommodate projected traffic demands. Exceptions would occur at intersections requiring additional lanes for turning movements, which were previously discussed. Although a full buildout to an urban major arterial standard per City of Hermiston Standard Drawing ST07, as shown in Appendix C, is not required to meet projected traffic demands, it is prudent to plan for future roadway expansion since this travel corridor would essentially operate like a major arterial. As such, it is recommended that sufficient ROW be acquired as part of this project to plan for future road expansion. ROW acquisition for this purpose is discussed in Chapter 4, and anticipated cultural and environmental requirements are discussed in Chapter 5.
W. Elm Avenue Extension and Bellinger Road are currently gravel roads with no curb, gutter, or sidewalk. Powerline Road is currently a chip-sealed road and also has no curb, gutter, or sidewalk. The rest of the travel corridor along W. Elm Avenue is paved in asphalt concrete pavement (ACP) and has a mixture of areas with and without curb, gutter, and sidewalk. For the purposes of this PER, it was assumed that the travel corridor would be improved to two 12-foot travel lanes and two 5-foot bike lanes with curb/gutter and a 5-foot sidewalk. Full street improvements would be needed beginning just west of the intersection of N.W. 11th Street and W. Elm Avenue. From there, improvements would be needed west to Powerline Road and then north to the I-82/Powerline Road interchange. Furthermore, infill of curb, gutter, and sidewalk would be needed in some areas along W. Elm Avenue east of N.W. 11th Street. The estimated project cost for these road improvements, including ROW acquisition, is $\$ 11.1$ million.

C. Punkin Center Road Option

Bridge Structure

Based on a desktop review, the OHW width for the river at the Punkin Center Road Bridge crossing is approximately 100 feet. The bridge is anticipated to cross the river at an approximate 35-degree skew. The floodway measured along the line of travel is approximately 350 feet wide. The spans for this bridge were chosen based on several criteria. First, the spans had to be symmetrical, which usually lends to a more economical design. Second, the bridge had to cross the entire floodway to minimize environmental impacts and ensure that travel ways would not be damaged during a typical flood event. Third, a single segment of the bridge had to completely span across the OHW width portion of the river (no piers or abutments were assumed to be located in the OHW area). The bridge must also span 2.2 times the OHW width as discussed at the beginning of this chapter, and 2.2 times the OHW width of 100 feet projected onto the skewed bridge travel corridor is approximately 270 feet. Since the total floodway width of approximately 350 feet is much larger than the required span of 270 feet, both span requirements are easily met by spanning the entire floodway. Three equal 200-foot spans were selected to meet these criteria, as shown on Figure 3-2. The total span of this bridge option is estimated to be 600 feet.

The approximate bridge profile as shown on Figure 3-2 was determined based on two criteria. First, the bottom (low chord) of the bridge had to be a minimum of 3 feet above the 100 -year flood elevation. This is an ODOT requirement that is typically deferred to when the local jurisdiction does not have a specific separation requirement. The 3 feet of separation provides sufficient space to enable floating debris to pass under the bridge in the 100 -year flood event. Second, the approximate bridge profile was selected to effectively daylight into the existing topography to provide smooth passage for vehicular traffic and to minimize the amount of cut/fill that will be required.

Bridge width was determined assuming two 12 -foot travel lanes, two 6 -foot wide bike/shoulder lanes, and two 6 -foot wide sidewalks. This totals a width of 48 feet. Note that the bike/shoulder lane is one foot wider on the bridge than the rest of the travel corridor for the same reasons discussed previously under the Elm Avenue Option section above. Although a bridge type was not specifically selected as part of this PER, the bridge is anticipated to be either prestressed concrete or steel. Bridge type should be selected when a preliminary design is completed as part of the actual design process. A planning-level cost of $\$ 490$ per square foot was used to conservatively estimate bridge project costs. The total area of the bridge, given a span of 600 feet and a width of 48 feet, is 28,800 square feet. At $\$ 490$ per square foot, the total cost for the bridge structure is estimated to be approximately $\$ 14.1$ million. Adding approximately $\$ 450,000$ for the earthwork required for the roadway on either side of the river brings the total estimated project cost to $\$ 14.5$ million.

Although this PER assumes that the bridge crosses the river at a 35 -degree skew to keep the travel corridor straight, other options exist where the bridge could cross at a smaller skew provided that the travel corridor geometry is permitted to deviate from a straight line. Decreasing the skew angle would lead to a shorter total bridge span and a reduced cost for the bridge structure. Although this could generate some cost savings, the floodway width would be decreased by a much smaller amount than is the case with the Elm Avenue option.

Roadway Improvements

Chapter 2 discusses the impacts to the transportation system from an analysis perspective. Based on those analyses, recommendations to improve the travel corridor were made. Many of the recommended improvements occur at intersections. Additional improvements are needed where no ROW currently exists. Improvements to the driving surface will also be required to increase roadway durability to account for increased traffic.

Discussions with ODOT revealed that this travel corridor is unlikely to ever become a state highway. They indicated that the only way the travel corridor could ever become a state route would be if Umatilla County took over other existing state routes as a trade for ODOT taking over the Punkin Center Road option travel corridor. Because this is highly unlikely to occur, City of Hermiston standards were used a basis for recommended travel corridor improvements.

Intersections

U.S. 395/Punkin Center Road

Although analysis of this intersection did not project it to exceed capacity, it was found that significant delays were expected for eastbound right-turn movements. To better manage this issue, an eastbound right-turn lane is recommended. The property on the southwest corner of the intersection is currently vacant. Utility pedestals would likely need to be relocated as part of this project. Depending on the design, the new turn lane could pass behind the traffic signals to preclude their relocation and save cost. The estimated project cost for these improvements is $\$ 260,000$, not including ROW acquisition.

U.S. 395/W. Elm Avenue (OR 207)

Similar to the Elm Avenue option, this intersection was found to exceed capacity regardless of a bridge being constructed in line with W. Punkin Center Road. Although construction of a bridge under the Punkin Center Road option is estimated to worsen capacity deficiencies, when compared to the Elm Avenue option, capacity deficiencies are only slightly affected. Regardless of whether a bridge is constructed, this intersection would need the same improvements as if the bridge for the Elm Avenue option were constructed. These improvements were discussed in the Elm Avenue Option section above and, similar to the Elm Avenue option, they would result in satisfactory traffic conditions. However, unlike the Elm Avenue option, the intersection would not operate at full capacity after the completion of these improvements, which means that some amount of future growth could be accommodated. ROW acquisition would be the same as for the Elm Avenue option and would be costly. Because the intersection would need upgrading regardless of whether the Punkin Center Bridge is constructed, and because the bridge would have only a slight effect on traffic congestion, it is anticipated that ODOT would need to upgrade this intersection. The estimated project cost for upgrading this intersection is $\$ 11.0$ million. This includes ROW acquisition; see Chapter 4 for a discussion of ROW acquisition.

Umatilla River Road/W. Punkin Center Road

Extending the existing W. Punkin Center Road west to the bridge construction site would form a new intersection at Umatilla River Road and would replace the existing intersection of Cooney Lane and Umatilla River Road. A conceptual illustration of this intersection is shown in Exhibit A (page 22) of the Kittelson technical memo. This illustration depicts dedicated left-turn lanes and shared through/right-turn lanes on all approaches. The illustration also shows an S-curve travel corridor between the bridge and the current end of W. Punkin Center Road. Based on projected traffic movements, volumes, and a planninglevel signal warrant analysis, this intersection would need traffic control measure beyond two-way stop control. Installing a traffic signal would be the most likely option. A roundabout could be considered, but the proximity to the railroad would make this difficult without additional ROW acquisition and the demolition of some adjacent residential structures. Regardless of which traffic control measures are constructed, the Union Pacific Railroad (UPRR) crossing will need to be upgraded and Cooney Lane will need to be modified to intersect the new extension of W. Punkin Center Road. Exhibit A in the Kittelson technical
memo shows the railroad crossing remaining in the same location. If alternative alignments are considered, a new railroad crossing may be needed at a different location than the existing crossing. For each new railroad crossing constructed, the UPRR requires that three other existing crossings be closed. For this reason, it would be disadvantageous to construct a new crossing. The alignment of the proposed Punkin Road extension between Sunshine Lane and the railroad is discussed later in this chapter, in the Travel Corridor section, as is the modification to Cooney Lane. The estimated project cost of a traffic signal-controlled intersection with turn lanes as described and an upgrade to the railroad crossing is $\$ 4.8$ million. This cost may vary depending on the final design configuration of this intersection.

Powerline Road/Country Lane

As previously stated, ODOT requires intersections to be located at least 0.25 mile away from any highway interchange. Currently, the intersection of Powerline Road and Country Lane is approximately 275 feet south of the I-82/Powerline Road interchange. The intersection would need to be moved farther south to meet ODOT's minimum spacing requirements, which would entail realigning a section of Country Lane to deflect traffic farther south before intersecting Powerline Road. Because of the complexity resulting from proximity to the highway interchange and because this would involve many different stakeholders (potentially including the City of Hermiston, ODOT, private landowners, Umatilla County, and the City of Umatilla), Kittelson \& Associates, Inc., recommends a separate IAMP study effort. The IAMP would formally identify a preferred interchange improvement plan including the design, timing, and ROW needs for a relocated intersection. Estimated fees for developing an IAMP are discussed in the I-82/Powerline Road Interchange section for the Elm Avenue option.

Although many options exist, one potential concept for the realignment of Country Lane to create a new intersection is illustrated in Exhibit B (page 24) of the Kittelson technical memo. This configuration includes closing off the existing Country Lane/Powerline Road intersection and realigning Country Lane to create a new intersection at Powerline Road approximately 1,500 feet south of the I-82 interchange. Regardless of where the new intersection along Powerline Road is created, a southbound left-turn lane and westbound right- and left-turn lanes would be needed. Although an IAMP would be needed to formally assess cost, a planning-level project cost estimate is $\$ 290,000$.

I-82/Powerline Road Interchange

Similar to the Elm Avenue option, construction of a bridge on W. Punkin Center Road is anticipated to generate increased traffic on the I-82 interchange. While improvements to the interchange are beyond the scope of this project, Kittelson \& Associates, Inc., recommends an IAMP study effort be completed. The IAMP would include recommended improvements to the interchange and formally identify a preferred interchange improvement plan. The main difference from the Elm Avenue option is that this IAMP would provide recommendations for improvements to the Powerline Road/Country Lane intersection. The estimated fee for developing an IAMP is $\$ 140,000$.

Travel Corridor

The Kittelson technical memo states that a two-lane travel corridor (one lane each way) is sufficient to accommodate projected traffic demands. Exceptions would occur at intersections requiring additional lanes for turning movements, which were discussed previously. Although a full buildout to an urban major arterial standard per City of Hermiston Standard Drawing ST07 (see Appendix C of this PER) is not required to meet projected traffic demands, it would be prudent to plan for future roadway expansion since this travel corridor would essentially operate like a major arterial. As such, it is recommended that sufficient ROW be acquired as part of this project to plan for future road expansion. ROW acquisition for this purpose is discussed in Chapter 4.
W. Punkin Center Road from U.S. 395 to Sunshine Lane is currently a chip seal road. An approximately 1,130 -foot long half street improvement was completed on the southern half of W. Punkin Center Road as part of the Overlook Ridge subdivision. The half street improvement included ACP with curb, gutter, and sidewalk. This is the only section along the entire corridor that does not require improvements.

From the intersection of Sunshine Lane and W. Punkin Center Road, W. Punkin Center Road would need to be extended west through what is currently private property. The extension of W. Punkin Center Road would continue until it crosses the railroad intersection near Umatilla River Road, where the intersection of Cooney Lane and Umatilla River Road currently exists. Requirements for this intersection and the railroad crossing were previously discussed. Cooney Lane would need to be reconfigured to connect to the new extension of W. Punkin Center Road. The road would then cross the Umatilla River Bridge and continue west until it connects to Country Lane. This entire section of new road would be built on what is now almost exclusively privately owned property. Since no road currently exists in these locations, full improvements would be required as previously discussed.

Once connected to Country Lane, the travel corridor would continue west along Country Lane until it intersects Powerline Road. From that intersection it would turn north and continue until it connects to the I-82/Powerline Road interchange. Country Lane is currently a gravel road, and Powerline Road is a chip seal road. Both roads would need to be improved to the standards discussed above. The estimated project cost for upgrading the travel corridor to two asphalt paved travel lanes with paved shoulders, curb, gutter, and sidewalk, is $\$ 12.6$ million, including ROW acquisition.

D. Summary

This chapter discusses needed improvements to the transportation system. The bridge structure is the critical improvement that drives all other necessary system improvements. The OHWE and the OHW width were defined and their effect on bridge span was discussed. The floodplain and floodway were characterized and their impacts on bridge span were examined. For both bridge options, it was determined that spanning the floodway utilizing a multi-span structure with one single bridge section clear-spanning the OHW width is recommended.

It was noted that FEMA is currently in the process of analyzing the Umatilla River reach to revise their FIS and corresponding FIRM. Changes to floodplains in the potential project areas are not likely to be
significant. Because the potential project areas are located within the floodplain and floodway, FEMA development standards will apply. Because intermediate bridge supports will need to be located within the floodway, a no-rise certification would typically be required; however, it is unlikely that a no-rise situation can be demonstrated for either bridge option. Thus, a hydraulic analysis will need to be completed along with a CLOMR and a LOMR, regardless of which bridge option is selected.

For the Elm Avenue option, the bridge is expected to be approximately 750 feet long. Upgrades to many of the intersections along the travel corridor are required. The majority of the travel corridor itself would need to be upgraded to current standards with two travel lanes, paved shoulders, and curb, gutter, and sidewalk on each side of the corridor. Specific upgrades and associated costs are summarized on the table below.

For the Punkin Center Road option, the bridge is expected to be approximately 600 feet long. Upgrades to many of the intersections along the travel corridor are required, and several intersections would need to be relocated or newly constructed. The existing railroad crossing would need to be upgraded. Most of the travel corridor itself would need to be upgraded to current standards with two travel lanes, paved shoulders, and curb, gutter, and sidewalk on each side of the corridor. Specific upgrades and associated costs are summarized on the table below.

TABLE 3-1
TRANSPORTATION SYSTEM IMPROVEMENTS SUMMARY

Elm Avenue Option		Punkin Center Road Option	
Improvement	Cost	Improvement	Cost
- Bridge (750 feet long)	\$19,400,000	- Bridge (600 feet long)	\$14,500,000
U.S. 395/W. Elm Avenue (OR 207) - Northbound right-turn lane, a southbound right-turn lane, and a westbound right-turn lane - Improvements would meet mobility target but not provide room for future traffic growth - ROW acquisition is costly (see Chapter 4) - ODOT is aware this intersection will need upgraded regardless of bridge construction	\$11,000,000	U.S. 395/W. Elm Avenue (OR 207) - Northbound right-turn lane, a southbound right-turn lane, and a westbound right-turn lane - Improvements would meet mobility target and allow for some future traffic growth - ROW acquisition is costly (see Chapter 4) - ODOT is aware that this intersection will need upgraded regardless of bridge construction	\$11,000,000
W. Elm Avenue (OR 207)/N.W. 11th Street - Eastbound right-turn lane	\$810,000	U.S. 395/Punkin Center Road - Eastbound right-turn lane recommended	\$260,000
W. Elm Avenue (OR 207)/N. 1st Street - Southbound left-turn lane and an eastbound right-turn lane - ODOT is aware that this intersection needs upgraded regardless of bridge construction	\$6,000,000	Umatilla River Road/W. Punkin Center Road - Traffic-signal - Dedicated left-turn lane and shared through/right-turn lane on all approaches - Upgrade to railroad crossing	\$4,800,000

Elm Avenue Option		Punkin Center Road Option	
Improvement	Cost	Improvement	Cost
Powerline Road/Bellinger Road - Southbound left-turn lane and westbound right-turn lane	\$295,000	Powerline Road/Country Lane - Intersection needs relocated per ODOT requirements	\$290,000
I-82/Powerline Road Interchange - Improvements are beyond the scope of this PER - An IAMP would be required	$\$ 140,000$ (IAMP only)	I-82/Powerline Road Interchange - Improvements are beyond the scope of this PER - An IAMP would be required	$\begin{array}{r} \$ 140,000 \\ \text { (IAMP only) } \end{array}$
Travel Corridor - Corridor from I-82 to U.S. 395 upgraded to two 12-foot travel lanes, two 5-foot bike lanes, curb, gutter, and 5-foot sidewalks	\$11,100,000	Travel Corridor - Corridor from I-82 to U.S. 395 upgraded or newly constructed to two 12-foot travel lanes, two 5 -foot bike lanes, curb, gutter, and 5-foot sidewalks	\$12,600,000
Total:	\$48,745,000	Total:	\$43,590,000

Chapter 4 - Land Use and Acquisition

A. Overview

Because a new bridge across the Umatilla River would fundamentally change traffic patterns and future land use, it is imperative that additional right-of-way (ROW) be acquired. ROW acquisition and careful planning are essential to successfully develop a new travel corridor across the Umatilla River that would accommodate future growth, increased traffic flows, and changes in land use. This chapter discusses needed ROW acquisition and existing land use. ROW acquisition required for intersection improvements is included in the estimated costs for improvements in Chapter 3.

The size and locations of properties discussed in this chapter were determined from the Umatilla County Assessor's maps. The information from the Umatilla County Assessor's website was assumed to be correct for the purposes of this Preliminary Engineering Report (PER). Figures 4-1A through 4-1D and $4-2 A$ through $4-2 C$ show ROW acquisition locations for properties adjacent to potential future travel corridors. Figures 4-3 and 4-4 summarize the cost of ROW acquisition from each property in tabular form.

B. Elm Avenue Option

Land and Right-of-Way Acquisition

The Elm Avenue option consists of approximately 3.5 miles of roadway stretching from Interstate 82 (I-82) to U.S. 395. According to the Umatilla County tax lot maps, the existing ROW within the City of Hermiston on Elm Avenue is 66 feet wide. The ROW in the County along Powerline Road and Bellinger Road is 40 feet wide. East of N.W. 7th Street, Elm Avenue is currently classified as an urban minor arterial. West of N.W. 7th Street, Elm Avenue is classified as a rural arterial. Because land use and development would be drastically impacted by construction of a new bridge, it is prudent to assume that the travel corridor would eventually become an urban major arterial and to plan for future road expansion.

The City of Hermiston's Transportation System Plan (TSP) and City of Hermiston Standard Drawing ST07 (see Appendix C) indicate that ROW widths for an urban major arterial are 86 feet to 98 feet. Assuming that future sidewalk will abut the back of curb, a ROW width of approximately 90 feet would be needed. Because the proposed ROW is larger than the existing ROW, additional ROW would need to be acquired. Furthermore, there are areas where no ROW currently exists, and completely new ROW would need to be acquired. Figures 4-1A through 4-1D show the Elm Avenue travel corridor from I-82 to U.S. 395. Additional ROW would need to be acquired from most tax lots adjacent to this travel corridor as shown on these figures.

The tax lot numbers shown on Figures 4-1A through 4-1D correspond with the tax lots listed on Figure 4-3. Figure 4-3 documents how much area would need to be acquired from each tax lot. Approximate costs for ROW acquisition from each lot are also calculated. For the purposes of estimating costs, current real market values for each property were used. Real market values were divided by total tax lot area to estimate a price per square foot. That price per square foot was then multiplied by the area of ROW that would be acquired from that tax lot. A multiplier of 1.5 was used
to increase the cost estimates for acquiring the ROW. The multiplier is not intended to increase the estimate of the actual sale price of the land; rather, it is intended to account for other factors in the land acquisitions process including, but not limited to, legal fees, administrative costs, coordination efforts, property functionality conflicts, and other contingency items. The estimated total cost, in 2022 dollars, for ROW acquisition for the Elm Avenue option is $\$ 2.27$ million.

In addition to road widening, the Oregon Department of Transportation (ODOT) has indicated that if the Elm Avenue option is used, the intersection at U.S. 395 and W. Elm Avenue would need to be upgraded significantly. This is further discussed in Chapter 3. Additional space would be needed in an already tight intersection. Likely, the only viable way to acquire the space necessary to upgrade the intersection would be to acquire the properties on all four corners of the intersection. McDonald's is located on Tax Lot 4N2802C001402, which has a real market value of $\$ 1,677,470$. Shiki Hibachi Sushi is located on Tax Lot 4N2811BB00600, which is currently owned by Wadekamper Investments, LLC, and has a real market value of $\$ 531,700$. Starbucks is located on Tax Lot 4N2810AA00300, which is currently owned by Legacy Pacific, LLC, and has a real market value of $\$ 794,720$. Jack in the Box is located on Tax Lot 4N2803D002502, which is also currently owned by Legacy Pacific, LLC, and has a real market value of $\$ 753,640$. Applying the same 1.5 multiplier as previously mentioned, the cost of acquiring these four properties amounts to approximately \$5.64 million.

Chapter 3 indicates that right-turn lanes would be needed for the northbound, southbound, and westbound approaches at the intersection of U.S. 395 and W. Elm Avenue. It is possible that the required design length for the northbound and southbound right-turn lanes would exceed the existing dimensions of the properties discussed in the previous paragraph. This PER assumes turn lane lengths are capped by the existing corner property dimensions. The cost estimate in Chapter 3 reflects this assumption.

Land Use (Zoning)

Land within the project corridor has various zoning designations, as the corridor encompasses the City of Hermiston, the Hermiston urban growth boundary (UGB), and Umatilla County. Figure 4-5A, City of Hermiston Zoning, shows the zoning designations of the land within city limits; Figure 4-5B, Umatilla County Zoning, shows the zoning designations of the land outside city limits and the UGB; and Figure 4-5C, Comprehensive Land Use Map, shows the zoning designations of the land within the UGB but outside the city limits. The zoning designations within the project corridor includes Exclusive Farm Use (EFU)-20, EFU-40, Open Space (OS), City Future Residential (F-R), City MultiStructure Residential (R-4), City Outlying Commercial (C-2), City Low Density Residential (R-1), and City Light Industrial (M-1).

One advantage of the Elm Avenue option is that it would provide for increasing development along a travel corridor that is more directly centrally connected to the City of Hermiston. The City of Hermiston and Umatilla County would need to carefully plan for increased development on the west side of the Umatilla River. Permitting, environmental, and cultural resource requirements are discussed in Chapter 5.

C. Punkin Center Road Option

Land and Right-of-Way Acquisition

The Punkin Center Road option consists of approximately 2.5 miles of roadway stretching from l-82 to U.S. 395. According to the Umatilla County tax lot maps, the existing ROW on Punkin Center Road is 66 feet wide. The existing ROW in the County along Cooney Lane is 60 feet wide, and Country Lane is 40 feet wide. Punkin Center Road is currently classified as an urban major collector. Country Lane is classified as a rural arterial. Because land use and development would be drastically impacted by the construction of a new bridge, it is prudent to assume that the travel corridor would eventually become an urban major arterial and plan for future road expansion.

The City of Hermiston's TSP and City of Hermiston Standard Drawing ST07 (see Appendix C) indicate that ROW widths for an urban major arterial are 86 feet to 98 feet. Assuming that future sidewalk would abut the back of curb, a ROW width of approximately 90 feet would be needed. Because the proposed ROW is larger than the existing ROW, additional ROW would need to be acquired. Furthermore, there are areas where no ROW currently exists, and completely new ROW would need to be acquired. Figures 4-2A through 4-2C show the Punkin Center Road option travel corridor. Additional ROW would need to be acquired from most tax lots that are adjacent to this travel corridor, as shown on these figures.

The tax lot numbers shown on Figures 4-2A through 4-2C correspond with the tax lots listed on Figure 4-4. Figure 4-4 documents how much area would need to be acquired from each tax lot. Approximate costs for ROW acquisition from each lot are also calculated. The same process used to estimate ROW acquisition costs for the Elm Avenue option was used for the Punkin Center Road option. The estimated total cost, in 2022 dollars, for ROW acquisition for the Punkin Center Road option is $\$ 3.65$ million.

Although ODOT did not explicitly indicate the intersection at U.S. 395 and W. Elm Avenue would need to be upgraded as a result of constructing a bridge in line with W. Punkin Center Road, the Kittelson technical memo shows that the intersection would need to be upgraded as discussed in Chapter 3. Property acquisition at this intersection would cost the same as it would for the Elm Avenue option (approximately $\$ 5.64$ million). The main difference from the Elm Avenue option is that the bridge for the Punkin Center Road option would not be a significant catalyst for increased traffic congestion. Forecasted population growth and thus an increase in the number of vehicles on public roadways contribute significantly more to traffic congestion at this intersection than does bridge construction for the Punkin Center Road option. See Chapters 2 and 3 for further discussion on this topic. As such, there is potential for these intersection upgrades to be excluded from the overall bridge project costs. However, costs for upgrades to this intersection are still included with the Punkin Center Road option for planning purposes.

Land Use (Zoning)

Land within the project corridor has various zoning designations, as the corridor encompasses the City of Hermiston, the Hermiston UGB, and Umatilla County. Figure 4-5A, City of Hermiston Zoning, shows the zoning designations of the land within city limits; Figure 4-5B, Umatilla County Zoning, shows the zoning designations of the land outside of the city limits and the UGB; and Figure 4-5C,

Comprehensive Land Use Map, shows the zoning designations of the land within the UGB but outside the city limits. The zoning designations within the project corridor includes EFU-20, EFU-40, Rural Residential-2 (RR-2), Retail/Service Commercial (RSC), Light Industrial (LI), Low Density Residential (L), Medium Density Residential/Mobile Home (MH), City Multi-Structure Residential (R-4), Commercial (C), City Low Density Residential (R-1), and City Future Industrial (F-I).

A disadvantage of the Punkin Center Road option is that it provides for increasing development along a travel corridor that is not centrally connected to the City of Hermiston, although this would become less of an issue as the northwestern corner of Hermiston within the UGB continues to develop. The City of Hermiston and Umatilla County would need to carefully plan for increased development along the Punkin Center Road option travel corridor if this option is selected. Permitting, environmental, and cultural resource requirements are discussed in Chapter 5.

D. Summary

TABLE 4-1
LAND USE AND ACQUISITION SUMMARY ${ }^{1}$

Elm Avenue Option	Punkin Center Road Option
- Travel corridor is linked more closely to the city	$\bullet \quad$Less ROW acquisition (2.5-mile travel corridor) center.
than the Elm Avenue option	

${ }^{1}$ See Table 3-1 for a summary of estimated costs for both land acquisition and transportation system improvements.

CITY OF HERMISTON, OREGON
UMATILLA RIVER BRIDGE preliniinary engineering report PUNKIN CENTER ROAD OPTION RIGHT-OF-WAY ACQUISITION COST

Tax Lot Map \#	$\begin{gathered} \text { Account } \\ \# \\ \hline \end{gathered}$	Property Frontage Length (ft) ${ }^{1}$	Property Width Required (ft) ${ }^{2}$	Area Required$(\mathrm{SF})^{3}$	Real Market Value ${ }^{4}$	Tax Lot Size ${ }^{5}$		Real Market Value per SF ${ }^{6}$			
						(Acres)	(SF)				
4N28B00002100	117266	3,450	25	86,250	\$ 918,780	131.24	5,716,814		0.16	\$	20,800
4N28B00002200	117268	1,020	25	25,500	432,010	38.59	1,680,980		0.26		9,900
4N28B00002302	117272	341	25	8,525	582,300	5.00	217,800		2.67		34,200
4N28B00002303	117273	330	25	8,250	20,890	4.85	211,266		0.10		1,300
4N28B00002304	117275	330	25	8,250	595,630	4.85	211,266		2.82		34,900
4N28B00002305	117277	650	25	16,250	149,090	4.37	190,357		0.78		19,100
4N2803AA00200	119107	546	12	6,552	2,727,010	30.39	1,323,788		2.06		20,300
4N2803AB00500	119120	467	12	5,604	157,350	5.00	217,800		0.72		6,100
4N2803B000100	119155	410	12	4,920	931,670	20.45	890,802		1.05		7,800
5N28330000400	124650	1,130	25	28,250	518,860	80.75	3,517,470		0.15		6,300
5N28330001500	124651	1,000	25	25,000	410,930	30.25	1,317,690		0.31		11,700
5N28330001700	124655	198	25	4,950	312,510	2.04	88,862		3.52		26,200
5N28C00006300	124656	1,960	25	49,000	246,460	60.00	2,613,600		0.09		7,000
5N28C00006400	124657	950	25	23,750	189,440	22.52	980,971		0.19		6,900
5N2833D000300	124707	200	25	5,000	599,260	7.75	337,590		1.78		13,400
5N2833D000800	124716	500	45	22,500	455,880	3.75	163,350		2.79		94,200
5N2833DC00900	124726	819	45	36,855	413,580	2.78	121,282		3.41		188,600
5N2834C001200	124902	50	12	600	3,190	1.18	51,401		0.06		100
5N2834C001300	124912	273	12	3,276	440,930	2.02	87,991		5.01		24,700
5N2834C001400	124915	341	12	4,092	411,360	2.02	87,991		4.68		28,700
5N2834C001900	124926	470	12	5,640	429,260	16.65	725,274		0.59		5,100
5N2834C001901	124927	204	12	2,448	460,880	2.01	87,556		5.26		19,400
5N2834D001502	124975	305	12	3,660	125,630	2.00	87,120		1.44		8,000
5N2834D001503	124976	305	12	3,660	62,490	2.00	87,120		0.72		4,000
5N2834D001700	124980	540	12	6,480	7,165,840	4.20	182,952		39.17		380,800
4N2804A000300	135297	520	45	23,400	45,161,200	23.34	1,016,690		44.42		1,559,200
4N2804A000400	135298	350	45	15,750	89,730	4.00	174,240		0.51		12,200
4N2803B000200	135672	1,000	45	45,000	1,695,990	38.40	1,672,704		1.01		68,500
5N28330000100	135746	315	65	20,475	131,500	65.75	2,864,070		0.05		1,500
5N2834D001708	135773	200	12	2,400	924,730	1.69	73,616		12.56		45,300
4N2804A000100	142124	511	45	22,995	347,090	2.00	87,120		3.98		137,500
4N28B00003703	142968	25	25	625	1,100	0.55	23,958		0.05		100
4N28B00002308	143080	25	25	625	520	0.26	11,326		0.05		100
5N2834D001507	143787	30	12	360	134,780	2.08	90,605		1.49		900
5N2834C001904	146370	208	12	2,496	151,560	1.97	85,813		1.77		6,700
5N2833D000602	148638	205	45	9,243	329,390	10.66	464,350		0.71		9,900
4N2803B000109	148726	509	12	6,108	146,070	2.00	87,120		1.68		15,400
5N2833D000603	150118	592	45	26,640	193,720	2.87	125,017		1.55		62,000
4N2803B000111	150343	225	12	2,700	555,180	2.07	90,169		6.16		25,000
5N2834C001905	150385	204	12	2,448	231,120	2.13	92,783		2.49		9,200
5N2834C001109	152706	281	12	3,372	629,010	1.72	74,923		8.40		42,500
5N2834C001110	152707	291	12	3,492	610,960	1.72	74,923		8.15		42,800
5N2834C001906	158336	208	12	2,496	400,390	1.99	86,684		4.62		17,300
5N28C00006001	158439	650	25	16,250	645,450	20.00	871,200		0.74		18,100
4N2803AB04300	160024	72	12	864	335,770	0.21	9,148		36.71		47,600
4N2803AB07300	160086	118	12	1,416	327,190	0.25	10,890		30.04		63,900
4N2803B000112	161466	100	12	1,200	114,560	1.26	54,886		2.09		3,800
4N2803B000113	161467	175	12	2,100	187,810	2.98	129,809		1.45		4,600
4N2803AA01700	163665	10	12	120	275,620	0.20	8,528		32.32		5,900

${ }^{1}$ Property frontage length is based on tax maps when information is available and estimated when distances are not provided.
${ }^{2}$ Property width required is based on the current right-of-way (ROW) width, location of property lines on tax maps, and the width of the proposed ROW.
${ }^{3}$ Area required is the result of multiplying the property frontage length and the property width required.
${ }^{4}$ The real market value of the tax lot is the real market value available from the Umatilla County Assessment and Taxation Web Query in January 2022.
${ }^{5}$ The tax lot size is the tax lot size available from the Umatilla County Assessment and Taxation Web Query in January 2022.
${ }^{6}$ The real market value per square foot is the result of dividing the real market value by the tax lot size in square feet.
${ }^{7}$ The estimated cost is an approximate estimate of the cost of purchasing any required property. The estimated cost is the result of multiplying the real market value per square foot, the area required, and a 1.5 multiplier to account for legal, administrative, contingencies, and any other fees. Values have been rounded to the nearest 100 .
$\mathrm{ft}=$ feet
$\mathrm{SF}=$ square feet

Chapter 5 - Permitting, Environmental, and Cultural Resources

A. Overview

The following environmental review is an evaluation of the natural and cultural resources within and near the proposed project corridors. This review is cursory in nature and identifies elements to consider when planning for each of the proposed project options. Potential impacts to each resource are described along with potential mitigation measures and potentially required permits. All analyses were conducted via a desktop review of resources; a site visit was not completed for this work.

B. Elm Avenue Option

Goal 5 Resource Mapping

Oregon's Statewide Planning Goal 5: Natural Resources, Scenic and Historic Areas, and Open Spaces requires review and consideration of important local resources to protect natural resources and conserve scenic and historic areas and open spaces. The Oregon Statewide Planning Goal 5 resources are addressed below.

- Riparian corridors, including water and riparian areas and fish habitat: The Elm Avenue option crosses the Umatilla River and its riparian corridor. According to a preliminary assessment by project engineers, the project would likely not require work below the ordinary high water elevation (OHWE) of the Umatilla River.
- Wetlands: Several wetlands occur near the Elm Avenue option, as discussed in the Wetlands and Waterways section below.
- Wildlife habitat: According to the City of Hermiston Comprehensive Plan, the Oregon Department of Fish and Wildlife (ODFW) has identified two critical habitats: the eastern bank of the Umatilla River and a three-acre pond in northeast Hermiston. These two areas and the Oregon State University (OSU) agricultural research station have been designated as Open Space, which protects them from incompatible development. The SageCon Landscape Planning Tool shows that there is no sage grouse habitat in Umatilla County (Oregon Explorer, 2021).
- Federal wild and scenic rivers: The National Wild and Scenic Rivers (NWSR) System map indicates that no designated Wild and Scenic Rivers are located within the Elm Avenue option (NWSR, 2016).
- State scenic waterways: The Oregon's Scenic Waterways list indicates that no designated State Scenic Waterways are located within the Elm Avenue option (Oregon Parks and Recreation Department [OPRD], 2021).
- Groundwater resources: According to the Oregon Water Resources Department (OWRD), the Elm Avenue option is located within the Stage Gulch, Butter Creek, and Ordinance Gravel critical groundwater areas (OWRD, 2016). Because the nature of the proposed work
does not include discharges to groundwater, the project is not anticipated to affect the Stage Gulch, Butter Creek, or Ordinance Gravel critical groundwater areas (see Figure 5-1, Critical Groundwater Areas).
- Approved Oregon recreation trails: According to Oregon State Parks, no designated scenic or regional trails are located near the Elm Avenue option (Oregon State Parks, 2021).
- Natural areas: The Cold Springs National Wildlife Refuge and the Umatilla National Wildlife Refuge are located near the City of Hermiston; however, neither occurs near the Elm Avenue option.
- Wilderness areas: The nearest wilderness area is the North Fork Umatilla Wilderness located approximately 50 miles east of the Elm Avenue option (Wilderness Connect, 2021).
- Mineral and aggregate resources: According to the City of Hermiston Comprehensive Plan, there are only two economically viable sand and gravel pits within the Hermiston urban growth boundary (UGB). Neither is located near the Elm Avenue option.
- Energy sources: According to the City of Hermiston Comprehensive Plan, the City is located near two major energy generators: the McNary Dam and the Portland General Electric (PGE) coal-fired electrical generating plant. Neither is located near the Elm Avenue option.
- Cultural Areas: Cultural resources and historic properties that occur within 1 mile of the project corridor are discussed in the Cultural Resources and Historic Properties section below.

Due to the nature of the proposed project, the Elm Avenue option could result in impacts to riparian corridors, wetlands, wildlife habitat, and cultural areas. Due to the distance of Goal 5 Resources, the Elm Avenue option is not anticipated to impact federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources.

Wetlands and Waterways

According to the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) Mapper, there are several wetlands near the Elm Avenue option, consisting of freshwater emergent wetlands and freshwater forested/shrub wetlands (USFWS, 2021a) (see Figure 5-2, Wetlands and Waterways). A pending Local Wetlands Inventory exists for the area, but it has not been reflected on the Statewide Wetlands Inventory, as it has not been approved.

The Umatilla River, Westland F Canal, Westland A Canal, three unnamed ditches, and one freshwater pond are located within and adjacent to the Elm Avenue option (see Figure 5-2, Wetlands and Waterways).

A site visit will be necessary to verify the presence of wetlands and waterways. If jurisdictional wetlands or waterbodies will be impacted by the proposed project, they will be subject to the permit requirements of the state and federal Removal-Fill Law and may require wetland/water delineation and permitting from the Oregon Department of State Lands (DSL) and the U.S. Army Corps of Engineers (USACE).

Floodplains

According to the Federal Emergency Management Agency (FEMA) Map Service Center, FEMA Flood Insurance Rate Map (FIRM) Panel No. 41059C0577G, the Elm Avenue option is located within the 500- and 100-year floodplains and within the floodway (FEMA, 2021) (see Figure 3-1, River Crossing Plan and Profile Elm Avenue Option). Therefore, FEMA development standards may apply, and a Floodplain Development Permit may be required. Since structural elements of the bridge will likely be located within the floodway, it is unlikely that a no-rise condition can be demonstrated. Because bridge construction will likely preclude demonstration of a 0.00 foot change in the effective 100-year flood water surface elevation, the project will require a Conditional Letter of Map Revision (CLOMR) and, following construction of the bridge, a Letter of Map Revision (LOMR); see Chapter 3 for costs and a detailed discussion of these elements.

Soils and Farmland

The six soils mapped within the Elm Avenue option are shown on Table 5-1 along with the hydric status, drainage class, and farmland classification (Natural Resources Conservation Service [NRCS], 2021) (see Figure 5-3, Soils Map).

TABLE 5-1
SOILS FOUND WITHIN THE ELM AVENUE OPTION

Map Unit	Soil Name	Hydric Status	Drainage Class	Farmland Classification
14B	Burbank loamy fine sand, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
119A	Wanser loamy fine sand, 0 to 3 percent slopes	Yes	Poorly drained	Farmland of statewide importance
2B	Adkins fine sandy loam, gravelly substratum, 0 to 5 percent slopes	No	Well drained	Prime farmland if irrigated
122B	Winchester sand, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
124B	Winchester-Urban land complex, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
126A	Xerofluvents, 0 to 3 percent slopes	No	Somewhat poorly drained	Not prime farmland

The project will occur on previously disturbed farmland and on gravel and paved roads. If a federal nexus is identified (federal land, federal funding, federal permit, etc.), conversion of farmland to a non-farm use must comply with the guidelines of the Farmland Protection Policy Act, and farmland conversion impact consultation with the NRCS will be required. If improvements occur on Conservation Reserve Program (CRP) land, a waiver may be required.

Hydric soils have the potential to contain wetlands. A site visit will be necessary to verify the presence or absence of wetlands.

Protected Species

Listed species within the project corridor were obtained from the USFWS and National Marine Fisheries Service (NMFS) databases. The USFWS Information for Planning and Consultation (IPaC) list indicates that one threatened species (bull trout, Salvelinus confluentus) and bull trout critical habitat occur in the Umatilla River within the Elm Avenue option (USFWS, 2021b). The NMFS Protected Resources app indicates that one threatened species (Middle Columbia River [MCR] steelhead, Oncorhynchus mykiss) and steelhead critical habitat occur in the Umatilla River within the Elm Avenue option (NMFS, 2021a). The Umatilla River near the Elm Avenue option is also considered essential fish habitat (EFH) and is designated essential salmonid habitat (ESH) (NMFS, 2021b; DSL, 2021) (see Figure 5-4, Protected Species).

A search of the Oregon Biodiversity Information Center (ORBIC) database found 15 element occurrence records of rare, threatened, or endangered species within a 2-mile radius of the proposed project corridor, including federally listed steelhead and bull trout and state-listed Washington ground squirrel (Urocitellus washingtoni) (ORBIC, 2021). Depending on project funding or other considerations, a Washington ground squirrel survey may be required.

If no in-water work occurs, consultation under Section 7 of the Endangered Species Act (ESA) with the USFWS and NMFS would still be required if a federal nexus is identified for the project. To meet this requirement, a no effect memo may be required to document the lack of impacts to listed species. If in-water work is not required, the project will not be subject to an in-water work window.

If in-water work (or nearshore pile driving) occurs, formal consultation under Section 7 of the ESA with the USFWS and NMFS would be required. A USACE 404 Permit, DSL Removal-Fill Permit, and Oregon Department of Environmental Quality (DEQ) 401 Water Quality Certification Permit may be required. If the project requires in-water work, the project will be subject to the in-water work window for the Umatilla River of July 15 through September 30. If work occurs below the wetted edge of the Umatilla River, work area isolation, fish salvage, and ODFW fish passage approval may be required. The project is not anticipated to require in-water work. Construction of piers and abutments is anticipated to occur outside the OHWE. If work does occur within the OHWE, pile driving is anticipated to be required for the construction of piers and abutments. Due to the complexity of the project, it is unlikely that it would fit under the Standard Local Operating Procedures for Endangered Species (SLOPES) programmatic, and a Biological Assessment is anticipated to be required.

Migratory Birds

The USFWS IPaC list indicates bald eagle (Haliaeetus leucocephalus), Clark's grebe (Aechmophorus clarkii), Franklin's gull (Leucophaeus pipixcan), and rufous hummingbird (Selasphorus rufus) as birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in the project location. These species are highly mobile, and it is likely that they will simply leave the area during construction (USFWS, 2021b).

If tree removal occurs, trees should be surveyed for raptor nests prior to removal. Trees should be removed prior to the nesting season of March through August to ensure that no nesting raptors will
be affected by the proposed project. Construction should be completed outside the raptor nesting season, if possible, if any nesting raptors are observed near the project corridor.

Land Use/Zoning

The City of Hermiston Planning Department and the Umatilla County Planning Department should be consulted once the project design is complete to ensure all City and County permitting requirements are met.

If any work is located in an Exclusive Farm Use (EFU) area, a Conditional Land Use Permit and Goal 3 exception would be required along with strict County zoning requirements associated with the project. Goal 3 requires counties to identify farmland, designate it as such, and zone it EFU. An EFU zone places restrictions on developments that are unrelated to agriculture to minimize conflicts with farming.

If improvements occur on CRP land, a waiver may be required. Additionally, if a federal nexus is identified, conversion of farmland must comply with the guidelines of the Farmland Protection Policy Act. See Chapter 4 for additional land use and zoning discussion and costs.

Stormwater Discharge

Any expansion of impervious surfaces may require a DEQ Post-Construction Stormwater Management Plan. A National Pollutant Discharge Elimination System (NPDES) 1200-C Construction Stormwater Permit would be required if construction disturbs more than 1 acre of land and has the potential to discharge to the Umatilla River or other surface waters.

Parks, Green Spaces, and Natural Areas

Two parks, Butte Park and the disc golf course, are located adjacent to the Elm Avenue option (see Figure 5-5, Existing Park System).

Butte Park was funded by the Land and Water Conservation Fund (LWCF) in 1991 (LWCF, 2021). Section 6(f) of the Land and Water Conservation Fund Act (LWCFA) prohibits the conversion of property acquired or developed with LWCFA grants to uses other than public outdoor recreation. If work occurs on 6(f) land, consultation with the OPRD may be required.

Noise and Air Quality

The project may have the potential for noise impacts, and a noise analysis and mitigation plan may be required for construction noise, pile driving, and future traffic conditions.

According to the DEQ, the City of Hermiston is not in an air quality non-attainment or maintenance area (DEQ, 2021a). The proposed project is not anticipated to require an Air Quality Permit from the DEQ.

Hazardous Materials

Sixty-eight DEQ permitted sites occur within 0.5 mile of the Elm Avenue option; however, only hazardous materials adjacent to the project corridor will be discussed. Ten underground storage tanks (USTs), one hazardous waste generator, and four regulated leaking underground storage tanks (LUSTs) (cleanup completed) occur adjacent to the Elm Avenue option and are described below (DEQ, 2021b) (see Figure 5-6, DEQ Permitted Sites).

Underground Storage Tanks

- Western Express Mart; Facility ID 37420, UST Facility ID 12064 (1295 N.W. 11th Street). This site consists of three active USTs containing 30,000 gallons of gasoline and 20,000 gallons of diesel.
- Wondrack Distributing; Facility ID 17541, UST Facility ID 9477 (55 W. Elm Avenue). This site consists of four active USTs containing 12,000 gallons of gasoline and 12,000 gallons of diesel.
- Umatilla Electric Cooperative; Facility ID 879, UST ID 6477 (750 W. Elm Avenue). This site consists of three active USTs containing 20,000 gallons of gasoline and 40,000 gallons of diesel.

Leaking Underground Storage Tanks

- Umatilla Electric Cooperative; Facility ID 879, LUST ID 6477 (750 W. Elm Avenue). This site consists of two regulated LUSTs (cleanup completed). At the first tank, an unknown contaminant leaked, affecting soil and groundwater. The release was stopped on February 13, 1990, and cleanup was completed on September 21, 1990. At the second tank, an overfill caused diesel to release into soil. The release was stopped on January 23, 2002, and cleanup was completed on October 7, 2002. This site is located approximately 214 feet north of the Elm Avenue option. Due to the successful site cleanup, the project corridor is not anticipated to have been impacted by this release.
- McGregor Co. (Growers Fertilizer, Inc.); Facility ID 5559, LUST ID 10164 (445 W. Elm Avenue). This site consists of one regulated LUST (cleanup completed). An overfill caused unleaded gasoline/diesel to release into soil. The release was stopped on December 20, 1989, and cleanup was completed on August 13, 1999. This site is located approximately 115 feet north of the Elm Avenue option. Due to the successful site cleanup, the project corridor is not anticipated to have been impacted by this release.
- Netarts Bay, Inc.; Facility ID 22089, LUST ID 6132 (1235 N. 1st Street). This site consists of one regulated LUST (cleanup completed). An overfill caused unleaded gasoline to release into soil. The release was stopped on February 27, 1990, and cleanup was completed on November 1, 2005. This site is located approximately 131 feet south of the Elm Avenue option. Due to the successful site cleanup, the project corridor is not anticipated to have been impacted by this release.

Hazardous Waste Generators

- Umatilla Electric Cooperative; Conditionally Exempt Generator as of December 31, 2006; Facility ID 879, Site ID 1108 (750 W. Elm Avenue).

Because cleanup has been completed at all the LUSTs near the Elm Avenue option, the project is not anticipated to be impacted by these sites. A Phase 1 Environmental Site Assessment may be required for this project if property acquisition occurs. A Level 1 Hazardous Materials Corridor Study (HMCS) (and potentially a Level 2 Preliminary Site Investigation) may be required if Oregon Department of Transportation (ODOT) funding is utilized. If petroleum products are encountered during site excavation, work would be required to stop and the DEQ would be required to be contacted.

Cultural Resources and Historic Properties

The Oregon Archaeological Records Remote Access (OARRA) database was consulted for existing archaeological resources within 1 mile of the project corridor. While two previous surveys overlap the project corridor, no previously recorded archaeological sites or isolates were located within the proposed project corridor.

Eight cultural resources are mapped within 1 mile of the project corridor: site 35UM439 and seven isolates located on or near the Hermiston Butte. Site 35UM439 consists of two precontact burials that were 0.75 mile away from the proposed project and more than 1 mile away from the proposed bridge crossing. The graves were discovered on private land during construction of a road. After archaeological investigations were conducted by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR), the individuals were reburied in their original grave site (Dickson, 2008). The seven isolates located on or near the Hermiston Butte consist of precontact flakes, cobbles, shards, and a projectile point fragment as well as one historical bullet, the historical City reservoir, and the historical Butte Irrigation Canal. Most isolates are clustered 350 yards away from the project corridor on the butte itself, while one isolate is located approximately 100 yards from the project corridor (Oman, 1998; Miller, 2003). Site 35UM439, the Butte Irrigation Canal, and the City reservoir are unevaluated while all other cultural resources have been found ineligible for inclusion to the National Register of Historic Places (NRHP).

Cultural resource surveys within 1 mile of the proposed project have been conducted for land consolidation, water system improvements (pumps, storage, piping, irrigation canal improvements), road improvements (widening, grading, drainage improvements, repaving, sign installation), trail improvements, community pool construction, communications tower installations, and transmission line installation. One survey overlapped the project corridor for 1 mile of the eastern extent of W. Elm Avenue, from N. 1st Street to N.W. 11th Street. This survey observed no cultural material in the project corridor (Baxter, 2005). Six surveys occurred on or near the Hermiston Butte and observed the seven isolates. All other surveys observed no cultural materials in the vicinity of the project corridor. It should be noted that early surveys within the search radius (conducted in the 1970s through 1990s) did not employ the use of shovel test probes (STPs) to identify potential subsurface cultural resources, whereas the use of STPs is standard practice in current cultural resource surveys when a project will include ground disturbance. Potential impacts to archaeological
resources as a result of construction include excavation, sediment disturbance, sediment compactions, and other ground-disturbing construction activities.

Construction of a new road and bridge have the potential to impact viewsheds in the surrounding area. It is anticipated that a historic property inventory may be required, in addition to a cultural resource inventory, depending on funding requirements.

Funding Requirements

The funding agency will determine which environmental permits and consultation will be required for the proposed project. If federal funding is utilized, an Environmental Assessment will be required.

Advantages

The Elm Avenue option is not anticipated to impact the following Goal 5 resources: federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources.

Disadvantages

The Elm Avenue option could result in impacts to the following Goal 5 resources: riparian corridors, wetlands, wildlife habitat, and cultural areas. The Elm Avenue option is anticipated to have greater wetland and waterway impacts than the Punkin Center Road option. A portion of the project corridor will be located within the floodway, 100-year floodplain, and 500-year floodplain; this is anticipated to require detailed hydraulic modeling and a no-rise certificate. The project will require permanent conversion of farmland. A portion of the project corridor is zoned EFU, so it may be challenging to gain land use approval from the County for development. ESA-listed species occur within the project corridor. More vegetation removal would be required. Upon project completion, the Elm Avenue option would result in a greater amount of impervious surface than the Punkin Center Road option. Two parks, Butte Park (LWCF funded) and the disc golf course, are located adjacent to the Elm Avenue option. A greater number of DEQ-permitted sites are located adjacent to the project corridor, resulting in a greater chance of encountering contaminated soils than the Punkin Center Road option. The Elm Avenue option is located farther upstream on the Umatilla River than the Punkin Center Road option and, therefore, would result in a longer stretch of river that could potentially be impacted by project development.

Permits

Table 5-2 lists potential permits and environmental clearances that could be required for the Elm Avenue option.

TABLE 5-2
ELM AVENUE OPTION ENVIRONMENTAL PERMITS

Permit	
County/City Permits/Other	
Conditional Use Permit	Umatilla County and the City of Hermiston
Goal 3 Exception Process	Umatilla County
Floodplain Development Permit and No-Rise Certificate	Umatilla County and the City of Hermiston
State Permits/Consultation	DSL
DSL Removal-Fill Permit	DSL
Wetland Delineation Concurrence	DEQ
Post-Construction Stormwater Management Plan	DEQ
1200-C Construction Stormwater General Permit	DEQ
401 Water Quality Certification	ODFW
ODFW Fish Passage Approval	ODFW
ODFW Consultation (Ground Squirrel Survey)	ODOT
Beneficial Use Determination	ODOT
Noise Analysis	OPRD
LWCF 6(f) Land Consultation	
Federal Permits/Consultation	USACE
404 Removal-Fill Permit	USACE, USFWS, and NMFS
Section 7 ESA Consultation	Oregon State Historic Preservation Office (SHPO)/Tribes as approved by the Legislative Section 106 Consultation
Environmental Assessment	Fommission on Indian Services
CLOMR	FEMA
Farmland Conversion Impact Consultation	NRCS

Cost

Table 5-3 lists the estimated costs for potential permits and environmental clearances that could be required for the Elm Avenue option (2022 dollars).

TABLE 5-3
ELM AVENUE OPTION ENVIRONMENTAL COSTS

Task Description	
Estimated Cost	
County/City Permits/Other	
Floodplain Development Permit Application and No-Rise Certificate (assumes hydraulic modeling completed)	$\$ 5,000$
Conditional Use Permit Application (Goal 3 Exception)	$\$ 30,000$
State Permits/Consultation	$\$ 10,000$
Wetland Delineation	$\$ 20,000$
Wetland/Waterway Mitigation Plan	$\$ 6,000$
Stream Functional Assessment Method	$\$ 4,000$
Oregon Rapid Wetland Assessment Protocol	$\$ 5,000$
Ground Squirrel Survey	$\$ 10,000$
Fish Salvage	$\$ 10,000$
ODFW Fish Passage Approval	

Post-Construction Stormwater Management Plan	$\$ 10,000$
$1200-C$ Construction Stormwater General Permit	$\$ 8,000$
ODOT Noise Analysis	$\$ 30,000$
Phase 1 Environmental Site Assessment/ODOT Level 1 HMCS	$\$ 10,000$
ODOT Level 2 Preliminary Site Investigation	Depends on Level 1 Results
Federal Permits/Consultation	
CLOMR/LOMR	See Chapter 3
Joint Permit Application	$\$ 16,000$
Biological Assessment	$\$ 20,000$
Environmental Assessment	$\$ 25,000$
Historic Property Inventory	$\$ 30,000$
Cultural Resource Phase I (STP and Pedestrian)	$\$ 75,000$
Cultural Resource Phase II (Ten Sites)	$\$ 150,000$
Cultural Resource Phase III	Depends on Phase II
Cultural Resource Monitoring (Assumes 100 Construction Days)	$\$ 100,000$
	$\$ 574,000$

C. Punkin Center Road Option

Goal 5 Resource Mapping

Oregon's Statewide Planning Goal 5: Natural Resources, Scenic and Historic Areas, and Open Spaces requires review and consideration of important local resources to protect natural resources and conserve scenic and historic areas and open spaces. The Oregon Statewide Planning Goal 5 resources are addressed below.

- Riparian corridors, including water and riparian areas and fish habitat: The Punkin Center Road option crosses the Umatilla River and its riparian corridor. Based on a preliminary analysis by design engineers, the project is not anticipated to require work below the OHWE of the Umatilla River.
- Wetlands: Several wetlands occur near the Punkin Center Road option, as discussed in the Wetlands and Waterways section below.
- Wildlife habitat: According to the City of Hermiston Comprehensive Plan, ODFW has identified two critical habitats: the eastern bank of the Umatilla River and a 3-acre pond in northeast Hermiston. These two areas and the OSU agricultural research station have been designated as Open Space, which protects them from incompatible development. The SageCon Landscape Planning Tool shows that there is no sage grouse habitat in Umatilla County (Oregon Explorer, 2021).
- Federal Wild and Scenic Rivers: The NWSR System map indicates that no designated Wild and Scenic Rivers are located within the Punkin Center Road option (NWSR, 2016).
- State Scenic Waterways: The Oregon's Scenic Waterways list indicates that no designated State Scenic Waterways are located within the Punkin Center Road option (Oregon Parks and Recreation Department, 2021).
- Groundwater resources: According to the OWRD, the Punkin Center Road option is located within the Butter Creek critical groundwater area (OWRD, 2016). Because the nature of the
proposed work does not include discharges to groundwater, the project is not anticipated to affect the Butter Creek critical groundwater area (see Figure 5-1, Critical Groundwater Areas).
- Approved Oregon recreation trails: According to Oregon State Parks, no designated scenic or regional trails are located near the Punkin Center Road option (Oregon State Parks, 2021).
- Natural areas: The Cold Springs National Wildlife Refuge and the Umatilla National Wildlife Refuge are located near the City of Hermiston; however, neither occurs near the project corridor.
- Wilderness areas: The nearest wilderness area is the North Fork Umatilla Wilderness located approximately 50 miles east of the project corridor (Wilderness Connect, 2021).
- Mineral and aggregate resources: According to the City of Hermiston Comprehensive Plan, only two economically viable sand and gravel pits are located within the Hermiston UGB. Neither is located near the Punkin Center Road option.
- Energy sources: According to the City of Hermiston Comprehensive Plan, the City is located near two major energy generators, the McNary Dam and the PGE coal-fired electrical generating plant. Neither is located near the Punkin Center Road option.
- Cultural Areas: Cultural resources and historic properties that occur within 1 mile of the project corridor are discussed in the Cultural Resources and Historic Properties section below.

Due to the nature of the proposed project, the Punkin Center Road option could result in impacts to riparian corridors, wetlands, wildlife habitat, and cultural areas. Due to the distance of Goal 5 Resources, the Punkin Center Road option is not anticipated to impact federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources.

Wetlands and Waterways

According to the USFWS NWI Mapper, several wetlands are located near the Punkin Center Road option, consisting of freshwater emergent wetlands and freshwater forested/shrub wetlands (USFWS, 2021a) (see Figure 5-2, Wetlands and Waterways). A pending Local Wetlands Inventory exists for the area, but it has not been reflected on the Statewide Wetlands Inventory, as it has not been approved.

The Umatilla River, Westland A Canal, two unnamed ditches, and several freshwater ponds are located within and adjacent to the Punkin Center Road option (see Figure 5-2, Wetlands and Waterways).

A site visit will be necessary to verify the presence of wetlands and waterways. If wetlands and waterbodies will be impacted by the proposed project, the wetlands may be subject to the permit requirements of the state and federal Removal-Fill Law and may require wetland/waters delineation requirements and permitting from the DSL and the USACE.

Floodplains

According to the FEMA Map Service Center, FEMA FIRM Panel No. 41059C0577G, the Punkin Center Road option is located within the 500- and 100-year floodplains and within the floodway (FEMA, 2021) (see Figure 3-2, River Crossing Plan and Profile Punkin Center Road Option). Therefore, FEMA development standards may apply, and a Floodplain Development Permit would be required. Since the bridge infrastructure will be located within the floodway, it is unlikely that a no-rise condition can be demonstrated. Because bridge construction will preclude demonstration of a 0.00 foot change in the effective 100-year flood water surface elevation, the project will require a CLOMR and, following construction of the bridge, a LOMR; see Chapter 3 for costs and a detailed discussion of these elements.

Soils and Farmland

The six soils mapped within the Punkin Center Road option are shown on Table 5-4 along with the hydric status, drainage class, and farmland classification (NRCS, 2021) (see Figure 5-3, Soils Map).

TABLE 5-4
SOILS FOUND WITHIN THE PUNKIN CENTER ROAD OPTION

Map Unit	Soil Name	Hydric Status	Drainage Class	Farmland Classification
14B	Burbank loamy fine sand, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
119A	Wanser loamy fine sand, 0 to 3 percent slopes	Yes	Poorly drained	Farmland of statewide importance
122B	Winchester sand, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
76B	Quincy loamy fine sand, gravelly substratum, 0 to 5 percent slopes	No	Excessively drained	Not prime farmland
75E	Quincy loamy fine sand, 5 to 25 percent slopes	No	Excessively drained	Not prime farmland
126A	Xerofluvents, 0 to 3 percent slopes	No	Somewhat poorly drained	Not prime farmland

The project will occur on previously disturbed farmland and gravel roads. If a federal nexus is identified, conversion of farmland must comply with the guidelines of the Farmland Protection Policy Act, and farmland conversion impact consultation with the NRCS will be required. If improvements occur on CRP land, a waiver may be required.

Hydric soils have the potential to contain wetlands. A site visit will be necessary to verify the presence or absence of wetlands.

Protected Species

Listed species within the project corridor were obtained from the USFWS and NMFS databases. The USFWS IPaC list indicates that one threatened species (bull trout, Salvelinus confluentus) and bull trout critical habitat occur in the Umatilla River within the Punkin Center Road option (USFWS, 2021b). The NMFS Protected Resources app indicates that one threatened species (MCR steelhead,

Oncorhynchus mykiss) and steelhead critical habitat occur in the Umatilla River within the Punkin Center Road option (NMFS, 2021a). The Umatilla River near the Punkin Center Road option is also considered EFH and is designated ESH (NMFS, 2021b; DSL, 2021) (see Figure 5-4, Protected Species).

A search of the ORBIC database found 15 element occurrence records of rare, threatened, or endangered species within a 2-mile radius of the proposed project corridor, including federally listed steelhead and bull trout and state-listed Washington ground squirrel (Urocitellus washingtoni) (ORBIC, 2021). Depending on project funding or other considerations, a Washington ground squirrel survey may be required.

If no in-water work occurs, consultation under Section 7 of the ESA with the USFWS and NMFS would still be required if a federal nexus is identified. To meet this requirement, a no effect memo may be required to document the lack of impacts to listed species. If in-water work is not required, the project will not be subject to an in-water work window.

If in-water work (or nearshore pile driving) occurs, formal consultation under Section 7 of the ESA with the USFWS and NMFS would be required. A USACE 404 Permit, DSL Removal-Fill Permit, and DEQ 401 Water Quality Certification Permit may be required. If the project requires in-water work, the project will be subject to the in-water work window for the Umatilla River of July 15 through September 30. If work occurs below the wetted edge of the Umatilla River, work area isolation, fish salvage, and ODFW fish passage approval may be required. The project is not anticipated to require in-water work. The construction of piers and abutments is anticipated to occur outside the OHWE. If work does occur within the OHWE, pile driving is anticipated to be required for the construction of piers and abutments. Due to the complexity of the project, it is unlikely that it would fit under the SLOPES programmatic, and a Biological Assessment is anticipated to be required.

Migratory Birds

The USFWS IPaC list indicates bald eagle (Haliaeetus leucocephalus), Clark's grebe (Aechmophorus clarkii), Franklin's gull (Leucophaeus pipixcan), and rufous hummingbird (Selasphorus rufus) as birds of particular concern either because they occur on the USFWS BCC list or warrant special attention in the project corridor. These species are highly mobile, and it is likely that they will simply leave the area during construction (USFWS, 2021b).

If tree removal occurs, trees should be surveyed for raptor nests prior to removal. Trees should be removed prior to the nesting season of March through August to ensure that no nesting raptors will be affected by the proposed project. Construction should be completed outside the raptor nesting season, if possible, if any nesting raptors are observed near the project corridor.

Land Use/Zoning

The City of Hermiston Planning Department and the Umatilla County Planning Department should be consulted once the project design is complete to ensure that all City and County permitting requirements are met.

If any work is located in an EFU area, a Conditional Land Use Permit and Goal 3 exception would be required along with strict County zoning requirements associated with the project. Goal 3 requires
counties to identify farmland, designate it as such, and zone it EFU. An EFU zone places restrictions on developments that are unrelated to agriculture to minimize conflicts with farming.

If improvements occur on CRP land, a waiver may be required. Additionally, if a federal nexus is identified, conversion of farmland must comply with the guidelines of the Farmland Protection Policy Act.

Based on preliminary mapping, it appears a portion of the project may occur on Bureau of Land Management (BLM)-owned land. If the project occurs on BLM-owned land, the project may be subject to BLM National Environmental Policy Act (NEPA) requirements and an extensive environmental review process. The BLM should be consulted to ensure that all BLM permitting requirements are met. See Chapter 4 for additional land use and zoning discussion and cost.

Stormwater Discharge

Any expansion of impervious surfaces would require a DEQ Post-Construction Stormwater Management Plan. An NPDES 1200-C Construction Stormwater Permit would be required if construction disturbs more than 1 acre of land and has the potential to discharge to the Umatilla River or other surface waters.

Parks, Green Spaces, and Natural Areas

One natural area, owned by the BLM, is located adjacent to the Punkin Center Road option (see Figure 5-5, Existing Park System).

If the project occurs on BLM-owned land, the project may be subject to BLM NEPA requirements and an extensive environmental review process.

Noise and Air Quality

The project may have the potential for noise impacts, and a noise analysis and mitigation plan may be required for construction noise, pile driving, and future traffic conditions.

According to the DEQ, the City of Hermiston is not in an air quality non-attainment or maintenance area (DEQ, 2021a). The proposed project is not anticipated to require an Air Quality Permit from the DEQ.

Hazardous Materials

Six hazardous material sites occur within 0.5 mile of the project corridor; however, only hazardous materials adjacent to the project corridor will be discussed. One suspected contaminated site requiring further investigation and four USTs occur adjacent to the Punkin Center Road option and are described below (DEQ, 2021b) (see Figure 5-6, DEQ Permitted Sites).

Suspected Contaminated Site

- Swain Motors; Facility ID 141365, Site ID 6127 (80406 Highway 395). A floor drain located in the vehicle service area discharged to a former septic drainfield. The floor drain was closed in June 2016. The site has potential soil and groundwater contamination; soil and/or groundwater sampling is necessary to evaluate environmental impacts from the floor drain. This site is located approximately 615 feet north of the Punkin Center Road option. Due to the distance from the project corridor, the project is not anticipated to be impacted by this release.

Underground Storage Tank

- Rocket Mart; Facility ID 88807, UST Facility ID 2215 (2398 N. 1st Street). This site consists of four active USTs containing 50,000 gallons of gasoline and 15,000 gallons of diesel.

Based on the location of the permitted sites in relation to the project corridor, the project is not anticipated to be impacted by these sites. A Phase 1 Environmental Site Assessment may be required for this project if property acquisition occurs. A Level 1 HMCS (and potentially a Level 2 Preliminary Site Investigation) may be required if ODOT funding is utilized. If petroleum products are encountered during site excavation, work would be required to stop and the DEQ would be required to be contacted.

Cultural Resources and Historic Properties

The OARRA database was consulted for existing archaeological resources within 1 mile of the project corridor. While four previous surveys overlap the project corridor, no previously recorded archaeological sites or isolates were located within the proposed project corridor.

One cultural resource is mapped within 1 mile of the project corridor. Site 35 UM 439 consists of two precontact burials that were 0.25 mile away from the proposed project and more than 0.5 mile from the proposed bridge crossing. The graves were discovered on private land during the construction of a road. After archaeological investigations were conducted by the CTUIR, the two individuals were reburied in their original grave site (Dickson, 2008). Site 35UM439 is unevaluated for inclusion to the NRHP.

Cultural resource surveys within 1 mile of the proposed project have been conducted for wastewater treatment systems (construction of a plant, installation of piping and tanks), road improvements (widening, grading, drainage improvements, repaving, sign installation), land consolidation, and transmission line installation. None of these surveys observed cultural materials in the general vicinity of the proposed project. However, it should be noted that early surveys within the search radius (conducted in the 1970s through 1990s) did not employ the use of STPs to identify potential subsurface cultural resources, whereas the use of STPs is standard practice in current cultural resource surveys when a project will include ground disturbance. Potential impacts to archaeological resources as a result of construction include excavation, sediment disturbance, sediment compaction, and other ground-disturbing construction activities.

Construction of a new road and bridge have the potential to impact viewsheds in the surrounding area. It is anticipated that a historic property inventory may be required in addition to a cultural resource inventory, depending on funding requirements.

Funding Requirements

The funding agency will determine which environmental permits and consultation will be required for the proposed project. If federal funding is utilized, an Environmental Assessment will be required. Since a portion of the Punkin Center Road option corridor occurs on BLM-owned land, the project may be subject to BLM NEPA requirements and an extensive environmental review process.

Advantages

The Punkin Center Road option is not anticipated to impact the following Goal 5 resources: federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources. The Punkin Center Road option is anticipated to have fewer wetland and waterway impacts than the Elm Avenue option. Less vegetation removal will be required than the Elm Avenue option. Upon project completion, the Punkin Center Road option would result in a smaller amount of impervious surface than the Elm Avenue option. Fewer DEQ-permitted sites are located adjacent to the project corridor than the Elm Avenue option, resulting in less chance of encountering contaminated soils. The Punkin Center Road option is located farther downstream on the Umatilla River and, therefore, would result in fewer downstream impacts than the Elm Avenue option.

Disadvantages

The Punkin Center Road option could result in impacts to the following Goal 5 resources: riparian corridors, wetlands, wildlife habitat, and cultural areas. A portion of the project corridor would be located within the floodway, 100-year floodplain, and 500-year floodplain; this is anticipated to require detailed hydraulic modeling and a no-rise certificate. The project would require permanent conversion of farmland. A portion of the project corridor is zoned EFU, so it may be challenging to gain land use approval from the County for development. ESA-listed species occur within the project corridor. A BLM-owned natural area is located adjacent to the Punkin Center Road option. A major disadvantage to the Punkin Center Road option is that a portion of the project corridor may occur on BLM-owned land and, therefore, may be subject to BLM NEPA requirements and an extensive environmental review process.

Permits

Table 5-5 lists potential permits and environmental clearances that could be required for the Punkin Center Road option.

TABLE 5-5
PUNKIN CENTER ROAD OPTION ENVIRONMENTAL PERMITS

Permit	Approving Agency
County/City Permits/Other	Umatilla County and the City of Hermiston
Conditional Use Permit	Umatilla County
Goal 3 Exception Process	
Floodplain Development Permit and No-Rise Certificate	Umatilla County and the City of Hermiston
State Permits/Consultation	DSL
DSL Removal-Fill Permit	DSL
Wetland Delineation Concurrence	DEQ
Post-Construction Stormwater Management Plan	DEQ
1200-C Construction Stormwater General Permit	DEQ
401 Water Quality Certification	ODFW
ODFW Fish Passage Approval	ODFW
ODFW Consultation (Ground Squirrel Survey)	ODOT
Beneficial Use Determination	ODOT
Noise Analysis	OPRD
6(f) Land Consultation	
Federal Permits/Consultation	USACE
404 Removal-Fill Permit	USACE, USFWS, and NMFS
Section 7 ESA Consultation	BLM
BLM NEPA Process (Environmental Assessment)	SHPO/Tribes as approved by the Legislative
Section 106 Consultation	Commission on Indian Services
CLOMR	FEMA
Farmland Conversion Impact Consultation	NRCS

Cost

Table 5-6 lists the estimated costs for potential permits and environmental clearances that could be required for the Punkin Center Road option (2022 dollars).

TABLE 5-6
PUNKIN CENTER ROAD OPTION ENVIRONMENTAL COSTS

Task Description	Estimated Cost
County/City Permits/Other	
Floodplain Development Permit and No-Rise Certificate (assumes hydraulic modeling completed)	
Conditional Use Permit Application (Goal 3 Exception)	$\$ 5,000$
State Permits/Consultation	$\$ 30,000$
Wetland Delineation	$\$ 10,000$
Wetland/Waterway Mitigation Plan	$\$ 20,000$
Stream Functional Assessment Method	$\$ 6,000$
Oregon Rapid Wetland Assessment Protocol	$\$ 4,000$
Ground Squirrel Survey	$\$ 5,000$
Fish Salvage	$\$ 10,000$
ODFW Fish Passage Approval	$\$ 10,000$
Post-Construction Stormwater Management Plan	$\$ 10,000$

1200-C Construction Stormwater General Permit	$\$ 8,000$		
ODOT Noise Analysis	$\$ 30,000$		
Phase 1 Environmental Site Assessment/ODOT Level 1 HMCS	$\$ 10,000$		
ODOT Level 2 Preliminary Site Investigation	Depends on Level 1 Results		
Federal Permits/Consultation	See Chapter 3		
CLOMR/LOMR	$\$ 16,000$		
Joint Permit Application	$\$ 20,000$		
Biological Assessment	$\$ 75,000$		
BLM NEPA Process (Environmental Assessment)	$\$ 30,000$		
Historic Property Inventory	$\$ 75,000$		
Cultural Resource Phase I (STP and Pedestrian)	$\$ 150,000$		
Cultural Resource Phase II (Ten Sites)	P100,000		
Cultural Resource Phase III	$\$ 624,000$		
Cultural Resource Monitoring (Assumes 100 Construction Days)	Depends on Phase II		

Table 5-7 lists the advantages and disadvantages of the Elm Avenue option and the Punkin Center Road option.

TABLE 5-7
ADVANTAGES AND DISADVANTAGES

Elm Avenue Option		Punkin Center Road Option	
Advantages	Disadvantages	Advantages	Disadvantages
- Likely will not affect the following Goal 5 resources: federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources - Does not occur on federally owned land	- May affect the following Goal 5 resources: riparian corridors, wetlands, wildlife habitat, and cultural areas - May require demolition of houses or structures - More potential wetland and waterway impacts - Potential federally listed species impacts - Larger project corridor, more disturbance - Would require permanent conversion of farmland within EFU zoning designation - Would occur within the floodway, 100-year floodplain, and 500-year floodplain - Located farther upstream, resulting in more downstream impacts	- Likely will not affect the following Goal 5 resources: federal Wild and Scenic Rivers, State Scenic Waterways, groundwater resources, approved Oregon recreation trails, natural areas, wilderness areas, mineral and aggregate resources, and energy sources - Fewer potential wetland and waterway impacts - Less vegetation removal would be required - Smaller project corridor, reduced disturbance - Smaller amount of impervious surface created	- May affect the following Goal 5 resources: riparian corridors, wetlands, wildlife habitat, and cultural areas - May occur on BLMowned land - May require demolition of houses or structures - Potential wetland and waterway impacts - Potential federally listed species impacts - Would require permanent conversion of farmland within EFU zoning designation - Would occur within the floodway, 100-year floodplain, and 500-year floodplain

	- More vegetation removal would be required - Greater amount of impervious surface created - May impact Butte Park (LWCF funded) - Greater chance of encountering contaminated soils	- Less chance of encountering contaminated soils - Located farther downstream, resulting in fewer downstream impacts

Chapter 6 - Selected Improvements and Project Implementation

A. Selected Option

B. Project Implementation

Potential Funding Sources

Action Items

Chapter 7 - References

Baxter, Paul (2005). Report on the Archaeological Reconnaissance of Selected Portions of the Diagonal Road to I-84 Project. Available at the Oregon State Historic Preservation Office, Salem, Oregon.

Dickson, Catherine (2008). State of Oregon Archaeological Site Record for Site 35UM439. Available at the Oregon State Historic Preservation Office, Salem, Oregon.

Federal Emergency Management Agency (2021). Flood Map Service Center. Database search on November 23, 2021. https://msc.fema.gov/portal/search?AddressQuery=hermiston\%2C\ oregon\#searchresultsanchor

Land and Water Conservation Fund (2021). Past Projects. Accessed December 10, 2021. https://lwcf.tplgis.org/mappast/

Miller, Carey (2003). Cultural Resource Survey and Shovel Testing for the Proposed Hermiston Community Pool Complex. Available at the Oregon State Historic Preservation Office, Salem, Oregon.

National Marine Fisheries Service (NMFS) (2021a). Protected Resources App. Accessed November 23, 2021.
https://www.webapps.nwfsc.noaa.gov/portal/apps/webappviewer/index.html?id=7514c715b85949 44a6e468dd25aaacc9

NMFS (2021b). Essential Fish Habitat Mapper. Accessed November 24, 2021. http://www.habitat.noaa.gov/protection/efh/efhmapper

National Wild and Scenic Rivers (2016). National Wild and Scenic Rivers System. Accessed November 23, 2021. https://www.rivers.gov/documents/nwsrs-map.pdf

Natural Resources Conservation Service (2021). Web Soil Survey. Database search on November 23, 2021. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

Oman, Mary (1998). City of Hermiston Water Storage Facility Right-Of-Way Hermiston Butte Evaluation and Determination of Effect. Available at the Oregon State Historic Preservation Office, Salem, Oregon.

Oregon Biodiversity Information Center (2021). Database Search. Rare, Threatened, and Endangered Species of Oregon, database search on December 3, 2021. Portland State University, Portland, Oregon.

Oregon Department of Environmental Quality (DEQ) (2021a). Maintenance Areas in Oregon. Accessed November 24, 2021. https://www.oregon.gov/deq/aq/Pages/Maintenance-Areas.aspx

DEQ (2021b). Facility Profiler-Lite Permitted Sites. Accessed November 24, 2021.
https://hdcgcx1.deq.state.or.us/Html5viewer291/?viewer=FacilityProfilerLite
Oregon Department of State Lands (2021). Essential Salmonid Habitat Map. Accessed November 24, 2021. https://maps.dsl.state.or.us/esh/

Oregon Explorer (2021). SageCon Landscape Planning Tool. Accessed November 23, 2021.
https://tools.oregonexplorer.info/OE HtmlViewer/index.html?viewer=sagegrouse

Oregon Parks and Recreation Department (2021). Oregon's Scenic Waterways. Accessed November 23, 2021. https://www.oregon.gov/oprd/BWT/Pages/SSW-list.aspx

Oregon State Parks (2021). Scenic and Regional Trails. Accessed November 23, 2021. https://oregonstateparks.org/index.cfm?do=v.page\&id=61

Oregon Water Resources Department (2016). Groundwater Restricted Areas. Accessed November 23, 2021. https://www.oregon.gov/OWRD/programs/GWWL/GW/Documents/GWAdminAreasMap.pdf
U.S. Fish and Wildlife Service (USFWS) (2021a). National Wetlands Inventory Map, Online Mapper. Database search on November 23, 2021. https://www.fws.gov/wetlands/data/mapper.html

USFWS (2021b). Information for Planning and Consultation. Database search on November 24, 2021. https://ecos.fws.gov/ipac/location/TJXMSPGXQBH25LJCTCCCQL4ZQI/resources\#.

Wilderness Connect (2021). Wilderness Areas of the United States. Accessed November 23, 2021. https://umontana.maps.arcgis.com/apps/webappviewer/index.html?id=a415bca07f0a4bee9f0e894 b0db5c3b6

Appendices Table of Contents

Appendix A - New East-West Roadway Circulation Analysis Technical Memo
Appendix B - Cost Estimates for Infrastructure Improvements and Land Acquisition
Appendix C - City of Hermiston, Oregon, Major Arterial Standard Drawing

APPENDIX A
New East-West Roadway Circulation Analysis Technical Memo by Kittelson \& Associates, Inc.

KITTELSON \&ASSOCIATES
 Technical Memorandum

March 4, 2022
Project\# 26970

To: J oshua Lott, PE; C has Hutchins; PE
Anderson Perry \& Assoc iates, Inc.
243E Ma in St, Suite C
Hermiston, OR 97838
From: Matt Hughart, AIC P; Amy G riffiths, EIT; ChrisBrehmer, P.E. Kittelson \& Associates, Inc .

RE: \quad New East-West Roadway CirculationAnalysis

EXECUTVESUMMARY

The City of Hermiston is exploring the possibilityof a future travel corridorthat would span the Umatilla River and provide an additional east-westconnection to Powerline Road. The following two corridoroptionsare being considered:

- A westerlyextension of the W Punkin CenterRoad corridor
- A westerlyextension of the W Em Avenue corridor

This reportdocuments the motorized circulation and operational impactsassociated with these two corridoroptionsfor inc lusion in the Umatilla RiverBridge PreliminaryEngineering Report (PER).

The following transportation conditionswere analyzed for the study intersectionsshown in Figure 1:

- Existing Traffic Conditions
- 2032 No-Build Traffic Conditions(without eitherof the two comidoroptionsbut still considering local and regional transportation growth on the existing infrastructure network)
- 2032 Build Conditions with a W Punkin Center Road Extension
- 2032 Build Conditions with a W Elm Avenue Extension

As doc umented in greaterdetail herein, thisanalysishas generated the following findingsand recommendations.

Findings

EXISIING TRAFFC CONDIIONS

- All of the study intersectionsmeet the applic able ODOT mobility ta rgets and City of Hermiston operating standards during the AM and PM study hours.

2032 NO-BUID CONDIIONS

- Annual traffic growth rates between 1.5% and 3.0% were conservativelyapplied to the study corridors and intersectionsto account for anticipated local and regional growth.
- Under 2032 No-Build conditions, all of the study intersectionsare forecast to meet the applicable ODOTmobilitytargets and City of Hermiston operating standards during the AM and PM study hours with the exception of US 395/W Elm Avenue (OR 207) intersection. During the weekday PM peak hour, this intersection isforecast to operate at a volume-to-c apacityratio (V/C) of 0.93 which exceeds ODOT's 0.90 mobilitytarget.

2032 W PUNKIN CENIERROAD EXTENSION

An extension of W Punkin Center Road isantic ipated to result in operational impactsat the following intersections/study corridors:

- US 395/W Punkin Center Road - While projected to continue meeting the operationalmobilitytarget, the intersection isforecast to serve a signific antlygreaterlevel of tuming movementdemand under the W Punkin Center Road extensionoption.
- To better serve this projected demand and manage expected long-term vehicle queues, the intersection would benefit from the construction of a separate eastbound right-tum lane.
- US 395/W Elm Avenue (OR 207) - As with the 2032 No-Build c onditions, the intersection isforec ast to continue to exceed the 0.90 ODOTmobilitytarget. During the weekday PM peak hour, the intersection isforec ast to operate at a V/C of 0.96 which representsa slight degradation in operations compared to 2032 No-Build conditions.
- To better serve the projected demand, the construction of a northbound right-tum lane, a southbound right-tum lane, and a westbound right-tum lane would improve operationsof the intersection and result in an acceptable V/C of 0.76 . While these improvementswould benefit the long-term operationsof the intersection, theiraccommodation would be difficultand costly considering the lack of public right-of-way and impactsto existing businesses.
- RiverRoad/W Punkin CenterRoad - A westerlyextension of W Punkin CenterRoad is assumed to form a new intersection with River Road in the approximate location of the existing RiverRoad/Cooney Lane intersection. The following improvement would be needed to accommodate the long-term tuming movement demands at this intersection:
- Construction of separate left-tum and shared through/right-tum lanes on all four intersection approaches.
- When warranted, c onstruction of a traffic signal.
- Upgrade and modernization of the adjacent Union Pacific Railroad c rossing.
- Realignmentof Cooney Lane to intersect the westerlyextension of W Punkin Center Road instead of directlyconnecting to RiverRoad.
- Country Lane Corridor-
- Realign Country Lane and form a new intersection with Powerline Road to increase spacing from the l-82 interchange. The alignment and spacing should be detemined through a separate multi-agency Interc hange Area Management Plan (IAMP).
- Upgrade the Country Lane corridorto two paved twelve-foot travellanes(widened to include left- or right-tum lanes at majorc rossroads), five-footshoulders/bike lanes, c urb and gutter, and five-footsidewalks.
- Upgrade the right-of-way width to 90 feet to allow for a future upgrade to an Urban Major Arterial perCity of Hermiston Standard Drawing STO7.
- Powerline Road/Country Lane Intersection- With a Punkin Center Road extensionto Country Lane, there will be an inc rease in traveldemand at the Powerline Road/C ountry Lane intersection. This inc rease will necessitate the following improvementswhichare recommended to be more fully explored aspart of a separate IAMP with ODOT and Umatilla County:
- Construction of a southbound left-turn lane on Powerline Road.
- Construction of westbound right-tum and left-turn lanes on Country Lane.
- I-82 SB Ramp Terminal/Powerline Road - A Punkin Center Road extension isanticipated to generate additional traveldemand through the I-82/Powerline Road interchange. Asa result, the SB ramp terminalapproach isforecast to operate at a V/C of 0.95 which exceedsthe 0.85 mobilitytarget. This forecastoperating condition and potential traffic controlimprovementsshould be addressed as part of a more comprehensive Interc hange Area Management Plan.
- Powerline Road Corridor-
- Upgrade the Powerline Road comidorfrom the I-82 interchange to the realigned Country Lane intersection to two paved twelve-foot travellanes (widened to include a southbound left-tum lane at Country Lane), five-footshoulders/bike lanes, curb and gutter, and five-footsidewalks.
- Upgrade the right-of-way width to 90 feet to allow for a future upgrade to an Urban Major Arterial perC ity of Hermiston Standard Drawing STO7.

2032 W ELM AVENUE EXTENSION

An extension of W Em Avenue is antic ipated to resultin operational impactsat the following intersections/study corridors:

- US 395/W Elm Avenue (OR 207) - A W Elm Avenue extension is antic ipated to significantly inc rease tuming movement volumesat the US 395/W Elm Avenue intersection resulting in over capacity conditionsduring the weekday PM peak hour.
- To better serve the projected demand, the construction of a northbound right-tum lane, a southbound right-tum lane, and a westbound right-tum lane would signific antly improve operationsof the intersectionand result in an acceptable V/C of 0.90 . While these improvementswould benefit the long-term operationsof the intersection, theiraccommodation would be diffic ult and costlyconsidering the lackof public right-of-way and impactsto existing businesses.
- W Elm Avenue (OR 207)/1s Place - A W Em Avenue extension would inc rease traffic demands on W Elm Avenue. While the intersection isforecast to continue to meet the mobilitytarget, the intersection will not have much long-term flexibility to accommodate additional traffic growth. To inc rease the flexibility, the following improvementsare recommended:
- Construction of a southbound right-tum lane on $1^{\text {st }}$ Place.
- Construction of an eastbound right-turn lane on W Em Avenue.
- W Elm Avenue (OR 207)/NW 11th Street - A W Elm Avenue extension would add a signific antamount of traveldemand to the underutilized west leg of the intersection. During the weekday PM peak hour, the intersection isforec ast to operate at a V/C of 0.94 which exceedsthe 0.90 mobilitytarget.
- To better serve the projected demand, the construction of an eastbound right-tum lane would improve intersection operationsand resultin an acceptable V/C of 0.89.
- Powerline Road / BellingerRoad - With a W Elm Avenue extension, there will be a signific ant inc rease in travel demand at the Powerline Road/BellingerRoad intersection. This inc rease will necessitate the need for the following improvements:
- Construction of a southbound left-turn lane on Powerline Road.
- Construction of westbound right-tum and left-turn lanes on BellingerRoad.

- BellingerRoad Corridor-

- Upgrade the BellingerRoad corridorto two paved twelve-foot travellanes(widened to include left- or right-tum lanes at majorc rossroads), five-footshoulders/bike lanes, c urb and gutter, and five-footsidewalks.
- Upgrade the right-of-way width to 90 feet to allow for a future upgrade to an Urban Major Arterial per City of Hermiston Standard Drawing ST07.
- Powerline Road Corridor -
- Upgrade the Powerline Road corridor from the l-82 interchange to Bellinger Road to two paved twelve-foot travel lanes (widened to include left- or right-turn lanes at major crossroads), fivefoot shoulders/bike lanes, curb and gutter, and five-foot sidewalks.
- I-82 SB Ramp Terminal/Powerline Road - A W Elm Avenue extension is anticipated to generate additional travel demand through the I-82/Powerline Road interchange. As a result, the increase in travel demand will likely necessitate an upgrade and modernization of the interchange ramp terminals. The specific improvements should be addressed as part of a more comprehensive Interchange Area Management Plan.

Additional details of the methodology, findings, and recommendations are provided herein.

INTRO DUCTIO N

The City of Hermiston is exploring the feasibility of extending one of two existing roadway corridorsac ross the Umatilla Riverand connecting to the existing Powerline Road coridorto improve localand regional east-west travel c onnec tivity.

W Punkin CenterOption would involve the westerlyextension of W Punkin Center Road from itscurrent terminusat Sunshine Lane, forming a new intersection at RiverRoad, spanning the Umatilla Riverona new bridge, merging with the existing Country Lane coridor, and ultimatelyconnecting to Powerline Road at an appropriate location south of the l-82/Powerline Road interchange.

W Elm Avenue Option would involve the westerlyextension of W Elm Avenue from itsc urrent terminuswest of the NW 11 ${ }^{\text {th }}$ Street intersection, spanning the Umatilla Riveron a new bridge, merging with the existing BellingerRoad comidor, and connecting with Powerline Road.

Figure 1 illustratesa study area map and conceptual alignmentsforthe two study corridors. Additional detailsregarding these corridorsare doc umented laterin this tec hnic al memorandum.

SC OPE O FTHE REPORT

This a nalysisdeterminesthe high-level transportation-related impactsassociated with the two corridor extension options. The study intersectionswere selected to assessthe anticipated localand regional transportation impactsassociated with each option. They include:

```
- I-82 Northbound Ramp Terminal/Powerline Road
- I-82 Southbound Ramp Terminal/Powerline Road
- Powerline Road/Country Lane
* Umatilla RiverRoad/Cooney Lane
- Punkin CenterRoad/GeerRoad
- US 395/Punkin CenterRoad
- Powerline Road/BellingerRoad
- Elm Avenue (OR 207)/11th Street
- Elm Avenue (OR 207)/1st Place
- US 395/Elm Avenue (OR 207)
- Powerline Road/Bridge Road
```

This reportevaluates the following transportationscenariosat each study intersection:

- 2021 Existing Traffic Conditions
- 2032 No-Build Traffic Conditions(without either of the two comidoroptions but still considering transportation growth on the existing infrastruc ture network)
- 2032 Build Conditions with a W Punkin Center Road Extension
- 2032 Build Conditions with a W Elm Avenue Extension

Analysis Methodology

The signalized and stop-controlled intersection operational a nalysespresented in thisreport were prepared following Highway Capacity Manual (HCM) 6th Edition a nalysis proceduresusing PTV Vistro 2022 software in accordance with the ODOT AnalysisProceduresManual (APM). The observed peak hourfactorwas used for the existing traffic analyses.

Applic able Performance Measures \& Operating Standards/Targets

Intersection performance measuresreported inthis study include, but are not limited to, level ofservice (LOS), volume to capacity (V/C), and delay. Intersectionoperating targets adopted by the Oregon Department of Transportation (ODOT) and the City of Hermistonare summarized below.

ODOTMOBILTY TARG EIS

ODOTusesV/C to assessintersection operations. Table 6 of the Oregon Highway Plan (OHP) provides maximum volume-to-c a pacity ratio targets for all signalized and unsignalized intersectionslocated outside the Portland metropolitan area. Based on the OHP, Table 1 summarizesthe mobilitytarget (V/C) used to assess intersection operationsat the ODOT owned/maintained study intersections.

Table 1: ODOT Mobility Targets

Intersection	OHP Mobility Target
I-82 Northb ound Ramp Teminal/ Pow erline Road	$\mathrm{V} / \mathrm{C}: 0.85$ Pow erline Road A p proach
V/C $: 0.850$ ffra mp Approach	

CITY OF HERMISTON OPERATING STANDARDS

Traffic operationsat City intersectionsare desc ribed using a measure known as level of service (LOS). LOS represents ranges in the average amount of delay that motoristsexperience when passing through the intersection. The City of Hermiston has adopted LOSD or betterfor all signalized and unsignalized intersections.

EXISTING CONDIIONSANALYSIS

This sec tion summa rizes the existing charac teristic sof the transportation system at key intersec tions that are mostlikelyto be impacted by the two W Elm Avenue or W Punkin Center Road corridoroptions.

Transportation Fac ilities

Table 2 providesa summary of the transportation facilitiesin the site vic inity. Figure 2 illustratesthe existing lane configurationsand traffic control devic esat the study intersections.

Table 2: Existing Transportation Fac ilitiesand Roadway Designations

Roadway	Classification (bold indicates jurisdictional ownership)	Cross Section	Posted Speed (mph)	Sidewalks Present	Bike lanes Present?
\|-82	Interstate Highway- ODOT	4 la nes	70	None	None
Powerline Road	Local Road - Umatilla County RuralCollector- Hermiston	2 lanes	40	None	None
Country La ne	Local Road - Umatilla County	2 lanes	Not Posted	None	None
Bellinger Road	Local Road - Umatila County	2 la nes	Not Posted	None	None
Bridge Road	Local Road - Umatilla County Rural CollectorStreet-Hermiston	2 lanes	40	None	None
RiverRoad	Ma jorC ollector- Uma tilla C ounty Urban MajorC ollector- Hermiston	2 lanes	45	None	None
W Punkin CenterRoad	Urban MajorC ollector- Hermiston	2 lanes	40	Partial	None
US 395	Statewide Highway- ODOT Urb a n Ma jorArterial - Hermiston	5 lanes	30-45	Yes	None
W Elm A venue (OR207)	Regional Highway- ODOT	3 la nes	30	Partial	Partial
$11^{\text {th }}$ Street (north of Elm)	Regional Highway- ODOT Urban MinorArterial- Hermiston	2 lanes	35	Partial	Partial
1st Place	Urban MajorC ollector- Hemiston	2 lanes	35	None	None

Traffic Volumesand Peak Hour Operations

Manual turning-movementc ounts were collected at the study intersections in Oc tober 2021. The traffic counts were conduc ted on a typic almid-weekday (while loc al schoolswere in session) from 7:00 to 9:00 AM and 4:00 to 6:00 PM in orderto capture the anticipated weekday AM and PM peak hour operation conditions. AppendixA containsthe traffic count worksheetsused in this study. The following sections summarize how the volumeswere adjusted to account forseasonality.

SEASONALADJ USTMENTS

Per the ODOT AnalysisProceduresManual (APM) (Chapter 5.2), the existing traffic volumesat intersection movementson state facilitieswere seasonally adjusted to represent the $30^{\text {th }}$ highest hour volumes. The Onsite Automatic Traffic Recorder (ATR) method was used for two differentATR locationswithin the site vicinity and averaged to arrive at a seasonal adjustment factor of 1.09. Appendix B includesthe detailed methodology and calculations for the 30th highest hour adjustments.

EXISTING INIERSECTION OPERATIONS

Figure 3 and Figure 4 illustrate the adjusted existing tuming movementcounts and operationalconditions for the weekday AM and PM peak hours. Appendix C contains the existing conditionsoperations analysis worksheets. As shown, all of the study intersection operationsmeet the a pplic able ODOT mobilitytargets and City of Hermiston operating standards during the weekday AM and PM study hours.

[^0]

FUTURE YEAR NO-BUILD ANALYSIS

This section of the reportidentifieshow the study area's transportation system is forecast to operate in the future assuming continued localand regional traffic growth but without either of the two comidorextension options. Based on conversationswith City of Hermiston staff, the year 2032 was chosen as the most reasonable near-term horizon year forthis project.

2032 No-Build Traffic Volumesand Peak Hour Operations

To estimate future year 2032 traffic conditions, a compound annual growth rate between 1.5% and 3% was applied to the seasonallyadjusted 2021 traffic volumesinorderto reflectanticipated localand regional growth. Specific growth rate applic ationsinclude:

- Intersectionsalong Powerline Road and Umatilla RiverRoad were grown at a compound rate of 1.5\% peryear to be consistentwith other recent traffic impactanalyses performed in the study area.
- The intersectionsof $11^{\text {th }}$ Streetand $1^{\text {st }}$ Place with Em Avenue were grown at a compound rate of 2.5% per year to reflecta slightly higher projected growth within Hermiston and the signific antof Elm Avenue asa majoreast-west travelcorridor.
- The study intersectionsalong US 395 were grown at a compound growth rate of 3% per year to account forgreaterprojected growth in northeast Hemiston and the localand regional signific ance of the US 395 c orridor.

In addition to these growth assumptions, the projected traffic demands associated with severalapproved development projectswere incorporated at applic able study intersections. These include:

- Ambience HomesTraffic ImpactAnalysis in Umatilla. Thisproject isanticipated to be completed by 2024 , therefore the tripsassociated with this project were added to the 2032 background growth traffic volumes.
- Umatilla Residential Development Traffic ImpactAnalysisforthe residentialand commercial development of Vandelay Meadows, Cheryl'sPlace, and Ballard Property. Thisproject is antic ipated to be completed by 2030, therefore the tripsassociated with thisproject were added to the 2032 background growth traffic volumes.
- McClannahan Summitsubdivision; thisproject has a planning horizon year of 2040. The phasing of the project isunclear in the study, therefore a proportional numberof trips associated with this project between 2021 were added to the 2032 background growth traffic volumes.

Figure 5 and Figure 6 illustrate the resulting 2032 no-build traffic volumesand operational conditionsfor the weekday AM and PM peak hours. Asshown, all of the study intersectionoperationsare forecastto meet the applicable ODOT mobilitytargetsand City of Hermistonoperating standards during the AM and PM study hours with the exception of US 395/W Em Avenue (OR 207). During the weekday PM peak hour, this intersection isforecastto operate at a V/C of 0.93 which exceedsthe 0.90 mobilitytarget. Additional disc ussion regarding future year operationsof this intersection will be provided in following sectionsof this report. Appendix D includes the 2032 no-build conditionsoperationsanalysis worksheets.

W PUNKIN CENIER ROAD EXIENSIO N

As conceptually visualized in Figure 1, the W Punkin Center Option would involve the following:

- A westerlyextension of W Punkin Center Road from itsc urrent terminusat Sunshine Lane to River Road. While there are multiple alignmentoptionsforthis extension, it isassumed that the extension would minimize impactsto existing propertiesand crossthe Union Pacific rail line in the approximate location as the existing Cooney Lane c rossing.
- A new four-legged intersection withRiverRoad that replacesthe existing RiverRoad/Cooney Lane ${ }^{1}$ intersection. Given the signific ance of this intersection and the traffic volumesthat it would likely ac commodate, it ispreliminarily assumed that the intersection would need to be fully improved with left-tum and shared through/right-turn laneson all four approaches. Potential traffic control improvementswill be disc ussed in the following sections.
- A continued westerlyextensionfrom RiverRoad that would span the Umatilla Riveron a new bridge and merge with the existing Country Lane corridor. It isprelimina rily assumed that Country Lane would be upgraded to a fully improved MajorArterial crosssection.
- A realignment of Country Lane at Powerline Road to improve spacing with the adjacent I82/Powerline Road interchange. Potential alignmentsc enarioswill be disc ussed in the following sections. Giventhe levelsofnew traveldemand that it would accommodate, a new Powerline Road/C ountry Lane intersection wasassumed that the intersection would be fully improved with lefttum and shared through/right-tum laneson the southbound and westbound approaches.

Beyond these noted infrastructure changes, no other majorregional or loc al infrastruc ture improvements were assumed to the study area roadways and intersections.

Assumed Redistribution of Trips

With the circulation componentsof the W Punkin Center Road extensiondescribed above, it is antic ipated that there will be a natural redistribution of projected traffic volumesat the localand regionallevels. Key elementsof this assumed redistribution inc lude:

- A rerouting of a portion of the traveldemand along the Powerline Road/Bridge Road/Highland Avenue corridorsto the new W Punkin Center Road corridor.
- A rerouting of a portion of the north-south US 395 travel demand onto the new W Punkin CenterRoad corridorin recognition that it would provide a more directconnection to the I-82 corridor.
- A rerouting of a portion of the north-south RiverRoad traveldemand onto the new W Punkin Center Road corridorin recognition that it would provide new connections to Powerline Road, I-82, and US 395.
- A rerouting of a small portion of Westland Road demand to the I-82/Powerline Road interchange and the new east-westW Punkin Center Road corridor.

Figure 7 and Figure 8 illustrate the assumed travel demand redistributionat the study intersectionsduring the 2032 weekday AM and PM peak study hours.

[^1]

2032 W Punkin Center Option Traffic Volumesand Peak Hour Operations

The 2032 traffic conditionswith a W Punkin Center Road corridorwere determined by applying the redistributed volumesshown in Figure 7 and Figure 8 to the 2032 No-Build volumesshown in Figure 5 and Figure 6. Figure 9 and Figure 10 illustrate the resulting and antic ipated 2032 W Punkin Center Road corridor traffic volumesand peak hour operations. AppendixE inc ludes the 2032 total traffic volumes under Punkin Center Road extensionoperations analysis worksheets.

As shown in these figures, the combination of local/regional traffic growth and the anticipated redistribution of area travel demand isprojected to resultin the following impacts:

US 395/ WPUNKIN C ENIERROAD

While the US 395/Punkin Center Road intersection isforecast to continue to meet the ODOT mobilitytarget during the weekday AM and PM peak hours, forecasttraffic demand on the eastbound approach is projected to be high enough to require additional turn lane improvements. Specifically, the eastbound approach isprojected to have a high right-tum demand during the peakstudy hours which would resultin long vehic le queues in the existing shared through/right-turn lane.

In order to better manage this demand and address long vehic le queues, the following improvementsare recommended at the US 395/W Punkin Center Road intersection:

- Construction of an eastbound right-turn lane with 200 feetof right-tum storage on the eastbound W Punkin CenterRoad approach.
- Reloc ation of the US 395/W Punkin Center Road signal controllerinfrastruc ture currently located in the southwest quadrant of the intersection inorder to accommodate a new eastbound right-turn lane.

Giventhat the property in the southwest quadrant of the US 395/W Punkin Center Road intersection is currently undeveloped, the right-of-way for this improvementcould be obtained with fewerprivate property impacts.

US 395/ WELM AVENUE (OR 207)

As with the 2032 No-Build conditions, the US 395/W Elm Avenue (OR 207) intersection isforec ast to continue to exc eed the 0.90 ODOT mobility target. Specific ally, the intersection isforecast to operate nearcapacity at a V/C of 0.96 during the weekday PM peak hour. This representsa slight degradation in operations compared to the 2032 No-Build conditions(V/C 0.93). A review of forec ast traffic demands (generated primarilyasa result of local/regional growth) indic atesthat the intersection would benefit from a number of capacity enhancing improvementsto the critic al northbound, southbound and westbound approaches. Specific ally, these inc lude:

- Construction of a northbound right-turn lane, a southbound right-tum lane, and a westbound righttum lane. These capacity enhancements would signific antly improve operationsof the intersection and resultin an acceptable V/C of 0.76.
- Reconstruction of the US 395/W 日m A venue traffic signal infrastructure.

While these improvementswould benefit the long-term operationsof the intersection, their accommodation would be diffic ultand costly considering the lack of available public right-of-way and impactsto existing businesses.

RVER ROAD/ WPUNKIN CENTER ROAD

A westerlyextension of W Punkin Center Road is assumed to form a new intersection with RiverRoad in the approximate loc ation of the existing RiverRoad/Cooney Lane intersection. A conceptual illustration ofthis connection and the assumed intersection geometry (left-tum and shared through/right-tum laneson all four approaches) is provided in Exhibit A. Asshown in Figures9 and 10, the projected future yeartraffic demands through this intersection will require the consideration of traffic control mea suresbeyond twoway stop-control².A planning level signal warrant analysisindic ates that the intersection would meet volume-based wa rants fora traffic signal. With signalization and the conceptually illustrated geometric improvements, the intersection would operate at acceptable level of service Dduring both the weekday AM and PM peak hours. In addition to the geometric and long-term traffic controlneeds, a new River Road/W Punkin Center Road intersection would need to considerthe following:

- An alignment between Sunshine Lane and RiverRoad that minimizesimpactsto existing land uses. The conceptual alignment shown in Exhibit A is one potential option.
- A realignment of Cooney Lane to intersect the W Punkin CenterRoad extension. The conceptual alignmentshown in Exhibit A isone potentialoption.
- An upgrade and modemization of the adjacent Union Pacific Railroad crossing gates and signal infrastruc ture.

[^2]

IKO KITTELSON

POWERLINE ROAD/ C OUNIRY LANE

The existing Powerline Road/Country Lane intersection isloc ated approximately 275 feet south of the I82/Powerline Road interc hange ramp terminal. Thisspacing does not meetODOT's desired $1 / 4$-mile access spacing standard forpublic street intersectionswithin the vic inity of freeway ramp terminals. While not meeting the spacing standard, existing traffic volumeson Country Lane are relativelyminimal. However, with a Punkin Center Road extensionto Country Lane, there will be a signific ant inc rease in travel demand necessitating a c loserreview of the intersection spacing issue, physic al improvements suc has intersection modernization, and travellane improvementssuchas a southbound left-tum lane on Powerline Road and westbound right-tum and left-turn laneson Country Lane.

Giventhe complexityand private property impactsassoc iated with improving and reloc ating the Country Lane intersec tion with Powerline Road, a separate study effortc alled an Interchange Area Management Plan (IAMP) istypic allyrecommended.An IAMP is a public planning effort that would involve ODOT, Umatilla County, City of Hemiston, nearby private property owners, and otherinterest groups. The IAMP would formallyidentifya preferred interchange improvement planincluding the design, timing, and right of way needs for a reloc ated Country Lane intersection. While there are any number of potential C ountry Lane relocation scenariosthat could be studied in an IAMP, one potential concept isillustrated in Exhibit B. This concept (included for illustrative purposesonlybut also inclusive of identified geometry and capacity needs) would:

- Close off the existing Country Lane connection to Powerline Road and develop a separate alignment that would intersection Powerline Road along property linesapproximately 1,500 feet to the south. An IAMP would formallystudy alignmentslike this as well as others to find the least impactful and cost-effec tive solution.
- Widen Powerline Road to provide a southbound left-tum lane at the realigned Country Lane intersection.
- Upgrade the Country Lane corridorto two paved twelve-foottravellanes(widened to include left-or right-tum lanes at major c rossroads), five-footshoulders/bike lanes, c urb and gutter, and five-foot sidewalks.
- Upgrade the right-of-way width to 90 feet to allow for a future upgrade to an Urban Major Arterial per City of Hermiston Standard Drawing STO7.

W ELM AVENUE EXIENSION

As conceptually visualized in Figure 1, the W Elm Avenue Option would involve the following:

* A westerly extension of W Em Avenue from itsc urrent terminusat NW 11 ${ }^{\text {th }}$ Street that would span the Umatilla Riveron a new bridge and merge with the existing BellingerRoad corridor.
- An upgraded BellingerRoad (to Major Arterial level standards).
- An upgraded intersection of BellingerRoad at Powerline Road.

Beyond these noted infrastructure changes, no other majorregional or local infrastruc ture improvementsto the study area roadways and intersectionswere assumed.

Assumed Redistribution of Trips

With the circulation componentsof the W Em Avenue extension described above, it is antic ipated that there will be a natural redistribution of projected traffic volumesat the localand regionallevels. Key elements of this assumed redistribution include:

- A rerouting of a portion of the traveldemand along the Powerline Road/Bridge Road/Highland Avenue corridorsto the new W Em Avenue corridor.
- A rerouting of a portion of the north-south US 395 traveldemand onto the new W Elm Avenue corridor in recognition that it would provide an altemative connection to the I-82 corridor.
- A rerouting of a portion of the north-south $11^{\text {th }}$ Avenue travel demand onto the new W Elm Avenue corridorin recognition that it would provide new connectionsto Powerline Road and I-82.

Figure 11 and Figure 12 illustrate the assumed travel demand redistribution atthe study intersectionsduring the 2032 weekday AM and PM peak study hours.

2032 W Elm Avenue Option Traffic Volumesand Peak Hour Operations

The 2032 traffic conditionswith a W Em Avenue corridorwere determined by applying the redistributed volumesshown in Figure 11 and Figure 12 to the 2032 No-Build volumesshown in Figure 5 and Figure 6. Figure 13 and Figure 14 illustrate the resulting and antic ipated 2032 W Elm Avenue Option traffic volumes and peak hour operations. Appendix F includes the 2032 total traffic volumes under Em Avenue extension operationsanalysis worksheets.

As shown in these figures, the combination of local/regionaltraffic growth and the antic ipated redistribution of area traveldemand isprojected to resultin the following impacts:

US 395/ WELM AVENUE (OR 207)

Under the W Elm Avenue Option, the US 395/W Em Avenue (OR 207) intersection isforecast to operate eitherover the 0.90 mobility targetor overcapacity depending upon the study period. Specific ally, the intersection isforecastto operate at a V/C of 0.92 during the weekday AM peak hour and over capacity with a V/C of 1.02 during the weekday PM peak hour. With an increase in turning movement demand generated by the W Elm Avenue Option, this representsa much more signific antdegradation in operations compared to the 2032 No-Build conditions(V/C 0.93). A review of forec ast traffic demands indic atesthe
intersection would benefit from the same previouslyidentified capacity enhancements to the critic al northbound, southbound and westbound approaches. These include:

- Construction of a northbound right-turn lane, a southbound right-tum lane, and a westbound righttum lane would signific antly improve operationsof the intersection and resultin an acceptable V/C of 0.90.
- Reconstruction of the US 395/W Em Avenue traffic signal infrastruc ture to accommodate the above noted turn lanes.

While these improvementswould benefit the long-term operationsof the intersection, their accommodation would be diffic ultand costly considering the lack of right-of-way and impactsto existing businesses. It should also be noted that while these improvementswould restore capacity to the intersection, they would only restore enough capacity in order to meet the 0.90 mobility target.

W ELM AVENUE (OR 207)/ 1sTPLACE

Underthe W Elm Avenue Option, the W Em Avenue (OR 207)/1st Place intersection isforecastto operate at a V/C ratio of 0.89 during the weekday PM peak hour. While this forecastoperation does not exceed the 0.90 mobilitytarget, it does indic ate the intersection has limited long-term operational flexibility to ac commodate additional traffic growth. To help address this long-term limitation and accommodate increased traffic demand antic ipated under the W Elm Avenue Option, the intersection would benefit from the following modemization and capacity enhancing improvements:

- Construction of a southbound left-turn lane on $1^{\text {st }}$ Place
- Construction of an eastbound right-turn lane on W Em Avenue

While not a function of the inc reased traffic generated by the W Elm Avenue Option, the north and south legsof $1^{\text {st }}$ Place are unimproved and would benefitfrom an upgrade to a Major Collectorperoption 2 of the City of Hermiston Standard Drawing STO9.

WELM AVENUE (OR 207)/ NW11TH STREET

Under the W Elm Avenue Option, new traffic demand on the underutilized west leg of the intersection will resultin a degradation of capacity during the weekday PM peak hour. Specific ally, the intersection is forecastto operate at a V/C of 0.94 which will exceed the 0.90 mobilitytarget. A review of forec ast traffic demands indic atesthe intersection would benefit from capacity enhancements to the critic al eastbound approach. This includes:

- Construction of an eastbound right-turn lane which would improve operations of the intersection and result in an ac ceptable V/C of 0.89.

POWERLNE ROAD/ BELING ERROAD

Under the W Elm Avenue Option, the Powerline Road/BellingerRoad intersection will need to be upgraded to urban travelstandards in orderto safelyac commodate antic ipated inc reasesin travel demand. This includes

- Construction of a southbound left-tum lane on Powerline Road. The forecastleft-turn demand will be high enough to warrant a separate turn lane allowing southbound through traffic to progressthrough the intersection unimpeded by the high left-tum demand.
- Construction of westbound right-tum and left-turn lanes on BellingerRoad.

POWERLINE ROAD AND BELLINGER ROAD CORRIDORS

Under the W Elm Avenue Option, Power Line Road (from the l-82 interchange to Bellinger Road) and Bellinger Road (from Powerline Road to the Umatilla River Bridge) would need to be upgraded to two paved twelve-foot travel lanes (widened to include left- or right-turn lanes at major crossroads), five-foot shoulders/bike lanes, curb and gutter, and five-foot sidewalks. In addition, upgrade the right-of-way width to 90 feet to allow for a future upgrade to an Urban Major Arterial per City of Hermiston Standard Drawing ST07.

I-82 SB RAMP TERMINAL/POWERLINE ROAD

A W Elm Avenue extension is anticipated to generate additional travel demand through the I-82/Powerline Road interchange. As a result, the increase in travel demand will likely necessitate an upgrade and modernization of the interchange ramp terminals. The specific improvements should be addressed as part of a more comprehensive Interchange Area Management Plan.

Table 3 summarizesthe future operational needs assoc iated with alternative roadway extension options at key study intersections.

Table 3: Future Operational/ Geometric ImprovementNeedsAssoc iated with Roadway Extension Options

Intersection/ Roadway Corridor	W Punkin CenterOption Improvement Needs	W Elm Avenue Option Improvement Needs
$\begin{aligned} & \text { US } 395 \text { / } \\ & \text { Punkin CenterRoad } \end{aligned}$	- Construct sepa rate ea stbound righttum la ne to ma na ge expected longtem vehic le queues	- None
RiverRoad / Punkin CenterRoad/ Cooney Lane	- Construct sepa ra te left-tum and comb ined through a nd right-tum la nes on all a p proaches - When wa ra nted, construct a tra ffic signal - Upgrade and modemize adja cent Union Pa cific Ra ilroa d Crossing - Rea lign Cooney La ne to intersect the new east-westextension ofW Punkin CenterRoad	- None
Country La ne Comid or	- Rea lign Country La ne a nd form a new intersection with Pow erline Road to increa se sp a cing from the l-82 interchange. The a lignment and spacing should be detemined through a sepa rate multi-a gency Intercha nge Area Ma nagementPlan (IA MP) - Wid en a nd modemize the rema ining segment of Country La ne to the Umatilla RiverBnid ge	- None
Powerline Road Corid or	- Wid en a nd modemize ${ }^{1}$ Pow erline Road from the l-82 intercha nge to a reloca ted Country La ne intersection	- Wid en a nd modemize ${ }^{1}$ Pow erline Roa d from the l-82 intercha nge to Bellinger Road
Powerline Road / Country La ne	- Constructa southb ound left-tum la ne on Powerline Road at the relocated Country La ne intersection - Construct sepa rate westb ound righttum a nd left-tum la neson Country La ne at Pow erline Road	- None
I-82 Ra mp Termina ls	- Long-termwidening/modemization need ed. Specific improvementsto be id entified within the IAMP planning effort	- Long-term widening/modemization need ed. Specific imp rovementsto be id entified within the IAMP planning effort
US 395 / Elm A venue (OR 207)	- Construct northb ound right-tumla ne, southb ound right-tum lane, a nd westb ound right-tum la ne	- Construct northb ound right-tumla ne, southb ound right-tum lane, a nd westb ound right-tum la ne
1st Place / Elm A venue (OR 207)	- None	- Construct a southbound right-tum la ne - Construct a n ea stb ound right-tum la ne
11th A venue / Elm Avenue (OR207)	- None	- Construct ea stb ound right-tum la ne

Intersection/ Roadway Coridor	W Punkin Center Option Improvement Needs	W Elm Avenue Option Improvement
Needs		

Appendix A
 Traffic Count Worksheets

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Comments:

Appendix B
Seasonal Adjustment Calculations

SEA SO NALADJ USTM ENTC ALC ULATIONS

Version 2 of the APM identifiesthree methods foridentifying seasonal adjustment factorsfor highway traffic volumes. All three methodsutilize information provided by Automatic Traffic Recorders(ATR) located in selectlocationsthroughout the State Highway System that collecttraffic data 24 -hoursa day/365 days a year. Within the study area, ATR \#30-019 is loc ated on US 395 south of Hermiston while ATR \#30-002 is loc ated on US 730 east of Hemiston. Using the average of these two ATRs, the On-Site ATR Method was used to adjust the intersectiontuming movementcounts to $30^{\text {th }}$ highest hour conditions. The proposed seasonal adjustment factor calculationsare summarized in the Table below.

Table 4: Seasonal Adjustment FactorCalc ulations

							2019
ATR\#30-002	2018	2017	2016	2015	AVg		
Peak Month (August)	124	126	157	123	129	$\mathbf{1 2 6 . 3 3 \%}$	
Count Month (October)	114	101	123	106	109	$\mathbf{1 0 9 . 6 7 \%}$	
ATR\#30-019							
PeakMonth (August)	114	110	116	110	111	$\mathbf{1 1 1 . 6 7 \%}$	
Count Month (October)	109	107	111	107	109	$\mathbf{1 0 8 . 3 3 \%}$	

Source: ODOT2020 Transp ortation Volume Tables. September2021.

For ATR 30-002:

- The average peak month (August) is: $(124 \%+126 \%+129 \%) / 3=126.33 \%$
- The average count month (October) is: (114\% + 106\% + 109\%) / $3=109.67 \%$
- The seasonal adjustment factor is 126.33% 109.67\%=1.15

For ATR 30-019

- The average peak month (August) is: (114\%+110\%+111\%) / 3 = 111.67\%
- The average count month (October) is: (109\%+107\%+109\%) / $3=108.33 \%$
- The seasonal adjustment factoris $111.67 \% 108.33 \%=\mathbf{1 . 0 3}$

Combined

- The season adjustment factor is $(1.15+1.03) / 2=\underline{\mathbf{1 . 0 9}}$

APPENDIX B
 Cost Estimates for Infrastructure Improvements and Land Acquisition

CITY OF HERMIISTON, OREGON UMATILLA RIVER BRIDGE PRELIMINARY ENCINEERING REPORT ELM AVENUE TRAVEL CORRIDOR PRELIMINARY COST ESTIMATE YEAR 2022 COSTS

| NO. | DESCRIPTION | UNIT | UNIT PRICE | ESTIMATED
 QUANTITY | TOTAL PRICE |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |

See Figures 4-1 and 4-3 in Chapter 4 for right-of-way acquisition information.

Page 1 of 10

CITY OF HERMISTON, OREGON
UMATILLA RIVER BRIDGE PRELIMINARY ENGINEERING REPORT PUNKIN CENTER TRAVEL CORRIDOR

PRELIMINARY COST ESTIMATE
YEAR 2022 COSTS

${ }^{1}$ See Figures 4-2 and 4-4 in Chapter 4 for right-of-way acquisition information.

Page 2 of 10

CITY OF HERMISTON, OREGON
 UMATILLA RIVER BRIDGE PRELIMIINARY ENGINEERING REPORT
 ELM AVENUE BRIDGE ${ }^{1}$
 PRELIMINARY COST ESTIMATE
 YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	UNIT PRICE	ESTIMATED QUANTITY	TOTAL PRICE	
1	Mobilization/Demobilization	LS	\$ 610,000	All Req'd	\$	610,000
2	Bridge Structure	LS	11,150,000	All Req'd		11,150,000
3	Earthwork (Cut/Fill) ${ }^{2}$	CY	30	38,000		1,140,000
		Total Estimated Construction Cost			\$	12,900,000
		Design and Construction Engineering @ 20\%				2,600,000
		Contingencies @ 30\%				3,900,000
		TOTAL ESTIMATED PROJECT COST (2022)			\$	19,400,000

${ }^{1}$ Estimate does not include sidewalk, asphalt, or aggregate base as estimated costs for these items are included in the Elm Avenue Travel Corridor cost estimate.
${ }^{2}$ Earthwork quantities were estimated using Figure 3-1 in Chapter 3. Assumes a cut/fill slope of $3: 1$.

Page 3 of 10

Page 4 of 10

CITY OF HERMISTON, OREGON

UMATILLA RIVER BRIDGE PRELINIINARY ENGINEERING REPORT
U.S. 395/W. ELM AVENUE INTERSECTION IMPROVEMENTS

PRELIMINARY COST ESTIMATE
YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	UNIT PRICE	ESTIMATED QUANTITY	TOTAL PRICE	
1	Mobilization/Demobilization	LS	\$ 345,800	All Req'd	\$	345,800
2	Temporary Protection and Direction of Traffic/Project Safety	LS	100,000	All Req'd		100,000
3	Signal Modifications	LS	800,000	All Req'd		800,000
4	Americans with Disabilities Act Ramps	EA	10,000	8		80,000
5	Land Acquisition ${ }^{1}$	LS	5,636,000	All Req'd		5,636,000
6	Structure Demolition	LS	300,000	All Req'd		300,000
Northbound, Southbound, and Westbound Right-Turn Lanes ${ }^{2}$						
7	Concrete Curb and Gutter	LF	50	430		21,500
8	5-foot Concrete Sidewalk	LF	40	430		17,200
9	Asphalt Concrete Pavement	TON	150	130		19,500
10	Aggregate Base (12 inches)	TON	40	250		10,000
			Total Estimated Construction Cost \$ 7 330,000	struction Cost	\$	7,330,000
Design and Construction Engineering @ 20\%						1,470,000
Contingencies @ 30\%						2,200,000
TOTAL ESTIMATED PROJECT COST (2022)					\$	11,000,000

${ }^{1}$ See Chapter 4 for discussion on land acquisition.
${ }^{2}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted.

Page 5 of 10

CITY OF HERMISTON, OREGON

UIIIATILLA RIVER BRIDGE PRELIIIINARY ENGINEERING REPORT N.W. 11TH STREET/W. ELM AVENUE INTERSECTION IMPROVEMENTS ${ }^{1}$ PRELIMINARY COST ESTIMATE YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	U	T PRICE	ESTIMATED QUANTITY		L PRICE
1	Mobilization/Demobilization	LS	\$	28,100	All Req'd	\$	28,100
2	Temporary Protection and Direction of Traffic/Project Safety	LS		50,000	All Req'd		50,000
3	Signal Modifications	LS		400,000	All Req'd		400,000
4	Americans with Disabilities Act Ramps	EA		10,000	2		20,000
Eastbound Right-Turn Lane ${ }^{2}$							
5	Concrete Curb and Gutter	LF		50	260		13,000
6	5-foot Concrete Sidewalk	LF		40	260		10,400
7	Asphalt Concrete Pavement	TON		150	70		10,500
8	Aggregate Base (12 inches)	TON		40	200		8,000
		Total Estimated Construction Cost and Construction Engineering @ 20\% Contingencies @ 30\%				\$	540,000
							108,000
							162,000
		TOTAL ESTIMATED PROJECT COST (2022)				\$	810,000

${ }^{1}$ Land acquisition was not accounted for in this cost estimate as it is already included in the Elm Avenue Travel Corridor cost estimate.
${ }^{2}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted.

Page 6 of 10

CITY OF HERMISTON, OREGON UIIIATILLA RIVER BRIDGE PRELIIIINARY ENGINEERING REPORT POWERLINE ROAD/BELLINGER ROAD ${ }^{1}$
 PRELIMINARY COST ESTIMATE YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	UNIT PRICE	ESTIMATED QUANTITY		L PRICE
1	Mobilization/Demobilization	LS	\$ 9,800	All Req'd	\$	9,800
2	Temporary Protection and Direction of Traffic/Project Safety	LS	30,000	All Req'd		30,000
3	Americans with Disabilities Act Ramps	EA	10,000	6		60,000
Southbound Left-Turn Lane, and Westbound Right-Turn Lanes ${ }^{2}$						
4	Concrete Curb and Gutter	LF	30	800		24,000
5	5-foot Concrete Sidewalk	LF	35	800		28,000
6	Asphalt Concrete Pavement	TON	150	180		27,000
7	Aggregate Base (12 inches)	TON	35	520		18,200
	Total Estimated Construction Cost Design and Construction Engineering @ 20\%				\$	197,000
						39,000
		Contingencies @ 30\%				59,000
	TOTAL ESTIMATED PROJECT COST (2022)				\$	295,000

${ }^{1}$ Land acquisition was not accounted for in this cost estimate as it is already included in the Elm Avenue Travel Corridor cost estimate.
${ }^{2}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted.

Page 7 of 10

CITY OF
HERMISTON, OREGON UMATILLA RIVER BRIDGE PRELIMINARY ENGINEERING REPORT

CITY OF HERMISTON, OREGON
UM̄̃ATILLA RIVER BRIDGE PRELIVIINARY ENGINEERING REPORT UMATILLA RIVER ROAD/W. PUNKIN CENTER ROAD INTERSECTION IMPROVEMENTS ${ }^{1}$
PRELIMINARY COST ESTIMATE
YEAR 2022 COSTS

| NO. | DESCRIPTION | UNIT | UNIT PRICE | ESTIMATED
 QUANTITY | TOTAL PRICE |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |

${ }^{1}$ Asphalt through the travel corridor is not included in this estimate as it is already included in the Punkin Center Travel Corridor cost estimate.
${ }^{2}$ Land acquisition was accounted for only on the southbound approach since land acquisition for the eastbound and westbound approaches is already included in the Punkin Center Travel Corridor cost estimate. Land acquisition for the northbound approach was not included as the land is owned by the City of Hermiston.
${ }^{3}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted.

Page 8 of 10

CITY OF HERMISTON, OREGON UMiÃtilla river bridge prelinilinary Engineering report POWERLINE ROAD/COUNTRY LANE INTERSECTION IMPROVEMENTS ${ }^{1}$ PRELIMINARY COST ESTIMATE YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	U	PRICE	ESTIMATED QUANTITY		AL PRICE
1	Mobilization/Demobilization	LS	\$	9,700	All Req'd	\$	9,700
2	Temporary Protection and Direction of Traffic/Project Safety	LS		20,000	All Req'd		20,000
3	Americans with Disabilities Act Ramps	EA		10,000	3		30,000
4	Land Acquisition ${ }^{2}$	LS		45,000	All Req'd		45,000
Southbound Turn-Lane Westbound Left and Right-Turn Lanes ${ }^{3}$							
5	Asphalt Concrete Pavement	TON		150	330		49,500
6	Aggregate Base (12 inches)	TON		40	970		38,800
		Tota	E	ated Co	struction Cost	\$	193,000
		n and		tion Eng	neering @ 20\%		39,000
				Contin	encies @ 30\%		58,000
		ESTII	AT	PROJEC	COST (2022)	\$	290,000

${ }^{1}$ Asphalt through the travel corridor is not included in this estimate as it is already included in the Punkin Center Travel Corridor cost estimate.
${ }^{2}$ Land acquisition in addition to what was accounted for in the Punkin Center Travel Corridor cost estimate, is included to account for re-routing Country Lane through private property.
${ }^{3}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted. Curb, gutter, and sidewalk is already accounted for in the Punkin Center Travel Corridor cost estimate.

Page 9 of 10

CITY OF HERMISTON, OREGON
 UIIIATILLA RIVER BRIDGE PRELIIIINARY ENGINEERING REPORT U.S. 395/PUNKIN CENTER ROAD INTERSECTION IMPROVEMIENTS ${ }^{1}$ PRELIMIINARY COST ESTIMATE YEAR 2022 COSTS

NO.	DESCRIPTION	UNIT	U	PRICE	ESTIMATED QUANTITY		L PRICE
1	Mobilization/Demobilization	LS	\$	8,900	All Req'd	\$	8,900
2	Temporary Protection and Direction of Traffic/Project Safety	LS		40,000	All Req'd		40,000
3	Americans with Disabilities Act Ramps	EA		10,000	2		20,000
4	Concrete Island	LS		30,000	All Req'd		30,000
5	Utility Relocation	LS		30,000	All Req'd		30,000
Eastbound Right-Turn Lane ${ }^{2}$							
6	Concrete Curb and Gutter	LF		50	260		13,000
7	5-foot Concrete Sidewalk	LF		35	260		9,100
8	Asphalt Concrete Pavement	TON		200	70		14,000
9	Aggregate Base (12 inches)	TON		40	200		8,000
Total Estimated Construction CostDesign and Construction Engineering @ 20\%Contingencies @ 30\%						\$	173,000
							35,000
							52,000
TOTAL ESTIMATED PROJECT COST (2022)						\$	260,000
${ }^{1}$ Land acquisition was not included in this cost estimate as it is already included in the Punkin Center Travel Corridor cost estimate.							
${ }^{2}$ Turn lane geometry for estimation purposes was derived using general design guidelines in the 2012 Highway Design Manual. A minimum storage length of 100 feet was assumed for comparison purposes, unless otherwise noted.							

Page 10 of 10

APPENDIX C
 City of Hermiston, Oregon, Major Arterial Standard Drawing

[^0]: FVIKITTELSON
 \& ASSOCIATES

[^1]: 1 It isassumed that Cooney Lane would be realigned and would connect to the new W Punkin Center Road extension.

[^2]: ${ }^{2}$ The consid eration of tra ffic control mea surestyp ic a lly includ esthe considera tion of a round a b out. However, a round a boutw asnot a ssessed at thisloc a tion due to the typ ic ally la rge footp nint of a round a bout, la ck of existing right-of-way, a nd the intersection'sclose proximity to the a dja cent Union Pa cific rail line.

