Traffic Impact Study

Schoolhouse Commons

Town of Haymarket, Virginia

August 19, 2025

Prepared for:

Graystone Companies, LLC

Prepared by:

4114 Legato Road 225 Reinekers Lane 1140 Connecticut Ave NW 4951 Lake Brook Drive 4550 Montgomery Avenue

Suite 650 Suite 750 Suite 1010 Suite 250 Suite 400

Fairfax, VA 22033 Alexandria, VA 22314 Washington, DC 20036 Glen Allen, VA 23060 Bethesda, MD 20814

www.goroveslade.com

This document, together with the concepts and designs presented herein, as an instrument of services, is intended for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization by Gorove/Slade Associates, Inc., shall be without liability to Gorove/Slade Associates, Inc.

TABLE OF CONTENTS

Executive Summary	4
Purpose of Report and Study Objectives	4
Site Location and Study Area	4
Description of Proposed Development	4
Principal Findings, Conclusions, and Proposed Mitigations	4
Analysis Components	4
Conclusion	5
Infrastructure	5
Analysis Results	5
Overall Conclusion	6
Introduction	7
Description of the Existing Site	8
Site Location	8
Location within Jurisdiction and Region	g
Existing Zoning and Long-Range Land-Use	10
Descriptions of Geographic Scope of Study and Limits of the Study Area	12
Existing Roadway Network	13
Planned Future Transportation Improvements	13
Roadway Improvements	13
Analysis of Existing Conditions (2025)	13
Existing Roadway Safety Assessment	13
Existing Traffic Volumes	15
Existing Intersection Capacity and Queueing Analysis	18
Analysis of Future Conditions without Development 2029	22
Inherent Regional Growth	22
Potential Background Development(s)	22
Potential Roadway Improvement(s)	23
Future without Development Lane Configuration	23
Future without Development (2029) Traffic Volumes	23
Future without Development Intersection Capacity and Queueing Analysis	28
Analysis of Future Conditions with Development (2029)	31
Site Description	31
Proposed Site Access	31
Projected Site Trip Generation	32
Distribution and Assignment of Site Traffic	32

Total Future with Development (2029) Lane Configuration	33
Analysis Scenario: Total Future with Development (2028)	35
Rerouted Existing Driveway Volumes	37
Future with Development (2029) Traffic Volumes	39
Future with Development (2029) Intersection Capacity and Queueing Analysis	41
Alternative Routes Analysis	44
Overall Comparison of Analysis Scenarios	48
Turn Lane Warrant Assessments	52
Right Turn Lane Assessments	52
Left Turn Lane Assessment	53
Access Management Assessment (Intersection Spacing with Adjacent Intersections)	54
Conclusion	55
Analysis Components	55
Infrastructure	55
Analysis Results	55
Overall Conclusion	55
LIST OF FIGURES	
Figure 1: Site Location & Access	8
Figure 2: Regional Location	9
Figure 3: Zoning Map	10
Figure 4: Planned Use Map	11
Figure 5: Aerial of Study Boundaries (Study Intersections)	12
Figure 6: 2025 Existing Conditions – Roadway Network Geometric Configuration and Traffic Control Devices	16
Figure 7: 2025 Existing Conditions – Vehicular Traffic Volumes	17
Figure 8: 2025 Existing Conditions – Level of Service Results	20
Figure 9: Projected Inherent Regional Growth Traffic Volumes (2025 to 2029)	24
Figure 10: 6700 Bleight Drive Background Development Site Trips	25
Figure 11: 2029 Future Conditions without Development – Vehicular Traffic Volumes	27
Figure 12: 2029 Future Conditions without Development – Level of Service Results	29
Figure 13: Preliminary Site Layout Plan (For Illustrative Purposes Only; Subject to Change)	31
Figure 14: Global Vehicular Direction of Approach (Site Trip Distribution)	32
Figure 15: Future with Development 2028 (Roadway Network Geometric Configuration and Traffic Control Devices)	34
Figure 16: Site Generated Trip Assignment	36
Figure 17: Rerouted Existing Driveway Volumes	38
Figure 18: Total Future with Development (2029) Volumes	40
Figure 19: Total Future with Development (2029) – Level of Service Results	43

Figure 20: Total Future with Development (2029) Alternative Volumes	45
Figure 21: Total Future with Development (2029) Alternative – Level of Service	47
Figure 22: Assumed Reroute Time and Distance	48
Figure 23: Right Turn Warrant Analysis Chart (VDO FIGURE 3-27)	52
Figure 24: Proposed Intersection Spacing Evaluations	54
LIST OF TABLES	
Table 1: Washington St (Rte. 55) Roadway Information	13
Table 2: Historical Crash Data Summary (January 2020- December 2024)	13
Table 3: VDOT Crash Data at Washington St (Rte. 55) & Greenhill Crossing Dr/Site Entrance (Intersection #2)	14
Table 4: Existing Conditions (2025) – Intersection Capacity and Queuing Analysis Results	19
Table 5: Historical Regional Growth within Vicinity of the Road Network	22
Table 6: 6700 Bleight Drive Site Trips	22
Table 7: Future Conditions without Development (2029) – Intersection Capacity and Queuing Analysis Results	28
Table 8: Site Trip Generation (Peak Hour of the Adjacent Street; ITE 11 th Ed.)	32
Table 9: Future Conditions with Development (2029) – Intersection Capacity and Queuing Analysis Results	42
Table 10: Total Future with Development (2029) Alternative – Intersection Capacity and Queuing Analysis Results	46
Table 11: Roundabout Analysis at Washington St (RTE. 55) & Gillis Way/Piedmont Center Plaza	48
Table 12: Intersection Level of Service and Delay Comparison	49
Table 13: Intersection Queue Length Comparison	50
Table 14: Right Turn Lane Warrant Assessments at Site Entrances (VDOT RDM-F Fig. 3-27)	52

APPENDICES

Appendix A - Signed Scoping Document

Appendix B - Existing Turning Movement Counts

Appendix C – Intersection Analysis Worksheets – Existing 2025

Appendix D – Background Development Trip Generation

Appendix E – Intersection Analysis Worksheets – Future without Development (2029)

Appendix F – Intersection Analysis Worksheets – Future with Development (2029)

Appendix G - Intersection Analysis Worksheets - Future with Development (2029) Mitigated

Appendix H – Intersection Analysis Worksheets – Future with Development (2029) Alternative

Appendix I – Crash Data

Appendix J – Description of Traffic Level of Service

Executive Summary

Purpose of Report and Study Objectives

This report presents the findings of Traffic Impact Analysis conducted for the proposed Schoolhouse Commons development in the Town of Haymarket, Virginia. This study was developed in accordance with Virginia Department of Transportation ("VDOT") and the Town of Haymarket guidelines.

The document is prepared in accordance with best professional practice and standards that assess the impact of a proposed development on the transportation system and recommends improvements to lessen or negate those impacts. Traffic Impact Analysis involves the evaluation of anticipated roadway conditions with and without the proposed development and recommend transportation improvements to offset both the impacts of the increase in future traffic volumes and the changes in traffic operations due to the development. The analysis assists public officials and developers to balance interrelations between efficient traffic movements with necessary lane access.

Site Location and Study Area

The site is located in the Town of Haymarket. The vehicular study area has six (6) existing intersections, five (5) of which are located along Washington St (Rte. 55) and one (1) located along Bleight Dr.

Description of Proposed Development

The planned development program for the site includes mix uses with approximately 26,000 SF of existing commercial/office land uses to remain and about 61 single family attached (townhome) units. Please note, for the purposes of the operational analysis, the development program analyzed 65 units to evaluate the most conservative scenario.

The site is currently occupied by approximately 32,000 SF of existing commercial uses. A portion of the commercial uses, approximately 5,900 SF of office space, are planned to be removed with this application while the remaining 26,000 SF is anticipated remain. The development currently has two access points (one entrance only and one exit only entrance) along Washington St. The current plan for the development proposes one full access entrance (inbound and outbound) along Washington St. The development is also planning a site access by constructing a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln.

Principal Findings, Conclusions, and Proposed Mitigations

Discussions regarding the study assumptions and relevant background information were held with the Town of Haymarket ("The Town") and VDOT staff during a June 13, 2025, scoping meeting. A finalized scope was agreed upon and signed by VDOT and PWCDOT on June 20, 2025.

The analysis presented in this report supports the following assumptions and findings:

Analysis Components

- Existing counts, dated Tuesday June 3, 2025, were collected while schools were in session to reflect typical traffic patterns, and serve as the basis for this study. Existing traffic counts were conducted at the existing intersections on Saturday June,14, 2025. Please note there was approximately 4,700 SF of vacant commercial and church space at the time of collected counts, had the building been fully leased, the traffic volumes for the existing conditions would be slightly higher than presented in the report.
- As determined based on discussions at the scoping meeting, an inherent growth rate of 2% (compounded annually) for the period 2025-2029 has been applied to all through movements along Washington St at all intersections.
- The site is anticipated to generate approximately 26 total trips during the AM peak hour, 27 total trips during the PM peak
 hour, 444 total daily trips on a typical weekday and 296 Saturday daily trips.

- One (1) identified background development was included in the study 6700 Bleight Drive Which will consist of approximately 11 single family attached units.
- The scenarios to be included in this study are Existing Conditions (2025), Future without Development (2029), Future with Development (2029).
- The existing access to the site is served via two (2) intersections, one entrance and one egress. The development proposes to convert the existing entrance only driveway to a full access (inbound and outbound) driveway. The development also proposes to remove the existing exit only driveway as the primary bidirectional entrance would reduce driver confusion and better meet driver expectation. The proposed development is also planning to construct a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln.

Conclusion

The analysis presented in this report supports the following assumptions and findings:

Infrastructure

• There is one (1) identified infrastructure change with this proposed development. Construction of a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln, will serve as another site access for the proposed development. No additional background infrastructure changes were identified and agreed upon in the scope.

Analysis Results

Analysis Terms:

- Level of Service (LOS) is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at
 the intersection and the delay (in seconds) associated with each directional movement. This evaluation is consistent in all
 traffic analysis scenarios. Please refer to definitions of Level of Service in Appendix J.
- The 95th percentile queue length refers to the queue length within which 95% of all observed queues are contained during a specific analysis period. This evaluation is consistent in all traffic analysis scenarios.

Existing Conditions (2025):

- All approaches and the overall intersections operate at an acceptable level of service.
- All the anticipated 95th percentile queues are contained in the available storage lane lengths for all the study intersections.

Total Future without Development (2029):

- All approaches and the overall intersections operate at an acceptable level of service.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.

Total Future with Development (2029):

The results of the Future with Development Conditions (2029) analysis scenario are as follows:

- All the approaches and the overall intersection operate at acceptable levels of service for all of the study intersections.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.
- Please note that while all study intersections and approaches operate at acceptable levels of service, the following lane group was observed to experience larger delay:
 - Intersection #2 Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access #1 Northbound shared left/thru lane operates at LOS E in the PM peak hour. The overall approach operates acceptably.
 - The 95th percentile queue for the northbound shared left/thru lane is approximately 23 ft (less than one car).
 Therefore, the queues do not extend to the downstream driveways that serve the residential community.

- The reconfigurations and mitigations for this analysis scenario are as follows:
 - The existing primary driveway entrance (Access #1) will be reconfigured to a full-access driveway (inbound & outbound).
 - The existing exit-only driveway (Access #2) is planned to be closed to address the existing safety issues due to the proximity to the driveway to the east.
 - The addition of a westbound right turn lane at Intersection #2 (Washington St (Rte. 55) & Greenhill Crossing Dr/Site
 Access) is a proposed mitigation. Please note only a right turn taper is warranted using VDOT Road Design Manual
 (RDM) Turn Lane Assessment.
- In addition to the mitigation implemented for the Future Conditions with Development (2029) scenario, an alternative scenario was provided that reviewed the capacity of the adjacent roundabout to understand the capacity if existing vehicles were to reroute to utilize the intersection. The analysis confirms that the roundabout operates acceptably if additional vehicles were to use it.

Overall Conclusion

Based on the capacity and queueing analysis results, the proposed development will not have a significant impact to the surrounding transportation and roadway network, assuming that all designs planned with the subject proposal, and mitigations discussed in this report are implemented.

Introduction

This report presents the findings of Traffic Impact Analysis conducted for the proposed Schoolhouse Commons development in the Town of Haymarket, Virginia.

The site is currently occupied with approximately 32,000 SF of commercial and office space. The planned development program for the site includes approximately 26,000 SF of commercial/office land uses and about 61 single family attached (townhome) units. Please note for the purposes of the operational analysis, the development program analyzed 65 townhome units to evaluate the most conservative scenario. Also note, a portion of the site is currently occupied by existing commercial uses. A portion of the commercial uses, approximately 5,900 SF of office space, are planned to be removed with this application while the remaining 26,000 SF is anticipated remain. The projected build-out date for the site is assumed to be 2029.

The following tasks were completed as part of this study effort:

- A scoping meeting was held on Friday, June 13, 2025, with VDOT and the Town of Haymarket "The Town" staff to discuss
 the parameters of this study as well as any relevant background information. A copy of the signed scoping document is
 included in Appendix A.
- Existing conditions were observed in the field to verify roadway geometry, pedestrian and bicycle infrastructure, and traffic flow characteristics.
- Existing traffic counts conducted at the existing intersections on Tuesday, June 3, 2025, during the weekday morning and
 weekday afternoon peak periods were used as baseline counts. Existing traffic counts were conducted at the existing
 intersections on Saturday June, 14, 2025. Please note there was approximately 4,700 SF of vacant commercial and church
 space at the time of collected counts, had the building been fully leased, the traffic volumes for the existing conditions would
 be slightly higher than presented in the report.
- The Future Conditions without Development (2029) scenario was projected based on the existing traffic volumes and an
 inherent growth rate to account for regional growth on the roadway network. There was one (1) identified background
 development was included in the study 6700 Bleight Drive Which will consist of approximately 11 single family attached
 units.
- Proposed site traffic volumes were derived based on the methodology outlined in the Institute of Transportation Engineers'
 (ITE) Trip Generation Manual, 11th Edition, publication and were assigned to the road network based on the agreed upon
 direction of approach discussed during the aforementioned scoping meeting.
- The Future Conditions with Development (2029) scenario was projected based on the existing traffic volumes, regional growth, background developments, and plans for the proposed development.
- Intersection capacity and queueing analyses were performed for the identified study intersections for the Existing Conditions (2025), Future without Development (2029), and Future with Development (2029) during the weekday morning (AM), weekday afternoon (PM) peak hours, and weekend afternoon (SAT) peak hour.
- Intersection capacity and queuing analyses were performed using Synchro, version 11, with results based on the Federal Highway Administration's (FHWA) Highway Capacity Manual (HCM) 6 and (HCM) 2000 methodology and following VDOT's Traffic Operations and Safety Manual (TOSAM).

Sources of data for this study include information provided by VDOT, PWCDOT, and the office files and field reconnaissance efforts of Gorove Slade.

Description of the Existing Site

Site Location

The site is located in the Town of Haymarket. The site is generally bounded by Alexandra's Keep Ln to the north, Washington St (Rte. 55) to the south, an existing residential community and office space to the east, and Bleight Dr to the west. The development proposes to convert the existing entrance only driveway to a full access (inbound and outbound) driveway. The development also proposes to remove the existing exit-only driveway as the primary bidirectional entrance would reduce driver confusion and better meet driver expectations. The development is also planning to construct a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln. The site entrances for the development are shown on Figure 1 below.

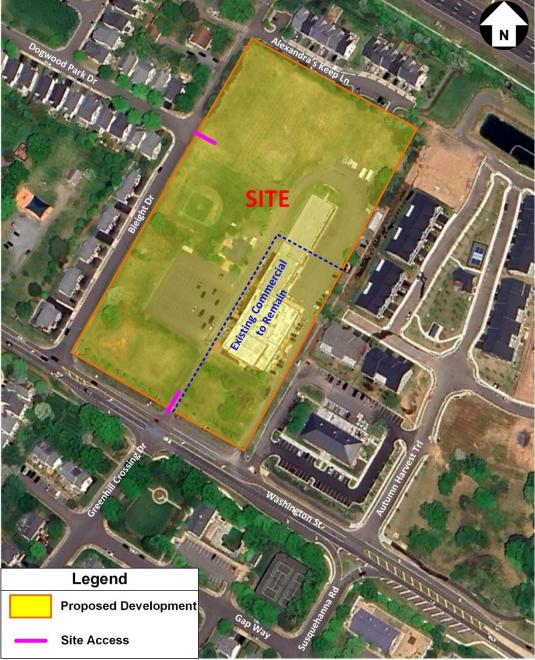


Figure 1: Site Location & Access

Location within Jurisdiction and Region

The site is located in the northeast quadrant of the intersection of Washington St (Rte. 55) & Bleight Dr and is approximately 0.9 miles from the intersection of Washington St (Rte. 55) & James Madison Hwy (US-15). The site is located approximately 1.0 mile southeast of the interchange of James Madison Hwy (US-15) and I-66 shown in Figure 3. The site is also located approximately 1.3 miles northwest of the interchange of John Marshall Hwy (Rte. 55) and Lee Hwy (US-29).

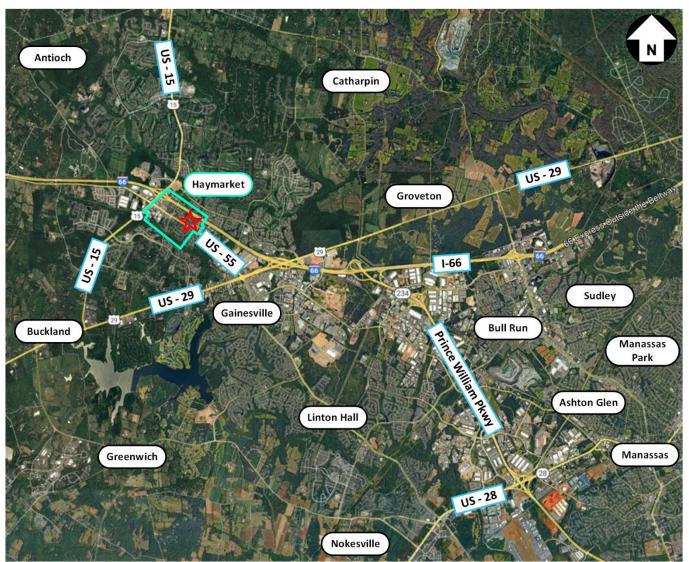


Figure 2: Regional Location

Existing Zoning and Long-Range Land-Use

The existing zoning for the site is Town Center (B-1) as shown on Figure 3 and the Town of Haymarket's Planned Use designation for the site is Public as shown on Figure 4.

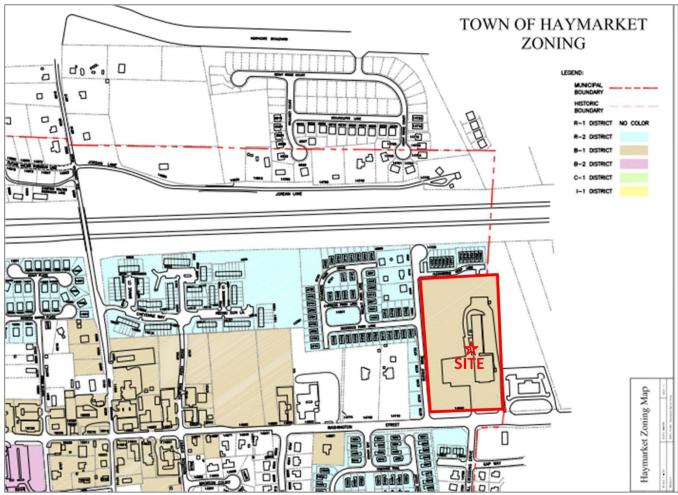


Figure 3: Zoning Map

(Source: Town of Haymarket Zoning)

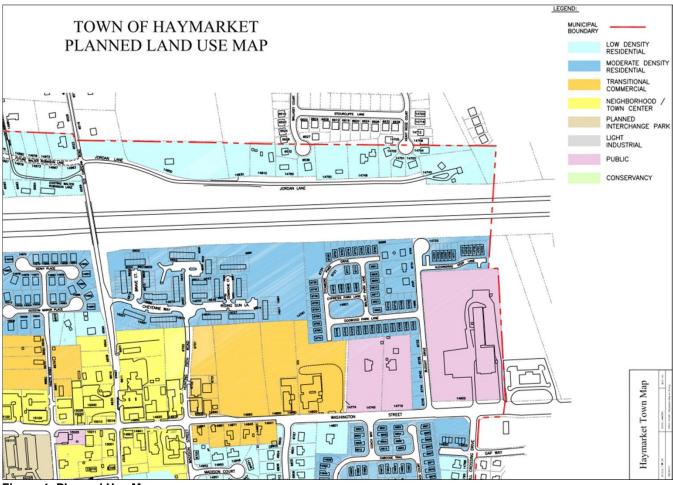


Figure 4: Planned Use Map

(Source: Town of Haymarket Planning Commission)

Descriptions of Geographic Scope of Study and Limits of the Study Area

The geographic scope of the study area was developed in accordance with VDOT and the Town guidance. The vehicular study area includes the following six (6) existing intersections:

Intersection #1: Washington St (Rte. 55) & Bleight Dr (existing full movement, two-way stop controlled);

Intersection #2: Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access #1 (existing full movement on south side,

one way entrance on north side, two-way stop controlled);

Intersection #3: Washington St (Rte. 55) & Site Access #2 (existing two-way stop controlled, one way exit);

Intersection #4: Washington St (Rte. 55) & Commercial Access (existing Right-In/Right-Out (RIRO));

Intersection #5: Washington St (Rte. 55) & Autumn Harvest Trl/Susquehanna Rd (existing partial movement, two-way

stop controlled);

Intersection #6: Bleight Dr & Dogwood Park Dr/Future Site Access #3 (future site access proposed as fourth leg to

existing intersection).

An aerial of the study intersections is provided in Figure 5.

Figure 5: Aerial of Study Boundaries (Study Intersections)

Existing Roadway Network

Washington St (Rte. 55) is the major road for this transportation study and the roadway information is displayed in Table 1 below.

Table 1: Washington St (Rte. 55) Roadway Information

Roadway		RTE#	VDOT Classification	Posted Speed Limit (mph)	AADT (vpd)	k-factor
Washington St		VA 55	Major Collector	25	13,000	8.9%

Source: 2023 VDOT Published AADT Traffic Data

Planned Future Transportation Improvements

Roadway Improvements

There were no roadway improvements identified near the intersections for this transportation study. The roadway configuration for Washington St is expected to remain the same in all analyzed scenarios.

Analysis of Existing Conditions (2025)

In order to project the future traffic conditions, it was necessary to create a baseline "existing" scenario. For the purposes of this report and as agreed to by VDOT and Town staff, 2025 roadway conditions were considered to be as "existing."

Existing Roadway Safety Assessment

Historical crash data was obtained from VDOT's Crash Analysis Tool for the existing study intersections for a five-year period between January 2020 through December 2024. The summary of the reported crashes at the specified intersections are shown in Table 2.

The crash data by intersections is provided in Appendix I of this document.

Table 2: Historical Crash Data Summary (January 2020- December 2024)

	Intersection	Approximate ADT	PDO	IC	Fatality	Total	Crash Rate (Per MEV)
#2	Washington St (Rte. 55) a Greenhill Crossing Dr/Site Entrance		3	0	0	3	0.13

^{*}Note the same ADT for each intersection was assumed for all years.

The intersection crash rate was computed for the existing study intersections using the following formula and was calculated as crashes per one million entering vehicles ("MEV"). The approach average daily traffic volumes (ADT_{approach}) were derived from calculations based on the existing link ADTs.

$$Rate_{intersection} = \frac{1,000,000 * \# of Crashes}{\# of Years * 365 \left(\frac{days}{year}\right) * ADT_{approach}}$$

Typically, a crash rate of 1.0 MEV or higher is an indication that further study may be required. A rate over 1.0 MEV does not necessarily mean there is a significant problem at an intersection, but rather it is a threshold used to identify which intersections may have an elevated crash rate due to operational, geometric, or other deficiencies.

Table 3: VDOT Crash Data at Washington St (Rte. 55) & Greenhill Crossing Dr/Site Entrance (Intersection #2)

Intersection Crash Analysis	Crash Data for the Intersection of Washington St (Rte. 55) and Greenhill Crossing Dr/Site Entrance (January 2020 - December 2024)											
	2020 2021 2			2023	2024	Total	Relative Frequency					
Crash Severity												
Fatal Collision (Type K)							0.00%					
njury Collision (Type A, B, and C)							0.00%					
Type A												
Type B												
Туре С												
Property Damage Only (Type PDO)		1		2		3	100.00%					
OTAL*		1		2		3	100.00%					
Crash Type												
Fixed Object/ Single-Vehicle Crash					-		0.00%					
lead-On							0.00%					
Sideswipe / Same Direction							0.00%					
Sideswipe / Opposite Direction							0.00%					
Rear-End Collision		1				1	33.33%					
Ingle Collision				2		2	66.67%					
Backed Into				2			0.00%					
Pedestrian Collision							0.00%					
Deer/Animal							0.00%					
Other			***************************************	•••••			0.00%					
TOTAL*		1		2	Þ	3	100.00%					
Other Factors												
Distracted Driver							0.00%					
lcohol**							0.00%					
Vork-Zone							0.00%					
nclement Weather (Non-Dry)				1		11	33.33%					
Speeding							0.00%					
edestrian Injury***							N/A					
ime of Day							-					
AM Peak Period (6 - 10 AM)							0.00%					
Off Peak - Daytime (10 AM - 3 PM)				2		2	66.67%					
PM Peak Period (3 - 7 PM)		1			ļ	1	33.33%					
Off Peak - Nighttime (7 PM - 6 AM) CALCULATED CRASH RATE****							0.00% Crashes per MEV					

^{*} It should be noted that an intersection radius of 150 feet was used in this analysis. Crashes also thought to be caused by the intersection may have been added based on the description of the crash and engineering judgement.

As shown in Table 3 above, Intersection #2 had 3 reported crashes over the five-year period. The crash report for this intersection shows 100% of the crashes were classified as PDO (Property Damage Only). Average Daily Traffic (ADT) was reported at this intersection based on existing collected counts (2025). The intersection has a calculated crash rate of 0.13 crashes per MEV. Therefore, this intersection is not considered a high crash location.

There were no reported crashes within a 150-foot radius of the other study intersections of this report.

Additionally, study intersection #3 is planned to be removed in the future condition with the proposed development as the existing spacing between the access and the commercial driveway does not meet the VDOT access management standards.

^{**} Instances where the event was classified as "Unknown", "Not Known Whether Impaired", "Ability Not Impaired" were classified as alcohol related to provide a more conservative analysis.

^{***} Pedestrian injuries are based on the number of pedestrians injured and may not be directly be related to the number of crash incidences (i.e., if one crash occurred injuring two pedestrians, the table would show a "2" instead of a "1").

^{****}Crash rate based on an approximated 12400 ADT.

Existing Traffic Volumes

In order to determine the weekday morning (AM) and weekday afternoon (PM) peak hour turning movement traffic volumes, traffic counts were conducted at the following study intersections on Tuesday, June 3, 2025, during the weekday morning, weekday afternoon peak periods, and weekend afternoon (SAT) peak period. Please note there was approximately 4,700 SF of vacant commercial and church space at the time of collected counts, had the building been fully leased, the traffic volumes for the existing conditions would be slightly higher than presented in the report.

The system peak hours for the six (6) study intersections were determined to be:

Weekday Morning (AM) Peak Hour: 8:00 AM to 9:00 AM
 Weekday Afternoon (PM) Peak Hour: 4:30 PM to 5:30 PM
 Saturday (SAT) Peak Hour: 5:45 PM to 6:45 PM

The 2025 existing road network lane configuration is presented in Figure 6. The 2025 existing conditions peak hour traffic volumes for the six (6) existing intersections within the study area are illustrated in Figure 7. The average daily traffic ("ADT") volumes, depicted in this figure and in subsequent volume graphics, were calculated based on the PM peak hour turning movement volumes and multiplied by the VDOT historical k-factors from 2023. If the historic k-factor data was not available for a given roadway or roadway segment, then a k-factor of 0.10 was assumed.

Please note all vehicle maneuvers and volumes were balanced throughout the six (6) study intersections. The raw data for the existing turning count movements are provided in Appendix B.

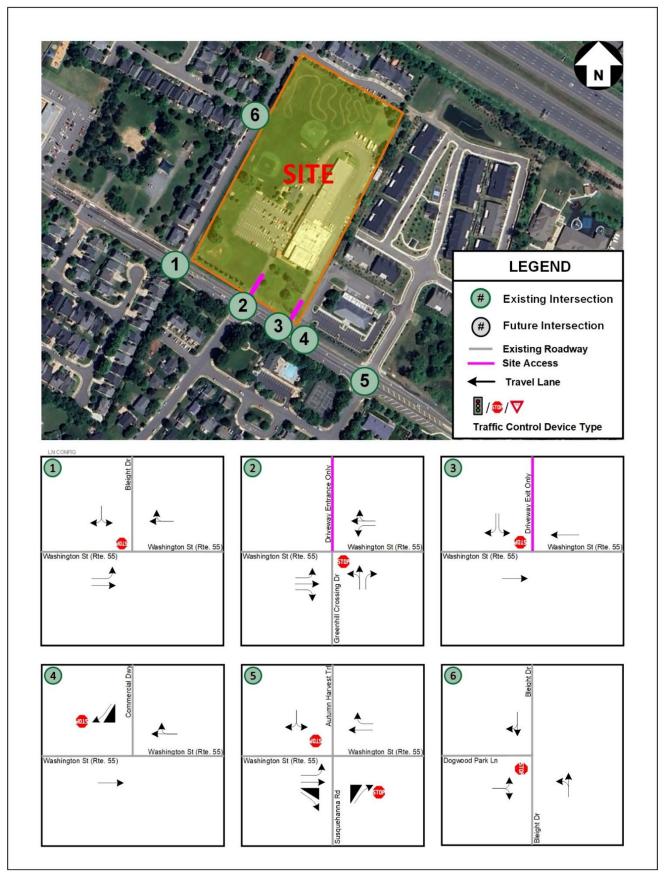


Figure 6: 2025 Existing Conditions – Roadway Network Geometric Configuration and Traffic Control Devices

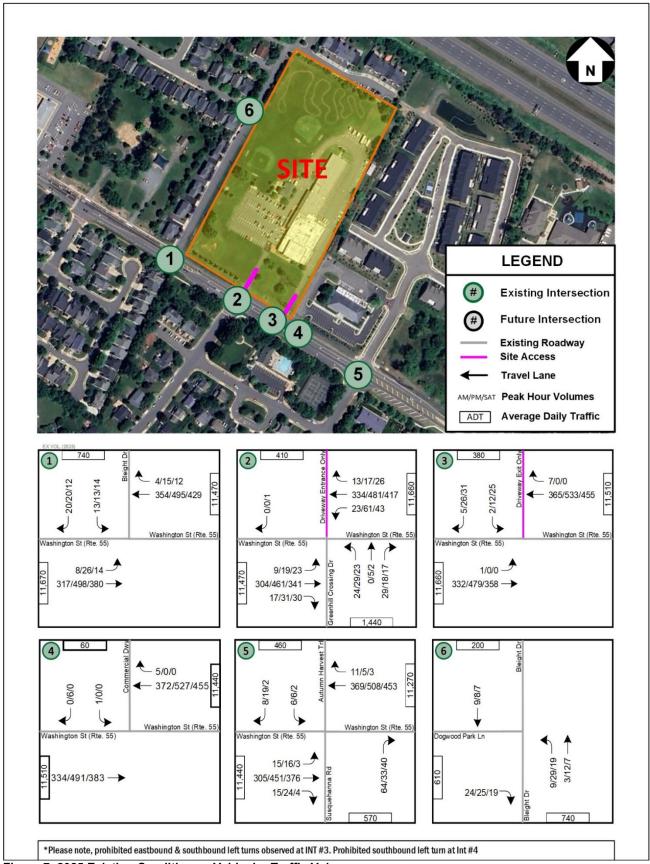


Figure 7: 2025 Existing Conditions – Vehicular Traffic Volumes

It should be noted that Figure 7 above illustrates the peak hour volumes by movement. The existing lane configuration for the study intersections should be referred from Figure 6. Please note that prohibited movements at Intersection #2 and #3 were observed as shown.

Existing Intersection Capacity and Queueing Analysis

Intersection capacity and queuing analyses were performed for the Existing Conditions (2025) scenario at the study area intersections during AM, PM, and SAT peak hours. *Synchro*, version 11, was used to analyze the study intersections with results based on the Federal Highway Administration's (FHWA) <u>Highway Capacity Manual</u>¹ ("HCM") and analysis guidelines provided in VDOT's <u>Traffic Operations and Safety Analysis Manual</u> ("TOSAM"). The analysis herein includes level of service ("LOS"), delay, and queue length comparisons for the turning movements analyzed.

Signal timings and *Synchro* files were obtained from VDOT and were utilized as base for the analysis models. Traffic operation conditions as well as lane configurations were field verified. The existing traffic volumes discussed in the aforementioned section as well as other relevant data were entered into the analysis models. For the purposes of this analysis, the existing peak hour factors ("PHF") were based on the traffic count and utilized on a by-intersection basis; PHF in the range of 0.85 to 1.00 were used for the existing scenario, consistent with VDOT analysis guidelines. Heavy vehicle percentages ("HV%") were based on existing traffic count data for each individual lane group.

Per the scoping meeting with VDOT and the Town staff, it would be considered acceptable and/or desirable to achieve an approach LOS D or better for traffic operations using HCM 6th edition methodology and HCM 2000 where applicable. The results of the intersection capacity analyses from *Synchro* are presented in Table 4 and graphically in Figure 8. The results are expressed in LOS and delay (seconds per vehicle) for overall signalized intersections and per approach and lane group for all study intersections. The overall signalized intersections and any approaches that operate at LOS F and E are displayed in red.

The 95th percentile queues were also determined from *Synchro* and are expressed in feet. The lane groups where the queue lengths exceeded the available effective storage capacity of existing turn lanes are displayed in red.

The description of different LOS and delay are included in Appendix J. The detailed analysis worksheets of 2025 Existing Conditions are contained in Appendix C.

Table 4: Existing Conditions (2025) - Intersection Capacity and Queuing Analysis Results

				AM Peak Ho	our		PM Peak Ho	our		SAT Peak H	our	
No.	Intersection (Movement)	Effective Storage	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	
				Synchro			Synchro		Synchro			
1	Washington St (Rte. 55) (E/W) &											
	Bleight Dr (N/S) (TWSC)											
	Eastbound Approach											
	Eastbound Left	160	A	0.0	0	Α	8.6	3	A	8.4	0	
	Southbound Approach		В	13.3	_	С	15.8	_	С	15.5	_	
	Southbound Left/Right		В	13.3	8	С	15.8	8	С	15.5	8	
2	Washington St (Rte. 55) (E/W) &											
	Greenhill Crossing Dr/Driveway											
	Entrance Only (N/S) (TWSC)											
	Eastbound Approach				_			_	_		_	
	Eastbound Left	145	Α	8.1	00	A	8.4	3	A	8.5	3	
	Westbound Approach		١.					_				
	Westbound Left	195	A	8.2	3	A	8.6	5	A	8.2	3	
	Northbound Approach		В	13.4		C	20.9		С	16.5		
	Northbound Left/Thru	175	С	17.0	8	D	26.1	15	С	20.6	10	
_	Northbound Right	175	В	10.5	5	В	11.2	3	В	10.5	3	
3	Washington St (Rte. 55) (E/W) &											
	Driveway Exit Only (N/S) (TWSC)											
	Eastbound Approach											
	Eastbound Left		A	8.2	0							
	Southbound Approach		В	11.1		В	12.1		В	12.0		
	Southbound Left		В	13.7	0	С	16.3	3	В	14.5	5	
	Southbound Right		В	10.0	0	В	10.1	3	Α	9.9	3	
4	Washington St (Rte. 55) (E/W) &											
	Commercial RIRO (N/S) (TWSC)											
	Southbound Approach		Α	0.0		В	11.7		Α	0.0		
	Southbound Left/Right		Α	0.0	0	В	11.7	0	Α	0.0	0	
5	Washington St (Rte. 55) (E/W) &											
	Susquehanna Rd/Autumn											
	Harvest Trl (N/S) (TWSC)											
	Eastbound Approach											
	Eastbound Left	230	A	8.3	0	A	8.6	0	A	8.3	0	
	Northbound Approach		В	10.9		В	11.4		В	10.9		
	Northbound Right		В	10.9	10	В	11.4	5	В	10.9	5	
	Southbound approach		С	15.8	_	В	14.8	_	С	15.3	_	
	Southbound Left/Right		С	15.8	3	В	14.8	5	С	15.3	0	
6	Dogwood Park Ln (E/W) &											
	Bleight Dr (N/S) (TWSC)		ļ									
	Eastbound Approach		A	8.5	_	Α	8.5	_	Α	8.4	_	
	Eastbound Left/Right		A	8.5	3	A	8.5	3	A	8.4	3	
	Northbound Approach		Ι.		<u> </u>							
OTES	Northbound Left	ļ	Α	7.3	0	Α	7.3	3	Α	7.3	0	

NOTES:

^[1] Effective storage length is based on the storage length plus one-half of the taper length per TOSAM guidelines.
[2] Prohibited eastbound left turn observed at INT #3.
[3] Prohibited southbound left turns observed at INT #3.

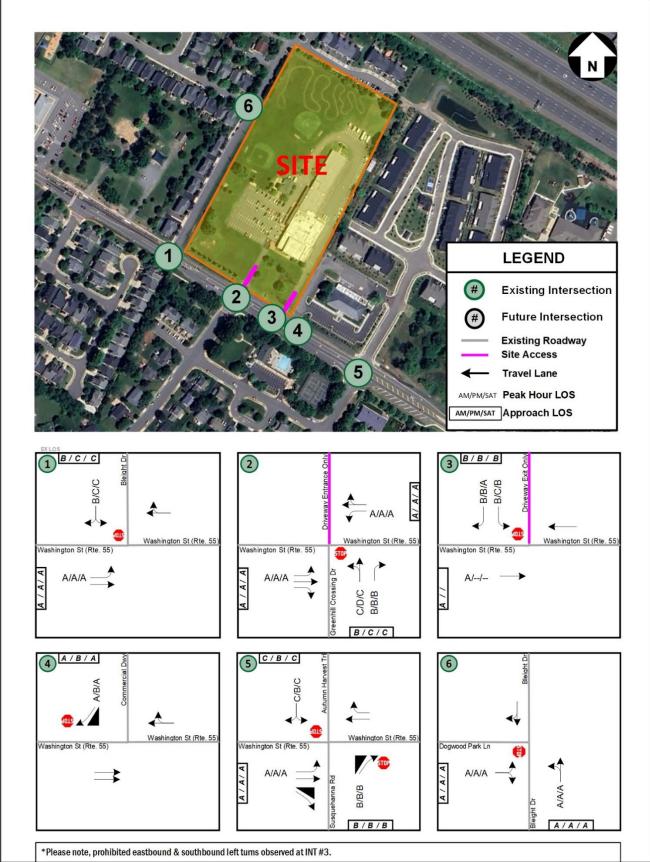


Figure 8: 2025 Existing Conditions – Level of Service Results

As mentioned previously, it would be considered acceptable and/or desirable to achieve an approach LOS D or better for traffic operations using HCM 6th edition methodology and HCM 2000 where applicable.

Analysis Terms:

- Level of Service (LOS) is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at
 the intersection and the delay (in seconds) associated with each directional movement. This evaluation is consistent in all
 traffic analysis scenarios. Please refer to definitions of Level of Service in Appendix J.
- The 95th percentile queue length refers to the queue length within which 95% of all observed queues are contained during a specific analysis period. This evaluation is consistent in all traffic analysis scenarios.

The results of the Existing Conditions (2025) analysis scenario are as follows:

- All the approaches and the overall intersection operate at acceptable levels of service for all of the study intersections.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.

Analysis of Future Conditions without Development 2029

For the purposes of this study, the development is anticipated to be constructed by 2029; this scenario analyzes the future without development conditions for the year 2029.

The derivation of future without development traffic volumes was based on assumptions and parameters discussed with VDOT and the Town during the scoping process for this report. The future conditions include anticipated inherent regional growth, the inclusion of any potential background developments in the pipeline around the vicinity of the site, and anticipated roadway improvements.

Inherent Regional Growth

The development is anticipated to be completed in 2029. In order to account for increased demand on the traffic network, an inherent growth rate was applied to the future scenarios. This "inherent" growth was anticipated to account for regional development within the at-large area, which would ultimately result in increased roadway demand. Furthermore, the inherent growth was anticipated to account for any potential background developments unaccounted for within the vicinity of the study area. Historical VDOT AADT data for roadways bounding the site are shown in Table 5.

Table 5: Historical Regional Growth within Vicinity of the Road Network

				Publis	hed VDO	T AADT	
Road Segment:	From:	То:	2019	2020	2021	2022	2023
Washington St	Old Carolina Rd	Town of Haymarket Bdry	11,000	7,900	9,000	9,950	13,000

Source: VDOT Published AADT Traffic Data

As agreed upon in the scope for this study, to account for 2029 future conditions, an inherent growth rate of 2.0%, compounded annually over a four-year period, between 2025 to 2029 (and totaling 8.24% growth of the existing volumes) was applied to the mainline through movements on Washington St (Rte. 55) traveling eastbound and westbound.

The inherent regional growth volumes (for the period between 2025 and 2029) are illustrated in Figure 9.

Potential Background Development(s)

One (1) background development was identified in the scoping meeting for inclusion in this study. The 6700 Bleight Drive background development is anticipated to consist of 11 single-family attached dwelling units. Volumes associated with this development are included in the Total Future without Development (future background) scenario of the analysis. The Institute of Transportation Engineers' (ITE) <u>Trip Generation Manual</u>, 11th Edition, publication was used to determine the total trips going into and out of the subject study site during the weekday morning (AM), weekday afternoon (PM) peak hours, typical weekday daily trips, and weekend (SAT) peak hour and daily trips. The projected trip generation for the 6700 Bleight Drive development using ITE rates is depicted in below.

Table 6: 6700 Bleight Drive Site Trips

		Size			W	Weekend							
Land Use	ITE Code		AM Peak Hour			PM Peak Hour			Daily	Saturday Peak Hour		ık Hour	Sat Daily
			ln	Out	Total	ln	Out	Total	Total	In	Out	Total	Total
Proposed Use													
*Single-Family Attached Housing (RATES)	215	11 DU	1	4	5	4	2	6	79	3	3	6	96
		Total Trips	1	4	5	4	2	6	79	3	3	6	96

*ITE equations not applicable for proposed density - ITE rates used in lieu.

The 6700 Bleight Drive development is anticipated to generate approximately 5 trips in the AM peak hour, 6 trips in the PM peak hour, 79 typical weekday daily trips, 6 Saturday peak hour trips, and about 96 Saturday daily trips.

Potential Roadway Improvement(s)

There were no identified background transportation improvements near the proposed development.

Future without Development Lane Configuration

There were no adjustments to the roadway configuration identified for the future without development (future background) scenario. Therefore, the lane configuration is assumed to be the same as the existing lane configuration illustrated previously in Figure 6.

Future without Development (2029) Traffic Volumes

In order to forecast the future (without development) traffic volumes for the year 2029, the 2025 existing traffic volumes were combined with the inherent growth traffic volumes presented in Figure 9 and the background trips associated with the one (1) background development shown in Figure 10. The trip generation summary tables for background development will be included in Appendix D.

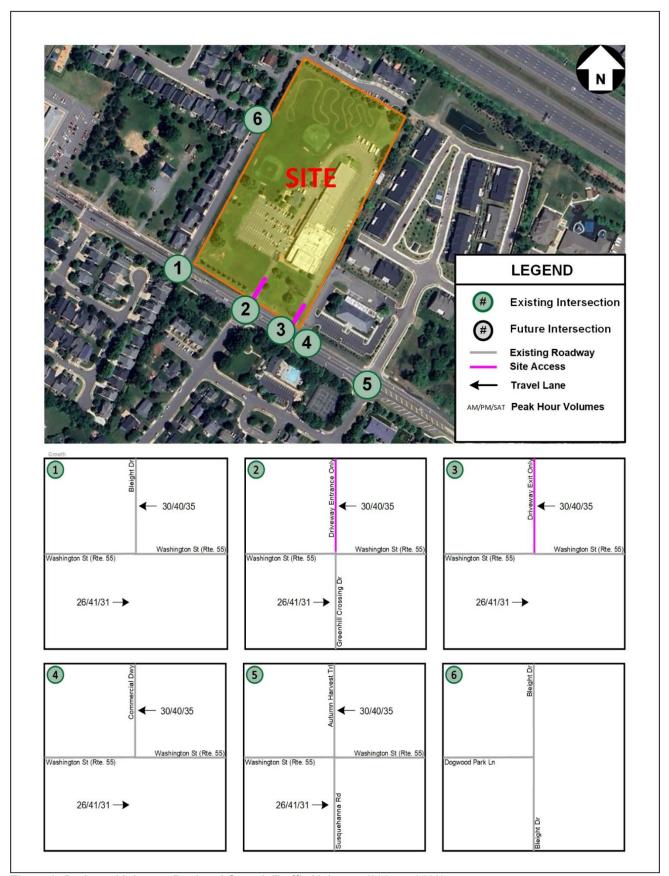


Figure 9: Projected Inherent Regional Growth Traffic Volumes (2025 to 2029)

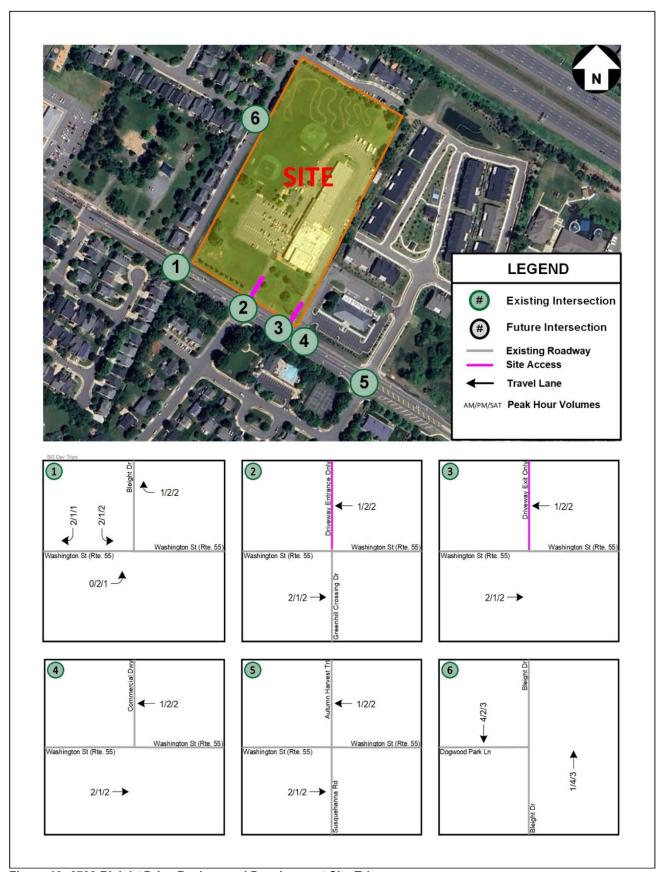


Figure 10: 6700 Bleight Drive Background Development Site Trips

The Future without Development (2029) volumes were derived by adding the projected inherent growth and background development site generated trips to the existing volumes and are illustrated in Figure 11.

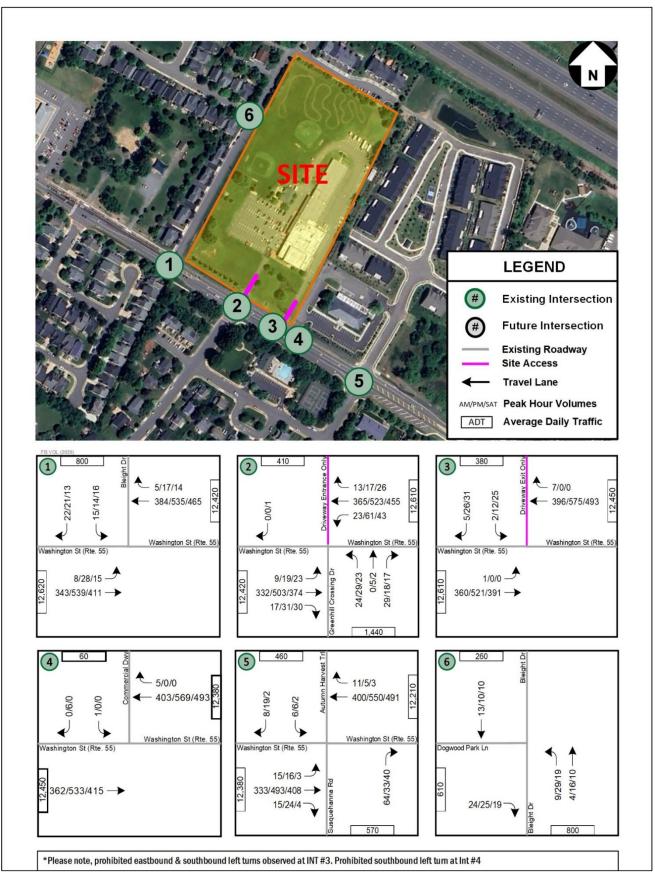


Figure 11: 2029 Future Conditions without Development - Vehicular Traffic Volumes

Future without Development Intersection Capacity and Queueing Analysis

Intersection capacity analyses were performed for the 2029 Future Conditions without Development scenario at the study area intersections during the AM, PM, and SAT peak hours. *Synchro*, version 11, was used to analyze the study intersections with results based on the HCM and analysis guidelines provided in VDOT's TOSAM. The analysis herein includes LOS, delay, and queue length comparisons for the turning movements analyzed.

The intersection PHF utilized in the analysis of future conditions was determined based on the existing traffic counts with a minimum of 0.92. The HV% were based on existing traffic count data.

The results of the intersection capacity analyses from *Synchro* are presented in Table 7 and graphically in Figure 12. The results are expressed in LOS and delay (seconds per vehicle) for overall signalized intersections and per approach and lane group for all study intersections. The overall signalized intersections and any approaches that operate at LOS F and LOS E are displayed in red.

The 95th percentile queues were also determined from *Synchro* and are expressed in feet. The lane groups where the queue lengths exceeded the available storage lengths of future turn lanes are displayed in red.

The detailed analysis worksheets of the 2029 Future Conditions without Development are contained in Appendix E.

Table 7: Future Conditions without Development (2029) - Intersection Capacity and Queuing Analysis Results

				AM Peak Ho	ur		PM Peak Ho	ur	SAT Peak Hour			
No.	Intersection (Movement)	Effective Storage	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	
				Synchro			Synchro			Synchro		
1	Washington St (Rte. 55) (E/W) &											
	Bleight Dr (N/S) (TWSC)											
	Eastbound Approach											
	Eastbound Left	160	Α	8.4	0	A	8.7	3	A	8.5	0	
	Southbound Approach		В	13.4		С	17.2		С	16.3		
	Southbound Left/Right		В	13.4	8	С	17.2	10	С	16.3	8	
2	Washington St (Rte. 55) (E/W) &											
	Greenhill Crossing Dr/Driveway											
	Entrance Only (N/S) (TWSC)											
	Eastbound Approach	445		0.4	0		0.5			8.6		
	Eastbound Left Westbound Approach	145	A	8.1	0	A	8.5	3	A	8.6	3	
	Westbound Approach Westbound Left			8.2	3		8.7	5		8.3	3	
	Northbound Approach		A B	13.4	s	А С	23.1	5	A C	ი.ა 17.7	3	
	Northbound Left/Thru	175	C	16.9	8	D	29.2	18	C	22.4	10	
	Northbound Right	175	В	10.5	3	В	29.2 11.5	3	В	10.7	3	
3	Washington St (Rte. 55) (E/W) &	175	ь	10.5	3	ь	11.5	3	ь	10.7	3	
3	Driveway Exit Only (N/S) (TWSC)											
	Eastbound Approach											
			_		_							
	Eastbound Left		A	8.2	0	<u>-</u>					-	
	Southbound Approach		В	11.1		В	12.5		В	12.4	_	
	Southbound Left		В	13.7	0	С	17.4	3	С	15.4	5	
	Southbound Right		В	10.0	0	В	10.3	3	В	10.0	3	
4	Washington St (Rte. 55) (E/W) &											
	Commercial RIRO (N/S) (TWSC)						40.4					
	Southbound Approach		A	0.0	0	В	12.1		A	0.0		
5	Southbound Right Washington St (Rte. 55) (E/W) &		A	0.0	0	В	12.1	0	A	0.0	0	
5	Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC)											
	Eastbound Approach											
	Eastbound Left	230	Α	8.2	0	Α	8.7	3	Α	8.4	0	
	Northbound Approach		В	10.9		В	11.8		В	11.2		
	Northbound Right		В	10.9	8	В	11.8	5	В	11.2	5	
	Southbound approach		С	15.7		С	15.9		С	16.4		
	Southbound Left/Right		С	15.7	3	С	15.9	5	С	16.4	0	
6	Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC)											
	Eastbound Approach		Α	8.5		Α	8.5		Α	8.4		
	Eastbound Left/Right		A	8.5	3	Α	8.5	3	Α	8.4	3	
	Northbound Approach											
NOTES	Northbound Left		Α	7.3	0	Α	7.3	3	Α	7.3	0	

NOTES:

^[1] Effective storage length is based on the storage length plus one-half of the taper length per TOSAM guidelines.

^[2] Prohibited eastbound left turn observed at INT #3.

^[3] Prohibited southbound left turns observed at INT #3.

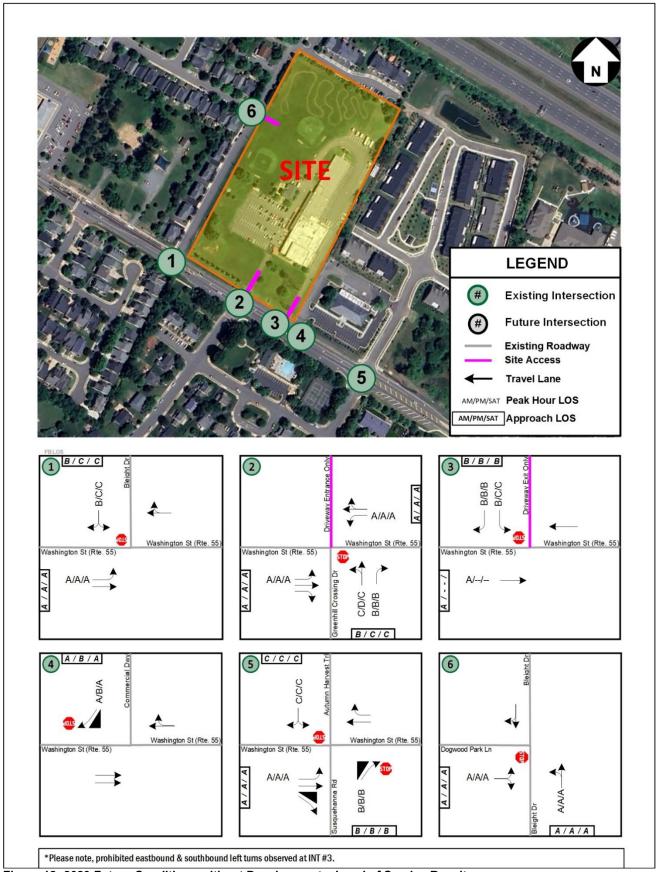


Figure 12: 2029 Future Conditions without Development – Level of Service Results

Analysis Terms:

- Level of Service (LOS) is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at
 the intersection and the delay (in seconds) associated with each directional movement. This evaluation is consistent in all
 traffic analysis scenarios. Please refer to definitions of Level of Service in Appendix J.
- The 95th percentile queue length refers to the queue length within which 95% of all observed queues are contained during a specific analysis period. This evaluation is consistent in all traffic analysis scenarios.

The results of the Future without Development Conditions (2029) analysis scenario are as follows:

- All the approaches and the overall intersection operate at acceptable levels of service for all of the study intersections.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.

Analysis of Future Conditions with Development (2029)

For the purposes of this study, the development is anticipated to be constructed by 2029.

Site Description

The site is located in the Town of Haymarket. The site is generally bounded by Alexandra's Keep Ln to the north, Washington St (Rte. 55) to the south, an existing residential community and office space to the east, and Bleight Dr to the west.

The planned development program for the site includes mix uses with approximately 26,000 SF of commercial/office land uses and about 61 single family attached (townhome) units. Please note, a portion of the site is currently occupied by existing commercial uses. A portion of the commercial uses, approximately 5,900 SF of office space, are planned to be removed with this application while the remaining 26,000 SF is anticipated remain.

Proposed Site Access

The current plan for the development proposes one full access entrance (inbound and outbound) along Washington St at the existing entrance which is used as a one-way loop today. The existing exit only is planned to removed due to the proximity to the existing commercial driveway to the east. The removal of the access along Washington St is anticipated to increase the safety of the vehicles using the commercial entrance to the east. The development is also planning to construct a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln as illustrated in Figure 13. Please note that the plans shown in this report are subject to change.



Figure 13: Preliminary Site Layout Plan (For Illustrative Purposes Only; Subject to Change)

Projected Site Trip Generation

In order to calculate the trips generated by the proposed development, the Institute of Transportation Engineers' (ITE) <u>Trip Generation Manual</u>, 11th Edition, publication was used to determine the total trips going into and out of the subject study site during the weekday morning (AM), weekday afternoon (PM) peak hours, typical weekday daily trips, and weekend (SAT) peak hour and daily trips. The projected trip generation for the proposed development is depicted in Table 8. The anticipated development program will consist of approximately 61 single-family attached dwelling units. For the purposes of evaluating a conservative operational analysis, the development program analyzed assumes 65 dwelling units.

Table 8: Site Trip Generation (Peak Hour of the Adjacent Street; ITE 11th Ed.)

	ITE Code	Size			V		Weekend						
Land Use			AM Peak Hour			PM Peak Hour			Daily	Saturday Peak Hour			Sat Daily
			In	Out	Total	In	Out	Total	Total	In	Out	Total	Total
Proposed Use													
Single-Family Attached Housing (EQUA	215	65 DU	7	21	28	21	14	35	566	23	24	47	414
1	otal Proposed Tr	ips without Reduction	7	21	28	21	14	35	566	23	24	47	414
Internal Capture Residential - I	Restaurant 1	15% PM/SAT/DAILY	0	0	0	-3	-2	-5	-85	-3	-4	-7	-62
	7	21	28	18	12	30	481	20	20	40	352		

The internal reduction is based on the VDOT Updated Administrative Guidelines for the Traffic Impact Analysis Regulations:

(1) residential / non-residential components - smaller of 15% of residential trips or 15% of non-residential trips

As illustrated in the table above, the proposed land use is expected to generate approximately 28 AM peak hour trips, 35 PM peak hour trips, 566 weekday trips, 47 Saturday peak hour trips and 414 Saturday daily trips. The total proposed trip generation with an assumed 15% internal capture reduction (residential to retail/restaurant) is expected to generate approximately 28 AM peak hour trips, 30 PM peak hour trips, 481 weekday trips, 40 Saturday peak hour trips and 352 Saturday daily trips.

Distribution and Assignment of Site Traffic

The distribution and assignment of the site generated trips were based on the existing traffic patterns, engineering judgement, the nature of the proposed development, and with the guidance and input from the VDOT and the Town staff. The site direction of approach for the peak hours trips is illustrated in Figure 14.

Figure 14: Global Vehicular Direction of Approach

Total Future with Development (2029) Lane Configuration

Intersection #2 (Washington St & Greenhill Crossing Dr/Future Site Access #1) which in existing conditions operates as a driveway entrance only, will be reconfigured to be a full access intersection and include a westbound right turn lane. Additionally, Intersection #3 (Washington St & Future Site Access #2) will be removed. Construction of a fourth leg at Intersection #6 (Bleight Dr & Dogwood Park Ln/Future Site Access #3), will serve as the third site access for the proposed development. The Future with Development (2029) Lane Configurations are illustrated in Figure 15.

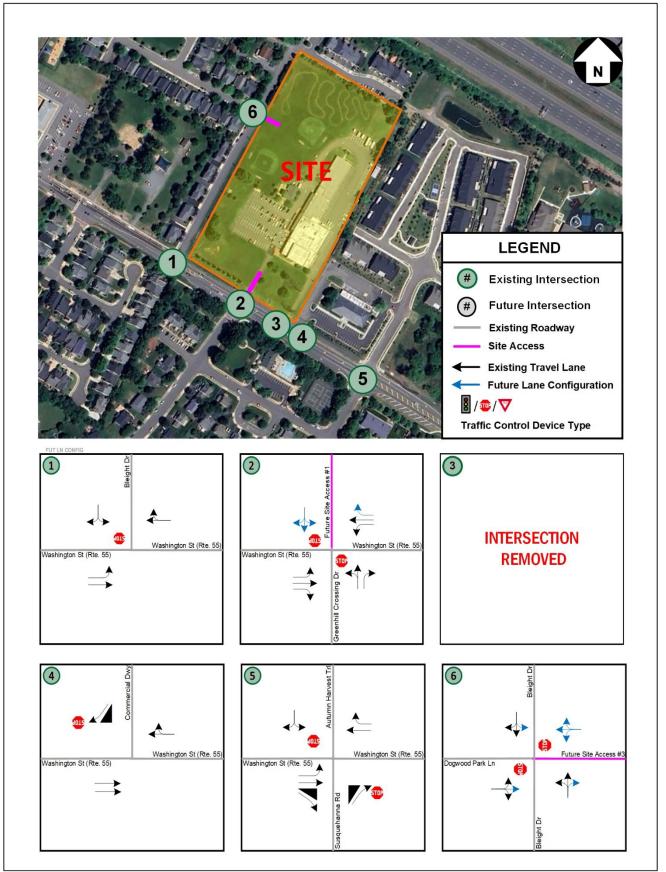


Figure 15: Future with Development 2028 (Roadway Network Geometric Configuration and Traffic Control Devices)

Analysis Scenario: Total Future with Development (2028)

Using the direction of approach, the nature of the proposed development with the associated trip generation, and the location of proposed site entrance per current plans for the development, the site generated trips were assigned to the road network as illustrated in Figure 16. The figure shows site trips assigned to the study area network for the analysis.

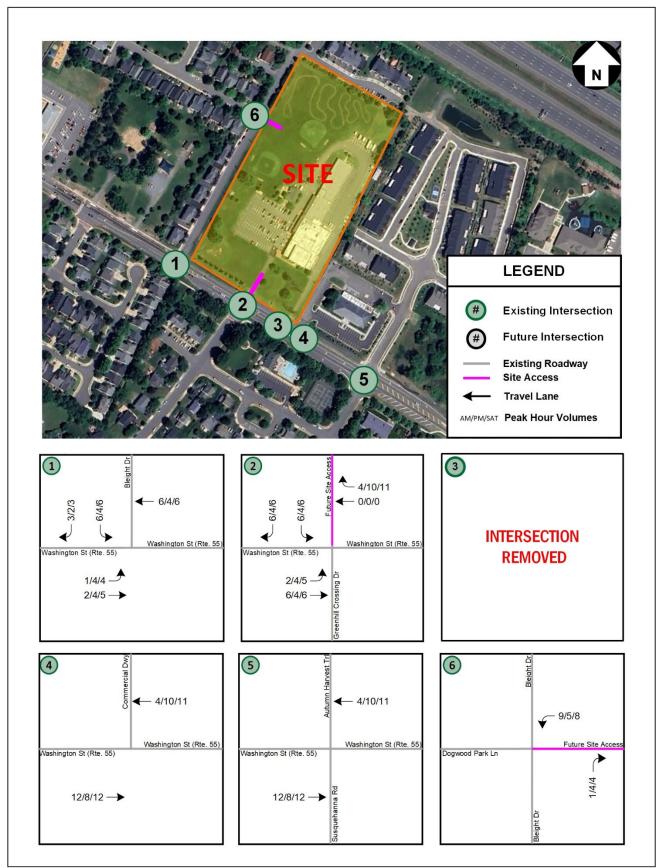
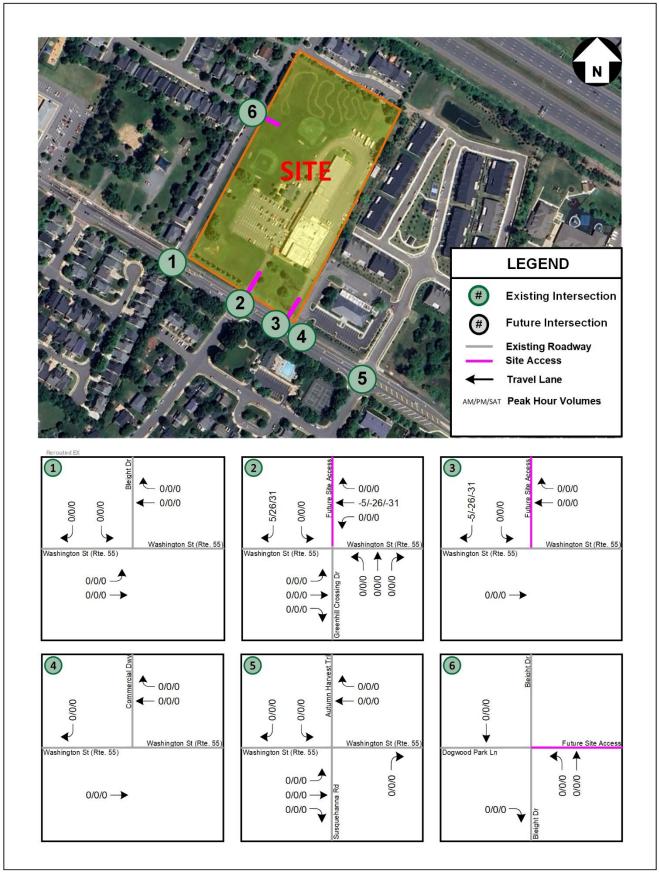



Figure 16: Site Generated Trip Assignment

Rerouted Existing Driveway Volumes

As mentioned previously, Intersection #2 (Washington St & Greenhill Crossing Dr/Future Site Access #1) which in existing conditions operates as a driveway entrance only, will be reconfigured to be a full access intersection. In order to account for the change in access, all of the existing outbound volumes at Intersection #3 were rerouted to the main entrance at Intersection #2. This assumption was made based on the existing surface parking lot located west of the existing site buildings and reconfiguration of the intersection to allow for outbound movements at Intersection 2. The rerouted existing volumes are shown in Figure 17 below.

Figure 17: Rerouted Existing Driveway Volumes

Future with Development (2029) Traffic Volumes

The Future with Development (2029) traffic volumes were obtained by adding the site generated trips presented in Figure 16 to the Future without Development (2029) volumes presented previously in Figure 11 and the rerouted existing driveway volumes presented in Figure 17. The Future with Development (2029) vehicular traffic volumes are shown in Figure 18.

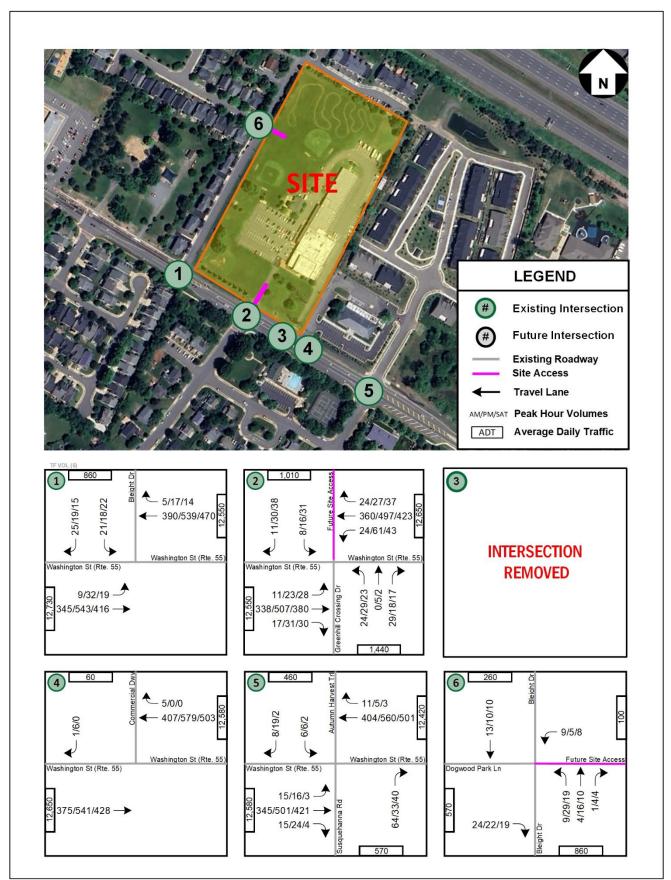


Figure 18: Total Future with Development (2029) Volumes

Future with Development (2029) Intersection Capacity and Queueing Analysis

Intersection capacity analyses were performed for the Future with Development 2029 scenario at the study area intersections during the AM and PM peak hours. *Synchro*, version 11, was used to analyze the study intersections with results based on the HCM and analysis guidelines provided in VDOT's TOSAM. The analysis herein includes LOS, delay, and queue length comparisons for the turning movements analyzed.

The intersection peak hour factor utilized in the analysis of future conditions was determined based on the existing traffic counts with a minimum of 0.92. The HV% were based on existing traffic count data.

Per the scoping meeting with VDOT and the Town staff, it would be considered acceptable and/or desirable to achieve an approach LOS of D or better for traffic operations using the HCM methodology per request by the Town of Haymarket. The results of the intersection capacity analyses from *Synchro* are presented in Table 9 and graphically in Figure 19. The results are expressed in LOS and delay (seconds per vehicle) for overall signalized intersections and per approach and lane group for all study intersections.

The overall signalized intersections and any approaches that operate at LOS E and LOS F are displayed in red.

The 95th percentile queues were also determined from *Synchro* and are expressed in feet. The lane groups where the queue lengths exceeded the available storage lengths of future turn lanes are displayed in red.

The detailed analysis worksheets of the Future with Development (2029) are contained in Appendix F of this report.

Table 9: Future Conditions with Development (2029) - Intersection Capacity and Queuing Analysis Results

	9: Future Conditions with			AM Peak Ho			PM Peak Ho			SAT Peak Ho	ur
No.	Intersection (Movement)	Effective Storage	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)
				Synchro			Synchro			Synchro	
1	Washington St (Rte. 55) (E/W) &										
	Bleight Dr (N/S) (TWSC)										
	Eastbound Approach	400									
	Eastbound Left	160	А В	8.4	0	A C	8.7	0	A C	8.5	0
	Southbound Approach			14.0	0		18.7	0	_	17.3	0
2	Southbound Left/Right		В	14.0	8	С	18.7	8	С	17.3	8
2	Washington St (Rte. 55) (E/W) & Greenhill Crossing Dr/Site Access										
	(N/S) (TWSC)										
	Eastbound Approach										
	Eastbound Left	145	Α	8.2	0	Α	8.5	3	Α	8.5	3
	Westbound Approach	145		0.2						0.5	
	Westbound Left		Α	8.2	3	Α	8.7	5	Α	8.3	3
	Northbound Approach		В	14.8	········×	D	29.1	<u>V</u>		21.5	×
	Northbound Left/Thru	175	C	19.8	8	E	38.3	23	D	28.7	13
	Northbound Right	175	В	10.6	3	В	11.6	3	В	10.8	3
	Southbound Approach		В	14.7		C	20.9		C	21.4	
	Southbound Left/Thru/Right		В	14.7	5	C	20.9	15	C	21.4	25
2	Washington St (Rte. 55) (E/W) &		_		-						,
_	Greenhill Crossing Dr/Site Access										
	(N/S) (TWSC) MIT										
	Eastbound Approach										
	Eastbound Left	145	Α	8.1	0	Α	8.5	3	Α	8.6	3
	Westbound Approach										
	Westbound Left		Α	8.2	3	Α	8.7	5	Α	8.3	3
	Northbound Approach		В	14.7		D	28.9		С	21.2	
	Northbound Left/Thru	175	С	19.7	8	E	38.0	23	D	28.2	13
	Northbound Right	175	В	10.6	3	В	11.6	3	В	10.8	3
	Southbound Approach		С	15.2		С	22.3		В	22.6	
	Southbound Left/Thru/Right		С	15.2	3	С	22.3	13	С	22.6	23
3	Washington St (Rte. 55) (E/W) &		Intersecti	on Planned to	he Removed	Intersect	ion Planned to	he Removed	Intersecti	on Planned to	he Removed
	Site Access RIRO (N/S) (TWSC)		microcon	on r lannea to	oc ricinovcu	IIICIOCOL	ion i iumica to	be removed	IIICIGCOLI	on r lannea to	oc ricinioved
4	Washington St (Rte. 55) (E/W) &										
	Commercial RIRO (N/S) (TWSC)								~~~~		
	Southbound Approach										
	Southbound Right		В	10.9	0	В	12.2	0	Α	0.0	0
5	Washington St (Rte. 55) (E/W) &										
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest										
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Tri (N/S) (TWSC)										
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach										
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left	230	<u>A</u>	8.3	0	A	8.7	0	A	8.4	0
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach	230	A B	11.0		В	11.9		A B	11.3	
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right	230	В	11.0 11.0	0 8	В В	11.9 11.9	0 8	В	11.3 11.3	0
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound approach	230	В С	11.0 11.0 15.9	8	В В С	11.9 11.9 16.1	8	В С	11.3 11.3 16.7	8
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound approach Southbound Left/Right	230	В	11.0 11.0		В В	11.9 11.9		В	11.3 11.3	
5	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound Left/Right Dogwood Park Ln (E/W) & Bleight	230	В С	11.0 11.0 15.9	8	В В С	11.9 11.9 16.1	8	В С	11.3 11.3 16.7	8
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Right Southbound Right Southbound Left/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC)	230	В С С	11.0 11.0 15.9 15.9	8	В В С С	11.9 11.9 16.1 16.1	8	В С С	11.3 11.3 16.7 16.7	8
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound approach Southbound Left/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC) Eastbound Approach	230	В С С	11.0 11.0 15.9 15.9	3	В В С С	11.9 11.9 16.1 16.1	3	В С С	11.3 11.3 16.7 16.7	3
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound Etf/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC) Eastbound Left/Right Eastbound Left/Right	230	B C C	11.0 11.0 15.9 15.9 8.5 8.5	8	B B C C C	11.9 11.9 16.1 16.1 8.4 8.4	8	B C C	11.3 11.3 16.7 16.7 8.4 8.4	8
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Right Southbound Approach Southbound Left/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC) Eastbound Approach Eastbound Approach Eastbound Approach	230	B C C A A	11.0 11.0 15.9 15.9 8.5 8.5 9.0	3	В В С С С А А А А	11.9 11.9 16.1 16.1 8.4 8.4 9.3	3	B C C	11.3 11.3 16.7 16.7 8.4 8.4 9.1	3
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Approach Northbound Right Southbound Left/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC) Eastbound Approach Eastbound Approach Westbound Approach Westbound Approach	230	B C C	11.0 11.0 15.9 15.9 8.5 8.5	3	B B C C C	11.9 11.9 16.1 16.1 8.4 8.4	3	B C C	11.3 11.3 16.7 16.7 8.4 8.4	3
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S) (TWSC) Eastbound Approach Eastbound Left Northbound Right Southbound Approach Southbound Left/Right Dogwood Park Ln (E/W) & Bleight Dr (N/S) (TWSC) Eastbound Approach Eastbound Approach Eastbound Approach	230	B C C A A	11.0 11.0 15.9 15.9 8.5 8.5 9.0	3	В В С С С А А А А	11.9 11.9 16.1 16.1 8.4 8.4 9.3	3	B C C	11.3 11.3 16.7 16.7 8.4 8.4 9.1	8 3 3

^[1] Effective storage length is based on the storage length plus one-half of the taper length per TOSAM guidelines.
*Intersection #2 mitigation includes the addition of a westbound right turn lane.

The proposed mitigation for the Future with Development (2029) scenario includes the addition of a westbound right turn lane at Intersection #2 and the closing of the existing exit only driveway.

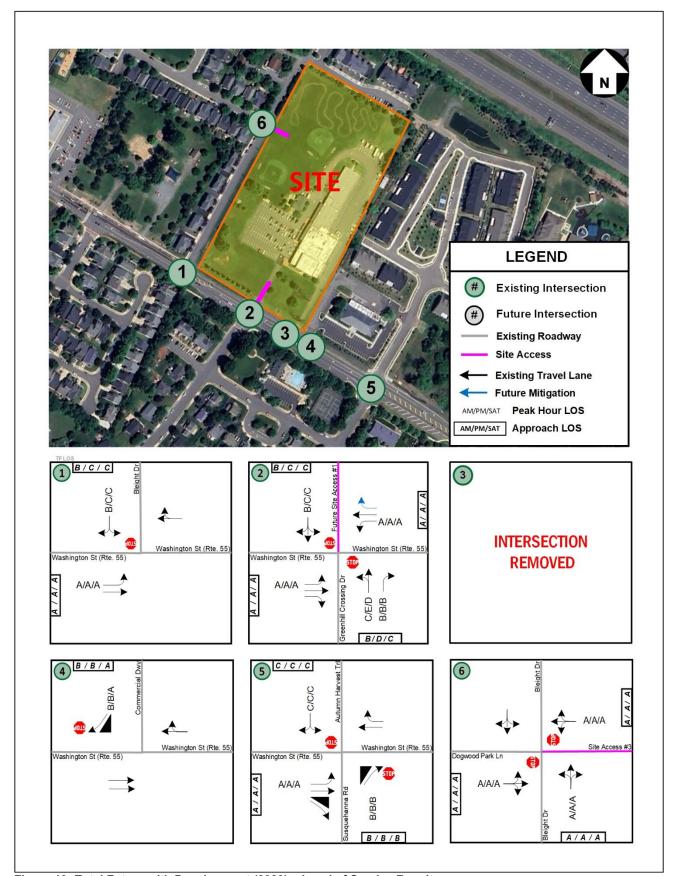


Figure 19: Total Future with Development (2029) - Level of Service Results

Analysis Terms:

- Level of Service (LOS) is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at
 the intersection and the delay (in seconds) associated with each directional movement. This evaluation is consistent in all
 traffic analysis scenarios. Please refer to definitions of Level of Service in Appendix J.
- The 95th percentile queue length refers to the queue length within which 95% of all observed queues are contained during a specific analysis period. This evaluation is consistent in all traffic analysis scenarios.

The results of the Future with Development Conditions (2029) analysis scenario are as follows:

- All the approaches and the overall intersection operate at acceptable levels of service for all of the study intersections.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.

Please note that while all study intersections and approaches operate at acceptable levels of service, the following lane group was observed to experience larger delay:

- Intersection #2 Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access #1 Northbound shared left/thru lane operates at LOS D (26.1 s) in the existing PM peak hour & LOS E (38.3 s) in the future with development PM peak hour.
- The 95th percentile queue for the northbound shared left/thru lane is approximately 23 ft (less than one car). Therefore, the queues do not extend to the downstream driveways that serve the residential community.
- The reconfigurations and mitigations for this analysis scenario are as follows:
 - The existing primary driveway entrance (Access #1) will be reconfigured to a full-access driveway (inbound & outbound).
 - The existing exit only driveway (Access #2) is planned to be closed to address the existing safety issues due to the
 proximity to the driveway to the east.
 - The addition of a westbound right turn lane at Intersection #2 (Washington St (Rte. 55) & Greenhill Crossing Dr/Site
 Access) is a proposed mitigation. Please note only a right turn taper is warranted using VDOT Road Design Manual
 (RDM) Turn Lane Assessment.

The detailed analysis worksheets of the Future Conditions with Development (2029) Mitigated are contained in Appendix G.

An additional section discussing the alternative route options for the vehicles making the northbound left turn at Intersection has been included below.

Alternative Routes Analysis

As noted above, the northbound approach at Intersection #2 operates at an acceptable LOS; however the northbound left movement increase to LOS E. Therefore analysis was included to show that alternative routes are available with additional capacity if those vehicles chose to use alternative routes. For the purposes of this analysis, engineering judgment was used to evaluate an alternative route where a proportion of the northbound left turn volumes (45%) were rerouted to make a northbound right turn at Intersection #2 during the weekday peak hours only (AM & PM). These volumes were rerouted to the downstream roundabout intersection of Washington St (RTE. 55) & Gillis Way/Piedmont Center Plaza.

The volumes for this alternative are shown in Figure 20 below.

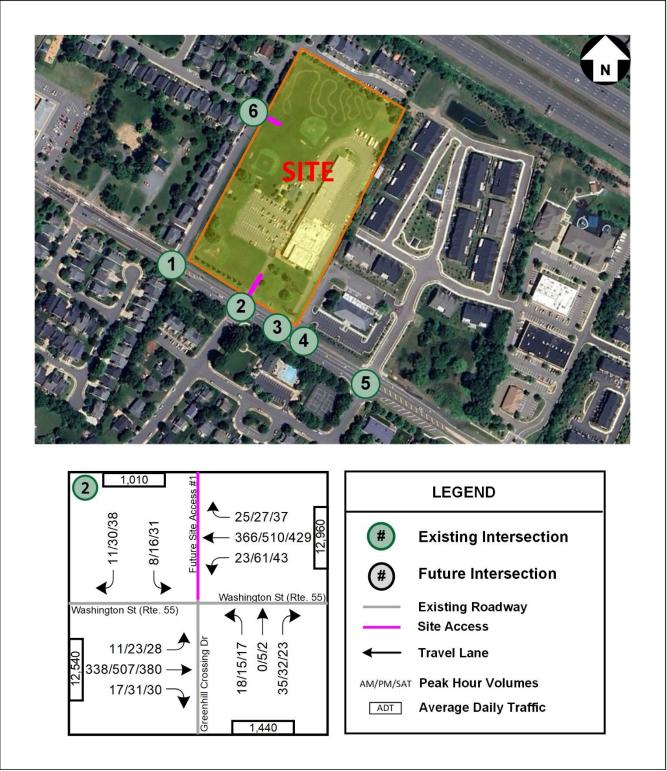


Figure 20: Total Future with Development (2029) Alternative Volumes

Per the scoping meeting with VDOT and the Town staff, it would be considered acceptable and/or desirable to achieve an approach LOS of D or better for traffic operations using the HCM methodology per request by the Town of Haymarket. The results of the intersection capacity analyses from *Synchro* are presented in Table 10 and graphically in Figure 21. The results

are expressed in LOS and delay (seconds per vehicle) for overall signalized intersections and per approach and lane group for all study intersections.

Table 10: Total Future with Development (2029) Alternative – Intersection Capacity and Queuing Analysis Results

				AM Peak Ho	ur		PM Peak Ho	ur	SAT Peak Hour				
No.	Intersection (Movement)	Effective Storage	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)		
				Synchro			Synchro			Synchro			
2	Washington St (Rte. 55) (E/W) & Greenhill Crossing Dr/Site Access (N/S) (TWSC)												
	Eastbound Approach												
	Eastbound Left	145	Α	8.2	0	Α	8.6	3	Α	8.5	3		
	Westbound Approach												
	Westbound Left		Α	8.2	3	Α	8.7	5	Α	8.3	3		
	Northbound Approach		В	13.6		С	20.5		С	18.4			
	Northbound Left/Thru	175	С	19.5	5	D	34.5	13	D	27.7	10		
	Northbound Right	175	В	10.6	5	В	11.7	5	В	10.8	3		
	Southbound Approach		В	14.7		С	21.2		С	21.2			
	Southbound Left/Thru/Right		В	14.7	5	С	21.2	15	С	21.2	25		

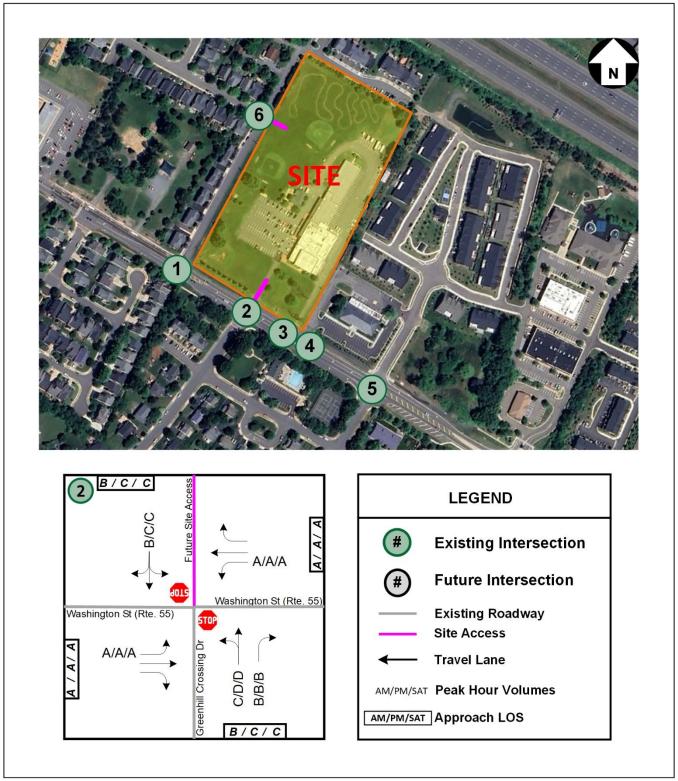


Figure 21: Total Future with Development (2029) Alternative – Level of Service

Sidra (HCM methodology) was used to analysis the existing roundabout intersection of Washington St (RTE. 55) & Gillis Way/Piedmont Center Plaza. The results of the analysis are shown in Table 11 below.

Table 11: Roundabout Analysis at Washington St (RTE. 55) & Gillis Way/Piedmont Center Plaza

			AM Peak Ho	our		PM Peak H	our	SAT Peak Hour			
No.	Intersection (Movement)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	LOS	Delay (sec/veh)	95th % Queue (ft.)	
			Synchro			Synchro			Synchro	,	
1	Gillis Way/Piedmont Center Plaza (N/S)										
	& Washington St (Rte. 55) (E/W)										
	(TWSC) (Overall)	Α	6.9		Α	9.0		Α	6.6		
	Eastbound Approach	Α	7.4	72	Α	9.1	100	Α	6.5	69	
	Westbound Approach	Α	6.7	65	Α	9.5	108	Α	6.7	84	
	Northbound Approach	Α	5.7	12	Α	7.8	22	Α	5.0	2	
	Southbound Approach	Α	5.7	9	Α	7.4	18	Α	5.5	5	

The results of the roundabout analysis show that the intersection operates at acceptable levels of service and does not experience extensive queues even with additional volumes. Therefore, it would be reasonable for drivers to reroute themselves using the roundabout to travel westbound on Washington St (Rte. 55) if they did not want to wait for a gap.

The detailed analysis worksheets of the Future Conditions with Development (2029) Alternative are contained in Appendix H.

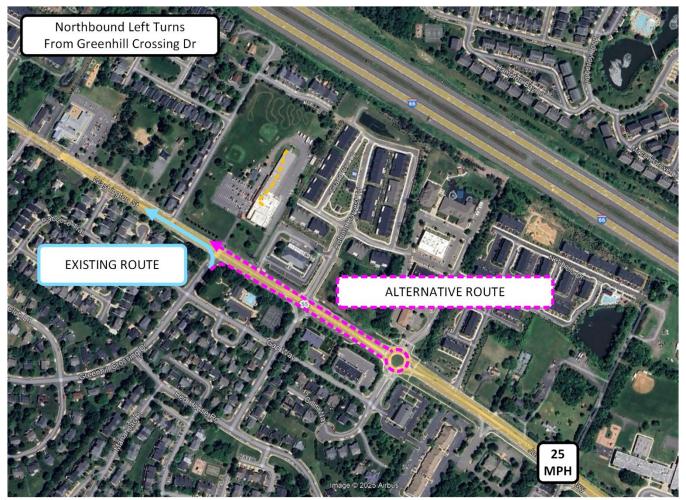


Figure 22: Assumed Reroute Time and Distance

Overall Comparison of Analysis Scenarios

A level of service and delay comparison for all scenarios is presented in Table 12 and queue length comparison is presented in Table 13.

Table 12: Intersection Level of Service and Delay Comparison

							Le	vel of Ser	vice (LOS) (Sec./Ve	h.)					
			<u>A</u>	M Peak Ho	<u>our</u>			<u>PI</u>	/I Peak Ho	<u>our</u>			<u>S/</u>	AT Peak H	<u>our</u>	
No.	Intersection (Movement)															
						2029 TF					2029 TF				2029 TF	
1	Washington St (Rte. 55) (E/W) & Bleight Dr (N/S) (TWSC)	2025 EX	2029 FB	2029 TF	MIT	ALT	2025 EX	2029 FB	2029 TF	MIT	ALT	2025 EX	2029 FB	2029 TF	MIT	ALT
•	Eastbound Approach															
	Eastbound Left	Δ (8.4)	A (8.4)	A (8.4)			Δ (8.6)	A (8.7)	Δ (8.7)			Δ (8.4)	A (8.5)	Δ (8.5)		
	Southbound Approach		B (13.4)					C (17.2)						C (17.3)	•	
	Southbound Left/Right		B (13.4)					C (17.2)						C (17.3)		
		D (13.3)	D (13.4)	D (14)			C (13.0)	C (17.2)	0 (10.7)			0 (13.3)	C (10.5)	C (17.5)		
_	Washington St (Rte. 55) (E/W) & Greenhill Crossing Dr/Site Access #1 (N/S)															
2	(TWSC) *MITIGATED											ļ				
	Eastbound Approach	1														
	Eastbound Left	A (8.1)	A (8.1)	A (8.2)	A (8.1)	A (8.2)	A (8.4)	A (8.5)	A (8.5)	A (8.5)	A (8.6)	A (8.5)	A (8.6)	A (8.5)	A (8.6)	<u>A (8</u>
	Westbound Approach															
	Westbound Left		A (8.2)					A (8.7)			A (8.6)			A (8.3)		
	Northbound Approach		B (13.4)									C (16.5)				
	Northbound Left/Thru		C (16.9)													
	Northbound Right		B (10.5)													
	Southbound Approach	()	()								C (21.2)			C (21.4)		
	Southbound Left/Thru/Right	()	()	C (14.7)	C (15.2)	C (14.7)	()	()	C (20.9)	C (22.3)	C (21.2)	()	()	C (21.4)	C (22.6)	C (21
3	Washington St (Rte. 55) (E/W) & Site Access #2 (N/S) (TWSC)**(To Remove)															
	Eastbound Approach															
	Eastbound Left		A (8.2)	()	()	()		()	()	()	()	()	()	()	()	(
	Southbound Approach		B (11.1)	()	()		B (12.1)		()	()	()		B (12.4)		()	(
	Southbound Left		B (13.7)		()	()		C (17.4)		()	()	B (14.5)		()	()	(
	Southbound Right	B (10)	B (10)	()	()	()	B (10.1)	B (10.3)	()	()	()	A (9.9)	B (10)	()	()	(
4	Washington St (Rte. 55) (E/W) & Commercial RIRO (N/S) (TWSC)						<u> </u>									
	Southbound Approach	A (0)	A (0)	B (10.9)				B (12.1)				A (0)	A (0)	A (0)		
	Southbound Left/Right	A (0)	A (0)	B (10.9)			B (11.7)	B (12.1)	A (12.2)			A (0)	A (0)	A (0)		
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S)															
5	(TWSC)															
	Eastbound Approach															
	Eastbound Left	A (8.3)	A (8.2)	A (8.3)			A (8.6)	A (8.7)	A (8.7)			A (8.3)	A (8.4)	A (8.4)		
	Northbound Approach		B (10.9)				B (11.4)	B (11.8)	B (11.9)					B (11.3)	• • • • • • • • • • • • • • • • • • • •	
	Northbound Right		B (10.9)				' '	B (11.8)	, ,					B (11.3)		
	Southbound approach		C (15.7)					C (15.9)						C (16.7)		
	Southbound Right		C (15.7)					C (15.9)						C (16.7)		
6	Dogwood Park Ln/Site Access #3 (E/W) & Bleight Dr (N/S) (TWSC)															
-	Eastbound Approach	1					†			***************************************		†				
	Eastbound Left/Right	A (8.5)	A (8.5)	A (8.5)			A (8.5)	A (8.5)	A (8.4)			A (8.4)	A (8.4)	A (8.4)		
	Westbound Approach	()	()	A (9)			()	()	A (9.3)			()	()	A (9.1)		
	Westbound Left/Thru/Right	- ()	()	A (9)			- ()	()	A (9.3)			- (-)	()	A (9.1)		
	Northbound Approach	1					ļ\-					 				
	Northbound Left/Thru/Right	A (7.3)	A (7.3)	A (7.3)			A (7.3)	A (7.3)	A (7.3)			A (7.3)	A (7.3)	A (7.3)		
	INORINDOUND LETVI NRUKIGHT tion #2 mitigation includes the addition of a westbound right turn lane	A (7.3)	A (1.3)	A (7.3)			A (7.3)	A (7.3)	A (1.3)			A (7.3)	A (7.3)	A (7.3)		_

^{*}Intersection #2 mitigation includes the addition of a westbound right turn lane.
**Intersection #3 to be removed in future scenarios

Table 13: Intersection Queue Length Comparison

								95th P	ercentile	Queues	(ft.)						
				AN	I Peak H	our				l Peak H				SA	T Peak F	lour	
No.	Intersection (Movement)	Effective										2029					
		Storage Length (ft.)	2025 EX	2029 FB	2029 TF	2029 TF MIT	2029 TF ALT	2025 EX	2029 FB	2029 TF	2029 TF MIT	TF ALT	2025 EX	2029 FB	2029 TF	2029 TF MIT	2029 TF AL
1	Washington St (Rte. 55) (E/W) & Bleight Dr (N/S) (TWSC)											7					
	Eastbound Approach																
	Eastbound Left	160	0	0	0			3	3	0			0	3	0		
	Southbound Approach		I										T				
	Southbound Left/Right		8	8	8			8	10	8			8	8	8		
	Washington St (Rte. 55) (E/W) & Greenhill Crossing Dr/Site Access #1 (N/S)																
2	(TWSC) *MITIGATED																
	Eastbound Approach		[T					l				
	Eastbound Left	145	0	0	0	0	0	3	3	3	3	3	3	3	3	3	3
	Westbound Approach																
	Westbound Left	195	3	3	3	3	0	5	5	5	5	3	3	3	3	3	3
	Northbound Approach																
	Northbound Left/Thru	175	8	8	8	8	5	15	18	23	23	13	10	10	13	13	10
	Northbound Right	175	5	3	3	3	5	3	3	3	3	5	3	3	3	3	3
	Southbound Approach																
	Southbound Left/Thru/Right				5	3	5		-	10	13	15			20	23	25
3	Washington St (Rte. 55) (E/W) & Site Access #2 (N/S) (TWSC)**(To Remove)																
	Eastbound Approach																
	Eastbound Left		0		.			0					0				
	Southbound Approach																
	Southbound Left		0	0	0		-	3	3	0	-		5	5	0	-	
	Southbound Right Washington St (Rte. 55) (E/W) & Commercial RIRO (N/S) (TWSC)		0	0	0	-		3	3	0	-		3	3	0	-	
4													ļ				
	Southbound Approach Southbound Left/Right		0	0	0			0	0	0			0	0	0		
	Washington St (Rte. 55) (E/W) & Susquehanna Rd/Autumn Harvest Trl (N/S)		U	U	U			U	U	U			U	U	U		
5	(TWSC)																
	Eastbound Approach	-				• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·					1				
	Eastbound Left	230	0	0	0			0	3	3			0	0	0		
	Northbound Approach	-	1	••••••				1					1				
	Northbound Right		10	8	8			5	5	5			5	5	5		
	Southbound approach																
	Southbound Right		3	3	3			5	5	5			0	0	0		
6	Dogwood Park Ln/Site Access #3 (E/W) & Bleight Dr (N/S) (TWSC)																
	Eastbound Approach																
	Eastbound Left/Right		3	3	3			3	3	3			3	3	3		
	Westbound Approach																
	Westbound Left/Thru/Right				0					0					0		
	Northbound Approach																
	Northbound Left/Thru/Right		0	0	0			3	3	3			0	0	0		

^{*}Intersection #2 mitigation includes the addition of a westbound right turn lane.
**Intersection #3 to be removed in future scenarios

The results of all the analysis scenarios show the proposed development is not anticipated to have a detrimental effect on the surrounding transportation network as all intersections and all approaches continue to operate at acceptable LOS. It should be noted however that the northbound left movement at Intersection #2 (Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access #1) operates at LOS E. This intersection was mitigated through the conversion of the existing driveway inbound only entrance to a full access (inbound & outbound) and the addition of a westbound right turn lane. As discussed in the alternative scenario, a portion of the northbound left turns were rerouted to the existing roundabout. The evaluation of the total future with development conditions with the proposed mitigations and alternative scenario show that the development will not have a significant impact on transportation network.

Turn Lane Warrant Assessments

Left and right turn lane warrants are based off VDOT's Road Desing Manual (RDM), Appendix F. In order to determine the need for exclusive left or right turn lanes at the site entrance along Washington St (Rte. 55) and the site entrance along Bleight Dr, the traffic data and anticipated development program provided in the 2029 Future with Development scenario section were utilized to provide a conservative analysis.

Right Turn Lane Assessments

Warrants for right-turn storage lanes on two- and four-lane highways at intersections are based on Figure 3-26 and Figure 3-27 in Appendix F of VDOT's RDM. These figures provide a graphical representation for determining the necessity of a right turn lane by comparing the total volumes of a given approach with their respective right turn volumes.

The results of the northbound right (Bleight Dr) and westbound right (Washington St) turn lane warrant analysis are presented on Table 14 and Figure 23.

Table 14: Right Turn Lane Warrant Assessments at Site Entrances (VDOT RDM-F Fig. 3-27)

Study Scenario	Approach Volume	Right Turn Volume	Minimum Right Turn Taper Threshold	Minimum Right Turn Full Lane Threshold	Treatment
Intersection 2 WBR AM Peak Hour	408	24	29	65	Not Warranted
Intersection 2 WBR PM Peak Hour	585	27	20	42	Taper Required
Intersection 2 WBR SAT Peak Hour	503	37	20	53	Taper Required
Intersection 6 NBR AM Peak Hour	14	1	69	116	Not Warranted
Intersection 6 NBR PM Peak Hour	49	4	65	112	Not Warranted
Intersection 6 NBR SAT Peak Hour	33	4	67	114	Not Warranted

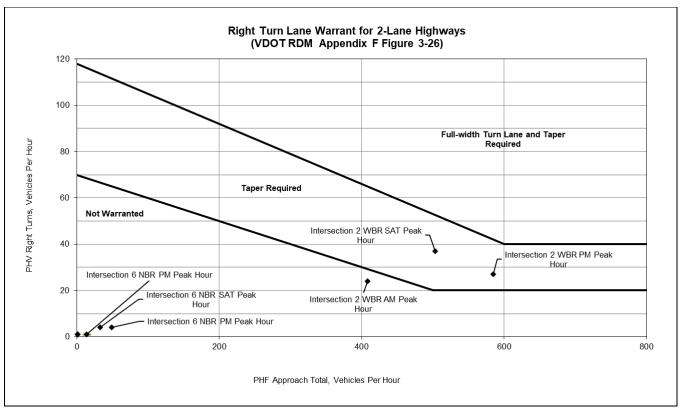


Figure 23: Right Turn Warrant Analysis Chart (VDOT RDM FIGURE 3-27)

As shown above, a westbound right taper is warranted for the site entrance at Intersection #2 (Washington St & Site Access #1) per VDOT RDM based on the Total Future with Development (2029) volumes, design speed (30 mph), and number of right turns. VDOT's RDM requires a 100' (single lane) taper for roadways with a design speed of 30 mph or less.

Intersection 2 - Greenhill Crossing Dr/Site Access #1 (N/S) & Washington St (Rte. 55) (E/W)

i. Westbound Right – Design Speed (30 mph)
 100 feet taper length is required (RDM);

Left Turn Lane Assessment

Warrants for left-turn storage lanes on two-lane highways at unsignalized intersections are based on Figure 3-4 to Figure 3-21 in Appendix F of the Virginia Department of Transportation's (VDOT) Road Design Manual (RDM). Please note there is an existing left-turn lane at Intersection #2 (Washington St & Site Access) and a left-turn lane is not feasible nor needed at other proposed site access location.

Access Management Assessment (Intersection Spacing with Adjacent Intersections)

The minimum spacing standards for the Commonwealth of Virginia are specified in VDOT's <u>Road Design Manual</u> (RDM). Appendix F of the RDM focuses primarily on access management practices. The minimum spacing standards are particularly specified in Table 2-2 through Table 2-4. Table 2-2 provides guidance on the minimum spacing standard for commercial entrances, intersections, and median crossovers, and are based on a roadway's speed limit and functional classification. Table 2-3 and 2-4 provide guidance for minimum spacing standards for the spacing between interchanges and intersections or commercial entrances.

Washington St (Rte. 55) in the vicinity of the study area is classified as a "Major Collector" with a speed limit of 25 mph per VDOT Speed Limits Map. This section evaluates the minimum spacing requirements at the proposed site entrances. The applicable intersection spacing requirements (centerline-to-centerline) per RDM Appendix F Table 2-2 are illustrated in Figure 24 below.

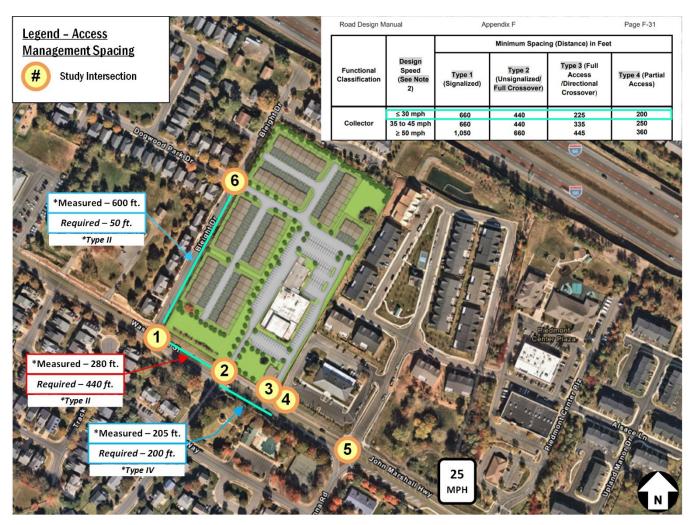


Figure 24: Proposed Intersection Spacing Evaluations

The following intersections would not meet VDOT intersection spacing requirements based on the current design:

- Washington St (Rte. 55)/Bleight Dr & Site Access #1 (Type II Intersection Full Access)
 - Required spacing 440 feet; Approximate measured spacing between intersections 280 feet;
 - o This is an existing intersection and is consistent with the character of historically rural towns like Haymarket.

Washington St (Rte. 55) & Existing Exit Only Driveway – The existing intersection is planned to be removed due to the proximity to the commercial driveway to the east. The existing spacing between the intersections does not meet VDOT access management standards and presents an unsafe maneuver for the trips coming in to the development and the trips coming out of the commercial driveway.

Please note the locations of Site Access #1 already exists and is not proposed to shift locations.

Conclusion

The analysis presented in this report supports the following assumptions and findings:

Analysis Components

- Existing counts, dated Tuesday June 3, 2025, were collected while most schools were in session to reflect typical traffic patterns, and serve as the basis for this study. Existing traffic counts were conducted at the existing intersections on Saturday June, 14, 2025.
- As determined based on discussions at the scoping meeting, an inherent growth rate of 2% (compounded annually) for the period 2025-2029 has been applied to all through movements along Washington St at all intersections.
- The site is anticipated to generate approximately 28 total trips during the AM peak hour, 30 total trips during the PM peak hour, 481 total daily trips on a typical weekday, 40 total trips during the Saturday peak hour, and 352 Saturday daily trips.
- One (1) identified background development was included in the study 6700 Bleight Drive Which will consist of approximately 11 single family attached units
- The scenarios to be included in this study are Existing Conditions (2025), Future without Development (2029), Future with Development (2029)
- The existing access to the site is served via two (2) intersections, one entrance and one egress. The development proposes to convert the existing entrance only driveway to a full access (inbound and outbound) driveway. The development also proposes to remove the existing exit only driveway as the primary bidirectional entrance would reduce driver confusion and better meet driver expectation. The proposed development is also planning to construct a fourth leg to the intersection of Bleight Dr & Dogwood Park Ln.

Infrastructure

There is one (1) identified infrastructure change with this proposed development. Construction of a fourth leg to the
intersection of Bleight Dr & Dogwood Park Ln, will serve as another site access for the proposed development. No additional
infrastructure changes were identified and agreed upon in the scope.

Analysis Results

Analysis Terms:

- Level of Service (LOS) is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at the intersection and the delay (in seconds) associated with each directional movement. This evaluation is consistent in all traffic analysis scenarios. Please refer to definitions of Level of Service in Appendix J.
- The 95th percentile queue length refers to the queue length within which 95% of all observed queues are contained during a specific analysis period. This evaluation is consistent in all traffic analysis scenarios.

Existing Conditions (2025):

- All approaches and the overall intersections operate at an acceptable level of service.
- All the anticipated 95th percentile queues are contained in the available storage lane lengths for all the study intersections.

Total Future without Development (2029):

- All approaches and the overall intersections operate at an acceptable level of service.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.

Total Future with Development (2029):

The results of the Future with Development Conditions (2029) analysis scenario are as follows:

- All the approaches and the overall intersection operate at acceptable levels of service for all of the study intersections.
- All the anticipated 95th percentile queues are contained in the available storage length for all the study intersections.
- Please note that while all study intersections and approaches operate at acceptable levels of service, the following lane group was observed to experience larger delay:
 - Intersection #2 Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access #1 Northbound shared left/thru lane operates at LOS E in the PM peak hour. The overall approach operates acceptably.
 - The 95th percentile queue for the northbound shared left/thru lane is approximately 23 ft (less than one car). Therefore, the queues do not extend to the downstream driveways that serve the residential community.
- The reconfigurations and mitigations for this analysis scenario are as follows:
 - The existing primary driveway entrance (Access #1) will be reconfigured to a full-access driveway (inbound & outbound).
 - The existing exit-only driveway (Access #2) is planned to be closed to address the existing safety issues due to the proximity to the driveway to the east.
 - The addition of a westbound right turn lane at Intersection #2 (Washington St (Rte. 55) & Greenhill Crossing Dr/Site Access) is a proposed mitigation. Please note only a right turn taper is warranted using VDOT Road Design Manual (RDM) Turn Lane Assessment.
- In addition to the mitigation implemented for the Future Conditions with Development (2029) scenario, an alternative scenario
 was provided that reviewed the capacity of the adjacent roundabout to understand the capacity if existing vehicles were to
 reroute to utilize the intersection. The analysis confirms that the roundabout operates acceptably if additional vehicles were
 to use it.

Overall Conclusion

Based on the capacity and queueing analysis results, the proposed development will not have a significant impact to the surrounding transportation and roadway network, assuming that all designs planned with the subject proposal, and mitigations discussed in this report are implemented.

TECHNICAL APPENDICES

APPENDIX LIST

Appendix A – Signed Scoping Document

Appendix B – Existing Turning Movement Counts

Appendix C - Intersection Analysis Worksheets - Existing 2025

Appendix D – Background Development Trip Generation

Appendix E – Intersection Analysis Worksheets – Future without Development (2029)

Appendix F – Intersection Analysis Worksheets – Future with Development (2029)

Appendix G – Intersection Analysis Worksheets – Future with Development (2029) Mitigated

Appendix H - Intersection Analysis Worksheets - Future with Development (2029) Alternative

Appendix I - Crash Data

Appendix J – Description of Traffic Level of Service

APPENDIX A: SIGNED SCOPING DOCUMENT

THIS IS NOT A CHAPTER 870 STUDY

PRE-SCOPE OF WORK MEETING FORM

Information on the Project Traffic Impact Analysis Base Assumptions

The applicant is responsible for entering the relevant information and submitting the form to VDOT and the locality no less than three (3) business days prior to the meeting. If a form is not received by this deadline, the scope of work meeting may be postponed.

Contact Information												
Consultant Name:	Chad Baird, Gorove	Slade										
Tele: E-mail:	cab@goroveslade.co	m										
Developer/Owner Name:	Graystone Companie											
Tele:	kiohngan@gwayatanaga aam											
E-mail:	kjohnson@graystoneco.com											
Project Information												
Project Name:	14600 Washington St Development Locality/County: Town of Haymarket											
Project Location: (Attach regional and site specific location map)	The proposed developeast of Bleight Dr in			_	n St, sout	th of I-66, and						
Submission Type	Comp Plan 🗌	Rezoning	\boxtimes	Site Plan		Subd Plat						
Project Description: (Including details on the land use, acreage, phasing, access location, etc. Attach additional sheet if necessary)	The site can be identi (Town Center). The control including 26,063 SF of projected build-out do occupied by existing of Office) are planned 26,063 SF is anticipated. The site currently has Greenhill Crossing Definition that the fourth leg to the experimental control in the site currently has the fourth leg to the experimental control in the site currently has the fourth leg to the experimental control in the site currently has the fourth leg to the experimental control in the site currently has the site currently has the fourth leg to the experimental control in the site currently has the site currently had the s	development proof commercial/ ate for the site in commercial used to be removed ted to remain.	ogram for office us s 2029. The second with the second with the second with the second was a second was a second with the second was a second was a second with the second was a second was a second with the second was a second wa	For the site proses and up to A portion of the continuous application ashington St, outrance is property.	oposes mi 60 townh the site is commercian while the cone of whoosed alon	xed uses nome units. The scurrently al uses (5,986 SF he remaining nich aligns with ng Bleight Dr as						
Proposed Use(s):	Residential Commercial Mixed Use Other Other											

(Check all that apply; attach additional pages as necessary)	Residential Uses(s) Number of Units: 60 ITE LU Code(s): 22 Commercial Use(s) ITE LU Code(s):			Other Use(s) ITE LU Code(s): Independent Variable(s):						
	Square Ft or Other V	'arial	ble:							
Total Peak Hour Trip Projection:	Less than 100 🖂	1	100 – 499 🔲	5	00 – 999 🛭		1,000 or more			
Traffic Impact Analy	sis Assumptions									
Study Period	Existing Year: 2025		Build-out Year:	202	29	Desig	n Year: N/A			
Study Area Boundaries	North: I-66				South: Was	hingto	on St			
(Attach map)	West: Bleight Dr			East: Autumn Harvest Trl						
External Factors That Could Affect Project (Planned road improvements, other nearby developments)	Residential Develop background develop			wil	ll be added to	o the a	nalysis as a			
Consistency With Comprehensive Plan (Land use, transportation plan)	Town of Haymarket as Public however the		-		-		s' proposed land use			
Available Traffic Data (Historical, forecasts)	VDOT Historical A.	ADT	Data, Turning Mo	ove	ment Counts	colle	cted in 2025.			
Trip Distribution (Attach sketch)	Road Name: Washi (to/from West) – 50	_	n St		oad Name: No/from East)		C			
Figure 2	Road Name: (to/from North) –				oad Name: o/from South	ı) —				
Annual Vehicle Trip			ak Period for Studeck all that apply)	ly	⊠ AM [⊠ PM	⊠ SAT			
Growth Rate: Note #10	2.0% (2025-2029)	Pea	ak Hour of Adjace eet Table 1	26 AM / 32 DM / 44 SAT I			44 SAT Peak / 522			

Study Intersections	1. Washington St and Bleight Dr	6. Bleight Dr and Site Access/ Dogwood Park Dr
and/or Road Segments (Attach additional sheets as	2. Washington St and Greenhill Crossing Dr	7.
necessary)	3. Washington St and Site Access	8.
Please refer to attached Figure 1	4. Washington St and Commercial Access	9.
1	5. Washington St and Autumn Harvest Trl/Susquehanna Rd	10.
Trip Adjustment Factors	I RAMILLAND. I 200 IN AVICTINA PACTALIFANT I	ass-by allowance: Yes No eduction:
Software Methodology	Synchro ☐ HCS (v.2000/+) ☐ SIDRA	☐ CORSIM ☐ Other
Traffic Signal Proposed or Affected (Analysis software to be used, progression speed, cycle length) Note #8	Analysis Software: Synchro version 11	Results: HCM 6 methodology
Improvement(s) Assumed or to be Considered	None.	
Background Traffic Studies Considered	Residential Development along Bleight Dr	
Plan Submission	· · · · · · · · · · · · · · · · · · ·	neralized Development Plan (GDP) ner Plan type (Final Site, Subd. Plan)
Additional Issues to be Addressed	□ Queuing analysis □ Actuation/Coordin □ Merge analysis □ TDM Measures □ Other	_ ,

14600 Washington St Development – Scoping Document Supplement June 13, 2025

NOTES on ASSUMPTIONS:

- 1. Turning Movement Counts collected in 2025. The through volumes on the major movements will be balanced appropriately.
- 2. The scenarios to be included in the study are Existing Conditions (2025), Future without Development (2029) and Future with Development (2029).
- 3. Peak hour factors will be consistent with VDOT guidelines (VDOT TOSAM v2.0)
 - a. Existing peak hour factors by overall intersection (minimum of 0.85) will be used for existing year analysis.
 - b. For future year analysis, the PHF will be 0.92 or existing, whichever is higher.
- 4. Heavy vehicle percentages will be obtained from the collected traffic count data and a minimum of 2% will be used if not specified in counts. For any new intersection, the HV% will be based on a default Synchro value of 2%.
- 5. Acceptable Level of Service (LOS) for intersection approaches will be per Town of Haymarket's approved Comprehensive Plan. The analysis results will show intersection, approach, and movement LOS.
- 6. Will provide 95th percentile gueues from Synchro at analyzed locations.
- 7. HCM 6 methodology will be utilized where applicable; HCM 2000 methodology will be utilized if HCM 6 methodology is not applicable for a certain location.
- 8. Preliminary Access Management/Intersections Spacing and Turn Lanes will be evaluated for the site entrances.
- 9. An inherent growth rate of 2% (compounded annually) for the period 2025-2029 will be applied to through movements along Washington St at all the intersections.
- 10. A safety assessment for all the study intersections will be included.
- 11. All improvements proposed by the background developments will be considered in the study.

SIGNED:		DATE: 06/13/2025
	Applicant or Consultant	
	<u>Chad Baird</u> Applicant or Consultant	
	Applicant of Consultant	
SIGNED:		DATE:
	VDOT Representative	
PRINT NAME:		
	VDOT Representative	
SIGNED:		DATE:
	Local Government Representative	
PRINT NAME:		
	Local Government Representative	

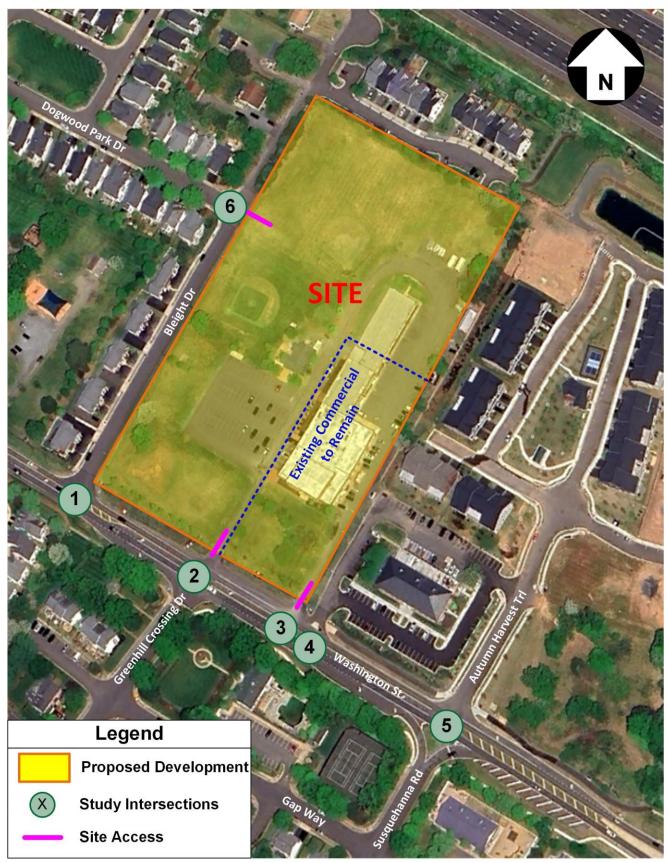


Figure 1: Area Map and Study Intersections

Figure 2: Direction of Approach

14600 Washington St Development – Scoping Document Supplement June 13, 2025

Table 1: Trip Generation for Existing Commercial to be Removed – Peak Hour of Adjacent Street Traffic (ITE 11th Edition)

		Size	Weekday								Weekend			
Land Use	ITE Code		AM Peak Hour		Hour	P	PM Peak Hour			Saturday Peak Hour			Sat Daily	
			In	Out	Total	In	Out	Total	Total	In	Out	Total	Total	
Existing Uses to be Removed														
General Office Building (EQUATIONS)	710	6.0 kSF of GFA	-13	-2	-15	-3	-13	-16	-100	-2	-1	-3	-13	
	Total E	xsting Trips to be Removed	-13	-2	-15	-3	-13	-16	-100	-2	-1	-3	-13	

Note - The office uses are currently vacant. The trips shown in the table represent the trips that the office uses could generate if fully occupied.

Table 2: Trip Generation for Proposed Development - Peak Hour of Adjacent Street Traffic (ITE 11th Edition)

		Size			V								
Land Use	ITE Code			AM Peak Hour			PM Peak Hour			Saturday Peak Hour			Sat Daily
			In	Out	Total	In	Out	Total	Total	In	Out	Total	Total
Proposed Use													
Single-Family Attached Housing (EQUATIONS)	215	60 DU	6	20	26	19	13	32	522	21	23	44	348
	Total Prop	osed Trips without Reduction	6	20	26	19	13	32	522	21	23	44	348
Internal Capture Residential	- Restaurant 1	15% PMSAT/DAILY	0	0	0	-3	-2	-5	-78	-3	-3	-7	-52
	Total P	roposed Trips with Reduction	6	20	26	16	11	27	444	18	20	37	296
	Difference	in Trips (Proposed - Existing)	-7	18	11	13	-2	11	344	16	19	34	283

Internal capture rates consider site trips "captured" within a mixed use development, recognizing that trips from one land use can access another land use within a site development without having to access the adjacent street system. Internal capture allows reduction of site trips from adjacent intersections and roadways.

Table 3: VDOT Published Roadway Information (2023)

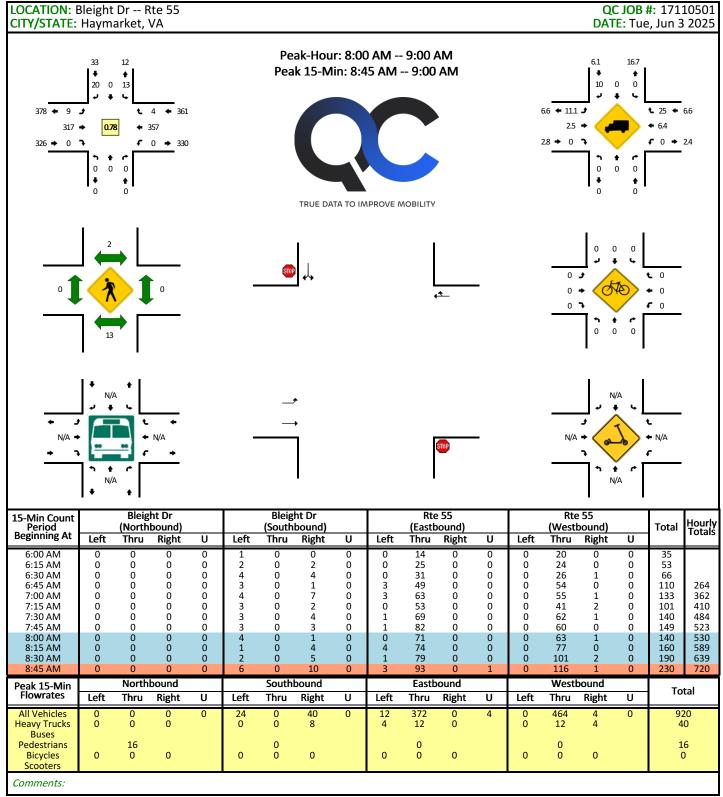
Roadway	RTE#	VDOT Classification	Posted Speed AADT tion Limit (mph) (vpd)		k-factor
Washington St	VA 55	Major Collector	25	13,000	8.9%

Source: 2023 VDOT Published AADT Traffic Data

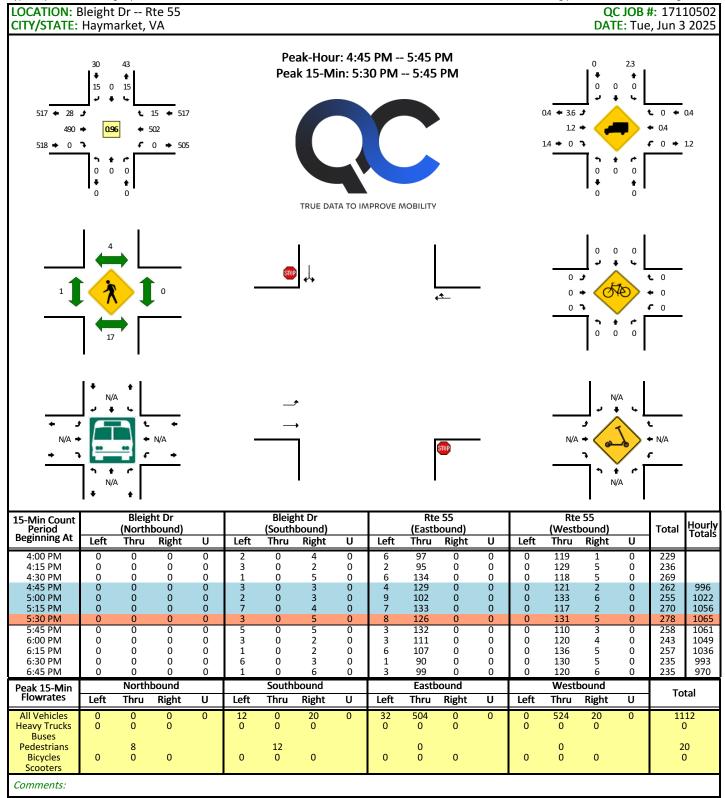
Table 4: VDOT Historical AADTs

			Published VDOT AADT				
Road Segment:	From:	То:	2019	2020	2021	2022	2023
Washington St	Old Carolina Rd	Town of Haymarket Bdry	11,000	7,900	9,000	9,950	13,000

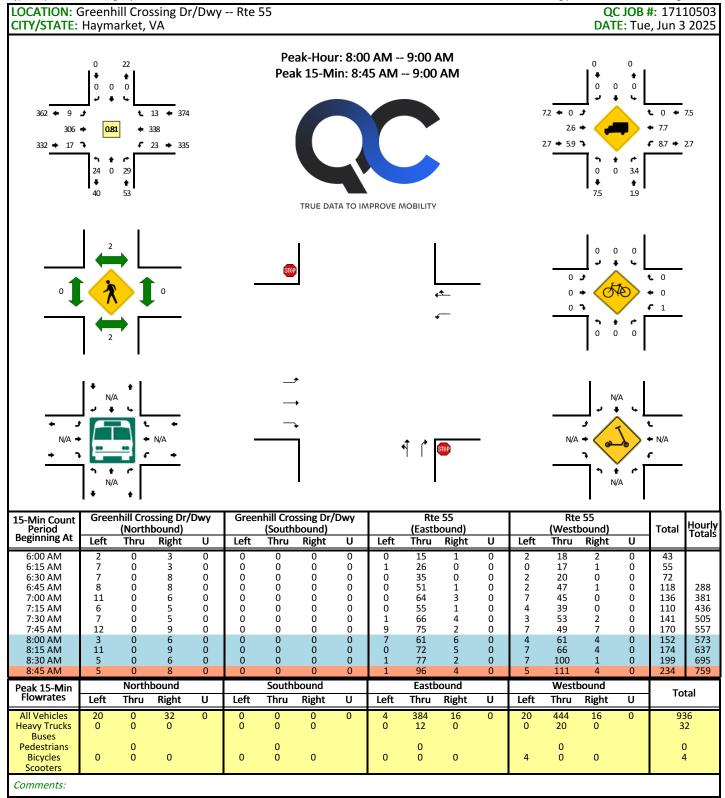
Source: VDOT Published AADT Traffic Data


The internal reduction is based on the VDOT Updated Administrative Guidelines for the Traffic Impact Analysis Regulations:

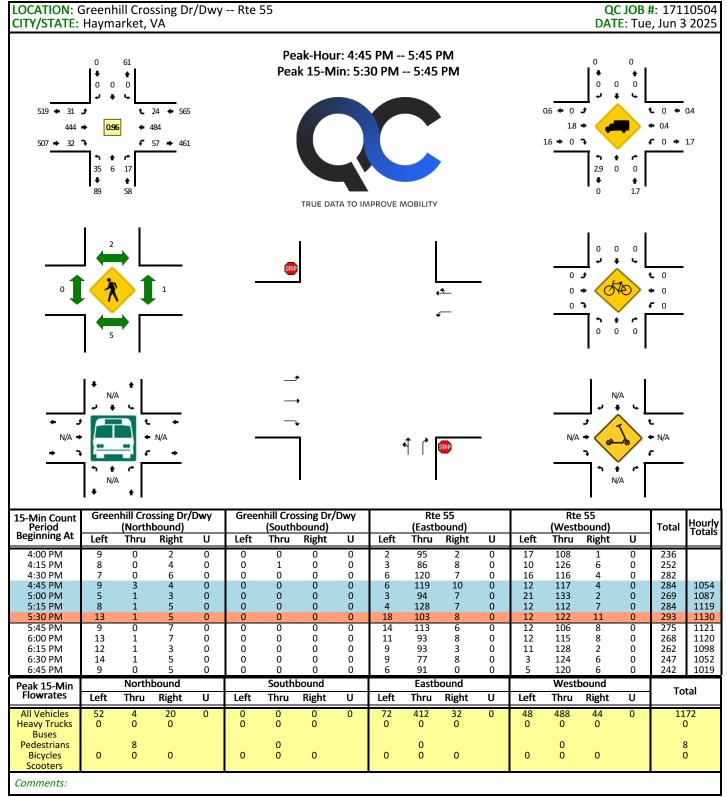
⁽¹⁾ residential / non-residential components - smaller of 15% of residential trips or 15% of non-residential trips

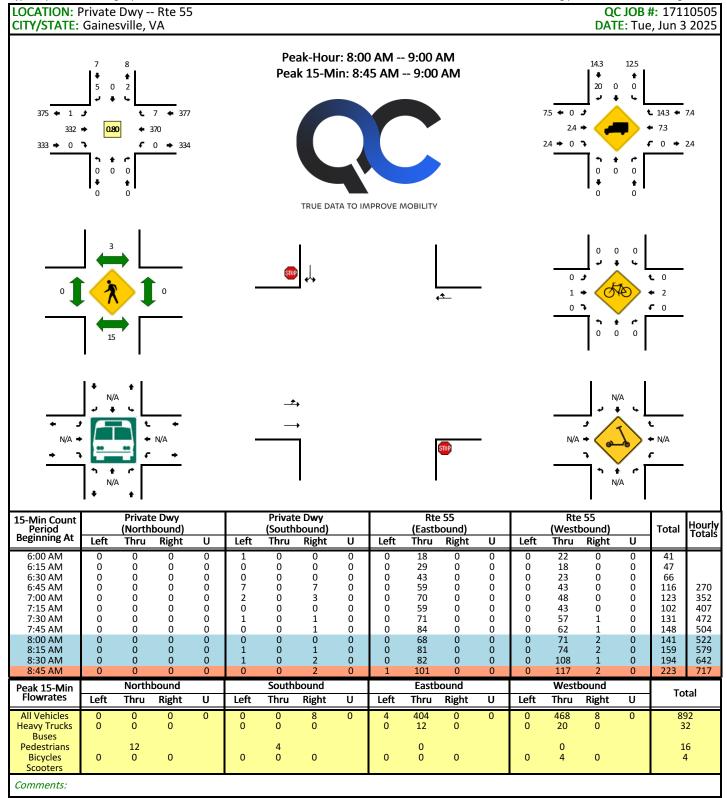

Figure 3: Preliminary Sketch (For Illustrative Purposes Only)

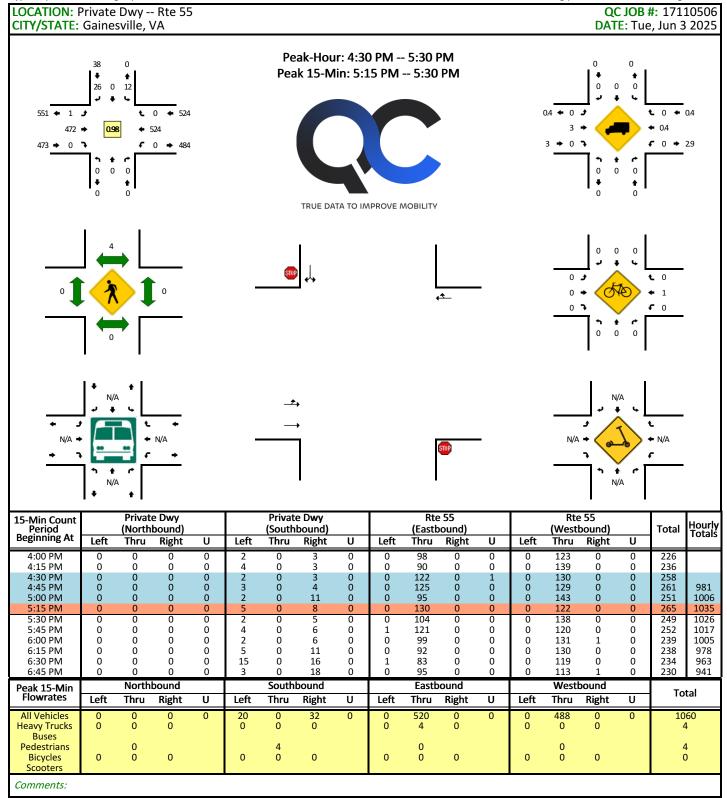
APPENDIX B: EXISTING TURNING MOVEMENT COUNTS


Report generated on 6/13/2025 9:01 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

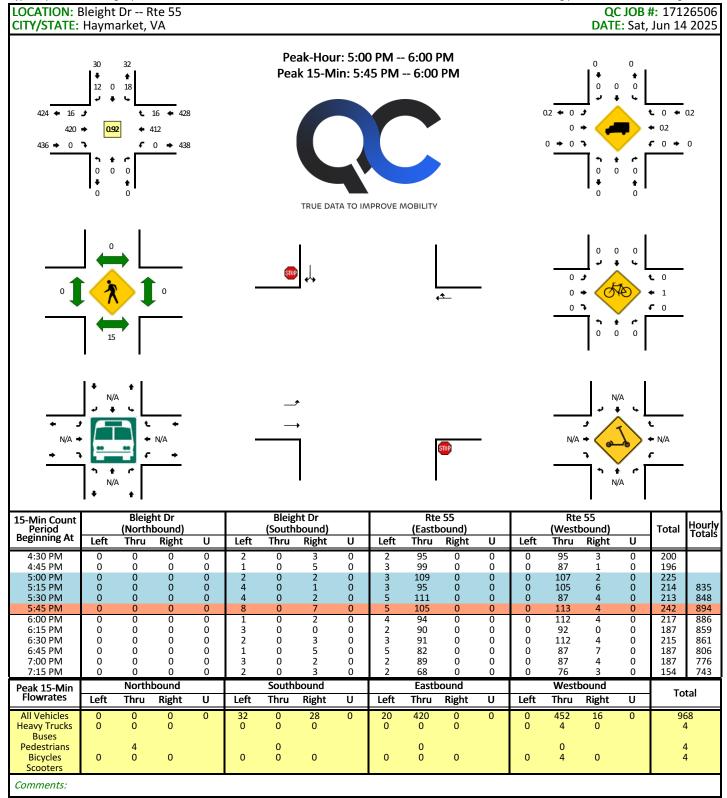

Report generated on 6/13/2025 9:01 AM

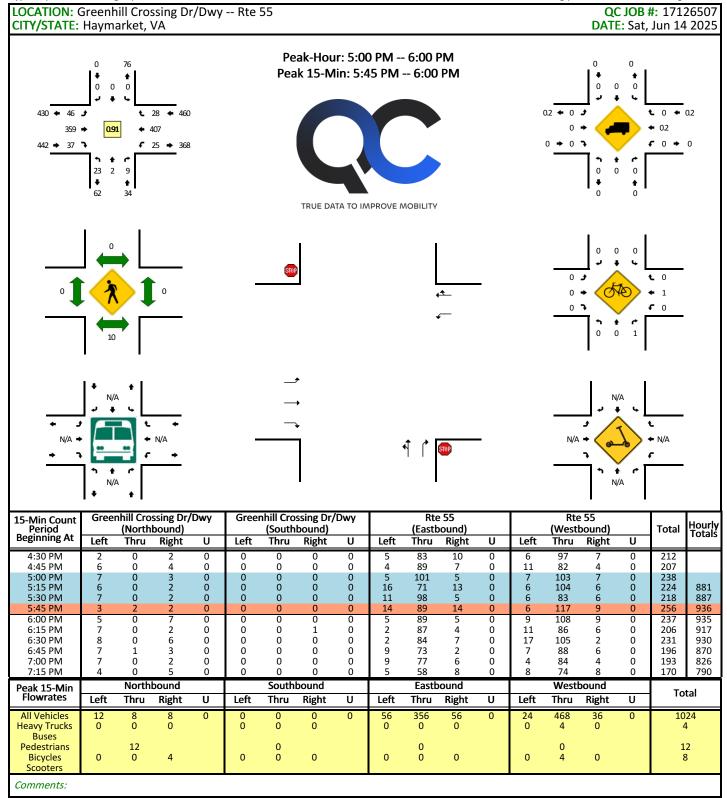

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

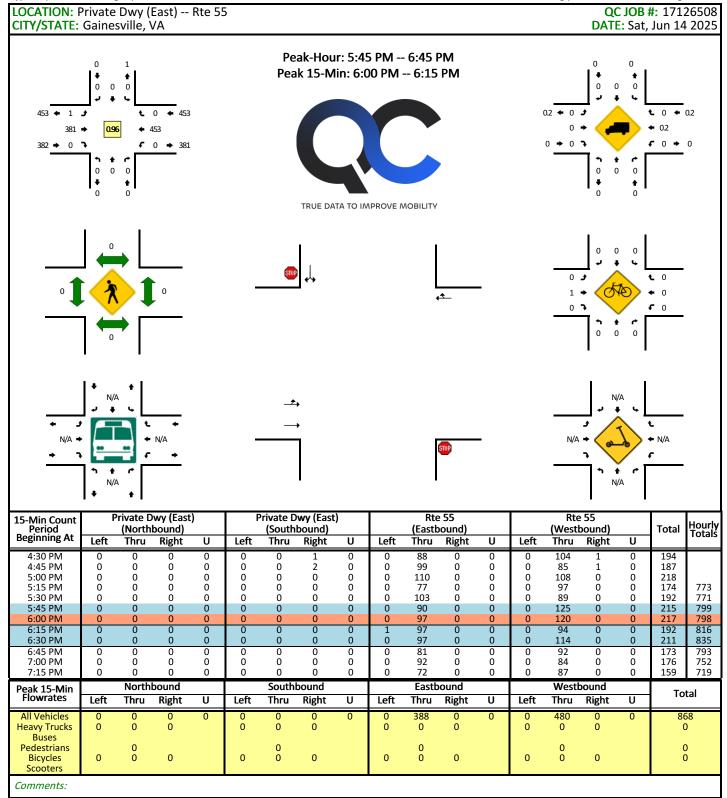


Report generated on 6/13/2025 9:01 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

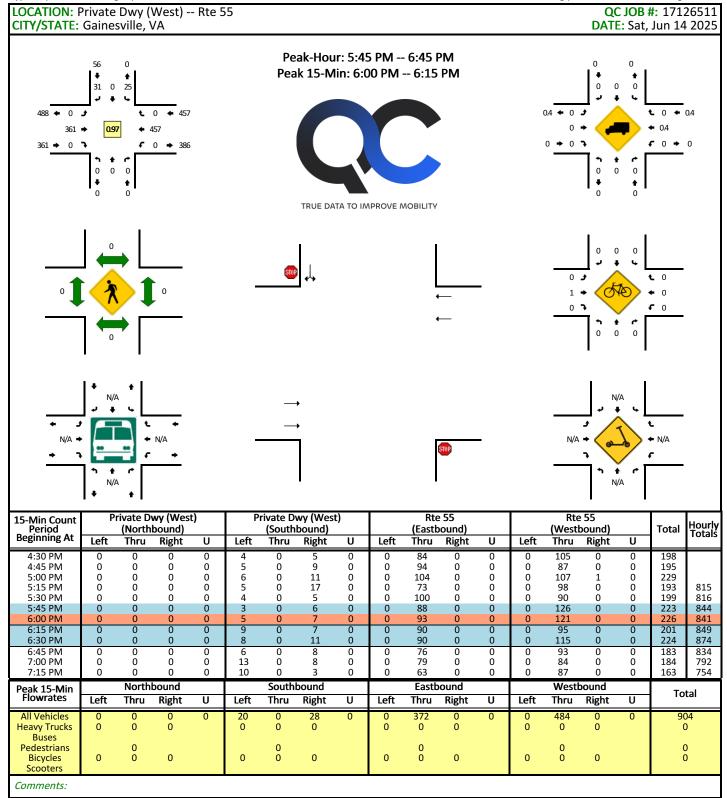



LOCATION: Autumn Harvest Trl/Susquehanna Rd -- Rte 55 QC JOB #: 17110507 CITY/STATE: Gainesville, VA DATE: Tue, Jun 3 2025 Peak-Hour: 8:00 AM -- 9:00 AM 21.4 Peak 15-Min: 8:45 AM -- 9:00 AM 12.5 0 33.3 7.4 **←** 0 **→** € 36.4 ← 8.2 380 **←** 7.3 305 → 0.83 369 **f** 0 **→** 375 2.7 → 0 → € 0 → 3.5 334 → 15 → 3.1 ŧ . • TRUE DATA TO IMPROVE MOBILITY 0 🗲 € 0 **+** 0 **•** 0 N/A ç N/A N/A Autumn Harvest Autumn Harvest Rte 55 Rte 55 15-Min Count Period Beginning At Trl/Susquehanna Rd (Northbound) Trl/Susquehanna Rd (Southbound) Hourly Totals (Eastbound) (Westbound) **Total** Left Thru Right Left Thru Right Left Thru Right U Left Thru Right U 6:00 AM 6:15 AM Ō 6:30 AM 6:45 AM 53 7:00 AM 0 1 Ō Ō 7:15 AM 7:30 AM 7:45 AM 8:00 AM 73 8:15 AM 8:30 AM Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru Right U Left Thru Right U Left Thru Right U Left Thru Right U All Vehicles **Heavy Trucks** Buses **Pedestrians** Bicycles Scooters Comments:


Report generated on 6/13/2025 9:01 AM

LOCATION: Autumn Harvest Trl/Susquehanna Rd -- Rte 55 QC JOB #: 17110508 CITY/STATE: Gainesville, VA DATE: Tue, Jun 3 2025 Peak-Hour: 4:30 PM -- 5:30 PM 4.8 Peak 15-Min: 4:45 PM -- 5:00 PM 0.6 🗢 6.3 🖈 0.6 **+** 0.6 449 🖈 0.97 508 2.7 → **f** 0 **→** 488 2.7 → 0 → **€** 0 → 2.9 489 → 24 → • 6.1 ŧ + TRUE DATA TO IMPROVE MOBILITY 0 🗲 € 0 **+** 0 **•** 0 N/A ç N/A N/A Autumn Harvest Autumn Harvest Rte 55 Rte 55 15-Min Count Period Beginning At Trl/Susquehanna Rd Trl/Susquehanna Rd (Southbound) Hourly Totals (Eastbound) (Westbound) **Total** (Northbound) Left Thru Right Left Thru Right U Left Thru Right U Left Thru Right U 4:00 PM 4:15 PM Ō 4:30 PM 5:00 PM O O 4 O Ö Ö 5:15 PM 5:30 PM n 4 O 5 6 255 5:45 PM O 6:00 PM 0 3 2 ŏ 6:15 PM O 6:30 PM 6:45 PM O O O O O Peak 15-Min Flowrates Northbound Southbound Eastbound Westbound Total Left Thru Right U Left Thru Right U Left Thru Right U Left Thru Right U All Vehicles **Heavy Trucks** Buses Pedestrians Bicycles Scooters Comments:

Report generated on 6/13/2025 9:01 AM



LOCATION: Autumn Harvest Trl/Susquehanna Rd -- Rte 55 QC JOB #: 17126509 CITY/STATE: Gainesville, VA **DATE: Sat, Jun 14 2025** Peak-Hour: 5:45 PM -- 6:45 PM Peak 15-Min: 6:00 PM -- 6:15 PM 0.2 🗢 0 0.2 455 💠 0.2 377 → 0.95 53 **f** 0 **→** 419 **€** 0 → 0.2 384 → 2.5 TRUE DATA TO IMPROVE MOBILITY 0 🗲 € 0 **+** 0 **•** 0 N/A ç N/A N/A Autumn Harvest Autumn Harvest Rte 55 Rte 55 15-Min Count Period Beginning At Trl/Susquehanna Rd (Northbound) Trl/Susquehanna Rd (Southbound) Hourly Totals (Eastbound) (Westbound) **Total** Left Thru Right Left Thru Right U Left Thru Right U Left Thru Right U 4:30 PM 4:45 PM Ō 5:00 PM ō 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 10 6:30 PM O O n 6:45 PM n 7:00 PM 7:15 PM O O O O Peak 15-Min Flowrates Northbound Southbound Eastbound Westbound Total Left Thru Right U Left Thru Right U Left Thru Right U Left Thru Right U All Vehicles **Heavy Trucks** Buses Pedestrians Bicycles Scooters Comments:

Report generated on 6/18/2025 9:05 AM

APPENDIX C: INTERSECTION ANALYSIS WORKSHEETS (EXISTING 2025)

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	1		W	
Traffic Vol, veh/h	8	317	354	4	13	20
Future Vol, veh/h	8	317	354	4	13	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-, "	0	0	-	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	13	3	6	25	0	10
Mymt Flow	9	373	416	5	15	24
		010	. 10	- 0	10	LT
	Major1		//ajor2		/linor2	
Conflicting Flow All	421	0	-	0	810	419
Stage 1	-	-	-	-	419	-
Stage 2	-	-	-	-	391	-
Critical Hdwy	4.23	-	-	-	6.4	6.3
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.317	-	-	-	3.5	3.39
Pot Cap-1 Maneuver	1082	-	-	-	352	617
Stage 1	-	-	-	-	668	-
Stage 2	-	-	-	-	688	-
Platoon blocked, %		_	-	-		
Mov Cap-1 Maneuver	1082	-	-	-	349	617
Mov Cap-2 Maneuver	-	-	_	_	349	-
Stage 1	-	_	_	_	663	-
Stage 2	_	_	_	_	688	_
Clayo Z					500	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		13.3	
					В	
HCM LOS						
HCM LOS						
	.4	EDI	EDT	WDT	WDD (2DI 51
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	
Minor Lane/Major Mvm Capacity (veh/h)	nt	1082	-	-	-	474
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1082 0.009	-	-	-	474 0.082
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1082 0.009 8.4	-	-	- - -	474 0.082 13.3
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1082 0.009	-	-	-	474 0.082

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u></u>	7	ሻ	<u></u>			4	7			
Traffic Vol, veh/h	9	304	17	23	334	13	24	0	29	0	0	0
Future Vol., veh/h	9	304	17	23	334	13	24	0	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	<u>-</u>	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	_	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	0	3	6	9	8	0	0	0	3	0	0	0
Mvmt Flow	11	358	20	27	393	15	28	0	34	0	0	0
Major/Minor N	/lajor1		-	Major2		-	Minor1					
Conflicting Flow All	408	0	0	378	0	0	835	842	358			
Stage 1	400	-	U	3/0	-	-	380	380	-			
Stage 2	_	_	_	_	_	_	455	462	<u> </u>			
Critical Hdwy	4.1	_	-	4.19	_	_	6.4	6.5	6.23			
Critical Hdwy Stg 1	7.1	_	_	7.13	<u> </u>	_	5.4	5.5	0.23			
Critical Hdwy Stg 2	_					_	5.4	5.5	_			
Follow-up Hdwy	2.2	_	_	2.281	_	_	3.5	4	3.327			
Pot Cap-1 Maneuver	1162	_	_	1143	_	_	340	303	684			
Stage 1	1102	_		1145	_	_	696	617	- 004			
Stage 2	-	-	-	-	-	_	643	568	<u>-</u>			
Platoon blocked, %	_	_	_	_	_	_	043	500	_			
Mov Cap-1 Maneuver	1162	-	-	1143	_	_	329	0	684			
		-					329	0	- 004			
Mov Cap-2 Maneuver Stage 1	-	-	-	-	-	-	690	0				
	_	-	-	-	-		628	0	-			
Stage 2	_	-	-	-	-	-	020	U	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.2			0.5			13.4					
HCM LOS							В					
Minor Lane/Major Mvmt		NBLn11	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR			
Capacity (veh/h)		329	684	1162	-	-	1143	-	-			
HCM Lane V/C Ratio		0.086	0.05	0.009	-	-	0.024	-	-			
HCM Control Delay (s)		17	10.5	8.1	-	-	8.2	-	-			
HCM Lane LOS		С	В	Α	-	-	Α	-	-			
HCM 95th %tile Q(veh)		0.3	0.2	0	-	-	0.1	-	-			

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		^	^		ኘ	7	
Traffic Vol, veh/h	1	332	365	7	2	5	
Future Vol, veh/h	1	332	365	7	2	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	0	
Veh in Median Storage	,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	85	85	85	85	85	85	
Heavy Vehicles, %	0	2	7	14	0	20	
Mvmt Flow	1	391	429	8	2	6	
Major/Minor N	//ajor1	<u> </u>	Major2	N	/linor2		
Conflicting Flow All	437	0	-	0	631	219	
Stage 1	-	-	-	-	433	-	
Stage 2	-	-	-	-	198	-	
Critical Hdwy	4.1	-	-	-	6.8	7.3	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.5	
Pot Cap-1 Maneuver	1134	-	-	-	418	732	
Stage 1	-	-	-	-	627	-	
Stage 2	-	-	-	-	822	-	
Platoon blocked, %	1121	-	-	-	110	720	
Mov Cap-1 Maneuver	1134	-	-	-	418	732	
Mov Cap-2 Maneuver	-	-	-	-	418	-	
Stage 1	-	-	-	-	626 822	-	
Stage 2	-	-	-	-	022	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		11.1		
HCM LOS					В		
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR S	SBLn1 S	BLn2
Capacity (veh/h)		1134	-	-	-	418	732
HCM Lane V/C Ratio		0.001	-	-	-	0.006	800.0
HCM Control Delay (s)		8.2	-	-	-	13.7	10
HCM Lane LOS		Α	-	-	-	В	В
HCM 95th %tile Q(veh)		0	-	-	-	0	0

Intersection						
Int Delay, s/veh	0					
		EDT	WDT	WED	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	_	^	\$	_		
Traffic Vol, veh/h	0	334	372	5	1	0
Future Vol, veh/h	0	334	372	5	1	0
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	363	404	5	1	0
Majar/Minar	Mais =4		Mais=0		Air s = O	
	Major1		Major2		Minor2	40.4
Conflicting Flow All	-	0	-	0	586	404
Stage 1	-	-	-	-	404	-
Stage 2	-	-	-	-	182	-
Critical Hdwy	-	-	-	-	6.63	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.83	-
Follow-up Hdwy	-	-	-	-	3.519	3.319
Pot Cap-1 Maneuver	0	-	-	0	457	646
Stage 1	0	-	-	0	673	-
Stage 2	0	-	_	0	832	_
Platoon blocked, %	-	_	_			
Mov Cap-1 Maneuver	_	_	_	_	457	646
Mov Cap-2 Maneuver	-	_	<u>-</u>	_	457	-
Stage 1	_			_	673	_
Stage 2	_	_	-	-	832	_
Stage 2	_	_	-	-	032	_
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
					•	
Minor Lane/Major Mvm	nt	EBT	WBT	SBLn1		
Capacity (veh/h)		-	-	-		
HCM Lane V/C Ratio		-	-	-		
HCM Control Delay (s)		-	-	0		
HCM Lane LOS		-	-	Α		
HCM 95th %tile Q(veh	١	_	_	_		
HOW SOUL WILL CONTROL)					

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7			7			7		4	
Traffic Vol, veh/h	15	305	15	0	369	11	0	0	64	6	0	8
Future Vol, veh/h	15	305	15	0	369	11	0	0	64	6	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	0	3	0	0	7	36	0	0	3	33	0	13
Mvmt Flow	18	359	18	0	434	13	0	0	75	7	0	9
Major/Minor N	Major1		ľ	Major2		1	Minor1		<u> </u>	Minor2		
Conflicting Flow All	447	0	-	_	-	0	-	-	359	829	829	434
Stage 1	-	-	-	-	-	-	-	-	-	434	434	-
Stage 2	-	_	-	-	-	-	-	-	-	395	395	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.43	6.5	6.33
Critical Hdwy Stg 1	-	_	-	-	-	-	-	-	-	6.43	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.43	5.5	-
Follow-up Hdwy	2.2	_	-	_	-	-	-	_	3.327	3.797	4	3.417
Pot Cap-1 Maneuver	1124	-	0	0	-	-	0	0	683	257	308	599
Stage 1	-	_	0	0	-	-	0	0	-	544	585	-
Stage 2	-	-	0	0	-	-	0	0	-	573	608	-
Platoon blocked, %		_			-	-						
Mov Cap-1 Maneuver	1124	-	-	-	-	-	-	-	683	226	303	599
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	226	303	-
Stage 1	-	-	-	-	-	-	-	-	-	535	585	-
Stage 2	-	-	-	-	-	-	-	-	-	502	598	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			0			10.9			15.8		
HCM LOS							В			С		
Minor Lane/Major Mvm	it N	NBLn1	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)		683	1124	-	_	-						
HCM Lane V/C Ratio			0.016	_	_	_	0.047					
HCM Control Delay (s)		10.9	8.3	-	_	-						
HCM Lane LOS		В	A	_	_	_	C					
HCM 95th %tile Q(veh)		0.4	0	-	-	-	0.1					
, , , , , , , , , , , , , , , , , , ,												

Intersection						
Int Delay, s/veh	6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	♣	
Traffic Vol, veh/h	0	24	9	3	9	0
Future Vol, veh/h	0	24	9	3	9	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	28	11	4	11	0
IVIVIIIL I IOW	U	20	- 11	7	- 11	U
Major/Minor N	Minor2	1	Major1	N	//ajor2	
Conflicting Flow All	37	11	11	0	-	0
Stage 1	11	-	-	-	-	-
Stage 2	26	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	_
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	_	-
		3.318	2.218	_	_	_
Pot Cap-1 Maneuver	975	1070	1608	_	_	_
Stage 1	1012	-	-	_	_	_
Stage 2	997	-	_	_	_	_
Platoon blocked, %	001			_	_	_
Mov Cap-1 Maneuver	968	1070	1608	_	_	_
Mov Cap-2 Maneuver	968	-	1000	<u>-</u>	<u>-</u>	_
Stage 1	1005	_	_		_	
Stage 2	997	_	-	_	_	_
Staye 2	331	_		-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.5		5.4		0	
HCM LOS	Α					
NA:		NDI	NOT	EDL 4	ODT	000
Minor Lane/Major Mvm	t	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1608		1070	-	-
		0.007	-	0.026	-	-
HCM Lane V/C Ratio						
HCM Lane V/C Ratio HCM Control Delay (s)		7.3	0	8.5	-	-
HCM Lane V/C Ratio		7.3 A 0	0 A	8.5 A 0.1	-	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	WB1 ∱	ופייי	₩.	אופט
Traffic Vol, veh/h	26	4 98	495	15	13	20
Future Vol, veh/h	26	498	495	15	13	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	160	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-, π -	0	0	_	0	<u>-</u>
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	4	3	1	0	0	0
Mvmt Flow	27	508	505	15	13	20
	- 1	- 500	- 500		- 10	
	Major1		Major2		Minor2	
Conflicting Flow All	520	0	-	0	1075	513
Stage 1	-	-	-	-	513	-
Stage 2	-	-	-	-	562	-
Critical Hdwy	4.14	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.236	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1036	-	-	-	245	565
Stage 1	-	-	-	-	605	-
Stage 2	-	-	-	-	575	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1036	-	-	-	239	565
Mov Cap-2 Maneuver	-	-	-	-	239	-
Stage 1	-	-	-	-	589	-
Stage 2	-	-	-	-	575	-
A	ED		\A/D		OB	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		15.8	
HCM LOS					С	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1036		-	-	
HCM Lane V/C Ratio		0.026	_	_		0.092
HCM Control Delay (s)		8.6	_	_		15.8
HCM Lane LOS		Α	_	_	_	C
HCM 95th %tile Q(veh)		0.1	_	_	_	0.3
		V. 1				0.0

Intersection													
Int Delay, s/veh	1.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	†	7	ሻ	<u></u>			4	7				
Traffic Vol, veh/h	19	461	31	61	481	17	29	5	18	0	0	0	
Future Vol, veh/h	19	461	31	61	481	17	29	5	18	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	_	None	_	-	None	-	-	None	-	-	None	
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	_	-	0	-	
Grade, %	_	0	_	-	0	_	-	0	-	_	0	-	
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99	
Heavy Vehicles, %	0	3	3	2	1	0	7	0	0	0	0	0	
Mvmt Flow	19	466	31	62	486	17	29	5	18	0	0	0	
												*	
Major/Minor M	1ajor1		ı	Major2		ı	Minor1						
Conflicting Flow All	503	0	0	497	0	0	1123	1131	466				
Stage 1	-	-	-	-	-	-	504	504	-				
Stage 2	_	_	_	_	_	_	619	627	_				
Critical Hdwy	4.1	_	_	4.12	_	_	6.47	6.5	6.2				
Critical Hdwy Stg 1	- ''-	_	_	- 1.12	_	_	5.47	5.5	-				
Critical Hdwy Stg 2	_	_	_	_	_	_	5.47	5.5	_				
Follow-up Hdwy	2.2	_	_	2.218	_	_	3.563	4	3.3				
Pot Cap-1 Maneuver	1072	_	_	1067	_	_	222	205	601				
Stage 1	1072	_	_	1007	_	_	597	544	-				
Stage 2	_	_	_	_	_	_	528	479	_				
Platoon blocked, %		_	_		_	_	320	713					
Mov Cap-1 Maneuver	1072	_	_	1067		_	205	0	601				
Mov Cap-1 Maneuver	1012	_		1007	_	_	205	0	-				
Stage 1	-	<u>-</u>	<u>-</u>	_	_		586	0	-				
Stage 2	_	-	-	-	_	_	497	0					
Stage 2	-	<u>-</u>	-	-	-	-	491	U	-				
Approach	EB			WB			NB						
HCM Control Delay, s	0.3			0.9			20.9						
	0.5			0.9			_						
HCM LOS							С						
Minor Lane/Major Mvmt		NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		205	601	1072			1067						
HCM Lane V/C Ratio		0.168		0.018	_		0.058	_	_				
HCM Control Delay (s)		26.1	11.2	8.4	-	-	8.6	-	_				
HCM Lane LOS		20.1 D	11.2 B	0.4 A	_	-	Α	-					
HCM 95th %tile Q(veh)		0.6	0.1	0.1		-	0.2		-				
HOW SOUL WILL CHAPTER		0.0	U. I	0.1	-	-	0.2	-	-				

Intersection						
Int Delay, s/veh	0.4					
		EDT	WDT	WDD	CDI	CDD
Movement Configurations	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	0	^	^	0	<u>ነ</u>	76
Traffic Vol, veh/h	0	479	533	0	12	26
Future Vol, veh/h	0	479	533	0	12	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	0	3	0	0	0	0
Mvmt Flow	0	489	544	0	12	27
Major/Minor N	1ajor1	N	Major2		Minor2	
Conflicting Flow All	- -	0	-	0	789	272
Stage 1	_	-	_	-	544	-
Stage 2	_	_	_	_	245	_
Critical Hdwy			-		6.8	6.9
•	-	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	-	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	0	-	-	0	332	732
Stage 1	0	-	-	0	551	-
Stage 2	0	-	-	0	779	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	332	732
Mov Cap-2 Maneuver	-	-	-	-	332	-
Stage 1	-	-	-	-	551	-
Stage 2	-	-	-	-	779	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.1	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1	SBLn2	
Capacity (veh/h)		-	-		732	
HCM Lane V/C Ratio		_	_	0.037		
HCM Control Delay (s)		_	_		10.1	
HCM Lane LOS		_	_	C	В	
HCM 95th %tile Q(veh)			_	0.1	0.1	
HUM SOM WINE CIVEN						

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL			WDIX	ODL	JDIN 7
Traffic Vol, veh/h	0	↑↑ 491	₽ 527	0	0	6
Future Vol, veh/h	0	491	527	0	0	6
Conflicting Peds, #/hr	0	491	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	
RT Channelized	riee -	None	riee -	Free	Stop -	Stop
	-	None -	-		-	0
Storage Length Veh in Median Storage,		0	0	-	0	-
				-		
Grade, %	-	0	0	-	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	501	538	0	0	6
Major/Minor N	/lajor1	N	Major2	N	/linor2	
Conflicting Flow All	- -	0	-	0	-	538
Stage 1	_	-	_	-	_	-
Stage 2	<u>-</u>	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.23
Critical Hdwy Stg 1	<u>-</u>	_	_	_	_	0.20
Critical Hdwy Stg 2				_	_	_
Follow-up Hdwy	_	_	_	_		3.319
Pot Cap-1 Maneuver	0	-	_	0	0	542
	0		-	0		
Stage 1	0	-	-	0	0	-
Stage 2	U	-	-	U	U	-
Platoon blocked, %		-	-			E40
Mov Cap-1 Maneuver	-	-	-	-	-	542
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		11.7	
	U		U		_	
HCM LOS					В	
Minor Lane/Major Mvm	t	EBT	WBT S	SBLn1		
Capacity (veh/h)		-	-	542		
HCM Lane V/C Ratio		_	-	0.011		
HCM Control Delay (s)		-		11.7		
HCM Lane LOS		_	_	В		
HCM 95th %tile Q(veh)		-	_	0		

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7			7			7		4	
Traffic Vol, veh/h	16	451	24	0	508	5	0	0	33	6	0	19
Future Vol, veh/h	16	451	24	0	508	5	0	0	33	6	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	5	1	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	16	465	25	0	524	5	0	0	34	6	0	20
Major/Minor N	Major1		N	Major2		<u> </u>	Minor1		N	/linor2		
Conflicting Flow All	529	0	_	-	_	0		_	465	1021	1021	524
Stage 1	-	_	_	-	_	-	_	_	-	524	524	-
Stage 2	_	_	_	_	_	_	_	_	_	497	497	_
Critical Hdwy	4.15	_	_	_	_	_	_	_	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	_	_	_	_	_	_	-	6.1	5.5	- 0.2
Critical Hdwy Stg 2	_	_	-	_	_	-	-	-	-	6.1	5.5	_
Follow-up Hdwy	2.245	_	_	_	_	_	_	_	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1023	_	0	0	_	_	0	0	595	217	238	557
Stage 1	-	_	0	0	_	_	0	0	-	540	533	-
Stage 2	_	_	0	0	_	-	0	0	-	559	548	_
Platoon blocked, %		_			_	_				- 000	J .J	
Mov Cap-1 Maneuver	1023	_	-	_	_	-	-	-	595	202	234	557
Mov Cap-2 Maneuver	-	_	_	_	_	_	-	_	-	202	234	
Stage 1	-	_	-	-	-	-	-	-	-	531	533	_
Stage 2	_	_	_	_	_	_	_	_	_	519	539	_
2.5.50												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			11.4			14.8		
HCM LOS	0.0			U			В			14.0 B		
TOW LOO							U			U		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	WBT	WBR S	SRI n1					
	ı I			LDT	VVDT							
Capacity (veh/h)		595	1023 0.016	-	-	-	392 0.066					
HCM Control Polov (a)				-	-							
HCM Long LOS		11.4	8.6	-	-	-						
HCM Of the Office Office h		В	A	-	-	-	В					
HCM 95th %tile Q(veh)		0.2	0	-	-	-	0.2					

Intersection						
Int Delay, s/veh	5.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDI	NUL	4	1 <u>uo</u>	ODIN
Traffic Vol, veh/h	0	25	29	12	8	0
Future Vol, veh/h	0	25	29	12	8	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	29	34	14	9	0
IVIVITIT FIOW	U	29	34	14	9	U
Major/Minor N	Minor2	1	Major1	N	//ajor2	
Conflicting Flow All	91	9	9	0	-	0
Stage 1	9	-	-	-	-	-
Stage 2	82	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	909	1073	1611	-	-	-
Stage 1	1014	-	-	-	-	-
Stage 2	941	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	890	1073	1611	-	-	-
Mov Cap-2 Maneuver	890	-	-	-	-	-
Stage 1	993	_	-	_	_	_
Stage 2	941	_	-	_	_	-
3 3 3						
A	FD		ND		C.D.	
Approach	EB		NB		SB	
HCM Control Delay, s	8.5		5.2		0	
HCM LOS	Α					
Minor Lane/Major Mvm	ıt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1611		1073	-	ODIT
HCM Lane V/C Ratio		0.021		0.027	_	_
HCM Control Delay (s)		7.3	0	8.5	_	_
HCM Lane LOS		7.5 A	A	0.5 A	_	_
HCM 95th %tile Q(veh)		0.1		0.1	_	
How our found w(veri)		0.1		U. 1		

Intersection						
Int Delay, s/veh	0.6					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ች	↑	^	40	¥	40
Traffic Vol, veh/h	14	380	429	12	14	12
Future Vol, veh/h	14	380	429	12	14	12
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	8	0	8
Mvmt Flow	16	427	482	13	16	13
Major/Minor	laiar1	N	Majara		linar?	
	//ajor1		Major2		Minor2	400
Conflicting Flow All	495	0	-	0	948	489
Stage 1	-	-	-	-	489	-
Stage 2	-	-	-	-	459	-
Critical Hdwy	4.1	-	-	-	6.4	6.28
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.372
Pot Cap-1 Maneuver	1079	-	-	-	292	567
Stage 1	-	-	-	-	621	-
Stage 2	-	-	-	_	641	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1079	_	-	_	288	567
Mov Cap-2 Maneuver	_	_	_	_	288	-
Stage 1	_	_	_	_	612	_
Stage 2	_	_	_	_	641	_
Olage 2					0+1	
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		15.5	
HCM LOS					С	
Mineral and /Marin Ma		EDI	CDT	MOT	MDD	ODL 4
Minor Lane/Major Mvmt	ι	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1079	-	-	-	
HCM Lane V/C Ratio		0.015	-	-		0.078
HCM Control Delay (s)		8.4	-	-	-	15.5
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh)		0	-	-	_	0.3
TOTAL SOUTH SOUTH OF MENTALLY						

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u></u>	7	ሻ	<u></u>			4	7			
Traffic Vol, veh/h	23	341	30	43	417	26	23	2	17	0	0	1
Future Vol, veh/h	23	341	30	43	417	26	23	2	17	0	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	4	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	25	375	33	47	458	29	25	2	19	0	0	1
Major/Minor N	Major1			Major2			Minor1					
Conflicting Flow All	487	0	0	408	0	0	992	1006	375			
Stage 1	-	-	-	-	-	-	425	425	-			
Stage 2	_	_	_	_	_	_	567	581	_			
Critical Hdwy	4.14	-	_	4.1	-	-	6.4	6.5	6.2			
Critical Hdwy Stg 1	-	_	_	-	_	-	5.4	5.5	-			
Critical Hdwy Stg 2	-	_	-	_	-	-	5.4	5.5	_			
Follow-up Hdwy	2.236	_	_	2.2	_	-	3.5	4	3.3			
Pot Cap-1 Maneuver	1066	_	-	1162	-	-	275	243	676			
Stage 1	-	_	_	-	_	-	664	590	-			
Stage 2	-	_	-	_	-	-	572	503	_			
Platoon blocked, %		_	-		_	_						
Mov Cap-1 Maneuver	1066	_	-	1162	_	_	258	0	676			
Mov Cap-2 Maneuver	-	-	-	-	-	-	258	0	-			
Stage 1	-	-	_	-	-	-	649	0	-			
Stage 2	-	-	_	-	-	-	549	0	-			
<u></u>												
Approach	EB			WB			NB					
HCM Control Delay, s	0.5			0.7			16.5					
HCM LOS	5.5			J .,			C					
Minor Lane/Major Mvm	t	NBLn1 I	VBI n2	EBL	EBT	EBR	WBL	WBT	WBR			
Capacity (veh/h)		258	676	1066	-	LDIN		-	-			
HCM Lane V/C Ratio			0.028		_		0.041	_	_			
HCM Control Delay (s)		20.6	10.5	8.5	_	_	8.2	_	-			
HCM Lane LOS		20.0 C	10.5 B	0.5 A	_	_	Α	_	<u>-</u>			
HCM 95th %tile Q(veh)		0.4	0.1	0.1	_	_	0.1	_	_			
How Jour Joure Q(Veri)		0.4	0.1	0.1			0.1					

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL			WDIX	JDL	7
Traffic Vol, veh/h	0	↑ ↑ 358	↑↑ 455	0	25	31
Future Vol, veh/h	0	358	455	0	25	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	_	-	_	-	0	0
Veh in Median Storage		0	0	_	0	-
Grade, %	·, <i>''</i>	0	0	_	0	_
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	369	469	0	26	32
WWW.CT IOW	U	000	100	J	20	UL.
	Major1		Major2		Minor2	
Conflicting Flow All	-	0	-	0	654	235
Stage 1	-	-	-	-	469	-
Stage 2	-	-	-	-	185	-
Critical Hdwy	-	-	-	-	6.8	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	-	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	0	-	-	0	404	773
Stage 1	0	-	-	0	602	-
Stage 2	0	-	-	0	834	-
Platoon blocked, %		-	-		4	
Mov Cap-1 Maneuver	-	-	-	-	404	773
Mov Cap-2 Maneuver	-	-	-	-	404	-
Stage 1	-	-	-	-	602	-
Stage 2	-	-	-	-	834	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBT	WBT:	SBLn1		
Capacity (veh/h)	nt	EBT -	-	404	773	
Capacity (veh/h) HCM Lane V/C Ratio		EBT - -	-	404 0.064	773 0.041	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		<u>EBT</u>	-	404 0.064 14.5	773 0.041 9.9	
Capacity (veh/h) HCM Lane V/C Ratio		EBT	-	404 0.064	773 0.041	

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	^	13€	אטול	ODL	7
Traffic Vol, veh/h	0	383	455	0	0	0
Future Vol, veh/h	0	383	455	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	Stop -	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage		0	0	_	0	-
Grade, %		0	0	_	0	
	-			96	96	96
Peak Hour Factor	96	96	96			
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	399	474	0	0	0
Major/Minor N	Major1	N	Major2	N	/linor2	
Conflicting Flow All	-	0	-	0	-	474
Stage 1	-	-	-	-	_	-
Stage 2	-	_	-	_	-	-
Critical Hdwy	_	-	-	-	_	6.2
Critical Hdwy Stg 1	_	_	_	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_	_	3.3
Pot Cap-1 Maneuver	0	_	_	0	0	595
Stage 1	0	<u>-</u>	_	0	0	-
Stage 2	0	_	_	0	0	_
Platoon blocked, %	U	_	_	U	U	
Mov Cap-1 Maneuver	_		_	_	_	595
	_	_	_	-	_	- -
Mov Cap-2 Maneuver	-	_	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
N. 1 (0.1) N. 1		EST	MAIST	0DL 4		
Minor Lane/Major Mvm	t	EBT	WBT:	SBLn1		
Capacity (veh/h)		-	-	-		
HCM Lane V/C Ratio		-	-	-		
HCM Control Delay (s)		-	-	0		
HCM Lane LOS		-	-	Α		
HCM 95th %tile Q(veh)		-	-	-		

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť		7			7			7		4	
Traffic Vol, veh/h	3	376	4	0	453	3	0	0	40	2	0	2
Future Vol, veh/h	3	376	4	0	453	3	0	0	40	2	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	3	396	4	0	477	3	0	0	42	2	0	2
Major/Minor N	/lajor1		ı	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	480	0	-	-	-	0	-	-	396	879	879	477
Stage 1	_	_	-	_	_	-	_	_	-	477	477	_
Stage 2	-	-	-	-	-	-	-	-	-	402	402	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	_	_	-	_	-	-	-	-	-	6.1	5.5	_
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1093	-	0	0	-	-	0	0	651	270	288	592
Stage 1	-	-	0	0	-	-	0	0	-	573	559	-
Stage 2	-	-	0	0	-	-	0	0	-	629	604	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1093	-	-	-	-	-	-	-	651	252	287	592
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	252	287	-
Stage 1	-	-	-	-	-	-	-	-	-	571	559	-
Stage 2	-	-	-	-	-	-	-	-	-	587	602	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			10.9			15.3		
HCM LOS	0.1			· ·			В			C		
Minor Lane/Major Mvmt	1	NBLn1	EBL	EBT	WBT	WBR S	SBL n1					
Capacity (veh/h)		651	1093		-	-						
HCM Lane V/C Ratio			0.003	_	_		0.012					
HCM Control Delay (s)		10.9	8.3	<u>-</u>	-		15.3					
HCM Lane LOS		10.9 B	0.5 A	-	_	-	13.3 C					
HCM 95th %tile Q(veh)		0.2	0		_	-	0					
HOW JOHN JUHIE Q(VEH)		0.2					0					

Intersection						
Int Delay, s/veh	5.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIK	HUL	4	\$	OBIN
Traffic Vol, veh/h	0	19	19	7	7	0
Future Vol, veh/h	0	19	19	7	7	0
	0	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	22	22	8	8	0
Major/Minor N	Minor2		Major1	N	/lajor2	
Conflicting Flow All	60	8	8	0	//ajuiz -	0
	8					-
Stage 1		-	-	-	-	
Stage 2	52	6.00	1.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518			-	-	-
Pot Cap-1 Maneuver	947	1074	1612	-	-	-
Stage 1	1015	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	934	1074	1612	-	-	-
Mov Cap-2 Maneuver	934	-	-	-	-	-
Stage 1	1001	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Ŭ						
					0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	8.4		5.3		0	
HCM LOS	Α					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1612	-	40=4	_	
HCM Lane V/C Ratio		0.014		0.021	_	_
HCM Control Delay (s)		7.3	0	8.4	_	_
HCM Lane LOS		7.5 A	A	Α	_	_
		\neg		$\overline{}$	_	-
HCM 95th %tile Q(veh)	\	0	_	0.1	_	

APPENDIX D: BACKGROUND DEVELOPMENT TRIP GENERATION

6700 Bleight Drive (BG)

	ITE				V	Veekd	ay -				W	eekend	d
Land Use	Code	Size		AM Peak	(Hour	Р	M Peak	Hour	Daily	Satu	rday Pea	ık Hour	Sat Daily
	Code		In	Out	Total	ln	Out	Total	Total	ln	Out	Total	Total
Proposed Use													
*Single-Family Attached Housing (RATES)	215	11 DU	1	4	5	4	2	6	79	3	3	6	96
		Total Trips	1	4	5	4	2	6	79	3	3	6	96

^{*}ITE equations not applicable for proposed density - ITE rates used in lieu.

APPENDIX E: INTERSECTION ANALYSIS WORKSHEETS - FUTURE WITHOUT DEVELOPMENT (2029)

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	WB1 ∱	ופייי	₩.	אופט
Traffic Vol, veh/h	8	343	384	5	15	22
Future Vol, veh/h	8	343	384	5	15	22
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- -	None
Storage Length	160	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	13	3	6	25	0	10
Mvmt Flow	9	373	417	5	16	24
	•			•		
NA ' /NA:			4 : 0		<i>I</i> : 0	
	Major1		Major2		Minor2	
Conflicting Flow All	422	0	-	0	811	420
Stage 1	-	-	-	-	420	-
Stage 2	-	-	-	-	391	-
Critical Hdwy	4.23	-	-	-	6.4	6.3
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.317	-	-	-	3.5	3.39
Pot Cap-1 Maneuver	1081	-	-	-	352	617
Stage 1	-	-	-	-	667	-
Stage 2	-	-	-	-	688	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1081	-	-	-	349	617
Mov Cap-2 Maneuver	-	-	-	-	349	-
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	688	-
Annroach	EB		\\/D		CD	
Approach			WB		SB	
HCM Control Delay, s	0.2		0		13.4	
HCM LOS					В	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1081	_	-	-	
HCM Lane V/C Ratio		0.008	-	-	_	0.085
HCM Control Delay (s)		8.4	_	_		13.4
HCM Lane LOS		A	-	-	_	В
HCM 95th %tile Q(veh)		0	-	-	-	0.3
222 /2000 24(1000)						

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ķ	<u></u>	7	7				4	7			
Traffic Vol, veh/h	9	332	17	23	365	13	24	0	29	0	0	0
Future Vol, veh/h	9	332	17	23	365	13	24	0	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
_	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	6	9	8	0	0	0	3	0	0	0
Mvmt Flow	10	361	18	25	397	14	26	0	32	0	0	0
Major/Minor M	ajor1		ľ	Major2		ľ	Minor1					
Conflicting Flow All	411	0	0	379	0	0	835	842	361			
Stage 1	-	-	-	-	-	-	381	381	-			
Stage 2	-	_	-	-	-	-	454	461	-			
Critical Hdwy	4.1	-	-	4.19	-	-	6.4	6.5	6.23			
Critical Hdwy Stg 1	-	_	-	-	-	-	5.4	5.5	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	5.5	-			
Follow-up Hdwy	2.2	-	-	2.281	-	-	3.5	4	3.327			
	1159	-	-	1142	-	-	340	303	681			
Stage 1	-	-	-	-	-	-	695	617	-			
Stage 2	-	-	-	-	-	-	644	569	-			
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1159	-	-	1142	-	-	329	0	681			
Mov Cap-2 Maneuver	-	-	-	-	-	-	329	0	-			
Stage 1	-	-	-	-	-	-	689	0	-			
Stage 2	-	-	-	-	-	-	630	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.2			0.5			13.4					
HCM LOS	V			0.0			В					
110111 200												
Minor Lane/Major Mvmt		NBLn11	JRI n2	EBL	EBT	EBR	WBL	WBT	WBR			
								WDI	WDIN			
Capacity (veh/h)		329	681	1159	-		1142	-	-			
HCM Control Doloy (a)			0.046		-		0.022	-	-			
HCM Long LOS		16.9	10.5	8.1	-	-	8.2	-	-			
HCM 05th % tile O(vob)		C	B	A	-	-	A	-	-			
HCM 95th %tile Q(veh)		0.3	0.1	0	-	-	0.1	-	-			

Future Background (2029)

Timing Plan: AM Peak Hour

Synchro 11 Report
Page 2

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	LDL	^	↑	וטייי	JDL Š	JDIN.	
Traffic Vol, veh/h	1	360	396	7	2	5	
Future Vol, veh/h	1	360	396	7	2	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	0	
Veh in Median Storage,	,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	0	2	7	14	0	20	
Mvmt Flow	1	391	430	8	2	5	
Major/Minor N	/lajor1	N	Major2	N	Minor2		
Conflicting Flow All	438	0	-	0	632	219	
Stage 1	-	-	-	-	434		
Stage 2	-	-	-	-	198	-	
Critical Hdwy	4.1	-	-	-	6.8	7.3	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.5	
Pot Cap-1 Maneuver	1133	-	-	-	417	732	
Stage 1	-	-	-	-	627	-	
Stage 2	-	-	-	-	822	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1133	-	-	-	417	732	
Mov Cap-2 Maneuver	-	-	-	-	417	-	
Stage 1	-	-	-	-	626	-	
Stage 2	-	-	-	-	822	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		11.1		
HCM LOS					В		
Minor Long/Major M		EDI	EDT	WDT	WDD	CDL ~4.0	בי וחי
Minor Lane/Major Mym	l e	EBL	EBT	WBT		SBLn1 S	
Capacity (veh/h)		1133	-	-	-		732
HCM Control Dolov (a)		0.001	-	-		0.005	
HCM Control Delay (s) HCM Lane LOS		8.2	-	-	-	13.7 B	10 B
HCM 95th %tile Q(veh)		A 0	-	-	-	0	0
HOW SOUT WHIE Q(VEII)		U	-	-	-	U	U

Intersection						
Int Delay, s/veh	0					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	0	^	1		4	
Traffic Vol, veh/h	0	362	403	5	1	0
Future Vol, veh/h	0	362	403	5	1	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	393	438	5	1	0
Major/Minor I	Major1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	- -	0	635	438
Stage 1	_	-	_	-	438	-
Stage 2	_	_	_	_	197	_
Critical Hdwy	_	-	-	_	6.63	6.23
•	_	_	_	_	5.43	0.23
Critical Hdwy Stg 1			-			
Critical Hdwy Stg 2	-	-	-	-	5.83	2 240
Follow-up Hdwy	-	-	-		3.519	
Pot Cap-1 Maneuver	0	-	-	0	426	618
Stage 1	0	-	-	0	650	-
Stage 2	0	-	-	0	817	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	426	618
Mov Cap-2 Maneuver	-	-	-	-	426	-
Stage 1	-	-	-	-	650	-
Stage 2	-	-	-	-	817	-
Approach	EB		WB		SB	
	0		0		0	
HCM Control Delay, s	U		U			
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBT	WBT	SBLn1		
Capacity (veh/h)		-	-	-		
HCM Lane V/C Ratio		_	-	_		
HCM Control Delay (s)		_	-	0		
HCM Lane LOS		_	_	A		
HCM 95th %tile Q(veh))	-	-	-		

Future Background (2029)

Timing Plan: AM Peak Hour

Synchro 11 Report
Page 4

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7			7		4	
Traffic Vol, veh/h	15	333	15	0	400	11	0	0	64	6	0	8
Future Vol, veh/h	15	333	15	0	400	11	0	0	64	6	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	_	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	0	0	7	36	0	0	3	33	0	13
Mvmt Flow	16	362	16	0	435	12	0	0	70	7	0	9
Major/Minor N	1ajor1		1	Major2		ľ	Minor1		ľ	Minor2		
Conflicting Flow All	447	0	-		-	0	-	-	362	829	829	435
Stage 1	_	_	-	-	-	-	_	_	-	435	435	_
Stage 2	-	-	-	-	-	-	-	_	-	394	394	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.43	6.5	6.33
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	6.43	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.43	5.5	-
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.327	3.797	4	3.417
Pot Cap-1 Maneuver	1124	-	0	0	-	-	0	0	680	257	308	598
Stage 1	-	-	0	0	-	-	0	0	-	544	584	-
Stage 2	-	-	0	0	_	-	0	0	-	573	609	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1124	-	-	-	-	-	-	-	680	228	304	598
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	228	304	-
Stage 1	-	-	-	-	-	-	-	-	-	536	584	-
Stage 2	-	-	-	-	-	-	-	-	-	507	600	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			0			10.9			15.7		
HCM LOS							В			С		
Minor Lane/Major Mvmt	t 1	NBLn1	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)		680	1124	-	-	-						
HCM Lane V/C Ratio		0.102		-	_	-	0.043					
HCM Control Delay (s)		10.9	8.2	_	_	_						
HCM Lane LOS		В	A	-	-	-	С					
HCM 95th %tile Q(veh)		0.3	0	-	-	-	0.1					

Intersection						
Int Delay, s/veh	5.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	NDL		1 ₁₀	אופט
Traffic Vol, veh/h	T	24	9	र्स 4	13	0
Future Vol, veh/h	0	24	9	4	13	0
Conflicting Peds, #/hr	0	0	0	0	0	0
			Free		Free	Free
Sign Control	Stop	Stop		Free		
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	26	10	4	14	0
Major/Minor	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	38	14	14	0	- nujoiz	0
Stage 1	14	-	-	-	_	-
Stage 2	24	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	U.ZZ	7.12	_	_	_
Critical Hdwy Stg 2	5.42	<u>-</u>	-	-	<u>-</u>	
		3.318		-	-	-
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	974	1066	1604	-	-	-
Stage 1	1009	-	-	-	-	-
Stage 2	999	-	-	-	-	-
Platoon blocked, %	000	4000	1001	-	-	-
Mov Cap-1 Maneuver	968	1066	1604	-	-	-
Mov Cap-2 Maneuver	968	-	-	-	-	-
Stage 1	1003	-	-	-	-	-
Stage 2	999	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.5		5		0	
			3		U	
HCM LOS	А					
Minor Lane/Major Mvm	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		1604		1066	-	_
HCM Lane V/C Ratio		0.006		0.024	_	-
HCM Control Delay (s)		7.3	0	8.5	_	_
HCM Lane LOS		A	A	A	_	_
HCM 95th %tile Q(veh)	0		0.1		
	/	J		V. I		

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u> </u>	<u> </u>	1		₩	
Traffic Vol. veh/h	28	539	535	17	14	21
Future Vol, veh/h	28	539	535	17	14	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	4	3	1	0	0	0
Mymt Flow	29	550	546	17	14	21
IVIVIII I IOW	23	330	J + 0	11	17	۷1
Major/Minor I	Major1	N	Major2	N	Minor2	
Conflicting Flow All	563	0	-	0	1163	555
Stage 1	-	-	-	-	555	-
Stage 2	-	-	-	-	608	-
Critical Hdwy	4.14	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.236	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	999	-	-	-	217	535
Stage 1	-	-	-	-	579	-
Stage 2	-	-	-	-	547	-
Platoon blocked, %		_	_	_	- 11	
Mov Cap-1 Maneuver	999	_	_	-	211	535
Mov Cap-1 Maneuver	-	<u>-</u>	_	<u> </u>	211	-
Stage 1	_	<u>-</u>	_	-	562	_
Stage 2	_	-	_	-	547	_
Slaye Z	<u>-</u>	<u>-</u>	_	<u>-</u>	J41	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		17.2	
HCM LOS					С	
Minor Long/Maior M		EDI	EDT	MOT	MDD	ODL 4
Minor Lane/Major Mvm	IT	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		999	-	-	-	331
HCM Lane V/C Ratio		0.029	-	-	-	0.108
HCM Control Delay (s)		8.7	-	-	-	17.2
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh)	0.1	-	-	-	0.4

2: Greenhill Crossing Dr/Driveway Entrance Only & Rte. 55

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	¥	†			4	7			
Traffic Vol, veh/h	19	503	31	61	523	17	29	5	18	0	0	0
Future Vol, veh/h	19	503	31	61	523	17	29	5	18	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	0	3	3	2	1	0	7	0	0	0	0	0
Mvmt Flow	19	508	31	62	528	17	29	5	18	0	0	0
Major/Minor N	//ajor1			Major2			Minor1					
Conflicting Flow All	545	0	0	539	0	0	1207	1215	508			
Stage 1	-	-	-	-	-	-	546	546	-			
Stage 2	_	-	-	_	_	-	661	669	_			
Critical Hdwy	4.1	_	_	4.12	-	-	6.47	6.5	6.2			
Critical Hdwy Stg 1	-	_	-		_	_	5.47	5.5	-			
Critical Hdwy Stg 2	-	_	_	_	_	_	5.47	5.5	-			
Follow-up Hdwy	2.2	_	_	2.218	_		3.563	4	3.3			
Pot Cap-1 Maneuver	1034	-	_	1029	-	-	198	183	569			
Stage 1	-	_	-	-	_	_	571	521	-			
Stage 2	-	_	_	-	-	-	504	459	-			
Platoon blocked, %		_	-		_	_						
Mov Cap-1 Maneuver	1034	-	-	1029	-	-	183	0	569			
Mov Cap-2 Maneuver	-	_	-	-	_	-	183	0	-			
Stage 1	-	_	_	_	-	-	561	0	-			
Stage 2	_	_	-	_	_	_	474	0	_			
U+ =												
Annroach	EB			WB			NB					
Approach												
HCM Control Delay, s	0.3			0.9			23.1					
HCM LOS							С					
								14/5				
Minor Lane/Major Mvm	t	NBLn11		EBL	EBT	EBR	WBL	WBT	WBR			
Capacity (veh/h)		183	569	1034	-	-	1029	-	-			
HCM Lane V/C Ratio			0.032		-	-	0.06	-	-			
HCM Control Delay (s)		29.2	11.5	8.5	-	-	8.7	-	-			
HCM Lane LOS		D	В	Α	-	-	Α	-	-			
HCM 95th %tile Q(veh)		0.7	0.1	0.1	-	-	0.2	-	-			

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	†	<u>₩</u>	אטוז	SDL N	JDK 7
Traffic Vol, veh/h	0	TT 521	TT 575	0	12	26
Future Vol, veh/h	0	521	575	0	12	26
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	riee -		Stop -	None
	_	NOITE	-	INOHE -	0	0
Storage Length Veh in Median Storage, #	- #	0	_			
	# -		0	-	0	-
Grade, %	-	0	0	-	0	
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	0	3	0	0	0	0
Mvmt Flow	0	532	587	0	12	27
Major/Minor Ma	ajor1	N	Major2	1	Minor2	
Conflicting Flow All	_	0		0	853	294
Stage 1	_	_	_	_	587	
Stage 2	_	-	_	_	266	_
Critical Hdwy	_	_	_	_	6.8	6.9
Critical Hdwy Stg 1	_	_	_	_	5.8	-
Critical Hdwy Stg 2	_	_	_	_	5.8	_
Follow-up Hdwy	_	_	_	_	3.5	3.3
Pot Cap-1 Maneuver	0	_	_	0	302	708
Stage 1	0	_	_	0	524	-
Stage 2	0	_	_	0	760	_
Platoon blocked, %	U	_	_	U	700	
Mov Cap-1 Maneuver	_		_	_	302	708
Mov Cap-1 Maneuver	_	_	_	_	302	-
Stage 1	_	_	-		524	-
		-			760	
Stage 2	-	-	-	-	700	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.5	
HCM LOS					В	
M* 1 /M - * M 1		EDT	MOT	ODL .4.0	חם בחב	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1		
Capacity (veh/h)		EBT -	-	302	708	
Capacity (veh/h) HCM Lane V/C Ratio		EBT -	-	302 0.041	708 0.037	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	-	302 0.041 17.4	708 0.037 10.3	
Capacity (veh/h) HCM Lane V/C Ratio		-	-	302 0.041	708 0.037	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	1≯	11511	UDL	7
Traffic Vol, veh/h	0	533	569	0	0	6
Future Vol, veh/h	0	533	569	0	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	- -	
Storage Length	_	TNOTIC	_	-	_	0
Veh in Median Storage		0	0	_	0	-
Grade, %	z, π - -	0	0	_	0	_
Peak Hour Factor	98	98	98	98	98	98
			2			
Heavy Vehicles, %	2	2		2	2	2
Mvmt Flow	0	544	581	0	0	6
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	_	0	-	0	-	581
Stage 1	-	-	-	-	_	_
Stage 2	_	_	_	-	_	_
Critical Hdwy	-	_	-	_	_	6.23
Critical Hdwy Stg 1	_	_	_	_	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	<u>-</u>	_	_	-	3.319
Pot Cap-1 Maneuver	0	_	_	0	0	513
Stage 1	0	<u>-</u>	_	0	0	-
Stage 2	0	_	_	0	0	_
Platoon blocked, %	U	_	-	U	U	_
		_	_	_		513
Mov Cap-1 Maneuver	-	-	-		-	
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.1	
HCM LOS					В	
TIOM EGO						
Minor Lane/Major Mvm	nt	EBT	WBT :	SBLn1		
Capacity (veh/h)		-	-	513		
HCM Lane V/C Ratio		-	-	0.012		
HCM Control Delay (s)		-	-	12.1		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)	-	-	0		

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	†	7		†	7			7		4	
Traffic Vol, veh/h	16	493	24	0	550	5	0	0	33	6	0	19
Future Vol, veh/h	16	493	24	0	550	5	0	0	33	6	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	5	1	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	16	508	25	0	567	5	0	0	34	6	0	20
Major/Minor	Major1		ı	Major2		ı	Minor1		N	/linor2		
Conflicting Flow All	572	0	_	-	_	0	-	_	508	1107	1107	567
Stage 1	-	-	_	_	_	-	_	_	-	567	567	-
Stage 2	_	_	_	_	_	_	_	_	_	540	540	_
Critical Hdwy	4.15	-	-	-	-	_	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	_	_	_	_	_	_	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Follow-up Hdwy	2.245	_	-	_	_	_	_	_	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	986	-	0	0	-	_	0	0	563	189	212	527
Stage 1	-	_	0	0	_	_	0	0	-	512	510	-
Stage 2	-	-	0	0	-	_	0	0	-	530	524	-
Platoon blocked, %		_			_	_						
Mov Cap-1 Maneuver	986	-	_	-	-	-	_	-	563	175	209	527
Mov Cap-2 Maneuver	-	_	-	_	_	_	_	_	-	175	209	-
Stage 1	-	-	-	_	-	-	-	_	-	504	510	-
Stage 2	_	_	-	_	_	_	_	_	_	490	516	_
U =												
Annroach	EB			WB			NB			SB		
Approach												
HCM Control Delay, s	0.3			0			11.8			15.9		
HCM LOS							В			С		
		ını (14/5=	14/5-	201 4					
Minor Lane/Major Mvm	nt N	VBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		563	986	-	-	-	355					
HCM Lane V/C Ratio			0.017	-	-		0.073					
HCM Control Delay (s)		11.8	8.7	-	-	-	15.9					
HCM Lane LOS		В	Α	-	-	-	С					
HCM 95th %tile Q(veh)		0.2	0.1	-	-	-	0.2					

5.3					
FRI	FRR	NRI	NRT	SRT	SBR
	LDIX	NDL			אופט
	25	20			0
					0
					0
					Free
					None
		_			INUITE
					_
					_
					92
					2
U	27	32	17	11	0
Minor2		Major1	N	Major2	
92					0
	_	_	_	-	_
	_	_	-	-	_
	6.22	4.12	_	-	_
	-	-	_	_	_
	_	_	_	_	_
	3 318	2 218	_	_	_
			_	_	_
	-	-	_	_	_
	_	_	_	_	_
012			_	_	_
890	1070	1608	_	_	_
		1000	_	_	_
	_	_	_	_	_
342	_	_	-	-	-
EB		NB		SB	
8.5		4.7		0	
Α					
-4	NDI	NDT	EDL 4	ODT	ODD
nt				SBT	SBR
				-	-
	0.02	-	0.025	-	-
)	7.3	0	8.5	-	-
) n)	7.3 A 0.1	0 A	Α	-	-
	EBL O O O Stop e, # 0 O 92 2 O Minor2 92 11 81 6.42 5.42 5.42 3.518 908 1012 942 890 890 992 942 EBB 8.5	EBL EBR 0 25 0 0 25 0 0 0 Stop Stop - None 0 e, # 0 92 92 2 2 0 27 Minor2 92 11 11 81 6.42 6.22 5.42 5.42 3.518 3.318 908 1070 1012 942 890 1070 890 992 942 EB 8.5 A mt NBL 1608	EBL EBR NBL 0 25 29 0 0 0 0 Stop Stop Free - None 0 e, # 0 92 92 92 2 2 2 0 27 32 Minor2 Major1 92 11 11 11 81 6.42 6.22 4.12 5.42 5.42 3.518 3.318 2.218 908 1070 1608 1012 942 890 1070 1608 890 9942 EB NB 8.5 A.7 A mt NBL NBT 1608 -	EBL EBR NBL NBT 0 25 29 16 0 25 29 16 0 0 0 0 0 Stop Stop Free Free - None 0 0 92 92 92 92 2 2 2 2 2 0 27 32 17 Minor2 Major1 N 92 11 11 0 11 81 6.42 6.22 4.12 - 5.42 5.42 5.42 5.42 5.42 5.42 5.42 890 1070 1608 - 1012 942 890 1070 1608 - 992 942 EB NB 8.5 4.7 A	EBL EBR NBL NBT SBT 0 25 29 16 10 0 25 29 16 10 0 0 0 0 0 0 0 0 0 0 0 - - None - e, # 0 - - 0 0 0 - - 0 0 92 92 92 92 92 2 2 2 2 2 2 0 27 32 17 11 Minor2 Major1 Major2 Major1 Major2 92 11 11 0

Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow	0.6 EBL 15 15 0 Free - 160 e, # - 92 0 16	EBT 411 411 0 Free None 0 0 92 0 447	WBT 465 465 0 Free - 0 0 92	- - - 92	SBL 16 16 0 Stop - 0 0 0	SBR 13 13 0 Stop None
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	15 15 0 Free - 160 e, # - - 92	411 411 0 Free None - 0 0 92	465 465 0 Free - 0 0 92 0	14 14 0 Free None - - - 92	16 16 0 Stop - 0	13 13 0 Stop None
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	15 15 0 Free - 160 e, # - - 92	411 411 0 Free None - 0 0 92	465 465 0 Free - 0 0 92 0	14 14 0 Free None - - - 92	16 16 0 Stop - 0	13 13 0 Stop None
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	15 15 0 Free - 160 e, # - 92 0	411 411 0 Free None - 0 0 92 0	465 465 0 Free - 0 0 92 0	14 0 Free None - - - 92	16 16 0 Stop - 0	13 0 Stop None
Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	15 0 Free - 160 e, # - - 92 0	411 0 Free None - 0 0 92 0	465 0 Free - 0 0 92 0	14 0 Free None - - - 92	16 0 Stop - 0 0	13 0 Stop None
Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	0 Free - 160 e, # - - 92 0	0 Free None - 0 0 92	0 Free - 0 0 92 0	0 Free None - - - 92	0 Stop - 0 0	O Stop None
Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	Free - 160 e, # - - 92 0	Free None - 0 0 92 0	Free - 0 0 0 92 0	Free None - - - 92	Stop - 0 0	Stop None
RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	- 160 e, # - - 92 0	None - 0 0 92 0	0 0 0 92 0	None - - - 92	0	None -
Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	e, # - - 92 0	0 0 92 0	0 92 0	- - - 92	0	-
Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, %	e, # - - 92 0	0 92 0	0 92 0	- 92	0	_
Grade, % Peak Hour Factor Heavy Vehicles, %	92 0	0 92 0	0 92 0	92		
Peak Hour Factor Heavy Vehicles, %	92 0	92 0	92 0			_
Heavy Vehicles, %	0	0	0		92	92
				8	0	8
IVIVMT FIOW	10	771	505	15	17	14
IVIVIII(I IOW			303	10	17	17
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	520	0	-	0	992	513
Stage 1	-	-	-	-	513	-
Stage 2	-	-	-	-	479	-
Critical Hdwy	4.1	-	-	-	6.4	6.28
Critical Hdwy Stg 1	-	-	_	-	5.4	-
Critical Hdwy Stg 2	-	-	_	_	5.4	-
Follow-up Hdwy	2.2	_	-	-		3.372
Pot Cap-1 Maneuver	1056	_	_	_	275	549
Stage 1	-	_	_	_	605	-
Stage 2	_	_	_	_	627	_
Platoon blocked, %		<u>-</u>	_	_	ULI	
Mov Cap-1 Maneuver	1056	_		_	271	549
Mov Cap-1 Maneuver	1000	<u>-</u>	_	<u>-</u>	271	-
Stage 1		-	-		596	
-		-	-		627	
Stage 2	-	-	-	-	021	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		16.3	
HCM LOS					С	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1056	-	-	-	351
HCM Lane V/C Ratio		0.015	-	-	-	0.09
HCM Control Delay (s))	8.5	-	-	-	16.3
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh	1)	0	-	-	-	0.3

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	†			ર્ન	7			
Traffic Vol, veh/h	23	374	30	43	455	26	23	2	17	0	0	1
Future Vol, veh/h	23	374	30	43	455	26	23	2	17	0	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	25	407	33	47	495	28	25	2	18	0	0	1
Major/Minor N	Major1			Major2		ı	Minor1					
Conflicting Flow All	523	0	0	440	0	0	1060	1074	407			
Stage 1	-	-		-	-	-	457	457	-			
Stage 2	_	_	_	_	_	_	603	617	_			
Critical Hdwy	4.14	_	_	4.1	_	-	6.4	6.5	6.2			
Critical Hdwy Stg 1	-	_	_	-	_	_	5.4	5.5	-			
Critical Hdwy Stg 2	_	_	_	_	_	_	5.4	5.5	_			
Follow-up Hdwy	2.236	_	_	2.2	_	_	3.5	4	3.3			
Pot Cap-1 Maneuver	1033	_	_	1131	_	_	250	222	648			
Stage 1	-	_	_	-	_	_	642	571	-			
Stage 2	-	_	_	-	_	_	550	484	-			
Platoon blocked, %		_	_		_	_						
Mov Cap-1 Maneuver	1033	-	_	1131	_	_	234	0	648			
Mov Cap-2 Maneuver	-	-	_	-	_	_	234	0	-			
Stage 1	_	-	-	-	-	_	627	0	_			
Stage 2	_	-	_	_	_	_	527	0	_			
U												
Approach	EB			WB			NB					
HCM Control Delay, s	0.5			0.7			17.7					
HCM LOS	0.0			U .,			C					
Minor Lane/Major Mvm	ıt	NBLn1 I	VBI n2	EBL	EBT	EBR	WBL	WBT	WBR			
Capacity (veh/h)		234	648	1033	-	-	1131	-				
HCM Lane V/C Ratio			0.029		_		0.041	_	_			
HCM Control Delay (s)		22.4	10.7	8.6	_	_	8.3	_	-			
HCM Lane LOS		22.4 C	В	Α	_	_	Α	_	_			
HCM 95th %tile Q(veh)		0.4	0.1	0.1	_	_	0.1	_	_			
How sour found Q(Veri)		0.7	0.1	U. 1			U. I					

Intersection						
Int Delay, s/veh	0.7					
	EBL	EBT	WPT	WBR	CDI	SBR
Movement	ERF		WBT	WBK	SBL	
Lane Configurations	^	↑ ↑	^	^	ነ	71
Traffic Vol, veh/h	0	391	493	0	25	31
Future Vol, veh/h	0	391	493	0	25	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	0
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	403	508	0	26	32
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	- -	0	- viajoiz	0	710	254
Stage 1		-	_	-	508	204
Stage 2	_	_	_	_	202	_
Critical Hdwy	_	-	_	-	6.8	6.9
Critical Hdwy Stg 1	_	-	_	_	5.8	0.9
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	-	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	0	-	-	0	372	5.5 752
	0	-	-		575	752
Stage 1		-	-	0		
Stage 2	0	-	-	0	818	-
Platoon blocked, %		-	-		270	750
Mov Cap-1 Maneuver	-	-	-	-	372	752
Mov Cap-2 Maneuver	-	-	-	-	372	-
Stage 1	-	-	-	-	575	-
Stage 2	-	-	-	-	818	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.4	
HCM LOS	U		U		В	
HOW LOO					U	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1 S		
Capacity (veh/h)		-	-	0	752	
HCM Lane V/C Ratio		-	-	0.069		
HCM Control Delay (s)		-	-		10	
HCM Lane LOS		-	-	С	В	
HCM 95th %tile Q(veh)		-	-	0.2	0.1	
· · ·						

0					
FRI	EBT	WRT	WBR	SBI	SBR
LDL			WDIX	ODL	₹ T
1			n	0	0
					0
					0
					Stop
					None
		_			0
		0			-
					96
					0
1	432	514	U	U	0
/lajor1	N	Major2	N	/linor2	
514	0	-	0	-	514
-	-	-	-	-	-
-	-	-	-	-	-
4.1	-	-	-	-	6.2
-	_	-	-	-	-
-	-	-	-	-	-
2.2	_	_	-	_	3.3
	-	_	0	0	564
_	_	-			_
_	_	_			_
	_	_	Ū	•	
1062	_	_	_	_	564
	_	_		_	-
	_	_	_	_	_
	_		_	_	_
-	_	-		_	_
EB		WB		SB	
0		0		0	
				Α	
	EBL	CDT	WDT	ים ב	
	FBI	EBT	WBT S	PELLI	
t					
t	1062	-	-	-	
t	1062 0.001	-	-	-	
t	1062 0.001 8.4	-	-	0	
t	1062 0.001				
	EBL 1 1 0 Free ,# - 96 0 1 Major1 514 4.1 - 2.2 1062 - 1062 EB	EBL EBT 1 415 1 415 0 0 Free Free - None 0 96 96 0 0 1 432 Major1 N 514 0 4.1 2.2 - 1062 -	EBL EBT WBT 1 415 493 1 415 493 0 0 0 Free Free Free - None ,# - 0 0 96 96 96 0 0 0 1 432 514 Major1 Major2 514 0 4.1 2.2 - 1062 1062 1062 1062 1062	EBL EBT WBT WBR 1 415 493 0 1 415 493 0 0 0 0 0 0 Free Free Free Free - None - Free - None - Free - 0 0 0 0 96 96 96 96 96 0 0 0 0 0 1 432 514 0 Major1 Major2 N 514 0 - 0 4.1 2.2 1062 0 0 0 1062 0 0 1062 0 0 0 0	EBL EBT WBT WBR SBL ↑↑ ↓ <

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť		7			7			7		4	
Traffic Vol, veh/h	3	408	4	0	491	3	0	0	40	2	0	2
Future Vol, veh/h	3	408	4	0	491	3	0	0	40	2	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	3	429	4	0	517	3	0	0	42	2	0	2
Major/Minor N	1ajor1		ľ	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	520	0	-	_	-	0	-	-	429	952	952	517
Stage 1	-	-	-	-	-	-	-	-	-	517	517	-
Stage 2	-	-	-	-	-	-	-	-	-	435	435	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	_	-	-	-	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1056	-	0	0	-	-	0	0	624	241	261	562
Stage 1	-	-	0	0	-	-	0	0	-	545	537	-
Stage 2	-	-	0	0	-	-	0	0	-	604	584	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1056	-	-	-	-	-	-	-	624	224	260	562
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	224	260	-
Stage 1		-	-	-	_	-	-	-	-	543	537	-
Stage 2	-	-	-	-	-	-	-	-	-	562	582	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			11.2			16.4		
HCM LOS	J. 1						B			C		
Minor Lane/Major Mvmt	t 1	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		624		-	_	-						
HCM Lane V/C Ratio			0.003	_	_		0.013					
HCM Control Delay (s)		11.2	8.4	-	_	_						
HCM Lane LOS		В	A	_	_	_	C					
HCM 95th %tile Q(veh)		0.2	0	_	-	_	0					

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK	INDL			SDK
Lane Configurations	¥	10	10	ન	}	0
Traffic Vol, veh/h	0	19	19	10	10	0
Future Vol, veh/h	0	19	19	10	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	21	11	11	0
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	64	11	11	0	- -	0
Stage 1	11	-	-	U	_	-
Stage 2	53	_	_	-	_	_
	6.42	6.22	4.12	-		-
Critical Hdwy			4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	- 0.40	-	-	-
Follow-up Hdwy	3.518			-	-	-
Pot Cap-1 Maneuver	942	1070	1608	-	-	-
Stage 1	1012	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	930	1070	1608	-	-	-
Mov Cap-2 Maneuver	930	-	-	-	-	-
Stage 1	999	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Approach	EB		NB		SB	
	8.4		4.8		0	
HCM Control Delay, s			4.0		U	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1608		1070	-	-
HCM Lane V/C Ratio		0.013		0.019	_	_
HCM Control Delay (s))	7.3	0	8.4	_	_
HCM Lane LOS		A	A	A	_	_
HCM 95th %tile Q(veh)	0	- '.	0.1	_	-
		9		J. 1		

APPENDIX F: INTERSECTION ANALYSIS WORKSHEETS - FUTURE WITH DEVELOPMENT (2029)

Intersection						
Int Delay, s/veh	0.9					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ች</u>	745	}	_	Y	٥٢
Traffic Vol, veh/h	9	345	390	5	21	25
Future Vol, veh/h	9	345	390	5	21	25
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	13	3	6	25	0	10
Mvmt Flow	10	375	424	5	23	27
Major/Minor I	Major1	N	Major2	N	Minor2	
Conflicting Flow All	429	0	viaj012 -	0	822	427
Stage 1	-	-	-	-	427	-
Stage 2	4.00	-	-	-	395	-
Critical Hdwy	4.23	-	-	-	6.4	6.3
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.317	-	-	-	3.5	3.39
Pot Cap-1 Maneuver	1074	-	-	-	346	611
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	685	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1074	-	-	-	343	611
Mov Cap-2 Maneuver	-	-	-	-	343	-
Stage 1	-	-	-	-	656	-
Stage 2	-	-	-	-	685	-
, and the second						
	-		14/0		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		14	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBI n1
Capacity (veh/h)	<u> </u>	1074		-	-	
HCM Lane V/C Ratio		0.009	_	-		0.111
HCM Control Delay (s)		8.4	_	-	_	14
HCM Lane LOS						14 B
	\	A	-	-	-	
HCM 95th %tile Q(veh)	0	-	-	-	0.4

Intersection												
Int Delay, s/veh	1.6											
		FDT		MOI	14/DT	14/00	NE	NOT	NDD	001	007	222
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7					4	7		4	
Traffic Vol, veh/h	11	338	17	24	360	24	24	0	29	8	0	11
Future Vol, veh/h	11	338	17	24	360	24	24	0	29	8	0	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	6	9	8	0	0	0	3	0	0	0
Mvmt Flow	12	367	18	26	391	26	26	0	32	9	0	12
Major/Minor N	//ajor1			Major2			/linor1		N	/linor2		
Conflicting Flow All	417	0	0	385	0	0	853	860	367	872	865	404
Stage 1	417	U	U	505	-	U	391	391	- 301	456	456	404
Stage 2	_	-	_	-	-	-	462	469	<u>-</u>	416	409	-
Critical Hdwy	4.1	-	-	4.19	-	-	7.1	6.5	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	4.1	_	_	4.13	_	_	6.1	5.5	0.23	6.1	5.5	0.2
Critical Hdwy Stg 2		-	-	<u>-</u>	_	<u>-</u>	6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.2	-	_	2.281	_	-	3.5		3.327	3.5	3.5	3.3
Pot Cap-1 Maneuver	1153	-	-	1136	_	<u>-</u>	281	296	676	273	294	651
	1100	•	-	1130	-	-	637	611	- 070	588	572	001
Stage 1 Stage 2	-	-	-	-	-	-	584	564	-	618	600	-
Platoon blocked, %	-	•	-	-	-	-	504	504	-	010	000	-
Mov Cap-1 Maneuver	1153	-	-	1136	-	-	269	286	676	254	284	651
Mov Cap-1 Maneuver	1100	-	-	1130	-	-	269	286	- 070	254	284	001
Stage 1	-	-	-	-	-	-	631	605		582	559	-
Stage 1 Stage 2			-	-	-		560	551	-	583	594	-
Staye 2	-	-	-	-	-	-	200	100	-	500	594	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.5			14.8			14.7		
HCM LOS							В			В		
Minor Lane/Major Mvm	t I	NBLn11	NBI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1		
Capacity (veh/h)		269	676	1153			1136	-	-	393		
HCM Lane V/C Ratio			0.047	0.01	_		0.023			0.053		
HCM Control Delay (s)		19.8	10.6	8.2	-	-	8.2		-			
HCM Lane LOS		19.6 C	10.6 B	0.2 A		-	0.2 A	-	-	14.7 B		
HCM 95th %tile Q(veh)		0.3	0.1	0 0	-	-	0.1	-		0.2		
How som while Q(ven)		0.3	U. I	U	-	-	U. I	-	-	U.Z		

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	f)			7
Traffic Vol, veh/h	0	375	407	5	0	1
Future Vol, veh/h	0	375	407	5	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_		-	Free	-	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage	.# -	0	0	_	0	_
Grade, %	-, "	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
			442	5		
Mvmt Flow	0	408	442	ວ	0	1
Major/Minor N	Major1	N	//ajor2	N	/linor2	
Conflicting Flow All	_	0	-	0	_	442
Stage 1	_	_	_	_	_	
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.23
		_				0.23
Critical Hdwy Stg 1	-		-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-		3.319
Pot Cap-1 Maneuver	0	-	-	0	0	615
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	615
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	-	_	_
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.9	
HCM LOS					В	
Minor Long/Major Mare		EDT	WDT	CDI ~1		
Minor Lane/Major Mvm	ı	EBT	WBI	SBLn1		
Capacity (veh/h)		-	-	615		
HCM Lane V/C Ratio		-	-	0.002		
HCM Control Delay (s)		-	-	10.9		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0		

HCM 6th TWSC 5: Susquehanna	
Intersection	
Int Delay, s/veh	1
Movement	E
Lane Configurations	
Traffic Vol, veh/h	
Future Vol, veh/h	
Conflicting Peds, #/hr	
Sign Control	Fre
RT Channelized	
Storage Length	22
Veh in Median Storage	, #
Grade, %	
Peak Hour Factor	(
Heavy Vehicles, %	
Mvmt Flow	

init Delay, Siven	1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ř		7			7			7		4		
Traffic Vol, veh/h	15	345	15	0	404	11	0	0	64	6	0	8	,
Future Vol, veh/h	15	345	15	0	404	11	0	0	64	6	0	8	j
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop)
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None	;
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	0	3	0	0	7	36	0	0	3	33	0	13	,
Mvmt Flow	16	375	16	0	439	12	0	0	70	7	0	9)
Major/Minor N	/lajor1		ı	Major2		N	/linor1			Minor2			
Conflicting Flow All	451	0		-	_	0	-	_	375	846	846	439)
Stage 1	-	-	_	_	_	-	_	_	-	439	439	-	
Stage 2	_	<u>-</u>	_	_	_	_	_	_	_	407	407	_	
Critical Hdwy	4.1	_	_	_	_	_	_	_	6.23	7.43	6.5	6.33	}
Critical Hdwy Stg 1	-	_	_	_	_	_	_	_	-	6.43	5.5	-	
Critical Hdwy Stg 2	_	_	-	-	_	_	_	-	-	6.43	5.5	_	
Follow-up Hdwy	2.2	_	_	_	_	_	_	_	3.327	3.797		3.417	,
Pot Cap-1 Maneuver	1120	-	0	0	-	-	0	0	669	250	301	595	
Stage 1	-	_	0	0	_	-	0	0	-	541	582		
Stage 2	-	-	0	0	-	-	0	0	-	564	601	-	
Platoon blocked, %		_			_	_							
Mov Cap-1 Maneuver	1120	_	_	_	_	-	-	-	669	222	297	595	,
Mov Cap-2 Maneuver	-	_	-	-	_	-	-	-	-	222	297	-	
Stage 1	-	_	-	-	-	-	-	-	-	533	582	-	
Stage 2	_	_	_	_	_	_	_	_	_	498	593	_	
0 -													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.3			0			11			15.9			
HCM LOS	3.0						В			C			
Minor Lane/Major Mvmt	t N	NBLn1	EBL	EBT	WBT	WBR S	SBI n1						
Capacity (veh/h)	<u> </u>	669	1120		-	-	346						
HCM Lane V/C Ratio		0.104		_	_	-	0.044						
HCM Control Delay (s)		11	8.3	_	-		15.9						
HCM Lane LOS		В	Α	_	_	_	C						
HCM 95th %tile Q(veh)		0.3	0	_	_	_	0.1						
HOW JOHN JUNIO Q(VEII)		0.0					0.1						

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Future Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	26	10	0	0	10	4	1	0	14	0
Major/Minor I	Minor2			Minor1		- 1	Major1		ı	Major2		
Conflicting Flow All	39	39	14	52	39	5	14	0	0	5	0	0
Stage 1	14	14	_	25	25	-	_	-	-	-	-	-
Stage 2	25	25	-	27	14	-	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	_	-	_	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	966	853	1066	947	853	1078	1604	-	-	1616	-	-
Stage 1	1006	884	-	993	874	-	-	-	-	-	-	-
Stage 2	993	874	-	990	884	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	961	848	1066	920	848	1078	1604	-	-	1616	-	-
Mov Cap-2 Maneuver	961	848	-	920	848	-	-	-	-	-	-	-
Stage 1	1000	884	-	987	869	-	-	-	-	-	-	-
Stage 2	987	869	-	966	884	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.5			9			4.7			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1604	_	_	1066	920	1616	_	_			
HCM Lane V/C Ratio		0.006	-	_	0.024		-	-	-			
HCM Control Delay (s)		7.3	0	-	8.5	9	0	-	-			
HCM Lane LOS		Α	A	-	Α	A	A	-	-			
HCM 95th %tile Q(veh)	0	-	-	0.1	0	0	-	-			
	,					-						

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7					सी	- 7		4	
Traffic Vol, veh/h	23	507	31	61	497	27	29	5	18	16	0	30
Future Vol, veh/h	23	507	31	61	497	27	29	5	18	16	0	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	0	3	3	2	1	0	7	0	0	0	0	0
Mvmt Flow	23	512	31	62	502	27	29	5	18	16	0	30
Major/Minor M	lajor1		N	Major2		N	/linor1		A	/linor2		
		^		543	0			1011			1000	516
Conflicting Flow All	529	0	0	543	0	0	1213	1211	512	1225	1229	
Stage 1	-	-	-	-	-	-	558	558	-	640	640	-
Stage 2	-	-	-	4.40	-	-	655	653	- 6.0	585	589	- 6.0
Critical Hdwy	4.1	-	-	4.12	-	-	7.17	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.17	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	0.040	-	-	6.17	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.218	-	-	3.563	4	3.3	3.5	4	3.3
	1048	-	-	1026	-	-	155	184	566	157	179	563
Stage 1	-	-	-	-	-	-	505	515	-	467	473	-
Stage 2	-	-	-	-	-	-	447	467	-	501	499	-
Platoon blocked, %	1010	-	-	4000	-	-	400	400	F00	400	405	F00
	1048	-	-	1026	-	-	138	169	566	139	165	563
Mov Cap-2 Maneuver	-	-	-	-	-	-	138	169	-	139	165	-
Stage 1	-	-	-	-	-	-	494	504	-	457	445	-
Stage 2	-	-	-	-	-	-	397	439	-	470	488	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0.9			29.1			20.9		
HCM LOS	J. J						D			C		
Minor Lane/Major Mvmt		NBLn11	VIRI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1		
					LDT			VVDT				
Capacity (veh/h)		142	566	1048	-	-	1026	-	-	273		
HCM Caretral Dalay (a)				0.022	-	-	0.06	-	-	0.17		
HCM Control Delay (s)		38.3	11.6	8.5	-	-	8.7	-	-	20.9		
HCM Lane LOS		E	В	A	-	-	A	-	-	С		
HCM 95th %tile Q(veh)		0.9	0.1	0.1	-	-	0.2	-	-	0.6		

Intersection						
Int Delay, s/veh	0.1					
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	Þ			7
Traffic Vol, veh/h	0	541	579	0	0	6
Future Vol, veh/h	0	541	579	0	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage,	# -	0	0	_	0	_
Grade, %	<u> </u>	0	0	_	0	_
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	552	591	0	0	6
IVIVIIIL FIOW	U	332	551	U	U	U
Major/Minor Ma	ajor1	N	Major2	N	/linor2	
Conflicting Flow All	_	0		0	_	591
Stage 1	_	_	_	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.23
Critical Hdwy Stg 1	<u>-</u>	_	_	_	<u>-</u>	0.20
Critical Hdwy Stg 2	_	_	_	_	_	_
						3.319
Follow-up Hdwy	-	-	-	-		
Pot Cap-1 Maneuver	0	-	-	0	0	506
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	506
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
J.						
Annraach	ГΡ		WD		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.2	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WRT	SBLn1		
			1101			
Capacity (veh/h)		-	-	506		
HCM Cartes Dalay (a)		-		0.012		
HCM Control Delay (s)		-	-	12.2		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0		

I. (C												
Intersection	0.0											
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7		↑	7			7		4	
Traffic Vol, veh/h	16	501	24	0	560	5	0	0	33	6	0	19
Future Vol, veh/h	16	501	24	0	560	5	0	0	33	6	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	5	1	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	16	516	25	0	577	5	0	0	34	6	0	20
Major/Minor	Major1		N	Major2		N	/linor1		N	Minor2		
Conflicting Flow All	582	0	<u>'</u>	- viajoiz		0	-	_	516	1125	1125	577
Stage 1	-	-			_	-	_	_	-	577	577	-
Stage 2	_	_	_	_	_	_	_	_	<u> </u>	548	548	_
Critical Hdwy	4.15	_	_	_	_	_	_	_	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1		_	_	_	_	_	_	_	- 0.20	6.1	5.5	- 0.2
Critical Hdwy Stg 2	_	_	_	_	_	_	_	_	_	6.1	5.5	_
Follow-up Hdwy	2.245	_	_	_	_	_	_	_	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	978	_	0	0	_	_	0	0	557	184	207	520
Stage 1	-	_	0	0	_	_	0	0	-	506	505	-
Stage 2	_	_	0	0	_	_	0	0	_	524	520	_
Platoon blocked, %		_			_	_				VL I	020	
Mov Cap-1 Maneuver	978	_	_	_	_	_	_	_	557	171	204	520
Mov Cap-2 Maneuver	-	_	_	_	_	_	_	_	-	171	204	-
Stage 1	_	_	-	-	_	-	-	-	_	498	505	_
Stage 2	_	_	_	_	_	_	_	_	_	484	512	_
olago 2										101	0.2	
A I				MD			ND			0.0		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			11.9			16.1		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt l	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		557	978	_	_	_	349					
HCM Lane V/C Ratio		0.061	0.017	_	_		0.074					
HCM Control Delay (s)		11.9	8.7	_	_	_	16.1					
HCM Lane LOS		В	A	_	_	_	C					
HOMOSII OVII OV	`	٥ ٥	0.4				2.0					

0.2

0.1

0.2

HCM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	5.1											
	EDI	FDT	EDD	WDI	WDT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	^	♣	00	_	- ♣	^	00	4	4	^	4	^
Traffic Vol, veh/h	0	0	22	5	0	0	29	16	4	0	10	0
Future Vol, veh/h	0	0	22	5	0	0	29	16	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	_ 0	_ 0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	24	5	0	0	32	17	4	0	11	0
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	94	96	11	106	94	19	11	0	0	21	0	0
Stage 1	11	11	-	83	83	13	11	U	U	21	-	U
Stage 2	83	85	-	23	11	_	-	_	_	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	<u>-</u>	-
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	4.12	_	_	4.12	-	-
				6.12		-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	2 240		5.52	2 240	2 240	-	-	2.218	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318		-	-		-	-
Pot Cap-1 Maneuver	889	794	1070	873	796	1059	1608	-	-	1595	-	-
Stage 1	1010	886	-	925	826	-	-	-	-	-	-	-
Stage 2	925	824	-	995	886	-	-	-	-	-	-	-
Platoon blocked, %	070		4070	011	700	10=0	4000	-	-	4505	-	-
Mov Cap-1 Maneuver	876	778	1070	841	780	1059	1608	-	-	1595	-	-
Mov Cap-2 Maneuver	876	778	-	841	780	-	-	-	-	-	-	-
Stage 1	990	886	-	907	809	-	-	-	-	-	-	-
Stage 2	907	808	-	973	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.3			4.3			0		
HCM LOS	Α.			3.5 A			-₹.∪			U		
TOW LOO	Α			Α.								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1608			1070	841	1595					
HCM Lane V/C Ratio		0.02	_		0.022		-	_	_			
HCM Control Delay (s)		7.3	0	<u>-</u>	8.4	9.3	0	_	_			
HCM Lane LOS				-					-			
HCM 25th %tile Q(veh	1	A	Α	-	A	A	A	-	-			
now your wille Q(ven)	0.1	-	-	0.1	0	0	-	-			

Intersection						
Int Delay, s/veh	0.9					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ	140	^	4.4	Y	45
Traffic Vol, veh/h	19	416	470	14	22	15
Future Vol, veh/h	19	416	470	14	22	15
Conflicting Peds, #/hr	_ 0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage,	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	8	0	8
Mvmt Flow	21	452	511	15	24	16
Major/Minor N	Najar1		10ior?		linar?	
	Major1		//ajor2		Minor2	540
Conflicting Flow All	526	0	-	0	1013	519
Stage 1	-	-	-	-	519	-
Stage 2	-	-	-	-	494	-
Critical Hdwy	4.1	-	-	-	6.4	6.28
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-		3.372
Pot Cap-1 Maneuver	1051	-	-	-	267	545
Stage 1	-	-	-	-	601	-
Stage 2	-	-	-	-	617	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1051	-	-	-	262	545
Mov Cap-2 Maneuver	-	-	-	-	262	-
Stage 1	-	-	_	-	589	-
Stage 2	_	_	-	_	617	_
5.ta.go _					V	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		17.3	
HCM LOS					С	
Minor Lane/Major Mvm	+	EBL	EBT	WBT	WBR :	SRI n1
			LDI	VVDI		
Capacity (veh/h)		1051	-	-	-	332
HCM Lane V/C Ratio		0.02	-	-		0.121
HCM Control Delay (s)		8.5	-	-		17.3
HCM Lane LOS		A 0.1	-	-	-	0.4
HCM 95th %tile Q(veh)			_	_	_	

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7					र्स	- 7		4	
Traffic Vol, veh/h	28	380	30	43	423	37	23	2	17	31	0	38
Future Vol, veh/h	28	380	30	43	423	37	23	2	17	31	0	38
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	-	-	-	0	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	30	413	33	47	460	40	25	2	18	34	0	41
Major/Minor	Major1			Major2		A	/linor1			/linor2		
		^		446	^			1007			1000	480
Conflicting Flow All	500	0	0	440	0	0	1068	1067	413	1074	1080	
Stage 1	-	-	-	-	-	-	473	473	-	574	574	-
Stage 2	-	-	-	- 11	-	-	595	594	- 6.0	500	506	6.0
Critical Hdwy	4.14	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.236	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1054	-	-	1125	-	-	201	224	643	199	220	590
Stage 1	-	-	-	-	-	-	576	562	-	507	506	-
Stage 2	-	-	-	-	-	-	494	496	-	557	543	-
Platoon blocked, %	4054	-	-	4405	-	-	477	000	0.40	400	005	F00
Mov Cap-1 Maneuver	1054	-	-	1125	-	-	177	209	643	182	205	590
Mov Cap-2 Maneuver	-	-	-	-	-	-	177	209	-	182	205	-
Stage 1	-	-	-	-	-	-	560	546	-	493	485	-
Stage 2	-	-	-	-	-	-	440	475	-	524	528	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0.7			21.5			21.4		
HCM LOS	0.0			7.1			C			C		
Minor Lane/Major Mvm	nt I	NBLn11	NRI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1		
	ι .				LDT			VVDT				
Capacity (veh/h)		179	643	1054	-		1125	-	-	294		
HCM Carter Dalay (a)				0.029	-	-	0.042	-		0.255		
HCM Control Delay (s)		28.7	10.8	8.5	-	-	8.3	-	-			
HCM Lane LOS		D	В	A	-	-	A	-	-	C		
HCM 95th %tile Q(veh))	0.5	0.1	0.1	-	-	0.1	-	-	1		

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	Þ			₹ .
Traffic Vol, veh/h	0	428	503	0	0	0
Future Vol, veh/h	0	428	503	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	446	524	0	0	0
	-			-	•	-
	/lajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	524
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.3
Pot Cap-1 Maneuver	0	-	-	0	0	557
Stage 1	0	_	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		_	_			
Mov Cap-1 Maneuver	_	_	_	_	_	557
Mov Cap-1 Maneuver	_		_	_	_	-
Stage 1	_	_	_		<u>-</u>	_
	_	•	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					Ā	
					, ,	
Minor Lane/Major Mvm	t	EBT	WBT:	SBLn1		
Capacity (veh/h)		-	-	-		
HCM Lane V/C Ratio		-	-	-		
HCM Control Delay (s)		-	-	0		
HCM Lane LOS		-	-	Α		
HCM 95th %tile Q(veh)		-	-	-		
, ,						

HCM 6th TWSC

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7			1			7		4	
Traffic Vol, veh/h	3	421	4	0	501	3	0	0	40	2	0	2
Future Vol, veh/h	3	421	4	0	501	3	0	0	40	2	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	3	443	4	0	527	3	0	0	42	2	0	2
Major/Minor N	Major1		ľ	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	530	0	-	-	-	0	-	-	443	976	976	527
Stage 1	-	-	-	-	-	-	-	-	-	527	527	-
Stage 2	-	-	-	-	-	-	-	-	-	449	449	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1048	-	0	0	-	-	0	0	613	232	253	555
Stage 1	-	-	0	0	-	-	0	0	-	538	532	-
Stage 2	-	-	0	0	-	-	0	0	-	593	576	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1048	-	-	-	-	-	-	-	613	216	252	555
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	216	252	-
Stage 1	-	-	-	-	-	-	-	-	-	536	532	-
Stage 2	-	-	-	-	-	-	-	-	-	551	574	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			11.3			16.7		
HCM LOS							В			С		
Minor Lane/Major Mvm	t 1	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		613	1048	-	-	-	311					
HCM Lane V/C Ratio		0.069		-	-	-	0.014					
HCM Control Delay (s)		11.3	8.4	-	-	-						
HCM Lane LOS		В	Α	-	-	-	С					
HCM 95th %tile Q(veh)		0.2	0	-	_	-	0					

Intersection												
Int Delay, s/veh	5.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Future Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	21	9	0	0	21	11	4	0	11	0
Major/Minor	Minor2			Minor1			Major1		ı	Major2		
Conflicting Flow All	66	68	11	77	66	13	11	0	0	15	0	0
Stage 1	11	11	-	55	55	-	-	-	-	-	-	-
Stage 2	55	57	_	22	11	_	<u>-</u>	<u>-</u>	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	-	-	_	-	_	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	_	_	2.218	-	-
Pot Cap-1 Maneuver	927	823	1070	912	825	1067	1608	_	_	1603	_	_
Stage 1	1010	886	-	957	849	-	-	-	_	-	-	-
Stage 2	957	847	-	996	886	-	-	-	-	-	_	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	918	812	1070	886	814	1067	1608	-	-	1603	-	-
Mov Cap-2 Maneuver	918	812	-	886	814	-	-	-	-	-	-	-
Stage 1	997	886	-	945	838	-	-	-	-	-	-	-
Stage 2	945	836	-	977	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.1			4.2			0		
HCM LOS	A			A			1.6					
	,,			,,								
Minor Lane/Major Mvm	nt	NBL	NBT	NRD	EBLn1V	VRI n1	SBL	SBT	SBR			
	TC .	1608	NDT	NDI		886	1603	001	אומט			
Capacity (veh/h) HCM Lane V/C Ratio			-	-	1070			-	-			
		0.013	-	-	0.019	0.01	-	-	-			
HCM Control Delay (s) HCM Lane LOS		7.3	0	-	8.4	9.1	0	-	-			
HCM 95th %tile Q(veh	1	A 0	Α	-	0.1	A 0	A 0	-	-			
HOW SOUT WILLE CLIVEN)	U	-	-	0.1	U	U	-	-			

APPENDIX G: INTERSECTION ANALYSIS WORKSHEETS - FUTURE WITH DEVELOPMENT (2029) MITIGATED

Intersection						
Int Delay, s/veh	0.9					
		CDT	MOT	WED	ODL	ODD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	<u></u>	f)	_	¥	
Traffic Vol, veh/h	9	345	390	5	21	25
Future Vol, veh/h	9	345	390	5	21	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage	e, #	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	13	3	6	25	0	10
Mvmt Flow	10	375	424	5	23	27
Major/Minor	Major1		Majara		/linor2	
	Major1		Major2			407
Conflicting Flow All	429	0	-	0	822	427
Stage 1	-	-	-	-	427	-
Stage 2	-	-	-	-	395	-
Critical Hdwy	4.23	-	-	-	6.4	6.3
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.317	-	-	-	3.5	3.39
Pot Cap-1 Maneuver	1074	-	-	-	346	611
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	685	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1074	-	-	-	343	611
Mov Cap-2 Maneuver	-	-	-	-	343	-
Stage 1	-	-	-	-	656	-
Stage 2	-	-	-	-	685	-
, and the second						
	-		1A/D		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		14	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)	<u> </u>	1074		-	-	
HCM Lane V/C Ratio		0.009	-	-		0.111
HCM Control Delay (s)		8.4	_	-	-	14
HCM Lane LOS		0.4 A		-	-	14 B
	١	0	-	-	-	0.4
HCM 95th %tile Q(veh)	U	-	-		0.4

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	<u>ነ</u>		- 7		- 4	7		4	
Traffic Vol, veh/h	11	338	17	24	360	24	24	0	29	8	0	11
Future Vol, veh/h	11	338	17	24	360	24	24	0	29	8	0	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	0	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	6	9	8	0	0	0	3	0	0	0
Mvmt Flow	12	367	18	26	391	26	26	0	32	9	0	12
Major/Minor N	1ajor1		ı	Major2		N	Minor1		N	Minor2		
Conflicting Flow All	417	0	0	385	0	0	853	860	367	859	852	391
Stage 1	417	U	U	505	-	U	391	391	307	443	443	391
Stage 1 Stage 2	-	-	-	-	_	-	462	469	<u>-</u>	443	443	-
Critical Hdwy	4.1	-	-	4.19	-	-	7.1	6.5	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	4.1	_	_	4.19	_	-	6.1	5.5	0.23	6.1	5.5	0.2
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	_	2.281	_	-	3.5		3.327	3.5	3.5	3.3
Pot Cap-1 Maneuver	1153	_	-	1136	_	<u>-</u>	281	296	676	279	299	662
Stage 1	1100	-	-	1130	_	-	637	611	- 070	598	579	002
Stage 1	-	-	-	-	-	-	584	564	-	618	600	-
Platoon blocked, %	-	-	_	-	_	-	J0 4	J04	_	010	000	_
Mov Cap-1 Maneuver	1153	-	-	1136	-	-	269	286	676	259	289	662
Mov Cap-1 Maneuver	1100	-	-	1130	_	-	269	286	- 070	259	289	002
Stage 1	-	-	-	-	-	-	631	605		592	566	-
Stage 1 Stage 2			-	_	-		560	551	-	583	594	-
Staye 2	-	-	-	-	-	-	500	100	-	505	594	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.5			14.8			14.5		
HCM LOS							В			В		
Minor Lane/Major Mvmt		NBLn11	VIRI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1		
					LDT							
Capacity (veh/h)		269	676	1153	-		1136	-	-	400		
HCM Control Doloy (a)			0.047	0.01	-	-	0.023	-		0.052		
HCM Long LOS		19.8	10.6	8.2	-	-	8.2	-	-			
HCM Lane LOS		C	В	A	-	-	Α	-	-	В		
HCM 95th %tile Q(veh)		0.3	0.1	0	-	-	0.1	-	-	0.2		

Intersection						
Int Delay, s/veh	0					
			14/5-	14/5	05:	055
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	f)			- 7
Traffic Vol, veh/h	0	375	407	5	0	1
Future Vol, veh/h	0	375	407	5	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	408	442	5	0	1
MVIIICT ION		100		J		•
	ajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	442
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	_	3.319
Pot Cap-1 Maneuver	0	_	_	0	0	615
Stage 1	0	_	_	0	0	-
Stage 2	0	_	_	0	0	_
Platoon blocked, %	0	_	_	- 0	- 0	
Mov Cap-1 Maneuver	_			_	_	615
Mov Cap-1 Maneuver	_	_	_	_	_	015
Stage 1	_	-	_	<u>-</u>	_	-
	-	_		-	=	_
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.9	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1		
Capacity (veh/h)		-	-	615		
HCM Lane V/C Ratio		-	-	0.002		
HCM Control Delay (s)		-	-	10.9		
HCM Lane LOS		_	-	В		
HCM 95th %tile Q(veh)		-	-			

Intersection												
Int Delay, s/veh	1.2											
<u> </u>												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7			7		4	
Traffic Vol, veh/h	15	345	15	0	404	11	0	0	64	6	0	8
Future Vol, veh/h	15	345	15	0	404	11	0	0	64	6	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	0	0	7	36	0	0	3	33	0	13
Mvmt Flow	16	375	16	0	439	12	0	0	70	7	0	9
Major/Minor N	1ajor1			Major2		N	/linor1			Minor2		
Conflicting Flow All	451	0		viajui <u>-</u>	_	0	-	_	375	846	846	439
Stage 1	401	U	-	<u>-</u>		U	_	-	3/3	439	439	439
Stage 1 Stage 2	-	•	-	-	-	-	-	-	-	407	407	_
Critical Hdwy	4.1	-	-	-	-	-	_	-	6.23	7.43	6.5	6.33
Critical Hdwy Stg 1	4.1	-	-	-	-	_	-	-	0.23	6.43	5.5	0.33
		-	-	-	-	-	_	-	-	6.43	5.5	
Critical Hdwy Stg 2	2.2	-	-	-	_	-	_	-	3.327			3.417
Follow-up Hdwy		-	-	-		-	-	-		3.797		
Pot Cap-1 Maneuver	1120	-	0	0	-	-	0	0	669	250	301	595
Stage 1	-	-	0	0	-	-	0	0	-	541	582	-
Stage 2	-	-	0	0	-	-	0	0	-	564	601	-
Platoon blocked, %	4400	-			-	-			000	000	007	F0F
Mov Cap-1 Maneuver	1120	-	-	-	-	-	-	-	669	222	297	595
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	222	297	-
Stage 1	-	-	-	-	-	-	-	-	-	533	582	-
Stage 2	-	-	-	-	-	-	-	-	-	498	593	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			11			15.9		
HCM LOS	3.0						В			C		
					=							
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	WBT	WBR S						
Capacity (veh/h)		669		-	-	-	346					
HCM Lane V/C Ratio		0.104	0.015	-	-	-	0.044					
HCM Control Delay (s)		11	8.3	-	-	-	15.9					
HCM Lane LOS		В	Α	-	-	-	С					
HCM 95th %tile Q(veh)		0.3	0	-	-	-	0.1					

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Future Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	26	10	0	0	10	4	1	0	14	0
Major/Minor I	Minor2			Minor1		- 1	Major1		- 1	Major2		
Conflicting Flow All	39	39	14	52	39	5	14	0	0	5	0	0
Stage 1	14	14	_	25	25	-	_	-	_	-	_	-
Stage 2	25	25	-	27	14	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	_	-	_	_	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	-	-	_	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	966	853	1066	947	853	1078	1604	-	-	1616	-	-
Stage 1	1006	884	-	993	874	-	-	-	-	-	-	-
Stage 2	993	874	-	990	884	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	961	848	1066	920	848	1078	1604	-	-	1616	-	-
Mov Cap-2 Maneuver	961	848	-	920	848	-	-	-	-	-	-	-
Stage 1	1000	884	-	987	869	-	-	-	-	-	-	-
Stage 2	987	869	-	966	884	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.5			9			4.7			0		
HCM LOS	Α			A								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1604	-	-	1066	920	1616	-	-			
HCM Lane V/C Ratio		0.006	-	_	0.024		-	-	-			
HCM Control Delay (s)		7.3	0	-	8.5	9	0	-	_			
HCM Lane LOS		Α	A	-	Α	A	A	-	-			
HCM 95th %tile Q(veh)	0	-	-	0.1	0	0	-	-			
	,					-						

Intersection						
Int Delay, s/veh	0.8					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ች</u>	†	\$	47	₩	40
Traffic Vol, veh/h	32	543	539	17	18	19
Future Vol, veh/h	32	543	539	17	18	19
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	4	3	1	0	0	0
Mvmt Flow	33	554	550	17	18	19
Major/Minor	laier1		/loior0	N	/liner?	
	Major1		Major2		Minor2	FF0
Conflicting Flow All	567	0	-	0	1179	559
Stage 1	-	-	-	-	559	-
Stage 2	-	-	-	-	620	-
Critical Hdwy	4.14	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.236	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	995	-	-	-	212	532
Stage 1	-	-	-	-	576	-
Stage 2	-	-	-	-	540	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	995	-	-	-	205	532
Mov Cap-2 Maneuver	_	-	-	_	205	-
Stage 1	_	-	-	-	557	-
Stage 2	_	_	_	-	540	_
J					5 10	
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		18.7	
HCM LOS					С	
Minor Long/Major Mum	4	EBL	EBT	WBT	WBR S	CDI n1
Minor Lane/Major Mvm	t e					
Capacity (veh/h)		995	-	-	-	
HCM Lane V/C Ratio		0.033	-	-		0.126
HCM Control Delay (s)		8.7	-	-	-	18.7
						_
HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	-	-	-	0.4

Intersection												
Int Delay, s/veh	2.5											
		CDT	EDD	WDI	WDT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\	↑	7	\	107	7	00	-4	7	40	- ♣	00
Traffic Vol, veh/h	23	507	31	61	497	27	29	5	18	16	0	30
Future Vol, veh/h	23	507	31	61	497	27	29	5	18	16	0	30
Conflicting Peds, #/hr	_ 0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	0	-	-	0	-	-	-
Veh in Median Storage,		0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	0	3	3	2	1	0	7	0	0	0	0	0
Mvmt Flow	23	512	31	62	502	27	29	5	18	16	0	30
Major/Minor N	lajor1		1	Major2			Minor1		N	Minor2		
Conflicting Flow All	529	0	0	543	0	0	1213	1211	512	1211	1215	502
Stage 1	-	-	-	-	-	-	558	558	-	626	626	-
Stage 2	-	-	-	-	-	-	655	653	-	585	589	-
Critical Hdwy	4.1	-	-	4.12	-	-	7.17	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.17	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.17	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.218	-	-	3.563	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1048	-	-	1026	-	-	155	184	566	161	183	573
Stage 1	-	-	-	-	-	-	505	515	-	475	480	-
Stage 2	-	-	-	-	-	-	447	467	-	501	499	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1048	-	-	1026	-	-	138	169	566	143	168	573
Mov Cap-2 Maneuver	-	-	-	-	-	-	138	169	-	143	168	-
Stage 1	-	-	-	-	-	-	494	504	-	465	451	-
Stage 2	-	-	-	-	-	-	398	439	-	470	488	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0.9			29.1			20.4		
HCM LOS	0.5			0.9			29.1 D			20.4 C		
TOWI LOO							U			U		
Minor Lane/Major Mvmt		NBLn1 I		EBL	EBT	EBR	WBL	WBT	WBR S			
Capacity (veh/h)		142	566	1048	-	-	1026	-	-	280		
HCM Lane V/C Ratio		0.242	0.032	0.022	-	-	0.06	-	-	0.166		
HCM Control Delay (s)		38.3	11.6	8.5	-	-	8.7	-	-	20.4		
HCM Lane LOS		Е	В	Α	-	-	Α	-	-	С		
HCM 95th %tile Q(veh)		0.9	0.1	0.1	-	-	0.2	-	-	0.6		

Intersection						
Int Delay, s/veh	0.1					
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	Þ			7
Traffic Vol, veh/h	0	541	579	0	0	6
Future Vol, veh/h	0	541	579	0	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage,	# -	0	0	_	0	_
Grade, %	<u> </u>	0	0	_	0	_
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	552	591	0	0	6
IVIVIIIL FIOW	U	332	551	U	U	U
Major/Minor Ma	ajor1	N	Major2	N	/linor2	
Conflicting Flow All	_	0		0	_	591
Stage 1	_	_	_	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.23
Critical Hdwy Stg 1	<u>-</u>	_	_	_	<u>-</u>	0.20
Critical Hdwy Stg 2	_	_	_	_	_	_
						3.319
Follow-up Hdwy	-	-	-	-		
Pot Cap-1 Maneuver	0	-	-	0	0	506
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	506
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annraach	ГΡ		WD		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.2	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WRT	SBLn1		
			1101			
Capacity (veh/h)		-	-	506		
HCM Cartes Dalay (a)		-		0.012		
HCM Control Delay (s)		-	-	12.2		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0		

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7			- 7		4	
Traffic Vol, veh/h	16	501	24	0	560	5	0	0	33	6	0	19
Future Vol, veh/h	16	501	24	0	560	5	0	0	33	6	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	5	1	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	16	516	25	0	577	5	0	0	34	6	0	20
Major/Minor I	Major1		ı	Major2		N	Minor1		N	Minor2		
Conflicting Flow All	582	0		riujoi Z	_	0	-		516	1125	1125	577
Stage 1	J02	-	_	<u>-</u>	_	-	-	_	510	577	577	JII
Stage 2	_	_	-	_	_	_	_	_	_	548	548	_
Critical Hdwy	4.15	-	_	<u>-</u>	_	<u>-</u>	-	_	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	4.13	_	-	_	_	_	_	_	0.23	6.1	5.5	0.2
Critical Hdwy Stg 2	-	-	_	<u>-</u>	_	<u>-</u>	-	_		6.1	5.5	<u>-</u>
Follow-up Hdwy	2.245	_	-	_	_	_	-	_	3.327	3.5	3.5	3.3
Pot Cap-1 Maneuver	978	-	0	0	_		0	0	557	184	207	520
Stage 1	910	_	0	0	_	_	0	0	55 <i>1</i>	506	505	520
Stage 2	-	-	0	0	_		0	0	<u>-</u>	524	520	<u>-</u>
Platoon blocked, %	_	_	U	U	_	_	U	U	_	JZ4	320	_
Mov Cap-1 Maneuver	978	-			_			_	557	171	204	520
Mov Cap-1 Maneuver	310	_		_	_	_	_	_	- 557	171	204	520
Stage 1	-	-	_	<u>-</u>	_	<u>-</u>	-	_		498	505	<u>-</u>
Stage 2			-	-		-		_	-	484	512	_
Slaye 2	-	-	_	<u>-</u>	_	<u>-</u>	-	_	<u>-</u>	404	JIZ	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			11.9			16.1		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		557	978			-	349					
HCM Lane V/C Ratio		0.061	0.017	<u>-</u>	_		0.074					
HCM Control Delay (s)		11.9	8.7	_	_	_						
HCM Lane LOS		В	Α	_	_	_	C					
HCM 95th %tile Q(veh)	\	0.2	0.1	<u>-</u>	<u>-</u>	<u>-</u>	0.2					
)	U.Z	0.1	_	_	_	0.2					

Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	22	5	0	0	29	16	4	0	10	0
Future Vol, veh/h	0	0	22	5	0	0	29	16	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %		0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	24	5	0	0	32	17	4	0	11	0
Major/Minor	Minor2			Minor1			Major1		N	Major2		
		O.C	11		94			0			0	0
Conflicting Flow All	94	96		106		19	11	0	0	21	0	0
Stage 1	11	11	-	83	83	-	-	-	-	-	-	-
Stage 2	83	85	6 22	23	11	6.00	4.40	-	-	4.40	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	2 240	6.12	5.52	2 240	2 240	-	-	0.040	-	-
Follow-up Hdwy	3.518	4.018		3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	889	794	1070	873	796	1059	1608	-	-	1595	-	-
Stage 1	1010	886	-	925	826	-	-	-	-	-	-	-
Stage 2	925	824	-	995	886	-	-	-	-	-	-	-
Platoon blocked, %	070	770	1070	044	700	1050	1000	-	-	1505	-	-
Mov Cap-1 Maneuver	876	778	1070	841	780	1059	1608	-	-	1595	-	-
Mov Cap-2 Maneuver	876	778	-	841	780	-	-	-	-	-	-	-
Stage 1	990	886	-	907	809	-	-	-	-	-	-	-
Stage 2	907	808	-	973	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.3			4.3			0		
HCM LOS	A			A								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1608	_		1070	841	1595	_	_			
HCM Lane V/C Ratio		0.02	_		0.022		-	<u>-</u>	<u>-</u>			
HCM Control Delay (s)	7.3	0	_	8.4	9.3	0	_	_			
HCM Lane LOS	1	Α.	A	_	Α	3.5 A	A	<u>-</u>	<u> </u>			
HCM 95th %tile Q(veh	1)	0.1	-	_	0.1	0	0	_	_			
HOW JOHN JOHNE W(VEI	'/	0.1			0.1	U	U		_			

Intersection						
Int Delay, s/veh	0.9					
		FDT	MOT	WED	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ	140	}	4.4	Y	45
Traffic Vol, veh/h	19	416	470	14	22	15
Future Vol, veh/h	19	416	470	14	22	15
Conflicting Peds, #/hr	0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	8	0	8
Mvmt Flow	21	452	511	15	24	16
Major/Minor M	/lajor1	N	Major2	N	Minor2	
Conflicting Flow All	526	0	-	0	1013	519
Stage 1	520	-	_	-	519	519
Stage 2	_	-	_	_	494	_
	4.1	-	-			6.28
Critical Hdwy		-	-	-	6.4	
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	- 0.70
Follow-up Hdwy	2.2		-	-		3.372
Pot Cap-1 Maneuver	1051	-	-	-	267	545
Stage 1	-	-	-	-	601	-
Stage 2	-	-	-	-	617	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1051	-	-	-	262	545
Mov Cap-2 Maneuver	-	-	-	-	262	-
Stage 1	-	-	-	-	589	-
Stage 2	-	-	-	-	617	-
Approach	EB		WB		SB	
	0.4					
HCM Control Delay, s	0.4		0		17.3	
HCM LOS					С	
Minor Lane/Major Mvmt	t	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1051	_	_	_	
HCM Lane V/C Ratio		0.02	_	_		0.121
HCM Control Delay (s)		8.5	_	_		17.3
HCM Lane LOS		A	_	_	_	C
HCM 95th %tile Q(veh)		0.1	_	_	_	0.4
		J. 1				V. 1

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7		सी	- 7		4	
Traffic Vol, veh/h	28	380	30	43	423	37	23	2	17	31	0	38
Future Vol, veh/h	28	380	30	43	423	37	23	2	17	31	0	38
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	0	-	-	0	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	30	413	33	47	460	40	25	2	18	34	0	41
Major/Minor I	Major1			Major2		N	/linor1		A	/linor2		
		^			0			1007			1000	400
Conflicting Flow All	500	0	0	446	0	0	1068	1067	413	1054	1060	460
Stage 1	-	-	-	-	-	-	473	473	-	554	554	-
Stage 2	-	-	-	- 11	-	-	595	594	- 6.0	500	506	- 6.0
Critical Hdwy	4.14	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.236	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1054	-	-	1125	-	-	201	224	643	206	226	605
Stage 1	-	-	-	-	-	-	576	562	-	520	517	-
Stage 2	-	-	-	-	-	-	494	496	-	557	543	-
Platoon blocked, %	4054	-	-	4405	-	-	477	000	0.40	400	040	005
Mov Cap-1 Maneuver	1054	-	-	1125	-	-	177	209	643	188	210	605
Mov Cap-2 Maneuver	-	-	-	-	-	-	177	209	-	188	210	-
Stage 1	-	-	-	-	-	-	560	546	-	505	495	-
Stage 2	-	-	-	-	-	-	441	475	-	524	528	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0.7			21.5			20.7		
HCM LOS	J.J						C			C		
Minor Long/Major Muse	.4	NIDI 511	VIDI2	EDI	EDT	EDD	WDI	WDT	WDD (DI -1		
Minor Lane/Major Mvm	IL I	NBLn11		EBL	EBT	EBR	WBL	WBT	WBR S			
Capacity (veh/h)		179	643	1054	-		1125	-	-	303		
HCM Lane V/C Ratio				0.029	-	-	0.042	-		0.248		
HCM Control Delay (s)		28.7	10.8	8.5	-	-	8.3	-	-			
HCM Lane LOS		D	В	Α	-	-	Α	-	-	С		
HCM 95th %tile Q(veh))	0.5	0.1	0.1	-	-	0.1	-	-	1		

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	f)			7
Traffic Vol, veh/h	0	428	503	0	0	0
Future Vol, veh/h	0	428	503	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	446	524	0	0	0
minici ion		110	021	•	•	
	ajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	524
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	_	-	-	-	6.2
Critical Hdwy Stg 1	_	_	-	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	-	_	_	_	_	3.3
Pot Cap-1 Maneuver	0	_	_	0	0	557
Stage 1	0	_	_	0	0	-
	0	-	_	0	0	-
Stage 2	U			U	U	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	557
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	U		U			
HUIVI LUS					Α	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1		
Capacity (veh/h)		_	_	_		
HCM Lane V/C Ratio		_	_	_		
HCM Control Delay (s)		_	_	0		
		_	_	A		
HUMIANATUS			-			
HCM Lane LOS HCM 95th %tile Q(veh)				-		

Intersection												
Int Delay, s/veh	0.6											
		EST	ED.5	14/51	14/5-	MES	NE	NET	NIDD	05:	057	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			- 7			7		4	
Traffic Vol, veh/h	3	421	4	0	501	3	0	0	40	2	0	2
Future Vol, veh/h	3	421	4	0	501	3	0	0	40	2	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	3	443	4	0	527	3	0	0	42	2	0	2
Major/Minor M	lajor1		ı	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	530	0		viajuiz -	_	0	-	_	443	976	976	527
Stage 1	530	-	-	-	-	-	-	-	443	527	527	
Stage 1 Stage 2	-	_	-	-	-	-	_	-	-	449	449	-
	4.1	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Critical Hdwy Stg 1		_	-	-	-	-	_	-	0.23	6.1	5.5	0.2
	-	-	-	-	-	-	-	-				
Critical Hdwy Stg 2	2.2	-	-	-	-	-	-	-	3.327	6.1	5.5 4	2 2
Follow-up Hdwy		-	-	-	-	-	-	-	613	3.5	253	3.3
Pot Cap-1 Maneuver	1048	-	0	0	-	-	0	0		232	532	555
Stage 1	-	-	0	0	-		0	0	-	538		-
Stage 2	-	-	0	0	-	-	0	0	-	593	576	-
Platoon blocked, %	1040	-			-	-			640	046	050	EEE
Mov Cap-1 Maneuver	1048	-	-	-	-	-	-	-	613	216	252	555
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	216	252	-
Stage 1	-	-	-	-	-	-	-	-	-	536	532	-
Stage 2	-	-	-	-	-	-	-	-	-	551	574	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			11.3			16.7		
HCM LOS							В			С		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	WBT	WBR S	SBI n1					
	1			LDI	VVDI							
Capacity (veh/h)		613	1048	-	-	-	311					
HCM Lane V/C Ratio			0.003	-	-		0.014					
HCM Control Delay (s)		11.3	8.4	-	-	-	16.7					
HCM Lane LOS		В	A	-	-	-	С					
HCM 95th %tile Q(veh)		0.2	0	-	-	-	0					

Intersection												
Int Delay, s/veh	5.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	VVDL	4	WOR	NDL	4	NON	ODL	4	ODIN
Traffic Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Future Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		_	None	_	_	None
Storage Length	-	-	-	-	_	-	-	_	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	21	9	0	0	21	11	4	0	11	0
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	66	68	11	77	66	13	11	0	0	15	0	0
Stage 1	11	11	-	55	55	-	-	-	-	-	-	-
Stage 2	55	57	-	22	11	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	-	-	-	-	-	_
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	927	823	1070	912	825	1067	1608	-	-	1603	-	-
Stage 1	1010	886	-	957	849	-	-	-	-	-	-	-
Stage 2	957	847	-	996	886	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	918	812	1070	886	814	1067	1608	-	-	1603	-	-
Mov Cap-2 Maneuver	918	812	-	886	814	-	-	-	-	-	-	-
Stage 1	997	886	-	945	838	-	-	-	-	-	-	-
Stage 2	945	836	-	977	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.1			4.2			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		1608	-		1070	886	1603	-				
HCM Lane V/C Ratio		0.013	_		0.019	0.01	-	_	_			
HCM Control Delay (s)		7.3	0	_	8.4	9.1	0	_	_			
HCM Lane LOS		Α.	A	_	Α	Α	A	<u>-</u>	_			
HCM 95th %tile Q(veh))	0	-	-	0.1	0	0	-	-			
	,											

APPENDIX H: TERSECTION ANALYSIS WORKSHEETS – FUTURE WITH DEVELOPMENT (2029) ALTERNATIVE

Intersection						
Int Delay, s/veh	0.9					
		EDT	MOT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ች	^	\$	-	¥	٥٦
Traffic Vol, veh/h	9	345	390	5	21	25
Future Vol, veh/h	9	345	390	5	21	25
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	13	3	6	25	0	10
Mvmt Flow	10	375	424	5	23	27
Major/Minor N	//ajor1	N	Major2	N	Minor2	
Conflicting Flow All	429	0	- -	0	822	427
Stage 1	-	-	_	-	427	TZ1
Stage 2	_	_	_	_	395	_
Critical Hdwy	4.23	_	_	_	6.4	6.3
Critical Hdwy Stg 1		_	_	_	5.4	0.0
Critical Hdwy Stg 2	_			_	5.4	_
	2.317	_	_	_	3.5	3.39
Pot Cap-1 Maneuver	1074	-	-	_	346	611
Stage 1	1074	_	-	_	662	-
Stage 2	_	-	-	_	685	_
Platoon blocked, %	_	_	_		000	-
,	1074	-	-	-	242	611
Mov Cap-1 Maneuver	1074	-	-	-	343	611
Mov Cap-2 Maneuver	-	-	-	-	343	-
Stage 1	-	-	-	-	656	-
Stage 2	-	-	-	-	685	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		14	
HCM LOS	V. <u> </u>				В	
110111 200						
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1074	-	-	-	.00
HCM Lane V/C Ratio		0.009	-	-	-	0.111
HCM Control Delay (s)		8.4	-	-	-	14
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0.4

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u></u>	7	ሻ	<u></u>	7		ની	7		4	
Traffic Vol, veh/h	11	338	17	23	366	25	18	0	35	8	0	11
Future Vol, veh/h	11	338	17	23	366	25	18	0	35	8	0	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	0	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	6	9	8	0	0	0	3	0	0	0
Mvmt Flow	12	367	18	25	398	27	20	0	38	9	0	12
Major/Minor N	/lajor1		ľ	Major2		1	Minor1		1	Minor2		
Conflicting Flow All	425	0	0	385	0	0	859	866	367	867	857	398
Stage 1	-	-	-	-	-	-	391	391	-	448	448	-
Stage 2	-	-	-	-	-	-	468	475	-	419	409	-
Critical Hdwy	4.1	-	-	4.19	-	-	7.1	6.5	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.281	-	-	3.5	4	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1145	-	-	1136	-	-	279	293	676	275	297	656
Stage 1	-	-	-	-	-	-	637	611	-	594	576	-
Stage 2	-	-	-	-	-	-	579	561	-	616	600	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1145	-	-	1136	-	-	267	284	676	253	287	656
Mov Cap-2 Maneuver	-	-	-	-	-	-	267	284	-	253	287	-
Stage 1	-	-	-	-	-	-	631	605	-	588	563	-
Stage 2	-	-	-	-	-	-	556	549	-	575	594	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.5			13.6			14.7		
HCM LOS							В			В		
Minor Lane/Major Mvm	t N	NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1		
Capacity (veh/h)		267	676	1145	_		1136	_	_	393		
HCM Lane V/C Ratio		0.073		0.01	_		0.022	_		0.053		
HCM Control Delay (s)		19.5	10.6	8.2	_	_	8.2	_	-			
HCM Lane LOS		C	В	A	_	_	A	_	_	В		
HCM 95th %tile Q(veh)		0.2	0.2	0	-	-	0.1	_	-	0.2		
		7.2	J	•			3.1			7.2		

Total Future (2029) Alternative Timing Plan: AM Peak Hour

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	^	₩ <u>₽</u>	וטויי	ODL	7
Traffic Vol, veh/h	0	381	413	5	0	
Future Vol, veh/h	0	381	413	5	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	Free	Stop -	None
	-					None 0
Storage Length	- #	-	0	-	0	
Veh in Median Storage		0		-		-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	414	449	5	0	1
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All		0	- -	0	-	449
Stage 1	_	U	_	-	_	773
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	-	_	_	6.23
•		-	_			0.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	_	- 0.40
Follow-up Hdwy	-	-	-	-	-	3.319
Pot Cap-1 Maneuver	0	-	-	0	0	609
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver		-	-	-	-	609
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
_						
Annragah	ED		MD		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.9	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBT	WBT	SBLn1		
Capacity (veh/h)			-	609		
HCM Lane V/C Ratio		<u>-</u>		0.002		
	`	-	<u>-</u>			
HCM Control Dolay (c						
HCM Lang LOS)					
HCM Control Delay (s HCM Lane LOS HCM 95th %tile Q(veh		-	-	B 0		

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	•	7		•	7			7		4	
Traffic Vol, veh/h	15	351	15	0	410	11	0	0	64	6	0	8
Future Vol, veh/h	15	351	15	0	410	11	0	0	64	6	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	0	0	7	36	0	0	3	33	0	13
Mvmt Flow	16	382	16	0	446	12	0	0	70	7	0	9
Major/Minor N	//ajor1		ı	Major2		1	Minor1		N	/linor2		
Conflicting Flow All	458	0		- viajoiz	_	0	-	_	382	860	860	446
Stage 1	-	-	_	_	_	-	_	_	-	446	446	-
Stage 2	_	_	_	_	_	_	_	_	<u>-</u>	414	414	_
Critical Hdwy	4.1								6.23	7.43	6.5	6.33
Critical Hdwy Stg 1	T. I	_	_	_	<u>-</u>	_	_	_	0.20	6.43	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	_	_	_	_	6.43	5.5	_
Follow-up Hdwy	2.2	_	_	_	<u>-</u>	_	_	_		3.797		3.417
Pot Cap-1 Maneuver	1114	_	0	0	_	_	0	0	663	244	296	590
Stage 1	-	_	0	0	<u>-</u>	_	0	0	-	536	577	-
Stage 2	_	_	0	0	_	_	0	0	_	559	597	_
Platoon blocked, %		_			_	_				- 000	301	
Mov Cap-1 Maneuver	1114	_	_	_	_	_	-	-	663	216	292	590
Mov Cap-2 Maneuver		_	_	_	_	_	_	_	-	216	292	-
Stage 1	_	_	_	_	_	_	_	_	_	528	577	_
Stage 2	_	_	_	_	_	_	_	_	_	493	589	_
2.530 2										.00	300	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			11.1			16.1		
HCM LOS	0.5			U			В			10.1 C		
TIOWI LOG							D			U		
Minor Long /Mailer M		UDL 4	EDI	EDT	WOT	WDD (NDI 4					
Minor Lane/Major Mvm	t f	VBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		663	1114	-	-	-	339					
HCM Lane V/C Ratio			0.015	-	-		0.045					
HCM Control Delay (s)		11.1	8.3	-	-	-						
HCM Lane LOS		В	A	-	-	-	С					
HCM 95th %tile Q(veh)		0.3	0	-	-	-	0.1					

Total Future (2029) Alternative Timing Plan: AM Peak Hour

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Future Vol, veh/h	0	0	24	9	0	0	9	4	1	0	13	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	_	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	26	10	0	0	10	4	1	0	14	0
Major/Minor I	Minor2			Minor1			Major1		ľ	Major2		
Conflicting Flow All	39	39	14	52	39	5	14	0	0	5	0	0
Stage 1	14	14	-	25	25	-	-	-	-	-	-	-
Stage 2	25	25	-	27	14	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	_	-	-	_	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	966	853	1066	947	853	1078	1604	-	-	1616	-	-
Stage 1	1006	884	-	993	874	-	-	-	-	-	-	-
Stage 2	993	874	-	990	884	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	961	848	1066	920	848	1078	1604	-	-	1616	-	-
Mov Cap-2 Maneuver	961	848	-	920	848	-	-	-	-	-	-	-
Stage 1	1000	884	-	987	869	-	-	-	-	-	-	-
Stage 2	987	869	-	966	884	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.5			9			4.7			0		
HCM LOS	Α			A								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1604			1066	920	1616	_				
HCM Lane V/C Ratio		0.006	-	_	0.024		-	<u>-</u>	_			
HCM Control Delay (s)		7.3	0	-	8.5	9	0	_	_			
HCM Lane LOS		Α.	A	-	Α	A	A	_	_			
HCM 95th %tile Q(veh)	0	-	_	0.1	0	0	_	_			
HOW JOHN JUHIC WING	,	- 0			0.1	J	- 0					

Movement EBL EBT V				
	VDT	MDD	ODL	ODD
	VBT	WBR	SBL	SBR
Lane Configurations	\$	4-	¥	40
•	539	17	18	18
•	539	17	18	18
Conflicting Peds, #/hr 0 0	0	_ 0	0	0
0	ree	Free	Stop	Stop
RT Channelized - None	-	None	-	None
Storage Length 160 -	-	-	0	-
Veh in Median Storage, # - 0	0	-	0	-
Grade, % - 0	0	-	0	-
Peak Hour Factor 98 98	98	98	98	98
Heavy Vehicles, % 4 3	1	0	0	0
Mvmt Flow 33 554	550	17	18	18
Majar/Minar Majar1 Ma	:0		Air a rO	
	jor2		Minor2	550
Conflicting Flow All 567 0	-	0	1179	559
Stage 1	-	-	559	-
Stage 2	-	-	620	-
Critical Hdwy 4.14 -	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	5.4	-
Critical Hdwy Stg 2	-	-	5.4	-
Follow-up Hdwy 2.236 -	-	-	3.5	3.3
Pot Cap-1 Maneuver 995 -	-	-	212	532
Stage 1	-	-	576	-
Stage 2	-	-	540	-
Platoon blocked, % -	-	-		
Mov Cap-1 Maneuver 995 -	-	-	205	532
Mov Cap-2 Maneuver	-	-	205	-
Stage 1	-	_	557	-
Stage 2	_	-	540	_
Approach EB	WB		SB	
HCM Control Delay, s 0.5	0		18.9	
			С	
HCM LOS				
		WDT	WBR S	SRI n1
HCM LOS	-81			21 21 11 1
HCM LOS Minor Lane/Major Mvmt EBL I	EBT			
Minor Lane/Major Mvmt EBL Capacity (veh/h) 995	- EB1	-	-	296
Minor Lane/Major Mvmt EBL I Capacity (veh/h) 995 HCM Lane V/C Ratio 0.033	-	-	- -	296 0.124
Minor Lane/Major Mvmt EBL I Capacity (veh/h) 995 HCM Lane V/C Ratio 0.033 HCM Control Delay (s) 8.7	- - -	- - -	- - -	296 0.124 18.9
Minor Lane/Major Mvmt EBL I Capacity (veh/h) 995 HCM Lane V/C Ratio 0.033	-	-	- -	296 0.124

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ř		7		र्स	7		4	
Traffic Vol, veh/h	23	507	31	61	510	27	15	5	32	16	0	30
Future Vol, veh/h	23	507	31	61	510	27	15	5	32	16	0	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	-	_	None	-	_	None	_	_	None
Storage Length	140	_	140	_	-	0	_	-	0	-	-	-
Veh in Median Storage		0	_	_	0	_	_	0	_	_	0	_
Grade, %	-	0	_	_	0	-	_	0	_	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	0	3	3	2	1	0	7	0	0	0	0	0
Mvmt Flow	23	512	31	62	515	27	15	5	32	16	0	30
											-	
Major/Minor N	Major1		ľ	Major2		- 1	Minor1		N	Minor2		
Conflicting Flow All	542	0	0	543	0	0	1226	1224	512	1231	1228	515
Stage 1	-	-	-	-	-	-	558	558	-	639	639	-
Stage 2	_	-	-	-	-	-	668	666	-	592	589	-
Critical Hdwy	4.1	-	_	4.12	_	_	7.17	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	_	-	_	-	_	-	6.17	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	_	_	_	-	6.17	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	_	-	2.218	_	_	3.563	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1037	-	_	1026	_	-	152	181	566	156	180	564
Stage 1	_	_	_	-	_	_	505	515	-	468	474	-
Stage 2	_	-	_	_	_	_	439	460	-	496	499	-
Platoon blocked, %		_	_		_	-		.00			.00	
Mov Cap-1 Maneuver	1037	-	_	1026	_	_	135	166	566	135	165	564
Mov Cap-2 Maneuver		_	_	-	_	-	135	166	-	135	165	-
Stage 1	-	_	_	_	_	_	494	504	_	458	446	_
Stage 2	_	_	_	_	_	_	390	432	<u>-</u>	453	488	_
Jugo 2							000	102		100	,00	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			0.9			20.5			21.2		
HCM LOS	∪. 1			0.0			20.5 C			C C		
TIOW LOO							U			U		
Minor Lane/Major Mvm	t	NBLn1 I	VBI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1		
Capacity (veh/h)		142	566	1037			1026			268		
HCM Lane V/C Ratio			0.057		_	_	0.06	_	_	0.173		
HCM Control Delay (s)		34.5	11.7	8.6	_	_	8.7	_	<u>-</u>	21.2		
HCM Lane LOS		34.3 D	11.7 B	0.0 A	_		Α	_		21.2 C		
HCM 95th %tile Q(veh)		0.5	0.2	0.1	-	-	0.2	-	-	0.6		
HOW BOUT MUTE Q(VEII)		0.5	0.2	U. I	_	_	U.Z	_	-	0.0		

Total Future (2029) Alternative Timing Plan: PM Peak Hour

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	ĵ.			7
Traffic Vol, veh/h	0	554	592	0	0	6
Future Vol, veh/h	0	554	592	0	0	6
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	Free	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storag	ge,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	565	604	0	0	6
Maiar/Minar	Maiaut		Maia#0		/linor2	
Major/Minor	Major1		Major2			004
Conflicting Flow All	-	0	-	0	-	604
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-		3.319
Pot Cap-1 Maneuver		-	-	0	0	497
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuve		-	-	-	-	497
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
			0		12.3	
HCM Control Delay, s HCM LOS	S 0		U		12.3 B	
HOW LOS					D	
Minor Lane/Major Mv	mt	EBT	WBT:	SBLn1		
Capacity (veh/h)		-	-	497		
HCM Lane V/C Ratio		-	-	0.012		
HCM Control Delay (-	-			
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(ve	h)	-	_	0		

Total Future (2029) Alternative Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u></u>	7		<u></u>	7			7		4	
Traffic Vol, veh/h	16	514	24	0	573	5	0	0	33	6	0	19
Future Vol, veh/h	16	514	24	0	573	5	0	0	33	6	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	5	1	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	16	530	25	0	591	5	0	0	34	6	0	20
Major/Minor	Major1		N	Major2		N	Minor1		N	/linor2		
Conflicting Flow All	596	0		viajuiz -	_	0	-	_	530	1153	1153	591
Stage 1	590	-	-	-	-	U	-	-	530	591	591	
Stage 2	_		-		•	-	-	-		562	562	-
Critical Hdwy	4.15	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	4.10	-	-		•	-	-	_	0.23	6.1	5.5	0.2
, ,	-	-	-	-	-	-	-	-		6.1	5.5	
Critical Hdwy Stg 2	2 245		-	-	-	-	-	=	3.327	3.5	5.5	3.3
Follow-up Hdwy	2.245 966	-	-	-	-	-	-	_	547	176		511
Pot Cap-1 Maneuver		-	0	0	-	-	0	0			199	
Stage 1	-	-	0	0	-	-	0	0	-	497	498	-
Stage 2	-	-	0	0	-	-	0	0	-	515	513	-
Platoon blocked, %	966	-			-	-			E 17	163	106	E11
Mov Cap-1 Maneuver		-	-	-	-	-	-	-	547		196	511
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	163	196	-
Stage 1	-	-	-	-	-	-	-	-	-	489	498	-
Stage 2	-	-	-	-	-	-	-	-	-	475	504	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0			12			16.5		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		547	966			-	338					
HCM Lane V/C Ratio		0.062		_	_		0.076					
HCM Control Delay (s)		12	8.8	_	_	_	16.5					
HCM Lane LOS		В	A	_	_	_	C					
HCM 95th %tile Q(veh))	0.2	0.1	_	_	_	0.2					
TOM COULT JULIO Q(VOII)		J.2	J. 1				J.L					

Total Future (2029) Alternative Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL		EDI	WDL		WDN	NDL		NDI	ODL		SDN
Lane Configurations Traffic Vol. veh/h	0	4	21	5	4	0	29	♣ 16	4	0	4	0
Future Vol, veh/h	0	0	21	5	0	0	29	16	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Stop	Slop	None	Stop -	Stop -	None	-	-	None	-	-	None
Storage Length	_	_	NONE	_	_	INOITE	_	_	TNOTIC	_	_	TNOTIC
Veh in Median Storage	- - # -	0	_	_	0			0	-		0	
Grade, %	σ, π -	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	0	0	23	5	0	0	32	17	4	0	11	0
IVIVIII I IOW	- 0	U	20	J	U	U	UL	- 17	7	U	11	U
	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	94	96	11	106	94	19	11	0	0	21	0	0
Stage 1	11	11	-	83	83	-	-	-	-	-	-	-
Stage 2	83	85	-	23	11	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		-	-	2.218	-	-
Pot Cap-1 Maneuver	889	794	1070	873	796	1059	1608	-	-	1595	-	-
Stage 1	1010	886	-	925	826	-	-	-	-	-	-	-
Stage 2	925	824	-	995	886	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	876	778	1070	842	780	1059	1608	-	-	1595	-	-
Mov Cap-2 Maneuver	876	778	-	842	780	-	-	-	-	-	-	-
Stage 1	990	886	-	907	809	-	-	-	-	-	-	-
Stage 2	907	808	-	974	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.3			4.3			0		
HCM LOS	A			A								
3200												
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1608	_		1070	842	1595	_	_			
HCM Lane V/C Ratio		0.02	_		0.021		-	_	_			
HCM Control Delay (s)		7.3	0	_	8.4	9.3	0	_	_			
HCM Lane LOS		Α	A	_	Α	Α.	A	_	_			
HCM 95th %tile Q(veh)	0.1	-	_	0.1	0	0	_	_			
Jivi ootii 70tiio Q(VCII	1	0.1			0.1	J	V					

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	↑	1>		₩	
Traffic Vol, veh/h	19	416	470	14	22	15
Future Vol, veh/h	19	416	470	14	22	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	160	-	_	-	0	-
Veh in Median Storage,		0	0	_	0	_
Grade, %	" <u>-</u>	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	8	0	8
Mymt Flow	21	452	511	15	24	16
IVIVIIIL I IOW	۷ ۱	402	311	13	Z 4	10
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	526	0	-	0	1013	519
Stage 1	-	-	-	-	519	-
Stage 2	-	-	-	-	494	-
Critical Hdwy	4.1	-	-	-	6.4	6.28
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	_	5.4	_
Follow-up Hdwy	2.2	-	-	-	3.5	3.372
	1051	-	-	-	267	545
Stage 1	_	-	-	_	601	_
Stage 2	_	_	_	_	617	_
Platoon blocked, %		_	_	_	• • •	
,	1051	_	_	_	262	545
Mov Cap-2 Maneuver	-	_	_	_	262	-
Stage 1	_	_	_	_	589	_
Stage 2	_	_	_	_	617	_
Stage 2					017	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		17.3	
HCM LOS					С	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	QRI n1
				VVDI		
Capacity (veh/h)		1051	-	-	-	332
HCM Lane V/C Ratio		0.02	-	-		0.121
		8.5	-	-	-	17.3
HCM Control Delay (s)		Λ				\sim
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	- -	-	-	0.4

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	†	7		ર્ન	7		4	
Traffic Vol, veh/h	28	380	30	43	429	37	17	2	23	31	0	38
Future Vol, veh/h	28	380	30	43	429	37	17	2	23	31	0	38
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	140	-	140	-	-	0	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	30	413	33	47	466	40	18	2	25	34	0	41
Major/Minor M	1ajor1			Major2		ı	Minor1		N	Minor2		
Conflicting Flow All	506	0	0	446	0	0	1074	1073	413	1063	1066	466
Stage 1	-	-	-	-	-	-	473	473	-	560	560	-
Stage 2	_	_	_	_	_	_	601	600	_	503	506	-
Critical Hdwy	4.14	_	_	4.1	_	_	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	_	_	-	-	_	_	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	_	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
	2.236	-	-	2.2	_	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1049	-	-	1125	-	-	199	222	643	203	224	601
Stage 1	-	-	-	-	-	-	576	562	-	516	514	-
Stage 2	-	-	-	-	-	-	491	493	-	555	543	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1049	-	-	1125	-	-	176	206	643	183	208	601
Mov Cap-2 Maneuver	-	-	-	-	-	-	176	206	-	183	208	-
Stage 1	-	-	-	-	-	-	559	546	-	501	492	-
Stage 2	-	-	-	-	-	-	438	472	-	516	527	-
, in the second second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0.7			18.4			21.2		
HCM LOS	0.0			U. 7			C			C		
Minor Lane/Major Mvmt	- N	NBLn11	VRI n2	EBL	EBT	EBR	WBL	WBT	WBR	SRI n1		
Capacity (veh/h)	. I	179	643	1049	EDI	- EDR	1125	WDI	- VVDIC	297		
HCM Lane V/C Ratio			0.039				0.042			0.253		
		27.7	10.8	8.5	-	_	8.3	-	-	21.2		
HCM Control Delay (s) HCM Lane LOS		21.1 D	10.6 B	6.5 A	-	-	6.3 A	-	-	21.2 C		
HCM 95th %tile Q(veh)		0.4	0.1	0.1	-	-	0.1	-	-	1		
HOW JOHN JOHN Q(VEH)		0.4	U. I	U. I	_	-	U. I	_	-	I		

Total Future (2029) Alternative
Synchro 11 Report
Timing Plan: SAT
Page 2

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	† †	13€	אטוי	ODL	7
Traffic Vol, veh/h	0	434	509	0	0	0
Future Vol, veh/h	0	434	509	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	Stop -	None
	-	None -	_		-	0
Storage Length				-		
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	452	530	0	0	0
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	-	0	-	530
Stage 1	_	_	_	-	_	-
Stage 2	_	<u>-</u>	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.2
Critical Hdwy Stg 1	_	_	_	_	_	- 0.2
Critical Hdwy Stg 2	-	_	_	_	_	_
Follow-up Hdwy	-	_	_	_	_	3.3
	0		_	0	0	553
Pot Cap-1 Maneuver	0		_	0		
Stage 1		-	-		0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			550
Mov Cap-1 Maneuver	-	-	-	-	-	553
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	U		U		A	
TIOWI LOO						
Minor Lane/Major Mvn	nt	EBT	WBT S	SBLn1		
Capacity (veh/h)		-	-	-		
HCM Lane V/C Ratio		-	-	-		
HCM Control Delay (s))	-	-	0		
HCM Lane LOS		-	-	Α		
HCM 95th %tile Q(veh)	_	-	-		
TION JOHN JUHO QIVON	/					

Total Future (2029) Alternative
Synchro 11 Report
Timing Plan: SAT
Page 3

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- 1	•	7		•	7			7		4	
Traffic Vol, veh/h	3	427	4	0	507	3	0	0	40	2	0	2
Future Vol, veh/h	3	427	4	0	507	3	0	0	40	2	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	Stop	-	-	None
Storage Length	225	-	0	-	-	225	-	-	0	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	0	3	0	0	0
Mvmt Flow	3	449	4	0	534	3	0	0	42	2	0	2
Major/Minor N	/lajor1		ľ	Major2		1	Minor1		N	/linor2		
Conflicting Flow All	537	0	-	-	-	0	-	-	449	989	989	534
Stage 1	-	-	-	-	-	-	-	-	-	534	534	-
Stage 2	-	-	-	-	-	-	-	-	-	455	455	-
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.23	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.327	3.5	4	3.3
Pot Cap-1 Maneuver	1041	-	0	0	-	-	0	0	608	228	249	550
Stage 1	-	-	0	0	-	-	0	0	-	534	528	-
Stage 2	-	-	0	0	-	-	0	0	-	589	572	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1041	-	-	-	-	-	-	-	608	212	248	550
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	212	248	-
Stage 1	-	-	-	-	-	-	-	-	-	532	528	-
Stage 2	-	-	-	-	-	-	-	-	-	547	570	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			11.4			16.9		
HCM LOS							В			C		
Minor Lane/Major Mvmt	t I	NBLn1	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)		608	1041	-	-	-	306					
HCM Lane V/C Ratio			0.003	_	-	-	0.014					
HCM Control Delay (s)		11.4	8.5	_	-	_						
HCM Lane LOS		В	A	_	_	_	С					
HCM 95th %tile Q(veh)		0.2	0	_	-	_	0					

Total Future (2029) Alternative
Timing Plan: SAT
Synchro 11 Report
Page 4

Intersection												
Int Delay, s/veh	5.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Future Vol, veh/h	0	0	19	8	0	0	19	10	4	0	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	21	9	0	0	21	11	4	0	11	0
Major/Minor I	Minor2			Minor1			Major1		-	Major2		
Conflicting Flow All	66	68	11	77	66	13	11	0	0	15	0	0
Stage 1	11	11	-	55	55	-	-	-	-	-	-	-
Stage 2	55	57	-	22	11	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	927	823	1070	912	825	1067	1608	-	-	1603	-	-
Stage 1	1010	886	-	957	849	-	-	-	-	-	-	-
Stage 2	957	847	-	996	886	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	918	812	1070	886	814	1067	1608	-	-	1603	-	-
Mov Cap-2 Maneuver	918	812	-	886	814	-	-	-	-	-	-	-
Stage 1	997	886	-	945	838	-	-	-	-	-	-	-
Stage 2	945	836	-	977	886	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.4			9.1			4.2			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1608	-	_	1070	886	1603	-	_			
HCM Lane V/C Ratio		0.013	-		0.019	0.01	-	-	-			
HCM Control Delay (s)		7.3	0	-	8.4	9.1	0	-	-			
HCM Lane LOS		Α	A	-	Α	Α	A	-	-			
HCM 95th %tile Q(veh))	0	_	-	0.1	0	0	-	-			

Total Future (2029) Alternative
Timing Plan: SAT
Synchro 11 Report
Page 5

APPENDIX I: CRASH DATA

VDOT Crash Data Summary Table

Crash Data for the Intersection of Washington St (Rte. 55) and Greenhill Crossing Dr/Site Entrance (January 2020 - December 2024)

			•			•			
Document Number	Date	Crash Severity	Collsion Type	Pedestrain Injury	Persons Injured	Fatalities	Work Zone Related	Adverse Weather Conditions	Distracted Driver
210355168	2/3/2021	PDO. Property Damage Only	1. Rear End	0	0	0		no	no
233305159	11/21/2023	PDO. Property Damage Only	2. Angle	0	0	0		yes	no
231355164	5/13/2023	PDO. Property Damage Only	2. Angle	0	0	0		no	no

APPENDIX J: DESCRIPTION OF TRAFFIC LEVEL OF SERVICE

TECHNICAL MEMORANDUM

Subject: Level of Service Definitions

Introduction

The purpose of this memorandum is to define the level of service (LOS) metric that commonly used as a measure of effectiveness (MOE) for traffic operations.

All capacity analyses are based on the procedures specified by the Transportation Research Board's (TRB) <u>Highway Capacity Manual</u> (HCM), which is currently on its sixth edition. Level of service ranges from A to F. A brief description of each level of service for signalized and unsignalized intersections is provided below.

Signalized Intersections

Level of service is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at the intersection and the delay associated with each directional movement. The levels of service for signalized intersections are defined below:

- <u>Level of Service A</u> describes operations with very low average delay per vehicle, i.e., less than 10.0 seconds. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop. Short signal cycle lengths may also contribute to low delay.
- <u>Level of Service B</u> describes operations with average delay in the range of 10.1 to 20.0 seconds per vehicle. This
 generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher
 levels of average delay.
- Level of Service C describes operations with delay in the range of 20.1 to 35.0 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level although many still pass through the intersection without stopping. This is generally considered the lower end of the range of the acceptable level of service in rural areas.
- Level of Service D describes operations with delay in the range of 35.1 to 55.0 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and/or high traffic volumes as compared to the roadway capacity. Many vehicles are required to stop and the number of vehicles that do not have to stop declines. Individual signal cycle failures, where all waiting vehicles do not clear the intersection during a single green time, are noticeable. This is generally considered the lower end of the range of the acceptable level of service in urban areas.
- <u>Level of Service E</u> describes operations with delay in the range of 55.1 to 80.0 seconds per vehicle. These higher
 delay values generally indicate poor progression, long cycle lengths, and high traffic volumes. Individual cycle failures
 are frequent occurrences. LOS E has been set as the limit of acceptable conditions.
- <u>Level of Service F</u> describes operations with average delay in excess of 80.0 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with over-saturation, i.e., when traffic arrives at a flow rate that exceeds the capacity of the intersection. It may also occur at high volumes with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such delays.

Level of Service Definitions Page 2

Unsignalized Intersections

At an unsignalized intersection, the major street through traffic and right-turns are assumed to operate unimpeded and therefore receive no level of service rating. The level of service for the minor street and the major street left-turn traffic is dependent on the volume and capacity of the available lanes, and, the number and frequency of acceptable gaps in the major street traffic to make a conflicting turn. The level of service grade is provided for each conflicting movement at an unsignalized intersection and is based on the total average delay experienced by each vehicle. The delay includes the time it takes a vehicle to move from the back of a queue through the intersection.

The unsignalized intersection level of service analysis does not account for variations in driver behavior or the effects of nearby traffic signals. Therefore, the results from this analysis usually indicate worse levels of service than may be experienced in the field. The unsignalized intersection level of service descriptions are provided below:

- <u>Level of Service A</u> describes operations where there is very little to no conflicting traffic for a minor side street movement, i.e., an average total delay of less than 10.0 seconds per vehicle.
- Level of Service B describes operations with average total delay in the range of 10.1 to 15.0 seconds per vehicle.
- <u>Level of Service C</u> describes operations with average total delay in the range of 15.1 to 25.0 second per vehicle.
- Level of Service D describes operations with average total delay in the range of 25.1 to 35.0 seconds per vehicle.
- Level of Service E describes operations with average total delay in the range of 35.1 to 50.0 seconds per vehicle.
- Level of Service F describes operations with average total delay of 50 seconds per vehicle. LOS F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through or enter a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queuing on the minor approaches. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal driver behavior.