

CITY OF GRASS VALLEY CITY COUNCIL MEETING

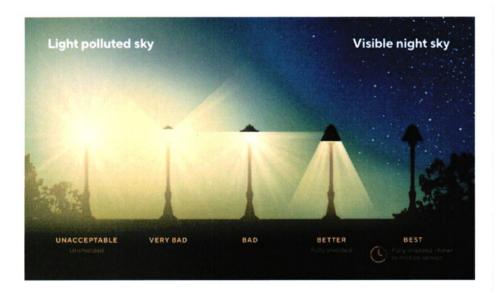
GENERAL PUBLIC COMMENT SIGN IN SHEET

WELCOME to the City of Grass Valley City Council meeting! Public Comments provide an opportunity for the public to address the City Council on any subject which is not on the agenda but in the jurisdiction of the council. If you wish to speak, please indicate in the appropriate box when you sign in and take the number corresponding to your name. Each individual can have up to 3 minutes of public comment. At the beginning of the meeting, there will be an allotted 30 minutes of general public comments and the remainder of comments will be heard at the end of the agenda. Speakers will be called in order of the numbers given.

When you are recognized by the mayor:

- 1. Please stand before the podium and give your name and address. (optional)
- 2. Please limit your comments to three minutes per speaker.
- 3. If previous speakers have made the same point, you may simply indicate your support or disagreement, unless you have new information.

11/17/2075


Thank you for your participation.

#'s	Print Name or N/A	Address (optional)	Self/Business (optional)
1	ROBIN DAVIES		GNDA/CHAMBER
2	Bob Branstrom	500 Freeman Lane	self
3	Emily Rangel		
4	Kyle Winters		Naula County Arts Come
5	Robert Freehing		
6			
7			
8			
9			
10			
11			
12			
13			
14			

What is light pollution?

Light pollution is the human-made alteration of outdoor light levels from those occurring naturally.

When we over-light, fail to use timers and sensors, or use the wrong color of light, we can negatively affect many parts of our world, including migratory birds, pollinators, sea turtles, and mammals, including humans.

What can I do about it?

The good news is that light pollution, unlike many other forms of pollution, is reversible, and each one of us can make a difference! Just being aware that light pollution is a problem is not enough — we need to take action.

- Use only fully shielded, DarkSky
 Approved fixtures for all outdoor
 lighting, so lights
 shine down,
 not up.
- Use only the right amount of light needed.
 Too much light is wasteful and harms wildlife.
- Install timers and dimmer switches and turn off lights when not in use. If you must have security lighting, use motion sensors.

- Turn off lights in office buildings and homes when not in use.
- Use only lighting with a color temperature of 3000 K and below to reduce the blue cool light that's more harmful to many animal species.
- Work with your neighbors and local governments to ensure outdoor lighting isn't harming the wildlife in your area.

Learn more at www.DarkSky.org

Components of light pollution

- Glare excessive brightness that causes visual discomfort
- **Sky glow** brightening of the night sky over inhabited areas
- Light trespass light falling where it is not intended or needed
- Clutter bright, confusing, and excessive groupings of light sources

Harmful effects of light pollution

A growing body of evidence links the brightening night sky directly to measurable negative impacts on:

- Wildlife and ecosystems
- · Human health
- Energy and climate change
- · Crime and safety
- · Night sky heritage
- · Scientific research

The problem is growing

Research indicates that light pollution is increasing at a global average rate of **ten percent** per year.

YOUR LOCAL CHAPTER

<u>DarkSkyMissouri.org</u> <u>facebook.com/DarkSkyMissouri/instagram.com/darkskymissouri/</u> 636-851-9630

Join us!

Learn more by signing up for DarkSky e-news

REPORT OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH

CSAPH Report 2-A-16

Subject:

Human and Environmental Effects of Light Emitting Diode (LED) Community

Lighting

Presented by:

Louis J. Kraus, MD, Chair

Referred to:

Reference Committee E

(Theodore Zanker, MD, Chair)

INTRODUCTION

1 2 3

 With the advent of highly efficient and bright light emitting diode (LED) lighting, strong economic arguments exist to overhaul the street lighting of U.S. roadways. Valid and compelling reasons driving the conversion from conventional lighting include the inherent energy efficiency and longer lamp life of LED lighting, leading to savings in energy use and reduced operating costs, including taxes and maintenance, as well as lower air pollution burden from reduced reliance on fossil-based carbon fuels.

Not all LED light is optimal, however, when used as street lighting. Improper design of the lighting fixture can result in glare, creating a road hazard condition. LED lighting also is available in various color correlated temperatures. Many early designs of white LED lighting generated a color spectrum with excessive blue wavelength. This feature further contributes to disability glare, i.e., visual impairment due to stray light, as blue wavelengths are associated with more scattering in the human eye, and sufficiently intense blue spectrum damages retinas. The excessive blue spectrum also is environmentally disruptive for many nocturnal species. Accordingly, significant human and environmental concerns are associated with short wavelength (blue) LED emission. Currently, approximately 10% of existing U.S. street lighting has been converted to solid state LED technology, with efforts underway to accelerate this conversion. The Council is undertaking this report to assist in advising communities on selecting among LED lighting options in order to minimize potentially harmful human health and environmental effects.

METHODS

English language reports published between 2005 and 2016 were selected from a search of the PubMed and Google Scholar databases using the MeSH terms "light," "lighting methods," "color," "photic stimulation," and "adverse effects," in combination with "circadian rhythm/physiology/radiation effects," "radiation dosage/effects," "sleep/physiology," "ecosystem," "environment," and "environmental monitoring." Additional searches using the text terms "LED" and "community," "street," and "roadway lighting" were conducted. Additional information and perspective were supplied by recognized experts in the field.

ADVANTGAGES AND DISADVANAGES OF LED STREET LIGHTS

© 2016 American Medical Association. All rights reserved.

Action of the AMA House of Delegates 2016 Annual Meeting: Council on Science and Public Health Report 2 Recommendations Adopted and Remainder of Report Filed.

The main reason for converting to LED street lighting is energy efficiency; LED lighting can reduce energy consumption by up to 50% compared with conventional high pressure sodium (HPS) lighting. LED lighting has no warm up requirement with a rapid "turn on and off" at full intensity. In the event of a power outage, LED lights can turn on instantly when power is restored, as opposed to sodium-based lighting requiring prolonged warm up periods. LED lighting also has the inherent capability to be dimmed or tuned, so that during off peak usage times (e.g., 1 to 5 AM), further energy savings can be achieved by reducing illumination levels. LED lighting also has a much longer lifetime (15 to 20 years, or 50,000 hours), reducing maintenance costs by decreasing the frequency of fixture or bulb replacement. That lifespan exceeds that of conventional HPS lighting by 2-4 times. Also, LED lighting has no mercury or lead, and does not release any toxic substances if damaged, unlike mercury or HPS lighting. The light output is very consistent across cold or warm temperature gradients. LED lights also do not require any internal reflectors or glass covers, allowing higher efficiency as well, if designed properly. 8,9

 Despite the benefits of LED lighting, some potential disadvantages are apparent. The initial cost is higher than conventional lighting; several years of energy savings may be required to recoup that initial expense. The spectral characteristics of LED lighting also can be problematic. LED lighting is inherently narrow bandwidth, with "white" being obtained by adding phosphor coating layers to a high energy (such as blue) LED. These phosphor layers can wear with time leading to a higher spectral response than was designed or intended. Manufacturers address this problem with more resistant coatings, blocking filters, or use of lower color temperature LEDs. With proper design, higher spectral responses can be minimized. LED lighting does not tend to abruptly "burn out," rather it dims slowly over many years. An LED fixture generally needs to be replaced after it has dimmed by 30% from initial specifications, usually after about 15 to 20 years. 1.11

Depending on the design, a large amount blue light is emitted from some LEDs that appear white to the naked eye. The excess blue and green emissions from some LEDs lead to increased light pollution, as these wavelengths scatter more within the eye and have detrimental environmental and glare effects. LED's light emissions are characterized by their correlated color temperature (CCT) index. ^{12,13} The first generation of LED outdoor lighting and units that are still widely being installed are "4000K" LED units. This nomenclature (Kelvin scale) reflects the equivalent color of a heated metal object to that temperature. The LEDs are cool to the touch and the nomenclature has nothing to do with the operating temperature of the LED itself. By comparison, the CCT associated with daylight light levels is equivalent to 6500K, and high pressure sodium lighting (the current standard) has a CCT of 2100K. Twenty-nine percent of the spectrum of 4000K LED lighting is emitted as blue light, which the human eye perceives as a harsh white color. Due to the point-source nature of LED lighting, studies have shown that this intense blue point source leads to discomfort and disability glare. ¹⁴

More recently engineered LED lighting is now available at 3000K or lower. At 3000K, the human eye still perceives the light as "white," but it is slightly warmer in tone, and has about 21% of its emission in the blue-appearing part of the spectrum. This emission is still very blue for the nighttime environment, but is a significant improvement over the 4000K lighting because it reduces discomfort and disability glare. Because of different coatings, the energy efficiency of 3000K lighting is only 3% less than 4000K, but the light is more pleasing to humans and has less of an impact on wildlife.

Glare

Disability glare is defined by the Department of Transportation (DOT) as the following:

"Disability glare occurs when the introduction of stray light into the eye reduces the ability to resolve spatial detail. It is an objective impairment in visual performance."

Classic models of this type of glare attribute the deleterious effects to intraocular light scatter in the eye. Scattering produces a veiling luminance over the retina, which effectively reduces the contrast of stimulus images formed on the retina. The disabling effect of the veiling luminance has serious implications for nighttime driving visibility.¹⁵

Although LED lighting is cost efficient and inherently directional, it paradoxically can lead to worse glare than conventional lighting. This glare can be greatly minimized by proper lighting design and engineering. Glare can be magnified by improper color temperature of the LED, such as blue-rich LED lighting. LEDs are very intense point sources that cause vision discomfort when viewed by the human eye, especially by older drivers. This effect is magnified by higher color temperature LEDs, because blue light scatters more within the human eye, leading to increased disability glare. ¹⁶

In addition to disability glare and its impact on drivers, many residents are unhappy with bright LED lights. In many localities where 4000K and higher lighting has been installed, community complaints of glare and a "prison atmosphere" by the high intensity blue-rich lighting are common. Residents in Seattle, WA have demanded shielding, complaining they need heavy drapes to be comfortable in their own homes at night. Residents in Davis, CA demanded and succeeded in getting a complete replacement of the originally installed 4000K LED lights with the 3000K version throughout the town at great expense. In Cambridge, MA, 4000K lighting with dimming controls was installed to mitigate the harsh blue-rich lighting late at night. Even in places with a high level of ambient nighttime lighting, such as Queens in New York City, many complaints were made about the harshness and glare from 4000K lighting. In contrast, 3000K lighting has been much better received by citizens in general.

Unshielded LED Lighting

 Unshielded LED lighting causes significant discomfort from glare. A French government report published in 2013 stated that due to the point source nature of LED lighting, the luminance level of unshielded LED lighting is sufficiently high to cause visual discomfort regardless of the position, as long as it is in the field of vision. As the emission surfaces of LEDs are highly concentrated point sources, the luminance of each individual source easily exceeds the level of visual discomfort, in some cases by a factor of 1000.¹⁷

 Discomfort and disability glare can decrease visual acuity, decreasing safety and creating a road hazard. Various testing measures have been devised to determine and quantify the level of glare and vision impairment by poorly designed LED lighting. Lighting installations are typically tested by measuring foot-candles per square meter on the ground. This is useful for determining the efficiency and evenness of lighting installations. This method, however, does not take into account the human biological response to the point source. It is well known that unshielded light sources cause pupillary constriction, leading to worse nighttime vision between lighting fixtures and causing a "veil of illuminance" beyond the lighting fixture. This leads to worse vision than if the light never existed at all, defeating the purpose of the lighting fixture. Ideally LED lighting installations should be tested in real life scenarios with effects on visual acuity evaluated in order to ascertain the best designs for public safety.

With any LED lighting, proper attention should be paid to the design and engineering features. LED lighting is inherently a bright point source and can cause eye fatigue and disability glare if it is allowed to directly shine into human eyes from roadway lighting. This is mitigated by proper design, shielding and installation ensuring that no light shines above 80 degrees from the horizontal. Proper shielding also should be used to prevent light trespass into homes alongside the road, a common cause of citizen complaints. Unlike current HPS street lighting, LEDs have the ability to be controlled electronically and dimmed from a central location. Providing this additional control increases the installation cost, but may be worthwhile because it increases long term energy sayings and minimizes detrimental human and environmental lighting effects. In environmentally sensitive or rural areas where wildlife can be especially affected (e.g., near national parks or biorich zones where nocturnal animals need such protection), strong consideration should be made for lower emission LEDs (e.g., 3000K or lower lighting with effective shielding). Strong consideration also should be given to the use of filters to block blue wavelengths (as used in Hawaii), or to the use of inherent amber LEDs, such as those deployed in Quebec. Blue light scatters more widely (the reason the daytime sky is "blue"), and unshielded blue-rich lighting that travels along the horizontal plane increases glare and dramatically increases the nighttime sky glow caused by excessive light pollution.

POTENTIAL HEALTH EFFECTS OF "WHITE" LED STREET LIGHTING

Much has been learned over the past decade about the potential adverse health effects of electric light exposure, particularly at night. ²¹⁻²⁵ The core concern is disruption of circadian rhythmicity. With waning ambient light, and in the absence of electric lighting, humans begin the transition to nighttime physiology at about dusk; melatonin blood concentrations rise, body temperature drops, sleepiness grows, and hunger abates, along with several other responses.

A number of controlled laboratory studies have shown delays in the normal transition to nighttime physiology from evening exposure to tablet computer screens, backlit e-readers, and room light typical of residential settings. 26-28 These effects are wavelength and intensity dependent, implicating bright, short wavelength (blue) electric light sources as disrupting transition. These effects are not seen with dimmer, longer wavelength light (as from wood fires or low wattage incandescent bulbs). In human studies, a short-term detriment in sleep quality has been observed after exposure to short wavelength light before bedtime. Although data are still emerging, some evidence supports a long-term increase in the risk for cancer, diabetes, cardiovascular disease and obesity from chronic sleep disruption or shiftwork and associated with exposure to brighter light sources in the evening or night. 25,29

Electric lights differ in terms of their circadian impact.³⁰ Understanding the neuroscience of circadian light perception can help optimize the design of electric lighting to minimize circadian disruption and improve visual effectiveness. White LED streetlights are currently being marketed to cities and towns throughout the country in the name of energy efficiency and long term cost savings, but such lights have a spectrum containing a strong spike at the wavelength that most effectively suppresses melatonin during the night. It is estimated that a "white" LED lamp is at least 5 times more powerful in influencing circadian physiology than a high pressure sodium light based on melatonin suppression.³¹ Recent large surveys found that brighter residential nighttime lighting is associated with reduced sleep time, dissatisfaction with sleep quality, nighttime awakenings, excessive sleepiness, impaired daytime functioning, and obesity.^{29,32} Thus, white LED street lighting patterns also could contribute to the risk of chronic disease in the populations of cities in which they have been installed. Measurements at street level from white LED street lamps are needed to more accurately assess the potential circadian impact of evening/nighttime exposure to these lights.

ENVIRONMENTAL EFFECTS OF LED LIGHTING

 The detrimental effects of inefficient lighting are not limited to humans; 60% of animals are nocturnal and are potentially adversely affected by exposure to nighttime electrical lighting. Many birds navigate by the moon and star reflections at night; excessive nighttime lighting can lead to reflections on glass high rise towers and other objects, leading to confusion, collisions and death. Many insects need a dark environment to procreate, the most obvious example being lightning bugs that cannot "see" each other when light pollution is pronounced. Other environmentally beneficial insects are attracted to blue-rich lighting, circling under them until they are exhausted and die. Unshielded lighting on beach areas has led to a massive drop in turtle populations as hatchlings are disoriented by electrical light and sky glow, preventing them from reaching the water safely. Excessive outdoor lighting diverts the hatchlings inland to their demise. Even bridge lighting that is "too blue" has been shown to inhibit upstream migration of certain fish species such as salmon returning to spawn. One such overly lit bridge in Washington State now is shut off during salmon spawning season.

Recognizing the detrimental effects of light pollution on nocturnal species, U.S. national parks have adopted best lighting practices and now require minimal and shielded lighting. Light pollution along the borders of national parks leads to detrimental effects on the local bio-environment. For example, the glow of Miami, FL extends throughout the Everglades National Park. Proper shielding and proper color temperature of the lighting installations can greatly minimize these types of harmful effects on our environment.

CONCLUSION

Current AMA Policy supports efforts to reduce light pollution. Specific to street lighting, Policy H-135.932 supports the implementation of technologies to reduce glare from roadway lighting. Thus, the Council recommends that communities considering conversion to energy efficient LED street lighting use lower CCT lights that will minimize potential health and environmental effects. The Council previously reviewed the adverse health effects of nighttime lighting, and concluded that pervasive use of nighttime lighting disrupts various biological processes, creating potentially harmful health effects related to disability glare and sleep disturbance.²⁵

RECOMMENDATIONS

 The Council on Science and Public Health recommends that the following statements be adopted, and the remainder of the report filed.

 That our American Medical Association (AMA) support the proper conversion to community-based Light Emitting Diode (LED) lighting, which reduces energy consumption and decreases the use of fossil fuels. (New HOD Policy)

2. That our AMA encourage minimizing and controlling blue-rich environmental lighting by using the lowest emission of blue light possible to reduce glare. (New HOD Policy)

 3. That our AMA encourage the use of 3000K or lower lighting for outdoor installations such as roadways. All LED lighting should be properly shielded to minimize glare and detrimental human and environmental effects, and consideration should be given to utilize the ability of LED lighting to be dimmed for off-peak time periods. (New HOD Policy)

Fiscal Note: Less than \$500

REFERENCES

- Municipal Solid State Street Lighting Consortium. http://www1.eere.energy.gov/buildings/ssl/consortium.html. Accessed April 4, 2016.
- 2. Illuminating Engineering Society RP-8 Guide to Roadway Lighting. http://www.ies.org/?2014. Accessed April 4, 2016.
- 3. LED Lighting Facts—A Program of the United States Department of Energy. http://www.lightingfacts.com. Accessed April 5, 2016.
- 4. Lin Y, Liu Y, Sun Y, Zhu X, Lai J, Heynderickz I. Model predicting discomfort glare caused by LED road lights. *Opt Express*. 2014;22(15):18056-71.
- Gibbons RB, Edwards CJ. A review of disability and discomfort glare research and future direction. 18th Biennial TRB Visibility Symposium, College Station TX, United States, April 17-19, 2007.
- Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. *Environ Health Perspect*. 2014:122(3):269-76.
- 7. Lougheed T. Hidden blue hazard? LED lighting and retinal damage in rats, *Environ Health Perspect*. 2014;122(3):A81.
- 8. A Municipal Guide for Converting to LED Street Lighting, (http://www1.eere.energy.gov/buildings/ssl/consortium.html) 10/13/2013.
- 9. In depth: Advantages of LED Lighting. http://energy.ltgovernors.com/in-depth-advantages-of-led-lighting.html. Accessed April 5, 2016.
- Silverman H. How LED Streetlights Work. HowStuffWorks.com. June 22, 2009. http://science.howstuffworks.com/environmental/green-tech/sustainable/led-streetlight.htm.
 http://science.howstuff
- 11. Jin H, Jin S, Chen L, Cen S, Yuan K. Research on the lighting performance of LED street lights with different color temperatures. *IEEE Photonics Journal*. 2015;24(6):975-78. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7328247. Accessed April 7, 2016.
- 12. Morris N. LED there be light. Nick Morris predicts a bright future for LEDs. *Electrooptics.com*. http://www.electrooptics.com/features/junjul06/junjul06leds.html. Accessed April 7, 2016.
- 13. Mills MP. The LED illumination revolution. *Forbes Magazine*. February 27, 2008. http://www.forbes.com/2008/02/27/incandescent-led-cfl-pf-guru_in_mm_0227energy_inl.html. Accessed April 5, 2016.

- Opinion of the French Agency for Food, Environmental and Occupational Health & Safety, October 19, 2010.
 https://web.archive.org/web/20140429161553/http://www.anses.fr/Documents/AP2008sa0408E
 https://web.archive.org/web/20140429161553/http://www.anses.fr/Documents/AP2008sa0408E
- 15. U.S. Department of Transportation, Federal Highway Administration, 2005.
- Sweater-Hickcox K, Narendran N, Bullough JD, Freyssinier JP. Effect of different coloured luminous surrounds on LED discomfort glare perception. *Lighting Research Technology*. 2013;45(4):464-75. http://lrt.sagepub.com/content/45/4/464. Accessed April 5, 2016.
- 17. Scigliano E. Seattle's new LED-lit streets Blinded by the lights. *Crosscut*. March 18, 2013. http://crosscut.com/2013/03/streetlights-seattle-led/. Accessed April 6, 2016.
- 18. Davis will spend \$350,000 to replace LED lights after neighbor complaints. CBS Local, Sacramento;October 21, 2014. http://sacramento.suntimes.com/sac-news/7/138/6000/davis-will-spend-350000-to-replace-led-lights-after-neighbor-complaints.
- 19. Chaban M. LED streetlights in Brooklyn are saving energy but exhausting residents. *NY Times*; March 23, 2015. http://www.nytimes.com/2015/03/24/nyregion/new-led-streetlights-shine-too-brightly-for-some-in-brooklyn.html?_r=0. Accessed April 5, 2016.
- 20. Vos JJ. On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation. *Clin Exp Optom.* 2003;86(6):363-70.
- 21. Stevens RG, Brainard GC, Blask DE, Lockley, SW, Motta, ME. Breast cancer and circadian disruption from electric lighting in the modern world. *CA Cancer J Clin.* 2014;64:207-18.
- 22. Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. *Prog Mol Biol Transl Sci.* 2013;119:283-323.
- 23. Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. *Curr Biol.* 2013;23:1554-8.
- Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications. Building Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. January 2011. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/nichefinalreport_january2011.pdf. Accessed April 7, 2016.
- 25. Council on Science and Public Health Report 4. Light pollution. Adverse effects of nighttime lighting. American Medical Association, Annual Meeting, Chicago, IL. 2012.
- 26. Cajochen C, Frey S, Anders D, et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. *J Appl Physiol*. 2011;110:1432-8.
- Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. *Proc Natl Acad Sci* USA. 2015;112:1232-7.

- 28. Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. *J Clin Endocrinol Metab*. 2011;96:E463-72.
- 29. Koo YS, Song JY, Joo EY, et al. Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study. *Chronobiol Int.* 2016;33(3):301-14.
- 30. Lucas RJ, Peirson SN, Berson DM, et al. Measuring and using light in the melanopsin age. *Trends Neurosci.* 2014;37:1-9.
- 31. Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A. Limiting the impact of light pollution on human health, environment and stellar visibility. *J Environ Manage*. 2011;92:2714-22.
- 32. Ohayon M, Milesi C. Sleep deprivation/insomnia and exposure to street lights in the American general population. American Academy of Neurology Annual Meeting. April 15-21, 2016. Vancouver, BC.
- 33. Pawson SM, Bader MK. Led lighting increases the ecological impact of light pollution irrespective of color temperature. *Ecological Applications*. 2014;24:1561-68.
- 34. Gaston K, Davies T, Bennie J, Hopkins J. Reducing the ecological consequences of night-time light pollution: Options and developments. *J Appl Ecol.* 2012;49(6):1256–66.
- 35. Salmon M. Protecting sea turtles from artificial night lighting at Florida's oceanic beaches. In-Rich C, Longcore T (eds.). *Ecological Consequences of Artificial Night Lighting*. 2006:141-68. Island Press, Washington, DC.
- 36. Rusenko KW, Mann JL, Albury R, Moriarty JE, Carter HL. Is the wavelength of city glow getting shorter? Parks with no beachfront lights record adult aversion and hatchling disorientations in 2004. Kalb H, Rohde A, Gayheart K, Shanker, K, compilers. 2008. Proceedings of the Twenty-fifth Annual Symposium on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFSC-582, 204pp. http://www.nmfs.noaa.gov/pr/pdfs/species/turtlesymposium2005.pdf
- 37. Rusenko KW, Newman R, Mott C, et al. Using GIS to determine the effect of sky glow on nesting sea turtles over a ten year period. Jones TT, Wallace BP, compilers. 2012. *Proceedings of the Thirty-first Annual Symposium on Sea Turtle Biology and Conservation*. NOAA Technical Memorandum NOAA NMFS-SEFSC-631:32p.

Acknowledgement: The Council thanks George Brainard, PhD (Thomas Jefferson University); Richard Stevens, PhD (University Connecticut Health Center); and Mario Motta, MD (CSAPH, Tufts Medical School) for their contributions in preparing the initial draft of this report, and the commentary by Travis Longcore, PhD, on the ecological impact of nighttime electrical lighting.

BLUE LIGHT IMPACT IN CHILDREN

Blue light can cause retinal damage

Visible light passes through the media of the eye to the retina where photoreceptors transform it into an electrochemical signal. Humans depend on this process for image-formation and regulation of daily sleep-wake cycles. Commonly encountered light emitted by the sun and personal electronic devices contain significant amounts of high-energy, short-wavelength blue light.¹

Ultraviolet (UV) light contains more energy than blue light, but is absorbed by the cornea and crystalline lens, limiting retinal exposure.

Visible blue light may potentially be harmful to the human retina, as it can be absorbed by the retinal pigment epithelium (RPE) and certain photoreceptors, generating localized oxidative and thermal stress. Laboratory studies on rodent and primate models have demonstrated that extended time periods of direct retinal exposure to bright blue light accelerate rates of RPE and photoreceptor death.^{2,3}

Is outdoor blue light exposure dangerous for children's eyes?

Researchers have hypothesized that sunlight exposure is a risk factor for the development of agerelated macular degeneration (AMD). Large-scale epidemiological studies investigating this association in adult subjects have produced mixed results, with some supporting the hypothesis^{4, 5} and others disagreeing. ⁶⁻⁸

Children may be at higher risk for blue light retinal damage than adults. The juvenile lens absorbs less short-wavelength light than the adult lens,⁹ allowing more blue light to reach a child's retina. Although one epidemiological study suggests that life-long sunlight exposure is not a risk factor for the

development of AMD,¹⁰ the long term consequences of blue light exposure in children are not well understood.

The benefits of limiting sunlight exposure with UV-filtering sun spectacles are well established. These devices reduce the eye's UV and visible blue light exposure, slowing the development of cataract, eyelid cancer, pterygium and soft drusen, a risk factor for the development of exudative AMD.^{8, 11}

Thus, clinicians and parents should act with caution when managing children's outdoor sunlight exposure. Specifically, all children should possess ocular sun protection in the form of dark sun spectacles that filter UV light. Any potential safety benefits of blue-blocking antireflective coatings are not well elucidated; therefore, these products are not an adequate replacement for sun spectacles.

Is computer-generated blue light exposure dangerous for children's eyes?

Although the light emitted by personal electronic devices is not bright enough to damage the human retina, 12 it is able to stimulate blue-light-sensitive ganglion cell photoreceptors that regulate circadian rhythms. 13 As a result, cellular telephone, tablet and personal computer use before bedtime can delay sleep onset, degrade sleep quality and impair alertness the following day. 14 Extended use of these devices has also been shown to cause symptoms of dry eyes, blurred vision and headaches. 15 Limitation of personal electronic device use before bedtime is recommended to be the most effective method for reducing light-induced sleep disruption in children. The use of amber-tinted spectacle lenses during the use of electronic devices immediately before bedtime has shown promise as a strategy to reduce their altering effects, 16 but such filters require more investigation before this practice can be advocated. Any potential benefits to sleep quality of blue-blocking antireflective coatings have not been investigated.

(continued on back)

References:

- 1. Gringras P, Middleton B, Skene DJ, Revell VL. Bigger, Brighter, Bluer-Better? Current Light-Emitting Devices Adverse Sleep Properties and Preventative Strategies. Front Public Health 2015;3:233.
- 2. Wu J, Seregard S, Spangberg B, Oskarsson M, Chen E. Blue light induced apoptosis in rat retina. Eye (Lond) 1999;13 (Pt 4):577-83.
- 3. Zareba M, Skumatz CM, Sarna TJ, Burke JM. Photic injury to cultured RPE varies among individual cells in proportion to their endogenous lipofuscin content as modulated by their melanosome content. Invest Ophthalmol Vis Sci 2014:55:4982-90.
- 4. Tomany SC, Cruickshanks KJ, Klein R, Klein BE, Knudtson MD. Sunlight and the 10-year incidence of agerelated maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 2004;122:750-7.
- 5. Cruickshanks KJ, Klein R, Klein BE, Nondahl DM. Sunlight and the 5-year incidence of early age-related maculopathy: the beaver dam eye study. Arch Ophthalmol 2001;119:246-50.
- 6. Darzins P, Mitchell P, Heller RF. Sun exposure and age-related macular degeneration. An Australian case-control study. Ophthalmology 1997;104:770-6.
- 7. McCarty CA, Mukesh BN, Fu CL, Mitchell P, Wang JJ, Taylor HR. Risk factors for age-related maculopathy: the Visual Impairment Project. Arch Ophthalmol 2001;119:1455-62.
- 8. Delcourt C, Carriere I, Ponton-Sanchez A, Fourrey S, Lacroux A, Papoz L, Group PS. Light exposure and the risk of age-related macular degeneration: the Pathologies Oculaires Liees a l'Age (POLA) study. Arch Ophthalmol 2001;119:1463-8.
- 9. Boettner EA, Wolter JR. Transmission of the Ocular Media. Investigative Ophthalmology 1962;1:776-83.
- 10. Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, Bressler NM. The long-term effects of visible light on the eye. Arch Ophthalmol 1992;110:99-104.
- 11. Yam JC, Kwok AK. Ultraviolet light and ocular diseases. Int Ophthalmol 2014;34:383-400.
- 12. O'Hagan JB, Khazova M, Price LL. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (Lond) 2016;30:230-3.
- 13. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002;295:1070-3.
- 14. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A 2015;112:1232-7.
- 15. Klamm J, Tarnow KG. Computer Vision Syndrome: A Review of Literature. Medsurg Nurs 2015;24:89-93.
- 16. van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, Steiner R, Wolf S, Cajochen C, Bromundt V, Schmidt C. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health 2015;56:113-9.

