SUPPLEMENTAL TECHNICAL SPECIFICATIONS FOR SCOPE PROVIDED BY

TABLE OF CONTENTS

PROCUREMENT & CONTRACTING REQUIREMENTS

00 01 07 PROJECT MANUAL SEALS

CONCRETE

03 30 00 CAST-IN-PLACE CONCRETE

MASONRY

04 22 00 CONCRETE UNIT MASONRY

04 43 13.16 ADHERED STONE MASONRY

VENEER

SPECIALTIES

07 19 00 WATER REPELLENTS

10 14 19 DIMENSIONAL LETTER SIGNAGE

Project Manual Seals

for

PARK SYSTEM SIGNAGE PHASE 2

Dripping Springs, TX

PROJECT OWNER CONTACTS

For Information Regarding Proposals:

Andrew Binz
Parks & Community Services Director
City of Dripping Springs
1042 Event Center Drive,
Dripping Springs, TX 78620

p::512.894.2400 abinz@cityofdrippingsprings.com

DESIGN TEAM CONTACTS

Project PM / Landscape Architect

Jonathan Wagner, ASLA, LI **studio 16:19, Ilc** 305 West Liberty Avenue, Suite 100 Round Rock, TX 78664

p :: 512.534.8680 jwagner@studio1619.com

PROJECT MANUAL SEALS 000107 - 1

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Design Mixtures: For each concrete mixture.
- C. Steel Reinforcement Shop Drawings: Placing Drawings that detail fabrication, bending, and placement.

1.3 INFORMATIONAL SUBMITTALS

- A. Material certificates.
- B. Material test reports.
- C. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer, detailing fabrication, assembly, and support of formwork.
- D. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- B. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

1.5 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on concrete mixtures.

1.6 FIELD CONDITIONS

- A. Cold-Weather Placement: Comply with ACI 306.1.
 - 1. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- B. Hot-Weather Placement: Comply with ACI 301 and ACI 305.1.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

- A. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301.
 - 2. ACI 117.

2.2 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.3 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- B. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
- C. Galvanized Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed bars, ASTM A 767/A 767M, Class I zinc coated after fabrication and bending.
- D. Epoxy-Coated Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed bars, ASTM A 775/A 775M, epoxy coated, with less than 2 percent damaged coating in each 12-inch bar length.
- E. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from as-drawn steel wire into flat sheets.
- F. Deformed-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, flat sheet.
- G. Galvanized-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from galvanized-steel wire into flat sheets.

- H. Epoxy-Coated Welded-Wire Reinforcement: ASTM A 884/A 884M, Class A coated, Type 1, plain steel.
- I. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice."

2.4 CONCRETE MATERIALS

- A. Cementitious Materials:
 - 1. Portland Cement: ASTM C 150/C 150M, Type I, gray.
 - 2. Fly Ash: ASTM C 618, Class F or C.
 - 3. Slag Cement: ASTM C 989/C 989M, Grade 100 or 120.
 - 4. Blended Hydraulic Cement: ASTM C 595/C 595M, Type IL, portland-limestone cement.
- B. Normal-Weight Aggregates: ASTM C 33/C 33M, graded.
 - 1. Maximum Coarse-Aggregate Size: 3/4 inch nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Lightweight Aggregate: ASTM C 330/C 330M, 3/8-inch nominal maximum aggregate size.
- D. Air-Entraining Admixture: ASTM C 260/C 260M.
- E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- F. Water: ASTM C 94/C 94M.

2.5 FIBER REINFORCEMENT

A. Synthetic Micro-Fiber: Monofilament polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches long.

B. Synthetic Micro-Fiber: Fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches long.

2.6 WATERSTOPS

- A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
- B. Chemically Resistant Flexible Waterstops: Thermoplastic elastomer rubber waterstops for embedding in concrete to prevent passage of fluids through joints; resistant to oils, solvents, and chemicals. Factory fabricate corners, intersections, and directional changes.
- C. Flexible PVC Waterstops: CE CRD-C 572, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
- D. Self-Expanding Butyl Strip Waterstops: Manufactured rectangular or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete, 3/4 by 1 inch.
- E. Self-Expanding Rubber Strip Waterstops: Manufactured rectangular or trapezoidal strip, bentonite-free hydrophilic polymer-modified chloroprene rubber, for adhesive bonding to concrete, 3/8 by 3/4 inch.

2.7 VAPOR RETARDERS

- A. Sheet Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.
- B. Sheet Vapor Retarder: ASTM E 1745, Class B. Include manufacturer's recommended adhesive or pressure-sensitive tape.
- C. Sheet Vapor Retarder: ASTM E 1745, Class C. Include manufacturer's recommended adhesive or pressure-sensitive joint tape.
- D. Sheet Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils thick.

2.8 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
- F. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.
- G. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 25 percent solids, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.
- H. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
- I. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

2.9 RELATED MATERIALS

A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.

2.10 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
- B. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
- C. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a w/c ratio below 0.50.

2.11 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Normal-Weight Concrete:
 - 1. Minimum Compressive Strength: 3500 psi at 28 days.
 - 2. Maximum W/C Ratio: 0.40.

- 3. Slump Limit: 4 inches, plus or minus 1 inch.
- 4. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
- 5. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inch nominal maximum aggregate size.
- 6. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
- 7. Synthetic Micro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than a rate of 1.0 lb/cu. yd.

2.12 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.13 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Chamfer exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEM INSTALLATION

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR-RETARDER INSTALLATION

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.

1. Lap joints 6 inches and seal with manufacturer's recommended tape.

3.4 STEEL REINFORCEMENT INSTALLATION

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.6 WATERSTOP INSTALLATION

A. Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions.

3.7 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections are completed.
- B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.

3.8 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - Apply to concrete surfaces exposed to public view.
- C. Rubbed Finish: Apply the following to smooth-formed-finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
 - 2. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix 1 part portland cement to 1-1/2 parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches, so color of dry grout matches adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.
 - 3. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix 1 part portland cement and 1 part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches, so color of dry grout matches adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.9 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 305.1 for hot-weather protection during curing.

PARK SYSTEM SIGNAGE PHASE 2 DRIPPING SPRINGS, TX

FEBRUARY - 2024

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.
- D. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.
 - Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.
 - 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.10 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.11 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Contractor shall notify City Inspector to inspect concrete for quality and material defects after delivery to the site and prior to installation.

END OF SECTION 033000

FEBRUARY - 2024

SECTION 042200 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Concrete masonry units.
 - 2. Steel reinforcing bars.

1.2 **DEFINITIONS**

- A. CMU(s): Concrete masonry unit(s).
- B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For reinforcing steel. Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.
- C. Samples: For each type and color of the following:
 - 1. Exposed CMUs.
 - 2. Pigmented and colored-aggregate mortar.

1.4 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For each type and size of product. For masonry units, include data on material properties and material test reports substantiating compliance with requirements.
- B. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - Include test reports for mortar mixes required to comply with property specification.
 Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.
 - 2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

1.5 QUALITY ASSURANCE

- A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.
 - 1. Build sample panels for typical exterior wall in sizes approximately 48 inches long by 18 inches high by full thickness.

1.6 FIELD CONDITIONS

- A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
- B. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.1 UNIT MASONRY, GENERAL

- A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.
- B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.
- C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 - 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.2 CONCRETE MASONRY UNITS

- A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
- B. Integral Water Repellent: Provide units made with integral water repellent for exposed units.
- C. Insulated CMUs: Where indicated, units shall contain rigid, specially shaped, cellular thermal insulation units complying with ASTM C 578, Type I, designed for installing in cores of masonry units.

- D. CMUs: ASTM C 90.
 - 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
 - 2. Density Classification: Normal weight.

2.3 CONCRETE LINTELS

A. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.

2.4 MORTAR AND GROUT MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
- D. Masonry Cement: ASTM C 91/C 91M.
- E. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979/C 979M. Use only pigments with a record of satisfactory performance in masonry mortar.
- F. Colored Cement Products: Packaged blend made from portland cement and hydrated lime or masonry cement and mortar pigments, all complying with specified requirements, and containing no other ingredients.
- G. Aggregate for Mortar: ASTM C 144.
 - 1. White-Mortar Aggregates: Natural white sand or crushed white stone.
 - 2. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.
- H. Aggregate for Grout: ASTM C 404.
- Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C 494/C 494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
- J. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent from same manufacturer.

K. Water: Potable.

2.5 REINFORCEMENT

- A. Uncoated-Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
- B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.
- C. Masonry-Joint Reinforcement, General: ASTM A 951/A 951M.
 - 1. Exterior Walls: Stainless steel.
 - 2. Wire Size for Side Rods: 0.187-inch diameter.
 - 3. Wire Size for Cross Rods: 0.187-inch diameter.
 - 4. Spacing of Cross Rods: Not more than 16 inches o.c.
 - 5. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

2.6 TIES AND ANCHORS

- A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
 - 1. Hot-Dip Galvanized, Carbon-Steel Wire: ASTM A 82/A 82M, with ASTM A 153/A 153M, Class B-2 coating.
 - 2. Steel Sheet, Galvanized after Fabrication: ASTM A 1008/A 1008M, Commercial Steel, with ASTM A 153/A 153M, Class B coating.
 - 3. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch-diameter, hot-dip galvanized-steel wire.
 - 2. Tie Section: Triangular-shaped wire tie made from 0.187-inch-diameter, hot-dip galvanized-steel wire.
- C. Adjustable Anchors for Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

- 1. Connector Section: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 0.105-inch-thick steel sheet, galvanized after fabrication.
- 2. Tie Section: Triangular-shaped wire tie made from 0.25-inch-diameter, hot-dip galvanized-steel wire.
- D. Partition Top Anchors: 0.105-inch- thick metal plate with a 3/8-inch-diameter metal rod 6 inches long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.
- E. Rigid Anchors: Fabricate from steel bars 1-1/2 inches wide by 1/4 inch thick by 24 inches long, with ends turned up 2 inches or with cross pins unless otherwise indicated.
 - 1. Corrosion Protection: Hot-dip galvanized to comply with ASTM A 153/A 153M.

2.7 EMBEDDED FLASHING MATERIALS

- A. Metal Flashing: Provide metal flashing complying with Section 076200 "Sheet Metal Flashing and Trim" and as follows:
 - 1. Fabricate metal drip edges from stainless steel. Extend at least 3 inches into wall and 1/2 inch out from wall, with outer edge bent down 30 degrees and hemmed.
 - 2. Fabricate metal sealant stops from stainless steel. Extend at least 3 inches into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch and down into joint 1/4 inch to form a stop for retaining sealant backer rod.
 - 3. Fabricate metal expansion-joint strips from stainless steel to shapes indicated.
- B. Flexible Flashing: Use one of the following unless otherwise indicated:
 - 1. Rubberized-Asphalt Flashing: Composite flashing product consisting of a pliable, adhesive rubberized-asphalt compound, bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than 0.040 inch.
 - 2. Butyl Rubber Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.040 inch.
 - 3. Elastomeric Thermoplastic Flashing: Composite flashing product consisting of a polyester-reinforced ethylene interpolymer alloy.
 - 4. EPDM Flashing: Sheet flashing product made from ethylene-propylene-diene terpolymer, complying with ASTM D 4637/D 4637M, 0.040 inch thick.
- C. Single-Wythe CMU Flashing System: System of CMU cell flashing pans and interlocking CMU web covers made from UV-resistant, high-density polyethylene. Cell flashing pans have

integral weep spouts designed to be built into mortar bed joints and that extend into the cell to prevent clogging with mortar.

- D. Solder and Sealants for Sheet Metal Flashings: As specified in Section 076200 "Sheet Metal Flashing and Trim."
- E. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.8 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from urethane or PVC.
- B. Preformed Control-Joint Gaskets: Made from PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D 226/D 226M, Type I (No. 15 asphalt felt).

2.9 MASONRY-CELL FILL

- A. Loose-Fill Insulation: Perlite complying with ASTM C 549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).
- B. Lightweight-Aggregate Fill: ASTM C 331/C 331M.

2.10 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 2. Use masonry cement mortar unless otherwise indicated.
 - 3. For exterior masonry and reinforced masonry, use masonry cement mortar.
 - 4. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

- C. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated.
 - 1. For masonry below grade or in contact with earth, use Type S.
 - 2. For reinforced masonry and mortar parge coats, use Type N.
 - 3. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type N.
 - 4. For interior nonload-bearing partitions, Type O may be used instead of Type N.
- D. Pigmented Mortar: Use colored cement product.
 - 1. Pigments shall not exceed 10 percent of portland cement by weight.
 - 2. Pigments shall not exceed 5 percent of masonry cement by weight.
 - 3. Application: Use pigmented mortar for exposed mortar joints with the following units:
- E. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.
 - 1. Application: Use colored-aggregate mortar for exposed mortar joints with the following units:
- F. Grout for Unit Masonry: Comply with ASTM C 476.
 - Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 - 2. Proportion grout in accordance with ASTM C 476, Table 1.
 - 3. Provide grout with a slump of 8-11 inches measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.2 TOLERANCES

A. Dimensions and Locations of Elements:

- 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch.
- 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
- 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

- 1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
- 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
- 3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
- 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
- 5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.

C. Joints:

- 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
- 2. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
- 3. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.3 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

- C. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- D. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- E. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.
- F. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.4 MORTAR BEDDING AND JOINTING

- A. Lay hollow CMUs as follows:
 - 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 - 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 - 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 - 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
- B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.5 MASONRY-CELL FILL

- A. Pour lightweight-aggregate fill into cavities to fill void spaces. Maintain inspection ports to show presence of fill at extremities of each pour area. Close the ports after filling has been confirmed. Limit the fall of fill to one story high, but not more than 20 feet.
- B. Install molded-polystyrene insulation units into masonry unit cells before laying units.

3.6 MASONRY-JOINT REINFORCEMENT

- A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 - 1. Space reinforcement not more than 16 inches o.c.
 - 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.

- 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.

3.7 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

- A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:
 - 1. Provide an open space not less than 1/2 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 - 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 - 3. Space anchors as indicated, but not more than 24" o.c. vertically and 36" o.c. horiz.

3.8 FLASHING

- A. General: Install embedded flashing at ledges and other obstructions to downward flow of water in wall where indicated.
- B. Install flashing as follows unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape **as** recommended by flashing manufacturer.
 - 2. At lintels, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
 - 3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal drip edge.
 - 4. Install metal flashing termination beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal flashing termination.
- C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer's written instructions. Install CMU cell pans with upturned edges located

below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

3.9 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches.

3.10 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
- B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.
 - 1. Begin masonry construction only after inspectors verified site-prepared mortar.
 - 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 - 3. Place grout only after inspectors have verified proportions of site-prepared grout.
- C. Testing Prior to Construction: One set of tests.
- D. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
- E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.

- F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.
- G. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.
- H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.
- I. Prism Test: For each type of construction provided, according to ASTM C 1314 at 28 days.

3.11 PARGING

- A. Parge exterior faces of below-grade masonry walls, where indicated, in two uniform coats to a total thickness of 3/4 inch. Dampen wall before applying first coat, and scarify first coat to ensure full bond to subsequent coat.
- B. Use a steel-trowel finish to produce a smooth, flat, dense surface with a maximum surface variation of 1/8 inch per foot. Form a wash at top of parging and a cove at bottom.
- C. Damp-cure parging for at least 24 hours and protect parging until cured.

3.12 REPAIRING, POINTING, AND CLEANING

- A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
 - 2. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.13 MASONRY WASTE DISPOSAL

- A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 - 1. Do not dispose of masonry waste as fill within 18 inches of finished grade.
- B. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.
- C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042200

SECTION 044313.16 - ADHERED STONE MASONRY VENEER

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Stone masonry adhered to unit masonry backup.
- B. Related Requirements:
 - 1. Section 042000 "Concrete Unit Masonry" for concealed flashing.

1.2 ACTION SUBMITTALS

- A. Product Data: For each variety of stone, stone accessory, and manufactured product.
- B. Samples:
 - 1. For each stone type indicated.
 - 2. For each color of mortar required.

1.3 QUALITY ASSURANCE

- A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.
 - 1. Build sample panels for each type of adhered stone masonry veneer construction in sizes approximately 48 inches long by 36 inches high by full thickness.

1.4 FIELD CONDITIONS

- A. Protection of Stone Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work.
- B. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
 - 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and above and will remain so until masonry has dried.
- C. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.1 LIMESTONE

- A. Material Standard: Comply with ASTM C 568/C 568M.
 - 1. Classification: II Medium Density
- B. Varieties and Sources: Subject to compliance with requirements, provide from local source.

2.2 MORTAR MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or Type II, except Type III may be used for cold-weather construction; natural color or white cement may be used as required to produce mortar color indicated.
 - 1. Low-Alkali Cement: Not more than 0.60 percent total alkali when tested according to ASTM C 114.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Masonry Cement: ASTM C 91/C 91M.
- D. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979/C 979M. Use only pigments with a record of satisfactory performance in stone masonry mortar.
- E. Colored Portland Cement-Lime Mix: Packaged blend of portland cement, hydrated lime, and mortar pigments. Mix shall produce color indicated or, if not indicated, as selected from manufacturer's standard colors. Pigments shall not exceed 10 percent of portland cement by weight.
- F. Colored Masonry Cement Mix: Packaged blend of masonry cement and mortar pigments. Mix shall produce color indicated or, if not indicated, as selected from manufacturer's standard colors. Pigments shall not exceed 5 percent of masonry cement by weight.
- G. Aggregate: ASTM C 144 and as follows:
 - 1. For pointing mortar, use aggregate graded with 100 percent passing No. 16 sieve.
 - 2. White Aggregates: Natural white sand or ground white stone.
 - 3. Colored Aggregates: Natural-colored sand or ground marble, granite, or other sound stone; of color necessary to produce required mortar color.
- H. Water: Potable.

2.3 EMBEDDED FLASHING MATERIALS

- A. Metal Flashing: Provide metal flashing, where flashing is exposed or partly exposed and where indicated, complying as follows:
 - 1. Stainless Steel: ASTM A 240/A 240M, Type 304, 0.016 inch thick.
- B. Flexible Flashing: For flashing unexposed to the exterior, use the following unless otherwise indicated:
 - 1. Rubberized-Asphalt Flashing: Composite flashing product consisting of a pliable, adhesive, rubberized-asphalt compound, bonded to a high-density, cross-laminated, polyethylene film to produce an overall thickness of not less than 0.030 inch.

2.4 MISCELLANEOUS MASONRY ACCESSORIES

- A. Cementitious Dampproofing **for** Limestone: Cementitious formulation recommended by ILI and nonstaining to stone, compatible with joint sealants, and noncorrosive to veneer anchors and attachments.
- B. Weep Products: Use the following unless otherwise indicated:
 - 1. Mesh Weep Holes: Free-draining mesh; made from polyethylene strands, full width of head joint and 2 inches high by thickness of stone masonry; in color selected from manufacturer's standard.
- C. Expanded Metal Lath: 3.4 lb/sq. yd., self-furring, diamond-mesh lath complying with ASTM C 847. Fabricate from structural-quality, zinc-coated (galvanized) steel sheet complying with ASTM A 653/A 653M, G60.
- D. Welded-Wire Lath: ASTM C 933, fabricated into 2-by-2-inch mesh with minimum 0.0625-inch-diameter, galvanized-steel wire.

2.5 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar and grout stains, efflorescence, and other new construction stains from stone masonry surfaces without discoloring or damaging masonry surfaces; expressly approved for intended use by cleaner manufacturer and stone producer.

2.6 FABRICATION

- A. Cut stone to produce pieces of thickness, size, and shape indicated, including details on Drawings and pattern specified in "Setting Stone Masonry" Article.
 - 1. Shape stone specified to be laid in three-course, random range ashlar pattern with sawed beds.
- B. Gage backs of stones for adhered veneer if more than 81 sq. in. in area.

- C. Thickness of Stone: Provide thickness indicated, but not less than the following:
 - 1. Thickness: 1 inch plus or minus 1/4 inch.
- D. Size of Stone: Provide size indicated, but not less than the following:
 - 1. Size: 4 inch plus or minus 1/8 inch.
- E. Finish exposed stone faces and edges to comply with requirements indicated for finish and to match approved samples and mockups.
 - 1. Finish: Mixed split face and rock face.
 - 2. Finish for Sills: Smooth.
 - 3. Finish for Lintels: Smooth.
 - 4. Finish for Copings: Smooth.
 - a. Finish exposed ends of copings same as front and back faces.

2.7 MORTAR MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.
 - 1. Do not use calcium chloride.
 - 2. Use masonry cement mortar unless otherwise indicated.
 - 3. Mixing Pointing Mortar: Thoroughly mix cementitious and aggregate materials together before adding water. Then mix again, adding only enough water to produce a damp, unworkable mix that will retain its form when pressed into a ball. Maintain mortar in this dampened condition for one to two hours. Add remaining water in small portions until mortar reaches required consistency. Use mortar within 30 minutes of final mixing; do not retemper or use partially hardened material.
- B. Mortar for Stone Masonry: Comply with ASTM C 270, Proportion Specification.
 - 1. Mortar for Setting Stone: Type S.
 - 2. Mortar for Pointing Stone: Type N.
- C. Cement-Paste Bond Coat: Mix either neat cement and water or cement, sand, and water to a consistency similar to that of thick cream.
- D. Mortar for Scratch Coat over Metal Lath: 1 part portland cement, 1/2 part lime, 5 parts loose damp sand, and enough water to produce a workable consistency.

- E. Mortar for Scratch Coat over Unit Masonry: 1 part portland cement, 1 part lime, 7 parts loose damp sand, and enough water to produce a workable consistency.
- F. Pigmented Mortar: Use colored cement product.
 - 1. Pigments shall not exceed 10 percent of portland cement by weight.
 - 2. Pigments shall not exceed 5 percent of masonry cement by weight.

PART 3 - EXECUTION

3.1 SETTING STONE MASONRY

- A. Perform necessary field cutting and trimming as stone is set.
 - 1. Use power saws to cut stone that is fabricated with saw-cut surfaces. Cut lines straight and true, with edges eased slightly to prevent snipping.
 - 2. Use hammer and chisel to split stone that is fabricated with split surfaces. Make edges straight and true, matching similar surfaces that were shop or quarry fabricated.
 - 3. Pitch face at field-split edges as needed to match stones that are not field split.
- B. Sort stone before it is placed in wall to remove stone that does not comply with requirements relating to aesthetic effects, physical properties, or fabrication, or that is otherwise unsuitable for intended use.
- C. Arrange stones in random running bond pattern with 4-inch course heights as indicated, random lengths, and uniform joint widths, with offset between vertical joints as indicated.
- D. Arrange stones with color and size variations uniformly dispersed for an evenly blended appearance.
- E. Maintain uniform joint widths, except for variations due to different stone sizes and where minor variations are required to maintain bond alignment if any. Lay walls with joints not less than 1/4 inch at narrowest points or more than 1/2 inch at widest points.
- F. Provide sealant joints of widths and at locations indicated.
 - 1. Keep sealant joints free of mortar and other rigid materials.
 - 2. Sealant joints are specified in Section 079200 "Joint Sealants."
- G. Install embedded flashing and weep holes at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated.
 - 1. At multiwythe masonry walls, extend flashing through stone masonry, turned up a minimum of 4 inches and extend into or through inner wythe to comply with requirements in Section 042000 "Concrete Unit Masonry."

- 2. At lintels and shelf angles, extend flashing full length of angles but not less than 6 inches into masonry at each end.
- 3. At sills, extend flashing not less than 4 inches at ends.
- 4. At ends of head and sill flashing, turn up not less than 2 inches to form end dams.
- 5. Extend sheet metal flashing 1/2 inch beyond masonry face at exterior and turn flashing down to form a drip.
- 6. Install metal drip edges beneath flexible flashing at exterior wall face. Stop flexible flashing 1/2 inch back from exterior wall face and adhere flexible flashing to top of metal drip edge.
- 7. Install metal flashing termination beneath flexible flashing at exterior wall face. Stop flexible flashing 1/2 inch back from exterior wall face and adhere flexible flashing to top of metal flashing termination.
- 8. Cut flexible flashing flush with wall face after completing masonry wall construction.
- H. Coat limestone with cementitious dampproofing as follows:
 - 1. Stone at Grade: Beds, joints, and back surfaces to at least 12 inches above finish-grade elevations.
 - 2. Stone Extending below Grade: Beds, joints, back surfaces, and face surfaces below grade.
- I. Place weep holes in joints where moisture may accumulate, including above shelf angles and at flashing.
 - 1. Use mesh weep holes to form weep holes.
 - 2. Use wicking material to form weep holes above flashing in stone sills. Turn wicking down at lip of sill to be as inconspicuous as possible.
 - 3. Space weep holes 24 inches o.c.
 - 4. Trim wicking material used in weep holes flush with exterior wall face after mortar has set.

3.2 CONSTRUCTION TOLERANCES

A. Variation from Plumb: For vertical lines and surfaces, do not exceed 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2 inch in 40 feet or more. For external corners, expansion joints, control joints, and other conspicuous lines, do not exceed 1/4 inch in 20 feet or 1/2 inch in 40 feet or more.

- B. Variation from Level: For bed joints and lines of exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines, do not exceed 1/4 inch in 20 feet or 1/2 inch in 40 feet or more.
- C. Variation of Linear Building Line: For position shown in plan, do not exceed 1/2 inch in 20 feet or 3/4 inch in 40 feet or more.

3.3 INSTALLATION OF ADHERED STONE MASONRY VENEER

- A. Install lath over unit masonry and concrete to comply with ASTM C 1063.
- B. Install scratch coat over metal lath 3/8 inch thick to comply with ASTM C 926.
- C. Coat backs of stone units and face of masonry backup with cement-paste bond coat, then butter both surfaces with setting mortar. Use sufficient setting mortar, so a slight excess will be forced out the edges of stone units as they are set. Tap units into place, completely filling space between units and masonry backup.
- D. Rake out joints for pointing with mortar to depth of not less than 1/2 inch before setting mortar has hardened. Rake joints to uniform depths with square bottoms and clean sides.

3.4 POINTING

- A. Prepare stone-joint surfaces for pointing with mortar by removing dust and mortar particles. Where setting mortar was removed to depths greater than surrounding areas, apply pointing mortar in layers not more than 3/8 inch deep until a uniform depth is formed.
- B. Point stone joints by placing and compacting pointing mortar in layers of not more than 3/8 inch deep. Compact each layer thoroughly, and allow to it become thumbprint hard before applying next layer.
- C. Tool joints, when pointing mortar is thumbprint hard, with a smooth jointing tool to produce the following joint profile:
 - 1. Joint Profile: Smooth, flat face slightly below edges of stone.

3.5 ADJUSTING AND CLEANING

- A. In-Progress Cleaning: Clean stone masonry as work progresses. Remove mortar fins and smears before tooling joints.
- B. Final Cleaning: After mortar is thoroughly set and cured, clean stone masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - Test cleaning methods on mockup; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before cleaning stone masonry.

- 3. Wet wall surfaces with water before applying cleaner; remove cleaner promptly by rinsing thoroughly with clear water.
- 4. Clean stone masonry by bucket and brush hand-cleaning method described in BIA Technical Note No. 20, Revised II, using job-mixed detergent solution.
- 5. Clean stone masonry with proprietary acidic cleaner applied according to manufacturer's written instructions.
- 6. Clean limestone masonry to comply with recommendations in ILI's "Indiana Limestone Handbook."

3.6 EXCESS MATERIALS AND WASTE

- A. Excess Stone: Stack excess stone where directed by Owner for Owner's use.
- B. Disposal as Fill Material: Dispose of clean masonry waste, including mortar and excess or soil-contaminated sand, by crushing and mixing with fill material as fill is placed.
 - 1. Do not dispose of masonry waste as fill within 18 inches of finished grade.

END OF SECTION 044313.16

SECTION 071900 - WATER REPELLENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes penetrating water-repellent treatments for the following vertical and horizontal surfaces:
 - Natural stone.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of water repellent and substrate indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product certificates.

1.5 QUALITY ASSURANCE

A. Applicator Qualifications: An employer of workers trained and approved by manufacturer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. PROSOCO, Inc., 3741 Greenway Circle, Lawrence, KS 66046. Phone: (800) 255-4255; Fax: (785) 830-9797. Email: <u>CustomerCare@prosoco.com</u>.
- B. Equivalents may be considered.

2.2 PRODUCTS

- A. Sure Klean® Weather Seal Blok-Guard® and Graffiti Control: Clear, solvent-based silicone elastomer formulated to weatherproof concrete block and other porous masonry materials and protect treated surfaces from repeated graffiti attacks without altering the natural appearance. Blok-Guard® and Graffiti Control penetrates and fills pores to prevent water penetration through exterior walls exposed to normal weathering. Graffiti removal is fast and easy using Defacer Eraser® Graffiti Remover.
 - 1. Typical Technical Data:

FEBRUARY - 2024

a. Form: Clear Liquid

b. Specific Gravity: 0.802

c. pH: Not applicable

d. Weight/Gallon: 6.67 pounds

e. Active Content: 9 percent

f. Total Solids: 9 percent ASTM D 2369

- g. VOC Content: greater than 600 grams per liter. Manufactured and marketed in compliance with USEPA AIM VOC regulations (40 CFR 59.403). Not suitable for sale in states and districts with more restrictive AIM VOC regulations.
- h. Flash Point: 100 degrees F (38 degrees C) ASTM D 3278
- i. Freeze Point: less than -22 degrees F (less than -30 degrees C)
- j. Shelf Life: 1 year in tightly sealed, unopened container

2. Limitations:

- a. Not suitable for extremely dense or polished surfaces.
- b. Not suitable for asphaltic surfaces.
- c. Not recommended for below-grade applications.
- d. May darken or enhance the natural color of some surfaces. Always Test to ensure desired results.
- e. Will not prevent water penetration through structural cracks, defects or open joints.
- B. Equivalents may be considered.

2.3 PENETRATING WATER REPELLENTS

- A. Silane, Penetrating Water Repellent: Clear, containing 20 percent or more solids of alkyltrialkoxysilanes; with alcohol, mineral spirits, water, or other proprietary solvent carrier; and with 600 g/L or less of VOCs.
- B. Siloxane, Penetrating Water Repellent: Clear, containing 10 percent or more solids of oligomerous alkylalkoxysiloxanes; with alcohol, ethanol, mineral spirits, water, or other proprietary solvent carrier; and with 600 g/L or less of VOCs.
- C. Silane/Siloxane-Blend, Penetrating Water Repellent: Clear, silane and siloxane blend with 600 g/L or less of VOCs.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements and conditions affecting performance of the Work.
 - 1. Verify that surfaces are clean and dry according to water-repellent manufacturer's requirements. Check moisture content in representative locations by method recommended by manufacturer.
 - 2. Verify that there is no efflorescence or other removable residues that would be trapped beneath the application of water repellent.
 - 3. Verify that required repairs are complete, cured, and dry before applying water repellent.
- B. Test pH level according to water-repellent manufacturer's written instructions to ensure chemical bond to silica-containing or siliceous minerals.

3.2 PREPARATION

- A. New Construction and Repairs: Allow concrete and other cementitious materials to age before application of water repellent, according to repellent manufacturer's written instructions.
- B. Cleaning: Before application of water repellent, clean substrate of substances that could impair penetration or performance of product according to water-repellent manufacturer's written instructions.
- C. Coordination with Mortar Joints: Do not apply water repellent until pointing mortar for joints adjacent to surfaces receiving water-repellent treatment has been installed and cured.
- D. Coordination with Sealant Joints: Do not apply water repellent until sealants for joints adjacent to surfaces receiving water-repellent treatment have been installed and cured.
 - 1. Water-repellent work may precede sealant application only if sealant adhesion and compatibility have been tested and verified using substrate, water repellent, and sealant materials identical to those required.

3.3 APPLICATION

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect the substrate before application of water repellent and to instruct Applicator on the product and application method to be used.
- B. Apply coating of water repellent on surfaces to be treated using low-pressure spray to the point of saturation. Apply coating in dual passes of uniform, overlapping strokes. Remove excess material; do not allow material to puddle beyond saturation. Comply with manufacturer's written instructions for application procedure unless otherwise indicated.

1. Cast Stone: At Contractor's option, first application of water repellent may be completed before installing units. Mask mortar and sealant bond surfaces to prevent water repellent from migrating onto joint surfaces. Remove masking after repellent has cured.

C. Apply a second saturation coating, repeating first application. Comply with manufacturer's written instructions for limitations on drying time between coats and after rainstorm wetting of surfaces between coats. Consult manufacturer's technical representative if written instructions are not applicable to Project conditions.

3.4 CLEANING

- A. Immediately clean water repellent from adjoining surfaces and surfaces soiled or damaged by water-repellent application as work progresses. Correct damage to work of other trades caused by water-repellent application.
- B. Comply with manufacturer's written cleaning instructions.

END OF SECTION 071900

SECTION 101419 - DIMENSIONAL LETTER SIGNAGE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Fabricated channel dimensional characters.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For signs.
 - 1. Include fabrication and installation details and attachments to other work.
 - 2. Show sign mounting heights, locations of supplementary supports to be provided by other installers, and accessories.
 - 3. Show message list, typestyles, graphic elements, and layout for each sign.
 - 4. Show locations of electrical service connections.
 - 5. Include diagrams for power, signal, and control wiring.
- C. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS

A. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer to design sign structure and anchorage of dimensional character sign type(s) according to structural performance requirements.
- B. Structural Performance: Signs and supporting elements shall withstand the effects of gravity and other loads within limits and under conditions indicated.
- C. Thermal Movements: For exterior fabricated channel dimensional characters, allow for thermal movements from ambient and surface temperature changes.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 DIMENSIONAL CHARACTERS

- A. Fabricated Channel Characters: Metal face and side returns formed free from warp and distortion; with uniform faces, sharp corners, and precisely formed lines and profiles; internally braced for stability, to meet structural performance loading without oil-canning or other surface deformation, and for securing fasteners; and as follows.
 - 1. Character Material: Sheet or plate aluminum.
 - 2. Character Height: As indicated on Drawings.
 - 3. Character Depth: As indicated on Drawings.
 - 4. Finishes:
 - a. Integral Aluminum Finish: Clear anodized.
 - 5. Mounting: As indicated on Drawings.
 - a. Hold characters at distance as selected by Architect from wall surface.

2.3 ACCESSORIES

- A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of signs, noncorrosive and compatible with each material joined, and complying with the following:
 - 1. Use concealed fasteners and anchors unless indicated to be exposed.
 - 2. For exterior exposure, furnish hot-dip galvanized devices unless otherwise indicated.
 - 3. Exposed Metal-Fastener Components, General:

a. Fabricated from same basic metal and finish of fastened metal unless otherwise indicated.

4. Sign Mounting Fasteners:

- a. Concealed Studs: Concealed (blind), threaded studs welded or brazed to back of sign material, screwed into back of sign assembly, or screwed into tapped lugs cast integrally into back of cast sign material, unless otherwise indicated.
- b. Projecting Studs: Threaded studs with sleeve spacer, welded or brazed to back of sign material, screwed into back of sign assembly, or screwed into tapped lugs cast integrally into back of cast sign material, unless otherwise indicated.
- c. Through Fasteners: Exposed metal fasteners matching sign finish, with type of head indicated, installed in predrilled holes.
- B. Adhesive: As recommended by sign manufacturer.
- C. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.

2.4 FABRICATION

- A. General: Provide manufacturer's standard sign assemblies according to requirements indicated.
 - 1. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.
 - 2. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed connections of flux, and dress exposed and contact surfaces.
 - 3. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.
 - 4. Internally brace dimensional characters for stability, to meet structural performance loading without oil-canning or other surface deformation, and for securing fasteners.
 - 5. Provide rabbets, lugs, and tabs necessary to assemble components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.
 - 6. Castings: Fabricate castings free of warp, cracks, blowholes, pits, scale, sand holes, and other defects that impair appearance or strength. Grind, wire brush, sandblast, and buff castings to remove seams, gate marks, casting flash, and other casting marks before finishing.

- B. Brackets: Fabricate brackets, fittings, and hardware for bracket-mounted signs to suit sign construction and mounting conditions indicated. Modify manufacturer's standard brackets as required.
 - 1. Aluminum Brackets: Factory finish brackets with baked-enamel or powder-coat finish to match sign-background color unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install signs using mounting methods indicated and according to manufacturer's written instructions.
 - 1. Install signs level, plumb, true to line, and at locations and heights indicated, with sign surfaces free of distortion and other defects in appearance.
 - 2. Before installation, verify that sign surfaces are clean and free of materials or debris that would impair installation.
 - 3. Corrosion Protection: Coat concealed surfaces of exterior aluminum in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.

B. Mounting Methods:

- 1. Concealed Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 - a. Masonry Substrates: Fill holes with adhesive. Leave recess space in hole for displaced adhesive. Place sign in position and push until flush to surface, embedding studs in holes. Temporarily support sign in position until adhesive fully sets.
 - b. Thin or Hollow Surfaces: Place sign in position and flush to surface, install washers and nuts on study projecting through opposite side of surface, and tighten.
- 2. Projecting Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 - a. Masonry Substrates: Fill holes with adhesive. Leave recess space in hole for displaced adhesive. Place spacers on studs, place sign in position, and push until spacers are pinched between sign and substrate, embedding the stud ends in holes. Temporarily support sign in position until adhesive fully sets.
 - b. Thin or Hollow Surfaces: Place spacers on studs, place sign in position with spacers pinched between sign and substrate, and install washers and nuts on stud ends projecting through opposite side of surface, and tighten.

- 3. Through Fasteners: Drill holes in substrate using predrilled holes in sign as template. Countersink holes in sign if required. Place sign in position and flush to surface. Install through fasteners and tighten.
- 4. Back Bar and Brackets: Remove loose debris from substrate surface and install backbar or bracket supports in position, so that signage is correctly located and aligned.
- 5. Adhesive: Clean bond-breaking materials from substrate surface and remove loose debris. Apply linear beads or spots of adhesive symmetrically to back of sign and of suitable quantity to support weight of sign after cure without slippage. Keep adhesive away from edges to prevent adhesive extrusion as sign is applied and to prevent visibility of cured adhesive at sign edges. Place sign in position, and push to engage adhesive. Temporarily support sign in position until adhesive fully sets.
- C. Remove temporary protective coverings and strippable films as signs are installed.

END OF SECTION 101419