

Municipal Case Study Biogas → RNG → Pipeline Injection

Tim Runde, Des Moines WRA

Des Moines Wastewater Reclamation Authority (WRA)

- WRA Serves 18 member agencies in three counties
- City of Des Moines is the contract operator of the WRA's wastewater reclamation facility (WRF)
- Average dry-weather flows of ~67 million gallons per day (MGD)
- Serves >600,000 residents in greater metro Des Moines area
- Completed \$20M Anaerobic Digestion Improvements Project in Spring 2014
- Completed \$19M Biogas Injection Project in October 2020

Co-Digestion Waste Sources

- Restaurant Grease Trap / Interceptor Waste
- Dairy Waste
- Biodiesel Waste
- Slaughterhouse / Meat Processing Waste
- Lutein / Protein Waste
- Waste Soy Oil
- Sewage Sludge
- Sugar Waste
- Rendering / Gelatin Waste
- Corn Syrup / Mash

Evolution of Hauled Waste Receiving

Simple pipe offloading ~1994 - 2006

Below grade 170k gal. Receiving Tank ~2007

5

Des Moines Metropolitan Wastewater Reclamation Authority | BIOGAS CONDITIONING & INJECTION PROJECT

A Wastewater and Hauled Organic Waste Treatment Center

6

Des Moines Metropolitan Wastewater Reclamation Authority | BIOGAS CONDITIONING & INJECTION PROJECT

Biogas Production at Des Moines

- WRA is producing a significant amount of renewable fuel in digesters
- Capacity to increase biogas production with more hauled waste
- Changes in federal legislation are establishing renewable fuel standards, particularly for use in transportation fuels
- Environmental impacts of biogas
 - Biomethane production is carbon-neutral (does not add to greenhouse gas emissions)
 - Reduces consumption of natural gas, thus lowering CO₂ emissions
- Supports sustainability initiatives and goals of City of Des Moines and WRA

Development of Bioenergy Model

Financial Inputs		Process Information				
ectricity Cost, 5/kwh	\$0.0616	t	PSA 1500	PSA 2250	WS 1500	WS 2250
tural Gas Purchased, \$/MMBtu	\$6.86	% Recovery	.95%	95%	98%	98%
bor, \$/ħr	\$60	Sales Gas %CH ₄	97%	97%	96.2%	96.2%
ater, \$/100 gal	\$0.40	Sales Gas HHV, BTU/cf	980	980	970	970
be Oil, \$/gal	\$15	Water, gpm	0	0	2.7	4.4
lymer, S/S gal	\$700	Connected Load, hp	948	1294	842.9	1216.3
Emissions Fee, \$/ton	\$56	Natural Gas, MMBtu/day	48	72	0	0
count Factor	5%	Polymer, gal/yr	0	D	5	7.5
N inflation, %/yr	5%	Compressor Heat Recovery, MMBtu/hr	0	0	0.0	0.0
lities Inflation, %/yr	5%	Tail Gas Heat Recovery, MMBtu/hr	3.4	5.1	0.0	0
bor Inflation, %/yr	5%	Lube Oil, gpd	Included below		đ	6.5
aintenance Inflation, %/yr	5%	Preventative Maintenance, S/yr	\$72,000	591,260	\$50,500	\$50,500
dAmerican Tariff Inflation, %/yr	5%	Labor, hr/yr	0	0	0.0	0.0
Emissions Fee Inflation, %/yr	5%	Downtime, hr/yr	0	0	0	0

20-Year Economics, Present Value					
	PSA 1500	PSA 2250	WS 1500	WS 2250	
Capital	\$9,855,000	\$11,921,000	\$9,475,000	\$12,086,000	
Totel Annual Costs	\$36,304,000	\$52,772,000	\$33,288,000	\$36,665,000	
Total Annual Revenue	\$100,162,000	\$103,050,000	\$98,914,000	\$99,784,000	
20 Year Overall Revenue	\$54,003,000	\$38,357,000	\$56,151,000	\$51,033,000	
Payback Period, months	37	57	35	46	

OPIA USD SCIM OPIA JESU SCIM OWNer Scrubber 1500 SCIM OWNER Scrubber JESU SCIM

Gas Flow Biogas Producti \$100,000,000

WS 2250

лайлайлай

\$477,696

Initial Investment

PSA 1500

\$2,350.000

\$497,000

PSA 2250

\$3,042,000

\$643,351

WS 1500

\$2,556,000

\$350,055

Raw Gas Data

Sales Gas Economics

655

4000

03

\$5.00

\$1,315

\$0.00495

50.52886

Equipment Capital, 5

Thermal Oxidizer, \$

1000

See "Capital" tab for more details

Raw Gas, %CH,

law Gas, H25 ppmv

law Gas Flow Growth, %

Renewable Gas Sold, S/MMBtu

Monthly Customer Charge, 5/month

Commodity Charge, \$/therm transported

Demand Charge, \$/MDR therm/month

Percent of Gas Accepted			
1500 SCFM System	99.1%		
2250 SCFM System	100.0%		

CDM Smith

Design Criteria

Inlet Biogas Flow: 2250 SCFM

Component	Digester Gas	Pipeline Specification
BTU Content	~660 BTU/scf	> 950 BTU/scf
Carbon dioxide	35%	< 3% by volume
Nitrogen	0.7%	< 4% by volume
Total Inerts (N ₂ + CO ₂)	~36%	< 5% by volume
Oxygen	<0.2%	< 0.3% by volume
Water	Saturated	< 5 lb/mmscf
Hydrogen sulfide	Actual: 50-600 ppm Design: 6,000 ppm	< 0.25 grain/Ccf
Total Sulfur	N/A	< 20 grain/Ccf
Volatile Organic Compounds	10-30 ppm	0 ppm

Technology Comparison

Membrane Scrubbing System

- System Description
 - Utilizes physical diffusion process through membranes which use a thin polymer film. Membrane selectively retains CH₄ and some N₂ (~20%) and O₂ (~50%)
 - Generates very high quality CO₂ outlet stream with approximately 1-2% CH₄
- Typical Components
 - Compressor
 - Gas Heat Exchanger
 - H₂S Scrubbing System
 - Siloxane Carbon Filters
 - Chiller
 - Final Polishing Filters
 - Membranes

Membrane Scrubbing System

- Manufacturers
 - DMT Environmental Solutions (Joure, Netherlands)
 - Unison Solutions (Dubuque, Iowa)
 - Greenlane (New Zealand, USA)
- Advantages
 - Removes some O_2 (~50%) and N_2 (~20%)
 - High CH₄ recovery (97-99.5%)
 - Depending on the number of stages
 - High level of turndown (~10%)
 - Dry process
- Disadvantages
 - No U.S. Installations
 - H₂S and siloxane pretreatment required
 - Limited data on membrane life and fouling

Liquid Scrubber System

- System Description
 - Separation by physical adsorption in scrubber
 - Water is transfer solvent; performance follows Henry's Law-CO₂ is more soluble in water than CH₄
 - Upflow packed towers with polypropylene media
 - Solvent regenerates in stripping tower and only small daily make-up water demand
- Typical Components
 - Compressor
 - Scrubber Vessel
 - Flashing Vessel
 - Stripping Vessel
 - Compressor Radiator Skid
 - PSA/TSA Adsorber (gas drier)
 - Process Water Chiller

Liquid Scrubber System

- Manufacturers
 - Greenlane (New Zealand, USA)
 - DMT (Netherlands, USA)
 - Malmberg (Sweden)
- Advantages
 - Proven technology multiple installations globally and in USA
 - Non-toxic solvent (water)
 - Also removes H₂S in inlet biogas
 - Moderate CH₄ losses (~2% slip)
- Disadvantages
 - Increases H₂O, O₂, and N₂
 - Tail gas treatment is required
 - Very tall outdoor vessels

Pressure Swing Adsorption (PSA)

- System Description
 - Biogas is pressurized to flow up through the adsorption vessels
 - Contaminants are trapped by media designed to not capture CH₄
 - Vacuum is applied to depressurize (i.e.; pressure swing) after adsorption to purge contaminants from vessel in tail gas stream
 - Process is batch but use of multiple vessels and rotary valve allow continuous flow
- Typical Components
 - Compressor
 - Water Separator
 - Air Fan Cooler
 - Adsorber Vessels and Valve Skid
 - Vacuum Pumps
 - Buffer Tanks

Zeolite Media

Pressure Swing Adsorption

- Manufacturers
 - Guild Associates Inc. (Dublin, Ohio)
 - Xebec Adsorption Inc. (Quebec, Canada)
- Advantages
 - No H₂S pretreatment required for <6,000 ppm (Guild only)
 - Simple, one step, dry process that is proven technology
 - Media is regenerative
 - Spare parts are generic. Can be serviced by plant operators or local mechanic
- Disadvantages
 - Methane recovery is lower (95%)
 - Additional PSA vessels required for O₂/N₂ removal if air is in the biogas
 - Tail gas treatment is required

PSA Flow Schematic

ADSORPTION	DEPRESSURIZE	VACUUM & PURGE	REPRESSURIZE
REPRESSURIZE	ADSORPTION	DEPRESSURIZE	VACUUM & PURGE
VACUUM & PURGE	REPRESSURIZE	ADSORPTION	DEPRESSURIZE
DEPRESSURIZE	VACUUM & PURGE	REPRESSURIZE	ADSORPTION

Des Moines Metropolitan Wastewater Reclamation Authority | BIOGAS CONDITIONING & INJECTION PROJECT

Technology Comparison & Selection

- Hydrogen Sulfide Considerations
 - Membranes: pre-treatment required
 - Water Scrubber: maximum inlet ~2,500 ppm H₂S
 - Tail gas treatment required (biofilter or RTO)
 - PSA: maximum inlet ~ 6,000 ppm H_2S
 - Tail gas treatment required (TO)
- System Recovery Performance
 - Membranes: high methane recovery
 - Water scrubber: high methane recovery, increases oxygen
 - PSA: lower methane recovery
- Technology Selection:
 - PSA System
 - Capacity of 2,250 scfm inlet biogas flows
 - Thermal Oxidizer with heat recovery

Project Design

System Layout

Site Plan

Area Classification & Building Modifications

 NFPA defines requirements of "Digester Gas Processing Rooms" involving biogas compression, handling, and processing equipment

Row	Location and Function	Ventilation Rate	Extent of Classified Area	NEC Area Electrical Classification	Material of Construction & Fire Protection Measures (2)
Row	DIGESTER GAS	No ventilation or	Entire room	Class 1, Division 1,	NC, CGD, H, FE
18a	PROCESSING	ventilated at less than		Group D	
	ROOMS (Gas	12 air changes per			
	compression,	hours			
	handling, and	Continuously	Within 1.5m	Class 1, Division 1,	NC, LC, CGD, H, FE
Row	processing)	ventilated at 12 air	(5-ft) of	Group D	
18b		changes per hour	equipment		
		Continuously	Entire Room	Class 1, Division 2,	NC, LC, CGD, H, FE
Row		ventilated at 12 air		Group D	
18c		changes per hour		-	
ROW 18c		ventilated at 12 air changes per hour		Group D	

NC – Noncombustible Material; LC – Limited-combustible material; CGD – Combustible Gas Detection System;

H – Hydrant Protection; FE – Portable Fire Extinguisher

Area Classification Plan

Current Project Status

- 100%: October 2016
- **Construction duration: approximately 1 year**
- Construction Capital Costs ~\$12M
- **Project Payback of ~4yrs**
- Current value of RNG Injection + RIN credits is \$10k a DAY!

Volatile Solids Reduction

Average Biogas Production Rate

Total Bigoas Produced (Million Cubic Feet)

Des Moines Metropolitan Wastewater Reclamation Authority | BIOGAS CONDITIONING & INJECTION PROJECT

Renewable Natural Gas - Net Revenue Earned

BIO Gas Produced Ring Injected

