Administration

<u>1.1*</u> Scope.

The scope of this document is water flow testing and marking of hydrants.

1.2* Purpose.

This document provides recommended practices to test and determine the available water supply for fire protection systems and fire flow purposes and the marking of hydrants.

1.2.1

Water flow testing, water supply analysis, and hydrant classification for marking purposes should be performed by knowledgeable and trained personnel.

1.3* Application.

The application of this document is the flow testing and marking of both public and private fire hydrants.

1.4 Units.

Metric units of measurement in this recommended practice are in accordance with the modernized metric system known as the International System of Units (SI). Two units (liter and bar), outside of but recognized by SI, are commonly used in international fire protection. These units are listed in <u>Table</u> <u>1.4</u> with conversion factors.

Table 1.4 SI Units and Conversion Factors

Unit Name	Unit Symbol	Conversion Factor
Liter	L	1 gal = 3.785 L
Liter per minute per square meter	(L/min)/m²	1 gpm ft ² = (40.746 L/min)/m ²
Cubic decimeter	dm ³	1 gal = 3.785 dm ³
Pascal	Ра	1 psi = 6894.757 Pa
Bar	bar	1 psi = 0.0689 bar
Bar	bar	1 bar = 10 ⁵ Pa

Note: For additional conversions and information, see ASTM SI 10, IEEE/ASTM SI 10 American National Standard for Metri Practice, 2016.

1.4.1

If a value for measurement as given in this recommended practice is followed by an equivalent value in other units, the first value stated is to be regarded as the recommendation. A given equivalent value might be approximate.

Referenced Publications

2.1 General.

The documents or portions thereof listed in this chapter are referenced within this recommended practice and should be considered part of the recommendations of this document.

2.2 NFPA Publications.

NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 2023 edition.

2.3 Other Publications.

2.3.1 ASTM Publications.

ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

ASTM SI 10, IEEE/ASTM SI 10 American National Standard for Metric Practice, 2016.

2.3.2 AWWA Publications.

American Water Works Association, 6666 West Quincy Avenue, Denver, CO 80235.

ANSI/AWWA G200, Standard for Distribution Systems Operation and Management, 2015.

2.3.3 Other Publications.

Merriam-Webster's Collegiate Dictionary, 11th edition, Merriam-Webster, Inc., Springfield, MA, 2020.

2.4 References for Extracts in Recommendations Sections.

NFPA 1, Fire Code, 2024 edition.

NFPA 24, Standard for the Installation of Private Fire Service Mains and Their *Appurtenances*, 2025 edition.

NFPA 1140, Standard for Wildland Fire Protection, 2022 edition.

Definitions

3.1 General.

3.1.1

The definitions contained in this chapter apply to the terms used in this recommended practice.

3.1.2

Where terms are not defined in this chapter or within another chapter, they should be defined using their ordinarily accepted meanings within the context in which they are used.

3.1.3

Merriam-Webster's Collegiate Dictionary, 11th edition, is the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1* Authority Having Jurisdiction (AHJ).

An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

3.2.2* Listed.

Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.

3.2.3 Should.

Indicates a recommendation or that which is advised but not required.

3.3 General Definitions.

3.3.1 Fire Flow.

The flow rate of a water supply, measured at 20 psi (1.4 bar) residual pressure, that is available for firefighting. [1, 2024]

3.3.2 Rated Capacity.

The flow available from a hydrant at the designated residual pressure (rated pressure), either measured or calculated.

3.3.3 Residual Pressure.

The pressure that exists in the distribution system, measured at the residual hydrant at the time the flow readings are taken at the flow hydrants.

3.3.4 Static Pressure.

The pressure that exists at a given point under normal distribution system conditions measured at the residual hydrant with no hydrants flowing.

3.4 Hydrant Definitions.

3.4.1* Dry Barrel Hydrant (Frostproof Hydrant).

A type of hydrant with the main control valve below the frost line between the footpiece and the barrel. [**24**, 2025]

3.4.2 Fire Hydrant.

A valved connection on a water supply system having one or more outlets and that is used to supply hose and fire department pumpers with water. [**1140**, 2022]

3.4.3 Flow Hydrant.

The hydrant that is used for the flow and flow measurement of water during a flow test. [24, 2025]

3.4.4 Flush Hydrant (Below Ground Hydrant).

A type of hydrant that is installed below the ground level that is intended for use in congested urban areas or aircraft movement areas.

3.4.5 Private Fire Hydrant.

A valved connection on a water supply system having one or more outlets that is used to supply hose and fire department pumpers with water on private property. [**24**, 2025]

3.4.6 Public Hydrant.

A valved connection on a water supply system having one or more outlets that is used to supply hose and fire department pumpers with water. [**24**, 2025]

3.4.7 Residual Hydrant.

The hydrant that is used for measuring static and residual pressures during a flow test. [24, 2025]

3.4.8* Wet Barrel Hydrant.

A type of hydrant that is intended for use where there is no danger of freezing weather and where each outlet is provided with a valve and an outlet. [**24**, 2025]

Flow Testing

4.1 Water Flow Testing Purposes.

4.1.1

Water flow tests are conducted to determine the available water supply for fire protection purposes, the flow that would be available from a fire hydrant for firefighting purposes, or the status of the water supply distribution system for fire protection systems or for firefighting purposes.

4.2 Rating Pressure.

4.2.1

For the purpose of uniform marking of hydrants, the ratings should be based on the flow available at the hydrant at a residual pressure of 20 psi (1.4 bar).

4.2.2

It is generally recommended that a minimum residual pressure of 20 psi (1.4 bar) should be maintained at hydrants when delivering the fire flow. Fire department pumpers can be operated where hydrant pressures are less, but with difficulty.

4.2.3

A primary concern should be the ability to maintain sufficient residual pressure to prevent backsiphonage of polluted water from some other interconnected source.

4.2.4*

It should be noted that the use of residual pressures of less than 20 psi (1.4 bar) is not permitted by many water authorities and health departments.

4.3 Procedure.

<u>4.3.1*</u>

Tests should be conducted during periods of peak demand, based on knowledge of the water supply and engineering judgment.

4.3.2

The procedure consists of discharging water at a measured rate of flow from the system at a given location and observing the corresponding pressure drop in the mains.

<u>4.3.3*</u>

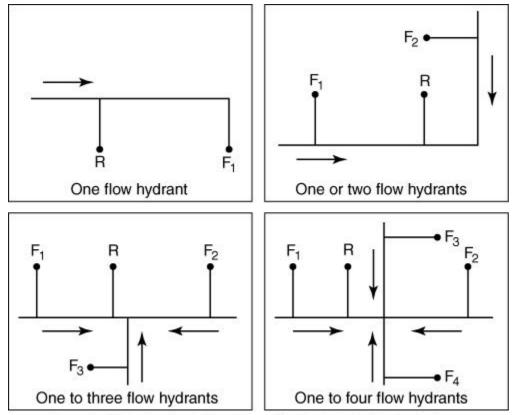
The fire hydrant and the area around the fire hydrant should be visually inspected for safety concerns prior to conducting the flow test.

<u>4.4*</u> Layout of Test and Procedure to Determine the Available Water Supply in a Water Main.

4.4.1

After the location where the test is to be run has been determined, a group of test hydrants in the vicinity is selected.

4.4.2


Once selected, due consideration should be given to potential interference with traffic flow patterns, damage to surroundings (e.g., roadways, sidewalks, landscapes, vehicles, and pedestrians), and potential flooding problems both local and remote from the test site.

4.4.3

One hydrant, designated the residual hydrant, is chosen to be the hydrant where the normal static pressure will be observed with the other hydrants in the group closed, and where the residual pressure will be observed with the other hydrants flowing.

4.4.4

This hydrant is chosen so it will be located between the hydrant to be flowed and the large mains that constitute the immediate sources of water supply in the area. In <u>Figure 4.4.4</u>, test layouts are indicated showing the residual hydrant designated with the letter R and hydrants to be flowed with the letter F.

Arrows indicate direction of flow: R - residual hydrant; F - flow hydrant

Figure 4.4.4 Suggested Test Layout for Hydrants.

4.4.5

The number of hydrants to be used in any test depends upon the strength of the distribution system in the vicinity of the test location.

4.4.6

To obtain satisfactory test results of theoretical calculation of expected flows or rated capacities, sufficient discharge should be achieved to cause a drop in pressure at the residual hydrant of at least 10 percent. In water supply systems where additional municipal pumps increase the flow and pressure as additional test hydrants are opened, it might be necessary to declare an artificial drop in the static pressure of 10 percent to create a theoretical water supply curve.

<u>4.4.7*</u>

When conducting a flow test for the purpose of fire protection system design, the flow and pressure results should be adequate for the total demand of the system.

4.4.8

If the mains are small and the system weak, only one or two hydrants need to be flowed.

4.4.9

If the mains are large and the system strong, it might be necessary to flow as many as seven or eight hydrants.

4.5 Layout of Test and Procedure to Evaluate the Available Flow Through a Fire Hydrant.

4.5.1

When the purpose of a flow test is to determine the available flow through an individual hydrant only, the static and residual pressures should be taken at a single hydrant. The flow hydrant is also used as the static/residual hydrant.

4.5.1.1

This procedure should be used to evaluate the available water flow at a given hydrant.

4.5.1.2

The recommended procedures for determining the available water supply for the design of a waterbased protection system should be in accordance with Section 4.4.

4.5.2

A pressure gauge (or other pressure measuring device) should be located on one of the 21/2 in. (65 mm) hydrant outlets [see <u>4.6.1(1)</u>].

4.5.3

A closed control valve connected to a discharge nozzle(s) for the purpose of rate of flow measurement should be located on one of the other hydrant outlets.

4.5.4

The test procedures in Section <u>4.7</u> for venting air and taking static/residual readings and Section <u>4.8</u> for taking pitot readings should be followed.

4.5.5

The control valve on another hydrant outlet should be opened. When the rate of flow stabilizes, rate of flow and residual pressure measurements are taken and recorded.

4.6 Equipment.

4.6.1

The equipment necessary for field work can consist of the following:

• (1)

A special hydrant cap tapped with a hole into which is fitted a short length of 1/4 in. (6 mm) nipple provided with a "T" connection for a pressure gauge and a petcock at the end for relieving air pressure

• (2)

A single 100 psi (6.9 bar) or 200 psi (13.8 bar) bourdon pressure gauge with 1 psi (0.07 bar) graduations fixed onto the hydrant cap [If the static pressure on the system is greater than 100 psi (6.9 bar), the 200 psi (13.8 bar) gauge will be required.]

• (3)

A pitot tube and a 100 psi (6.9 bar) bourdon pressure gauge with 1 psi (0.07 bar) graduations, for each hydrant to be flowed simultaneously

• (4)

A sufficient number of hydrant wrenches to operate the hydrants simultaneously

• <u>(5)*</u>

Playpipes, stream straighteners, or other specially designed flow test outlets with known coefficients of discharge

4.6.2

It is preferred to use playpipes or stream straighteners or other specially designed flow test outlets with known coefficients of discharge when testing hydrants due to more streamlined flows and more accurate pitot readings.

4.6.3

All pressure gauges should be calibrated at least every 12 months, or more frequently depending on use.

4.6.4

When more than one hydrant is flowed, it is desirable and could be necessary to facilitate communications between team members.

4.7 Test Procedure.

4.7.1

In a typical test, the 100 psi (6.9 bar) or 200 psi (14 bar) gauge is attached to one of the 21/2 in. (65 mm) outlets of the residual hydrant using the special cap.

4.7.2

The cock on the gauge piping is opened, and the hydrant valve is opened full.

4.7.3

As soon as the air is exhausted from the barrel, the cock is closed.

4.7.4

A reading (static pressure) is taken when the needle comes to rest.

4.7.5

At a given signal, each of the other hydrants is opened in succession, with discharge taking place directly from the open hydrant butts.

4.7.6

Hydrants should be opened one at a time.

4.7.7

With all hydrants flowing, water should be allowed to flow for a sufficient time to clear all debris and foreign substances from the stream(s).

4.7.8

At that time, a signal is given to the people at the hydrants to read the pitot pressure of the streams simultaneously while the residual pressure is being read.

4.7.9

The final magnitude of the pressure drop can be controlled by the number of hydrants used and the number of outlets opened on each.

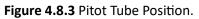
4.7.10

After the readings have been taken, hydrants should be shut down slowly, one at a time, to prevent undue surges in the system.

4.8 Pitot Readings.

4.8.1

When measuring discharge from open hydrant butts, it is always preferable from the standpoint of accuracy to use 21/2 in. (65 mm) outlets rather than pumper outlets.


4.8.2

In practically all cases, the 21/2 in. (65 mm) outlets are filled across the entire cross-section during flow, while in the case of the larger outlets there is very frequently a void near the bottom.

4.8.3

When measuring the pitot pressure of a stream of practically uniform velocity, the orifice in the pitot tube is held downstream approximately one-half the diameter of the hydrant outlet or nozzle opening, and in the center of the stream. (See <u>Figure 4.8.3</u>.)

4.8.4

The center line of the orifice should be at right angles to the plane of the face of the hydrant outlet.

4.8.5

The air chamber on the pitot tube should be kept elevated.

4.8.6

Pitot readings of less than 10 psi (0.7 bar) should be avoided, if possible.

4.8.7

Opening additional hydrant outlets will aid in controlling the pitot reading.

4.8.8

With dry barrel hydrants, the hydrant valve should be wide open to minimize problems with underground drain valves.

4.8.9

With wet barrel hydrants, the valve for the flowing outlet should be wide open to give a more streamlined flow and a more accurate pitot reading.

4.9 Determination of Discharge.

4.9.1

At the hydrants used for flow during the test, the discharges from the open butts are determined from measurements of the diameter of the outlets flowed, the pitot pressure (velocity head) of the streams as indicated by the pitot gauge readings, and the coefficient of the outlet being flowed as determined from Figure 4.9.1.

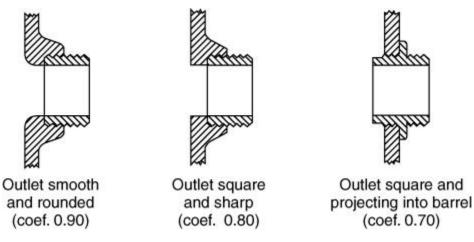


Figure 4.9.1 Three General Types of Hydrant Outlets and Their Coefficients of Discharge.

4.9.2

If flow tubes (stream straighteners) are being utilized, a coefficient of 0.95 is suggested unless the coefficient of the tube is known.

4.9.3

The formula used to compute the discharge, Q, in gpm (L/min) from these measurements is as shown in Equations 4.9.3a and 4.9.3b.

[4.9.3a]

$$Q = 29.84 cd^2 \sqrt{p}$$

where:

Q=

flow (gpm)

с=

coefficient of discharge (see Figure 4.9.1)

d=

diameter of the outlet (in.)

p=

pitot pressure (velocity head) (psi)

[4.9.3b]

$$Q_{\rm M} = 0.666 cd^2 \sqrt{p_{\rm M}}$$

where:

Q_M=

flow (L/min)

с=

coefficient of discharge (see Figure 4.9.1)

d=

diameter of the outlet (mm)

*р*м=

```
pitot pressure (velocity head) (bar)
```

4.10 Use of Pumper Outlets.

4.10.1

If it is necessary to use a pumper outlet, and flow tubes (stream straighteners) are not available, the best results are obtained with the pitot pressure (velocity head) maintained between 5 psi and 10 psi (0.34 bar and 0.7 bar).

4.10.2

For pumper outlets, the approximate discharge can be computed from Equations 4.9.3a and 4.9.3b using the pitot pressure (velocity head) at the center of the stream and multiplying the result by one of the coefficients in <u>Table 4.10.2</u>, depending upon the pitot pressure (velocity head).

Table 4.10.2 Pumper Outlet Coefficients

Pitot Pressure (Velocity Head)

psi	bar	Coefficient
2	0.14	0.97
3	0.21	0.92
4	0.28	0.89
5	0.35	0.86
6	0.41	0.84
7 and over	0.48 and over	0.83

4.10.3

These coefficients are applied in addition to the coefficient in Equations 4.9.3a and 4.9.3b and are for average-type hydrants.

4.11 Determination of Discharge Without a Pitot.

4.11.1

If a pitot tube is not available for use to measure the hydrant discharge, a gauge of sufficient pressure range, tapped into a hydrant cap can be used when the flow is through a hydrant outlet or a nozzle attached to a hydrant outlet.

4.11.2

The hydrant cap with gauge attached is placed on one outlet, and the flow is allowed to take place through the other outlet at the same elevation.

4.11.3

The readings obtained from a gauge so located, and the readings obtained from a gauge on a pitot tube held in the stream, are approximately the same.

4.12 Calculation Results.

4.12.1

The discharge in gpm (L/min) for each outlet flowed is obtained from <u>Table 4.12.1(a)</u> and <u>Table 4.12.1(b)</u> or by the use of Equations 4.9.3a and 4.9.3b.

Pitot Pressure		Orifice Size (in.)				
(psi)	Feet	1.75	2	2.25	2.375	2.5
1	2.31	91	119	151	168	187
2	4.61	129	169	214	238	264
3	5.92	158	207	262	292	323
4	9.23	183	239	302	337	373
5	11.54	204	267	338	376	417
6	13.84	224	292	370	412	457
7	16.15	242	316	400	445	493
8	18.46	258	338	427	476	528
9	20.76	274	358	453	505	560
10	23.07	289	377	478	532	590
11	25.38	303	396	501	558	519
12	27.68	317	413	523	583	546
13	29.99	329	430	545	607	572
14	32.30	342	447	565	630	598
15	34.61	354	462	585	652	722
16	36.91	366	477	504	673	746
17	39.22	377	492	623	694	769
18	41.53	388	506	641	714	791
19	43.83	398	520	658	734	813
20	46.14	409	534	676	753	834
22	50.75	429	560	709	789	875
24	55.37	448	585	740	825	914
26	59.98	466	509	770	858	951
28	54.60	484	532	799	891	987

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

	1	Orifice Size (in.)				
Pitot Pressure (psi)	Feet	1.75	2	2.25	2.375	2.5
30	59.21	501	654	827	922	1022
32	73.82	517	675	855	952	1055
34	78.44	533	596	881	981	1087
36	83.05	548	716	906	1010	1119
38	87.67	563	736	931	1038	1150
40	92.28	578	755	955	1065	1180
42	96.89	592	774	979	1091	1209
44	101.51	506	792	1002	1116	1237
46	106.12	520	810	1025	1142	1265
48	110.74	633	827	1047	1166	1292
50	115.35	546	844	1068 1190		1319
52	119.96	659	861	1089	1214	1345
54	124.58	572	877	1110	1237	1370
56	129.19	584	893	1130	1260	1396
58	133.81	596	909	1150	1282	1420
60	138.42	708	925	1170	1304	1445
62	143.03	720	940	1189	1325	1469
64	147.65	731	955	1209	1347	1492
66	152.26	742	970	1227	1367	1515
68	156.88	754	984	1246	1388	1538
70	161.49	765	999	1264	1408	1560
72	166.10	775	1013	1282	1428	1583
74	170.72	786	1027	1300	1448	1604
76	175.33	797	1041	1317	1467	1626

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Pitot Pressure		Orifice Size (in.)				
(psi)	Feet	1.75	2	2.25	2.375	2.5
78	179.95	307	1054	1334	1487	1647
80	184.56	817	1068	1351	1505	1668
82	189.17	328	1081	1368	1524	1689
84	193.79	338	1094	1385	1543	1709
86	198.40	347	1107	1401	1561	1730
88	203.02	857	1120	1417	1579	1750
90	207.63	367	1132	1433	1597	1769
92	212.24	877	1145	1449	1614	1789
94	216.86	386	1157	1465	1632	1808
96	221.47	395	1169	1480 1649		1827
98	226.09	905	1182	1495	1666	1846
100	230.70	914	1194	1511	1683	1865
102	235.31	923	1205	1526	1700	1884
104	239.93	932	1217	1541	1716	1902
106	244.54	941	1229	1555	1733	1920
108	249.16	950	1240	1570	1749	1938
110	253.77	958	1252	1584	1765	1956
112	258.38	967	1263	1599	1781	1974
114	263.00	976	1274	1613	1797	1991
116	267.61	984	1286	1627	1813	2009
118	272.23	993	1297	1641	1828	2026
120	276.84	1001	1308	1655	1844	2043
122	281.45	1009	1318	1669	1859	2060
124	286.07	1018	1329	1682	1874	2077

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Pitot Pressure		Orifice Size [in.]							
(psi)	Feet	1.75	2	2.25	2.375	2.5			
126	290.68	1026	1340	1696	1889	2093			
128	295.30	1034	1350	1709	1904	2110			
130	299.91	1042	1361	1722	1919	2126			
132	304.52	1050	1371	1736	1934	2143			
134	309.14	1058	1382	1749	1948	2159			
136	313.75	1066	1392	1762	1963	2175			

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Notes:

(1) This table is computed from the formula $Q = 29.84cd^2\sqrt{p}$, with c = 1.00. The theoretical discharge of seawater, as

(2) Appropriate coefficient should be applied where it is read from hydrant outlet. Where more accurate results are requi discharge from circular openings of sizes other than those in the table can readily be computed by applying the principle to the second sec

Table 4.12.1(b) Theoretical Discharge Through Circular Orifices (Liters of Wa	ter per Minute)

Pitot Pressure	Pitot Pressure	Meters	Orifice Size (mm)							
(kPa)	(bar)	(m)	44.5	50.8	57.2	60.3	63.5			
5	0.05	0.51	295	384	487	541	500			
10	0.10	1.02	417	544	589	766	849			
15	0.15	1.53	511	566	344	938	1040			
20	0.20	2.04	590	769	974	1083	1201			
25	0.25	2.55	659	859	1090	1211	1343			
30	0.30	3.06	722	941	1194	1326	1471			
35	0.35	3.57	780	1017	1289	1433	1589			
40	0.40	4.08	334	1087	1378	1532	1698			
45	0.45	4.59	385	1153	1462	1624	1801			
50	0.50	5.10	933	1215	1541	1712	1899			

Pitot Pressure			Orifice Size (in.)				
(psi)		Feet	1.75	2	2.25	2.375	2.5
55	0.55	5.61	978	1275	1616	1796	1992
60	0.60	5.12	1022	1331	1688	1876	2080
65	0.65	5.63	1063	1386	1757	1952	2165
70	0.70	7.14	1103	1438	1823	2026	2247
75	0.75	7.65	1142	1488	1887	2097	2326
80	0.80	8.16	1180	1537	1949	2166	2402
85	0.85	8.67	1216	1585	2009	2233	2476
90	0.90	9.18	1251	1631	2067	2297	2548
95	0.95	9.69	1285	1675	2124	2360	2617
100	1.00	10.20	1319	1719	2179	2422	2685
105	1.05	10.71	1351	1761	2233	2481	2752
110	1.10	11.22	1383	1803	2285	2540	2817
115	1.15	11.73	1414	1843	2337	2597	2880
120	1.20	12.24	1445	1883	2387	2653	2942
125	1.25	12.75	1475	1922	2436	2707	3002
130	1.30	13.26	1504	1960	2484	2761	3062
140	1.40	14.28	1560	2034	2578	2865	3178
150	1.50	15.30	1615	2105	2669	2966	3289
160	1.60	16.32	1668	2174	2756	3063	3397
170	1.70	17.34	1720	2241	2841	3157	3501
180	1.80	18.36	1769	2306	2923	3249	3603
190	1.90	19.38	1818	2369	3004	3338	3702
200	2.00	20.40	1865	2431	3082	3425	3798
210	2.10	21.42	1911	2491	3158	3509	3892

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Pitot Pressure		Orific (in.)	e Size				
(psi)	Feet	1.75	2	2.25	5 2.3	75 2.5	
220	2.20	22.44	1956	2549	3232	3592	3983
230	2.30	23.46	2000	2607	3305	3673	4073
240	2.40	24.48	2043	2663	3376	3752	4160
250	2.50	25.50	2085	2718	3445	3829	4246
260	2.60	26.52	2127	2771	3514	3905	4330
270	2.70	27.54	2167	2824	3581	3979	4413
285	2.85	29.07	2226	2902	3679	4088	4534
300	3.00	30.60	2284	2977	3774	4194	4651
315	3.15	32.13	2341	3050	3867	4298	4766
330	3.30	33.66	2396	3122	3958	4399	4878
345	3.45	35.19	2450	3192	4047	4498	4988
360	3.60	36.72	2502	3261	4134	4595	5095
375	3.75	38.25	2554	3328	4220	4689	5200
390	3.90	39.78	2605	3394	4303	4782	5303
405	4.05	41.31	2654	3459	4385	4873	5404
420	4.20	42.84	2703	3522	4466	4963	5504
435	4.35	44.37	2751	3585	4545	5051	5601
450	4.50	45.90	2798	3646	4622	5137	5697
465	4.65	47.43	2844	3706	4699	5222	5791
480	4.80	48.96	2889	3765	4774	5306	5884
495	4.95	50.49	2934	3824	4848	5388	5975
510	5.10	52.02	2978	3881	4921	5469	5065
525	5.25	53.55	3022	3938	4993	5549	5153
540	5.40	55.08	3065	3994	5064	5627	5240

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Pitot Pressure				Orifice Size (in.)					
(psi)		Feet		1.75	2		2.25	2.375	2.5
555	5.55	5	6.61	3107	4	049	5133	5705	5327
570	5.70	5	58.14	3149	4	103	5202	5782	5411
585	5.85	5	59.67	3190	1	157	5270	5857	5495
600	6.00	6	51.20	3231	4	210	5338	5932	5578
615	6.15	6	52.73	3271	4	262	5404	6005	5660
630	5.30	5	64.26	3310	4	314	5469	6078	5740
645	6.45	5	5.79	3349	4	365	5534	6150	5820
660	6.60	6	57.32	3388	4	415	5598	6221	5899
675	6.75	6	8.85	3426	4	465	5661	6292	5977
690	6.90	7	0.38	3464	4	515	5724	6361	7054
705	7.05	7	1.91	3502	4	563	5786	6430	7130
720	7.20	7	/3.44	3539	4	612	5847	6498	7206
735	7.35	7	4.97	3576	1	660	5908	6565	7281
750	7.50	7	6.50	3612	4	707	5968	6632	7354
765	7.65	7	78.03	3648	4	754	5027	6698	7428
780	7.80	7	9.56	3683	4	800	5086	6763	7500
795	7.95	8	31.09	3719	4	846	5144	5828	7572
810	8.10	8	32.62	3754	4	892	5202	6892	7643
825	8.25	8	84.15	3788	4	937	6259	6956	7713
840	8.40	8	85.68	3822	4	981	5315	7019	7783
855	8.55	8	37.21	3856	5	026	5372	7081	7852
870	8.70	8	38.74	3890	5	069	5427	7143	7921
885	8.85	9	0.27	3923	5	113	5482	7204	7989
900	9.00	9	91.80	3957	5	156	5537	7265	3056

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Pitot Pressure			Orifice (in.)	Size								
(psi)		Feet	1.75		2	i	2.25		2.375	5	2.5	
915	9.15	93.33		3989		5199		6591		7325		8123
930	9.30	94.86		4022		5241		6645		7385		8190
945	9.45	96.39		4054		5283		5699		7444		8255

Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (US Gallons of Water per Minute)

Notes:

(1) This table is computed from the formula $Q_M = 0.666cd^2 \sqrt{p_M}$, with c = 1.00. The theoretical discharge of seawater

(2) Appropriate coefficient should be applied where it is read from the hydrant outlet. Where more accurate results are redischarge from circular openings of sizes other than those in the table can readily be computed by applying the principle to the second sec

4.12.1.1

If more than one outlet is used, the discharges from all are added to obtain the total discharge.

4.12.1.2

The formula that is generally used to compute the available flow in the desired test location (either the underground main or static/residual hydrant, depending on the test), the specified residual pressure, or for any desired pressure drop is Equation 4.12.1.2:

[4.12.1.2]

$$Q_{R} = Q_{F} \times \frac{h_{r}^{0.54}}{h_{f}^{0.54}}$$

where:

 $Q_R =$

flow predicted at desired residual pressure

Q_F=

total flow measured during test

h_r=

pressure drop to desired residual pressure

 $h_{f}=$

pressure drop measured during test

4.12.1.3

In Equation 4.12.1.2, any units of discharge or pressure drop can be used as long as the same units are used for each value of the same variable.

4.12.1.4

In other words, if Q_R is expressed in gpm, Q_F must be in gpm, and if h_r is expressed in psi, h_f must be expressed in psi.

4.12.1.5

These are the units that are normally used in applying Equation 4.12.1.2 to fire flow test computations.

4.13 Data Sheet.

4.13.1

The data secured during the testing of hydrants for uniform marking can be valuable for other purposes.

4.13.2

With this in mind, it is suggested that the form shown in <u>Figure 4.13.2</u> be used to record information that is taken.

			V	VATER FLO	W TEST RE	PORT			
Location	:				Test	t by:			
Address:			Date:						
			Time:						
SYSTEM	M DATA								
Size of main:		17-	Dead	l end:		Looped:			
Commer	nts:								
TEST D	ATA								
Location	of test hydr	ants:	Resid	ual hydrants:					
			Flo	w hydrant A:					
			Flo	w hydrant B:					
	Sta	atic pressure							
Test No.	No. of Outlets	Orifice Size (in.)	Orifice Coeff.	Residual Pressure (psig)	Pitot Pressure (psig)	Flow (US gpm)	Comments		
1									
2									
3									
4									
5									
Projected	d results @ 2	20 psi:					Sketch of test configuratio		

Figure 4.13.2 Sample Report of a Hydrant Flow Test.

4.13.3

The back of the form should include a location sketch.

4.13.4

150 140 Water Flow Test 130 Project: 120 Location: 110 Test by: 100 Date: Time: 90 Pressure (psi) 80 7 60 50 40 30 20 10 400 300 500 600 700 800 900 1000 100 200 Flow (gpm) N^{1.85} Multiply Scale by _

Results of the flow test should be indicated on a hydraulic graph, such as the one shown in Figure 4.13.4.

4.13.5

When the tests are complete, the forms should be filed for future reference by interested parties.

4.14* System Corrections.

Flow test results show the strength of the distribution system at the time and date of the testing. It does not necessarily indicate the degree of adequacy of the entire water works system. If the testing does not occur during a period of peak demand, then the flow test results might not provide an accurate representation of the water available during those peak periods.

4.15 Public Hydrant Testing and Flushing.

Figure 4.13.4 Sample Graph Sheet.

<u>4.15.1*</u>

Public hydrants should be flow tested at least every 5 years to verify capacity and marking of the hydrant.

4.15.2

Public hydrants should be flushed at least annually to verify operation, address repairs, and verify reliability.

4.15.3

Public fire hydrants should be inspected, tested, and maintained in accordance with ANSI/AWWA G200, *Standard for Distribution Systems Operation and Management*.

4.16 Private Hydrant Inspection, Testing, and Maintenance.

Private fire hydrants should be inspected, tested, and maintained in accordance with NFPA 25.

Marking of Hydrants

5.1 Classification of Hydrants.

Hydrants should be classified in accordance with their rated capacities [at 20 psi (1.4 bar) residual pressure or other designated value] shown in <u>Table 5.1</u>.

Table 5.1 Classification and Marking of Hydrants

Hydrant Classification	Color Scheme	Hydrant Capacity (gpm)	Hydrant Capacity (L/min)
АА	Light blue	>1500	>5700
A	Green	1000–1499	380–5699
В	Orange	500–999	1900–3799
С	Red	<500	<1900

5.2 Marking of Hydrants.

5.2.1 Public Hydrants.

5.2.1.1

All barrels should be chrome yellow except in cases where another color has already been adopted.

5.2.1.2

The tops and nozzle caps should be painted with the capacity-indicating color scheme shown in <u>Table</u> <u>5.1</u> to provide simplicity and consistency with colors used in signal work for safety, danger, and intermediate condition.

5.2.1.3

For rapid identification at night, it is recommended that the capacity colors be of a reflective-type paint.

5.2.1.4

Hydrants rated at less than 20 psi (1.4 bar) should have the rated pressure stenciled in black on the hydrant top.

5.2.1.5

In addition to the painted top and nozzle caps, it can be advantageous to stencil the rated capacity of high-volume hydrants on the top.

5.2.1.6

The classification and marking of hydrants provided for in this chapter anticipate determination based on individual flow test.

5.2.1.7

Where a group of hydrants can be used at the time of a fire, some special marking designating groupflow capacity could be desirable.

5.2.2 Permanently Inoperative Hydrants.

Hydrants that are permanently inoperative or unusable should be removed.

5.2.3 Temporarily Inoperative Hydrants.

Hydrants that are temporarily inoperative or unusable should be wrapped or otherwise provided with temporary indication of their condition.

5.2.4 Flush Hydrants.

Location markers for flush hydrants should carry the same background color as stated above for class indication, with such other data stenciled thereon as deemed necessary.

5.2.5 Private Hydrants.

5.2.5.1

All barrels should be red except in cases where another color has already been adopted.

5.2.5.2

The tops and nozzle caps should be painted with the following capacity-indicating color scheme to provide simplicity and consistency with colors used in signal work for safety, danger, and intermediate condition:

• (1)

Class AA — Light blue

• (2)

Class A — Green

• (3)

```
Class B — Orange
```

• (4)

 $\operatorname{Class} \mathsf{C} - \operatorname{Red}$

5.2.5.3

For rapid identification at night, it is recommended that the capacity colors be of a reflective-type paint.

5.2.5.4

Hydrants rated at less than 20 psi (1.4 bar) should have the rated pressure stenciled in black on the hydrant top.

5.2.5.5

In addition to the painted top and nozzle caps, it can be advantageous to stencil the rated capacity of the high-volume hydrants on the top.

5.2.5.6

The classification and marking of hydrants provided for in this chapter anticipate determination based on individual flow test.

5.2.5.7

Where a group of hydrants can be used at a time of a fire, some special marking designating group-flow capacity could be desirable.