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Introduction 
 
Background 
Lacamas Lake and Round Lake are located in Clark County, Washington, on the northern 
boundary of the city of Camas.  In a county with few lakes, Lacamas and Round Lakes are 
recognized as an important recreational resource.  Fishermen, swimmers, boaters, and hikers 
utilize the lakes and their shores year-round.  

Periodic water quality monitoring by the Southwest Washington Health District (SWHD) from 
1974-1980 first raised concerns about water quality in Lacamas Lake and its tributary streams.  In 
1983, the Clark County Intergovernmental Resource Center (IRC) received a grant from the 
Washington Department of Ecology (Ecology) to fund a Phase I Diagnostic and Restoration 
Analysis (SRI, 1985).   
 
Based on this investigation, Lacamas and Round Lake were categorized as “eutrophic”.  The 
terms oligotrophic, mesotrophic, and eutrophic are often used to characterize lakes according to a 
low, medium, or high level of algae production, respectively.  Over time, lakes naturally move 
slowly along this continuum in a direction toward eutrophic conditions (high algal production).  
In some cases, however, this movement can be dramatically accelerated due to human activities 
in a lake or watershed.  
  
It should be noted that trophic categories are not meant to convey value judgments.  Oligotrophic 
conditions do not necessarily imply “good” water quality or a “healthy” lake.  Conversely, 
eutrophic conditions do not always mean a lake is impaired or has “bad” water quality.  Rather, 
trophic categories describe the amount of nutrient enrichment and biological productivity in a 
lake, whereas terms like “healthy” and “impaired” refer to the condition of a lake relative to its 
desired uses or natural condition (Snohomish County, 2003). 
 
In the case of Lacamas Lake, accelerated eutrophication has dramatically altered the lake from its 
natural historical condition and resulted in conditions that may impair current desired uses such as 
fishing, swimming, and aesthetic enjoyment. 
 
Water quality problems associated with Lacamas Lake eutrophication in 1984 included severe 
dissolved oxygen depletion, poor water clarity, high levels of algae growth, nuisance blue-green 
algae blooms, and dense beds of aquatic macrophytes.  These conditions are typical of a highly 
eutrophic lake, and were attributed primarily to excessive inputs of the nutrient phosphorus due to 
human activities in the Lacamas watershed.  
 
Subsequently, the Lacamas Lake Restoration Program (LLRP), supported in part by grants from 
the Centennial Clean Water Fund and Section 319 Fund, implemented a program of agricultural 
Best Management Practice (BMP) installation, water quality monitoring, and public education in 
the watershed between 1987 and 2001.  Those efforts were aimed at reducing the amount of 
phosphorus in Lacamas Lake and are summarized in the Lacamas Lake Restoration Program 
Final Report (Hutton, 2002), Lacamas Lake Restoration Program: WY2000 and WY 2001 Water 
Quality Monitoring (Schnabel, 2002), and the Lacamas Lake Watershed Restoration Project 
Program Review (E&S, 1998).  These reports and others relating to Lacamas Lake are available 
from Clark County Water Resources. 
 
The LLRP was successful in reducing the number of agricultural sources of phosphorus to the 
lake, establishing a greater scientific understanding of its water quality and dynamics, and raising 
awareness among the citizens of Clark County.  However, despite the fact that annual loading and 
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in-lake concentrations of phosphorus declined, the lake continued to exhibit the signs of 
eutrophication observed in the early 1980s.  
  
Since the expiration of the Lacamas grant in December 2001, Clark County Water Resources has 
continued ambient monitoring activities in Lacamas Creek and Lacamas Lake under its Clean 
Water Program.  In the absence of a coordinated lake management and monitoring approach by 
other local and state jurisdictions, Water Resources continues ambient monitoring of this resource 
to enhance future lake management decisions and improve the evaluation of potential changes in 
lake health.  
 
Purpose and Scope 
This report updates water quality status and trend information for Lacamas Creek and Lacamas 
Lake.  The report describes annual loading estimates, explores possible trends in key nutrient 
concentrations, presents recent lake monitoring results, and defines current lake trophic status.  
Although comparisons are made with historical data, the report does not include a comprehensive 
discussion of past Lacamas Lake monitoring results.   
 
Report Components 
The report describes two separate project components: 
 
1) Lacamas Creek (inlet/outlet): the final summary for a five-year project to estimate total 
phosphorus and total suspended solids loading to and from Lacamas Lake. 
 
Annual total phosphorus (TP) and total suspended solids (TSS) loads into and out of the lake are 
calculated, including an estimate of annual TP and TSS retention within the lake.  Average annual 
TP concentrations in Lacamas Creek are compared with EPA criteria.  The 1999-2003 Lacamas 
Creek data set is analyzed for trends in TP and TSS concentration, and current TP/TSS loading 
rates are compared with earlier estimates. 

 
2) Lacamas Lake: an update of lake condition and trend information based on data collected 
during water year (WY) 2002 and WY2003, as well as the historical dataset.  
 
Patterns of lake stratification, dissolved oxygen, and temperature are presented for WY2003.   
Box-plots of summertime epilimnetic TP and total Kjeldahl nitrogen (TKN) concentrations are 
constructed and the 1991-2003 lake data set is analyzed for trends in epilimnetic water 
transparency (Secchi disk), TP, and TKN.  Median epilimnetic TP concentrations are compared to 
EPA criteria and nitrogen concentrations are compared to expected ranges for eutrophic water 
bodies.   
 
WY2003 phytoplankton population density and biovolume are compared to results from 1984 and 
1995, and current population composition is discussed.  Recent Washington Department of 
Ecology (Ecology) aquatic plant survey results are also summarized.  WY2003 lake trophic status 
is determined through the calculation of trophic state indices (TSI) for TP, Secchi disk, 
chlorophyll-a, and phytoplankton data.  Box-plots of yearly summertime TSI values are presented 
for the 1984-2003 dataset.   
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Methods 
 
Methods and QA procedures utilized in this project are described in the Lacamas Lake Watershed 
Water Quality Monitoring Program QAPP (1998), Lacamas Lake Monitoring Project QAPP 
(2004, draft), and, where noted, the report titled Lacamas Lake Restoration Program: WY2000 
and WY2001 Monitoring (2002).  For a complete description of laboratory procedures, see 
NCA’s Quality Assurance Manual (2001). 
 
Sample station locations 
Figure 1 shows sample station locations for the Lacamas project.  Station LACL11 (lake samples) 
is located over the deepest part of Lacamas Lake, and corresponds to the location of ambient 
water quality monitoring in previous Lacamas Lake studies.  Station LACL00 (outlet samples) is 
located in the narrow channel connecting Lacamas and Round Lakes, immediately east of the 
State Route 500 bridge.  Station LAC050 (inlet samples) is located on Lacamas Creek at the 
Goodwin Road bridge (County bridge #172), approximately ½ mile upstream from Lacamas 
Lake. 
 

 
Figure 1.  Location of Lacamas Lake Monitoring Program sample stations. 
 
Sampling scheme and Parameters 
The project consisted of two separate sampling components.  The first component involved 
monitoring at the inlet and outlet of the lake to evaluate annual TP and TSS loading.  The second 
consisted of monitoring in-lake conditions. Sampling schedules and parameters for each project 
component are shown in Table 1.   
 
Field procedures 
Lacamas Lake 
Lake samples were collected at station LACL11.  Field measurements for water temperature, 
dissolved oxygen, ph, and conductivity were collected at 1m intervals using a calibrated Hydrolab 
Datasonde 4 multi-probe and Surveyor 4 data-logger.  Water samples for nutrient and suspended 
solids analyses were collected from the epilimnion, metalimnion, and hypolimnion using a  
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vertical VanDorn-style sampling bottle.   
 
Appropriate sample bottles were supplied by the analytical laboratory.  Water samples were 
stored on ice in coolers until delivery to the lab.  Secchi disk readings were taken on the shady 
side of the boat, with eye level just above the gunwale. 
 
Chlorophyll a and phytoplankton samples were obtained by compositing three grab samples 
equally spaced through the photic zone.  Photic zone depth was estimated as 2.5 times the 
measured Secchi depth.  Grabs were collected using a VanDorn-style sampling bottle and 
composited in a nalgene carboy, from which sub-samples were drawn. 
 
All field measurements were recorded on data sheets to provide a written backup of electronically 
stored data.  Ancillary data pertaining to weather conditions, equipment function, and staff 
observations were also recorded on data sheets.  
 

Project 
Component 

 
Parameter 

 
Schedule 

 
Collection 

Lacamas Creek:    
Inlet (LAC050) stream flow hourly pressure transducer 

 total phosphorus weekly + storm events automated grab 
 total suspended solids weekly + storm events automated grab 
Outlet (LACL00) total phosphorus weekly  manual grab 
 total suspended solids weekly  manual grab 
    
Lacamas Lake:    
Lake (LACL11) Secchi depth monthly visual measurement 
 temperature monthly field meter, vertical profile 
 dissolved oxygen monthly field meter, vertical profile 
 conductivity monthly field meter, vertical profile 
 pH monthly field meter, vertical profile 
 total phosphorus monthly manual grab, 3 depths 
 orthophosphorus monthly manual grab, 3 depths 
 total suspended solids monthly manual grab, 3 depths 
 total kjeldahl nitrogen monthly manual grab, 3 depths 
 ammonia-nitrogen monthly manual grab, 3 depths 
 nitrate + nitrite nitrogen monthly manual grab, 3 depths 
 chlorophyll a monthly (May-Oct 2003) Composite, photic zone 
 phytoplankton monthly (May-Oct 2003) Composite, photic zone 

Table 1. Sampling schedule and collection methods. 
 
Lacamas Creek (Inlet/Outlet) 
Inlet samples were collected at station LAC050 using a Sigma 900MAX all-weather refrigerated 
sampler.  In addition to providing automated sample collection, the Sigma equipment recorded 
hourly stream stage to calculate discharge.  Water samples were collected approximately weekly 
and analyzed for total phosphorus and total suspended solids.  In addition to this weekly base-
flow sampling, selected storm events were sampled at a higher frequency to capture rapidly 
changing TP and TSS concentrations.  A total of 125 samples were collected during WY2002 and 
90 during WY2003.   
 
Outlet samples were collected at station LACL00 using a vertical VanDorn-style sampling bottle 
or Sigma 900MAX portable sampler.  Samples were collected from the SR500 bridge at 
approximately the midpoint of the channel and near the middle of the water column 
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(approximately 2m below the water surface).  Samples were collected approximately weekly and 
analyzed for total phosphorus and total suspended solids.  A total of 53 samples were collected 
during WY2002 and 38 during WY 2003. 
 
Laboratory procedures 
Laboratory analyses for TP, TSS, TKN, ammonia nitrogen, nitrate + nitrite nitrogen, and 
chlorophyll a were conducted by North Creek Analytical, an Ecology-accredited facility in 
Beaverton, Oregon.  Phytoplankton samples were analyzed by Aquatic Analysts in White 
Salmon, Washington.  Table 2 contains analytical methods and reporting limits, in addition to 
precision, accuracy, and bias targets. 
 

 
Characteristic 

 
Method 

 
Reference 

Reporting 
Limit 

 
Precision 

 
Accuracy 

 
Bias 

  lab conc/units %RSD units/% error %REC 
stream flow  na     
temperature thermistor na 0.01 C 10% ±0.15 C na 
dissolved oxygen membrane electrode na 0.01 mg/L 10% ±0.2 mg/L na 
conductivity electrode na 4 digits 10% ±0.5% of 

reading 
na 

pH glass electrode na 0.01 units 10% ±0.2 units na 
total phosphorus colorimetric EPA 365.1 0.02 mg/L 10% 25% 5% 
 orthophosphorus colorimetric EPA 365.2 0.01 mg/L 10% 25% 5% 
total kjeldahl 
nitrogen 

colorimetric EPA 351.2 0.5 mg/L 10% 25% 5% 

ammonia-nitrogen colorimetric EPA 350.1 0.05 mg/L 10% 25% 5% 
nitrate+nitrite 
nitrogen 

colorimetric EPA 353.2 0.05 mg/L 10% 25% 5% 

chlorophyll a spectrophotometric SM 10200H 0.2 ug/L 20% 45% 5% 
phytoplankton slide transect na na na na na 

Table 2.  Analytical methods and measurement quality objectives. 
 
QA/QC 
Field QA 
The Quality Assurance program for field sampling consisted of several components: 1) sample 
collection according to standard procedures as described in the previous section and in Standard 
Procedures for Monitoring Activities, Clark County Water Resources Section (June 2002), 2) 
field staff training, 3) documented instrument calibration, and 4) the collection of field Quality 
Control (QC) samples. 
 
Four types of field QC samples or measurements were collected. 

• Duplicate field samples and duplicate field measurements- these consisted of an 
additional sample collection or measurement made a few minutes after the initial 
sample or measurement.  These samples are also referred to as “sequential” 
duplicates and represent the variability due to short-term in-stream or in-lake 
processes, sample collection and processing, and laboratory analysis. 

• Split field samples- these consisted of a single composite sample split into two 
containers that were processed as individual samples.  This eliminated the in-lake 
variability and isolated the variability to that due to field processing and analysis. 

• Transfer blanks- these consisted of the submission and analysis of de-ionized 
water samples exposed to sampling equipment and procedures in the field. 

• Transport blanks- these consisted of the submission and analysis of de-ionized 
water samples prepared in the office and carried through the field trip. 
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QC collection targets were modified during late 2002 as part of a Water Resources QA review 
and update.  QC sample schedules below reflect the updated targets used during WY 2003. 
At the lake station (LACL11), duplicate field samples and duplicate field measurements were 
collected every other month for all characteristics except chlorophyll-a.  One split field sample 
was collected for chlorophyll-a analysis.  Transfer blanks were collected during lake trips semi-
annually and a transport blank was collected annually.  QC samples were submitted semi-blind to 
the laboratory.  They were identified as QC samples from a particular station, but sample type 
(duplicate, transfer blank, or transport blank) was not identified.   
 
Field meters were calibrated and maintained in accordance with manufacturer’s instructions. 
Conductivity check standards and a NIST-certified thermometer were used to verify field meter 
accuracy.  Calibration logs were completed during each calibration and are archived in Water 
Resources Section files.  Calibration drift in pH meters was checked against pH buffer solutions, 
and dissolved oxygen measurements were verified using a modified Winkler titration. 
 
Duplicate field samples from the inlet/outlet stations (LAC050 and LACL00) were collected 
every other month beginning in late WY2002.  Stage measurements recorded with the Sigma 
900MAX at station LAC050 were checked for consistency against staff gage readings and a 
backup stage recorder at the same location.  The accuracy of the stage-discharge relationship used 
for calculating stream discharge was verified through comparison with instantaneous discharge 
measurements collected during WY2003.  
 
Laboratory QA 
Laboratory check standards, matrix spikes, analytical duplicates, and blanks were analyzed in 
accordance with the NCA Quality Assurance Manual (2001).  QC results were reported to Water 
Resources along with sample data.  Laboratory data reduction, review, assessment, and reporting 
were performed according to the NCA Quality Assurance Manual.   
 
Data Analysis Procedures 
Data analysis included the calculation of annual loading estimates, construction of box-and-
whisker plots, trend analysis, trend power and the calculation of trophic state index values.  
Analyses were performed using Microsoft Excel, Minitab, and WQStat Plus software.  Data 
analysis procedures are included in the Appendix. 
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Results and Discussion 
 
Quality Assurance 
QA/QC results and discussion are included in the Appendix. 
 
Lacamas Creek (inlet/outlet) 
TP and TSS loading 
Table 3 and Figure 2 summarize available TP loading, TSS loading, and streamflow estimates for 
Lacamas Creek since 1984.   
 
During WY 2003, TP loading was estimated at 5000 kg (~5.5 tons) and TP export from the lake 
was ~4400 kg.  This amounts to a net annual TP retention of 600 kg (12%) within the lake.  
Between WY1999 and WY2003, mean annual TP loading was 6000 kg, which compares 
favorably to the estimate of 14,000 kg in 1984.  However, differences in annual stream discharge 
can greatly affect annual loads.  To compensate for these differences, loading was also calculated 
per unit of stream discharge (kilograms/acre-ft).  Since 1999, estimated TP loading has remained 
consistently between 0.06 and 0.07 kilograms per acre-foot of stream discharge.  Again, this 
compares favorably to the earlier estimate of 0.11 kg/acre-ft in 1984 (Figure 2). 
 

  ~WY 1984 WY 1999 WY 2000 WY 2001 WY 2002 WY 2003
Total Stream Discharge (ac-ft/yr): 128,237 127,098 96,265 48,778 102,471 81,151 
Mean Discharge (cfs) 178 176 133 67 141 112 
       
TP In-load (kg): 14,387 7,560 6,414 3,061 7,632 5,001 
TP load per discharge (kg/ac-ft): 0.11 0.06 0.07 0.06 0.07 0.06 
TP Out-load (kg): 12,161 n/a 5,065 1,785 6,650 4,390 
% Retained in lake: 15 n/a 21 42 13 12 
       
TSS In-load (kg): 1,820,000 812,094 1,238,691 719,246 615,291 523,891 
TSS load per discharge (kg/ac-ft): 14.2 6.4 12.9 14.8 6.0 6.5 
TSS Out-load (kg): n/a n/a 543,242 464,888 417,687 204,967 
% Retained in lake: n/a n/a 56 35 32 61 
       

Table 3.  Streamflow and loading estimates since 1984. 
 
There has been a net retention of TP in the lake each year that loading estimates have been 
calculated.  The retention rate has ranged from 12% to 42% of the estimated in-load, with the 
highest annual retention rate corresponding to a water year with exceptionally low annual 
discharge (WY2001).   
 
TSS loading for WY 2003 was estimated at slightly more than 500,000 kg (~550 tons, or about 
55 dump-truck loads).  TSS export was estimated at ~200,000 kg, leaving a net annual TSS 
retention of ~300,000 kg (61%) during WY 2003.   The mean annual TSS load between WY1999 
and WY2003 was just under 800,000 kg, compared to 1,820,000 kg in 1984.  However, TSS 
loading per unit of stream discharge has ranged from 6 to 15 kg/ac-ft over the past five years, 
compared to 14 kg/ac-ft in 1984 (Figure 2).   
 
As with TP, there has been a net retention of TSS in the lake during each year monitored.  
Retention rate estimates have ranged from 32% to 61% of the estimated in-load, indicating 
consistent deposition of sediment within Lacamas Lake. 
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Figure 2.  Annual TP and TSS in-load, out-load, and in-load per unit flow. 
 
TP and TSS concentrations 
Table 4 shows the time-weighted mean TP and TSS concentrations at the inlet and outlet of 
Lacamas Lake.  Time-weighted means were calculated by taking the mean of the entire hourly 
dataset, so that individual measurements were weighted according to the length of time they were 
used to represent stream concentration.  The time-weighted mean is an estimate, but should be a 
more accurate representation of annual stream conditions than the mean of the individual samples 
because it compensates for the effect of high concentrations in storm samples which only persist 
for a short time. 
 

  ~WY 1984 WY 1999 WY 2000 WY 2001 WY 2002 WY 2003
Mean In-flow TP (mg/L):* 0.089 0.050 0.061 0.046 0.052 0.038 
Mean Out-flow TP (mg/L):* n/a n/a 0.039 0.034 0.034 0.030 
       
Mean In-flow TSS (mg/L):* 11.5 6.3 12.5 9.6 5.3 4.1 
Mean Out-flow TSS (mg/L):* n/a n/a 6.2 8.4 3.0 2.0 
*Time-weighted       

Table 4. Time-weighted mean TP and TSS concentrations at Lacamas Lake inlet and outlet. 
 
The usual EPA criterion for TP in streams is 0.100 mg/L.  However, EPA established a more 
stringent criterion of 0.050 mg/L for streams that enter lakes.  The EPA in-lake criterion for 
avoiding eutrophication is 0.025 mg/L.  Since 1999, the mean inflow TP has remained near the 
0.050 mg/L criterion, with the lowest concentration occurring during WY 2003.  This represents a 
considerable decrease when compared to the annual mean of 0.089 mg/L TP in 1984.  Mean 
outflow TP slightly exceeded the in-lake criteria of 0.025 mg/L, but has remained well below 
stream criteria as it enters Round Lake and, presumably, Lacamas Creek downstream of the lakes. 
 
Figure 3 shows the results of a Seasonal Kendall test for trend on flow-adjusted monthly TP data 
collected at station LAC050 for WY1999-2003.  For months with multiple samples, the sample 
collected closest to the middle of each month was used in the analysis.  See the trend analysis 
section in the Appendix for a complete explanation of the data set and procedures used for trend 
analysis.   
 
The trend analysis indicates a slight downward slope in concentration.  However, the trend is not 
statistically significant at the 80%, 90%, or 95% confidence levels. 
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Figure 3. Seasonal Kendall test for trend in flow-adjusted total phosphorus 
concentrations, Lacamas Creek station LAC050, WY1999-2003. 

 
Time-weighted mean TSS concentrations at station LAC050 from 1999-2003 ranged from 4.1 to 
12.5 mg/L.  Numeric criteria for TSS in streams have not been established. 
 
Figure 4 shows the results of a Seasonal Kendall test for trend on monthly TSS data collected at 
station LAC050 for WY1999-2003.  Again, for months with multiple samples the sample 
collected closest to the middle of each month was used in the analysis.  TSS values were not 
flow-adjusted because a large number of censored data points (below laboratory reporting limits) 
precluded the use of the flow-adjustment procedure.  The test indicates a decreasing trend in TSS 
concentration between 1999 and 2003.  The trend is statistically significant at the 95% confidence 
level.  However, a reliable estimate of the slope of the trend cannot be calculated due to the large 
proportion of censored data.   
 

                 
Figure 4. Seasonal Kendall test for trend in total suspended solids concentrations, 
Lacamas Creek station LAC050, WY1999-2003. 
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Lacamas Lake 
Thermal stratification 
In lake ecology, thermal stratification refers to the separation of the water column into distinct, 
non-mixing layers.  Stratification occurs when solar energy warms the surface water, or 
epilimnion.  The deeper water (hypolimnion) tends to remain colder because the sun’s rays only 
penetrate a short distance.  In a sense, the warm upper water “floats” on the cold deeper water, 
separated by a layer of rapidly decreasing temperature called the thermocline.   
 
This temperature gradient is often strong enough to confine water, nutrients, dissolved oxygen, 
and suspended materials to a discrete layer, playing a key role in the movement of materials 
within lakes.  Stratification generally occurs during summer, with fully-mixed periods occurring 
during fall through spring when solar warming is less pronounced.  During mixed periods, the 
temperature gradient is weak or non-existent, allowing water and materials to circulate 
throughout the water column.   
 
Lacamas Lake typically displays strong thermal stratification from approximately May through 
October.  The progression of thermal stratification during WY 2003 (Figure 5) followed a similar 
pattern to previous years.  Note the fully mixed conditions during January through March, 
followed by increasing stratification through spring and a strong thermocline developing between 
three and six meters during June through September.   
 
Temperature 
Water temperature is a key element controlling biological processes in lakes, and has a direct 
impact on the health of aquatic organisms.  Washington State water quality criteria require that 
“all lakes and all feeder streams to lakes (reservoirs with a mean detention time greater than 
fifteen days are to be treated as a lake for use designation) … be protected for the designated uses 
of salmon and trout spawning, core rearing, and migration; and extraordinary primary contact 
recreation” (Washington Administrative Code 173-201A-600).  The mean detention time 
calculated for Lacamas Lake (1984) is approximately 22 days.  This criterion specifies that lake 
water temperature should not exceed 16° C (60.8° F).   
 
Lacamas Lake temperature data from WY 2003 is summarized in Figure 5.  Epilimnetic water 
temperatures exceeded the state criterion from June through September during both WY2002 and 
WY2003, reaching a maximum of approximately 23° C and 25° C during July of each year, 
respectively.  Temperatures in this range are sufficient to promote algal growth throughout the 
summer, and are considerably above the acceptable temperature range for cold-water fish species 
such as trout.  Water temperatures below 16° C were present throughout the summer at depths 
greater than 4-6 meters. However, as shown in the next section, these cold-water areas were often 
uninhabitable by fish due to extremely low dissolved oxygen concentrations.  
 
Dissolved Oxygen 
The state criterion for dissolved oxygen in lakes is 9.5 mg/L (WAC 173-201A-200).  Figure 5 
shows Lacamas Lake dissolved oxygen concentrations during WY2003.  Dissolved oxygen 
concentrations have followed a similar pattern since at least 1984, decreasing dramatically with 
increasing depth during the summer months.   
 
There is generally insufficient oxygen for most aquatic life uses (<5 mg/L) at depths greater than 
4-5 meters from June through October, with essentially no oxygen at all below 6 meters from July 
through September (see lighter shades in lower section of Figure 5).  Only from January through 
March does the entire water column meet the state criterion.   
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Figure 5.  Water temperature and dissolved oxygen contours in Lacamas Lake,  
WY 2003. 
 

Oxygen in the deeper waters is consumed as microorganisms decompose settled algae and larger 
plant material.  Thermal stratification does not allow fresh oxygen from the atmosphere to reach 
the deeper layers and the hypolimnion eventually becomes anoxic.  The oxygen is only 
replenished when the thermocline breaks down and vertical mixing of the water column occurs 
during fall.    
 
During May to October of most years, the combination of hypolimnetic dissolved oxygen 
depletion and elevated epilimnetic temperatures in Lacamas Lake forces fish and other aquatic 
life to survive in a very restricted, and sometimes non-existent, band of suitable habitat. 

 
Water transparency 
Transparency represents light penetration in a lake. It is measured with a standard Secchi disk, a 
20-cm white and black disk that is lowered into the water to the point it is no longer visible.  
Transparency can be affected by suspended sediment as well as algal growth and other organic 
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material in the water.  The Secchi disk is widely used as a general indicator of lake condition. 
Measurements <2.0 m often coincide with eutrophic conditions.  
 
During WY2003, summer season (May-October) transparency in Lacamas Lake ranged from 1.2 
m to 2.8 m, with a median of 1.6 m.  Between 1984 and 2003, for years having at least three 
summer season readings, median Secchi depth has ranged from 1.2 m to 1.9 m.  Figure 6 shows 
the results of a Seasonal Kendall test for trend on the 1991-2003 monthly Secchi disk dataset.  
Measurements ranged from approximately 0.5 m to 3.0 m during this time period, reflecting 
seasonal changes in weather, turbidity, and biological growth.  The results do not indicate a 
statistically significant trend in water transparency since 1991.   
 

             
Figure 6.  Seasonal Kendall test for trend in water transparency (Secchi disk), Lacamas 
Lake 1991-2003. 

 
Total Phosphorus 
High levels of phosphorus in Lacamas Lake were well-documented in 1984 (Beak and SRI, 
1985).  Phosphorus is an essential nutrient for the metabolism of all living organisms.  Plant and 
algal growth are normally limited by phosphorus availability.  Consequently, a scarcity of 
phosphorus will limit algal growth, while the addition of more phosphorus may produce 
excessive algae.  Decreased dissolved oxygen concentrations often follow when the dead plant 
matter is broken down by oxygen-consuming bacteria.  Based on the results of 1984 sampling, 
phosphorus reduction became the central goal of the Lacamas Lake Restoration Program.   
 
The EPA has established TP criteria for lakes at a level of 0.025 mg/L to minimize 
eutrophication.  Additionally, the State of Washington uses nutrient criteria to assess lakes and 
determine whether action needs to be taken to reduce nutrient loading (Section 173-201A-230 
WAC).  Washington State TP criteria are assigned by ecoregion but have not been determined for 
the Willamette Valley Foothills Ecoregion, where Lacamas Lake is located.  However, an “action 
level” from the near-by Coast Range, Puget Lowlands, and Northern Rockies Ecoregions has 
been set at 20 µg/L (WAC Section 173-201A-230).   
 
Based on total phosphorus samples collected by Water Resources during WY1999-WY2001, 
Ecology has listed Lacamas Lake as impaired in the draft 2002/2004 303(d) list, requiring that a 
TMDL (Total Maximum Daily Load) be developed to further reduce phosphorus loading to the 
lake. 
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Figure 7 contains annual box plots of epilimnetic (surface) TP concentrations during the summer 
growing season (May-October).  A visual inspection of the plots suggests significant differences 
in the following cases where confidence intervals (darker internal boxes) do not overlap:  1984 
vs. 1994, 1984 vs. 2002, 1984 vs. 2003, and 1994 vs. 1995.  Overall, data from the more recent 
years indicates a significant decrease from the concentrations observed in 1984. 
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Figure 7.  Median and interquartile range of May-October epilimnetic total phosphorus 
concentrations, Lacamas Lake, 1984-2003. 

 
Despite this improvement, median summertime concentrations (indicated by horizontal line in 
each box) since 1984 have generally remained above the EPA lake criterion, indicating sufficient 
TP to facilitate eutrophic conditions.  Small variations between years are likely due to fluctuating 
weather patterns and biological activity.   
 
The Seasonal Kendall test for trend does not indicate a statistically significant trend in epilimnetic 
TP between 1991 and 2003 (Figure 8).   
 

               
Figure 8.  Seasonal Kendall trend test, Lacamas Lake epilimnion total phosphorus, 1991-2003. 
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Nitrogen 
Nitrogen is the second major plant nutrient of interest in lakes.  In the presence of sufficient 
phosphorus, elevated nitrogen levels may also cause excess algal and plant growth.  Inorganic 
nitrogen forms are the most readily available for uptake by algae and plants, while total Kjeldahl 
nitrogen primarily reflects nitrogen already captured in organic material.  Total Kjeldahl Nitrogen 
is the sum of organic + ammonia nitrogen, while inorganic nitrogen consists of nitrite + nitrate-N 
and ammonia. 
 
Inorganic-N concentrations are highly variable seasonally.  In general, springtime inorganic-N 
concentrations >0.3 mg/L are sufficient to facilitate summer algal blooms, and average 
concentrations 0.5 to 1.5 mg/L are often associated with eutrophic conditions (Wetzel, 1983).  
Springtime inorganic-N concentrations in Lacamas Lake routinely range from 0.5 – 1.2 mg/L, 
and annual average concentrations in WY2002 and WY2003 were 0.65 mg/L and 0.56 mg/L, 
respectively. 
 
Wetzel (1983) suggests that average epilimnetic organic nitrogen concentrations of 0.4 to 0.7 
mg/L generally correspond to meso-eutrophic conditions while average concentrations >0.7 mg/L 
correspond to eutrophic conditions.  Annual average concentrations in WY2002 and WY2003 
were 0.72 mg/L and 0.55 mg/L, respectively, placing Lacamas Lake in the meso-eutrophic to 
eutrophic categories.  Additionally, Figure 9 contains annual box plots of epilimnetic TKN during 
the growing season (May-October).  The plots suggest significant differences in the following 
cases where confidence intervals do not overlap:  1991 vs. 2000, 1991 vs. 2001, 1991 vs. 2002, 
and 1993 vs. 2000.   
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Figure 9.  Median and interquartile range of epilimnetic total Kjeldahl nitrogen 
concentrations, Lacamas Lake, 1984-2003. 

 
Figure 10 shows the results of the seasonal Kendall test for trend in epilimnetic TKN from 1991-
2003.  The test indicates an increasing trend in TKN concentrations of approximately 0.020 mg/L 
per year and is significant at the 95% confidence level.  The trend suggests an overall increase in 
the amount of nitrogen being captured in organic material in Lacamas Lake. 
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Figure 10.  Seasonal Kendall test for trend, Lacamas Lake epilimnetic total Kjeldahl 
nitrogen, 1991-2003.  

 
TIN:TP ratio 
The ratio of Total Inorganic Nitrogen (TIN) to TP provides an indication of lake nutrient 
dynamics and the likelihood of blue-green algae blooms.  TIN includes nitrate-nitrite N and 
ammonia-N.  As noted above, phosphorus is often the limiting factor for algal growth in lakes.   
 
However, in some lakes with plentiful phosphorus, nitrogen may become the limiting factor 
during certain periods, especially summer and fall.  In a nitrogen-limited system, blue-green algae 
species have a competitive advantage due to their ability to utilize atmospheric nitrogen.  Under 
these circumstances, large blooms of blue-green species may occur. 
 
Monitoring during 1995 by E&S Environmental Chemistry, Inc. suggested that Lacamas Lake 
may be nitrogen limited during parts of the summer and fall.  A TIN:TP ratio >20 suggests 
phosphorus limitation, while a ratio <15 often indicates limitation by nitrogen.  Figure 11 shows 
the monthly TIN:TP ratios for Lacamas Lake during WY2003, following the same procedure 
used in 1995.  Although P was limiting during much of the winter, spring, and early summer, the 
lake was N-limited from mid- summer through fall.  The switch from P to N limitation during 
July coincides with the onset of dominance by blue-green algal species.  
  
On a practical level, the N-limitation during summer and fall indicates that the P concentration 
would need to be further reduced in order for phosphorus to be limiting during this time period.  
Consistent limitation by phosphorus could be a positive change in the lake, possibly leading to 
lower overall algal biomass and a decreased competitive advantage for blue-greens. 
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  Figure 11. TIN:TP ratio in the eplimnion of Lacamas Lake, WY2003. 
 
Phytoplankton 
Phytoplankton, or algae, are microscopic plant-like organisms that capture solar energy through 
photosynthesis.  They are the source of primary production that forms the base of the aquatic food 
web.  The type and amount of algae affects water chemistry, transparency, food availability, and 
the composition of the higher food web.   
 
Cell density was enumerated and biovolume calculated for each algal species in each sample.  
Density is simply the number of algal units/mL of sample, while biovolume is a measure of the 
total volume of the algal cells.  Because algal cells of different species vary widely in size, 
biovolume provides a convenient way to measure the total amount, or volume, of algal 
production.  Diatom species are often the most desirable food for grazers (zooplankton), though 
green algae and cryptophytes are also grazed.  Blue-green species are considered a poor food 
source. 
 
Figure 12 shows the percentage of total 2003 density and biovolume by algal division.  The 
figures are based on the five most dominant species in each sample (either by density or 
biovolume), which in most cases accounted for over 90% of the total.  
  
The small, flagellated cryptophytes Rhodomonas minuta and Cryptomonas erosa comprised the 
majority of the algal density from May through July and were present in significant numbers 
throughout the sampling period.  Rhodomonas is among the most common planktonic algae 
nationwide and is common in all types of lakes, whereas Cryptomonas tends to be more abundant 
in mesotrophic to eutrophic conditions.  Rhodomonas was generally more common than 
Cryptomonas until late summer.  Due to their small size, the cryptophytes comprised only a small 
percentage of the total biovolume. 
 
During May, June, and September, diatom blooms consisting primarily of Fragilaria crotonensis 
dominated the biovolume.  Fragilaria is a large, colonial, planktonic species and usually indicates 
eutrophic conditions.  It rarely occurs in oligotrophic lakes.  Although it can thrive in cool water 
and low-light conditions, Fragilaria is more typical of warmer surface waters. 
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 Figure 12.  2003 summer Lacamas Lake algal density and biovolume, by algal division. 
 
During July, August, and October, algal biovolume was dominated by blooms of blue-green algae 
species.  During July and August, both density and biovolume were dominated by Anabaena 
planctonica.  In September, Anabaena planctonica declined sharply while Aphanizomenon flos-
aquae increased.  By October, Aphanizomenon flos-aquae dominated in terms of density while 
the larger Anabaena planctonica had a smaller population but represented most of the biovolume. 
 
Anabaena species tend toward eutrophic lakes and often form blooms that may be unaesthetic, 
smell badly, and deplete hypolimnetic oxygen after decomposing.  Aphanizomenon flos-aquae is 
a very good indicator of eutrophic and hyper-eutrophic lakes.  An increase in either of these two 
species over time is a good indicator of advancing eutrophication (Jim Sweet, personal comm.).   
 
The dominance of blue-green species can be problematic in several ways.  Blue-green algae are 
highly specialized and often have a competitive advantage over more desirable algae species.  In 
addition to being a poor food source for zooplankton, some species produce toxins that may be 
harmful to aquatic biota, terrestrial animals, or humans in significant amounts. 
 
All Anabaena species are potentially toxin-producing, although Anabaena flos-aquae is usually 
more related to harmful toxin levels than is Anabaena planctonica.  Anabaena flos-aquae was 
present in very low numbers in Lacamas Lake during 2003.  Microcystis aeruginosa, a highly 
toxic species, was also present in low numbers in 2003.  Aphanizomenon flos-aquae is generally 
not particularly toxic, but it too has the potential to produce toxins under certain conditions.  
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Lacamas Lake phytoplankton were sampled in 1984 and 1995 in addition to 2003.  This 
phytoplankton dataset is not sufficient to perform statistical comparisons between sampling 
periods, and extensive comparative analysis of algal populations is beyond the scope of this 
report.  However, a limited examination of growing season (May-October) algal density and 
biovolume during these years reveals several notable differences.   
 
Overall, the relative densities of dominant species for May-October of 1984, 1995, and 2003 
were: 
 
1984    1995    2003 
Fragilaria crotonensis   44.0 % Fragilaria crotonensis 19.6% Rhodomonas minuta 25.8% 
Rhodomonas minuta 9.8 Anabaena planctonica 19.0 Cryptomonas erosa 19.4 
Schroederia judayi 7.4 Rhodomonas minuta 17.6 Anabaena planctonica 17.6 
Ochromonas sp.  3.2 Cryptomonas erosa 14.1 Fragilaria crotonensis 11.6 
Chrysophyte sp.  3.2 Asterionella Formosa 7.6 Aphanizomenon f.-aquae  10.4 
 
Among individual species, several possible shifts are apparent.  The dominance of Fragilaria 
crotonensis in 1984 was reduced in 1995, and by 2003 Fragilaria comprised only 12% of the 
population density.  As noted above, Fragilaria remains a dominant species in terms of biovolume 
due to its large colonial structure.  It is also noteworthy that the most common 5 species in 1984 
composed 67% of the total phytoplankton population.  By 1995, this percentage increased to 
78%, and by 2003 the most common 5 species comprised 85% of the total algal density. 
 
The most notable shift may be the advance of Aphanizomenon flos-aquae.  As noted above, an 
increase in this species over time is a good indication of advancing eutrophication.  In 2003, 
Aphanizomenon flos-aquae comprised 10% of the algal density during the May-October period.  
During the same period in 1995 it represented 1%, and in 1984 only 0.1%.  Also, the highly toxic 
blue-green alga Microcystis aeruginosa, though still not common, increased from 0.1% in 1995 to 
0.6% in 2003.  This species was not found in 1984. 
 
Although toxic algal blooms have not been a historical problem in Lacamas Lake, the dominance 
of blue-green species during mid-late summer, and particularly the increasing presence of 
Microcystis aeruginosa, is a potential area of concern for future recreational use. 
                  
Mean summer biovolume was similar in May-October of 1984, 1995, and 2003.  Figure 13 shows 
the average monthly biovolume by algal division in the summer of 1984.  A somewhat similar 
pattern of biovolume dominance among algal divisions is apparent when compared with the 2003 
results shown in Figure 12, although the dominance by diatoms and blue-green algae evident in 
2003 was not as pronounced in 1984.  In particular, during 1984 the cryptophytes represented a 
much greater percentage of early summer biovolume, and green algae were present in measurable 
amounts throughout much of the summer. 
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Figure 13. 1984 summer Lacamas Lake algal biovolume, by division. 

 
Aquatic plants 
Lacamas Lake is characterized by extensive aquatic plant (macrophyte) growth.  Based on surface 
and scuba surveys, as well as Secchi disk readings and lake bathymetry, scientists in 1984 
concluded that at least 97% of the potential colonizable area in Lacamas Lake was already being 
used by macrophytes. 
  
An aggressive exotic species called Egeria densa (Brazilian elodea) was common in Lacamas 
Lake by 1984, although it was generally found on the outer (deeper) edges of plant beds and was 
interspersed with several other species.  The native Elodea canadensis (Common elodea) 
dominated shallower depths.  In Round Lake, Egeria densa was already dominant by 1984, to the 
almost complete exclusion of other submersed macrophytes (Beak and SRI, 1985). 
 
The most recent Ecology aquatic plant survey performed in Lacamas Lake took place in June, 
1999.  Plant species and distribution data are summarized in Table 5.  Of particular interest is the 
continued expansion of Egeria densa.  In many areas, Egeria densa has displaced more desirable 
species such as the native Elodea canadensis and some pondweed species. 
 
Trophic state index 
Monthly TSI values for Lacamas Lake during May-October 2003 are shown in Figure 14.  Values 
are generally in the mid to upper mesotrophic range (45-50) during late May and June, increasing 
to the eutrophic range (50-70) from July-October.   
 
The seasonal pattern of results is generally consistent between parameters, although some 
variability is normal.  2003 phytoplankton results consistently indicate a higher trophic status than 
the other variables, while chlorophyll-a, Secchi disk, and total phosphorus results generally agree 
more closely.   
 
In some cases, variability between parameters may be caused by non-random variability such as 
errors in sample collection or analysis.  The exceptionally low TSI value for chlorophyll-a during 
August 2003 is probably an example of this type of error.  It is likely that the low value (40, or 
oligo-mesotrophic) is erroneous when compared to the results from the other three parameters 
(52-63, or eutrophic).  See the QA discussion in the Appendix for a description of chlorophyll-a 
analysis issues.   
 
 
 



 20

Date 17-Jun-99 
Scientific name             Common name Distribution Value Comments 
Callitriche stagnalis pond water-starwort 1 only in north end of lake near river 
Ceratophyllum demersum  Coontail; hornwort 2 
Egeria densa Brazilian elodea 4 dominant or co-dominant throughout  
 most of shoreline 
Elodea canadensis common elodea 2 some dense areas in north end 
Lemna minor duckweed 1 only in north end of lake near river 
Nitella sp. stonewort 1 
Nuphar polysepala spatter-dock, yellow water-lily 2 most in north end 

Phalaris arundinacia reed canarygrass 3 dense in north end 
Potamogeton amplifolius large-leaf pondweed 3 co-dominant with Egeria 
Potamogeton epihydrus ribbonleaf pondweed 1 only in north end of lake near river 
Potamogeton illinoensis Illinois pondweed 2 
Potamogeton robbinsii fern leaf pondweed 2 
Scirpus sp. bulrush 1 one patch seen on E shore 
Sparganium sp. bur-reed 1 only in north end of lake near river 
Typha sp. cat-tail 1 

Comments:  Overcast, cool.  Egeria very dense in many areas, at the surface and blooming.  Grows 
densely to 3 m deep.  More diverse in the river north of the lake.  Lots of water skiers.  Made a map with 
plant locations. 

Distribution Value Definitions: 
 0  the value was not recorded (plant may not be submersed) 
 1 few plants in only 1 or a few locations 
 2 few plants, but with a wide patchy distribution 
 3 plants growing in large patches, co-dominant with other plants 
 4 plants in nearly mono-specific patches, dominant 
 5 thick growth covering the substrate at the exclusion of other species 
 Table 5.  1999 Lacamas Lake aquatic plant summary (Washington State Dept of 

Ecology).  
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 Figure 14.  Monthly TSI values for Lacamas Lake, May-October 2003. 
 
Annual box plots of May-October TSI values, based on the historical Lacamas Lake dataset 
(1984-2003), are shown in Figures 15, 16, 17, and 18.  Note that phytoplankton and chlorophyll-a 
data are somewhat limited for the period of record.   
 
Despite some variation in median TSI values for each parameter, most of the annual confidence 
intervals overlap indicating that statistically significant differences in medians between years are 
unlikely.   
 
Median TSI values for Secchi depth and total phosphorus tend to be in the low to mid-eutrophic 
range (50-60), occasionally dropping into the upper mesotrophic category (45-50) for TP.  No 
significant differences are indicated for Secchi depth TSI.  However, a significant difference is 
indicated between the total phosphorus median values in 1984 versus 1994, 2002, and 2003.  In 
1984, median total phosphorus TSI was in the mid-eutrophic range (60), with values ranging 
upwards into the hyper-eutrophic range (>70).  Since that time, medians have not exceeded 55 
and individual values have generally remained below 60. 
 
Most of the available chlorophyll-a and phytoplankton data consistently indicate eutrophic status, 
with median values tending to fall in the mid to upper-eutrophic range.  The exception is the 
median of the 2003 chlorophyll-a data.  However, as discussed in the QA section in the 
Appendix, the low chlorophyll-a TSI values for 2003 may be due to problems with the laboratory 
analysis.  Despite the questionable low values, the median value for 2003 still falls in the lower 
eutrophic range. 
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Figure 15.  Median and interquartile range for May-October Secchi depth TSI, `

 Lacamas Lake 1984-2003.  
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Figure 16.  Median and interquartile range of May-October total phosphorus TSI, 

 Lacamas Lake 1984-2003.  
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Figure 17.  Median and interquartile range of May-October chlorophyll-a TSI, 

 Lacamas Lake 1984-2003.  
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  Figure 18.  Median and interquartile range of May-October phytoplankton TSI,  
  Lacamas Lake 1984-2003 
 
Trend Power 
The trend power analysis and results are described in more detail in the Appendix.  The power of 
a trend test is the probability that the test will actually detect a trend when one is present.  
Therefore, an evaluation of the trend power provides insights into the limitations of conclusions 
reached using statistical tests.  A failure to detect a trend is often used to improperly conclude that 
there was no trend, when in reality there may have simply been insufficient data or too much 
variance in the data to allow trend detection at the specified level of confidence (Hallock, 2003).   
 
Predicted minimum detectable trends (as a percentage change in the mean) for the Lacamas Creek 
data were 37% and 93% for TP and TSS data, respectively.  In effect, this means we would only 
expect to be able to detect trends in excess of these magnitudes.  For example, the calculated 
change in the mean for Lacamas Creek TP over the 5-year monitoring period was 21%, and no 
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significant trend was detected.  A trend was detected in TSS data, even though the calculated 
change in mean was only 13%.  This significant trend was probably influenced by the presence of 
a large number of censored data points in the TSS data set.  Although a significant TSS trend 
does exist, it was not possible to reliably assign a magnitude to that trend. 
 
Predicted minimum detectable trends (as a percentage change in the mean) for the Lacamas Lake 
data were 20%, 29%, and 20% for TKN, TP, and Secchi disk data, respectively.  Therefore, we 
would only expect to be able to detect trends in excess of these magnitudes.  The calculated 
changes in the means were 34% for TKN, 5% for TP, and 3% for Secchi disk.  TKN was the only 
parameter having a calculated trend larger than the predicted minimum detectable trend, and was  
also the only parameter where a significant trend was detected.   
 
Summary 
 
The information summarized below is addressed in greater detail in the Results and Discussion 
section.  For additional information from historical monitoring in Lacamas Creek and Lacamas 
Lake, see the documents listed in the Background section of this report. 
 
Creek 
Loading: 
In 2003, annual loading was estimated at 5000 kg of total phosphorus (TP) and 500,000 kg of 
total suspended solids (TSS).  Since 1999, annual TP loading has averaged 6000 kg and TSS has 
averaged 800,000 kg.  During this time, the in-lake retention rate for TP ranged from 12-42% of 
the annual load.  TSS retention in the lake ranged from 32-61%.  This indicates a considerable 
annual accumulation of nutrients and settled material in Lacamas Lake. 
 
Current loading rates compare favorably with annual estimates from 1984, when TP load was 
estimated at 14,000 kg and TSS load was estimated at 1,800,000 kg.  On the basis of 
kilograms/acre-ft of annual discharge, TP loading since 1999 has remained consistently between 
0.06 and 0.07 kg/acre-ft, compared to 0.11 kg/acre-ft in 1984.  TSS has not followed a similar 
pattern:  loading since 1999 has ranged from 6-15 kg/acre-ft, compared to 14 kg/acre-ft in 1984. 
 
Total phosphorus concentration: 
The EPA criterion for TP in streams that enter lakes is a maximum of 0.050 mg/L.  For the five-
year period beginning in 1999, the annual mean TP concentration in Lacamas Creek has ranged 
from 0.038 to 0.061 mg/L, meeting the EPA criterion in 3 years and narrowly exceeding the 
criterion (0.052 mg/L) in another year.  These values compare favorably to an annual mean of 
0.089 mg/L estimated in 1984.  Despite the apparent reduction compared to 1984 estimates, no 
trend is apparent in recent Lacamas Creek TP concentration (1999-2003).  Outflow TP 
concentration ranged from 0.030 to 0.039 mg/L during 1999-2003.  If concentrations remain 
fairly constant as the water travels through Round Lake, then water discharged to Lacamas Creek 
downstream of the lakes is well within the EPA criterion of 0.1 mg/L for streams not flowing into 
lakes. 
 
Total suspended solids concentration: 
For the five-year period beginning in 1999, the annual mean TSS concentration in Lacamas Creek 
has ranged from 4.1 to 12.5 mg/L.  An annual mean of 11.5 mg/L was calculated in 1984.  Since 
1999, trend analysis indicates a decrease in TSS concentration in Lacamas Creek at the 95% 
confidence level.  However, due to limitations in the dataset, it is not possible to reliably calculate 
the slope, or magnitude, of the apparent trend.  Overall, baseflow TSS concentrations in Lacamas 
Creek tended to remain quite low, with somewhat higher concentrations occurring during storm 
events. 
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Lake 
Secchi transparency: 
Secchi measurements <2.0 m are often associated with eutrophic conditions.  Median secchi 
depth during 1984 and 1991-2003 ranged from 1.2-1.9 m.  No trend is apparent in the 1991-2003 
dataset. 
 
Temperature: 
The Washington State temperature criterion for lakes is <16 degrees C.  In 2002 and 2003, 
Lacamas Lake failed to meet the criterion from June-September.  Annual maximums were 22 C 
and 25 C, respectively.  The dataset since 1984 indicates that summer cold-water habitat 
beneficial uses are consistently impaired. 
 
Dissolved Oxygen(DO): 
The Washington State dissolved oxygen criterion for lakes is >9.5 mg/L.  In 2002 and 2003, 
Lacamas Lake had severe DO depletion below 4m depth from June-October.  Severe summertime 
DO depletion below 4-5 meters depth has been a consistent issue since 1984.  Habitat for aquatic 
biota is severely limited during summer due to a combination of elevated water temperatures in 
the epilimnion and dissolved oxygen depletion in the hypolimnion. 
 
Total Phosphorus(TP): 
The EPA criteria for TP in lakes is <0.025 mg/L.  The State of Washington has set an “action 
level” of TP in nearby ecoregions at <0.020 mg/L.  In 2002 and 2003, median TP concentrations 
met the EPA lake criterion, but still exceeded the state action level for nearby ecoregions.  
Summer TP concentrations are significantly lower today than in 1984, but since 1991 have 
continued to exceed state action levels and EPA criteria on a regular basis.  No statistically 
significant trend in TP is apparent in the 1991 to 2003 dataset.  Based on data collected by Water 
Resources between 1999 and 2001, Ecology has listed Lacamas Lake as impaired in the draft 
2002/2004 303(d) list, requiring that a TMDL (Total Maximum Daily Load) be developed under 
the Clean Water Act to further reduce phosphorus loading to the lake. 
 
Nitrogen 
Inorganic nitrogen, consisting of nitrite + nitrate-N and ammonia-N, occurs in the forms most 
readily available for uptake by algae and plants.  Springtime inorganic-N concentrations in 
Lacamas Lake typically range from 0.5 – 1.2 mg/L, and annual average concentrations in 2002 
and 2003 were 0.65 mg/L and 0.56 mg/L.  Springtime concentrations >0.3 mg/L and annual 
average concentrations 0.5 to 1.5 mg/L are often associated with eutrophic conditions and 
summer algal blooms. 
 
Total Kjeldahl nitrogen (organic N + ammonia) is composed primarily of nitrogen that has been 
incorporated into biomass.  In general, recent annual average TKN concentrations correspond to 
concentrations typically found in meso-eutrophic to eutrophic lakes.  An increasing trend in TKN 
of ~0.020 mg/L per year is apparent in the 1991-2003 dataset.  This trend is significant at the 95% 
confidence level (i.e. there is a 95% chance that the perceived trend actually exists).  The trend 
suggests an overall increase in the amount of nitrogen being captured in organic material in 
Lacamas Lake. 
 
TIN:TP ratio 
The ratio of total inorganic nitrogen to total phosphorus gives an indication of which primary 
nutrient (N or P) is the limiting factor for algal growth in lakes.  A ratio >20 suggests P limitation 
and <15 suggests N limitation.  In 2003, similar to 1995 and 1984, Lacamas Lake was nitrogen 
limited during mid-summer through fall, probably contributing to the dominance of blue-green 
algae which, unlike other algae species, are able to obtain nitrogen directly from the atmosphere. 
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Phytoplankton (algae): 
In summer 2003, the phytoplankton community biovolume was dominated by species commonly 
associated with eutrophic conditions.  The average biovolume and a general pattern of dominance 
by the diatom Fragilaria crotonensis and blue-green algal species were consistent with results 
from 1984 and 1995.  However, a significant increase in the blue-green algae Aphanizomenon 
flos-aquae since 1984 is a likely indication of advancing eutrophication. 
 
Macrophytes (aquatic plants): 
Results of a WA Dept of Ecology survey in 1999 indicate increasing dominance of the 
macrophyte community by Egeria densa, an aggressive exotic species.  Since 1984, Egeria densa 
has largely displaced more desirable native species in the shallow-water areas.    
 
Trophic state: 
A Trophic State Index (TSI) is used to describe the level of algae production of a lake.  The index 
uses a numbered scale to compare variables with one another, or with a reference number.  Thus 
indices provide a “common currency” with which to describe lake conditions.  A TSI value <40 = 
oligotrophic, 40-50 = mesotrophic, 50-70 = eutrophic, and >70 = hypereutrophic. 
 
Median monthly TSI values (May-October 2003) for secchi transparency (53), total phosphorus 
(51), chlorophyll-a (51), and phytoplankton (63) all indicate that Lacamas Lake is eutrophic.  
Total phosphorus is the only TSI indicator that suggests a possible decrease in trophic status since 
1984.  There has been no significant change in the median value for other TSI indicators, though 
individual TSI values for Secchi disk and TP periodically dip into the upper-mesotrophic range. 
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Conclusions 
All of the measurements and indicators utilized in this report suggest that Lacamas Lake remains 
eutrophic.  A few indicators suggest that eutrophication may in fact be increasing.   
 
Total phosphorus concentrations in the creek and lake are much lower today than when first 
measured in the 1970s and 1980s.  Despite this improvement, Trophic State Index values for 
secchi disk, total phosphorus, chlorophyll-a, and phytoplankton have remained relatively constant 
since 1984, with annual median values falling consistently within the eutrophic range. The 
available data do not suggest an impending shift to a lower trophic state.   
 
An increasing trend in total Kjeldahl nitrogen since 1991 may be an indication of continuing or 
accelerating eutrophication despite past reductions in phosphorus.  Additionally, continued high 
levels of algal production and an apparent increase in the blue-green species Aphanizomenon flos-
aquae suggest that the level of eutrophication is stable at best and possibly increasing. 
 
The water quality issues first noted in the 1970s and 1980s continue to threaten the beneficial 
uses of Lacamas Lake.  In particular, the combination of severe hypolimnetic dissolved oxygen 
depletion and high surface water temperatures during the summer, high algal productivity 
dominated by blue-green species during mid-late summer, and the continued expansion of the 
exotic macrophyte Elodea densa pose significant challenges to the primary beneficial uses of 
fishing, swimming, and boating. 
 
In assessing the long-term information available for Lacamas Lake, it appears that early efforts in 
the watershed successfully decreased phosphorus inputs.  Although these reductions were not 
sufficient to bring about an improvement in overall lake conditions, they appear to have slowed or 
even temporarily halted the rapid advance of eutrophication.  The long-term dataset suggests that 
lake conditions, though still eutrophic, have remained relatively stable since the early 1990s.  
However, some current data raises concerns that Lacamas Lake may be sliding toward further 
eutrophication and increased water quality problems. 
 
Given the already significant extent of eutrophication, further nutrient enrichment and the 
associated water quality degradation it causes has the potential to seriously impact future 
beneficial uses of Lacamas Lake. 
 
Current monitoring results and trend analyses support the premise put forth by E&S 
Environmental Chemistry, Inc (1998) and Clark County Water Resources (Schnabel 2002), that 
future Lacamas Lake management efforts should focus not on returning the lake to a pristine state 
but rather on protecting and enhancing current beneficial uses and minimizing further 
degradation.   
 
The Lacamas watershed has been and will continue to be impacted by human activities.  Despite 
past progress in controlling phosphorus pollution, historical and ongoing land use changes have 
permanently altered the lake and watershed in ways that render a return to pristine, pre-settlement 
conditions infeasible.  In all likelihood, Lacamas Lake and its watershed will require diligent, 
ongoing management simply to maintain current beneficial uses such as fishing, boating, and 
aesthetic enjoyment, especially given increasing impacts from a growing population.   
 
A renewed commitment by the public and local agencies, along with prudent lake and watershed 
management choices, is needed if Lacamas Lake and its watershed are to remain valuable 
community assets for future generations.  
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Appendix 
Data Analysis Procedures 
Loading estimates 
Annual loading estimates for TP and TSS in WY2002 and WY2003 were calculated according to 
the method described in Lacamas Lake Restoration Program: WY2000 and WY2001 Monitoring 
(Schnabel, 2002).  Individual TP and TSS grab sample concentrations were combined with the 
hourly discharge dataset.  Each grab sample result was assumed to represent the constituent 
concentration in the stream until the time of the next sample collection.  Using hourly discharge 
totals and the concurrent TP or TSS concentration, individual loads (in kg) were calculated for 
each 1-hr period and summed to provide an estimate of annual load.   
 
Discharge data was not available at the outlet of Lacamas Lake (station LACL00).  As a result, 
out-load calculations were based on the discharge dataset from the lake inlet (station LAC050).  
However, dam operations, fluctuating lake storage, and the effect of Dwyer Creek inflow below 
station LAC050 all result in differences in the instantaneous discharge at the two stations.  Over 
the course of a year the effect of these fluctuations is assumed to be negligible, but outload 
estimates should be interpreted with caution as the true instantaneous discharge is unknown.  
 
Box-and-whisker plots 
Box-and-whisker plots, or box-plots, allow convenient comparison of central tendency and 
distribution characteristics such as medians, ranges or dispersion, symmetry, and extreme values.  
The horizontal line within each box depicts the median value of the data set.  The upper and 
lower edges of the outer (light gray) box depict the 75th and 25th percentiles while the distance 
between them is the interquartile range (IQR) or the middle 50% of values.  The inner (dark gray) 
box that extends within and often beyond the ends of the IQR represents the 95% confidence 
interval around the median (e.g. there is a 95% probability that the true median lies somewhere 
within this range).  Vertical lines or whiskers extending from the ends of the inner box include all 
values that are less than 1.5 times the IQR.  Finally, asterisks appear for extreme values or 
outliers that are more than 1.5 times the IQR from the box.   
 
Differences between medians are statistically significant at the 95% confidence level only if the 
inner (dark gray) boxes do not overlap.  If the data are symmetrically distributed the median will 
lie near the center of the box-plot and the whiskers will be of similar length.  High variability in 
the data is reflected by a large IQR.  The statistical software package MINITAB (MINITAB, 
2003 [Release 14]) was used to construct the box-plots.   
 
Annual box-plots of growing season data (May-October) were constructed to highlight both inter-
annual changes and potential patterns in nutrients and trophic state index values. 
 
Trends 
Both Lacamas Lake and Lacamas Creek water quality were evaluated for trends over time.  
Initially, exploratory data analysis was conducted using descriptive statistics, time series plots, 
and scatterplots to examine distributions, patterns in the data, and relationships between water 
quality parameters.  The effects of seasonality and flow for Lacamas Creek data were addressed 
with the overall goal of reducing background variability and improving trend detection. 
 
Lacamas Lake secchi disk depth, total phosphorus, and total Kjeldahl nitrogen values and 
Lacamas Creek total phosphorus and total suspended solids were analyzed for monotonic trends 
using the nonparametric Seasonal Kendall test.  Statistical considerations (Helsel and Hirsch, 
1993) supported the use of monotonic trend analysis (for trends are generally expected to indicate 
gradual and continuous changes over time).  Step-trend analysis was not supported due to the 
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relative continuity of the data and the absence of any definable event that may have dramatically 
changed overall water quality.   
 
The analysis was limited to the periods of July 1991 through September 2003 for the lake data 
and October 1998 through September 2003 for the creek data due to the limited amount of earlier 
data and substantial gaps in the historical dataset. 
 
Data transformation was not required because the nonparametric Seasonal Kendall test (used for 
both lake and creek trend analyses) has less restrictive distribution assumptions than comparable 
parametric approaches, the variability of the tested parameters was relatively constant over time, 
and the ratio of the smallest to largest data values was less than twenty (Gilbert, 1987).   
 
Prior to trend analysis, censored data (values below reporting limits) were substituted with other 
values.  Data sets containing less than 5% censored data and a single reporting limit had their 
censored data recoded as one-half of the reporting limit (Schertz, et al., 1991).  For data sets with 
more than 5% censored data and multiple reporting limits, values reported as less than the most 
common reporting limit were entered as zero, while three censored values greater than the most 
common reporting limit were discarded. 
 
Additional statistical techniques were needed to analyze Lacamas Creek data (station LAC050) 
for trends in TP and TSS concentrations.  Natural, random fluctuations in an associated variable 
(X) such as flow often increase the variability of constituent concentrations due to the effects of 
dilution and surface wash-off or overland flow (Helsel and Hirsch, 1993).  Statistical models such 
as regression or smoothing can help explain or account for the effects of flow, increasing the 
ability or power of the trend test to discern changes over time.  As with the lake data, seasonal 
variation must also be compensated for in order to better discern trends. 
 
Prior to testing for trends, applicable Lacamas Creek data were flow-adjusted by utilizing the 
smoothing technique LOWESS (Locally Weighted Scatter-plot Smoothing) to describe the 
relationship between Y (concentration) and X (flow).  An f (fraction) value of 0.5 and two 
iterations for smoothing were utilized.  This approach does not assume linearity or normality of 
residuals.  Residuals, which express the differences between the fitted model Y^ and the actual Y 
values (concentrations), describe the variation in concentrations over and above that due to 
changes in X (flow).  The assumption was made that there was no substantial trend or drift in 
flow over the monitoring period. 
 
Both the Lacamas Lake and Creek data sets were reduced in order to maintain representativeness 
and minimize bias.  In the few cases where multiple Lacamas Lake values existed for any 
particular month, the values were averaged to obtain a single monthly value.  Because Lacamas 
Creek was often sampled more frequently during data gathering primarily for loading estimates, 
its data set was reduced by selecting the data point closest to the middle of each month over the 
five year monitoring period (Schertz, et al., 1991). 
 
After the data were reduced, the Seasonal Kendall trend test was applied. The statistical test was 
applied directly to the monthly Lacamas Lake values.  However, prior to performing the trend 
test, the applicable flow-adjusted Lacamas Creek values [residuals of the LOWESS model of Y 
(concentration) versus X (flow)] were transformed by adding the mean of the reduced data set to 
each flow adjusted value.  Statistical significance is reported for tests at the 80, 90, and 95% 
confidence levels while the yearly rate of change in median values is expressed as a slope 
(WQSTAT PLUS, 1998). 
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Data sets were analyzed and results graphed utilizing the spreadsheet software EXCEL 
(Microsoft EXCEL 2002, 2002), statistical software (MINITAB release 14 for Windows, 2003), 
and the water quality statistical software WQSTAT PLUS (WQSTAT PLUS, 1998). 
 
Trend power 
The power of a trend test is the probability that the test will actually detect a trend where one is 
present.  Therefore, an evaluation of the trend power provides insights into the limitations of 
conclusions reached using statistical tests.  A failure to detect a trend is often used to improperly 
conclude that there was no trend, when in reality there may have simply been insufficient data or 
too much variance in the data to allow trend detection at the specified level of confidence 
(Hallock, 2003).  An understanding of the smallest practical difference (versus actual statistical 
difference) in the means over time is also needed (Kleinbaum, et al., 1988). 
 
Estimates of minimum detectable trends for each parameter over the monitoring period were 
derived from chosen levels of acceptable errors and other calculations.  First, acceptable 
probabilities for alpha (Type I error) and Beta (Type II error) were set at 10%.  Estimates were 
then made of the central tendencies of the original data (mean and median).  The standard 
deviation was calculated after de-seasonalizing (subtracting seasonal means from individual data 
points then adding back the overall mean) and de-trending the data (Sen’s Slope estimator in 
WQStat Plus).  A minimum relative detectable trend (delta value) was looked up (Hallock and 
Ehinger, 2003) for a given number of monthly values (sample size). 
 
The predicted minimum detectable trend was then calculated from the above information and 
expressed as a percent of the change in the mean over the monitoring period.  A correction factor 
(Hallock, 2003) was incorporated to address the non-normality typically found in water quality 
data.  Finally, statistically calculated changes in the mean over the monitoring period were 
compared to the predicted minimum detectable trend to evaluate the reliability of the statistical 
test.  If the absolute value of the calculated statistical trend is smaller than the predicted minimum 
detectable trends, the results of statistical tests may be suspect. 
 
Trend power calculations for Lacamas Creek and Lacamas Lake are shown in the following table: 
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Methodology for Water Resources Trend Power Calculations 
Adapted from Washington Department of Ecology's:

River and Stream Ambient Monitoring Report for Water Year 2002, Publication No. 03-03-032, June 2003,
Stream Ambient Water Quality Monitoring Quality Assurance Monitoring Plan (Draft), January 2003.

Assumptions:
Type 1 Error (alpha or significance level) = 0.1 (i.e., 10% probability of incorrectly deciding trend exists when in fact one does not.)
Type 2 Error (beta) = 0.1 (i.e., 10% probability of incorrectly deciding trend does not exists when one in fact does exist.)
Minimum Relative Detectable Trend (delta) for monthly data:

For n = 60 months or 5 years, delta = 1.33 For n = 120 months or 10 years, delta = 0.93
For n = 180 months or 15 years, delta = 0.76 For n = 240 months or 20 years, delta = 0.66

Usually preferable to use flow adjusted values for applicable data sets (if for example, less than 5% of the original data is censored).

Formulas:
Minimum change in the mean over some time period for normally distributed data:
Minimum change in the mean = total standard deviation of deseasonalized & detrended data * minimum relative detectable trend

Correction Factor (used by Washington State Department of Ecology):
CF=(1+(mean-median)/mean)**-6

Predicted Minimum Detectable Trends (MDT) for nonnormally distributed data (combination of above two formulas):
Predicted MDT expressed as a percent of change in the mean over some time period at given Type I and II Error rates.
PredMDT=(100/mean)*(Std Dev of Deseasonalized Detrended Data*Minimum Relative Detectable Trend)*(1+(mean-median)/mean)**-6

Lacamas Watershed Trend Power Calculations (Typical of Nonnormally Distributed Data):

     Using Lacamas Creek at Goodwin Road monthly data for WY 1999 - 2003 (assuming Type 1 and 2 errors of 10%):
Standard Minimum Relative Predicted Minimum

Deviation of Detectable Trend Detectable Trend
Deseasonalized & (delta for (% of change in mean

Parameter Mean Median Detrended Data 60 months) over monitoring period)
Flow (cfs) 139.8 76.7 99.15 1.33 10.1
Flow Adjusted TP (mg/L) 0.038 0.034 0.019 1.33 36.5
Non-Flow-Adjusted TSS (mg/L) 5.542 5 6.78 1.33 93.0

Compared to Seasonal Kendall test and Slope Estimator for Trend calculated in WQSTAT PLUS for above parameters:
Significant Number

Trend Of Months Annual Trend Slope 5 Year Change Calculated Change in
Parameter (alpha=0.1) (n) (units per year) (units per 5 years) Mean Over 5 Years*

Flow (cfs) Yes 60 -7.875 -39.375 -28.2%
Flow Adjusted TP (mg/L) No 60 -0.0016 -0.008 -21.1%
Non-Flow-Adjusted TSS (mg/L) Yes * 60 -0.1517 -0.7585 -13.7%
* Note:
Calculated trend for non-flow-adjusted TSS was statistically significant but was less than the predicted minimum detectable trend. 
The magnitude of this trend is not reliable possibly due to highly censored and variable data and / or too short a monitoring period.

          Using Lacamas Lake monthly data for WY 1991 - 2003 (assuming Type 1 and 2 errors of 10%):
Standard Minimum Relative Predicted Minimum

Deviation of Detectable Trend Detectable Trend
Deseasonalized & (delta for (% of change in mean

Parameter Mean Median Detrended Data 120 months) over monitoring period)
TKN (mg/L) 0.5694 0.5240 0.1947 0.93 20.1
TP (mg/L) 0.0367 0.0310 0.02729 0.93 29.0
Secchi (m) 1.5509 1.4440 0.5012 0.93 20.1

Compared to Seasonal Kendall test and Slope Estimator for Trend calculated in WQSTAT PLUS for above parameters:
Significant Number Approximate Approximate

Trend Of Months Annual Trend Slope 10 Year Change Calculated Change in
Parameter (alpha=0.1) (n) (units per year) (units per 10 years) Mean Over 10 Years
TKN (mg/L) Yes 102 0.0196 0.1956 34.4%
TP (mg/L) No 102 -0.0002 -0.0017 -4.6%
Secchi (m) No 91 -0.0049 -0.0493 -3.2%
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Trophic state index 
A Trophic State Index (TSI) is used to describe the level of production of a lake, or the 
amount of algal matter produced by photosynthesis in a lake (Carlson, 1981, Wetzel, 1983).  The 
amount of algal matter has proven to be a reliable measure of the problems that typically plague 
lakes.  An index generally uses a numbered scale to compare variables with one another, or with a 
reference number.  Thus indices provide a “common currency” with which to describe lake 
conditions. 
 
The terms oligotrophic, mesotrophic, and eutrophic are used to characterize lakes by a low, 
medium, and high amount of algae production, respectively.  The TSI interprets measured 
indicators of algal biomass, and expresses the result on a numbered scale that is easy to 
understand, approximately from zero to one hundred.  A single measurement of TSI does not 
imply whether a lake’s health is deteriorating, nor does it imply where a lake should be in terms 
of the current health.  
 
The following equations, taken from Carlson and Simpson, 1996, were used to calculate the TSI 
from chlorophyll-a , Secchi depth, and total phosphorus data. The equation calculating TSI from 
algal biovolume was provided by the consultant performing the algal counts (Jim Sweet, personal 
communication, December 2003): 
 
• TSI(SD) = 60 - 14.41 ln(SD), where SD is Secchi depth in meters; 
• TSI(CHL) = 9.81 ln(CHL) + 30.6, where CHL is chlorophyll-a in µg/L; 
• TSI(TP) = 14.42 ln(TP) + 4.15, where TP is total phosphorus in µg/L; 
• TSI (BV) = (Log-base 2 (B+1))*5, where B is the phytoplankton biovolume in cubic 
micrometers per milliliter, divided by 1000. 
 
Quality Assurance/Quality Control Results 
During WY2002 and WY2003, all of the scheduled lake nutrient samples, vertical lake profiles, 
and composite samples were collected.  Inlet/outlet samples were collected at nearly the intended 
rates, with sampling intervals sometimes exceeding one week.  A total of 215 inlet and 91 outlet 
samples were collected during the monitoring period, but fewer outlet samples were collected in 
WY2003 (38) than were anticipated (52).   
 
Quality Control sample collection for WY2002 and WY2003 is shown in Table X.  Note that QC 
collection targets were modified during late 2002 as part of a Water Resources QA review and 
update.  WY2002 QC collection met targets for that time period, except for duplicate field 
samples at the inlet/outlet stations.  During WY2003, duplicate field sample collection at the 
inlet/outlet stations again fell slightly short of targets, but all other QC sample collection met or 
exceeded targets. 
 
Precision results for duplicate samples, duplicate measurements, and split samples are reported as 
pooled percent relative standard deviation (%RSD) in Table X.  Target  precision for each 
characteristic was 10% RSD, except for chlorophyll-a which had a target of 20% RSD.   
 
Percent RSD calculations for chlorophyll-a included data from Battleground Lake and Vancouver 
Lake because only one duplicate pair was collected in Lacamas Lake.  All other percent RSD 
values include only LLMP project duplicates. 
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Field QC sample type WY2002 
Collected 

WY2003 
Collected

WY2003 
Target 

Comment 

Transfer blank 1 3 4 expanded in WY2003 
Transport blank 0 1 1 added in WY2003 
Duplicate field sample (lake) 12 7 6 reduced in WY2003 
Duplicate field sample 
(inlet/outlet) 

2 4 6 expanded in WY2003 

Duplicate field measurement 
(lake) 

2 6 6 expanded in WY2003 

Field split sample (chlorophyll-a) 0 1 1 not applicable  in WY2002
Table X.  Field QC sample collection completeness. 
 

Characteristic Pooled %RSD Characteristic Pooled %RSD 
Total Phosphorus (lake) ± 18% Total Suspended Solids (lake) ± 8% 
Total Phosphorus 
(inlet/outlet) 

± 10% Total Suspended Solids 
(inlet/outlet) 

± 17% 

Ortho-phosphorus ± 6% Temperature ± 0.8% 
Total Kjeldahl Nitrogen ± 21% Dissolved Oxygen ± 12% 
Nitrate/Nitrite-Nitrogen ± 8% pH ± 5% 
Ammonia-Nitrogen ± 13% Conductivity ± 0.7% 
Chlorophyll-a ± 38%   
     Table X.  Precision as pooled % relative standard deviation.  
 
Six constituent categories failed to meet target criteria.  However, in-lake or in-stream variability 
is included in the duplicate field samples and duplicate field measurements, so their variability is 
not solely a measure of sampling error plus analytical error.  Allowing for expected natural 
variability, %RSD results were acceptable for all characteristics except chlorophyll-a.    
 
The split field samples collected for chlorophyll-a measure variability from sampling error plus 
analytical error, and do not include in-lake variability.  The 38% RSD for chlorophyll-a was 
nearly twice the target level and is addressed in the issues section below.  
 
The expected results of the analyses of blank samples were “below reporting limit” for all 
measured characteristics.  With one exception, all results for blank samples met expectations.  
The total phosphorus transport blank was reported at 0.241 mg/L and is discussed below. 
 
Review of stage measurement comparisons and the stage-discharge relationship versus manual 
measurements indicated good agreement. 
 
Laboratory staff assessed the laboratory QA program through review of laboratory quality control 
results including check standards, matrix spikes, and laboratory blanks.  Results were within 
acceptable ranges as defined in NCA’s quality assurance manual or were coded as necessary on 
laboratory reports.   
 
Quality Assurance Issues 
1) 117 of 432 lake nutrient results (27%) were below laboratory reporting limits, primarily 
ammonia (35 results), total suspended solids (27 results), and ortho-phosphorus (24 results).   
 
Large numbers of results reported as non-detects can complicate data analysis and may limit the 
usefulness of a monitored characteristic.  Ortho-phosphorus non-detects will not be addressed 
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because results are expected to fall below reporting limits during summer.  Ammonia 
concentrations are also expected to remain relatively low, but in response to the high rate of non-
detects the laboratory reporting procedure has been modified.  Ammonia results below the 
reporting limit but above the method detection limit (MDL) will be reported and flagged as an 
estimated value (J) rather than ND.  Total suspended solids analysis will be replaced by turbidity 
measurements in future Lacamas Lake sampling.  Turbidity data provide a useful measure of 
water clarity and will reflect the presence of suspended colloidal material (very fine sediment) 
more effectively than TSS. 
 
2) Chlorophyll-a results from WY2003 did not meet measurement quality objectives for 
precision.  Comparison with pheophytin concentrations and other results indicate that samples 
may have been unintentionally degraded during storage, preparation, or analysis.  One clearly 
suspect chl-a value from 6/12/03 has been excluded from the dataset.  The remaining five values 
from WY2003 are utilized in this report, but the reader should note the poor data precision and 
the probability that reported chl-a values are lower than the true value.  Based on WY2003 
results, Water Resources may utilize a different laboratory for future chlorophyll-a analyses. 
 
3) The high transport blank TP result suggests that sample contamination occurred during field 
processing or during laboratory analysis.  A specific cause was not apparent.  Possible sources of 
this error could include contamination during bottle prep (e.g. phosphorus soap), sample 
switching at the laboratory, contamination during the analytical procedures, or data entry error at 
the laboratory.  The abnormal result was brought to the attention of the contracted laboratory. 
 


