

5. Preliminary Stormwater Technical Information Report (TIR)

Villages at North Shore Camas, Washington

Preliminary Stormwater Technical Information Report

Date: July 2025

Submitted To: City of Camas

Community Development Department

616 NE 4th Avenue Camas, WA 98607

Applicant: HSR Dev – Mills, LLC (Andy Swanson)

19120 SE 34th Street, Suite #103

Vancouver, WA 98683

(503) 936-8514 | andy@hsr-capital.com

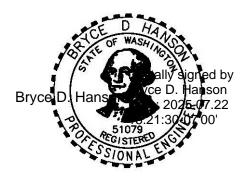
Engineering Contact: Bryce Hanson, PE

(360) 882-0419 | bryceh@aks-eng.com

Prepared By: AKS Engineering & Forestry, LLC

9600 NE 126th Avenue, Suite 2520

Vancouver, WA 98682


AKS Job Number: 9095

Certificate of the Engineer

Villages at North Shore Camas, Washington Preliminary Technical Information Report

This Preliminary Technical Information Report (TIR) and the data contained herein were prepared by the undersigned, whose seal, as a Professional Engineer licensed to practice as such, is affixed below. All information required by Camas Municipal Code (CMC) Chapter 14.02 is included in the proposed stormwater plan and the proposed facilities are feasible.

Contents

Section A – Project Overview1
Section A.1 – Site Location1
Section A.2 – Site Topography and Critical Areas1
Section A.3 – Existing On-Site Stormwater System1
Section A.4 – Site Parameters That Influence Stormwater Design1
Section A.5 – Adjacent Property Drainage2
Section A.6 – Adjacent Site Areas2
Section A.7 – General Project Stormwater Description2
Section B – Minimum Requirements3
Section B.1 – Determination of Applicable Minimum Requirements3
Section C – Soils Evaluation4
Section C.1 – Soil Suitability for Low Impact Development BMPs4
Section C.2 – Water Table Information4
Section C.3 – Soil Parameters4
Section C.4 – Infiltration Rate Testing5
Section C.5 – Complex Soil Conditions5
Section D – Source Control5
Section E – On-Site Stormwater Management BMPs5
Section F – Runoff Treatment Analysis and Design5
Section G – Flow Control Analysis and Design6
Section H – Wetland Protection6
Tables
Table B-1: Proposed Hard Surface and Landscaping3
Table B-2: Pollution-Generating Surfaces3
Table B-3: Non-Pollution-Generating Surfaces4
Table B-4: Effective Hard Surfaces4
Table F-1: Water Quality Structure6

Appendices

Appendix A: Map Submittals

Appendix B: New Development Flow Chart

Appendix C: Development Plans **Appendix D:** Stormwater Basin Maps

Appendix E: BMP Details

Appendix F: Flow Control & Water Quality Analysis

Appendix G: Soils Report

Appendix H: Wetland Protection

References					
2024 Stormwater Management Manual for Western Washington, (Ecology Publication No. 24-10-013, July 2024) – "SWMMWW"					
,					

Preliminary Stormwater Technical Information Report (TIR)

VILLAGES AT NORTH SHORE CAMAS, WASHINGTON

Section A - Project Overview

This report analyzes the effects the proposed development will have on the existing stormwater conveyance system; documents the criteria, methodology, and informational sources used to design the proposed stormwater system; and presents the results from the hydraulic analysis. The proposed plan is to subdivide the subject site into a 102-lot subdivision, several Tracts and 6 mixed-use lots for development composed of commercial stores on the bottom floor with residential units above (Villages at North Shore).

Section A.1 - Site Location

The Villages at North Shore is located on two parcels of land, totaling approximately 36.04 acres. Parcels 177885-000 and 178175-000 have a site address 313 SE Leadbetter Road, Camas, WA 98607, and 305 SE 252nd Ave, Camas, WA 98607, respectively. Access to the site will be from NE 252nd Avenue. The project is located within the Northeast ¼ of Section 34, Township 2 North, Range 3 East, Willamette Meridian, Clark County. The site is zoned North Shore Mixed Use (MX-NS), North Shore Higher Density Residential (HD-NS), North Shore Low Density Residential (LD-NS) & North Shore Commercial (C-NS).

Section A.2 – Site Topography and Critical Areas

The site has a single house and detached shop on it with a combination of asphalt and gravel driveways that access from NE 252nd Avenue. The site has significant variability with regards to the topography. There is a series of high points that create a ridge line that goes from the southeast portion of the site towards the northwest. The grades vary from sloping hills to exposed rock out croppings. There is an isolated pond in the north center of the site with a creek valley that flows north from the south-center of the site. According to Clark County Geographic Information Services (GIS), portions of the site have slopes up to 40 percent. However, the majority of the grades on site range from 10 to 25 percent. The existing vegetation consists of evergreen and deciduous trees and shrubs, turfgrass, and field grass.

Section A.3 – Existing On-Site Stormwater System

The site consists of two threshold discharge areas (TDAs). The ridgeline is the divider between these 2 TDAs. The isolated pond is a subarea that overflows the runoff to combine with the valley stream and mix with that TDA. South of the ridgeline runoff travels along the surface to shallow concentrated flows in route to Lacamas Lake. See the pre-developed basin plan within Appendix D for existing drainage patterns for the site.

Section A.4 – Site Parameters That Influence Stormwater Design

The Villages at North Shore project site consists of (OmE) Olympic Stony Clay loam, 3-30% slopes, well drained, non-hydric, WWHMSoil Group 3 soil, (VaB) Vadar Silt Loam, 3-8% Slopes, well drained, non-hydric, WWHMSoil Group 2 soil, (LiB) Lauren very gravelly loam, 0-8% slopes, somewhat excessively drained, non-Hydric, WWHMSoil Group 1 soil, & (ThA) Tisch silt loam, 0-3% slopes, poorly drained, Hydric, WWHMSoil Group 5 soil. A Geotechnical report was issued by Columbia West Engineering, Inc in November 2023. It is recommended to grade the site such that infiltration is inhibited from buildings and pavement areas. Therefore, infiltration facilities will not be proposed. Design recommendation and testing results are outlined within the project geotechnical report (Appendix G). The site is in the Lacamas

watershed above Round Lake dam. Stormwater runoff exiting the site will require phosphorus treatment for all pollution-generating surfaces. Due to the ridge in the middle of the site stormwater will be analyzed as two separate TDAs.

Section A.5 – Adjacent Property Drainage

Adjacent properties do not drain onto the project site. Surrounding parcels generally drain away from the site.

Section A.6 - Adjacent Site Areas

The site is bound by existing farm estates to the north. Properties to the east and west are zoned North Shore Lower Density Residential (LD-NS). The property bordering the south side of the site is zoned North Shore Park/open space (POS-NS).

Section A.7 – General Project Stormwater Description

Proposed site improvements for the development include sidewalks, public streets, open space tracts, 102 detached single-family homes & 6 mixed-use apartment complexes. Construction will take place in several phases with the North Shore Collector being a separate capital improvement project. Stormwater is proposed to follow the existing drainage pattern and maintain the 2 separate TDAs. Each of the detention ponds will be equipped with an emergency overflow outlet that will release runoff at peak stormwater events, while keeping flows at or below the required release rates. Site stormwater will be collected by catch basins and conveyed to the respective treatment and detention facility within each basin or subbasin.

TDA 1 — Runoff from driveways, parking areas, sidewalks, roadways, and any landscaped areas that contribute runoff to the roadways, will be collected and conveyed to water quality/filter media facilities. Stormwater from each water quality structure will then be discharged into a detention pond where runoff will be stored and released through the overflow/emergency outlet into its natural drainage outfall location. This TDA will meet MR #5 utilizing List #2 for each surface type to demonstrate compliance of feasibility. The post-developed discharge rates from the site will not exceed the pre-developed discharge rates as determined by a continuous simulation model for the range of rates from 50% of the 2-year peak flow to of the 50-year peak flow. The water quality structures, and detention ponds are located in Tract B & F. Stormwater from pollution generating surfaces will be treated by mechanical filtration to meet MR #6 guidelines for water quality. Roof run off from the buildings and rear yard pervious landscaped areas may be routed directly to the detention pond. The roof areas that bypass WQ facilities will not be included in the impervious surface mitigated basin area to calculate the WQ flow (Appendix D).

TDA 2 — Runoff from driveways, parking areas, sidewalks, roadways, roof tops, buildings and any landscaped areas that contribute runoff to the roadways, will be collected and conveyed to a water quality/filter media facility. Stormwater from the water quality structure will then be discharged into a piped conveyance system following an access road down the hill to the south to connect with Leadbetter Road, the natural drainage direction for this basin. This TDA will discharge directly to Lacamas Lake and is therefore flow control exempt from MR #7. The water quality structure is located in Tract J and will be owned and maintained by the HOA. Stormwater from pollution generating surfaces will be treated by mechanical filtration to meet MR #6 guidelines for water quality. The assumed pollution generating areas are included in the impervious surface mitigated basin area shown on the Post-Developed Basin Map (Appendix D).

Due to the location of the entire site being within the Lacamas Lake watershed above the Round Lake dam, water quality for the site is required to meet phosphorus treatment per the 2024 Stormwater Management Manual for Western Washington (SWMMWW). See the development plans, Appendix C, and the Stormwater Basin Map, Appendix D, for stormwater information.

Section B - Minimum Requirements

Section B.1 – Determination of Applicable Minimum Requirements

Proposed land disturbances shall include grading, excavation, and removal of unsuitable soils for the proposed developments. Due to the amount of proposed hard surfaces (greater than 5,000 square feet), the project is required to meet MR #'s 1 through 9 per Figure I-3.1 of the 2024 Stormwater Management Manual for Western Washington (SWMMWW) (see Appendix B).

The tables in this section provide information pertaining to each stormwater subbasin within the project area. See the Stormwater Basin Maps for basin locations (Appendix D).

Table B-1: Proposed Hard Surface and Landscaping

	Sub-Basin	Existing Hard Surfaces (acres)	New Hard Surfaces (acres)	Replaced Hard Surfaces (acres)	Native Vegetation Replaced with Landscaping (acres)	Total Land Disturbed (acres)
	1A	0.000	2.801	0.000	1.328	4.128
	1B	0.000	0.141	0.000	0.152	0.292
	2A	0.000	2.336	0.000	0.728	3.063
	2B	0.000	2.932	0.000	0.776	3.708
	3A	0.000	12.331	0.000	3.495	15.827
	3B	0.000	0.486	0.000	0.268	0.753

Note: Assumes Single Residence and mixed-use lots are 85% impervious.

Tables B-2 and B-3 present information for the mitigated site basins, differentiated between pollutionand non-pollution-generating surfaces. It is important to note that all non-pollution-generating areas directly mixing or having the opportunity to mix with stormwater runoff from pollution-generating surface areas are classified as pollution-generating.

Table B-2: Pollution-Generating Surfaces

Sub-Basin	Hard Surfaces (acres)	Pervious Surfaces (acres)	Total Surface Area (acres)
1A	2.801	1.328	4.128
1B	0.141	0.152	0.292
2A	2.336	0.728	3.063
2B	2.932	0.776	3.708
3A	12.331	3.495	15.827
3B	0.000	0.000	0.000

Note: Assumes Single Residence and mixed-use lots are 85% impervious.

Table B-3: Non-Pollution-Generating Surfaces

	<u> </u>			
Sub-Basin	Hard Surfaces (acres)	Pervious Surfaces (acres)	Total Surface Area (acres)	
1A	0.000	0.000	0.000	
1B	0.000	0.000	0.000	
2A	0.000	0.000	0.000	
2B	0.000	0.000	0.000	
3A	0.000	0.000	0.000	
3B	0.486	0.268	0.753	

Note: Assumes Single Residence and mixed-use lots are 85% impervious.

The developed basin's effective hard surfaces and the applicability of MRs #6 through #8 are summarized in Table B-4, below.

Table B-4: Effective Hard Surfaces

TDA	Hard Surface Area (acres)	MR #6 Required (Y/N)	MR #7 Required (Y/N)	MR #8 Required (Y/N)
1	8.210	Υ	Υ	Υ
2	12.331	γ*	N	N

^{*} Excludes WQ requirement for subbasin 3B (Emergency Access Road).

Section C - Soils Evaluation

Section C.1 – Soil Suitability for Low Impact Development BMPs

The Villages at North Shore development is not suitable for infiltration of stormwater. The project geotechnical report dated November 17, 2023, and within Appendix G, and states, "Based on subsurface exploration, infiltration of concentrated stormwater is infeasible due to the presence of shallow bedrock and clayey residual soils."

Section C.2 – Water Table Information

Per the project geotechnical report, groundwater seepage was not specifically encountered. Seeps and springs within the basalt formation have been observed on surrounding sites and have been associated with regional rain events. Therefore, drainage design may need to be altered during the course of construction as seeps and springs become evident over time. See geotechnical report in Appendix G.

Section C.3 - Soil Parameters

Per Natural Resources Conservation Service (NRCS) Soil Survey of Clark County, Washington, on-site soils consist of the following:

- LIB (Lauren very gravelly loam, 0 to 8 percent slopes), 11.5 percent of the site (Type B soil / WWHM Soil Group 1)
- OmE (Olympic stony clay loam, 3 to 30 percent slopes), 49.4 percent of the site (Type C soil / WWHM Soil Group 3)
- ThA (Tisch silt loam, 0 to 3 percent slopes), 10.0 percent of the site (Type C/D soil / WWHM Soil group 5)
- VaB (Vader silt loam, 3 to 8 percent slopes), 27.2 percent of the site (Type B soil / WWHM Soil Group 2)

Soil parameters are further explained by the soils report provided by Columbia West Engineering, dated November 2023 (Appendix G). "Although soil conditions may vary from the broad USDA descriptions, Lauren soils are generally coarse-textured sands and gravels with moderate permeability, moderate shear strength and low shrink-swell potential. Olympic and Vader series soils are more fine textured silt and clay with variable amounts of gravel. Olympic and Vader soils are typically fine-textured, poorly drained soils that develop over bedrock and exhibit slow permeability and have a low shear strength. "

Section C.4 - Infiltration Rate Testing

A geotechnical site investigation was performed on site by Columbia West Engineering. See Appendix G for the full report. Infiltration testing was not conducted due to the minor amount of clayey gravel soil encountered at the site that sits on top of the bedrock. Due to the relatively impermeable nature of the basalt bedrock and residual soils, infiltration of concentrated stormwater onsite is not recommended.

Section C.5 – Complex Soil Conditions

A geotechnical report has been prepared and is attached to this report, see Appendix G. Existing soil conditions are summarized, and recommendations are presented in relation to site stormwater design considerations. Bedrock likely is not complex by definition, but precludes any feasible infiltration.

Section D - Source Control

Volume IV of the SWMMWW contains the following applicable source control best management practices (BMPs) for residential development. The source control BMPs and applicable notes to control stormwater runoff impacted by these activities will be included in the Erosion Control Plans and Details and in the Stormwater Pollution Prevention Plan (SWPPP).

- S407: BMPs for Dust Control at Disturbed Land Areas and Unpaved Roadways and Parking Lots
- S411: BMPs for Landscaping and Lawn/Vegetation Management

Section E - On-Site Stormwater Management BMPs

Per Figure I-3.3 of the SWMMWW, the project proposes to meet List #2 to satisfy MR #5. Table I-3.2, Lawn and Landscaped areas will meet post-construction soil quality and quantity requirements per BMP T5.13. Roofs and other hard surfaces cannot utilize "full dispersion", downspout infiltration, or permeable pavement due the lack of infiltration of the existing soils. The sites topography, space limitations & lack of infiltration prevent the use of surface bioretention facilities.

Section F - Runoff Treatment Analysis and Design

MR #6 requires that at least 91% of the post-developed pollution-generating runoff volume, as predicted by a continuous runoff model, be treated. All water conveyed to the treatment facilities through piping will be treated as pollutant-generating runoff due to the mixing of pollutant and non-pollutant generating surfaces before treatment. Stormwater will be treated by mechanical filter cartridges located in concrete structures before leaving the site or entering each of the site's stormwater detention ponds.

The Villages of North Shore development is within the Lacamas Lake watershed, above the Round Lake dam, which requires phosphorus treatment. Lacamas Lake is listed as a category 5-303d waterbody for total phosphorus. Phosphorous treatment will be met by using filter media approved by the Washington Department of Ecology. This design satisfies the design requirement of CMC Chapter 14.02 by adhering to all relevant regulations from the State of Washington and City of Camas.

Table 1-1. Water quality Structure						
TDA &	New	New	Required	Provided	Required	
Subbasin	Pollutant-	Pollutant-	Water	Water	Number of	
	Generating	Generating	Quality	Quality	Treatment	
	Impervious	Pervious	Flow Rate	Flow Rate*	Filter	
	Surface	Surface	(cubic feet	(cubic feet	Cartridges	
	(acres)	(acres)	per second)	per second)	(Cartridge size)	
	(WWHM)	(WWHM)				
WQ Vault 1A	3.820	2.530	0.5817	0.5880	14 (27")	
WQ Vault 1B	0.141	0.147	0.0243	0.0420	1 (27")	
WQ Vault 2A	2.336	0.728	0.3340	0.3360	8 (27")	
WQ Vault 2B	2.932	0.776	0.4142	0.4200	10 (27")	
WQ Vault 3A	12.331	3.495	1.7512	1.7640	42 (27")	

Table F-1: Water Quality Structure

Section G - Flow Control Analysis and Design

The Villages at North Shore development consists of 2 TDAs. The site will be required to meet flow control standards as stated above. The project proposes detention ponds BMP D.1 to meet the flow control requirements. The ponds will be equipped with an overflow outlet that will only release runoff from the system during high flow events while designed to maintain pre-development release rates at or below required flows.

TDA 1 is split into 4 subbasins (subbasin 1A, 1B, 2A & 2B). Subbasins 1A, 2A & 2B propose to use a detention pond per BMP D.1 to meet the flow control requirements. Subbasin 1B is a small off-site basin for site access involving pavement widening only. There will be no mitigation of flows from this basin but flows from the other 3 subbasins will over detain such that TDA-1, as a whole, meets the flow requirement. The proposed discharge from each detention pond will be through a flow spreader dispersion BMP towards the natural discharge location of a wetland stream located in the northeast corner of the site. Discharge from TDA 1 has been analyzed and designed to meet MR #7.

TDA 2 is split into two subbasins (subbasin 3A & 3B). This TDA will capture all runoff to be discharged into a piped conveyance system following the access road down the hill to the south to connect with Leadbetter Road, the natural drainage direction for these subbasins. This TDA will discharge directly to Lacamas Lake which has a large water body flow exemption and is therefore flow control exempt from MR #7.

All facilities were sized with the use of WWHM 2012 (see Appendix F) for flow control WWHM output.

Section H - Wetland Protection

The site contains two category III wetlands associated with natural drainage on-site (wetland A & wetland B). The wetlands are to be protected by a buffer. A wetland hydroperiod analysis (Method 2), general protection and protection from pollutants are required for this project based on Figure I-3.5 of the SWMMWW, and is included in Appendix H of this report. To meet protection from pollutants, site discharge will be treated before entering the wetlands. Discharge to the wetland will meet the requirements for MR #8 by not altering flow to the wetland by more than 20% on a monthly basis for the

^{*}Note: Provided water quality flow rate is determined by using off-line BMP approved flow rates for Contech Phosphosorb media (0.042 cfs per 27" cartridge).

months of October, November, and December, and 15% for the remaining months. Additionally, discharge to the wetland will meet the requirements by not altering flow to the wetland by more than 20% on a daily basis, MR #8 should be considered met.

The wetland basin maps, Included in Appendix H, delineate the pre-developed and post-developed impervious, field, forest, and pond areas upstream of the wetland. The wetland basin areas shown below in Table H.1 & H.2 are separated into areas draining to the wetlands from off-site, and areas onsite flowing to the wetland.

Table 11-1. Wetland A Category III Dasili Areas					
	Pre-developed	Pre-developed	Post-developed	Post-developed	
Surface Type	Off-site Flow Area	On-site Flow Area	Off-site Flow Area	On-site Flow Area	
	(acres)	(acres)	(acres)	(acres)	
Impervious	1.022	0.000	1.022	2.615	
Field	0.853	1.350	0.853	1.677	
Forest	0.000	2.813	0.000	0.000	
Pond	0.000	0.000	0.000	0.182	
Total	1.875	4.163	1.875	4.474	

Table H-1: Wetland A Category III Basin Areas

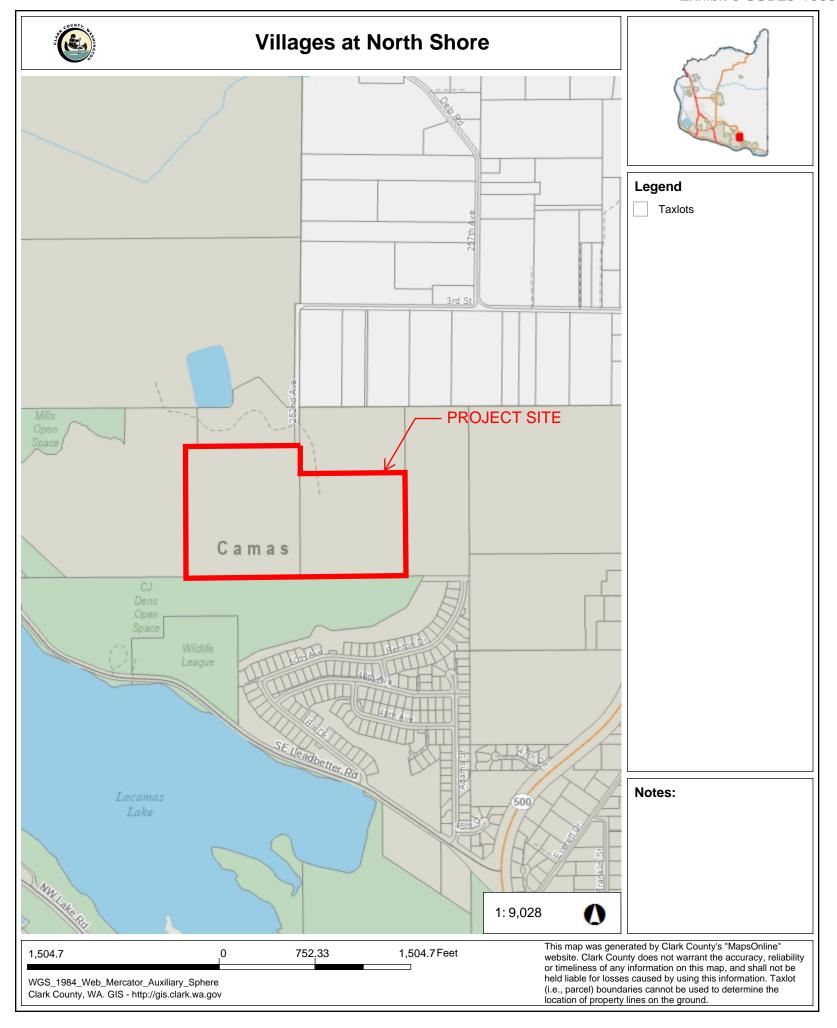
^{*}Note: Post-developed pervious areas to follow BMP T5.13 and are modeled as Field. The total wetland basin area is approximately 6.349 acres excluding the wetland buffer and wetland boundary.

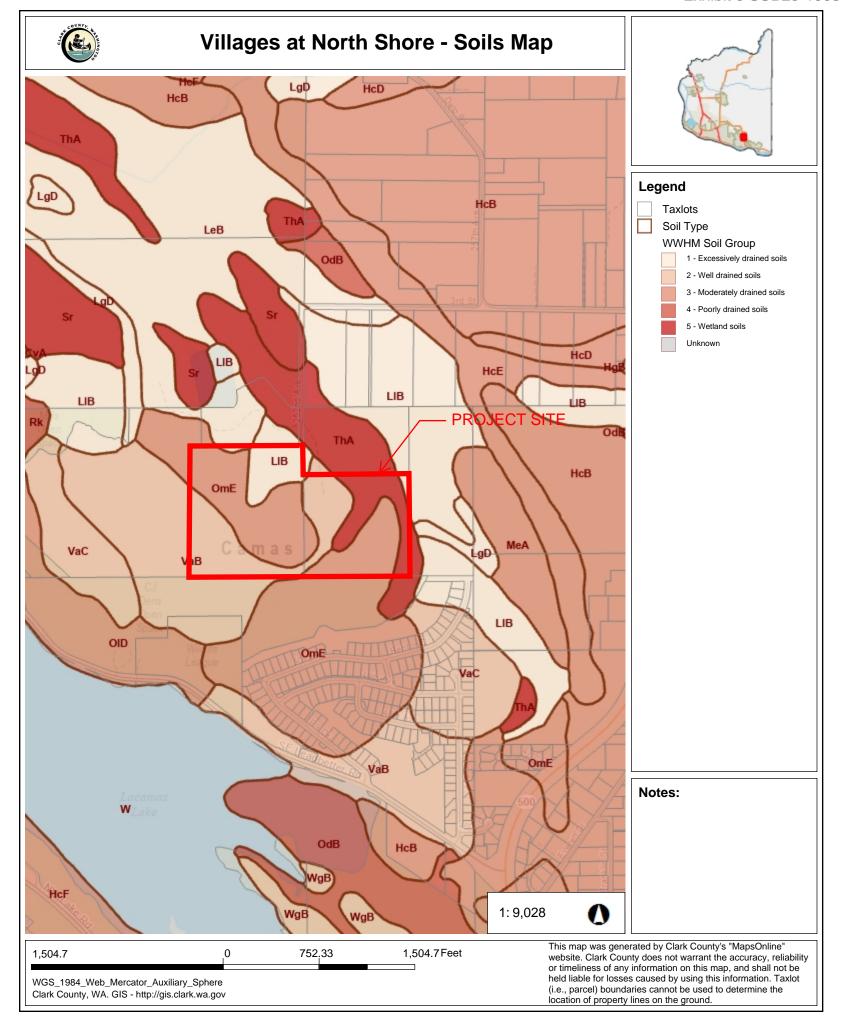
	Pre-developed	Pre-developed	Post-developed	Post-developed
Surface Type	Off-site Flow Area	On-site Flow Area	Off-site Flow Area	On-site Flow Area
	(acres)	(acres)	(acres)	(acres)
Impervious	6.585	0.070	6.585	4.497
Field	129.833	1.407	129.833	1.363
Forest	21.904	5.486	21.904	0.000
Pond	0.057	0.000	0.057	0.771
Total	158.379	6.963	158.379	6.631

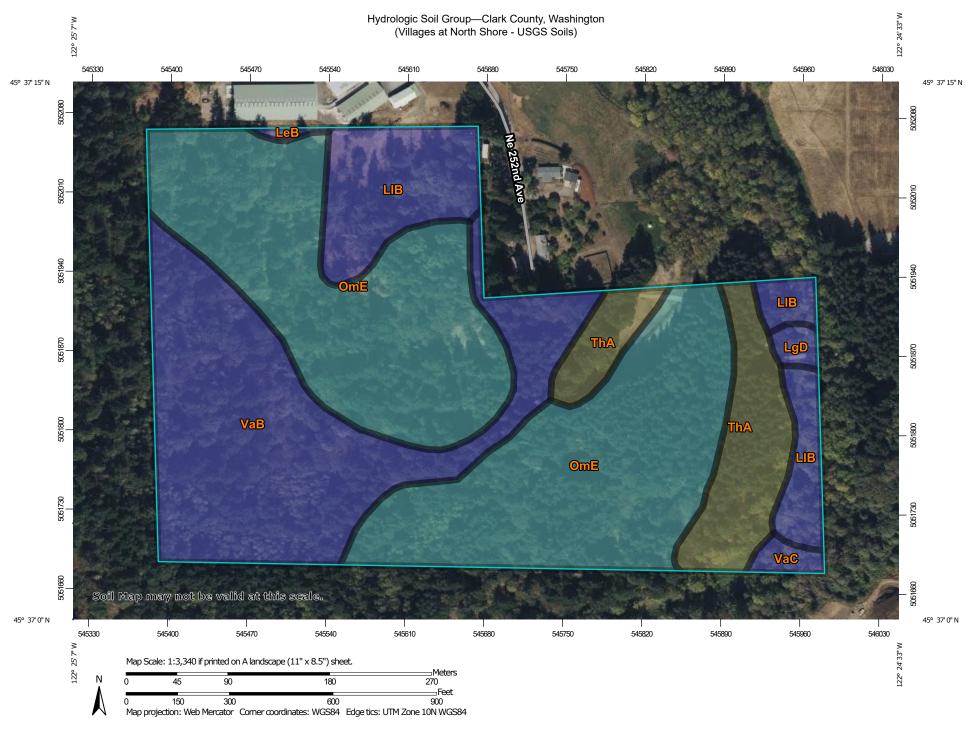
Table H-2: Wetland B Category III Basin Areas

Wetland Hydroperiod Protection (Method 2) requires that the runoff entering the wetlands after development will remain similar to the pre-development condition. WWHM was used to obtain resultant flow rates (Appendix H). This model is separate and standalone from the flow control model discussed in MR #7. The final stormwater design will follow the requirements contained in Section I-C of the SWMMWW.

The two wetlands located within the project site are category III wetlands (Wetland A & Wetland B). Historically, TDA #1 contributes runoff into these wetlands. Wetland A is an isolated depression. Subbasin 1A will discharge runoff, after treatment and flow control, to wetland A. Due to the required street layout for access and the North Shore Boulevard alignment, wetland A will have a significant buffer reduction after development. The model for wetland A demonstrates an excess amount of runoff into the buffer failing to meet the historic runoff volumes per MR #8 requirements. Pond 1A is modeled with a flow splitter such that a 0.5" orifice will route runoff to the wetland A buffer with the remainder of flows to discharge to subbasin 1B. Based on historic stormwater maintenance guidance, a 0.5" orifice is the smallest diameter that can be utilized without a high risk of plugging. Given the site conditions (City


^{*}Note: Post-developed pervious areas to follow BMP T5.13 and are modeled as Field. The total wetland basin area is approximately 165.010 acres excluding the wetland buffer and wetland boundary.


required alignment for North Shore Blvd) and SWMWW guidelines, it is infeasible to reduce flows any further to meet MR #8 requirements. An added proposal is to provide a high flow overflow to the existing wetland A depression (located approximately 3" above the OHWL). Since the model exceeds the historic flows to the wetland, the proposed overflow will limit the excess quantity that remains within the wetland as well as provide an emergency spillway during flooding events. Therefore, the maximum extent practicable to meet MR #8 for wetland A has been provided.


The remainder of TDA-1 will discharge to wetland B. The detention ponds for subbasins 1A, 2A and 2B have been designed to discharge runoff at a rate to meet the flow control requirements of MR #7. These ponds were used to model the hydroperiod for wetland B along with the existing off-site base flow. The runoff volumes for the monthly basis are satisfied per MR #8 requirements. There are only a select number of days that exceed the MR #8 threshold. A sensitivity analysis was performed using the WWHM model to see what effect further pond modifications would have to the wetland B runoff volumes. Pond 2B was quadrupled in size, with the flow control orifice reduced by half in an attempt to severely restrict runoff to wetland B. The results were very minimal with the runoff volumes still exceeding the hydroperiod threshold. This suggests that pond alterations beyond the flow control requirement will not have a significant impact on the wetland runoff volumes. Furthermore, the nature of wetland B is that of a stream with a shallow wetland ponding area at the upstream location. Any excess runoff that enters the wetland "pond" will quickly leave the wetland as steam flow following the natural downstream route of historic runoff. In effect, this reduces the impacts that may result from exceeding the minimum number of daily flow volumes as demonstrated in the WWHM model. Therefore, the maximum extent practicable to meet MR #8 for wetland B has been provided.

Appendix A: Map Submittals

Hydrologic Soil Group—Clark County, Washington (Villages at North Shore - USGS Soils)

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:20.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil Water Features line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Clark County, Washington Survey Area Data: Version 22, Aug 26, 2024 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 26, 2022—Oct 11. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group—Clark County, Washington

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
LeB	Lauren loam, 0 to 8 percent slopes	В	0.1	0.3%	
LgD	Lauren gravelly loam, 8 to 20 percent slopes	В	0.4	0.8%	
LIB	Lauren very gravelly loam, 0 to 8 percent slopes	В	5.3	11.5%	
OmE	Olympic stony clay loam, 3 to 30 percent slopes	С	23.0	49.4%	
ThA	Tisch silt loam, 0 to 3 percent slopes	C/D	4.6	10.0%	
VaB	Vader silt loam, 3 to 8 percent slopes	В	12.6	27.2%	
VaC	Vader silt loam, 8 to 15 percent slopes	В	0.4	0.9%	
Totals for Area of Inter	est	•	46.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix B: New Development Flow Ch

Start The UIC Rule (Chapter 173-218 WAC) Does all stormwater runoff Yes from the Project Site discharge applies. Refer to I-4 UIC Program Here to a Class V UIC Well? Guidelines for UIC Program Requirements. No See Redevelopment Project Yes Does the Site have 35% Thresholds and the Figure "Flow or more of existing hard Chart for Determining surface coverage? Requirements for Redevelopment". No) Does the Project result in 2,000 square feet or more of new plus replaced hard surface area? OR Does the land disturbing activity total 7,000 square feet or greater? (Yes) No Minimum Requirements #1 through #5 apply to the new Minimum Requirement #2 applies. and replaced hard surfaces and the land disturbed. **Next Question** Does the Project add 5,000 square feet or more of new plus replaced hard surfaces? OR Convert \(^3\)4 acres or more of vegetation to lawn or landscaped areas? OR Convert 2.5 acres or more of native vegetation to pasture? (Yes) No **All Minimum Requirements** apply to the new and replaced No additional requirements hard surfaces and converted vegetation areas. Flow Chart for Determining Requirements for New Development DEPARTMENT OF **ECOLOGY** Revised September 2022 State of Washington

Figure I-3.1: Flow Chart for Determining Requirements for New Development

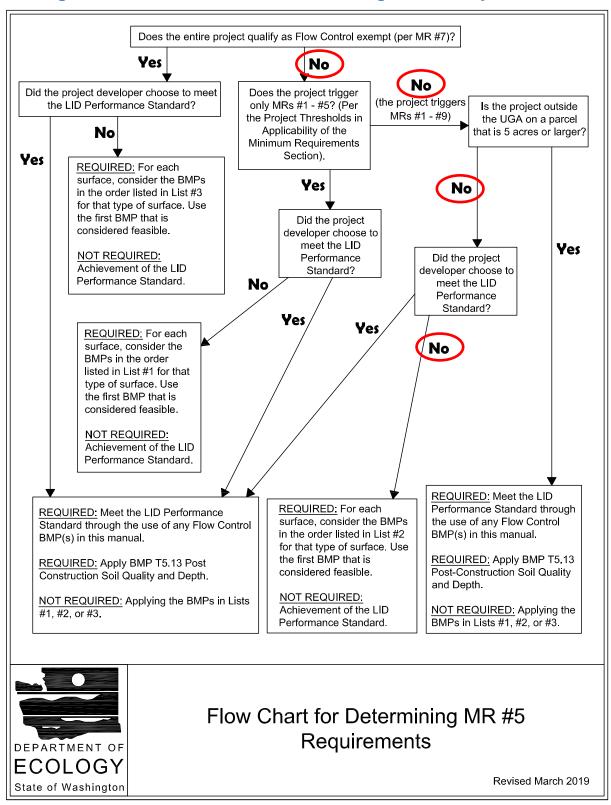


Figure I-3.3: Flow Chart for Determining MR #5 Requirements

Appendix C: Development Plans

STORMWATER PLAN OVERVIEW

PRELIMINARY

SHORE

NORTH

AGE

· MILLS, LLC /ASHINGTON

EV S, \

ISR DI VILL, HSR I

—site boundary TDA 2 TDA 1 -TDA #2 APPROXIMATE DISCHARGE AREA

STORM SEWER

MANHOLE (TYP)

8. PROPOSED DRAINAGE FLOW ROUTES TO FOLLOW EXISTING FLOW ROUTES TO EXTENT POSSIBLE, MAINTAINING THE ULTIMATE DISCHARGE POINTS FOR BOTH ON SITE TDAS IN THE POST DEVELOPED CONDITION... LACAMAS LAKE

- ROOF AREAS FOR ALL LOTS DRAIN TO STORM SEWER MAIN AND SUBSEQUNETLY TO PRIVATE STORMWATER FACILITIES.
- 10. SEE OVERALL THRESHOLD DISCHARGE AREA (TDA) VICINITY MAP ON THIS SHEET, P10.0.

3. STORMWATER TREATMENT AND DETENTION FACILITIES FOR THIS DEVELOPMENT ARE TO BE PRIVATELY OWNED AND MAINTAINED.

6. ACCORDING TO CLARK GIS, NO FLOODPLAIN, FLOODWAYS, OR SHORELINE EXIST ON-SITE. THE EXISTING SITE CONTAINS TWO THRESHOLD DISCHARGE AREAS (TDAs). THE DRAINAGE IS SPLIT INTO THESE TWO TDAS DIAGONALLY AT APPROXIMATELY THE CENTER OF THE SITE BY A RIDGE. THE NORTHERN TDA (#1) SURFACE FLOWS NORTHEAST INTO EXISTING WETLANDS,

AND THE SOUTH TOA (#2) SURFACE FLOWS SOUTHWEST INTO SHALLOW CONCENTRATED FLOWS, ULTIMATELY INTO LACAMAS LAKE.

5. THERE ARE NO KNOWN EXISTING ON-SITE STORMWATER FACILITIES.

ACCORDING TO CLARK COUNTY GIS, THE SITE IS NOT WITHIN OR ADJACENT TO A 100-YEAR FLOODPLAIN. THE SITE IS ADJACENT TO A SHORELINE MANAGEMENT AREA TO THE SOUTH.

- 11. PRELIMINARY STORM SIZING LISTED BELOW TO BE FINALIZED DURING FINAL ENGINEERING: STORM MAIN: 12" MIN. DIAMETER
- CATCH BASIN LEADS: 10" MIN. DIAMETER

GENERAL NOTES

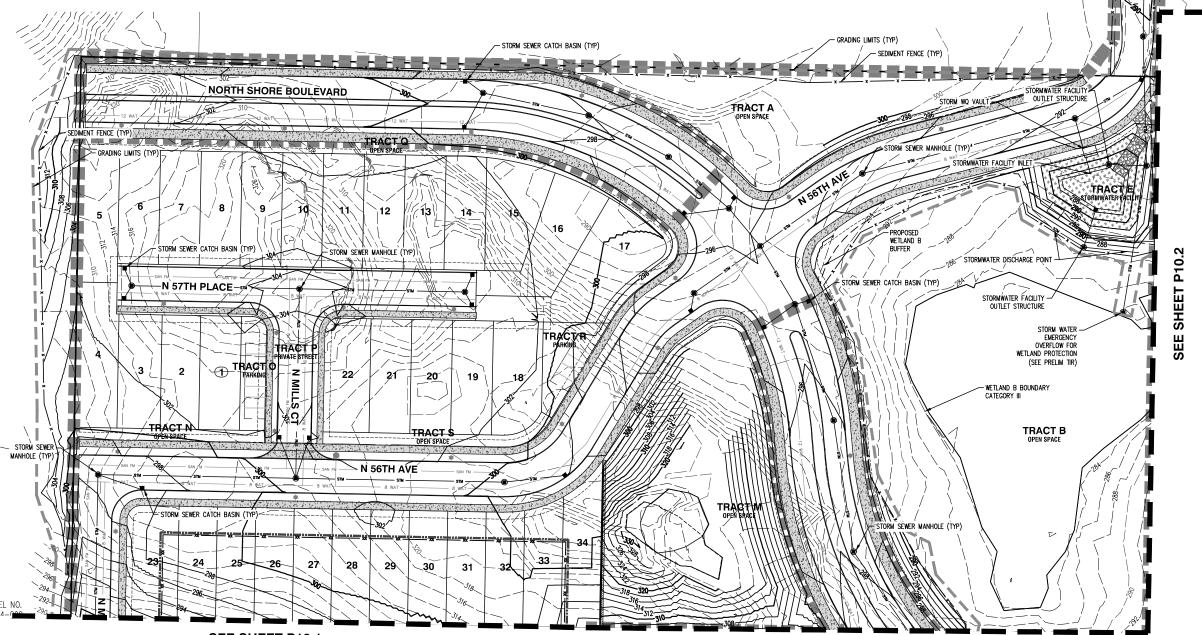
1. CONTOUR INTERVAL IS 2 FEET. 2. TREES ARE NOT SHOWN.

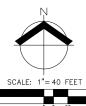
LEGEND

— — 352- —

EXISTING GROUND CONTOUR (2 FT)

EXISTING GROUND CONTOUR (10 FT)


FINISHED GRADE CONTOUR (2 FT) FINISHED GRADE CONTOUR (10 FT)


DRAINAGE FLOW DIRECTION

GRADING LIMITS

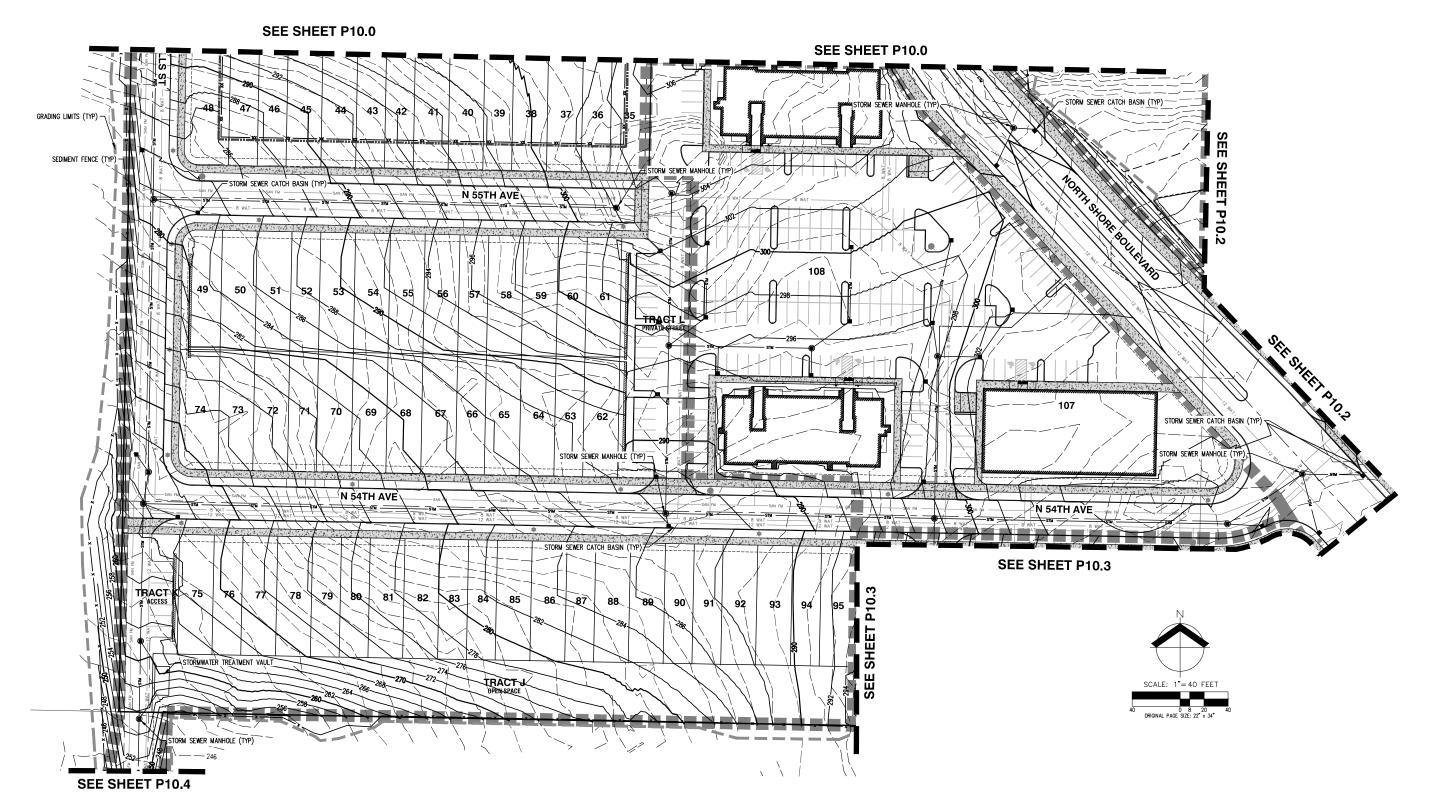
TDA VICINITY MAP

N.T.S.

P10.0

7/22/2025 BDH

LPM


JOB NUMBER:

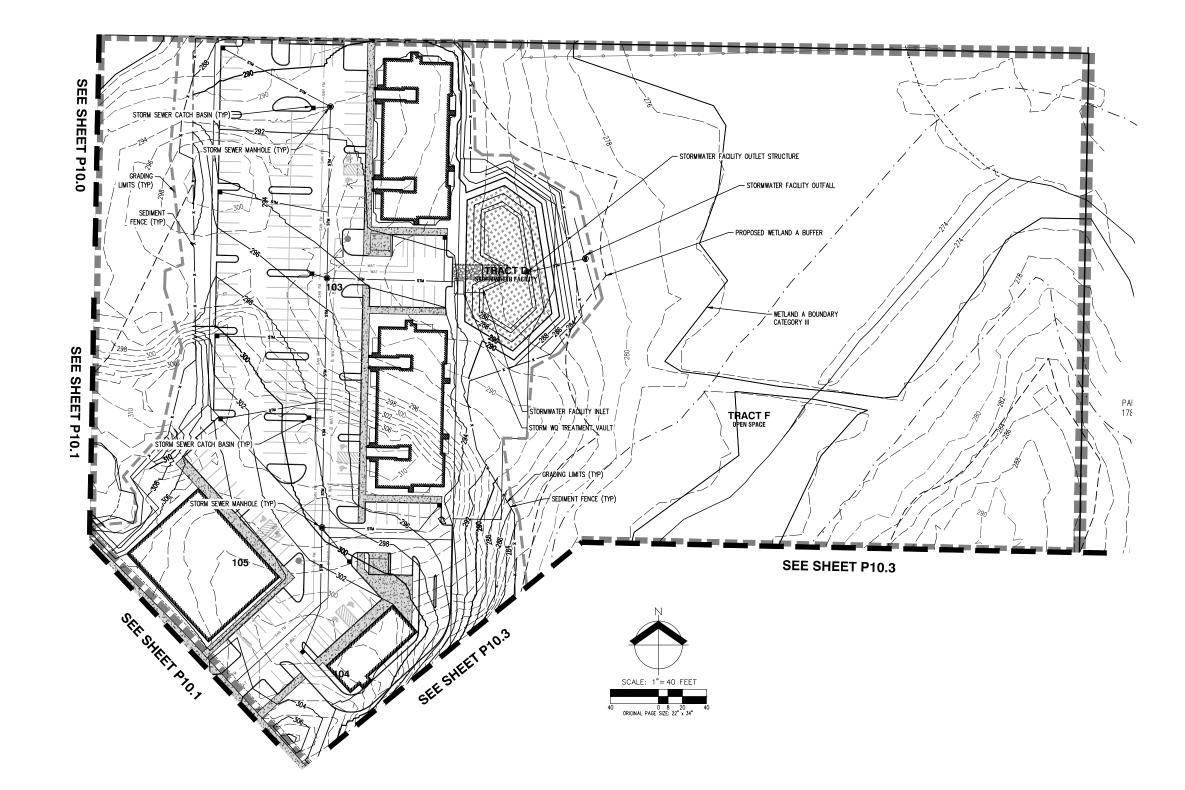
DESIGNED BY: DRAWN BY:

LEGEND

EXISTING GROUND CONTOUR (2 FT) EXISTING GROUND CONTOUR (10 FT) FINISHED GRADE CONTOUR (2 FT) FINISHED GRADE CONTOUR (10 FT) DRAINAGE FLOW DIRECTION

GENERAL NOTES

PRELIMINARY STORMWATER PLAN VILLAGE AT NORTH SHORE HSR DEV - MILLS, LLC CAMAS, WASHINGTON


JOB NUMBER:	9095
DATE:	7/22/2025
DESIGNED BY:	BDH
DRAWN BY:	LPM
CHECKED BY:	BDH

GENERAL NOTES 1. SEE SHEET P10.0 FOR STORMWATER NOTES.

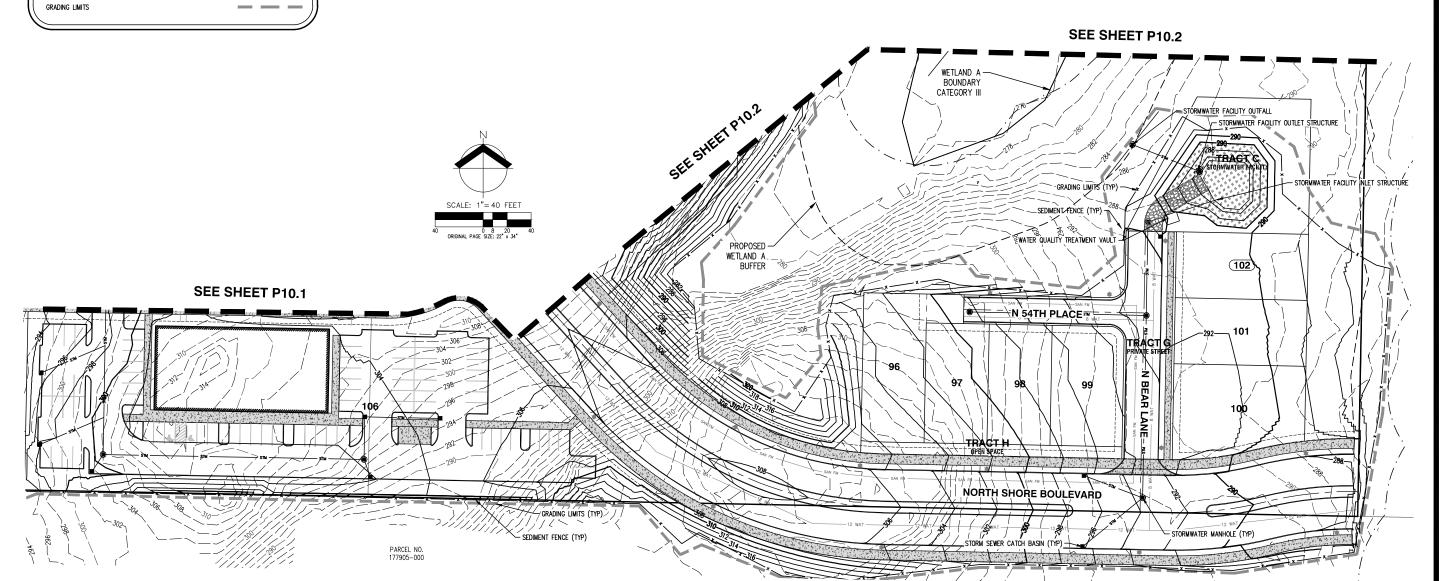
LEGEND

EXISTING GROUND CONTOUR (2 FT) EXISTING GROUND CONTOUR (10 FT) FINISHED GRADE CONTOUR (2 FT)

FINISHED GRADE CONTOUR (10 FT) DRAINAGE FLOW DIRECTION GRADING LIMITS

JOB NUMBER:

9095


7/22/2025

PRELIMINARY STORMWATER PLAN VILLAGE AT NORTH SHORE HSR DEV - MILLS, LLC CAMAS, WASHINGTON

LEGEND

EXISTING GROUND CONTOUR (2 FT) EXISTING GROUND CONTOUR (10 FT) FINISHED GRADE CONTOUR (2 FT) FINISHED GRADE CONTOUR (10 FT) DRAINAGE FLOW DIRECTION

PRELIMINARY STORMWATER PLAN VILLAGE AT NORTH SHORE HSR DEV - MILLS, LLC CAMAS, WASHINGTON

7/22/2025

BDH

LPM

JOB NUMBER:

DESIGNED BY:

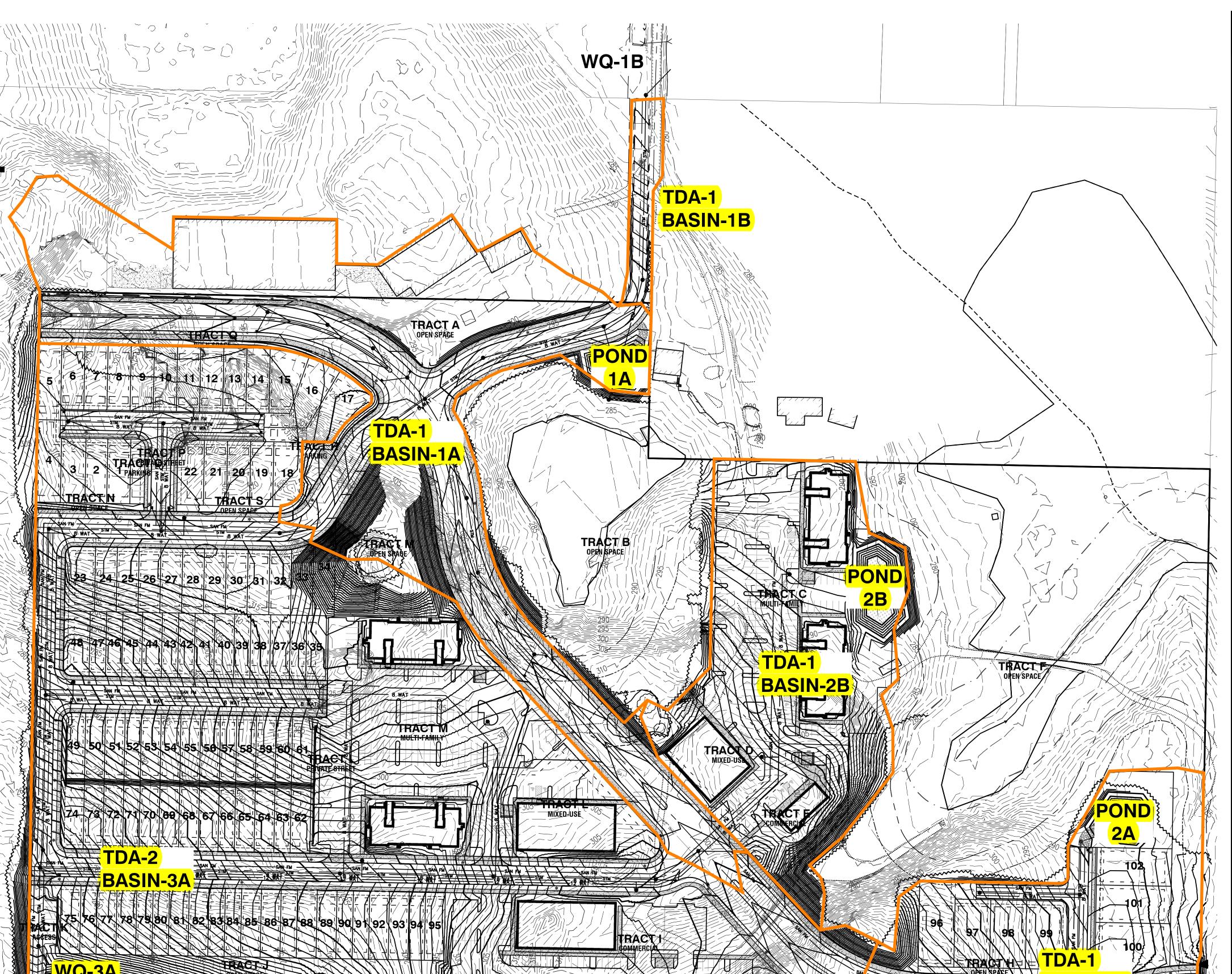
DRAWN BY:

Appendix D: Stormwater Basin Maps

Exhibit 9 SUB25-1008

EXISTING STORM BASIN MAP
VILLAGE AT NORTH SHORE
HSR

JOB NUMBER: 9095


DATE:

DESIGNED BY: MAZ

DRAWN BY: MAZ

CHECKED BY: BHH

C-01

DEVELOPED STORM BA
VILLAGE AT NORTH
HSR
CAMAS WASHINGTON

I BASIN MAP TH SHORE

JOB NUMBER: 9095

DATE:

DESIGNED BY: MAZ

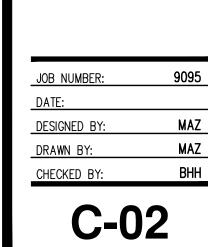
DRAWN BY: MAZ

CHECKED BY: BHH

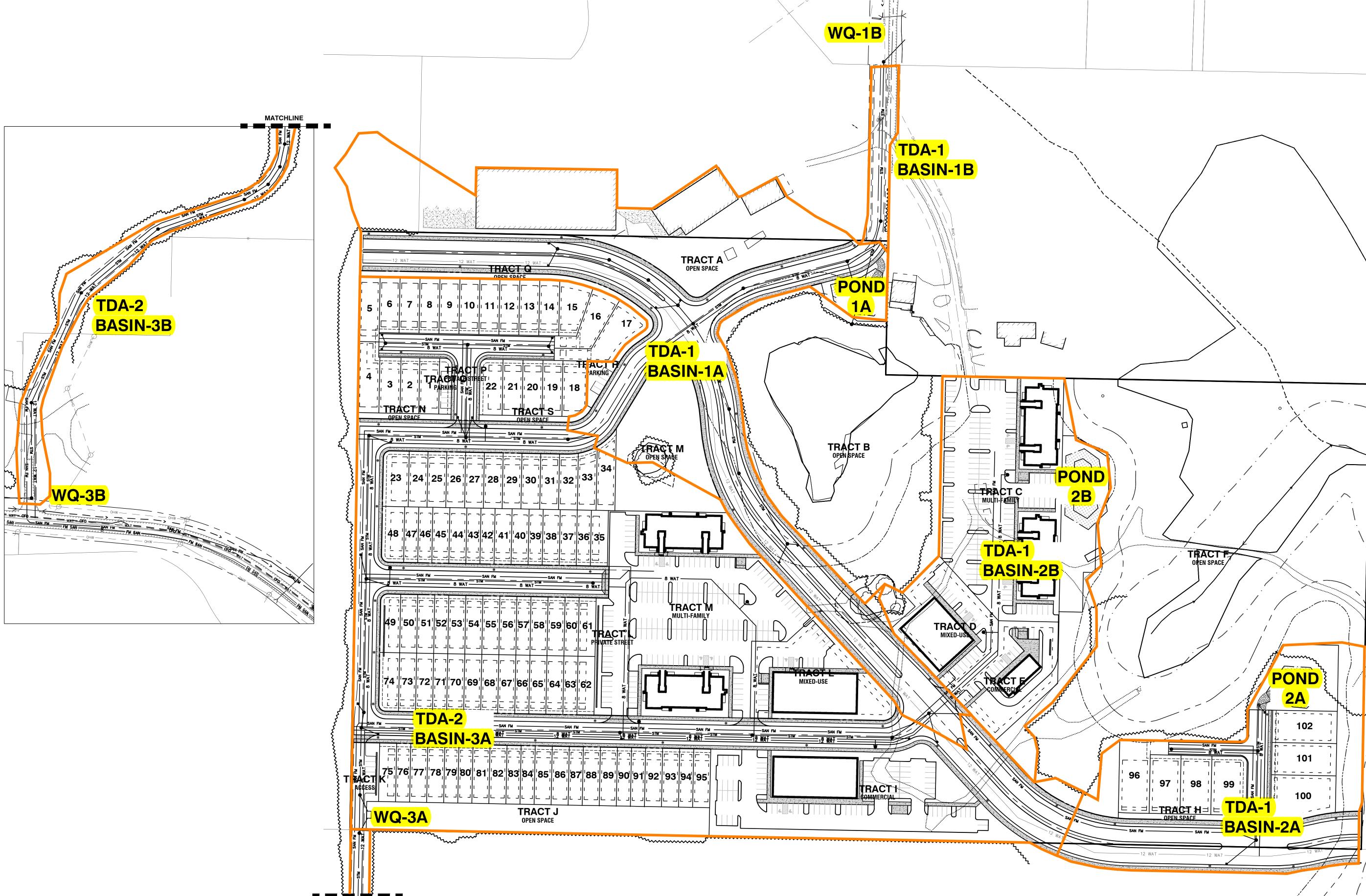
SCALE: 1"=80 FEET

80 0 16 40 8 ORIGINAL PAGE SIZE: 22" x 34"

NKS DRAWING FILE: 9095 STM.DWG | LAYOUT: DEVEL


MATCHLINE

MATCHLINE


BASIN-3B

SCALE: 1"=80 FEET

80 0 16 40 ORIGINAL PAGE SIZE: 22" x 34"

MATCHLINE

Appendix E: BMP Details

V-12 Miscellaneous LID BMPs

V-12.1 Introduction to Miscellaneous LID BMPs

BMPs in this section have been grouped because they have the following in common:

- They employ Low Impact Development (LID) Principles
- They cannot be used to meet <u>I-3.4.6 MR6</u>: Runoff Treatment
- They typically cannot, by themselves, be used to meet the <u>Flow Control Performance Standard</u> within <u>I-3.4.7 MR7</u>: <u>Flow Control</u> or the <u>LID Performance Standard</u> within <u>I-3.4.5 MR5</u>:
 <u>On-Site Stormwater Management</u>
 - Some of the BMPs in this chapter do allow for some amount of Flow Control credit.
 See the guidance for each individual BMP for details.
- The design methods for each BMP in this section are unique. They do not have strong
 enough design similarities to other BMPs in this volume to place them in the other BMP categories identified in this volume.

BMP T5.13: Post-Construction Soil Quality and Depth

Purpose and Definition

Naturally occurring (undisturbed) soil and vegetation provide important stormwater functions including: infiltration; nutrient, sediment, and pollutant adsorption; sediment and pollutant biofiltration; water interflow storage and transmission; and pollutant decomposition. These functions are largely lost when development strips away native soil and vegetation and replaces it with minimal topsoil and sod. Not only are these important stormwater functions lost, but such landscapes themselves can become pollution generating pervious surfaces due to increased use of pesticides, fertilizers and other landscaping and household/industrial chemicals, the concentration of pet wastes, and pollutants that accompany roadside litter.

Establishing soil quality and depth can obtain greater stormwater functions in the post-development landscape and help preserve the plant and soil system more effectively. This type of approach provides a soil/landscape system with adequate depth, permeability, and organic matter to sustain itself and to continue working as an effective stormwater infiltration system.

Applications and Limitations

Amending soils to establish a minimum soil quality and depth is not the same as preservation of naturally occurring soil and vegetation. However, establishing a minimum soil quality and depth will provide improved on-site management of stormwater flow and water quality.

This BMP can be considered infeasible on till soil slopes greater than 33 percent.

In addition to providing some amount of Flow Control benefit, this BMP also offers the following benefits:

- Amended soils can be included in designs for dispersion BMPs (see <u>V-3 Dispersion BMPs</u>)
 to improve dispersal and absorption of stormwater flows.
- This BMP creates a medium for healthy plant growth, reducing the need for fertilizers and pesticides and peak summer irrigation needs (Chollak, n.d.).
- This BMP can improve overall site water quality performance by promoting infiltration; increasing cation exchange capacity, pollutant adsorption, and filtration; and buffering soil pH (USDA and USCC, 2005).

Design Guidelines

Organic Matter

Soil organic matter can be attained through numerous materials such as compost, composted woody material, biosolids, forest product residuals, or other locally available materials deemed suitable for this application. The materials used must be appropriate and beneficial to the plant cover to be established and must not have an excessive percentage of clay fines.

Soil Retention

Retain, in an undisturbed state, the duff layer and native topsoil to the maximum extent practicable. In any areas requiring grading, remove and stockpile the duff layer and topsoil on site in a designated, controlled area, not adjacent to public resources and critical areas, to be reapplied to other portions of the site where feasible.

Soil Quality

All areas subject to clearing and grading that have not been covered by impervious surface, incorporated into a drainage facility, or engineered as structural fill or slope shall, at project completion, demonstrate the following:

- 1. A topsoil layer comprised as follows:
 - Planting Beds: 8-10 percent organic content using 3 inches of compost incorporated to an 8-inch depth or a topsoil mix containing 35-40 percent compost by volume.
 - **Turf areas:** 3-5 percent organic content using 1.75 inches of compost incorporated to an 8-inch depth or a topsoil mix containing 20-25 percent compost by volume.
 - pH between 6.0 and 8.0 or a pH appropriate for installed plants.
- 2. The topsoil layer shall have a minimum depth of eight inches except where tree roots limit the depth of incorporation of amendments needed to meet the criteria. Subsoils below the topsoil layer should be scarified at least 4 inches with some incorporation of the upper material to avoid stratified layers, where feasible.

- 3. Mulch planting beds with 2 inches of organic material.
- 4. Use compost and other materials that meet the following organic content requirements:
 - The organic content must be met using the compost specification for <u>BMP T7.30</u>: <u>Bioretention</u>, with the exception that the compost may have up to 35% biosolids or manure.
 - The compost must also have an organic matter content of 40% to 65%, and a carbon to nitrogen ratio below 25:1. The carbon to nitrogen ratio may be as high as 35:1 for plantings composed entirely of plants native to the Puget Sound Lowlands region.

The resulting soil should be conducive to the type of vegetation to be established.

Implementation Options

The soil quality design guidelines listed above can be met by using one of the methods listed below:

- Leave undisturbed native vegetation and soil, and protect from compaction during construction.
- 2. Amend existing site topsoil or subsoil with organic content at the rates given above.
- Stockpile existing topsoil during grading, and replace it prior to planting. Stockpiled topsoil
 must also be amended if needed to meet the organic matter or depth requirements as given
 above.
- 4. Import topsoil mix of sufficient organic content and depth to meet the requirements.

More than one method may be used on different portions of the same site. Soil that already meets the depth and organic matter quality standards, and is not compacted, does not need to be amended.

Construction Criteria

Protecting and enhancing site soils requires planning and sequencing of construction activities to reduce impacts. The following recommended steps are adapted from the *Low Impact Development Technical Guidance Manual for Puget Sound* (WSU and PSP, 2012) and the Building Soil – A Foundation for Success website (http://www.buildingsoil.org/). These steps begin with land clearing and grading and continue through end of construction (prior to planting) and after planting is complete:

Land Clearing and Grading Phase

- Fence all vegetation and soil protection areas prior to first disturbance, and communicate
 those areas to clearing and grading operators. The root zones of trees that may extend into
 the grading zone should be protected or cut rather than ripped during grading.
- Chip land-clearing debris on-site and reuse as erosion-control cover or stockpile for reuse as mulch at end of project.

- Stockpile topsoil to be reused with a breathable cover, such as wood chips or landscape fabric.
- If amended, topsoils will be placed at end of project. Grade 8 to 12 inches below finish grade to allow for placing the topsoil.

Construction Phase

- Ensure erosion and sediment control BMPs are in place before and modified after grading to protect construction activities. Compost-based BMPs (compost "blankets" for surface, and compost berms or socks for perimeter controls) give a "two-for-one" benefit because the compost can be reused as soil amendment at the end of the project.
- Lay out roads and driveways immediately after grading and place rock bases for them as soon as possible. Keep as much construction traffic as possible on the road base, and off open soils. This will improve erosion compliance, reduce soil compaction, and increase site safety by keeping rolling equipment on a firm base.
- Protect amended/restored soils from equipment-caused compaction by using steel plates or other BMPs if equipment access is unavoidable across amended soils.
- Maintain vegetation and soil protection area barriers and temporary tree root zone protection BMPs throughout construction and ensure that all contractors understand their importance.

End of Construction, Soil Preparation Before Planting

- Ensure vegetation and soil protection barriers are maintained through the end of construction.
- Disturbed or graded soil areas that have received vehicle traffic will need to be decompacted to a minimum 12-inch depth. This can be done with a cat-mounted ripper or with bucket-mounted ripping teeth.
- Amend all disturbed areas with compost or other specified amendments ≥ 8 inches deep by tilling, ripping, or mixing with a bucket loader. Alternatively, place amended stockpiled topsoil or import an amended topsoil. It is good practice to scarify or mix amended soils several inches into the underlying subsoil to enhance infiltration and root penetration. Compost from erosion BMPs (compost blankets, berms, or socks) can be reused as appropriate if immediately followed by planting and mulching so there is no lapse in erosion control.
- Amended topsoil can be placed as soon as building exterior work is complete. During this step, vehicles should stay on roads and driveway pads. Compost, soil blends provide good ongoing erosion protection.
- Avoid tilling through tree roots instead use shallow amendment and mulching.
- Final preparation for turf areas should include raking rocks, rolling, and possibly placing 1 to 2 inches of sandy loam topsoil before seeding or sodding.

- Plan for amended soil to settle by placing amended soil slightly higher than desired final grade, or retain or import a smaller amount of amended topsoil to meet final grades adjacent to hardscape such as sidewalks.
- Keep compost, topsoil, and mulch delivery tickets so inspector can verify that quantities and products used match those intended per the design.

After Planting and End of Project Phase

- Remove protection area barriers, including sediment fences, filter socks, and curb and storm drain barriers. Evaluate trees for stress and need for treatment, such as pruning, rootfeeding, mulching etc. Plan to have an arborist on-site, as appropriate.
- Mulch all planting beds where soil has been amended and replanted with 2 to 3 inches of arborist wood chip or other specified mulch.
- Communicate a landscape management plan to property owners that includes: on-site reuse of organics (e.g. mulch leaves, mulch-mow grass clippings) to maintain soil health; avoiding pesticide use; and minimal organic-based fertilization.

Operation and Maintenance Criteria

- Establish soil quality and depth toward the end of construction and once established, protect from compaction, such as from large machinery use, and from erosion.
- Plant and mulch areas immediately after amending and settling the soil to stabilize the site as soon as possible.
- Leave plant debris or its equivalent on the soil surface to replenish organic matter.
- Landscape management plans should continually renew organic levels through mulchmowing on turf areas, allowing fallen leaves to remain on beds, and/or replenishing mulch layers every 1 to 2 years.
- Minimize or eliminate use of irrigation, herbicides, pesticides and fertilizers. Landscape
 management personnel should be trained to minimize chemical inputs, use nontoxic alternatives, and manage the landscape areas to minimize erosion, recognize soil and plant
 health problems, and optimize water storage and soil permeability.
- Remove weeds as necessary or appropriate through manual removal, tilling and/or remulching.
- Protect amended areas from excessive foot traffic and equipment to prevent compaction and erosion.

Runoff Model Representation

All areas meeting the soil quality and depth design criteria may be entered into approved runoff models as "Pasture" rather than "Lawn/Landscaping".

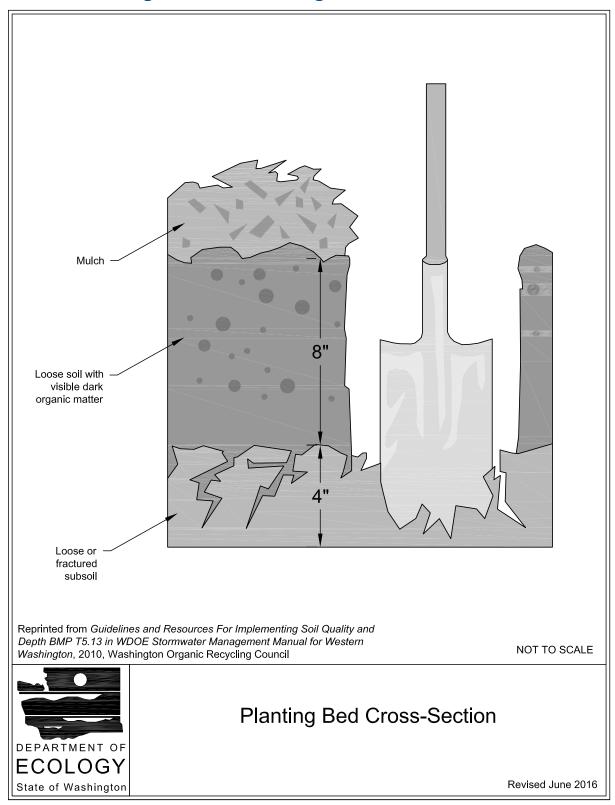


Figure V-12.1: Planting Bed Cross-Section

V-11 Manufactured Treatment Devices as BMPs

V-11.1 Introduction to Manufactured Treatment Devices as BMPs

Traditional best management practices (BMPs) such as wetponds and filtration swales may not be appropriate in many situations due to size and space constraints or their inability to remove target pollutants. Because of this, the stormwater treatment industry emerged to develop new manufactured stormwater treatment devices.

Manufactured treatment devices are emerging technologies that are new to the stormwater treatment marketplace. These devices include both permanent and construction site treatment technologies. Many of these devices have not undergone complete performance testing, so their performance claims cannot be verified.

Ecology has established a program, the Technology Assessment Protocol – Ecology (TAPE), to evaluate the capabilities of manufactured treatment devices. Manufactured treatment devices that have been evaluated by TAPE are approved at some level of use designation under specified conditions. Their use is restricted in accordance with their evaluation as explained in V-11.3 Approval Process for Manufactured Treatment Devices. The recommendations for use of individual manufactured treatment devices may change as we collect more data on their performance. Updated recommendations on their use are posted to Ecology's TAPE website at the following address:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

Manufactured treatment devices can also be considered for retrofit situations, where TAPE approval may not be required.

V-11.2 Use Level Designations of Manufactured Treatment Devices

Ecology's Technology Assessment Protocol - Ecology (TAPE) program developed "use level designations" to assess levels of development for manufactured treatment devices. The use level designations are based upon the quantity, quality, and type of performance data. There are three use level designations:

- pilot use level designation (PULD),
- conditional use level designation (CULD), and
- general use level designation (GULD).

V-13.3 Other Detention Design Options

This section presents options beyond the BMPs provided in this manual that the designer may want to consider incorporating into the project design for detaining flows to meet Flow Control requirements.

Use of Parking Lots for Additional Detention

Parking lots may be used to provide additional detention volume, provided that all of the following criteria are met:

- 1. The depth of water detained does not exceed 1 foot (or other depth established by the permitting authority or local jurisdiction) at any location in the parking lot for runoff events up to and including the 100 year event.
- 2. The gradient of the parking lot area subject to ponding is 1 percent or greater.
- The emergency overflow path is identified and noted on the engineering plan(s). The overflow must not create a significant adverse impact to downstream properties or drainage system(s).
- 4. Fire lanes used for emergency equipment must be free of ponding water for all runoff events up to and including the 100 year event.
- 5. A downstream Runoff Treatment BMP with sorptive oil removal is needed prior to discharge to surface or groundwater.

Use of Roofs for Detention

Detention ponding on roofs of structures may be used to meet Flow Control requirements provided all of the following are met:

- 1. The roof support structure is analyzed by a structural engineer to address the weight of ponded water (including an appropriate safety factor).
- 2. The roof area subject to ponding is sufficiently waterproofed to achieve a minimum service life of 30 years.
- 3. The minimum pitch of the roof area subject to ponding is 1/4 inch per foot.
- 4. An overflow system is included in the design to safely convey the 100 year peak flow from the roof.
- 5. A mechanism is included in the design to allow the ponding area to be drained for maintenance purposes or in the event the restrictor device is plugged.

BMP D.1: Detention Ponds

The design criteria in this section are for detention ponds (this BMP). However, many of the criteria also apply to BMP T7.10: Infiltration Ponds, BMP T10.10: Wetponds - Basic and Large, and

BMP T10.40: Combined Detention and Wetpool Facilities.

Dam Safety for Detention BMPs

Stormwater detention BMPs that can impound 10 acre-feet (435,600 cubic feet; 3.26 million gallons) or more with the water level measured at the embankment crest are subject to the state's dam safety requirements, even if water storage is intermittent and infrequent (WAC 173-175-020 (1)). The principal safety concern is for the downstream population at risk if the dam should breach and allow an uncontrolled release of the pond contents. Peak flows from dam failures are typically much larger than the 100-year flows which detention BMPs are typically designed to accommodate.

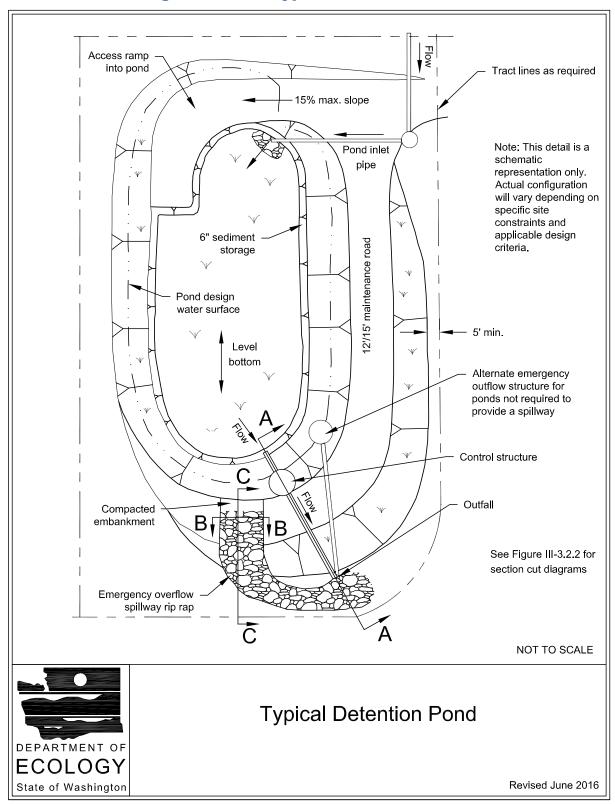
Dam safety considerations generally apply only to the volume of water stored above natural ground level. Per the definition of dam height in <u>WAC 173-175-030</u>, natural ground elevation is measured from the downstream toe of the dam. If a trench is cut through natural ground to install an outlet pipe for a spillway or low-level drain, the natural ground elevation is measured from the base of the trench where the natural ground remains undisturbed.

With regard to the engineering design of stormwater detention BMPs, the primary effect of the state's dam safety requirements is in sizing the emergency spillway to accommodate the runoff from the dam safety design storm without overtopping the dam. The hydrologic computation procedures are the same as for the original pond design, except that the computations must use more extreme precipitation values and the appropriate dam safety design storm hyetographs. This information is described in detail within guidance documents developed by and available from Ecology's Dam Safety Office. In addition to the other design requirements for stormwater detention BMPs, dam safety requirements should be an integral part of planning and design for stormwater detention ponds. It is most cost-effective to consider these requirements from the beginning of the project.

In addition to the hydrologic and hydraulic issues related to precipitation and runoff, other dam safety requirements include geotechnical issues, construction inspection and documentation, dam breach analysis, inundation mapping, emergency action planning, and periodic inspections by project owners and by Dam Safety engineers. All of these requirements, plus procedural requirements for plan review and approval and payment of construction permit fees are described in detail in guidance documents developed by and available from the Dam Safety Office.

In addition to the written guidance documents, Dam Safety engineers are available to provide technical assistance to project owners and designers in understanding and addressing the dam safety requirements for their specific project. In the interest of providing a smooth integration of dam safety requirements into the stormwater detention project and streamlining Dam Safety's engineering review and issuance of the construction permit, it is recommended and requested that Dam Safety be contacted early in the project's planning process. The Dam Safety Office is located in the Ecology headquarters building in Lacey.

For more information about dam safety, please refer to Ecology's Dam Safety Office's Website at:


https://www.ecology.wa.gov/Water-Shorelines/Water-supply/Dams

Design Criteria

Standard details for detention ponds are shown in <u>Figure V-13.9</u>: <u>Typical Detention Pond</u>, <u>Figure V-13.10</u>: <u>Typical Detention Pond Sections</u>, and <u>Figure V-13.11</u>: <u>Overflow Structure</u>. Control structure details and design guidance are provided in V-13.2 Control Structure Design.

General

- Detention ponds must be designed as flow through systems (however, parking lot storage may be utilized through a back up system; see <u>V-13.3 Other Detention Design Options</u>).
 Developed flows must enter through a conveyance system separate from the control structure and outflow conveyance system. Maximizing distance between the inlet and outlet is encouraged to promote sedimentation.
- 2. Detention pond bottoms should be level and be located a minimum of 0.5 foot (preferably 1 foot) below the inlet and outlet to provide sediment storage.
- 3. Design guidelines for outflow control structures are specified in <u>V-13.2 Control Structure</u> <u>Design</u>.
- 4. A geotechnical analysis and report must be prepared for slopes over 15%, or if located within 200 feet of the top of a slope steeper than 40%, or landslide hazard area. The scope of the geotechnical report should include the assessment of impoundment seepage on the stability of the natural slope where the pond will be located within the setback limits set forth in this section.

Figure V-13.9: Typical Detention Pond

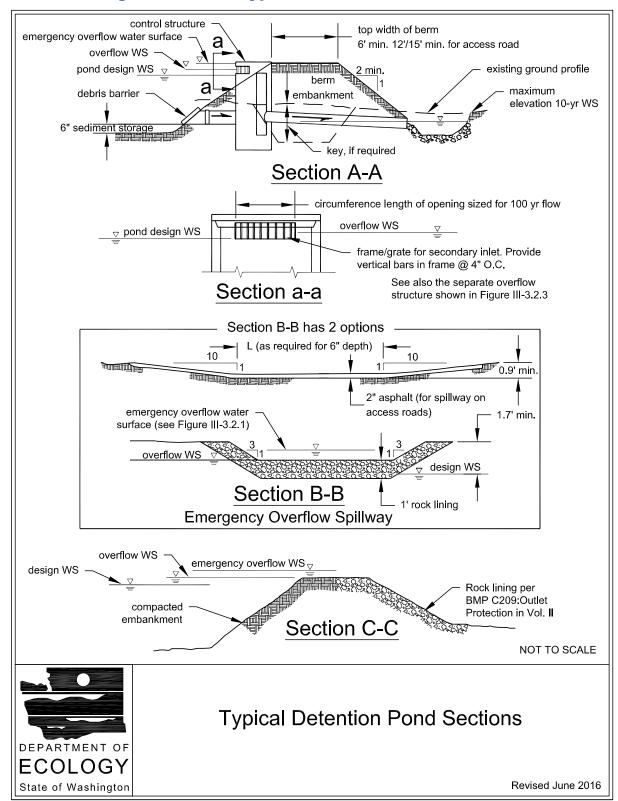
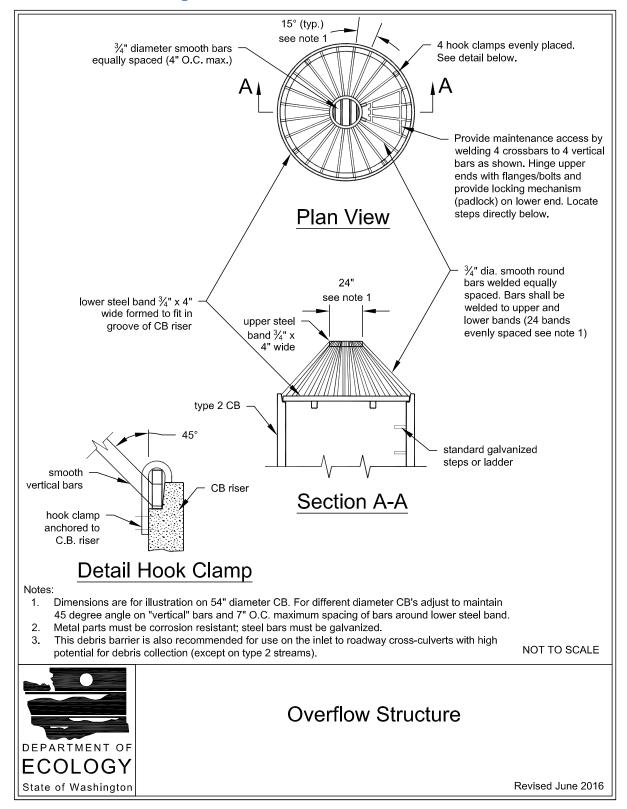



Figure V-13.10: Typical Detention Pond Sections

Figure V-13.11: Overflow Structure

Side Slopes

- 1. Interior side slopes up to the emergency overflow water surface should not be steeper than 3H:1V unless a fence is provided (see Fencing below).
- 2. Exterior side slopes must not be steeper than 2H:1V, unless analyzed for stability by a geotechnical engineer.
- 3. Detention pond walls may be vertical retaining walls, provided:
 - They are constructed of reinforced concrete per BMP D.3: Detention Vaults.
 - A fence is provided along the top of the wall.
 - The entire detention pond perimeter may be retaining walls, however, it is recommended that at least 25 percent of the pond perimeter be a vegetated soil slope not steeper than 3H:1V. If the entire pond perimeter is to be retaining walls, provide ladders on the walls for safety reasons.
 - The design is stamped by a licensed engineer in the state of Washington with structural expertise.

Other retaining walls such as rockeries, concrete, masonry unit walls, and keystone type walls may be used if designed by a geotechnical engineer or a civil engineer with structural expertise.

Inlet

Reduce flow velocities of the discharge to the pond from the inlet pipe by using the methods described in V-1.4.3 Outfall Systems.

Embankments

- 1. Pond berm embankments higher than 6 feet must be designed by a licensed engineer in the state of Washington with geotechnical expertise
- 2. For berm embankments 6 feet or less, the minimum top width should be 6 feet, or as recommended by a geotechnical engineer.
- 3. Construct pond berm embankments on native consolidated soil (or adequately compacted and stable fill soils analyzed by a geotechnical engineer) free of loose surface soil materials, roots, and other organic debris.
- 4. Construct pond berm embankments greater than 4 feet in height by excavating a key equal to 50 percent of the berm embankment cross sectional height and width, unless specified otherwise by a geotechnical engineer.
- 5. Embankment compaction should be accomplished in such a manner as to produce a dense, low permeability engineered fill that can tolerate post-construction settlements with a minimum of cracking. Place the embankment fill on a stable subgrade and compact to a minimum of 95% of the Standard Proctor Maximum Density (ASTM Procedure D698) or

95% of the Modified Proctor Maximum Density (ASTM Procedure D1557). Placement moisture content should lie within 1% dry to 3% wet of the optimum moisture content. The referenced compaction standard may have to be increased to comply with local regulations.

Construct the berm embankment of soils with the following characteristics: a minimum of 20% silt and clay, a maximum of 60% sand, a maximum of 60% silt, with nominal gravel and cobble content. Soils outside this specified range can be used, provided the design satisfactorily addresses the engineering concerns posed by these soils. The paramount concerns with these soils are their susceptibility to internal erosion or piping, and to surface erosion from wave action and runoff on the upstream and downstream slopes, respectively. Note: In general, excavated glacial till is well suited for berm embankment material.

6. Place anti seepage filter-drain diaphragms on outflow pipes in berm embankments impounding water with depths greater than 8 feet at the design water surface. See *Dam Safety Guidelines Part IV: Dam Design and Construction*, (Ecology, 1993) Section 3.3.B on pages 3-27 to 3-30.

Primary Overflow

- 1. Provide a primary overflow (usually a riser pipe within the control structure; see V-13.2 Control Structure Design) in all detention ponds, tanks, and vaults to bypass the 50 year developed peak flow over or around the restrictor system. This assumes the facility will be full due to plugged orifices or high inflows. The primary overflow is intended to protect against breaching of a pond embankment (or overflows of the upstream conveyance system in the case of a detention tank or vault). The design must provide controlled discharge directly into the downstream conveyance system or another acceptable discharge point.
- Provide a secondary inlet to the control structure in ponds as additional protection against overtopping should the inlet pipe to the control structure become plugged. A grated opening ("jailhouse window") in the control structure manhole functions as a weir (see <u>Figure V-13.10</u>: <u>Typical Detention Pond Sections</u>) when used as a secondary inlet.

Note: The maximum circumferential length of this opening must not exceed one half the control structure circumference. The "birdcage" overflow structure as shown in <u>Figure V-13.11:</u> Overflow Structure may also be used as a secondary inlet.

Emergency Overflow Spillway

- In addition to the primary overflow (described above), ponds, tanks, and vaults must have
 an emergency overflow spillway. Emergency overflow spillways are intended to control the
 location of overtopping in the event of total control structure failure (e.g. blockage of the control structure outlet pipe) or extreme inflows, and direct overflows back into the downstream
 conveyance system or other acceptable discharge point.
- For impoundments of 10 acre-feet or greater, the emergency overflow spillway must meet the state's dam safety requirements (see Dam Safety for Detention BMPs above).
- For impoundments under 10 acre-feet, ponds must have an emergency overflow spillway that is sized to pass the 100 year developed peak flow in the event of total control structure failure (e.g. blockage of the control structure outlet pipe) or extreme inflows.

- As an option for ponds with berms less than 2 feet in height and located at grades less than 5 percent, emergency overflow may be provided by an emergency overflow structure, such as a Type II manhole fitted with a birdcage as shown in Figure V-13.11: Overflow Structure. The emergency overflow structure must be designed to pass the 100 year developed peak flow, with a minimum 6 inches of freeboard, directly to the downstream conveyance system or another acceptable discharge point. Where an emergency overflow spillway would discharge to a slope steeper than 15%, consideration should be given to providing an emergency overflow structure in addition to the spillway.
- Armor the emergency overflow spillway with riprap in conformance with <u>BMP C209</u>: <u>Outlet Protection</u>. The spillway must be armored full width, beginning at a point midway across the berm embankment and extending downstream to where emergency overflows reenter the conveyance system (see <u>Figure V-13.10</u>: <u>Typical Detention Pond Sections</u>).
- Emergency overflow spillway designs must be analyzed as broad crested trapezoidal weirs
 as described in Methods of Analysis (below). Either one of the weir sections shown in Fig-ure V-13.10: Typical Detention Pond Sections may be used.
- Design the emergency overflow spillway to allow a minimum of 1 foot of freeboard above the maximum design storm (100-year, 24-hour storm) water surface level.

Access

- 1. Provide maintenance access road(s) to the control structure and other drainage structures associated with the pond (e.g. inlet or bypass structures). It is recommended that manhole and catch basin lids be in or at the edge of the access road and at least 3 feet from a property line.
- 2. An access ramp is needed for removal of sediment with a trackhoe and truck. Extend the ramp to the pond bottom if the pond bottom is greater than 1,500 square feet (measured without the ramp). If the pond bottom is less than 1,500 square feet (measured without the ramp), the ramp may end at an elevation 4 feet above the pond bottom.
 - On large, deep ponds, provide truck access to the pond bottom via an access ramp so loading can be done in the pond bottom. On small deep ponds, the truck can remain on the ramp for loading. On small shallow ponds, a ramp to the bottom may not be required if the trackhoe can load a truck parked at the pond edge or on the internal berm of a wetpond or combined pond (trackhoes can negotiate interior pond side slopes).
- 3. The internal berm of <u>BMP T10.10</u>: <u>Wetponds Basic and Large</u> or <u>BMP T10.40</u>: <u>Combined Detention and Wetpool Facilities</u> may be used for access if all of the following apply:
 - The internal berm is no more than 4 feet above the first wetpool cell.
 - The first wetpool cell is less than 1,500 square feet (measured without the ramp).
 - The internal berm is designed to support a loaded truck, considering the berm is normally submerged and saturated.
- 4. If a fence is required, access should be limited by a double posted gate or by bollards two fixed bollards on each side of the access road and two removable bollards equally located

between the fixed bollards.

- 5. The design guidelines for access roads and ramps:
 - A maximum grade of 15%.
 - A minimum of 40 feet outside turning radius.
 - Locate fence gates only on straight sections of road.
 - 15 feet in width on curves and 12 feet on straight sections.
 - The drivable surface should have a 20-year design life to carry the load of a 24-ton truck; assume three trips per year.
 - Provide a paved apron where access roads connect to paved public roadways.
 - · A truck turnaround is required at the terminus of the road.
- Construct access roads and ramps with asphalt pavement, permeable pavement, gravel surface, or modular grid pavement. All surfaces must conform to the jurisdictional standards and manufacturer's specifications.

Fencing

- 1. A fence is needed at the emergency overflow water surface elevation, or higher, where a pond interior side slope is steeper than 3H:1V, or where the impoundment is a wall greater than 24 inches in height. The fence need only be constructed for those slopes steeper than 3H:1V. Other regulations such as the International Building Code or Uniform Building Code may require fencing of vertical walls. If more than 10 percent of slopes are steeper 3H:1V, it is recommended that the entire pond be fenced.
 - Fences discourage access to portions of a pond where steep side slopes (steeper than 3:1) increase the potential for slipping into the pond. Fences also serve to guide those who have fallen into a pond to side slopes that are flat enough (flatter than 3:1 and unfenced) to allow for easy escape.
- 2. It is recommended that fences be 6 feet in height. For example designs, see WSDOT Standard Plan L-2, Type 1 or Type 3 chain link fence. The fence may be a minimum of 4 feet in height if the depth of the impoundment (measured from the lowest elevation in the bottom of the impoundment, directly adjacent to the bottom of the fenced slope, up to the emergency overflow water surface) is 5 feet or less. For example designs, see WSDOT Standard Plan L-2, Type 4 or Type 6 chain link fence.
- 3. Access road gates may be 16 feet in width consisting of two swinging sections 8 feet in width. Provide additional vehicular access gates as needed to facilitate maintenance access.
- 4. Pedestrian access gates (if needed) should be 4 feet in width.
- 5. Vertical metal balusters or 9 gauge galvanized steel fabric with bonded vinyl coating can be used as fence material. For steel fabric fences, consider the following aesthetic features:

- a. Vinyl coating that is compatible with the surrounding environment (e.g. green in open, grassy areas and black or brown in wooded areas). All posts, cross bars, and gates may be painted or coated the same color as the vinyl clad fence fabric.
- b. Fence posts and rails that conform to WSDOT Standard Plan L 2 for Types 1, 3, or 4 chain link fence.
- 6. For metal baluster fences, Uniform Building Code standards apply.
- 7. Wood fences may be used in subdivisions where the fence will be maintained by homeowners associations or adjacent lot owners.
- 8. Wood fences should have pressure treated posts (ground contact rated) either set in 24 inch deep concrete footings or attached to footings by galvanized brackets. Rails and fence boards may be cedar, pressure treated fir, or hemlock.
- 9. Where only short stretches of the pond perimeter (< 10 percent) have side slopes steeper than 3:1, use split rail fences (3 foot minimum height) or densely planted thorned hedges (e.g., barberry, holly) in place of a standard fence.

Sediment Depth Marker

Consider providing a fixed vertical sediment depth marker installed in the BMP to measure sediment deposition over time.

Signage

Detention ponds (this BMP), <u>BMP T7.10: Infiltration Ponds</u>, <u>BMP T10.10: Wetponds - Basic and Large</u>, and <u>BMP T10.40: Combined Detention and Wetpool Facilities</u> should have a sign placed for maximum visibility from adjacent streets, sidewalks, and paths. An example of sign specifications for a permanent surface water control pond is illustrated in <u>Figure V-13.12: Example of Permanent Surface Water Control Pond Sign</u>.

Appendix F: Flow Con	rol & Water	Quality A	Analysis
-----------------------------	-------------	-----------	----------

WWHM2012

PROJECT REPORT

TDA #1 FLOW CONTROL WITH OVERFLOW/EMERGECY OUTLET

General Model Information

WWHM2012 Project Name: 9095 Villages

Site Name: Site Address:

City:

 Report Date:
 7/11/2025

 Gage:
 Lacamas

 Data Start:
 1948/10/01

 Data End:
 2008/09/30

 Timestep:
 15 Minute

 Pracin Scale:
 1,200

Precip Scale: 1.300

Version Date: 2025/05/13

Version: 4.3.2

POC Thresholds

Low Flow Threshold for POC1: 50 Rercent of the 2 Year

High Flow Threshold for POC1: 50 Year

Low Flow Threshold for POC2: 50 Percent of the 2 Year

High Flow Threshold for POC2: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 5.236 SG4, Field, Mod 1.203

Pervious Total 6.439

Impervious Land Use acre ROADS FLAT 0.178 ROOF TOPS FLAT 0.844

Impervious Total 1.022

Basin Total 7.461

Element Flow Componants: Surface Interflow

Componant Flows To:

Groundwater

9095 Villages 7/11/2025 9:09:37 AM Page 3

Basin 2

Bypass: No

GroundWater: No

Pervious Land Use SG4, Forest, Steep acre 7.979

Pervious Total 7.979

Impervious Land Use acre

Impervious Total 0

Basin Total 7.979

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To: POC 1

POC 1

Basin 3

Bypass: No

GroundWater: No

Pervious Land Use SG4, Forest, Steep acre 14.548

Pervious Total 14.548

Impervious Land Use acre

Impervious Total 0

Basin Total 14.548

Element Flow Componants:

Surface Interflow

Componant Flows To: POC 2

POC 2

9095 Villages 7/11/2025 9:09:37 AM Page 5

Groundwater

Mitigated Land Use

Basin 1A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 2.53

Pervious Total 2.53

Impervious Land Use acre ROADS FLAT 0.178 ROADS MOD 2.798 ROOF TOPS FLAT 0.844

Impervious Total 3.82

Basin Total 6.35

Element Flow Componants: Surface Interflow

Groundwater

Componant Flows To:

Trapezoidal Pond 1A Trapezoidal Pond 1A

Basin 1B

Bypass: Yes

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.147

Pervious Total 0.147

Impervious Land Use acre ROADS MOD 0.141

Impervious Total 0.141

Basin Total 0.288

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To: POC 1 POC 1

Basin 2A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.728

Pervious Total 0.728

Impervious Land Use acre ROADS MOD 2.336

Impervious Total 2.336

Basin Total 3.064

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Trapezoidal Pond 2A Trapezoidal Pond 2A

Basin 2B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.776

Pervious Total 0.776

Impervious Land Use ROADS MOD acre 2.932

Impervious Total 2.932

Basin Total 3.708

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:
Trapezoidal Pond 2B Trapezoidal Pond 2B

Basin 3A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 3.495

Pervious Total 3.495

Impervious Land Use ROADS MOD acre 12.331

Impervious Total 12.331

Basin Total 15.826

Element Flow Componants:

Surface Interflow

Componant Flows To: POC 2

POC 2

Groundwater

Basin 3B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.268

Pervious Total 0.268

Impervious Land Use ROADS MOD acre 0.486

Impervious Total 0.486

Basin Total 0.754

Element Flow Componants:

Surface Interflow

Componant Flows To: POC 2

POC 2

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1A

Bottom Length: 40.00 ft. Bottom Width: 40.00 ft. Depth: 4 ft.

Volume at riser head: 0.1689 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 3 ft. Riser Diameter: 18 in.

Notch Type: Rectangular Notch Width: 0.500 ft. Notch Height: 1.200 ft.

Orifice 1 Diameter: 4.000 in. Elevation:-0.387083333333333 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To:

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.036	0.000 ` ′	0.270	0.000
0.0444	0.037	0.001	0.285	0.000
0.0889	0.037	0.003	0.299	0.000
0.1333	0.038	0.005	0.313	0.000
0.1778	0.038	0.006	0.326	0.000
0.2222	0.039	0.008	0.338	0.000
0.2667	0.039	0.010	0.351	0.000
0.3111	0.040	0.012	0.362	0.000
0.3556	0.040	0.013	0.374	0.000
0.4000	0.041	0.015	0.385	0.000
0.4444	0.041	0.017	0.395	0.000
0.4889	0.042	0.019	0.406	0.000
0.5333	0.042	0.021	0.416	0.000
0.5778	0.043	0.023	0.426	0.000
0.6222	0.043	0.025	0.436	0.000
0.6667	0.044	0.027	0.445	0.000
0.7111	0.045	0.029	0.455	0.000
0.7556	0.045	0.031	0.464	0.000
0.8000	0.046	0.033	0.473	0.000
0.8444	0.046	0.035	0.481	0.000
0.8889	0.047	0.037	0.490	0.000
0.9333	0.047	0.039	0.498	0.000
0.9778	0.048	0.041	0.507	0.000
1.0222	0.048	0.043	0.515	0.000
1.0667	0.049	0.045	0.523	0.000
1.1111	0.050	0.048	0.531	0.000
1.1556	0.050	0.050	0.539	0.000
1.2000	0.051	0.052	0.547	0.000
1.2444	0.051	0.054	0.554	0.000
1.2889	0.052	0.057	0.562	0.000
1.3333	0.052	0.059	0.569	0.000

1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6044 3.6889	0.053 0.054 0.055 0.055 0.055 0.055 0.057 0.057 0.058 0.059 0.060 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.072 0.073 0.074 0.075 0.076 0.076 0.077 0.078 0.079 0.079 0.079 0.079 0.079 0.081 0.081 0.082 0.083 0.084 0.084 0.085 0.087 0.087 0.087	0.061 0.064 0.066 0.069 0.071 0.074 0.076 0.079 0.081 0.084 0.086 0.089 0.092 0.095 0.097 0.100 0.103 0.106 0.109 0.111 0.114 0.117 0.120 0.123 0.126 0.129 0.132 0.145 0.148 0.152 0.145 0.148 0.152 0.155 0.158 0.162 0.165 0.168 0.172 0.175 0.179 0.183 0.168 0.172 0.175 0.179 0.183 0.197 0.201 0.205 0.201 0.205 0.208 0.212 0.216 0.220 0.224	0.576 0.584 0.591 0.598 0.605 0.612 0.632 0.638 0.625 0.638 0.650 0.718 0.763 0.813 0.868 0.926 0.988 1.052 1.119 1.331 1.405 1.481 1.557 1.634 1.790 1.869 2.107 2.202 2.398 2.499 2.605 2.313 3.538 3.977 4.958 5.471 5.979 6.929 7.710 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.929 7.720 8.920 7.720 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920 7.720 8.920	0.000 0.000
3.5556	0.086	0.212	7.710	0.000
3.6000	0.087	0.216	8.019	0.000
3.6444	0.087	0.220	8.272	0.000

3.9556	0.093	0.248	9.583	0.000
4.0000	0.094	0.252	9.747	0.000
4.0444	0.094	0.256	9.907	0.000

Trapezoidal Pond 2A

Bottom Length: 40.00 ft. Bottom Width: 40.00 ft. Depth: 4 ft.

Volume at riser head: 0.1689 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 3 ft.
Riser Diameter: 18 in.
Notch Type: Rectangular
Notch Width: 0.330 ft.
Notch Height: 1.333 ft.

Orifice 1 Diameter: 4.000 in. Elevation:-0.333333333333333333 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To:

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.036	0.000	0.250	0.000
0.0444	0.037	0.001	0.266	0.000
0.0889	0.037	0.003	0.282	0.000
0.1333	0.038	0.005	0.296	0.000
0.1778	0.038	0.006	0.310	0.000
0.2222	0.039	0.008	0.323	0.000
0.2667	0.039	0.010	0.336	0.000
0.3111	0.040	0.012	0.348	0.000
0.3556	0.040	0.013	0.360	0.000
0.4000	0.041	0.015	0.371	0.000
0.4444	0.041	0.017	0.382	0.000
0.4889	0.042	0.019	0.393	0.000
0.5333	0.042	0.021	0.404	0.000
0.5778	0.043	0.023	0.414	0.000
0.6222	0.043	0.025	0.424	0.000
0.6667	0.044	0.027	0.434	0.000
0.7111	0.045	0.029	0.443	0.000
0.7556	0.045	0.031	0.453	0.000
0.8000	0.046	0.033	0.462	0.000
0.8444	0.046	0.035	0.471	0.000
0.8889	0.047	0.037	0.480	0.000
0.9333	0.047	0.039	0.488	0.000
0.9778	0.048	0.041	0.497	0.000
1.0222	0.048	0.043	0.505	0.000
1.0667	0.049	0.045	0.513	0.000
1.1111	0.050	0.048	0.521	0.000
1.1556	0.050	0.050	0.529	0.000
1.2000	0.051	0.052	0.537	0.000
1.2444	0.051	0.054	0.545	0.000
1.2889	0.052	0.057	0.553	0.000
1.3333	0.052	0.059	0.560	0.000
1.3778	0.053	0.061	0.568	0.000
1.4222	0.054	0.064	0.575	0.000

1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7338 3.7778 3.7778	0.054 0.055 0.055 0.056 0.057 0.057 0.058 0.058 0.059 0.060 0.061 0.062 0.062 0.063 0.064 0.065 0.066 0.066 0.067 0.068 0.067 0.068 0.069 0.070 0.071 0.072 0.072 0.072 0.073 0.074 0.075 0.076 0.076 0.076 0.079 0.079 0.079 0.079 0.081 0.082 0.083 0.084 0.084 0.085 0.086 0.087 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.089 0.090	0.066 0.069 0.071 0.074 0.076 0.079 0.081 0.084 0.086 0.089 0.092 0.095 0.097 0.100 0.103 0.106 0.109 0.111 0.114 0.117 0.120 0.123 0.126 0.129 0.132 0.136 0.139 0.142 0.145 0.145 0.148 0.152 0.155 0.158 0.162 0.165 0.168 0.172 0.175 0.179 0.183 0.186 0.190 0.193 0.197 0.201 0.205 0.208 0.212 0.216 0.205 0.208 0.212 0.216 0.224 0.228 0.232	0.582 0.589 0.596 0.603 0.610 0.620 0.642 0.702 0.776 0.817 0.860 0.904 0.951 0.998 1.047 1.148 1.200 1.253 1.305 1.359 1.413 1.467 1.575 1.630 1.695 1.761 1.828 1.896 2.108 2.	0.000 0.000
3.6444	0.087	0.220	7.867	0.000
3.6889	0.088	0.224	8.072	0.000
3.7333	0.089	0.228	8.242	0.000

4.0444 0.094 0.256 9.503 0.000

Trapezoidal Pond 2B

Bottom Length: 60.00 ft. Bottom Width: 60.00 ft. Depth: 4 ft.

Volume at riser head: 0.3329 acre-feet.

Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1

Discharge Structure

Riser Height: 3 ft. Riser Diameter: 18 in. Notch Type: Notch Width: Rectangular 0.330 ft. Notch Height:
Orifice 1 Diameter: 1.333 ft.

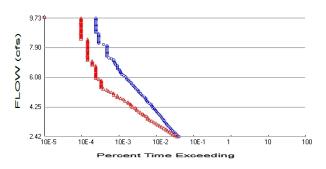
4.000 in. Elevation:0 ft.

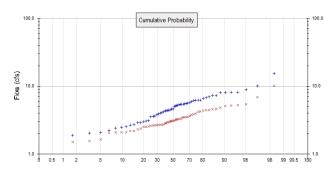
Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To:

Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.082	0.000	0.000	0.000
0.0444	0.083	0.003	0.091	0.000
0.0889	0.084	0.007	0.129	0.000
0.1333	0.084	0.01 1	0.158	0.000
0.1778	0.085	0.015	0.183	0.000
0.2222	0.086	0.018	0.204	0.000
0.2667	0.087	0.022	0.224	0.000
0.3111	0.087	0.026	0.242	0.000
0.3556	0.088	0.030	0.258	0.000
0.4000	0.089	0.034	0.274	0.000
0.4444	0.090	0.038	0.289	0.000
0.4889	0.090	0.042	0.303	0.000
0.5333	0.091	0.046	0.317	0.000
0.5778	0.092	0.050	0.330	0.000
0.6222	0.093	0.054	0.342	0.000
0.6667	0.094	0.058	0.354	0.000
0.7111	0.094	0.063	0.366	0.000
0.7556	0.095	0.067	0.377	0.000
0.8000	0.096	0.071	0.388	0.000
0.8444	0.097	0.075	0.399	0.000
0.8889	0.098	0.080	0.409	0.000
0.9333	0.098	0.084	0.419	0.000
0.9778	0.099	0.089	0.429	0.000
1.0222	0.100	0.093	0.439	0.000
1.0667	0.101	0.097	0.448	0.000
1.1111	0.102	0.102	0.457	0.000
1.1556	0.102	0.107	0.466	0.000
1.2000	0.103	0.111	0.475	0.000
1.2444	0.104	0.116	0.484	0.000
1.2889	0.105	0.120	0.492	0.000
1.3333	0.106	0.125	0.501	0.000
1.3778	0.107	0.130	0.509	0.000
1.4222	0.107	0.135	0.517	0.000


2.7111 0.133 0.290 1.653 0.0 2.7556 0.134 0.296 1.719 0.0 2.8000 0.135 0.302 1.787 0.0 2.8444 0.136 0.308 1.855 0.0 2.8889 0.137 0.314 1.925 0.0 2.9333 0.138 0.320 1.996 0.0 2.9778 0.139 0.326 2.068 0.0 3.0222 0.140 0.332 2.160 0.0 3.0667 0.141 0.339 2.387 0.0 3.1111 0.142 0.345 2.706 0.0 3.1556 0.143 0.351 3.094 0.0 3.2444 0.145 0.364 4.012 0.0 3.2889 0.145 0.371 4.515 0.0 3.3333 0.146 0.377 5.028 0.0 3.3778 0.147 0.384 5.537 0.0 3.556 0.151 0.404 6.904 0.0 3.556 0.151 0.404<	1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222	0.108 0.109 0.110 0.111 0.112 0.112 0.113 0.114 0.115 0.116 0.117 0.118 0.119 0.120 0.121 0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.128 0.129 0.130 0.131	0.139 0.144 0.149 0.154 0.159 0.164 0.169 0.174 0.179 0.184 0.190 0.195 0.200 0.205 0.211 0.216 0.222 0.227 0.233 0.238 0.244 0.249 0.255 0.261 0.266 0.272 0.278	0.525 0.533 0.541 0.549 0.556 0.567 0.590 0.618 0.651 0.687 0.726 0.767 0.811 0.856 0.903 0.951 1.001 1.102 1.155 1.208 1.261 1.315 1.369 1.423 1.478 1.533	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.8667 0.158 0.459 8.804 0.00 3.9111 0.159 0.466 8.976 0.00	2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333 3.7778 3.8222 3.8667 3.9111	0.133 0.134 0.135 0.136 0.137 0.138 0.139 0.140 0.141 0.142 0.143 0.145 0.145 0.145 0.146 0.147 0.148 0.149 0.150 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158 0.159	0.290 0.296 0.302 0.308 0.314 0.320 0.326 0.332 0.339 0.345 0.351 0.358 0.364 0.371 0.377 0.384 0.390 0.397 0.404 0.410 0.417 0.424 0.431 0.438 0.445 0.452 0.459 0.466	1.653 1.719 1.787 1.855 1.925 1.996 2.068 2.160 2.387 2.706 3.094 3.534 4.012 4.515 5.028 5.537 6.028 6.487 6.904 7.269 7.578 7.831 8.035 8.206 8.447 8.628 8.804 8.976	0.000 0.000

4.0444 0.163 0.487 9.468 0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 7.979
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 4.181
Total Impervious Area: 9.229

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 4.837897

 5 year
 6.947841

 10 year
 8.034248

 25 year
 9.107557

 50 year
 9.732275

 100 year
 10.239391

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 3.084473

 5 year
 4.233885

 10 year
 5.048842

 25 year
 6.140893

 50 year
 7.000336

 100 year
 7.899697

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	3.593	3.118
1950	4.421	2.948
1951	6.179	2.628
1952	4.019	3.832
1953	5.045	2.719
1954	8.075	3.492
1955	3.891	2.177
1956	6.998	5.273
1957	6.564	3.037
1958	5.357	4.646

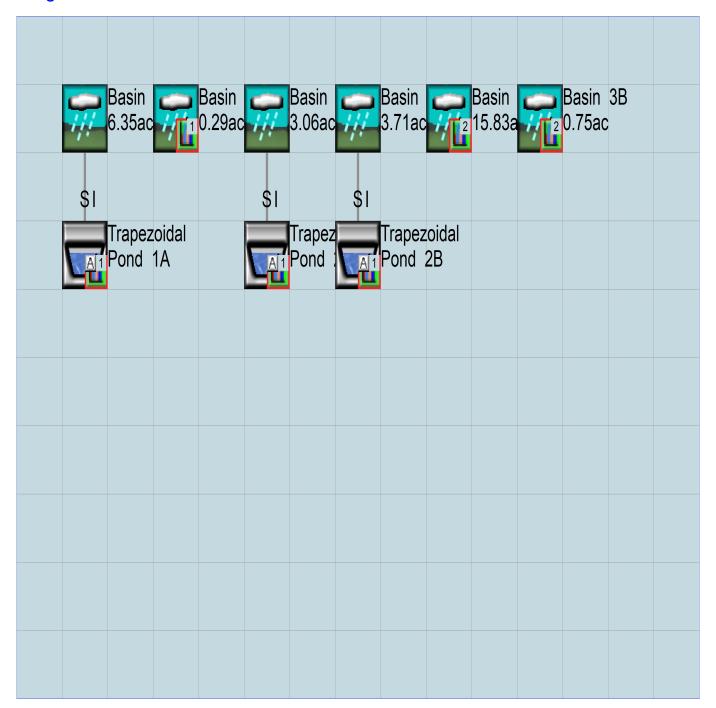
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1978 1981 1982 1983 1984 1985 1988 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	3.082 2.904 6.257 4.587 5.082 4.589 4.156 5.645 5.928 6.256 15.456 2.657 4.048 4.377 6.164 3.624 5.535 0.451 8.138 5.478 3.045 7.223 5.163 8.826 2.963 2.059 2.685 4.424 2.537 2.899 2.234 5.362 6.809 4.528 3.804 5.362 6.809 4.528 3.540 2.021 7.263 5.728 1.877 2.393 4.323 2.481 4.347	1.634 2.500 3.627 3.296 3.036 2.845 2.944 3.196 2.608 4.349 5.373 10.105 2.083 2.666 3.487 5.191 2.514 3.241 1.487 4.430 4.430 2.187 4.209 3.507 4.248 2.093 2.792 2.710 2.373 2.051 2.648 2.706 4.533 3.296 3.773 6.840 5.109 3.956 3.124 1.505 1.545 3.251 3.494 2.682 2.300 3.074 3.366 4.817
--	--	--

Ranked Annual Peaks

Named Amidai i Cako			
Ranked Annual Peaks for Predeveloped and Mitigated. POC #1			
Rank	Predeveloped	Mitigated	
1	15.4560	10.1050	
2	10.0109	6.8403	
3	8.8256	5.3726	
4	8.1581	5.2730	

5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	8.1380 8.0751 8.0581 7.2629 7.2234 6.9977 6.8085 6.5639 6.2573 6.2557 6.1788 6.1640 5.9284 5.7277 5.6449 5.5352 5.4777 5.3835 5.3624 5.3622 5.3572 5.3622 5.3622 5.3572 5.2462 5.1633 5.0819 5.0455 4.5893 4.5868 4.5281 4.4240 4.3229 4.1565 4.0476 4.3469 4.3766 4.3469 4.3229 4.1565 4.0476 4.3469 4.3766 4.0191 3.8038 3.6240 3.5933 3.6240 3.62570 2.5367 2.4815 2.9058 1.8771 0.4514	5.1906 5.1093 4.8166 4.6456 4.5327 4.4299 4.4297 4.3486 4.2095 3.9559 3.8319 3.7727 3.6274 3.5069 3.4940 3.4916 3.4972 3.2965 3.2965 3.2965 3.2963 3.1240 3.1182 3.0740 3.0374 3.0356 2.9482 2.9445 2.8450 2.7917 2.7194 2.7099 2.7058 2.6660 2.6484 2.6282 2.6083 2.5416 2.5139 2.4999 2.3728 2.6660 2.6484 2.6282 2.6083 2.5416 2.5139 2.4999 2.3728 2.2996 2.1868 2.1767 2.1001 2.0935 2.0935 2.0515 1.6340 1.5448 1.5049 1.4867
---	---	--

Duration Flows
The Facility PASSED


2.4189 843 751 89 Pass 2.4928 779 659 84 Pass 2.5667 715 581 81 Pass 2.6406 668 525 78 Pass 2.7144 609 464 76 Pass 2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6748 274 110 40 Pass 3.6748 224 136 42 Pass 3.8903 212<	Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
2.4928 779 659 84 Pass 2.5667 715 581 81 Pass 2.6406 668 525 78 Pass 2.7144 609 464 76 Pass 2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1180 19 <td></td> <td></td> <td></td> <td></td> <td></td>					
2.5667 715 581 81 Pass 2.6406 668 525 78 Pass 2.7144 609 464 76 Pass 2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.3153 386 207 53 Pass 3.3154 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.6748 274 110 40 Pass 3.87486 259 96 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.2657 167 48 28 Pass 4.4135 151 43 28 Pass 4.4135 151 43 28 Pass 4.46351 116 30 25 Pass 4.7090 111 27 24 Pass 4.8667 99 19 19 19 Pass 4.8667 99 19 19 Pass 5.0763 78 Pass 5.0763 78 15 Pass 5.0763 79 19 Pass 5.0763 78 15 Pass 5.0763 79 19 Pass 5.0763 78 15 Pass 5.0763 78 15 Pass 5.0763 78 15 Pass 5.0763 78 15 Pass 5.0763 79 19 Pass 5.0763 78 15 Pass 5.0763 79 19 Pass 5.0763 78 15 Pass 5.0763 78 15 Pass 5.0763 79 10 14 Pass 5.0763 79 10 14 Pass 5.0763 78 15 Pass 5.0763 79 17 Pass 5.0763 78 15 Pass 5.0763 46 7 15 Pass 5.07648 34 6 7 15 Pass 5.0809 38 7 18 Pass 5.09648 34 6 17 Pass					
2.6406 668 525 78 Pass 2.7144 609 464 76 Pass 2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 3.0099 462 288 62 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.4532 324 138 42 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1919 170 <td></td> <td></td> <td></td> <td></td> <td></td>					
2.7144 609 464 76 Pass 2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.4532 324 138 42 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.8964 225 79 35 Pass 3.8903 212 71 33 Pass 4.0441 199 63 31 Pass 4.1919 170 57 33 Pass 4.2657 167					
2.7883 572 417 72 Pass 2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.8225 241 90 37 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.135 151					
2.8622 532 379 71 Pass 2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.2315 386 207 53 Pass 3.33054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6748 274 110 40 Pass 3.6748 274 110 40 Pass 3.8225 241 90 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.1396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4657 167 48 28 Pass 4.4135 151 43 28 Pass 4.4135 151 43 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.7990 111 27 24 Pass 4.7829 108 23 21 Pass 4.7990 111 27 24 Pass 4.7829 108 23 21 Pass 4.7990 111 27 24 Pass 4.7829 108 23 21 Pass 4.7990 111 27 24 Pass 4.7829 108 23 21 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.1522 72 13 18 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.516693 46 7 15 Pass 5.59648 34 6 17 Pass 5.9648 34 6 17 Pass					
2.9361 506 335 66 Pass 3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4874 135					
3.0099 462 288 62 Pass 3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.6748 274 110 40 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1310 170 57 48 28 Pass 4.1919					
3.0838 429 256 59 Pass 3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1919 170 57 33 Pass 4.1919 170 57 33 Pass 4.3396 159 44 27 Pass 4.4874 135 38 28 Pass 4.5612 123					
3.1577 405 228 56 Pass 3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.6748 274 110 40 Pass 3.6748 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.1310 170 57 33 Pass 4.135 151 43 28 Pass 4.435 151 43 28 Pass 4.44135 151					
3.2315 386 207 53 Pass 3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.3396 159 44 27 Pass 4.435 151 43 28 Pass 4.4874 135 38 28 Pass 4.6351 116 30 25 Pass 4.7829 108 23 21 Pass 4.7829 108 <					
3.3054 365 181 49 Pass 3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.3396 159 44 27 Pass 4.3396 159 44 27 Pass 4.4874 135 38 28 Pass 4.6351 116 30 25 Pass 4.7929 108 23 21 Pass 4.7829 108					
3.3793 341 156 45 Pass 3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.3396 159 44 27 Pass 4.3396 159 44 27 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.7990 111 27 24 Pass 4.7829 108 <					
3.4532 324 138 42 Pass 3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.180 186 61 32 Pass 4.3396 159 44 27 Pass 4.4874 135 38 28 Pass 4.4874 135 38 28 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 5.0045 85					
3.5270 306 123 40 Pass 3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7829 108 23 21 Pass 4.9306 91 19 19 Pass 5.0783 78 1					
3.6009 291 121 41 Pass 3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.1919 170 57 33 Pass 4.3396 159 44 27 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.7829 108 23 21 Pass 4.7829 108 23 21 Pass 5.0783 78 1					
3.6748 274 110 40 Pass 3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7909 111 27 24 Pass 4.7829 108 23 21 Pass 5.0045 85 15 17 Pass 5.0783 78 15<					
3.7486 259 96 37 Pass 3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.1919 170 48 28 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.6351 116 30 25 Pass 4.7900 111 27 24 Pass 4.7829 108 23 21 Pass 4.9306 91 19 19 Pass 5.0783 78 15 19 Pass 5.1522 72 13 <td></td> <td></td> <td></td> <td></td> <td></td>					
3.8225 241 90 37 Pass 3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.2657 167 48 28 Pass 4.396 159 44 27 Pass 4.396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.8567 99 19 19 Pass 5.0045 85 15 17 Pass 5.0045 85 15					
3.8964 225 79 35 Pass 3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.435 151 43 28 Pass 4.4874 135 38 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7829 108 23 21 Pass 4.9306 91 19 19 Pass 5.0783 78 15 17 Pass 5.0783 78 15 19 Pass 5.3738 59 8 13 Pass 5.2261 70 11				37	
3.9703 212 71 33 Pass 4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7829 108 23 21 Pass 4.9306 91 19 19 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.3000 67 10 14 Pass 5.4477 56 7 12 Pass 5.5216 52 7					
4.0441 199 63 31 Pass 4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.3000 67 10 14 Pass 5.4477 56 7 12 Pass 5.5216 52 7					
4.1180 186 61 32 Pass 4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.5216 52 7 13 Pass 5.5954 50 7					
4.1919 170 57 33 Pass 4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0783 78 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.3738 59 8 13 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 <					
4.2657 167 48 28 Pass 4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.7432 44 7 15 Pass 5.8909 38 7 18 Pass 5.9648 34 6					
4.3396 159 44 27 Pass 4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0783 78 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5954 50 7 14 Pass 5.8903 46 7 15 Pass 5.8909 38 7					
4.4135 151 43 28 Pass 4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3738 59 8 13 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.8093 46 7 15 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17					
4.4874 135 38 28 Pass 4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0783 78 15 17 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.9648 34 6 17 Pass					
4.5612 123 36 29 Pass 4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
4.6351 116 30 25 Pass 4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
4.7090 111 27 24 Pass 4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
4.7829 108 23 21 Pass 4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
4.8567 99 19 19 Pass 4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
4.9306 91 19 20 Pass 5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.0045 85 15 17 Pass 5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.9648 34 6 17 Pass					
5.0783 78 15 19 Pass 5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.1522 72 13 18 Pass 5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.2261 70 11 15 Pass 5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.3000 67 10 14 Pass 5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.3738 59 8 13 Pass 5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass			10		
5.4477 56 7 12 Pass 5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					
5.5216 52 7 13 Pass 5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass	5.4477	56		12	
5.5954 50 7 14 Pass 5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass	5.5216	52	7	13	
5.6693 46 7 15 Pass 5.7432 44 7 15 Pass 5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass	5.5954	50	7	14	
5.8171 40 7 17 Pass 5.8909 38 7 18 Pass 5.9648 34 6 17 Pass	5.6693	46	7	15	Pass
5.8909 38 7 18 Pass 5.9648 34 6 17 Pass	5.7432	44	7	15	Pass
5.8909 38 7 18 Pass 5.9648 34 6 17 Pass					Pass
5.9648 34 6 17 Pass	5.8909			18	Pass
6.0387 33 5 15 Pass 6.1125 31 5 16 Pass 6.1864 28 5 17 Pass					
6.1125 31 5 16 Pass 6.1864 28 5 17 Pass			5		
6 1864 28 5 17 Pass			5		
	6.1864	28	5	17	Pass
6.2603 25 5 20 Pass	6.2603	25	5	20	Pass

0.0040	0.4	F	00	D
6.3342	24	5	20	Pass
6.4080	23	5	21	Pass
6.4819	22	5	22	Pass
6.5558	21	5	21 22 23	Pass
6.6297	19	5	26	Pass
6.7035	19	5 5 5	26	Door
6.7033	19	5 F	20	Pass
6.7774	19	5	20	Pass
6.8513	17	4	26 26 23 23	Pass
6.9251	17	4	23	Pass
6.9990	16	4	25	Pass
7.0729	15	4	26	Pass
7.1468	15	3	20	Pass
7.2206	13	3	23	Pass
7.2945	11	3	27	Pass
7.3684	10	3	25 26 20 23 27 30	Pass
7.4422	10	3	30	Pass
7.5161	10	3	30	Pass
7.5900	10	3	30	Pass
7.6639	10	3	30	Pass
7.0033	10	3	30	Pass
7.7377		ა ი	30	Pass
7.8116	10	3	30	Pass
7.8855	10	3	30	Pass
7.9593	10	3	30	Pass
8.0332	10	3	30	Pass
8.1071	8	3	37	Pass
8.1810	6	3	50	Pass
8.2548	6	3 \	50	Pass
8.3287	6	3	50	Pass
8.4026	6	3	50	Pass
8.4765	6	2	33	Pass
8.5503	6	$\langle 2 \rangle$	33	Pass
8.6242	6	$\left\langle \left\langle \frac{1}{2}\right\rangle \right\rangle$	33	Pass
8.6981	6	2	33	Pass
8.7719	6	2	33	Pass
8.8458	6 5 5	2	40	Pass
	E	2	40 40	Pass
8.9197		2	40	Pass
8.9936	5	2	40	Pass
9.0674	5	2	40	Pass
9.1413	5	2	40	Pass
9.2152	5	2	40	Pass
9.2890	5	2	40	Pass
9.3629	5	2	40	Pass
9.4368	5	2	40	Pass
9.5107	5	2	40	Pass
9.5845	5	2	40	Pass
9.6584	5	2	40	Pass
	555555555555	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
9.7323	Э	2	40	Pass

Appendix Predeveloped Schematic

Mitigated Schematic

WWHM2012

PROJECT REPORT

TDAs 1 & 2 Water Quality for Basins 1A, 1B, 2A, 2B & 3A (Mechanical Filter Structure)

General Model Information

WWHM2012 Project Name: 9095 Villages-WQ

Site Name: Site Address:

City:

Report Date: 7/11/2025
Gage: Lacamas
Data Start: 1948/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 1.300

Version Date: 2025/05/13

Version: 4.3.2

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Low Flow Threshold for POC2: 50 Percent of the 2 Year

High Flow Threshold for POC2: 50 Year

Low Flow Threshold for POC3: 50 Percent of the 2 Year

High Flow Threshold for POC3: 50 Year

Low Flow Threshold for POC4: 50 Percent of the 2 Year

High Flow Threshold for POC4: 50 Year

Low Flow Threshold for POC5: 50 Percent of the 2 Year

High Flow Threshold for POC5: 50 Year

Mitigated Land Use

Basin 1A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 2.53

Pervious Total 2.53

Impervious Land Use acre **ROADS FLAT** 0.178 **ROADS MOD** 2.798 **ROOF TOPS FLAT** 0.844

Impervious Total 3.82

Basin Total 6.35

Element Flow Componants:

Interflow Surface

Componant Flows To: POC 1

POC 1

Groundwater

Basin 1B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.147

Pervious Total 0.147

Impervious Land Use acre ROADS MOD 0.141

Impervious Total 0.141

Basin Total 0.288

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To: POC 2 POC 2

Basin 2A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.728

Pervious Total 0.728

Impervious Land Use ROADS MOD acre 2.336

Impervious Total 2.336

Basin Total 3.064

Element Flow Componants:

Surface Interflow

Componant Flows To: POC 3

POC 3

Groundwater

Basin 2B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.776

Pervious Total 0.776

Impervious Land Use acre ROADS MOD 2.932

Impervious Total 2.932

Basin Total 3.708

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To: POC 4

Basin 3A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 3.495

Pervious Total 3.495

Impervious Land Use ROADS MOD acre 12.331

Impervious Total 12.331

Basin Total 15.826

Element Flow Componants:

Surface Interflow

Componant Flows To: POC 5

POC 5

Groundwater

Basin 3B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.268

Pervious Total 0.268

Impervious Land Use acre ROADS MOD 0.486

Impervious Total 0.486

Basin Total 0.754

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.7448 acre-feet
On-line facility target flow: 1.07 cfs.
Adjusted for 15 min: 1.07 cfs.
Off-line facility target flow: 0.5817 cfs.
Adjusted for 15 min: 0.5817 cfs.

Water Quality
Water Quality BMP Flow and Volume for POC #2
On-line facility volume: 0.0314 acre-feet
On-line facility target flow: 0.0456 cfs.
Adjusted for 15 min: 0.0243 cfs.
Adjusted for 15 min: 0.0243 cfs.

Water Quality
Water Quality BMP Flow and Volume for POC #3
On-line facility volume: 0.3928 acre-feet
On-line facility target flow: 0.6039 cfs.
Adjusted for 15 min: 0.6039 cfs.
Off-line facility target flow: 0.334 cfs.
Adjusted for 15 min: 0.334 cfs.

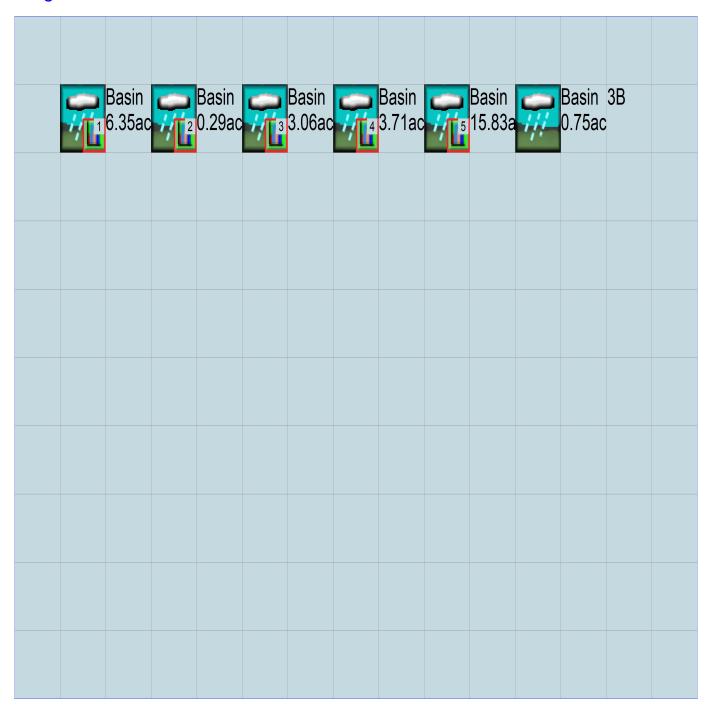
Water Quality
Water Quality BMP Flow and Volume for POC #4
On-line facility volume: 0.4805 acre-feet
On-line facility target flow: 0.7457 cfs.
Adjusted for 15 min: 0.7457 cfs.
Off-line facility target flow: 0.4142 cfs.
Adjusted for 15 min: 0.4142 cfs.

Water Quality
Water Quality BMP Flow and Volume for POC #5
On-line facility volume: 2.0424 acre-feet
On-line facility target flow: 3.159 cfs.
Adjusted for 15 min: 3.159 cfs.
Off-line facility target flow: 1.7512 cfs.
Adjusted for 15 min: 1.7512 cfs.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes


No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Mitigated Schematic

Appendix G: Soils Report

November 17, 2023

November 17, 2023

HSR Development 500 E. Broadway, Suite 120 Vancouver, Washington 98660

Attn: Steven Waugh

Geotechnical Site Investigation

Mills Property Camas, Washington

Columbia West Project: HSR-1-01-1

Columbia West is pleased to present this geotechnical site investigation report for the Mills Property in Camas, Washington. Our services were conducted in accordance with our proposal dated August 14, 2023.

We appreciate the opportunity to work on the project. Please contact us if you have any questions regarding this document.

Sincerely,

Columbia West

Daniel Lehto, PE, GE Principal Engineer

DEL:ASR

Attachments

Document ID: Mills Property Geotechnical Report.docx

Mills Property

Page ii

EXECUTIVE SUMMARY

This executive summary presents the primary geotechnical considerations associated with the proposed Mills Property project located in Camas, Washington. Our conclusions and recommendations are based upon the subsurface information presented in this report and proposed development information provided by the design team. Detailed discussion of the geotechnical considerations summarized here is presented in respective sections of the report.

- The site is characterized by pinnacled basalt and basalt outcrops. Thin soil profiles were observed in some areas. Based on subsurface exploration, infiltration of concentrated stormwater is infeasible due to the presence of shallow bedrock and clayey residual soils.
- Although site reconnaissance and Clark County GIS Mapping indicate the presence of slopes greater than 15 percent in the southern boundary of the parcel, site slopes do not meet the definition of a landslide hazard according to Camas Municipal Code, Section 16.59.
- Excavator refusal was encountered in all test pits in the proposed development area at depths ranging from 0 to 10 Below Ground Surface (BGS). Excavations at the site will require rock excavation techniques to install necessary elements. Though not specifically encountered, seeps and springs within the basalt formation have been observed on surrounding sites and have been associated with regional rain events. Therefore, drainage design may need to be altered during the course of construction as seeps and springs become evident over time.

TABLE OF CONTENTS

LIST (OF FIGURES	iv
LIST (OF APPENDICES	iv
1.0	INTRODUCTION	1
	1.1 General Site Information	1
	1.2 Project Understanding	1
2.0	SCOPE OF SERVICES	1
3.0	REGIONAL GEOLOGY AND SOIL CONDITIONS	2
4.0	REGIONAL SEISMOLOGY	2
5.0	GEOTECHNICAL AND GEOLOGIC FIELD INVESTIGATION	4
	5.1 Surface Investigation and Site Description	4
	5.2 Subsurface Conditions	4
6.0	INFILTRATION INFEASIBILITY	5
7.0	GEOLOGIC HAZARDS	5
	7.1 Erosion Hazards	5
	7.2 Landslide Hazards	5
	7.3 Seismic Hazard Area	6
8.0	DESIGN RECOMMENDATIONS	7
	8.1 Shallow Foundation Support	7
	8.2 Seismic Design Considerations	8
	8.3 Retaining Structures	9
	8.4 Pavement Recommendations	10
	8.5 Drainage	10
9.0	CONSTRUCTION RECOMMENDATIONS	11
	9.1 Site Preparation and Grading	11
	9.2 Construction Traffic and Staging	12
	9.3 Cut and Fill Slopes	12
	9.4 Excavation	13
	9.5 Dewatering	13
	9.6 Materials	14
	9.7 Erosion Control Measures	17
10.0	OBSERVATION OF CONSTRUCTION	18
11 0	CONCLUSION AND LIMITATIONS	18

REFERENCES

TABLE OF CONTENTS CONTINUED

FIGURES

Site Location Map	Figure 1
Exploration Location Map	Figure 2
Surcharge-Induced Lateral Earth Pressures	Figure 3
Typical Perimeter Footing Drain Detail	Figure 4
Typical Perforated Drainpipe Trench Detail	Figure 5
Typical Drainage Mat Detail	Figure 6
Typical Cut and Fill Slope Cross-Section	Figure 7
Minimum Foundation Slope Setback Detail	Figure 8

APPENDICES

Appendix C

PENDICES	
Appendix A	
Field Explorations	A-1
Exploration Legend	
Soil Description and Classification	
Test Pit Logs	
Appendix B	
Laboratory Test Reports	B-1

Report Limitations and Important Information C-1

Geotechnical Site Investigation Mills Property

GEOTECHNICAL SITE INVESTIGATION MILLS PROPERTY CAMAS, WASHINGTON

1.0 INTRODUCTION

Columbia West Engineering, Inc. (Columbia West) was retained by HSR Development to conduct a geotechnical site investigation for the proposed Mills Property project located in Camas, Washington. The purpose of the investigation was to provide geotechnical engineering recommendations for use in design and construction of the proposed development. This report summarizes the investigation and provides field assessment documentation and laboratory analytical test reports. This report is subject to the limitations expressed in Section 11.0, *Conclusion and Limitations*, and Appendix C.

1.1 GENERAL SITE INFORMATION

As indicated on Figures 1 and 2, the subject site is located north of Lacamas Lake with an address of 313 SE Leadbetter Road in Camas, Washington. The site is accessed via SE 252nd Avenue, as there is no access to the site directly from SE Leadbetter Road. The site is comprised of tax parcel 177885000 totaling approximately 21 acres. The approximate latitude and longitude are N 45° 37′ 09″ and W 122° 24′ 57″, and the legal description is a portion of the NE ¼ of Section 34, T2N, R3E, Willamette Meridian. The regulatory jurisdictional agency is the City of Camas.

1.2 PROJECT UNDERSTANDING

Based on design team correspondence, proposed development is likely to include construction of a residential subdivision. A layout of the planned infrastructure was not available at the time of this writing. Proposed development will likely include paved neighborhood access roads, essential underground utilities, and stormwater management facilities.

We anticipate maximum loads for the residential buildings will be less than 20 kips per column and 3 kips per foot for perimeter footings. Allowable total and differential static settlement tolerances for the structures are 1 inch and 0.5 inch over a 50-foot span, respectively. We also anticipate that proposed structures will be Risk Category II with a fundamental period less than 0.5 second. We should be contacted to revise our recommendations if the assumptions stated above are incorrect.

2.0 SCOPE OF SERVICES

Columbia West's scope of services was outlined in a proposal dated August 14, 2023. In accordance with our proposal, we performed the following geotechnical services:

- Reviewed information available in our files from previous geological and geotechnical studies conducted at and in the vicinity of the site.
- Reviewed preliminary site plans and structural information provided by the design team.
- Conducted subsurface exploration at the site, to include:
 - Excavated 13 test pits to depths ranging from 4 to 10 feet BGS due to excavator refusal.
 Two shovel pits were also explored in an area proposed for the off-site sewer alignment.
- Collected disturbed soil samples from test pits for laboratory analysis.
- Classified and logged observed soil and groundwater conditions.
- Prepared this geotechnical site investigation report for the proposed development, which includes:

- Summary of soil index properties, regional geology, soil conditions, and observed groundwater conditions.
- Summary of geologic and seismic literature research used to evaluate relevant seismic risks, including locations of faults, earthquake magnitudes, and seismic factors from the 2018 IBC and ASCE 7-16
- o Summary of City of Camas Code Chapter 16.59 Geologically Hazardous Areas research
- Liquefaction potential
- o Fill- and load-induced settlement potential
- o Geotechnical design and construction recommendations for:
 - Shallow foundations
 - Lateral earth pressures
 - Site preparation and grading, organic stripping, fill placement and compaction, over-excavation, and construction monitoring and testing.
 - Structural fill materials, onsite soil suitability, and import aggregate specifications.
 - Utility trench excavation and backfill.
 - Drainage and management of groundwater conditions
 - Asphaltic concrete pavement construction for access roads and parking lots
 - Seismic design parameters in accordance with ASCE 7-16

3.0 REGIONAL GEOLOGY AND SOIL CONDITIONS

The subject site lies within the Willamette Valley/Puget Sound Lowland, a wide physiographic depression flanked by the mountainous Coast Range on the west and the Cascade Range on the east. Inclined or uplifted structural zones within the Willamette Valley/Puget Sound Lowland constitute highland areas and depressed structural zones form sediment-filled basins. The site is located in the central-eastern portion of the Portland/Vancouver Basin, an open, somewhat elliptical, northwest-trending syncline approximately 60 miles wide.

According to the Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon (US Geological Survey, Scientific Investigations Map 3017, 2008), near-surface geology is expected to primarily consist of upper-Oligocene basaltic-andesite of Elkhorn Mountain (Tbem). The Elkhorn Mountain Formation is comprised of a series of lava flows and flow breccia consisting of dark grey basalt and andesite.

The Web Soil Survey (United States Department of Agriculture, Natural Resource Conservation Service [USDA NRCS], 2022 Website) identifies surface soils as primarily Lauren very gravelly loam, Olympic Stoney Clay Loam, Vader Silt Loam, and a small pocket of Lauren loam along the north property boundary. Although soil conditions may vary from the broad USDA descriptions, Lauren soils are generally coarse-textured sands and gravels with moderate permeability, moderate shear strength, and low shrink-swell potential. Olympic and Vader series soils are more fine textured silt and clay with variable amounts of gravel. Olympic and Vader soils are typically fine-textured, poorly drained soils that develop over bedrock and exhibit slow permeability and have low shear strength.

4.0 REGIONAL SEISMOLOGY

Recent research and subsurface mapping investigations within the Pacific Northwest appear to suggest the historic potential risk for a large earthquake event with strong localized ground movement may be underestimated. Past earthquakes in the Pacific Northwest appear to have caused

landslides and ground subsidence, in addition to severe flooding near coastal areas. Earthquakes may also induce soil liquefaction, which occurs when elevated horizontal ground acceleration and velocity cause soil particles to interact as a fluid as opposed to a solid. Liquefaction of soil can result in lateral spreading and temporary loss of bearing capacity and shear strength. Liquefaction is discussed later in Section 7.0, *Geologic Hazards*

Three scenario earthquakes are possible with the local seismic setting. Two of the possible earthquake sources are associated with the Cascadia Subduction Zone (CSZ), and the third event is a shallow, local crustal earthquake that could occur in the North American Plate. The three earthquake scenarios are discussed below.

Cascadia Subduction Zone

The Cascadia Subduction Zone is a potential source of strong earthquake activity in the Portland/Vancouver Basin. This phenomenon is the result of the earth's large tectonic plate movement. Geologic evidence indicates that volcanic ocean floor activity along the Juan de Fuca ridge in the Pacific Ocean causes the Juan de Fuca Plate to perpetually move east and subduct under the North American Continental Plate. The subduction zone results in historic volcanic and potential earthquake activity in proximity to the plate interface, believed to lie approximately 20 to 50 miles west of the general location of the Oregon and Washington coast (Geomatrix Consultants, 1995).

Evidence suggests that this subduction zone has generated eight great earthquakes in the last 4,000 years, with the most recent event occurring approximately 300 years ago (Weaver and Shedlock, 1991).

Two types of subduction zone earthquakes are possible and considered in this report:

- 1 An interface event earthquake on the seismogenic part of the interface between the Juan de Fuca Plate and the North American Plate on the CSZ. This source is capable of generating earthquakes with a moment magnitude of 9.0.
- 2 A deep intraplate earthquake on the seismogenic part of the subducting Juan de Fuca Plate. These events typically occur at depths of between 30 and 60 km. This source is capable of generating an event with a moment magnitude of up to 8.0.

Crustal Events

There are at least six major known fault zones in the vicinity of the site that may be capable of generating potentially destructive horizontal accelerations. These fault zones are described briefly in Table 1.

Table 1. Faults Within the Site Vicinity

Fault Name	Proximity to Site (km) per USGS	Mapped Length (km) per USGS
Beaverton fault zone	26	15
Helvetia fault zone	24	7
Oatfield fault zone	18	29
Portland Hills fault zone	13	49
East Bank fault	13	29
Lacamas Lake fault	1	24

5.0 GEOTECHNICAL AND GEOLOGIC FIELD INVESTIGATION

Subsurface conditions were explored by excavating thirteen test pits (TP-1 through TP-13) using a track-mounted excavator at the approximate locations shown on Figure 2. The test pits were excavated on October 13, 2023 to a maximum depth of 10 feet BGS. Two supplemental excavations (S-1 and S-2) were explored by shovel in an area proposed for sanitary sewer alignment which will connect the subdivision sewer to SE Leadbetter Road. No soil logs were produced for explorations S-1 and S-2, as bedrock was encountered within a few inches of the surface.

Subsurface conditions were logged in accordance with the Unified Soil Classification System (USCS). Disturbed soil samples were collected at representative depth intervals. Test pit logs are presented in Appendix A. Soil descriptions and classification information are also provided in Appendix A. Analytical laboratory test results are presented in Appendix B.

5.1 SURFACE INVESTIGATION AND SITE DESCRIPTION

The site is located north of Lacamas Lake with address 313 SE Leadbetter Road in Camas, Washington and consists of tax parcel 177885000 which totals approximately 21 acres. The site is accessed via SE 252nd Avenue and is bound by a dairy farm to the north, wooded private and public land to the west and south, and residential acreage parcels to the east. The site is currently undeveloped and heavily wooded. Site terrain is undulating and characterized by grades of 0 to 15 percent with some steeper areas existing where basalt outcrops create short slopes of up to 25 percent. A gravel access road has been constructed into the site and remnant overgrown logging trails were observed in a few locations.

5.2 SUBSURFACE CONDITIONS

The test pits were excavated through up to 10 inches of forest duff and organic topsoil zone. Underlying the surface vegetation, residual soils and basalt bedrock were encountered. Subsurface lithology may generally be described by the soil units identified in the following text.

5.2.1 Silty and Clayey Gravel Residual Soils

Underlying the surface vegetation, medium dense to dense silty SAND with gravel, clayey GRAVEL or SILT with minor gravel was observed to a maximum depth of 10 feet BGS. The moisture content of the residual soils ranged from 20 to 41 percent at the time of exploration. Atterberg limits analysis indicates a range of plasticity index from 8 to 15, indicating minor to moderate plasticity.

5.2.2 Weathered to Bright Basalt Bedrock

Underlying the residual soils, dense to very dense weathered basalt or intact basalt was encountered and caused excavator refusal at depths ranging from ground surface to 10 feet BGS. Digging was extremely slow, and the formation will likely require blasting to move significant quantities of the material.

5.2.3 Groundwater

Groundwater was not observed in the test pits at the time of exploration. However, our experience on adjacent sites underlain by the Elkhorn Mountain Basalt has shown that significant seeps and springs may manifest during rain events, sometimes several days after a rain. The formation may have connectivity to a more regional aquifer.

6.0 INFILTRATION INFEASIBILITY

Infiltration testing was not conducted due to the minor amount of clayey gravel soil encountered at the stie. Due to the relatively impermeable nature of the basalt bedrock and residual soils, infiltration of concentrated stormwater onsite is not recommended, as this would likely result in uncontrolled runoff as the water travels along the undulated surface of the bedrock and finds new places to discharge.

7.0 GEOLOGIC HAZARDS

Camas Municipal Code, Section 16.59 defines geologic hazard requirements for proposed development in areas subject to City of Camas jurisdiction. Three potential geologic hazards have been identified: (1) erosion hazard areas, (2) landslide hazard areas, and (3) seismic hazard areas. Hazard mapping provided by Clark County Maps Online indicates potential landslide hazard areas (slopes greater than 15 percent) in a few areas, primarily in the central portion of the property.

Columbia West conducted a geologic hazard review to assess whether these hazards are present at the subject property proposed for development, and if so, to provide mitigation recommendations. The geologic hazard review was based upon physical and visual reconnaissance, subsurface exploration, laboratory analysis of collected soil samples, and review of maps and other published technical literature. The results of the geologic hazard review are discussed in the following sections.

7.1 EROSION HAZARDS

Camas Municipal Code, Section 16.59.020.A defines an erosion hazard as areas where slope grades meet or exceed 40 percent. Based upon review of slope grade mapping published by Clark County Maps Online, maximum slope grades of 15 to 25 percent are mapped at the site. Therefore, site slopes do not meet the definition of an erosion hazard according to Camas Municipal Code. However, implementation of proper erosion control BMPs are recommended for the site during construction and in the finished grade condition.

7.2 LANDSLIDE HAZARDS

Columbia West conducted a review of available mapping, *Clark County GIS data*, and site reconnaissance to evaluate the potential presence of a landslide hazard on or near the subject site.

7.2.1 Geologic Literature Review

Columbia West reviewed *Slope Stability, Clark County, Washington* (Fiksdal, 1975) to assess site slope characteristics. The Fiksdal report identifies four levels of potential instability within Clark County: (1) stable areas - no slides or unstable slopes, (2) areas of potential instability because of underlying geologic conditions and physical characteristics associated with steepness, (3) areas of historical or still active landslides, and (4) older landslide debris. The site is mapped as (1) stable - no slides or unstable slopes.

Columbia West also reviewed the *Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon (US Geological Survey, Scientific Investigations Map 3017, 2008)* which indicates that no active landslides or historic landslide deposits are mapped at the subject site or in the surrounding vicinity.

Page 6

7.2.1 Slope Reconnaissance and Slope Stability Assessment

To observe geomorphic conditions, Columbia West personnel conducted visual and physical reconnaissance of slopes on the property. Subsurface native soils at the locations observed generally consisted of clayey gravel or silty SAND with gravel. Soil horizons appeared firm and well developed. Shallow and surficial basalt bedrock was observed throughout the site.

Site reconnaissance and review of topographic mapping published by *Clark County Maps Online* indicates that site topography is undulated and characterized by pinnacled basalt flows. Short slopes between 15 and 25 percent are present in a few areas throughout the site. Slopes appear planar with no observed evidence of instability. Most bedrock encountered was slightly to moderately weathered or intact. There was no observed direct evidence of large-scale, mass slope movements or historic landslides. No landslide debris was observed within explored site soils and groundwater seeps or springs within the face of the slopes were not observed.

Camas Municipal Code defines a landslide hazard as slopes mapped by Fiksdal as 'areas of potential instability' or areas meeting all three of the following characteristics: 1) slopes steeper than 15 percent; 2) hillsides intersecting geologic contacts with permeable sediment overlying low permeability sediment or bedrock, and; 3) any springs or groundwater seepage. The above-mentioned criteria were not observed during our field investigation or site research. Based upon the results of slope reconnaissance, subsurface exploration, and site research, in Columbia West's opinion slopes on the subject site do not meet the definition of a landslide hazard according to Camas Municipal Code.

7.3 SEISMIC HAZARD AREAS

Seismic hazards include areas subject to severe risk of earthquake-induced damage. Damage may occur due to soil liquefaction, dynamic settlement, ground shaking amplification, or surface faulting rupture. These seismic hazards are discussed below.

7.3.1 Soil Liquefaction and Dynamic Settlement

According to the Liquefaction Susceptibility Map of Clark County, Washington (Washington State Department of Natural Resources, 2004), the site is mapped as very low susceptibility for liquefaction due to basalt bedrock. Liquefaction, defined as the transformation of the behavior of a granular material from a solid to a liquid due to increased pore-water pressure and reduced effective stress, may occur when granular materials quickly compact under cyclic stresses caused by a seismic event. The effects of liquefaction may include immediate ground settlement, lateral spreading, and differential compaction.

Soils most susceptible to liquefaction are recent geologic deposits, such as river and floodplain sediments. These soils are generally saturated, cohesionless, loose to medium dense sands within 50 feet of ground surface. Potentially liquefiable soils located above the existing, historic, or expected ground water levels do not generally pose a liquefaction hazard. It is important to note that changes in perched ground water elevation may occur due to project development or other factors not observed at the time of investigation.

Based upon the results of subsurface exploration, literature review, and laboratory analysis, the above-mentioned criteria were not observed during the geotechnical site investigation. Therefore, the potential for soil liquefaction is considered to be very low.

7.3.2 Ground Shaking Amplification

Review of the Site Class Map of Clark County, Washington (Washington State Department of Natural Resources, 2004), indicates that site soils may be represented by Site Class B as defined in 2018 IBC Section 1613.3.2. A designation of Site Class B indicates that minimal amplification of seismic energy may occur during a seismic event due to subsurface conditions. This designation does not represent a geologic hazard in Columbia West's opinion and will not prohibit development if properly accounted for during the design process. Additional seismic information is presented in Section 8.2, Seismic Design Considerations.

7.3.3 Fault Rupture

Because there are no known geologic seismic faults within the site boundaries, fault rupture is unlikely.

8.0 DESIGN RECOMMENDATIONS

The geotechnical site investigation suggests the proposed development is generally compatible with surface and subsurface soils, provided the recommendations presented in this report are incorporated in design and implemented during construction. Design and construction recommendations are presented in the following sections.

8.1 Shallow Foundation Support

Proposed residential structures may be supported by conventional spread footings bearing on firm native soil or engineered structural fill.

Any loose or disturbed soil should be improved or removed and replaced with structural fill. If footing subgrade soils are above their optimum moisture content, we recommend that a minimum of 6 inches of compacted aggregate be placed over exposed subgrade soils. The aggregate pad should extend 6 inches beyond the edge of the foundations and consist of imported granular material as described in Section 9.6.1, *Structural Fill*. Columbia West should observe exposed subgrade conditions prior to placement of crushed aggregate to verify adequate subgrade support.

8.1.1 Footing Dimensions and Bearing Capacity

Continuous perimeter wall and isolated spread footings should have minimum width dimensions of 18 and 24 inches, respectively. The base of exterior footings should bear at least 18 inches below the lowest adjacent exterior grade. The base of interior footings should bear at least 12 inches below the base of the floor.

Footings bearing on subgrade prepared as recommended above should be sized based on an allowable bearing pressure of 2,500 psf. As the allowable bearing pressure is a net bearing pressure, the weight of the footing and associated backfill may be ignored when calculating footing sizes. The recommended allowable bearing pressure applies to the total of dead plus long-term live loads and may be increased by 50 percent for transient lateral forces such as seismic or wind.

8.1.2 Shallow Foundation Settlement

Foundation settlement is a significant structural design consideration. Provided subgrade soils are prepared as described above and in Section 9.1, *Site Preparation and Grading*, we anticipate that post-construction static foundation settlement will be less than approximately 1 inch. Differential settlement between comparably loaded foundations is not expected to exceed approximately 0.5

inch over a distance of 50 feet. The risk of differential settlement may increase where structural elements are founded upon both bedrock and soil beneath the same linear footing. Therefore, Columbia West recommends foundations be constructed on a uniform material whenever possible.

8.1.3 Resistance to Sliding

Lateral foundation loads can be resisted by passive earth pressure on the sides of the footing and by friction at the base of the footings. Recommended passive earth pressure for footings confined by native soil or engineered structural fill is 250 pcf. The upper 6 inches of soil should be neglected when calculating passive pressure resistance. Adjacent floor slabs and pavement, if present, should also be neglected from the analysis. The recommended passive pressure resistance assumes that a minimum horizontal clearance of 10 feet is maintained between the footing face and adjacent downgradient slopes.

The estimated coefficient of friction between in situ native soil or engineered structural fill and in-place poured concrete is 0.35. The estimated coefficient of friction between compacted crushed aggregate and in-place poured concrete is 0.45.

8.1.4 Subgrade Observation

Upon completion of stripping and prior to the placement of structural fill or pavement improvements, exposed subgrade soil should be evaluated by proof rolling with a fully-loaded dump truck or similar heavy, rubber tire construction equipment. When the subgrade is too wet for proof rolling, a foundation probe may be used to identify areas of soft, loose, or unsuitable soil. Subgrade evaluation should be performed by Columbia West. If soft or yielding subgrade areas are identified during evaluation, we recommend the subgrade be over-excavated and backfilled with compacted imported granular fill.

8.1.5 Floor Slabs

Floor slabs can be supported on firm, competent, native soil or engineered structural fill prepared as described in this report. Disturbed soils and unsuitable fills in proposed slab locations, if encountered, should be removed and replaced with structural fill.

To provide a capillary break, slabs should be underlain by at least 6 inches of compacted crushed aggregate that contains less than 5 percent by weight passing the No. 200 Sieve. Geotextile may be used below the crushed aggregate layer to increase subgrade support. Recommendations for floor slab base aggregate and subgrade geotextile are discussed in Section 9.6, *Materials*.

Floor slabs with maximum floor load of 150 psf may be designed assuming a modulus of subgrade reaction, k, of 125 pci.

8.2 SEISMIC DESIGN CONSIDERATIONS

Seismic design for proposed structures is prescribed by ASCE 7-16. Based on literature review and results of subsurface exploration conducted by Columbia West, site soils meet the criteria for Site Class B. Seismic design parameters for Site Class B are presented in Table 2.

Table 2. ASCE 7-16 Seismic Design Parameters¹

	Short Period	1 Second Period
MCE Spectral Acceleration	0.795	0.348
Site Class	E	3
Site Coefficient	Fa = 1.0	Fv = 1.0
Adjusted Spectral Response Acceleration	S _{MS} = 0.795	S _{M1} = 0.348
Design Spectral Response Acceleration	S _{DS} = 0.53	S _{D1} = 0.232

The structural engineer should evaluate ASCE 7-16 code requirements and exceptions to determine
if these parameters are valid for design.

As discussed in Section 7.3, Seismic Hazards Area, liquefaction and lateral spreading are not design considerations for the site.

8.3 RETAINING STRUCTURES

Lateral earth pressures should be considered during design of retaining walls and below-grade structures. Hydrostatic pressure and additional surcharge loading should also be considered. Wall foundation construction and bearing capacity should adhere to specifications provided previously in Section 8.1, Shallow Foundation Support.

Permanent retaining walls that are not restrained from rotation and are retaining undisturbed native soil should be designed for active earth pressures using an equivalent fluid pressure of 39 pcf. Walls retaining undisturbed native soils that are restrained from rotation should be designed for an at-rest equivalent fluid pressure of 64 pcf. For walls with imported well-drained granular backfill meeting WSDOT 9.03.12(2), an equivalent fluid pressure of 34 pcf is applicable for active and 60 pcf for at rest is applicable.

The recommended earth pressures assume a maximum wall height of 10 feet with level backfill. These values also assume that adequate drainage is provided behind retaining walls to prevent hydrostatic pressures from developing. Lateral earth pressures induced by surcharge loads may be estimated using the criteria presented on Figure 3.

Seismic forces may be calculated by superimposing a uniform lateral force of 10H² pounds per lineal foot of wall, where H is the total wall height in feet. The force should be applied as a distributed load with the resultant located at 0.6H from the base of the wall.

8.3.1 Wall Drainage and Backfill

A minimum 6-inch-diameter, perforated collector pipe should be placed at the base of retaining walls. The pipe should be embedded in a minimum 2-foot-wide zone of angular drain rock that is wrapped in a drainage geotextile fabric and extends up the back of the wall to within 1 foot of finished grade. The drain rock and geotextile drainage fabric should meet the specifications provided in Section 9.6, *Materials*. The perforated collector pipes should discharge at an appropriate location away from the base of the wall. The discharge pipe(s) should not be tied directly into

stormwater drainage systems, unless measures are taken to prevent backflow into the drainage system of the wall.

Backfill material placed behind the walls and extending a horizontal distance of ½ H, where H is the height of the retaining wall, should consist of select granular material placed and compacted as described in Section 9.6.1, *Structural Fill*.

Settlement of up to 1 percent of the wall height commonly occurs immediately adjacent to the wall as the wall rotates and develops active lateral earth pressures. Consequently, we recommend that construction of flatwork adjacent to retaining walls be delayed at least four weeks after placement of wall backfill, unless survey data indicates that settlement is complete prior to that time.

8.4 PAVEMENT RECOMMENDATIONS

We understand that public roadways for the subdivision will be constructed in accordance with City of Camas standards. For dry weather construction, pavement surface sections should bear upon competent subgrade consisting of scarified and compacted native soil or engineered structural fill. Wet weather construction may require an increased thickness of base aggregate as discussed later in Section 9.2, Construction Traffic and Staging.

In general, AC paving is not recommended during cold weather (temperatures less than 40 degrees Fahrenheit). Compacting under these conditions can result in low compaction and premature pavement distress. Each AC mix design has a recommended compaction temperature range that is specific for the particular AC binder used. In colder temperatures, it is more difficult to maintain the temperature of the AC mix, as it can lose heat while stored in the delivery truck, as it is placed, and in the time between placement and compaction.

If AC paving must take place during cold-weather construction as defined in this section, the contractor and design team should discuss options for minimizing risk to pavement serviceability.

8.5 DRAINAGE

At a minimum, site drainage should include surface water collection and conveyance to properly designed stormwater management structures and facilities. Drainage design in general should conform to City of Camas regulations. Finished site grading should be conducted with positive drainage away from structures at a minimum 2 percent slope for a distance of at least 10 feet. Depressions or shallow areas that may retain ponding water should be avoided.

Recommendations for foundation drains and subdrains are presented in the following sections. Drain rock and geotextile drainage fabric should meet the requirements presented in Section 9.6, *Materials*. Drains should be closely monitored after construction to assess their effectiveness. If additional surface or shallow subsurface seeps become evident, the drainage provisions may require modification or additional drains. We should be consulted to provide appropriate recommendations.

8.5.1 Foundation Drains

Roof drains are recommended for all structures. Perimeter building foundation drains should be considered for shallow foundations constructed below existing site grades but are not necessary for the functionality of the buildings.

Page 11

Foundation and roof drains, where installed, should consist of separate systems that gravity flow away from foundations to an approved discharge location. Perimeter foundation drains should consist of 4-inch perforated PVC pipe surrounded by a minimum 2-foot-wide zone of clean, washed drain rock wrapped with geotextile drainage fabric. The wrapped drain rock zone should extend up the sides of embedded walls to within 12 inches of proposed finished grade. Foundation drains should be constructed with a minimum slope of ½ percent. The drainpipe's invert elevation should be at least 18 inches below the elevation of the floor slab. Figure 4 presents a typical foundation drain detail.

8.5.2 Subdrains

Subdrains should be considered if portions of the site are cut below surrounding grades. Shallow groundwater or seeps should be conveyed via drainage channel or perforated pipe into an approved discharge. Recommendations for design and installation of perforated drainage pipe may be performed on a case-by-case basis by Columbia West during construction. Failure to provide adequate surface and sub-surface drainage may result in soil slumping or unanticipated settlement of structures exceeding tolerable limits. A typical perforated drainpipe trench detail is presented in Figure 5.

8.5.2 Drainage Mat

Site improvements construction in some areas may occur at or near the shallow groundwater table, particularly if work is conducted during wet-weather conditions. A drainage mat is typically required in areas that require structural fill placed on top of a natural drainage swale or known seep or spring area. Dewatering may be necessary, and a drainage mat may be required to achieve sufficient elevation for fill placement. A typical drainage mat is shown on Figure 6. Columbia West should determine drainage mat location, extent, and thickness when subsurface conditions are exposed. Drainage mats may need to be constructed in conjunction with subdrains to convey captured water to an approved discharge location

9.0 CONSTRUCTION RECOMMENDATIONS

9.1 SITE PREPARATION AND GRADING

Site vegetation primarily consisted of up to 10 inches of forest duff at the time of our exploration. Thicker root zones may be present in areas of mature trees and shrub growth. Where encountered, pavement, vegetation, organic material, unsuitable fill, and deleterious material should be cleared from areas identified for structures and site grading. Vegetation, root zones, organic material, and debris should be removed from the site. Stripped topsoil should also be removed or used only as landscape fill in nonstructural areas with slopes less than 25 percent. The post-construction maximum depth of landscape fill placed or spread at any location onsite should not exceed one foot. Actual stripping depths should be determined based upon visual observations made during construction when soil conditions are exposed.

9.1.1 Subgrade Evaluation

Upon completion of stripping and prior to the placement of structural fill or pavement improvements, exposed subgrade soil should be evaluated by proof rolling with a fully-loaded dump truck or similar heavy, rubber tire construction equipment. When the subgrade is too wet for proof rolling, a foundation probe may be used to identify areas of soft, loose, or unsuitable soil.

Page 12

Subgrade evaluation should be performed by Columbia West. If soft or yielding subgrade areas are identified during evaluation, we recommend the subgrade be over-excavated and backfilled with compacted imported granular fill.

9.2 CONSTRUCTION TRAFFIC AND STAGING

Where encountered, near-surface fine-textured soils will be easily disturbed during construction. This includes native clayey soils, as well as potential imported fine-textured soils. If not carefully executed, site preparation, excavation, and grading can create extensive soft areas resulting in significant repair costs. Earthwork planning should include considerations for minimizing subgrade disturbance, particularly during wet-weather conditions.

If construction occurs during wet-weather conditions, or if the moisture content of the surficial soil is more than a few percentage points above optimum, site stripping and cutting may need to be accomplished using track-mounted equipment. Under these conditions, granular haul roads and staging areas will also be necessary to provide a firm support base and sustain construction equipment.

The recommended base aggregate thickness for pavement sections is intended to support post-construction design traffic loads and will not provide adequate support for construction traffic. Staging areas and haul roads will require an increased base thickness during wet weather conditions. The configuration of staging and haul road areas, as well as the required thickness of granular material, will vary with the contractor's means and methods. Therefore, design and construction of staging areas and haul roads should be the responsibility of the contractor. Based on our experience, between 12 and 18 inches of imported granular material is generally required in staging areas and between 18 and 24 inches in haul road areas. In areas of heavy construction traffic, geotextile separation fabric may be placed between the subgrade soil and imported granular material to increase subgrade support and minimize fines migration into the base aggregate layer.

Project stakeholders should understand that wet weather construction is risky and costly. Proper construction methods and techniques are critical to overall project integrity and should be observed and documented by Columbia West.

9.3 CUT AND FILL SLOPES

Fill slopes should consist of structural fill material as discussed in Section 9.6.1, *Structural Fill*. Fill placed on existing grades steeper than 5H:1V should be horizontally benched at least 10 feet into the slope. Fill slopes greater than six feet in height should be vertically keyed into existing subsurface soil. A typical fill slope cross-section is shown in Figure 7. Drainage implementations, including subdrains or perforated drainpipe trenches, may also be necessary in proximity to cut and fill slopes if seeps or springs are encountered. Drainage design may be performed on a case-by-case basis. Extent, depth, and location of drainage may be determined in the field by Columbia West during construction when soil conditions are exposed. Failure to provide adequate drainage may result in soil sloughing, settlement, or erosion.

Final cut or fill slopes at the site should not exceed 2H:1V or 10 feet in height without individual slope stability analysis. The values above assume a minimum horizontal setback for loads of 10 feet from top of cut or fill slope face or overall slope height divided by three (H/3), whichever is greater. A minimum slope setback detail for structures is presented in Figure 8.

Concentrated drainage or water flow over the face of slopes should be prohibited, and adequate protection against erosion is required. Fill slopes should be overbuilt, compacted, and trimmed at least two feet horizontally to provide adequate compaction of the outer slope face. Proper cut and fill slope construction is critical to overall project stability and should be observed and documented by Columbia West.

9.4 EXCAVATION

The site was explored to a maximum depth of 10 feet BGS with an excavator. Weathered and competent basalt bedrock was encountered as shallow as 1.5 feet BGS onsite (TP-11) and at the ground surface in the off-site sewer alignment (S-1 and S-2) and all test pits terminated by refusal on competent bedrock. Intact basalt was observed at or near the surface throughout the site. Excavation at the site will require blasting or special rock excavation techniques to alter the surface.

Groundwater was not encountered, however the basalt formation is known to have seeps and springs show themselves after periods of wet weather, sometimes several days after an event. Recommendations as described in Section 9.5, *Dewatering*, should be considered where subsurface construction activities intersect shallow groundwater table.

Temporary excavation sidewalls should maintain a vertical cut to a depth of approximately 4 feet in the near-surface clay, provided groundwater seepage is not present in the sidewalls. In sandy soil, excavations will likely slough and cave, even at shallow depths. Open-cut excavation techniques may be used to excavate trenches between 4 and 8 feet deep, provided the walls of the excavation are cut at a maximum slope of 1H:1V and groundwater seepage is not present. Excavation slopes should be reduced to 1.5H:1V or 2H:1V if excessive sloughing or raveling occurs.

Shoring may be required if open-cut excavations are infeasible or if excavations are proposed adjacent to existing infrastructure. Typical methods for stabilizing excavations consist of solider piles and timber lagging, sheet pile walls, tiebacks and shotcrete, or prefabricated hydraulic shoring. As a wide variety of shoring and dewatering systems are available, we recommend that the contractor be responsible for selecting the appropriate shoring and dewatering systems.

The contractor should be held responsible for site safety, sloping, and shoring. All excavation activity should be conducted in accordance with applicable OSHA requirements. Columbia West is not responsible for contractor activities and in no case should excavation be conducted in excess of applicable local, state, and federal laws.

9.5 DEWATERING

Groundwater was not observed at the time of our investigation. Seeps and springs are likely to be encountered during periods of wet weather. Generalized recommendations for temporary construction dewatering are presented in the following section.

9.5.1 Construction Dewatering

The contractor should be responsible for temporary drainage of surface water, perched water, and groundwater. Dewatering should be performed to the extent necessary to prevent standing water and/or erosion of exposed site soils. During rough and finished grading of building pad areas, the contractor should keep all footing excavations and slab subgrade soils free of standing water.

The contractor's proposed dewatering plan should be capable of maintaining groundwater levels at least two feet below the base of proposed trench excavations. Without adequate trench dewatering, running soil, caving, and sloughing will increase backfill volumes and may result in damage to adjacent structures or utilities. Significant pumping and dewatering may be required to temporarily reduce the groundwater elevation to the recommended depth. Dewatering via a sump within excavation zones may be insufficient to control groundwater and provide excavation side slope stability. Dewatering may be more feasibly conducted by installing a system of temporary well points and pumps around proposed excavation areas or utility trenches. Depending on proposed utility depths, a site-specific dewatering plan may be necessary.

If groundwater is present at the base of utility excavations, we recommend placing 18 to 24 inches of stabilization material at the base of the excavation. Subgrade geotextile placed directly over trench subgrade soils may reduce the required thickness of the stabilization material. The actual thickness of stabilization material should be determined at the time of construction based on observed field conditions. Trench stabilization material should be placed in one lift and compacted until well keyed. Stabilization material and geotextile fabric should meet the requirements presented in Section 9.6, *Materials*.

9.6 MATERIALS

9.6.1 Structural Fill

Areas proposed for fill placement should be appropriately prepared as described in Section 9.1, *Site Preparation and Grading*. Engineered fill placement should be observed by Columbia West. Compaction of engineered structural fill should be verified by nuclear gauge field compaction testing performed in accordance with *ASTM D6938*. Field compaction testing should be performed for each vertical foot of engineered fill placed.

Various materials may be acceptable for use as structural fill. Structural fill should be free of organic material or other unsuitable material and meet specifications provided in the following sections. Representative samples of proposed engineered structural fill should be submitted for laboratory analysis and approval by Columbia West prior to placement.

9.6.1.1 Onsite Soil

Minimal residual soil was encountered during the site investigation. Most onsite soil will be suitable for use as structural fill if adequately dried or moisture-conditioned to achieve recommended compaction specifications. Native clay soil with a plasticity index greater than 25, if encountered, should be evaluated and approved by Columbia West prior to use as structural fill. Laboratory analysis indicated that the moisture content of the near-surface clay was above optimum at the time of exploration. Moisture conditioning will likely be necessary to dry the soil prior to applying compaction effort. In addition, the near-surface clay will be moisture sensitive and difficult, if not impossible, to compact during wet weather conditions. Therefore, structural fill placement using onsite soil should be performed during dry summer months if possible. Onsite soil may also require addition of moisture during extended periods of dry weather.

If significant grading is proposed, blasting or specialized rock excavation techniques will be required in areas of shallow bedrock. Due to the minor weathering of much of the basalt encountered, blast

spoils will likely require further crushing to reduce particle size and produce a well-graded product suitable for reuse as structural fill.

Onsite soil used as structural fill should be placed in loose lifts not exceeding 8 inches in depth and compacted using standard conventional compaction equipment. The soil moisture content should be within a few percentage points of optimum conditions. The soil should be compacted to at least 95 percent of maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557). Compacted onsite fill soils should be covered shortly after placement.

9.6.1.2 Imported Granular Material

Imported granular material should consist of pit- or quarry-run rock, crushed rock, or crushed gravel and sand. The imported granular material should also be durable, angular, and fairly well graded between coarse and fine material; should have less than 5 percent fines (material passing the U.S. Standard No. 200 sieve) by dry weight; and should have at least two mechanically fractured faces. Imported granular material should be placed in loose lifts not exceeding 12 inches in depth and compacted to at least 95 percent of maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557). During wet-weather conditions or where wet subgrade conditions are present, the initial loose lift of granular fill should be approximately 18 inches thick and should be compacted with a smooth-drum roller operating in static mode.

9.6.1.3 Stabilization Material

Stabilization material should consist of durable, 4- or 6-inch-minus pit- or quarry-run rock, crushed rock, or crushed gravel and sand that is free of organics and other deleterious material. The material should have a maximum particle size of 6 inches with less than 5 percent by dry weight passing the U.S. Standard No. 4 sieve. The material should have at least two mechanically fractured faces.

Stabilization material should be placed in loose lifts between 12 and 24 inches thick and be compacted to a firm, unyielding condition. Equipment with vibratory action should not be used when compacting stabilization material over wet, fine-textured soils. If stabilization material is used to stabilize soft subgrade below pavement or construction haul roads, a subgrade geotextile should be placed as a separation barrier between the soil subgrade and the stabilization material.

9.6.1.4 Trench Backfill

Trench backfill placed below, adjacent to, and up to at least 12 inches above utility lines (i.e., the pipe zone) should consist of well-graded granular material meeting WSDOT 9-03.12(3) specifications for *Gravel Backfill for Pipe Zone Bedding*. Pipe zone backfill should be compacted to at least 90 percent of maximum dry density, as determined by the modified Proctor moisture-density relationship test (ASTM D1557), or as required by the local jurisdictional agency or pipe manufacturer.

Within structural areas (below pavement and building pads), trench backfill above the pipe zone should consist of WSDOT 9-03.19 Bank Run Gravel for Trench Backfill or WSDOT 9-03.14(2) Select Borrow with a maximum particle size of 2 ½-inches. Trench backfill material within 18 inches of the top of utility pipes should be hand compacted (i.e., no heavy compaction equipment). Remaining trench backfill should be compacted to at least 95 percent of the maximum dry density as

Page 16

determined by the modified Proctor moisture-density relationship test (ASTM D1557), or as required by the local jurisdictional agency or pipe manufacturer.

Outside of structural areas, trench backfill placed above the pipe zone should be compacted to at least 90 percent of the maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557), or as required by the local jurisdictional agency or pipe manufacturer.

9.6.1.5 Floor Slab Base Aggregate

Base aggregate for building floor slabs should consist of 1 ¼"-minus crushed aggregate meeting WSDOT 9-03.9(3) specifications for Crushed Surfacing. Slab base aggregate should be compacted to at least at least 95 percent of the maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557).

9.6.2 Pavement Base Aggregate

Base aggregate for pavement should consist of 1 ¼"-minus crushed aggregate meeting WSDOT 9-03.9(3) specifications for Crushed Surfacing. Pavement base aggregate should be compacted to at least at least 95 percent of the maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557).

9.6.2.1 Retaining Wall Backfill

Backfill material placed behind retaining walls and extending a horizontal distance of ½ H, where H is the height of the retaining wall, should consist of free-draining granular material meeting WSDOT 9-03.12(2) specifications for *Gravel Backfill for Walls*. The wall backfill should be separated from structural fill, native soil, and/or topsoil using a geotextile fabric that meets the specifications provided below for drainage geotextiles.

Wall backfill located within a horizontal distance of 3 feet from the face of a retaining wall should be compacted to 90 percent of the maximum dry density, as determined by *ASTM D1557*. Backfill placed within 3 feet of the wall should be compacted in loose lifts less than 6 inches thick using hand-operated tamping equipment (such as a jumping jack or vibratory plate compactor). Remaining wall backfill should be compacted to at least 95 percent of the maximum dry density, as determined by *ASTM D1557*.

9.6.2.2 Retaining Wall Leveling Pad

Crushed aggregate used as a leveling pad for retaining wall footings should consist of 1 ¼"-minus crushed aggregate meeting WSDOT 9-03.9(3) specifications for Crushed Surfacing. The leveling pad material should be compacted to at least 95 percent of the maximum dry density as determined by the modified Proctor moisture-density relationship test (ASTM D1557).

9.6.2.3 **Drain Rock**

Drain rock should consist of angular, granular material with a maximum particle size of 2 inches and less than 2 percent by weight passing the No. 200 sieve. Drain rock should be free of roots, organic debris, and other unsuitable material and should have at least two mechanically fractured faces. Drain rock should be compacted to a firm, unyielding condition. Drain rock should be completely wrapped in a geotextile drainage fabric meeting the requirements presented below.

9.6.3 Geotextile Fabric

9.6.3.1 Subgrade Geotextile

Subgrade geotextile should meet the specifications provided in WSDOT 9-33.2(1), Table 3, Geotextile for Separation or Soil Stabilization. The geotextile should be installed in accordance with the manufacturer's recommendations. A minimum initial aggregate base lift of 6 inches is required over geotextiles. All stabilization material should be underlain by a subgrade geotextile.

9.6.3.2 Drainage Geotextile

Subgrade geotextile should meet the specifications provided in WSDOT 9-33.2(1), Table 2, Geotextile for Underground Drainage Filtration Properties. The AOS should be between the No. 70 and No. 100 sieve. The water permittivity should be greater than 1.5/sec. The geotextile should be installed in accordance with the manufacturer's recommendations. A minimum initial aggregate base lift of 6 inches is required over geotextiles.

9.6.4 Geotextile Fabric

9.6.4.1 Subgrade Geotextile

Subgrade geotextile should meet the specifications provided in WSDOT 9-33.2(1), Table 3, Geotextile for Separation or Soil Stabilization. The geotextile should be installed in accordance with the manufacturer's recommendations. A minimum initial aggregate base lift of 6 inches is required over geotextiles. All stabilization material should be underlain by a subgrade geotextile.

9.6.4.2 Drainage Geotextile

Subgrade geotextile should meet the specifications provided in WSDOT 9-33.2(1), Table 2, Geotextile for Underground Drainage Filtration Properties. The AOS should be between the No. 70 and No. 100 sieve. The water permittivity should be greater than 1.5/sec. The geotextile should be installed in accordance with the manufacturer's recommendations. A minimum initial aggregate base lift of 6 inches is required over geotextiles.

9.6.5 Pavement

9.6.5.1 Asphaltic Concrete

Asphaltic concrete should consist of HMA Class ½" adhering to WSDOT 9-03.8(6), HMA Proportions of Materials. The asphalt binder should consist of PG 58-22 meeting WSDOT 9-02.1(4), Performance Graded (PG) Asphalt Binder. Asphalt should be compacted to 91 percent of the theoretical maximum density as determined by ASTM D2041. Minimum and maximum asphalt lift thicknesses should be 2 and 3 inches, respectively. Nuclear gauge density testing should be conducted to verify adherence to recommended specifications. Testing frequency should be in accordance with WSDOT and City of Camas specifications.

9.7 EROSION CONTROL MEASURES

Soil at this site is susceptible to erosion by wind and water; therefore, erosion control measures should be carefully planned and installed before construction begins. Surface water runoff should be collected and directed away from sloped areas to prevent water from running down the slope face. Measures that can be employed to reduce erosion include the use of silt fences, hay bales, buffer

Page 18

zones of natural growth, sedimentation ponds, and granular haul roads. All erosion control methods should be in accordance with local jurisdiction standards.

10.0 OBSERVATION OF CONSTRUCTION

Satisfactory earthwork and foundation performance depends to a large degree on the quality of construction. Subsurface conditions observed during construction should be compared with those encountered during the subsurface explorations. Recognition of changed conditions often requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated. In addition, sufficient observation of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications.

11.0 CONCLUSIONS AND LIMITATIONS

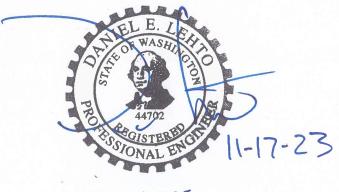
This geotechnical site investigation report was prepared in accordance with accepted standard conventional principles and practices of geotechnical engineering. This investigation pertains only to material tested and observed as of the date of this report and is based upon proposed site development as described in the text herein. This report is a professional opinion containing recommendations established by engineering interpretations of subsurface soils based upon conditions observed during site exploration. Soil conditions may differ between tested locations or over time. Slight variations may produce impacts to the performance of structural facilities if not adequately addressed. This underscores the importance of diligent QA/QC construction observation and testing to verify soil conditions are as anticipated in this report.

Therefore, this report contains several recommendations for field observation and testing by Columbia West personnel during construction activities. Columbia West cannot accept responsibility for deviations from recommendations described in this report. Future performance of structural facilities is often related to the degree of construction observation by qualified personnel. These services should be performed to the full extent recommended.

This report is not an environmental assessment and should not be construed as a representative warranty of site subsurface conditions. The discovery of adverse environmental conditions, or subsurface soils that deviate from those described in this report, should immediately prompt further investigation. The above statements are in lieu of all other statements expressed or implied.

Sincerely,

Columbia West Engineering, Inc.


Daniel E. Lehto, PE, GE

Principal

DEL:ASR

Document ID: Mills Property Geotechnical Report.docx

Expires: 6-5-25

REFERENCES

Annual Book of ASTM Standards, Soil and Rock (I), v04.08, American Society for Testing and Materials, 1999.

ASCE 7-16, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, 2016.

Evarts, Russell C., Geological Map of the Camas Quadrangle, Clark County, Washington, Scientific Investigations Map 3017, US Geological Survey, 2008.

Geomatrix Consultants, Seismic Design Mapping, State of Oregon, January 1995.

International Building Code: 2018 International Building Code, 2018 edition, International Code Council, 2018.

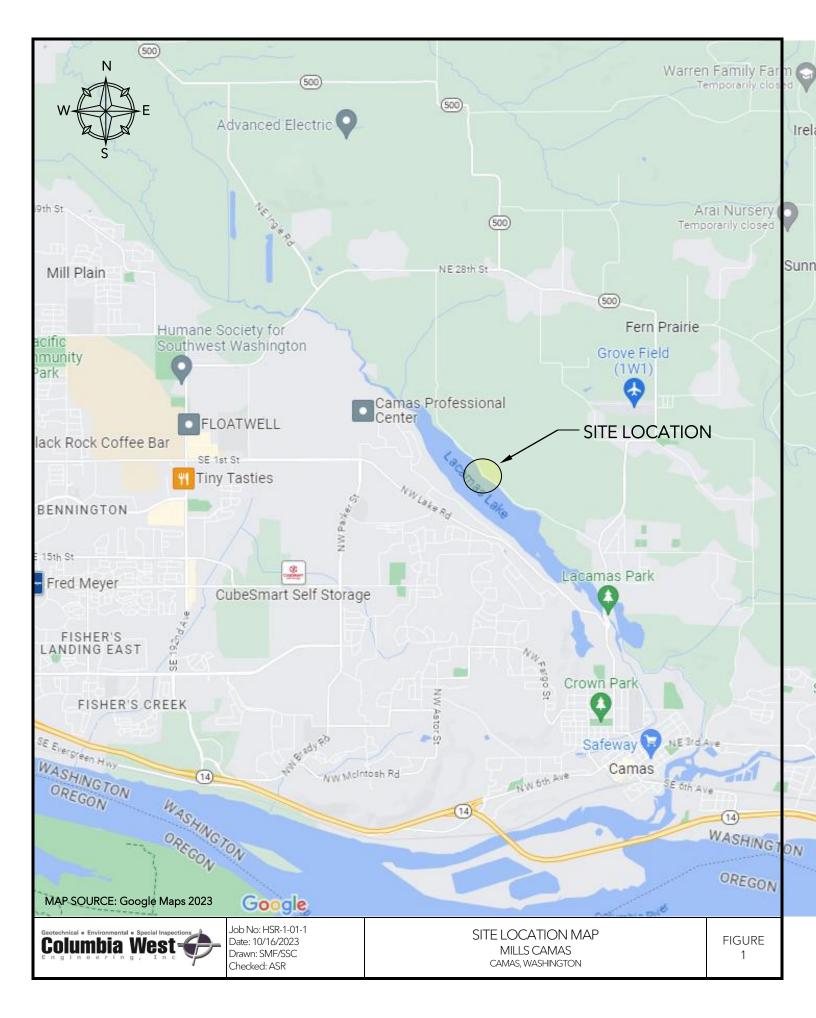
Palmer, Stephen P., Magsino, Sammantha L., Poelstra, James L., and Niggemann, Rebecca A., *Site Class Map of Clark County, Washington*; Washington State Department of Natural Resources, September 2004.

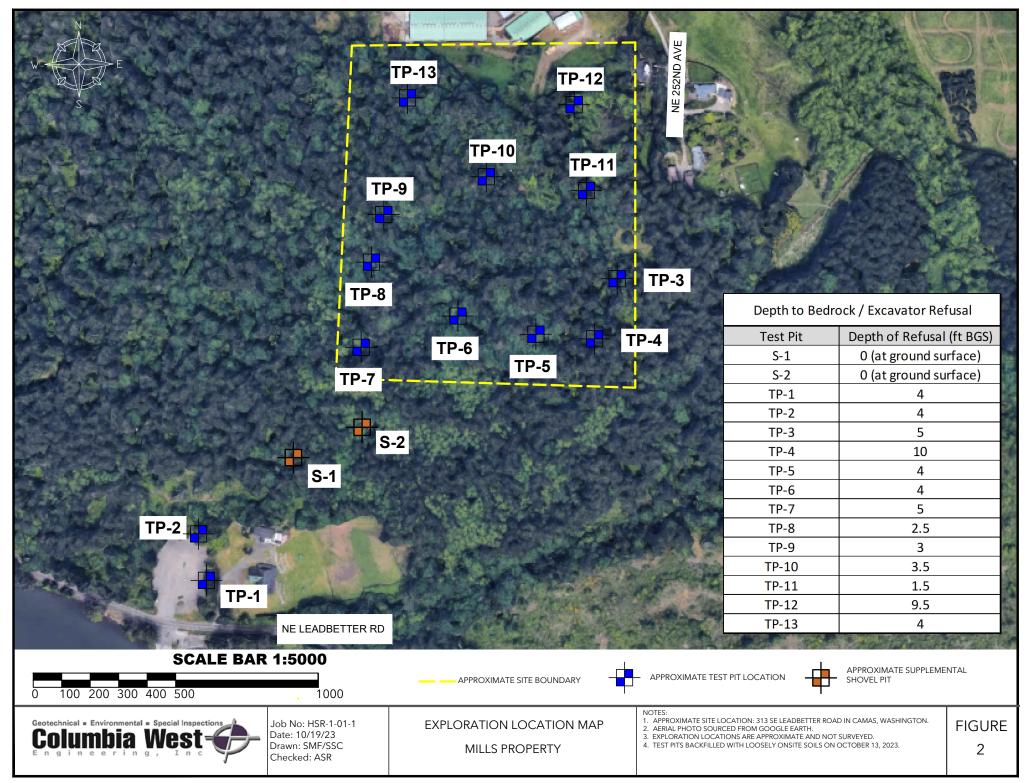
Palmer, Stephen P., Magsino, Sammantha L., Poelstra, James L., and Niggemann, Rebecca A., Liquefaction Susceptibility Map of Clark County, Washington; Washington State Department of Natural Resources, September 2004.

Safety and Health Regulations for Construction, 29 CFR Part 1926, Occupational Safety and Health Administration (OSHA), revised July 1, 2001.

State of Washington Department of Ecology, Washington State Well Log Viewer (apps.exy.wa.gov/wellog/).

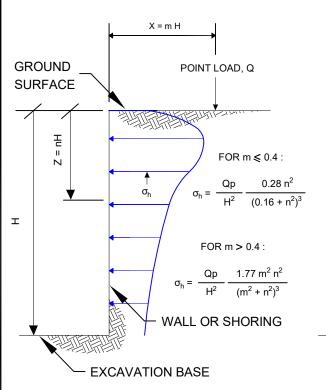
USGS, Geologic Map of the Greater Portland Metropolitan Area and Surrounding Region, Oregon and Washington, Scientific Investigations Map 3443, 2020.

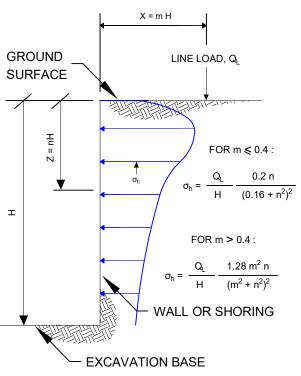

Washington Department of Transportation (WSDOT), Standard Specifications for Road, Bridge, and Municipal Construction, 2023

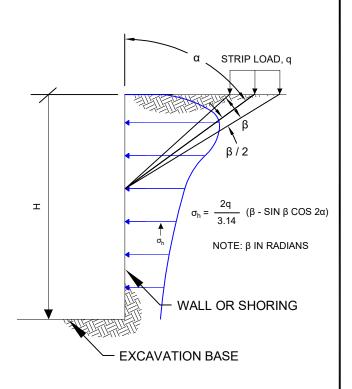

Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture, website (http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm).

Wong, Ivan, et al, Earthquake Scenario and Probabilistic Earthquake Ground Shaking Maps for the Portland, Oregon, Metropolitan Area, IMS-16, Oregon Department of Geology and Mineral Industries, 2000.

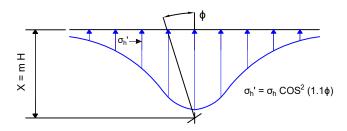
FIGURES

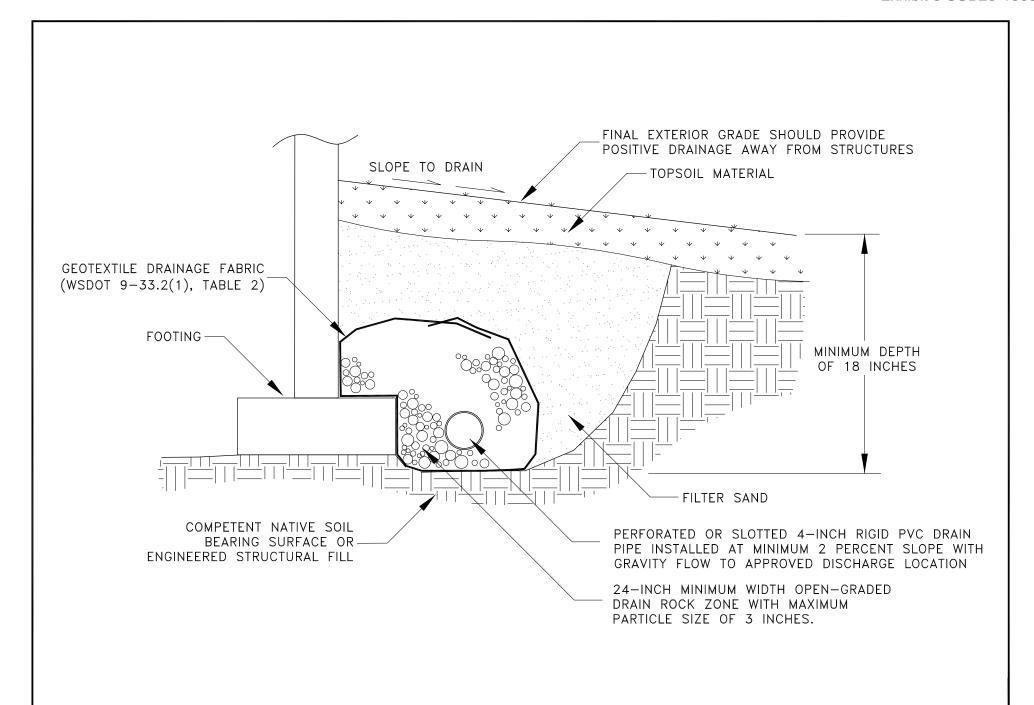




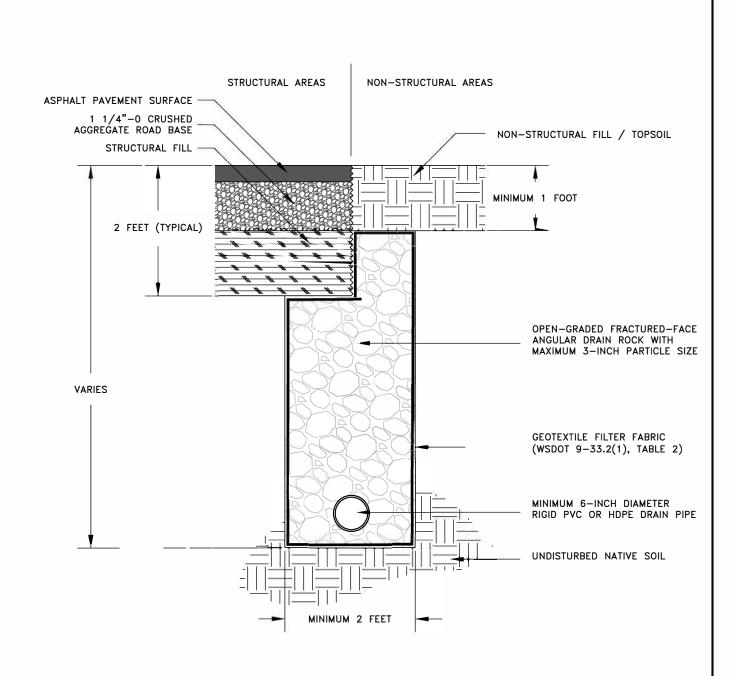

VERTICAL POINT LOAD

LINE LOAD PARALLEL TO WALL


STRIP LOAD PARALLEL TO WALL

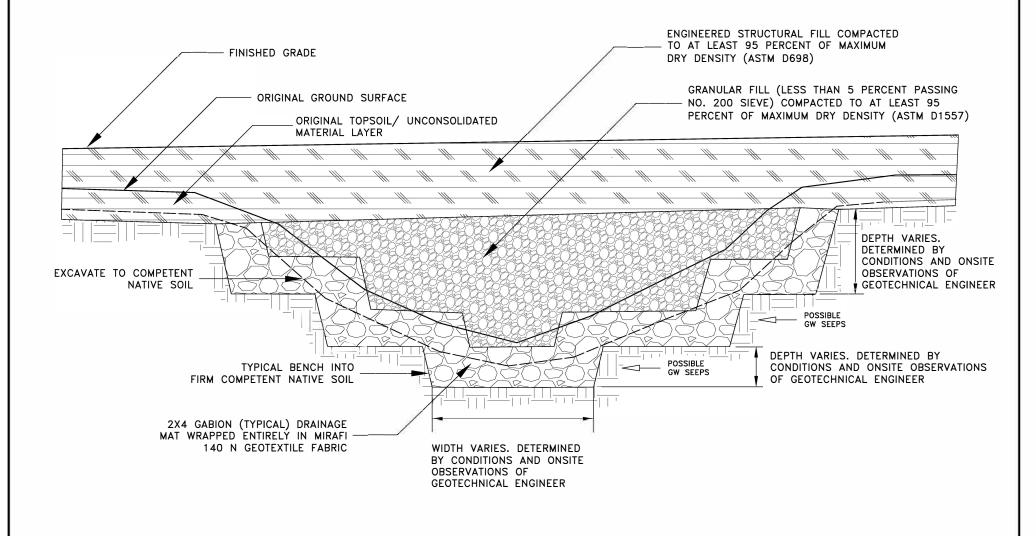


VERTICAL POINT LOAD HORIZONTAL PRESSURE DISTRIBUTION



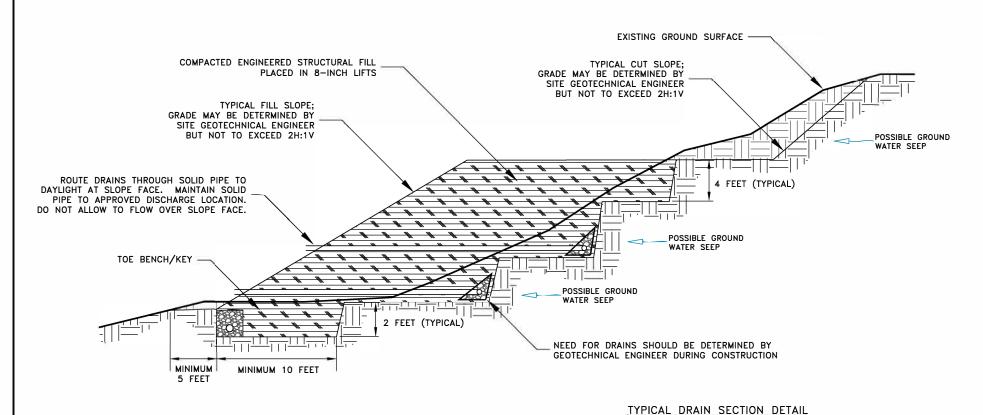
NOTES:

- 1. FIGURE SHOULD BE USED JOINTLY WITH RECOMMENDATIONS PRESENTED IN THE REPORT TEXT.
- 2. LATERAL EARTH PRESSURES ASSUME RIGID WALLS WITH BACKFILL MATERIALS HAVING A POISSON'S RATIO OF 0.5.
- 3. TOTAL LATERAL EARTH PRESSURES RESULTING FROM COMBINED LOADS MAY BE CALCULATED USING SUPERPOSITION.
- 4. DRAWING IS NOT TO SCALE.



NOTE: LOCATION, INVERT ELEVATION, DEPTH OF TRENCH, AND EXTENT OF PERFORATED PIPE REQUIRED MAY BE MODIFIED BY THE GEOTECHNICAL ENGINEER DURING CONSTRUCTION BASED UPON FIELD OBSERVATION AND SITE—SPECIFIC SOIL CONDITIONS.

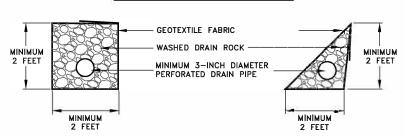
TYPICAL DRAINAGE MAT CROSS-SECTION


TYPICAL DRAINAGE MAT CROSS SECTION

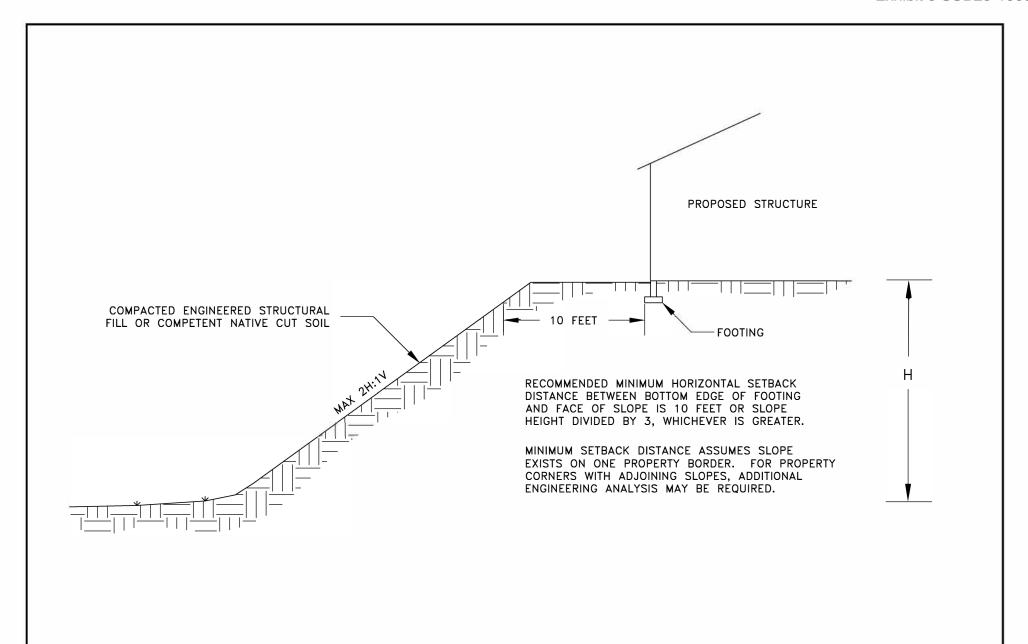
1. DRAWING IS NOT TO SCALE.

2. DRAWING REPRESENTS TYPICAL DRAINAGE MAT SECTION AND MAY NOT BE SITE-SPECIFIC.

FIGURE


6

DRAIN SPECIFICATIONS


GEOTEXTILE FABRIC SHALL MEET WSDOT 9-33.2(1), TABLE 2, GEOTEXTILE FOR UNDERGROUND DRAINAGE FILTRATION PROPERTIES WITH AOS BETWEEN No. 70 AND No. 100 SIEVE. WATER PERMITIVITY SHOULD BE GREATER THAN 1.5/SEC.

WASHED DRAIN ROCK SHALL BE OPEN-GRADED ANGULAR DRAIN ROCK WITH LESS THAN 2 PERCENT PASSING THE No. 200 SIEVE AND A MAXIMUM PARTICLE SIZE OF 2 INCHES.

DRAWING REPRESENTS TYPICAL CUT AND FILL SLOPE CROSS SECTION AND MAY NOT BE SITE—SPECIFIC.

NOTES:

1. DRAWING IS NOT TO SCALE.
2. SLOPES AND PROFILES SHOWN ARE APPROXIMATE.
3. DRAWING REPRESENTS TYPICAL FOUNDATION
SETBACK DETAIL AND MAY NOT BE SITE—SPECIFIC.

APPENDIX A SUBSURFACE EXPLORATION PROGRAM FIELD EXPLORATIONS

GENERAL

We explored subsurface conditions at the site by excavating thirteen test pits (TP-1 through TP-13) to depths between 1.5 and 10 feet BGS. Excavation services were provided by L&S Contractors of Battle Ground, Washington on October 13, 2023. The test pit locations are shown in Figures 2. The test pit logs are presented in this appendix.

SOIL SAMPLING

Representative grab samples of the soil observed in the test pit explorations were obtained from the walls and/or base of the test pits using the excavator bucket.

SOIL CLASSIFICATION

The soil samples were classified in accordance with the Unified Soil Classification System presented in Appendix A. The exploration log indicates the depths at which the soils or their characteristics change, although the change actually could be gradual. If the change occurred between sample locations, the depth was interpreted. Classifications are shown on the exploration log.

EXPLORATION LEGEND

Symbol	Description					
SPT	Sample obtained from the indicated depth in g Standard Penetration Test and Split-Barrel Sa					
SHELBY	Sample obtained from the indicated depth using accordance with ASTM D1587, <i>Thin-Walled T</i>					
D&M 300	Sample obtained from the indicated depth usin hammer or pushed	Sample obtained from the indicated depth using Dames & Moore sampler and 300-pound hammer or pushed				
D&M 140	Sample obtained from the indicated depth using Dames & Moore sampler and 140-pound hammer or pushed					
CSS	Sample obtained from the indicated depth using 3-inch-outer-diameter California split-spoon sampler and 140-pound hammer					
GRAB	Grab sample obtained from the indicated depth	Graphical Log of Subsurface Lithology				
CORE	Rock core interval at the indicated depth Observed contact at the indicated depth					
	Water level observed during exploration	Inferred contact at the indicated depth				

	Geotechnic	al Acronyr	ns
AASHTO	American Association of State Highway and Transportation Officials	Р	Push Sample
ASTM	American Society for Testing and Materials	PP	Pocket Penetrometer
ATT	Atterberg Limits	PSF	Pounds Per Square Foot
BGS	Below Ground Surface	P200	Percent Passing No. 200 Sieve
CBR	California Bearing Ratio	RES	Resilient Modulus
CON	Consolidation Test	SIEV	Sieve Analysis
DCPT	Dynamic Cone Penetration Test	SPT	Standard Penetration Test
DD	Dry Density	TS	Torvane Shear
DS	Direct Shear	UC	Unconfined Compressive Strength
HYD	Hydrometer	UU	Unconsolidated Undrained Triaxial Test
IR	Infiltration Rate	USCS	United Soil Classification System
МС	Moisture Content	VS	Vane Shear
MD	Moisture-Density Relationship	WD	Wet Density
ос	Organic Content		

SOIL DESCRIPTION AND CLASSIFICATION

Particle-Size Classification

COMPONENT	ASTM / USCS		AAS	нто
	size range	sieve size range	size range	sieve size range
Boulders	Greater than 300 mm	Greater than 12 inches	-	-
Cobbles	75 mm to 300 mm	3 inches to 12 inches	Greater than 75 mm	Greater than 3 inches
Gravel	75 mm to 4.75 mm	3 inches to No. 4 sieve	75 mm to 2.00 mm	3 inches to No. 10 sieve
Coarse	75 mm to 19.0 mm	3 inches to 3/4-inch sieve	-	-
Fine	19.0 mm to 4.75 mm	3/4-inch to No. 4 sieve	-	-
Sand	4.75 mm to 0.075 mm	No. 4 to No. 200 sieve	2.00 mm to 0.075 mm	No. 10 to No. 200 sieve
Coarse	4.75 mm to 2.00 mm	No. 4 to No. 10 sieve	2.00 mm to 0.425 mm	No. 10 to No. 40 sieve
Medium	2.00 mm to 0.425 mm	No. 10 to No. 40 sieve	-	-
Fine	0.425 mm to 0.075 mm	No. 40 to No. 200 sieve	0.425 mm to 0.075 mm	No. 40 to No. 200 sieve
Fines (Silt and Clay)	Less than 0.075 mm	Passing No. 200 sieve	Less than 0.075 mm	Passing No. 200 sieve

Consistency for Cohesive Soil

CONSISTENCY	SPT N-VALUE (BLOWS PER FOOT)	D&M N-VALUE (BLOWS PER FOOT)	POCKET PENETROMETER (UNCONFINED COMPRESSIVE STRENGTH, tsf)
Very Soft	Less than 2	Less than 3	Less than 0.25
Soft	2 to 4	3 to 6	0.25 to 0.50
Medium Stiff	4 to 8	6 to 12	0.50 to 1.0
Stiff	8 to 15	12 to 25	1.0 to 2.0
Very Stiff	15 to 30	25 to 65	2.0 to 4.0
Hard	30 to 60	65 to 145	Greater than 4.0
Very Hard	Greater than 60	Greater than 145	-

Relative Density for Granular Soil

RELATIVE DENSITY	SPT N-VALUE (BLOWS PER FOOT)	D&M N-VALUE (BLOWS PER FOOT)
Very Loose	0 to 4	0 to 11
Loose	4 to 10	11 to 26
Medium Dense	10 to 30	26 to 74
Dense	30 to 50	74 to 120
Very Dense	Greater than 50	Greater than 120

Moisture Designations

Additional Constituents

TERM	FIELD IDENTIFICATION
Dry	No moisture. Dusty or dry.
Damp	Some moisture. Cohesive soils are usually below plastic limit and are moldable.
Moist	Grains appear darkened, but no visible water is present. Cohesive soils will clump. Sand will bulk. Soils are often at or near plastic limit.
Wet	Visible water on larger grains. Sand and silt exhibit dilatancy. Cohesive soil can be readily remolded. Soil leaves wetness on the hand when squeezed. Soil is much wetter than optimum moisture content and is above plastic limit.

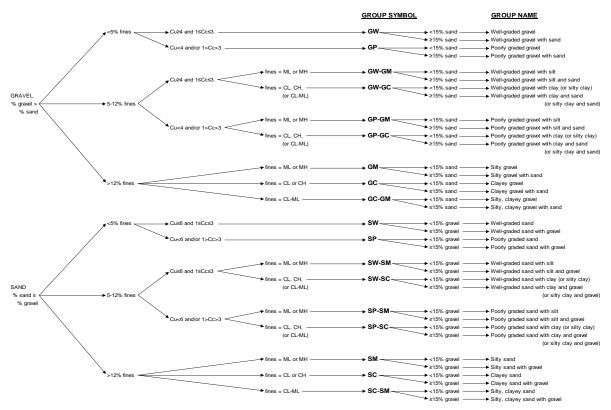
	Silt and Cla	ay In:		Sand and Gravel In:			
Percent	Fine- Grained Soil	Coarse- Grained Soil	Percent	Fine-Grained Soil	Coarse- Grained Soil		
< 5	trace	trace	< 5	trace	trace		
5 – 12	minor	with	5 – 15	minor	minor		
> 12	some	silty/clayey	15 – 30	with	with		
			> 30	sandy/gravelly	with (approx. percentage)		

AASHTO SOIL CLASSIFICATION SYSTEM

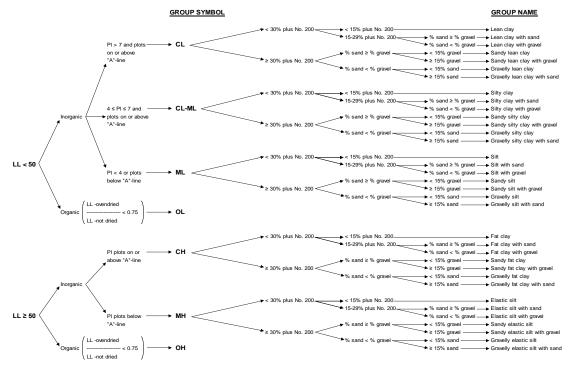
TABLE 1. Classification of Soils and Soil-Aggregate Mixtures

General Classification	(35 Per	Granular Materials (35 Percent or Less Passing .075 mm)			Silt-Clay Materials (More than 35 Percent Passing 0			
Group Classification	A-1	A-3	A-2	A-4	A-5	A-6	A-7	
Sieve analysis, percent passing:								
2.00 mm (No. 10)	=	-	-					
0.425 mm (No. 40)	50 max	51 min	-	-	-	-	-	
0.075 mm (No. 200)	25 max	10 max	35 max	36 min	36 min	36 min	36 min	
Characteristics of fraction passing 0.425 mn	n (No. 40)							
Liquid limit				40 max	41 min	40 max	41 min	
Plasticity index	6 max	N.P.		10 max	10 max	11 min	11 min	
General rating as subgrade		Excellent to good	j		Fai	r to poor		

Note: The placing of A-3 before A-2 is necessary in the "left to right elimination process" and does not indicate superiority of A-3 over A-2.


TABLE 2. Classification of Soils and Soil-Aggregate Mixtures

				Granular M	aterials				Silt-C	Clay Materials	3
General Classification			(35 Percent o	r Less Passin	g 0.075 mm)			(More tha	n 35 Percent	Passing 0.0	75 mm)
	<u> </u>	\-1			A	-2					A-7
											A-7-5,
Group Classification	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-6
Sieve analysis, percent passing:											
2.00 mm (No. 10)	50 max	-	-	-	-	-	-	-	-	-	-
0.425 mm (No. 40)	30 max	50 max	51 min	-	-	-	-	-	-	-	-
0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
Characteristics of fraction passing 0.425 mm (No.	40)										
Liquid limit				40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min
Plasticity index	6	max	N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11min
Usual types of significant constituent materials	Stone	fragments,	Fine								
	grave	el and sand	sand		Silty or clayey	gravel and sa	and	Silt	y soils	Clay	ey soils
General ratings as subgrade				Excellent to	Good				Faiı	to poor	


Note: Plasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30 (see Figure 2).

AASHTO = American Association of State Highway and Transportation Officials

UNIFIED SOIL CLASSIFICATION SYSTEM

Flow Chart for Classifying Coarse-Grained Soils (More Than 50% Retained on No. 200 Sieve)

Flow Chart for Classifying Fine-Grained Soil (50% or More Passes No. 200 Sieve)

ROCK CLASSIFICATION SYSTEM

STRENGTH	DESCRIPTION	UNCONFINED COMPRESSIVE STRENGTH (PSI)
Extremely Weak (R0)	Easily indented by thumbnail	35 to 150
Very Weak (R1)	Scratched with fingernail, peeled by knife, indented by rock pick	150 to 275
Weak (R2)	Peeled by knife, indented by rock pick	725 to 3,500
Medium Strong (R3)	Cannot be peeled or scraped with a knife	3,500 to 7,250
Strong (R4)	Requires more than one blow with a rock hammer to fracture it	7,250 to 14,500
Very Strong (R5)	Requires many blows with a rock hammer to fracture it	14,500 to 36,250
Extremely Strong (R6)	Can only be chipped with a rock hammer	Greater than 36,250

WEATHERING	DESCRIPTION			
Decomposed	A soil formed in place with original texture of rock destroyed			
Completely Weathered	Rock wholly weathered but rock texture preserved			
Highly Weathered	Rock weakened so that large pieces can be broken by hand			
Moderately Weathered	Rock mass is decomposed locally			
Slightly Weathered	Discoloration along discontinuities			
Fresh	No visible signs of weathering or discoloring			

JOINT SPACING	DESCRIPTION
Very Close	Less than 0.2 foot
Close	0.2 foot to 1 foot
Moderately Close	1 foot to 3 feet
Wide	3 feet to 10 feet
Very Wide	Greater than 10 feet

FRACTURING	FRACTURE SPACING
Very Intensely Fractured	Chips, fragments, with scattered short core lengths
Intensely Fractured	0.1 foot to 0.3 foot with scattered fragments
Moderately Fractured	0.3 foot to 1 foot
Slightly Fractured	1 foot to 3 feet
Very Slightly Fractured	Greater than 3 feet
Unfractured	No fractures observed

HEALING	DESCRIPTION
Not Healed	Discontinued surface, fractured zone, sheared material, filling is not cemented
Partly Healed	Less than 50% of fractures or sheared zone bonding
Moderately Healed	Greater than 50% fractures or sheared zone bonding
Totally Healed	All fragments are bonded

QUALITY	RQD (%)
Very poor	Less than 25%
Poor	25 to 50%
Fair	51 to 75%
Good	76 to 90%

Rock Quality Designation (RQD) is a measure of quality of rock core taken from a borehole. The length of core pieces is measured along center line of the pieces. All pieces of intact rock core equal to or greater than 100 mm (4 in.) long are summed and divided by the total length of the core run to obtain RQD value

PROJECT Mills C	r NAME Camas					CLIENT HSR Development		PROJECT HSR	т no. - 1-01- 1		TEST PIT	NO.	
	T LOCATION IS, Washin	aton				contractor L&S Contractors Inc.	EQUIPMENT Excavator	TECHNIC			DATE 10-13-2023		
TEST PIT	LOCATION igure 2	gion				GROUNDWATER DEPTH Groundwater not obser		START 1 0755			FINISH TI 0820		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRIPTION AND REMARKS			Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0				GW		Grey GRAVEL and cobl angular aggregate (0.25 of haul road built for site	bles, moist, dense, 5 to 10 inches). Shoulder e access.		-				
-	TP1.1			GW-GN		Brown GRAVEL with silt, moist, medium dense to dense, fine angular aggregate (0.1 to 0.25 inch).							
- 5						Bottom of test pit at 4 fer refusal on bedrock.	et due to practical						
- 10													
15													

PROJECT Mills C	NAME Samas					CLIENT HSR Development		PROJEC HSR:	T NO. - 1-01-	1	TEST PIT	NO.	
PROJEC ⁻	T LOCATION IS, Washir	aton				CONTRACTOR L&S Contractors Inc.	EQUIPMENT Excavator	TECHNIC			DATE 10-13-2023		
TEST PIT	LOCATION igure 2	<u> </u>				GROUNDWATER DEPTH Groundwater not obser	rved.	START T 0822			FINISH T	ME	
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRIF	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing		
0						2 to 3 inches forest duff	(topsoil).						
						Fine tree roots extend to							
-				GW-GM		angular aggregate (0.1 t	t, moist, dense, fine to 0.25 inch).						
				GC		Decomposed/weathered	d bedrock, very dense						
- 5 - -						clayey gravel. Bottom of test pit at 4 fee refusal on bedrock.	et due to practical						
- 10 - - -													
- 15 - -													

PROJECT Mills C	T NAME					CLIENT HSR Development		PROJEC HSD	T NO. - 1-01-	1	TEST PIT	NO.	
PROJEC	T LOCATION					CONTRACTOR	EQUIPMENT	TECHNIC		•	DATE		
	as, Washir	gton				L&S Contractors Inc. Excavator					10-13-2023		
See F	TLOCATION Figure 2					GROUNDWATER DEPTH Groundwater not obse	rved	START 1	IME		FINISH TI 0917	ME	
	.94 5 _					Groundwater not obse	ivea.		é				
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log				Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0					# # # # # # # # # # # # # # # # # # #	6 to 8 inches forest duff	with fine tree roots.						
-				GC		Grey weathered bedroc dense clayey gravel. Difficult digging from 1 to							
- 5 - -						Bottom of test pit at 5 fe refusal on bedrock.	et due to practical						
- - 10 -													
- - - 15													
-													

PROJECT	T NAME					CLIENT		PROJEC.	T NO.		TEST PIT	NO.
	T LOCATION					HSR Development CONTRACTOR	EQUIPMENT Excavator	TECHNIC	1-01-1		DATE	
	ıs, Washin	gton				L&S Contractors Inc.	SSC		10-13-2023 FINISH TIME			
	location igure 2					GROUNDWATER DEPTH Groundwater not obse	rved.	START T 0918				ME
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	PTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing
0					<u> </u>	6 to 8 inches forest duff with fine tree roots.			2			
- 5	TP4.1		A-7-6(4)	ML		Brown SILT with trace of moist, medium stiff to st moist, medium stiff	o 10 feet. Intermixed vel and boulders at 8	41	45	41	15	
- - 10 - -						Bottom of test pit at 10 f refusal on bedrock.	eet due to practical					
- - 15 -												

Mills C	T NAME Camas T LOCATION					CLIENT HSR Development CONTRACTOR	EQUIPMENT	PROJEC HSR:	-1-01-1	1	TEST PIT NO. TP-5 DATE		
	is, Washir	gton				L&S Contractors Inc.	Excavator	SSC	.		10-13-2023		
TEST PIT	igure 2					GROUNDWATER DEPTH			IME		FINISH TIME 1005		
3661	igui e z					Groundwater not obse	rvea.	0950	Φ		1003		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing		
0					# Mr	8 to 10 inches forest du	ff with tree roots.						
-				GC		Grey weathered bedroc dense clayey gravel. Fine tree roots extend to Difficult digging from 2 to	o 2 feet in depth.						
- 5 -						Bottom of test pit at 4 fe refusal on bedrock.	et due to practical						
- - 10 -													
- - 15 -													

PROJECT Mills C	NAME amas					CLIENT HSR Development		PROJECT HSR-	NO.		TEST PIT	NO.	
PROJECT	LOCATION	aton				CONTRACTOR L&S Contractors Inc.	Excavator	TECHNIC SSC			DATE 10-13-2023		
TEST PIT	s, Washin LOCATION igure 2	gton				GROUNDWATER DEPTH Groundwater not obse		START TI 1007			FINISH TI 1015		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing		
0					<u> </u>	8 to 10 inches forest du		2					
					30/2	Fine tree roots extend to							
-				GC		Grey weathered bedroc dense clayey gravel. Difficult digging from 1.5							
5						Bottom of test pit at 4 feet due to practical refusal on bedrock.							
- 10													
15													

PROJECT Mills C	NAME amas					CLIENT HSR Development		PROJECT HSR-	г NO. 1-01-	1	TEST PIT	NO.	
PROJECT	TLOCATION S, Washir	aton				CONTRACTOR L&S Contractors Inc.	EQUIPMENT Excavator	TECHNIC			DATE 10-13-2023		
TEST PIT	LOCATION igure 2	igion				GROUNDWATER DEPTH Groundwater not obse		START TI 1020			FINISH TI 1033		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing		
0					# 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,	8 to 10 inches forest du	ff with tree roots.						
_					- - -	Fine tree roots extend to							
- 5				GC		Grey weathered bedroc dense clayey gravel. Difficult digging from 3 to							
-						Bottom of test pit at 5 fer refusal on bedrock.	et due to practical						
- 10 - -													
- - 15 -													

						ILSI FII LUU					•	
PROJECT Mills C	amas					CLIENT HSR Development		-1-01-1	1	TEST PIT	NO.	
	т LOCATION IS, Washir	ngton				CONTRACTOR EQUIPMENT Excavator	SSC	CIAN		DATE 10-13	-2023	
TEST PIT See F	location igure 2					GROUNDWATER DEPTH Groundwater not observed.	START 1 1040			FINISH TIME 1045		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRIPTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0 - - - 5 - - 10 -				GC		8 to 10 inches forest duff with tree roots. Fine tree roots extend to 1.5 feet in depth. Grey weathered bedrock, moist, dense to very dense clayey gravel. Bottom of test pit at 2.5 feet due to practical refusal on bedrock.						

PROJECT Mills C	r NAME Camas					CLIENT HSR Development		PROJEC HSR	T NO. - 1-01- 1	1	TEST PIT	NO.	
PROJECT	T LOCATION IS, Washin	aton				CONTRACTOR L&S Contractors Inc.	EQUIPMENT Excavator	TECHNI			DATE 10-13-2023 FINISH TIME 1108		
TEST PIT	LOCATION igure 2	<u>g.torr</u>				GROUNDWATER DEPTH Groundwater not obser		START 1 1100					
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRII	PTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0					<u>4</u> <u>4</u>	8 to 10 inches forest duf	ff with tree roots.						
-	TP9.1		A-4(1)	SM	Mb. — — — — — — — — — — — — — — — — — — —	Fine tree roots extend to Brownish red silty SANE inch), moist, dense to ve medium plasticity.	0.1 to 0.25 with gravel	20	44	39	8		
-						Bottom of test pit at 3 fer refusal on bedrock.	et due to practical						
- 5													
- 10													
15													

PROJECT Mills C	amas					CLIENT HSR Development		PROJECT NO. TEST PT TP-1					
	т LOCATION IS, Washir	igton				CONTRACTOR L&S Contractors Inc.	Excavator	TECHNI	CIAN		DATE 10-13-	-2023	
TEST PIT	LOCATION					GROUNDWATER DEPTH		START 1	ГІМЕ		FINISH TIME 1146		
See F	igure 2					Groundwater not obse	rved.	1130	υ		1146		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	PTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0				GC		very dense clayey grave Difficult digging from 1.5	bedrock, moist, dense to el. 5 to 3.5 feet.						
- - 5 -						Bottom of test pit at 3.5 refusal on bedrock.	feet due to practical						
- - 10 -													
- - 15 -													

PROJECT Mills C	T NAME Camas					CLIENT HSR Development		PROJECT	T NO. • 1-01-	 1	TEST PIT	NO.		
PROJEC	T LOCATION					CONTRACTOR EQUIPMENT			TECHNICIAN			DATE		
	as, Washir	ngton				L&S Contractors Inc.	Excavator	SSC			10-13-2023 FINISH TIME 1155			
TEST PI	TLOCATION Figure 2					GROUNDWATER DEPTH	nuod	START T 1150	IME					
See r	rigure z					Groundwater not obse	rvea.		4)					
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	PTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing		
0					n	8 inches forest duff with	tree roots.							
				GC	7070	Grey weathered bedroc	k, moist, dense to very							
-						dense clayey gravel.								
-						Bottom of test pit at 1.5 refusal on bedrock.	feet due to practical							
_														
- - 5														
- 5														
_														
-														
- 10														
-														
-														
-														
-														
- 15														
- 														

	T NAME Camas					CLIENT HSR Development CONTRACTOR EQUIPMENT	PROJECT HSR	-1-01-	1	TEST PIT TP-12	NO.
	as, Washin	gton				L&S Contractors Inc. Excavator	SSC	5000		10-13	-2023
	t LOCATION Figure 2					GROUNDWATER DEPTH Groundwater not observed.	START 1 1210	IME		FINISH T	IME
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log		Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing
0					<u>Mr</u>	2 to 3 inches root zone underlain by 6 inches topsoil.					
- - 5	TP12.1			ML		Brown SILT with gravel (0.1 to 3 inches), moist, medium stiff, low plasticity. Increase in gravel and weathered bedrock at 6 feet. Difficult digging from 6 feet to 9.5 feet.					
- - 10 -	TP12.2					Weathered bedrock boulders at 9 feet. Bottom of test pit at 9.5 feet due to practical refusal on bedrock.					
- - 15 -											

PROJECT	T NAME					CLIENT LIST Development		PROJEC	T NO. - 1-01-	1	TEST PIT	NO.	
	T LOCATION					HSR Development CONTRACTOR	EQUIPMENT	TECHNI		!	DATE		
Cama	ıs, Washin	gton				L&S Contractors Inc.	Excavator	SSC			10-13		
TEST PIT	LOCATION					GROUNDWATER DEPTH	d	START 1	IME		FINISH TIME 1300		
See r	igure 2					Groundwater not obse	rvea.	1245			1300		
Depth (feet)	Sample Field ID	SCS Soil Survey Description	AASHTO Soil Type	USCS Soil Type	Graphic Log	LITHOLOGIC DESCRI	PTION AND REMARKS	Moisture Content (%)	Passing No. 200 Sieve (%)	Liquid Limit	Plasticity Index	Infiltration Testing	
0					# # # 3	8 to 10 inches forest du	ff with tree roots.						
					W _ 4	Tree roots extend to 1.5	feet in depth.						
-				ML			with weathered bedrock,						
-						moist, stiff, low plasticity	y.						
-	TP13.1			GC		Grey weathered bedroc dense clayey gravel. Difficult digging from 2.5	k, moist, dense to very 5 feet to 4 feet.						
- - 5						Bottom of test pit at 4 fe refusal on bedrock.	et due to practical						
-													
-													
-													
- 10													
-													
-													
-													
_													
15													
- 15													
-													
-													

APPENDIX B LABORATORY TESTING

CLASSIFICATION

The soil samples were classified in the laboratory to confirm field classifications. The laboratory classifications are shown on the exploration log if those classifications differed from the field classifications.

ATTERBERG LIMITS

Atterberg limits (plastic and liquid limits) testing was performed on select soil samples in general accordance with ASTM D4318. The plastic limit is defined as the moisture content where the soil becomes brittle. The liquid limit is defined as the moisture content where the soil begins to act similar to a liquid. The plasticity index is the difference between the liquid and plastic limits. The test results are presented in this appendix.

MOISTURE CONTENT

We determined the natural moisture content of select soil samples in general accordance with ASTM D2216. The natural moisture content is a ratio of the weight of the water to soil in a test sample and is expressed as a percentage. The test results are presented in this appendix.

PARTICLE-SIZE ANALYSIS

We completed particle-size analysis on select soil samples in general accordance with ASTM D6913. This test is a quantitative determination of the soil particle size distribution expressed as a percentage of dry soil weight.

PARTICLE-SIZE ANALYSIS REPORT

PROJECT	ICLE-SIZE ANALYSIS RE				AD ID		
Mills Camas	HSR Development	PR				1256	
313 SE Leadbetter Road	500 E. Broadway, Suite 120	DE				1550	
	• •	INL				12	
Camas, Washington 98607	Vancouver, Washington 98660	DA				7.2	
			Corr Date 10/30/23				
MATERIAL DATA	-		- 0, -0, -				
MATERIAL SAMPLED	MATERIAL SOURCE		CS SOIL TYPE		<i>a</i> 1		
brown Silty SAND with Gravel	Test Pit TP-04		SM, Silty S	and with	n Gravel		
	depth = 8 feet						
PECIFICATIONS				ATION			
none			A-7-0(4)				
ABORATORY TEST DATA		,					
ABORATORY EQUIPMENT			ST PROCEDURE				
Rainhart "Mary Ann" Sifter, air-dried prep,	hand washed, composite sieve - #4 split			13, Met	thod A		
ADDITIONAL DATA		SI	IEVE DATA				
initial dry mass (g) = 1842.3	and Walter Land and the Control of t			_			
as-received moisture content = 41%	coefficient of curvature, $C_C = n/a$		0.4				
liquid limit = 41	coefficient of uniformity, C _U = n/a		%	slit and	ciay = 45.	.0%	
plastic limit = 26 plasticity index = 15	effective size, $D_{(10)} = n/a$ $D_{(30)} = n/a$			DE	EDCENIT DAG	COINIC	
fineness modulus = n/a	$D_{(30)} = n/a$ $D_{(60)} = 0.317 \text{ mm}$		SIEVE SIZE			SPECS	
NOTE: Entire sample used for analysis; did n	. ,		1				
					100%		
GRAIN SIZE	DISTRIBUTION		4.00" 100.0		100%		
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	# # # # # # # # # # # # # # # # # # #						
4 ある 続きさ 最高 2 第 第 第 100% O-OO-Ok++ +++++ + カー・+・・・・・・・・・・・・・・・・・・・・・・・・・		00%		1000/	100%		
		70 78		100%	99%		
)%		97%	0070		
90%	91	% % %	1.25" 31.5		94%		
		. K		91%			
80%)% o		000/	90%		
	<u></u>			89%	88%		
70%	70)%					
				84%			
50% + H H H H H H H H H H H H H H H H H H	60)%	1/4" 6.30		81%		
	50			78%			
50%)%		700/	76%		
%	50			76%	72%		
40%	40)%		70%	12/0		
					66%		
30%	30)% <u></u>	#40 0.425	63%			
		SAND			59%		
20%	20)% %		57%	E40/		
		, , , ,		520/	54%		
100/		10/		JZ70	48%		
10%)%	#140 0.100 #170 0.090				
			#200 0.075	45%			
100.00 10.00	1.00 0.10 0.01	6 DA	TE TESTED	Т	TESTED BY		
			10/26/23	3	MI	RS	
partic	le size (mm)			•			
• sieve sizes			An	_1 C			

This report may not be reproduced except in full without prior written authorization by Columbia West Engineering, Inc.

COLUMBIA WEST ENGINEERING, INC. authorized signature

ATTERBERG LIMITS REPORT

											•		T		
PROJECT Mill	r s Camas					CLIENT HSR D	evelopmei	nt			۲	ROJECT NO. HSR-1-01-1	LAB ID S23-1356		
		better Roa	d				Broadway		120			EPORT DATE	FIELD ID		
							•				I .	10/30/23	TP4.2		
Cam	ias, wasi	hington 98	607			vancou	iver, Wash	ington	98000		D	ATE SAMPLED	SAMPLED BY		
											٦	10/13/23	SSC		
MATER	RIAL DAT	Ά													
	L SAMPLED					MATERIAL SO					U	SCS SOIL TYPE			
brov	vn Silty S	SAND with	h Gravel				t TP-04					SM, Silty Sand	with Gravel		
						depth =	8 feet				ļ				
		TEST DAT	Α												
	TORY EQUIP	MENT Machine,	Hand Da	llad							Т	EST PROCEDURE			
	BERG LIMI			IMIT DETER	OMINI A TI	ION						ASTM D4318			
AIIEK	DERG LIMI	13	LIQUID LI	IWIII DEIER	KIVIINATI	ON O	0		6	4		LIQ	UID LIMIT		
	liquid limit	t = 41	wet soil	+ pan weig	ıht. a =				33.77 33.71			100%			
	lastic limit			+ pan weig	_	29.16	29.98		9.91	29.83	1	90% =			
	ticity index		'	pan weig	 _	20.42	20.56		0.67	20.77	1	% 70% €			
					ows) =	33	26		22	16	7	e 60% [
				moistur	e, % =	39.7 %	41.1 %	4	1.8 %	42.8 %		50% + O	9-9-9		
SHRINE	KAGE		PLASTIC	LIMIT DETI	ERMINA	TION						00/0 E			
					0	2		€	4		20% -				
shrin	nkage limit	t = n/a	wet soil	+ pan weig	ht, g =	27.58	27.20					0%			
shrin	kage ratio	o = n/a	dry soil	+ pan weig	ht, g =	26.23	25.81					10	25 100		
				pan weig	ht, g =	20.93	20.42					numbe	r of blows, "N"		
				moistur	e, % =	25.5 %	25.8 %								
							_				4	ADDITIONAL DATA			
				PLA	STICI	TY CHAR	RT					0/	22.00/		
	80 T							/	1			% gravel % sand			
	Ė									الممر					
	70											% silt and clay			
	Ė											% silt			
	60							بممر	′ "U'	' Line		% clay			
	60						1 .	000				moisture content	= 41%		
	-						3000								
×	50					\angle	1000			1					
ing	-					مر	•		"	A" Line					
iŧ	40			ļ,	/		CH or C	H/							
stic	-					<i>~</i>									
plasticity index	20				30000										
	30			مر	•										
	[المستعمر ا	or OL										
	20		/ .	ال مر	- 01 OL	1-									
	-		A POPULATION OF THE PROPERTY O		0		MH or C	Н							
	10	/ .	A												
		CI CI	L-ML	MI	L or OL										
				IVIL	- 51 OL	<u> </u>					D	ATE TESTED	TESTED BY		
	0	10	20 3	30 4	0	50	60 70		80	90 10	00	10/27/23	MRS		
					liq	uid limit						1 1	Conto		
												Jan			

This report may not be reproduced except in full without prior written authorization by Columbia West Engineering, Inc.

COLUMBIA WEST ENGINEERING, INC. authorized signature

PARTICLE-SIZE ANALYSIS REPORT

PROJECT	CLL-SIZE ANALI SIS REF		LARID
Mills Camas	CLIENT HSR Development	PROJECT NO. HSR-1-01-	1 LAB ID S23-1357
313 SE Leadbetter Road	500 E. Broadway, Suite 120	REPORT DATE	FIELD ID
	- The state of the	10/30/23	TP9.1
Camas, Washington 98607	Vancouver, Washington 98660	DATE SAMPLED	SAMPLED BY
		10/13/23	SAMPLED BY
	1	10/13/23	330
MATERIAL DATA		•	
MATERIAL SAMPLED	MATERIAL SOURCE	USCS SOIL TYPE	
brownish red Silty SAND with Gravel	Test Pit TP-09	SM, Silty Sai	nd with Gravel
	depth = 2 feet		
SPECIFICATIONS		AASHTO CLASSIFICA	TION
none		A-4(1)	
LABORATORY TEST DATA		ļ	
LABORATORY EQUIPMENT		TEST PROCEDURE	
Rainhart "Mary Ann" Sifter, air-dried prep, h	nand washed, composite sieve - #4 split	ASTM D691	3, Method A
ADDITIONAL DATA		SIEVE DATA	, <u>-</u>
initial dry mass (g) = 1551.4		JIETE DATA	% gravel = 15.6%
as-received moisture content = 20%	coefficient of curvature, $C_C = n/a$		% sand = 40.1%
liquid limit = 39	coefficient of uniformity, $C_{11} = n/a$	0/2 0	silt and clay = 44.4%
plastic limit = 31	effective size, $D_{(10)} = n/a$	/0.5	and day - ++.+/0
plasticity index = 8	$D_{(30)} = n/a$		PERCENT PASSING
fineness modulus = n/a	$D_{(60)} = 0.573 \text{ mm}$	SIEVE SIZE	SIEVE SPECS
meness modulus – ma	D ₍₆₀₎ = 0.575 mm	US mm	act. interp. max min
		6.00" 150.0	100%
GRAIN SIZE	DISTRIBUTION	4.00" 100.0	100%
		3.00" 75.0	100%
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	#16 #20 #30 #40 #40 #100 #110 #200 #200	2.50" 63.0	100%
100% 0,00-000-000-6-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	+ + + + + + + + + +	2.00" 50.0	100%
		1.75" 45.0	100%
90%	90%	1.50" 37.5	100%
[1.25" 31.5 1.00" 25.0 7/8" 22.4	100%
80%	80%	1.00" 25.0	100%
		7/8" 22.4 3/4" 19.0	100% 100%
		5/8" 16.0	99%
70%	70%	1/2" 12.5	99%
		3/8" 9.50	98%
60% + + + + + + + + + + + + + + + + + + +	60%	1/4" 6.30	90%
sing in a single		#4 4.75	84%
8 50% = 50%	50%	#8 2.36	73%
d %		#10 2.00	70%
40%	40%	#16 1.18 #20 0.850	65% 62%
		#20 0.850 #30 0.600	60%
		#40 0.405	58%
30%	30%	#40 0.425 #50 0.300 #60 0.250	56%
		#60 0.250	55%
20% +	20%	#80 0.180	52%
		#100 0.150	50%
10%	10%	#140 0.106	47%
		#170 0.090	46%
0%	0%	#200 0.075	44%
100.00 10.00	1.00 0.10 0.01	DATE TESTED	TESTED BY
particle	e size (mm)	10/26/23	MRS
	. ,	1	1.0
• sieve sizes		Jan	

ATTERBERG LIMITS REPORT

PROJECT			CLIENT				PROJECT NO.	LAB ID
	Camas			velopment			HSR-1-01-1	S23-1357
313 S	SE Leadbetter Ro	ad		roadway, S			REPORT DATE	FIELD ID
Cama	is, Washington 98	3607	Vancouv	er, Washin	gton 98660)	10/30/23	TP9.1
							DATE SAMPLED 10/13/23	SAMPLED BY SSC
	IAL DATA							
MATERIAL: brown	SAMPLED nish red Silty SA	ND with Gravel	MATERIAL SOL Test Pit				USCS SOIL TYPE SM, Silty Sand v	vith Gravel
	,		depth = 2				, J	
	ATORY TEST DAT	·A						
	DRY EQUIPMENT d Limit Machine,	Hand Rolled					TEST PROCEDURE ASTM D4318	
	ERG LIMITS	LIQUID LIMIT DETERMINA	TION					
			0 0 0					JID LIMIT
	quid limit = 39	wet soil + pan weight, g =	35.74	32.23	34.46	32.25	100% 7	
	astic limit = 31	dry soil + pan weight, g =	31.59	29.05	30.61	28.96	80%	
plastic	city index = 8	pan weight, g =	20.66	20.76	20.76	20.82	% 70% - oʻ 60% -	
		N (blows) =		28	21	17	2. 50% †	
		moisture, % =		38.4 %	39.1 %	40.4 %	40% wo istruction with the state of the stat	
SHRINKAGE PLASTIC LIMIT DETE						•	E 30% =	
	P		0	25.00	6	4	10%	
	$\begin{array}{ll} \text{rage limit} = & \text{n/a} \\ \text{rage ratio} = & \text{n/a} \end{array}$	wet soil + pan weight, g = dry soil + pan weight, g =	27.76 26.10	27.39 25.87			0%	100
SHIIIK	age ratio = 11/a	pan weight, g =		20.94			10	25 100 of blows, "N"
		moisture, % =		30.8 %			number	or blows, 14
		moietare, 70	31.2 /0	20.0 /0			ADDITIONAL DATA	
		PLASTIC	ITY CHART	Г				
80	60 T						% gravel	
	[,,,,,,	% sand	
70	70					<u>, </u>	% silt and clay	
					2000		% silt :	= n/a
	-				ا" "ا	J" Line	% clay	= n/a
60	60 +			•			moisture content	= 20%
	-			200				
× 50	60 +		\times	1000				
nde	-		مر ا			"A" Line		
-	F			CH or OH				
.≥ 40	0 +							
sticity 9	10		,					
plasticity 64			,,,,					
plasticity index								
plasticity 90								
blasticity 30	10							
20	00	or OL		MH or OH				
30	00			MH or OH				
20	0 0	SL-ML ML or OI	-				DATE TESTED 10/27/23	TESTED BY MRS
20	0 0	SL-ML ML or Ol			80	90 100	DATE TESTED 10/27/23	TESTED BY MRS

This report may not be reproduced except in full without prior written authorization by Columbia West Engineering, Inc.

COLUMBIA WEST ENGINEERING, INC. authorized signature

APPENDIX C REPORT LIMITATIONS AND IMPORTANT INFORMATION

Geotechnical and Environmental Report Limitations and Important Information Report Purpose, Use, and Standard of Care

This report has been prepared in accordance with standard fundamental principles and practices of geotechnical engineering and/or environmental consulting, and in a manner consistent with the level of care and skill typical of currently practicing local engineers and consultants. This report has been prepared to meet the specific needs of specific individuals for the indicated site. It may not be adequate for use by other consultants, contractors, or engineers, or if change in project ownership has occurred. It should not be used for any other reason than its stated purpose without prior consultation with Columbia West Engineering, Inc. (Columbia West). It is a unique report and not applicable for any other site or project. If site conditions are altered, or if modifications to the project description or proposed plans are made after the date of this report, it may not be valid. Columbia West cannot accept responsibility for use of this report by other individuals for unauthorized purposes, or if problems occur resulting from changes in site conditions for which Columbia West was not aware or informed.

Report Conclusions and Preliminary Nature

This geotechnical or environmental report should be considered preliminary and summary in nature. The recommendations contained herein have been established by engineering interpretations of subsurface soils based upon conditions observed during site exploration. The exploration and associated laboratory analysis of collected representative samples identifies soil conditions at specific discreet locations. It is assumed that these conditions are indicative of actual conditions throughout the subject property. However, soil conditions may differ between tested locations at different seasonal times of the year, either by natural causes or human activity. Distinction between soil types may be more abrupt or gradual than indicated on the soil logs. This report is not intended to stand alone without understanding of concomitant instructions, correspondence, communication, or potential supplemental reports that may have been provided to the client.

Because this report is based upon observations obtained at the time of exploration, its adequacy may be compromised with time. This is particularly relevant in the case of natural disasters, earthquakes, floods, or other significant events. Report conclusions or interpretations may also be subject to revision if significant development or other manmade impacts occur within or in proximity to the subject property. Groundwater conditions, if presented in this report, reflect observed conditions at the time of investigation. These conditions may change annually, seasonally or as a result of adjacent development.

Additional Investigation and Construction QA/QC

Columbia West should be consulted prior to construction to assess whether additional investigation above and beyond that presented in this report is necessary. Even slight variations in soil or site conditions may produce impacts to the performance of structural facilities if not adequately addressed. This underscores the importance of diligent QA/QC construction observation and testing to verify soil conditions do not differ materially or significantly from the interpreted conditions utilized for preparation of this report.

Therefore, this report contains several recommendations for field observation and testing by Columbia West personnel during construction activities. Actual subsurface conditions are more readily observed and discerned during the earthwork phase of construction when soils are exposed. Columbia West cannot accept responsibility for deviations from recommendations described in this

report or future performance of structural facilities if another consultant is retained during the construction phase or Columbia West is not engaged to provide construction observation to the full extent recommended.

Collected Samples

Uncontaminated samples of soil or rock collected in connection with this report will be retained for thirty days. Retention of such samples beyond thirty days will occur only at client's request and in return for payment of storage charges incurred. All contaminated or environmentally impacted materials or samples are the sole property of the client. Client maintains responsibility for proper disposal.

Report Contents

This geotechnical or environmental report should not be copied or duplicated unless in full, and even then only under prior written consent by Columbia West, as indicated in further detail in the following text section entitled *Report Ownership*. The recommendations, interpretations, and suggestions presented in this report are only understandable in context of reference to the whole report. Under no circumstances should the soil boring or test pit excavation logs, monitor well logs, or laboratory analytical reports be separated from the remainder of the report. The logs or reports should not be redrawn or summarized by other entities for inclusion in architectural or civil drawings, or other relevant applications.

Report Limitations for Contractors

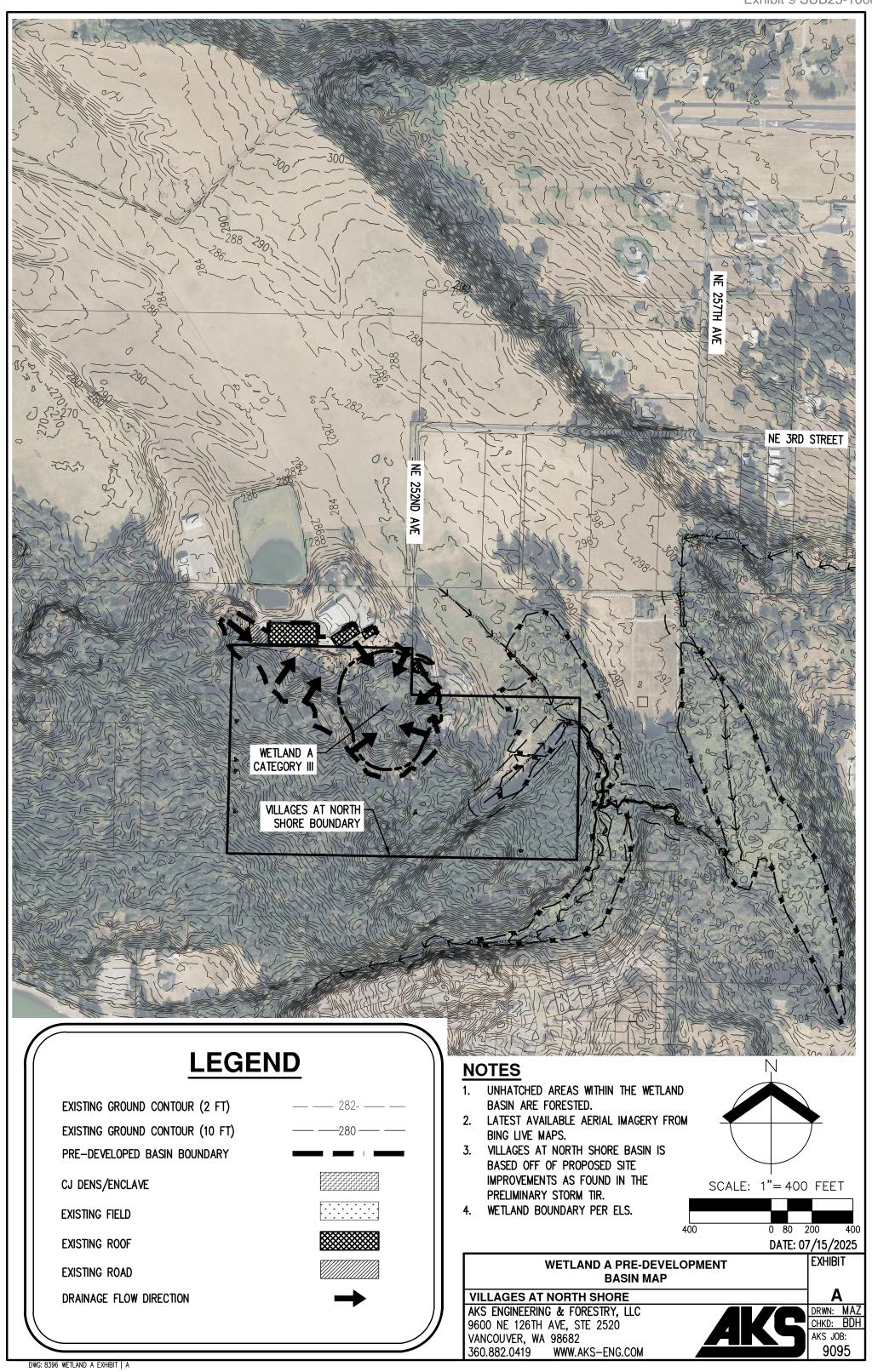
Geotechnical or environmental reports, unless otherwise specifically noted, are not prepared for the purpose of developing cost estimates or bids by contractors. The extent of exploration or investigation conducted as part of this report is usually less than that necessary for contractor's needs. Contractors should be advised of these report limitations, particularly as they relate to development of cost estimates. Contractors may gain valuable information from this report, but should rely upon their own interpretations as to how subsurface conditions may affect cost, feasibility, accessibility and other components of the project work. If believed necessary or relevant, contractors should conduct additional exploratory investigation to obtain satisfactory data for the purposes of developing adequate cost estimates. Clients or developers cannot insulate themselves from attendant liability by disclaiming accuracy for subsurface ground conditions without advising contractors appropriately and providing the best information possible to limit potential for cost overruns, construction problems, or misunderstandings.

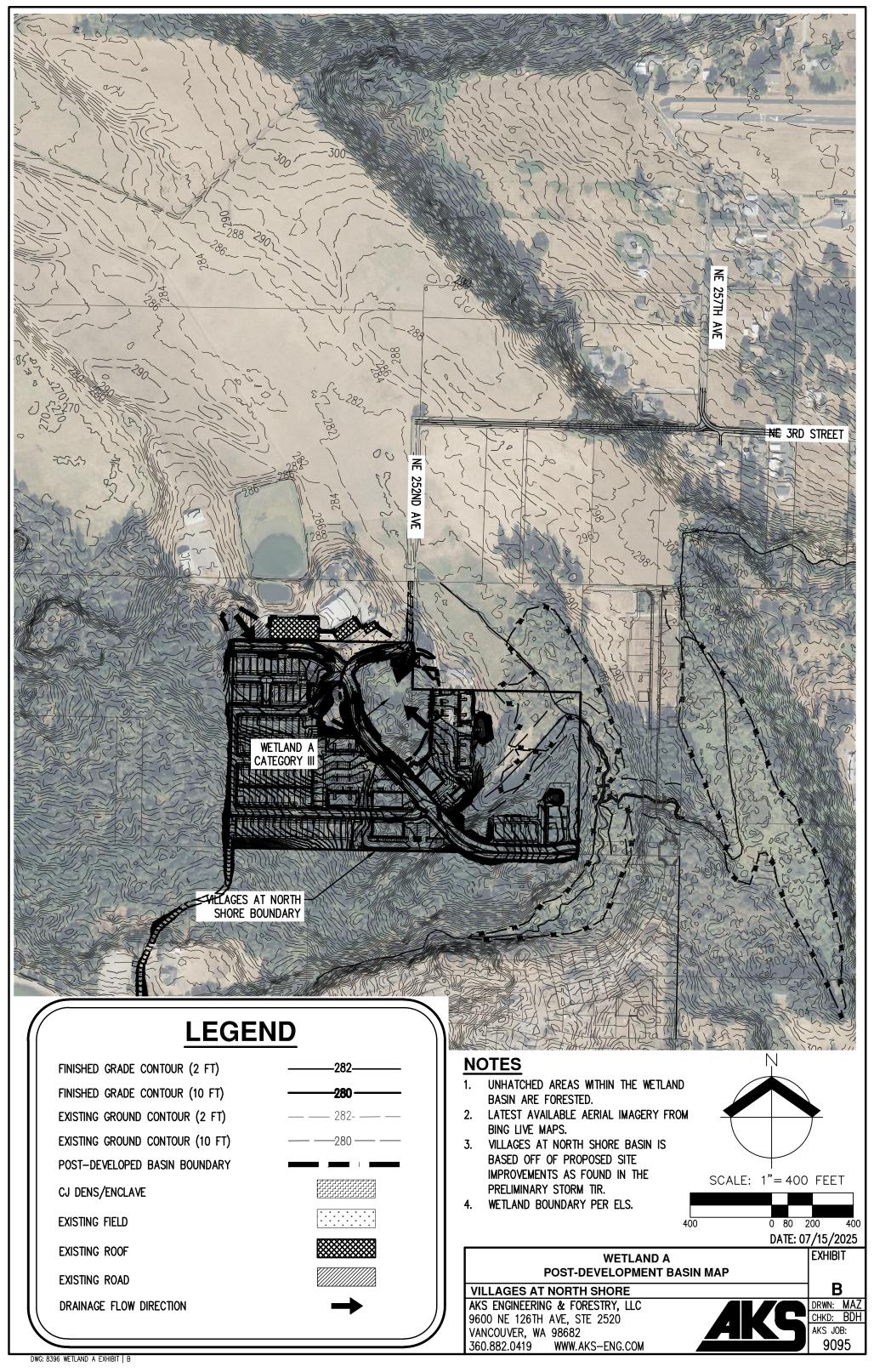
Report Ownership

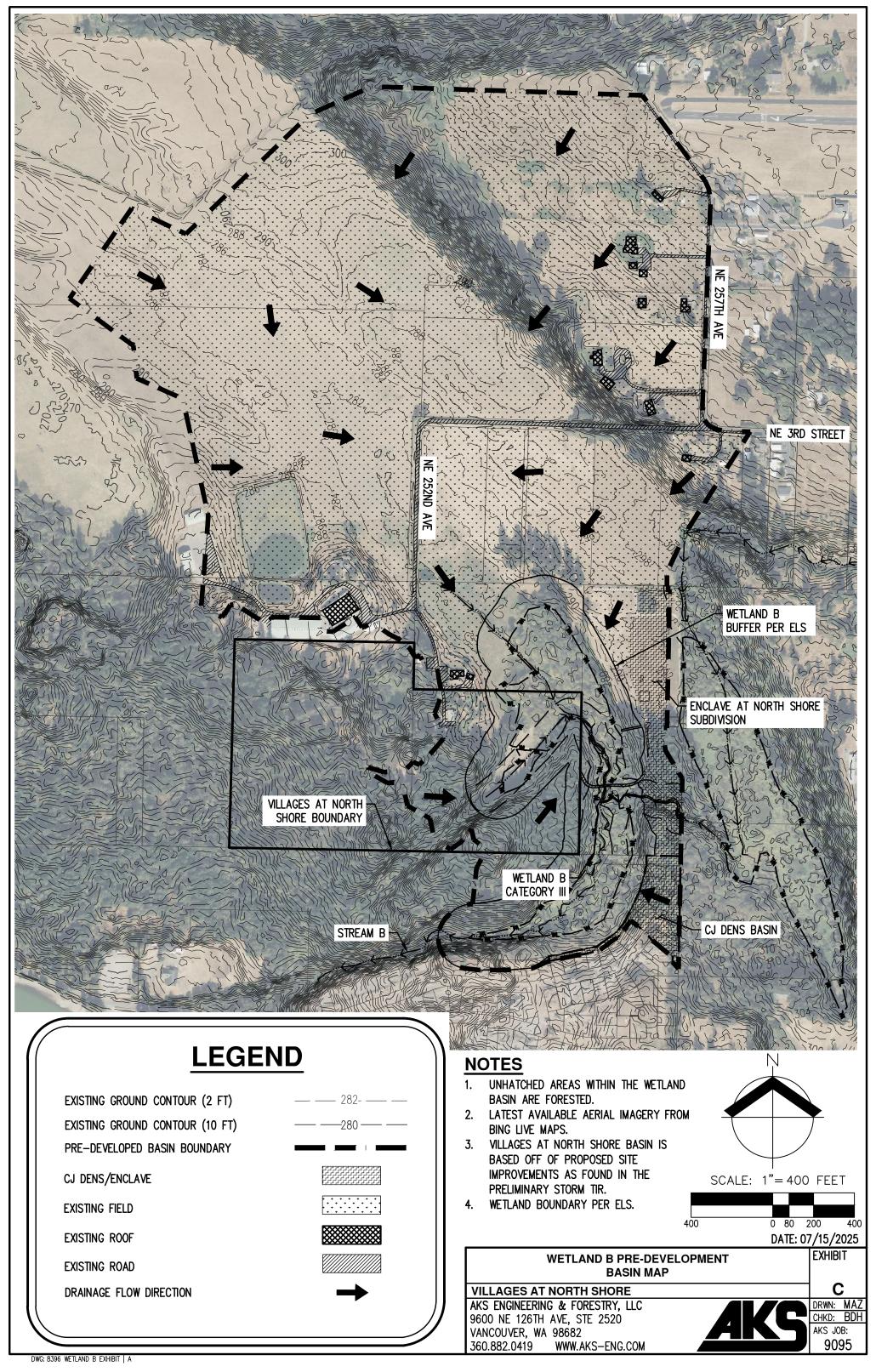
Columbia West retains the ownership and copyright property rights to this entire report and its contents, which may include, but may not be limited to, figures, text, logs, electronic media, drawings, laboratory reports, and appendices. This report was prepared solely for the client, and other relevant approved users or parties, and its distribution must be contingent upon prior express written consent by Columbia West. Furthermore, client or approved users may not use, lend, sell, copy, or distribute this document without express written consent by Columbia West. Client does not own nor have rights to electronic media files that constitute this report, and under no circumstances should said electronic files be distributed or copied. Electronic media is susceptible to unauthorized manipulation or modification, and may not be reliable.

Consultant Responsibility

Geotechnical and environmental engineering and consulting is much less exact than other scientific or engineering disciplines, and relies heavily upon experience, judgment, interpretation, and opinion often based upon media (soils) that are variable, anisotropic, and non-homogenous. This often results in unrealistic expectations, unwarranted claims, and uninformed disputes against a geotechnical or environmental consultant. To reduce potential for these problems and assist relevant parties in better understanding of risk, liability, and responsibility, geotechnical and environmental reports often provide definitive statements or clauses defining and outlining consultant responsibility. The client is encouraged to read these statements carefully and request additional information from Columbia West if necessary.






Appendix H: Wetland Protection

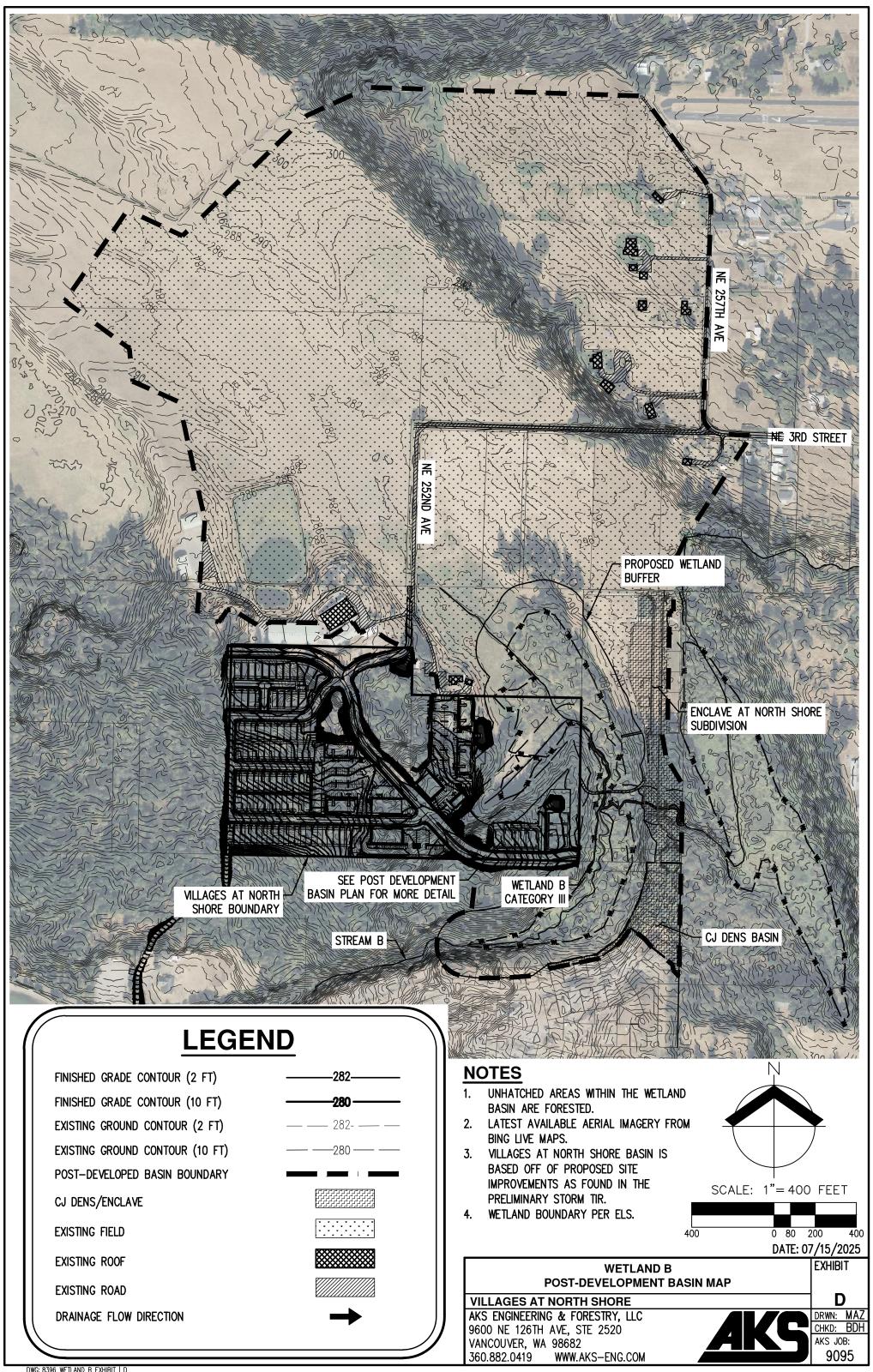

Start Here Category Category What category of wetland does the TDA III or IV l or ll discharge (directly or indirectly) to? Does the TDA trigger the requirement for Flow Does the TDA trigger the requirement for Flow Control BMPs per the TDA Thresholds outlined Control BMPs per the TDA Thresholds outlined in Minimum Requirement #7: Flow Control? in Minimum Requirement #7: Flow Control? Yes No Yes No Is the habitat score greater than 5? Is the wetland Yes No depressional or riverine impounding? AND Does the wetland provide habitat for rare, Does the project endangered, threatened, or sensitive species? No proponent have legal access to the wetland? Does the wetland contain a breeding population of any native amphibian? The following Wetland Protection Yes No Yes Levels apply to the TDA: **General Protection Protection from Pollutants** The following Wetland Protection The following Wetland Protection Levels apply to the TDA: Levels apply to the TDA: **General Protection General Protection Protection from Pollutants Protection from Pollutants Wetland Hydroperiod Protection Wetland Hydroperiod Protection** (Method 1) (Method 2) Flow Chart for Determining the Wetland Protection Levels Required DEPARTMENT OF ECOLOGY Revised May 2019 State of Washington

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements

General Model Information

WWHM2012 Project Name: 9095 Wetland A

Site Name: Site Address:

City:

 Report Date:
 7/11/2025

 Gage:
 Lacamas

 Data Start:
 1948/10/01

 Data End:
 2008/09/30

 Timestep:
 15 Minute

 Pracin Scale:
 1,200

Precip Scale: 1.300

Version Date: 2025/05/13

Version: 4.3.2

POC Thresholds

Low Flow Threshold for POC1: 50 Rercent of the 2 Year

High Flow Threshold for POC1: 50 Year

Low Flow Threshold for POC2: 50 Percent of the 2 Year

High Flow Threshold for POC2: 50 Year

Landuse Basin Data Predeveloped Land Use

Lateral I Basin 1

Bypass: No Impervious Land Use ROOF TOPS FLAT acre 0.844

Element Flow Componant:

Surface

Componant Flows To: Lateral Basin 1

Bypass: No acre ROADS FLAT 0.1 Element Flow Componant: Surface Componant Flows To: Lateral Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 2.203 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 3 Lateral Basin 3 Lateral Basin 3

Bypass: No

GroundWater: No

Pervious Land Use acre 2.813

SG4, Forest, Steep Element Flow Componants: Surface Interflow

Componant Flows To:

Lateral Basin 3 Lateral Basin 3 Lateral Basin 3

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Mod 3.963 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

POC 1

Bypass: Impervious Land Use ROADS FLAT Element Flow Componant: No acre 1.36

Surface Componant Flows To: Lateral Basin 4

Bypass: No
Impervious Land Use acre
ROOF TOPS FLAT 0.49
Element Flow Componant:
Surface
Componant Flows To:
Lateral Basin 4

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 29.61 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 5 Lateral Basin 5 Lateral Basin 5

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 19.19 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Bypass: No
Impervious Land Use acre
ROADS STEEP 0.24
Element Flow Componant:
Surface
Componant Flows To:
Lateral Basin 7

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 2.31 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 96.92 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Mod 17.503 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

POC 2 POC 2 POC 2

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep .93 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Mod 3.9 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

CJ Dens

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 0.522

Pervious Total 0.522

Impervious Land Use ROADS FLAT 0.38
ROOF TOPS FLAT 0.413
DRIVEWAYS FLAT 0.096
SIDEWALKS FLAT 0.083
PARKING FLAT 0.034
POND 0.057

Impervious Total 1.063

Basin Total 1.585

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

CJ Dens Trapezoidal Pond 1

Bypass: No

GroundWater: No

Pervious Land Use SG4, Lawn, Flat Element Flow Componants: acre 1.53

Surface Interflow

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 1.06 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Bypass: No

GroundWater: No

Pervious Land Use SG4, Field, Flat Element Flow Componants: acre 2.15

Surface Interflow

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Groundwater

Gravel

Bypass: No
Impervious Land Use acre
ROADS FLAT 0.09
Element Flow Componant:
Surface
Componant Flows To:
Lateral Basin 8

Basin 2

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 1.119

Pervious Total 1.119

Impervious Land Use acre **ROADS FLAT** 0.992 **ROOF TOPS FLAT** 0.372 DRIVEWAYS FLAT 0.197 SIDEWALKS FLAT 0.283

Impervious Total 1.844

Basin Total 2.963

Element Flow Componants:

Surface Interflow

Componant Flows To: SSD Table 1

SSD Table 1

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Lawn, Steep .21 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat .82 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 8 Lateral Basin 8 Lateral Basin 8

Mitigated Land Use

Lateral Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep .322

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 2 Lateral Basin 2 Lateral Basin 2

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Mod 2.31 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

POC 1 POC 1 POC 1

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Lawn, Flat 1.327 SG4, Field, Flat 1.203

Pervious Total 2.53

Impervious Land Use ROADS FLAT 0.178
ROADS MOD 2.616
ROOF TOPS FLAT 0.844
POND 0.182

Impervious Total 3.82

Basin Total 6.35

Element Flow Componants:

Surface Interflow

Componant Flows To: Trapezoidal Pond 1A

Groundwater

Bypass: Impervious Land Use ROADS FLAT Element Flow Componant: No acre 1.36

Surface Componant Flows To: Lateral Basin 3

Bypass: No
Impervious Land Use acre
ROOF TOPS FLAT 0.49
Element Flow Componant:
Surface
Componant Flows To:
Lateral Basin 3

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 29.61 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 4 Lateral Basin 4 Lateral Basin 4

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 19.19 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 5 Lateral Basin 5 Lateral Basin 5

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 96.92 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Bypass: No
Impervious Land Use acre
ROADS STEEP 0.24
Element Flow Componant:
Surface
Componant Flows To:
Lateral Basin 5

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Steep 2.31 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 5 Lateral Basin 5 Lateral Basin 5

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Forest, Mod 16.852 Element Flow Componants:

Element Flow Componants:
Surface Interflow Groundwater

Componant Flows To:

POC 2 POC 2 POC 2

CJ Dens

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 0.522

Pervious Total 0.522

Impervious Land Use ROADS FLAT 0.38
ROOF TOPS FLAT 0.413
DRIVEWAYS FLAT 0.096
SIDEWALKS FLAT 0.083
PARKING FLAT 0.034
POND 0.057

Impervious Total 1.063

Basin Total 1.585

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

CJ Dens Trapezoidal Pand Pens Trapezoidal Pond 2

Bypass: No

GroundWater: No

Pervious Land Use SG4, Lawn, Flat Element Flow Componants: acre 1.53

Surface Interflow

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat .94 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Bypass: Impervious Land Use ROADS FLAT Element Flow Componant: No acre 0.09

Surface
Componant Flows To:
Lateral Basin 7

Basin 3

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat 1.119

Pervious Total 1.119

Impervious Land Use acre **ROADS FLAT** 0.992 **ROOF TOPS FLAT** 0.372 DRIVEWAYS FLAT 0.197 SIDEWALKS FLAT 0.283

Impervious Total 1.844

Basin Total 2.963

Element Flow Componants:

Surface Interflow

Componant Flows To: SSD Table 1

SSD Table 1

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Lawn, Steep .21 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Flat .82 Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:

Lateral Basin 7 Lateral Basin 7 Lateral Basin 7

Basin 2A

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.728

Pervious Total 0.728

Impervious Land Use ROADS MOD acre 2.336

Impervious Total 2.336

Basin Total 3.064

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:
Trapezoidal Pond 2A Trapezoidal Pond 2A

Basin 2B

Bypass: No

GroundWater: No

Pervious Land Use acre SG4, Field, Mod 0.776

Pervious Total 0.776

Impervious Land Use ROADS MOD acre 2.932

Impervious Total 2.932

Basin Total 3.708

Element Flow Componants:

Surface Interflow Groundwater

Componant Flows To:
Trapezoidal Pond 2B Trapezoidal Pond 2B

Routing Elements Predeveloped Routing

CJ Dens Trapezoidal Pond 1

Bottom Length: 31.50 ft.
Bottom Width: 31.50 ft.
Depth: 5 ft.

Volume at riser head: 0.1821 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 4 ft.
Riser Diameter: 12 in.
Notch Type: Rectangular
Notch Width: 0.250 ft.
Notch Height: 2.000 ft.

Orifice 1 Diameter: 2.125 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 8

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfc)
0.0000	0.022	0.000	0.000	0.000
0.0556	0.023	0.001	0.028	0.000
0.1111	0.023	0.002	0.040	0.000
0.1667	0.024	0.003	0.050	0.000
0.2222	0.024	0.005	0.057	0.000
0.2778	0.025	0.006	0.064	0.000
0.3333	0.025	0.008	0.070	0.000
0.3889	0.026	0.009	0.076	0.000
0.4444	0.026	0.011	0.081	0.000
0.5000	0.027	0.012	0.086	0.000
0.5556	0.027	0.014	0.091	0.000
0.6111	0.028	0.015	0.095	0.000
0.6667	0.028	0.017	0.100	0.000
0.7222	0.029	0.018	0.104	0.000
0.7778 0.8333	0.030	0.020 0.022	0.108 0.111	0.000 0.000
0.8889	0.030 0.031	0.022	0.115	0.000
0.8669	0.031	0.025	0.119	0.000
1.0000	0.032	0.023	0.122	0.000
1.0556	0.032	0.027	0.125	0.000
1.1111	0.033	0.023	0.129	0.000
1.1667	0.034	0.032	0.132	0.000
1.2222	0.034	0.034	0.135	0.000
1.2778	0.035	0.036	0.138	0.000
1.3333	0.035	0.038	0.141	0.000
1.3889	0.036	0.040	0.144	0.000
1.4444	0.037	0.042	0.147	0.000
1.5000	0.037	0.044	0.150	0.000
1.5556	0.038	0.047	0.152	0.000

4.8333	0.084	0.242	5.631	0.000
4.0333	0.004	0.242	5.651	0.000
4.8889	0.085	0.247	5.727	0.000
4.9444	0.085	0.252	5.820	0.000
5.0000	0.086	0.256	5.910	0.000
5.0556	0.087	0.261	5.998	0.000

Discharge Structure Riser Height: 4 ft. 12 in.

Riser Diameter: Notch Type: Notch Width: Notch Height: Rectangular 0.250 ft. 2.000 ft.

Orifice 1 Diameter: 2.125 in. Elevation:0 ft.

Element Flow Outlets:

Outlet 2 Outlet 1

Outlets Flow To: Lateral Basin 8

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.022	0.000	0.000	0.000
0.0556	0.023	0.001	0.028	0.000
0.1111	0.023	0.002	0.040	0.000
0.1667 0.2222	0.024 0.024	0.003 0.005	0.050	0.000 0.000
0.2222	0.024	0.005	0.057 0.064	0.000
0.3333	0.025	0.008	0.064	0.000
0.3889	0.025	0.008	0.076	0.000
0.4444	0.026	0.009	0.076	0.000
0.5000	0.020	0.012	0.086	0.000
0.5556	0.027	0.012	0.000	0.000
0.6111	0.027	0.014	0.095	0.000
0.6667	0.028	0.013	0.100	0.000
0.7222	0.020	0.017	0.104	0.000
0.7778	0.023	0.020	0.104	0.000
0.8333	0.030	0.020	0.111	0.000
0.8889	0.031	0.022	0.115	0.000
0.9444	0.031	0.025	0.119	0.000
1.0000	0.032	0.027	0.122	0.000
1.0556	0.032	0.029	0.125	0.000
1.1111	0.033	0.031	0.129	0.000
1.1667	0.034	0.032	0.132	0.000
1.2222	0.034	0.034	0.135	0.000
1.2778	0.035	0.036	0.138	0.000
1.3333	0.035	0.038	0.141	0.000
1.3889	0.036	0.040	0.144	0.000
1.4444	0.037	0.042	0.147	0.000
1.5000	0.037	0.044	0.150	0.000
1.5556	0.038	0.047	0.152	0.000
1.6111	0.038	0.049	0.155	0.000
1.6667	0.039	0.051	0.158	0.000
1.7222	0.040	0.053	0.160	0.000
1.7778	0.040	0.055	0.163	0.000
1.8333	0.041	0.058	0.165	0.000
1.8889	0.042	0.060	0.168	0.000
1.9444	0.042	0.062	0.170	0.000

SSD Table 1

6 ft. Depth:

Discharge Structure: 1
Riser Height:
Riser Diameter:
Notch Type:
Notch Width: 5 ft. 18 in.

Rectangular 0.330 ft. Notch Height:
Orifice 1 Diameter: 1.250 ft.

2.000 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 8

SSD Table Hydraulic Table

Stage	Area	Volume	Outlet				
(feet)	(ac.)	(ac-ft.)	Struct	NotUsed	NotUsed	NotUsed	NotUsed
0.000	0.058	0.000	0.000	0.000	0.000	0.000	0.000
0.170	0.058	0.005	0.045	0.000	0.000	0.000	0.000
0.330	0.058	0.011	0.062	0.000	0.000	0.000	0.000
0.500	0.058	0.018	0.077	0.000	0.000	0.000	0.000
0.670	0.058	0.024	0.089	0.000	0.000	0.000	0.000
0.830	0.058	0.032	0.099	0.000	0.000	0.000	0.000
1.000	0.058	0.039 0.047	0.109	0.000	0.000	0.000	0.000
1.170	0.058 0.058	0.047	0.117 0.125	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
1.330 1.500	0.058	0.054	0.123	0.000	0.000	0.000	0.000
1.670	0.058	0.002	0.133	0.000	0.000	0.000	0.000
1.830	0.058	0.079	0.140	0.000	0.000	0.000	0.000
2.000	0.058	0.087	0.154	0.000	0.000	0.000	0.000
2.170	0.058	0.095	0.160	0.000	0.000	0.000	0.000
2.330	0.058	0.104	0.166	0.000	0.000	0.000	0.000
2.500	0.058	0.112	0.172	0.000	0.000	0.000	0.000
2.670	0.058	0.121	0.177	0.000	0.000	0.000	0.000
2.830	0.058	0.129	0.183	0.000	0.000	0.000	0.000
3.000	0.058	0.138	0.188	0.000	0.000	0.000	0.000
3.170	0.058	0.146	0.193	0.000	0.000	0.000	0.000
3.330	0.058	0.155	0.198	0.000	0.000	0.000	0.000
3.500	0.058	0.164	0.203	0.000	0.000	0.000	0.000
3.670	0.058	0.172	0.208	0.000	0.000	0.000	0.000
3.830	0.058	0.181	0.237	0.000	0.000	0.000	0.000
4.000	0.058	0.189	0.348	0.000	0.000	0.000	0.000
4.170	0.058	0.197	0.496	0.000	0.000	0.000	0.000
4.330	0.058	0.205	0.655	0.000	0.000	0.000	0.000
4.500 4.670	0.058 0.058	0.214 0.222	0.837 1.026	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
4.830	0.058	0.222	1.026	0.000	0.000	0.000	0.000
5.000	0.058	0.229	1.471	0.000	0.000	0.000	0.000
5.170	0.058	0.237	2.582	0.000	0.000	0.000	0.000
5.330	0.058	0.251	4.324	0.000	0.000	0.000	0.000
5.500	0.058	0.258	6.122	0.000	0.000	0.000	0.000
5.670	0.058	0.265	7.256	0.000	0.000	0.000	0.000
5.830	0.058	0.271	7.947	0.000	0.000	0.000	0.000
6.000	0.058	0.276	8.581	0.000	0.000	0.000	0.000

Discharge Structure: 1

Riser Height: 5 ft. 18 in.

Riser Diameter:
Notch Type:
Notch Width: Notch Height:
Orifice 1 Diameter:
Element Flow Outlets:
Outlet 1
Outlets Flow Rectangular 0.330 ft. 1.250 ft.

2.000 in. Elevation:0 ft.

Outlet 2

Lateral Basin 8

SSD Table Hydraulic Table

Stage	Area	Volume	Outlet				
(feet)	(ac.)	(ac-ft.)	Struct	NotUsed	NotUsed	NotUsed	NotUsed
Ò.00Ó	0.058	0.000	0.000	0.000	0.000	0.000	0.000
0.170	0.058	0.005	0.045	0.000	0.000	0.000	0.000
0.330	0.058	0.011	0.062	0.000	0.000	0.000	0.000
0.500	0.058	0.018	0.077	0.000	0.000	0.000	0.000
0.670	0.058	0.024	0.089	0.000	0.000	0.000	0.000
0.830	0.058	0.032	0.099	0.000	0.000	0.000	0.000
1.000	0.058	0.039	0.109	0.000	0.000	0.000	0.000
1.170	0.058	0.047	0.117	0.000	0.000	0.000	0.000
1.330	0.058	0.054	0.125	0.000	0.000	0.000	0.000
1.500	0.058	0.062	0.133	0.000	0.000	0.000	0.000
1.670	0.058	0.070	0.140	0.000	0.000	0.000	0.000
1.830	0.058	0.079	0.147	0.000	0.000	0.000	0.000
2.000	0.058	0.087	0.154	0.000	0.000	0.000	0.000
2.170	0.058	0.095	0.160	0.000	0.000	0.000	0.000
2.330	0.058	0.104	0.166	0.000	0.000	0.000	0.000
2.500	0.058	0.112	0.172	0.000	0.000	0.000	0.000
2.670	0.058	0.121	0.177	0.000	0.000	0.000	0.000
2.830	0.058	0.129	0.183	0.000	0.000	0.000	0.000
3.000	0.058	0.138	0.188	0.000	0.000	0.000	0.000
3.170	0.058	0.146	0.193	0.000	0.000	0.000	0.000
3.330	0.058	0.155	0.198	0.000	0.000	0.000	0.000
3.500	0.058	0.164	0.203	0.000	0.000	0.000	0.000
3.670	0.058	0.172	0.208	0.000	0.000	0.000	0.000
3.830	0.058	0.181	0.237	0.000	0.000	0.000	0.000
4.000	0.058	0.189	0.348	0.000	0.000	0.000	0.000
4.170	0.058	0.197	0.496	0.000	0.000	0.000	0.000
4.330	0.058	0.205	0.655	0.000	0.000	0.000	0.000
4.500	0.058	0.214	0.837	0.000	0.000	0.000	0.000
4.670	0.058	0.222	1.026	0.000	0.000	0.000	0.000
4.830	0.058	0.229	1.225	0.000	0.000	0.000	0.000
5.000	0.058	0.237	1.471	0.000	0.000	0.000	0.000
5.170	0.058	0.244	2.582	0.000	0.000	0.000	0.000
5.330	0.058	0.251	4.324	0.000	0.000	0.000	0.000
5.500	0.058	0.258	6.122	0.000	0.000	0.000	0.000
5.670	0.058	0.265	7.256	0.000	0.000	0.000	0.000
5.830	0.058	0.271	7.947	0.000	0.000	0.000	0.000
6.000	0.058	0.276	8.581	0.000	0.000	0.000	0.000

Mitigated Routing

Trapezoidal Pond 1A

Bottom Length: 40.00 ft. Bottom Width: 40.00 ft. Depth: 4 ft.

Volume at riser head: 0.1689 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 3 ft. Riser Diameter: 18 in.

Notch Type: Rectangular Notch Width: 0.500 ft. Notch Height: 1.200 ft.

Orifice 1 Diameter: 4.000 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Flow Splitter 1

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.036	0.000	0.000	0.000
0.0444	0.037	0.001	0.091	0.000
0.0889	0.037	0.003	0.129	0.000
0.1333	0.038	0.005	0.158	0.000
0.1778	0.038	0.006	0.183	0.000
0.2222	0.039	0.008	0.204	0.000
0.2667	0.039	0.010	0.224	0.000
0.3111	0.040	0.012	0.242	0.000
0.3556	0.040	0.013	0.258	0.000
0.4000	0.041	0.015	0.274	0.000
0.4444	0.041	0.017	0.289	0.000
0.4889	0.042	0.019	0.303	0.000
0.5333	0.042	0.021	0.317	0.000
0.5778	0.043	0.023	0.330	0.000
0.6222	0.043	0.025	0.342	0.000
0.6667	0.044	0.027	0.354	0.000
0.7111	0.045	0.029	0.366	0.000
0.7556	0.045	0.031	0.377	0.000
0.8000	0.046	0.033	0.388	0.000
0.8444	0.046	0.035	0.399	0.000
0.8889	0.047	0.037	0.409	0.000
0.9333	0.047	0.039	0.419	0.000
0.9778	0.048	0.041	0.429	0.000
1.0222	0.048	0.043	0.439	0.000
1.0667	0.049	0.045	0.448	0.000
1.1111	0.050	0.048	0.457	0.000
1.1556	0.050	0.050	0.466	0.000
1.2000	0.051	0.052	0.475	0.000
1.2444	0.051	0.054	0.484	0.000
1.2889	0.052	0.057	0.492	0.000
1.3333	0.052	0.059	0.501	0.000

3.9556	0.093	0.248	9.541	0.000
4.0000	0.094	0.252	9.706	0.000
4.0444	0.094	0.256	9.866	0.000

Flow Splitter 1

Bottom Length: 10.00 ft.
Bottom Length: 10.00 ft.
Depth: 10 ft.
Side slope 1: 0 To 1
Side slope 2: 0 To 1
Side slope 3: 0 To 1
Side slope 4: 0 To 1
Control Structure Splitter Hydraulic Table

Stage(feet) 0.000 0.111 0.222 0.333 0.444 0.555 0.666 0.777 0.888 1.000 1.111 1.222 1.333 1.444 1.555 1.666 1.777 1.888 2.000 2.111 2.222 2.333 2.444 2.555 2.666 2.777 2.888 3.000 3.111 3.222 3.333 3.444 3.555 3.666 3.777 3.888 4.000 4.111 4.222 4.333 4.444 4.555 4.666	Area(ac.) 0.002	Volume(ac-ft.) 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010	0.000 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014	Secondary(cfs) 0.000 0.144 0.204 0.250 0.289 0.323 0.354 0.382 0.409 0.434 0.457 0.480 0.501 0.521 0.541 0.560 0.578 0.640 0.757 0.901 1.065 1.242 1.429 1.622 1.819 2.018 2.251 2.503 3.104 4.167 5.426 6.660 7.667 8.336 8.844 9.288 9.706 10.10 10.47 10.83 11.18 11.51 11.83
4.333	0.002	0.009	0.014	10.83
4.444	0.002	0.010	0.014	11.18

5 000	0.000	0.040	0.045	40.00
5.222	0.002	0.012	0.015	13.30
5.333	0.002	0.012	0.015	13.57
5.444	0.002	0.012	0.015	13.84
5.555	0.002	0.012	0.016	14.10
5.666	0.002	0.013	0.016	14.35
5.777	0.002	0.013	0.016	14.60
5.888	0.002	0.013	0.016	14.85
6.000	0.002	0.013	0.016	15.08
6.111	0.002	0.014	0.016	15.32
6.222	0.002	0.014	0.016	15.55
6.333	0.002	0.014	0.017	15.78
6.444	0.002	0.014	0.017	16.00
6.555	0.002	0.015	0.017	16.22
6.666	0.002	0.015	0.017	16.44
6.777	0.002	0.015	0.017	16.65
6.888	0.002	0.015	0.017	16.86
7.000	0.002	0.016	0.017	17.07
7.111	0.002	0.016	0.018	17.27
7.222	0.002	0.016	0.018	17.48
7.333	0.002	0.016	0.018	17.67
7.444	0.002	0.017	0.018	17.87
7.555	0.002	0.017	0.018	18.07
7.666	0.002	0.017	0.018	18.26
7.777	0.002	0.017	0.018	18.45
7.888	0.002	0.018	0.019	18.64
8.000	0.002	0.018	0.019	18.82
8.111	0.002	0.018	0.019	19.00
8.222 8.333	0.002	0.018 0.019	0.019	19.19 19.37
8.444	0.002 0.002	0.019	0.019 0.019	19.57
8.555	0.002	0.019	0.019	19.54
8.666	0.002	0.019	0.019	19.72
8.777	0.002	0.020	0.020	20.07
8.888	0.002	0.020	0.020	20.07
9.000	0.002	0.020	0.020	20.41
9.111	0.002	0.020	0.205	20.58
9.222	0.002	0.021	0.389	20.74
9.333	0.002	0.021	0.475	20.91
9.444	0.002	0.021	0.545	21.07
9.555	0.002	0.021	0.607	21.23
9.666	0.002	0.022	0.664	21.39
9.777	0.002	0.022	0.715	21.55
9.888	0.002	0.022	0.763	21.71
10.00	0.002	0.023	0.808	21.87
10.11	0.002	0.023	0.851	22.02

Discharge Structure Riser Height: Riser Diameter: 9 ft. 6 in.

Orifice 1 Diameter: 0.500 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To:

Lateral Basin 2 Lateral Basin 7

CJ Dens Trapezoidal Pond 2

Bottom Length: 31.50 ft.
Bottom Width: 31.50 ft.
Depth: 5 ft.

Volume at riser head: 0.1821 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 4 ft.
Riser Diameter: 12 in.
Notch Type: Rectangular
Notch Width: 0.250 ft.
Notch Height: 2.000 ft.

Orifice 1 Diameter: 2.125 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 7

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.022	0.000	0.000	0.000
0.0556	0.023	0.001	0.028	0.000
0.1111	0.023	0.002	0.040	0.000
0.1667	0.024	0.003	0.050	0.000
0.2222	0.024	0.005	0.057	0.000
0.2778	0.025	0.006	0.064	0.000
0.3333	0.025	0.008	0.070	0.000
0.3889	0.026	0.009	0.076	0.000
0.4444	0.026	0.011	0.081	0.000
0.5000	0.027	0.012	0.086	0.000
0.5556	0.027	0.014	0.091	0.000
0.6111	0.028	0.015	0.095	0.000
0.6667	0.028	0.017	0.100	0.000
0.7222	0.029	0.018	0.104	0.000
0.7778	0.030	0.020	0.108	0.000
0.8333	0.030	0.022	0.111	0.000
0.8889	0.031	0.023	0.115	0.000
0.9444	0.031	0.025	0.119	0.000
1.0000	0.032	0.027	0.122	0.000
1.0556	0.032	0.029	0.125	0.000
1.1111	0.033	0.031	0.129	0.000
1.1667	0.034	0.032	0.132	0.000
1.2222	0.034	0.034	0.135	0.000
1.2778	0.035	0.036	0.138	0.000
1.3333	0.035	0.038	0.141	0.000
1.3889	0.036	0.040	0.144	0.000
1.4444	0.037	0.042	0.147	0.000
1.5000	0.037	0.044	0.150	0.000
1.5556	0.038	0.047	0.152	0.000
1.6111	0.038	0.049	0.155	0.000
1.6667	0.039	0.051	0.158	0.000
1.7222	0.040	0.053	0.160	0.000
1.7778	0.040	0.055	0.163	0.000

1.8333 1.8889 1.9444 2.0000 2.0556 2.1111 2.1667 2.2222 2.2778 2.3333 2.3889 2.4444 2.5000 2.5556 2.6111 2.6667 2.7222 2.7778 2.8333 2.8889 2.9444 3.0000 3.0556 3.1111 3.1667 3.2222 3.2778 3.3333 3.3889 3.4444 3.5000 3.5556 3.6111 3.6667 3.7222 3.7778 3.8333 3.8889 3.8889	0.041 0.042 0.043 0.044 0.044 0.045 0.046 0.046 0.047 0.048 0.049 0.050 0.051 0.052 0.053 0.054 0.055 0.054 0.055 0.057 0.055 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.065 0.066 0.067 0.068 0.069	0.058 0.060 0.062 0.065 0.067 0.070 0.072 0.075 0.077 0.080 0.082 0.085 0.088 0.091 0.094 0.096 0.099 0.102 0.105 0.108 0.111 0.114 0.118 0.121 0.124 0.127 0.131 0.134 0.137 0.141 0.144 0.155 0.155 0.155 0.155 0.155 0.159 0.166 0.170	0.165 0.168 0.170 0.173 0.186 0.208 0.235 0.266 0.300 0.336 0.375 0.416 0.458 0.502 0.547 0.592 0.639 0.686 0.734 0.781 0.830 0.936 0.936 0.996 1.057 1.119 1.183 1.249 1.315 1.753 1.844 1.937 2.031 2.126 2.223 2.322 2.422 2.524	0.000 0.000
3.7222	0.066	0.159	2.223	0.000
3.7778	0.067	0.162	2.322	0.000
3.8333	0.068	0.166	2.422	0.000

5.0556 0.087 0.261 5.998 0.000

SSD Table 1

6 ft.

Depth:
Discharge Structure: 1
Riser Height:
Riser Diameter:
Notch Type:
Notch Width:
Notch Height:
Orifice 1 Diameter:
Element Outlets: 5 ft. 18 in. Rectangular 0.330 ft.

1.250 ft.

2.000 in. Elevation:0 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 7

SSD Table Hydraulic Table

Stage	Area	Volume	Outlet				
(feet)	(ac.)	(ac-ft.)	Struct	NotUsed	NotUsed	NotUsed	NotUsed
0.000	0.058	0.000 0.005	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000
0.170 0.330	0.058 0.058	0.003	0.045 0.062	0.000	0.000	0.000	0.000 0.000
0.500	0.058	0.011	0.002	0.000	0.000	0.000	0.000
0.670	0.058	0.024	0.077	0.000	0.000	0.000	0.000
0.830	0.058	0.032	0.099	0.000	0.000	0.000	0.000
1.000	0.058	0.039	0.109	0.000	0.000	0.000	0.000
1.170	0.058	0.047	0.117	0.000	0.000	0.000	0.000
1.330	0.058	0.054	0.125	0.000	0.000	0.000	0.000
1.500	0.058	0.062	0.133	0.000	0.000	0.000	0.000
1.670	0.058	0.070	0.140	0.000	0.000	0.000	0.000
1.830	0.058	0.079	0.147	0.000	0.000	0.000	0.000
2.000	0.058	0.087	0.154	0.000	0.000	0.000	0.000
2.170	0.058	0.095	0.160	0.000	0.000	0.000	0.000
2.330	0.058	0.104	0.166	0.000	0.000	0.000	0.000
2.500	0.058	0.112	0.172	0.000	0.000	0.000	0.000
2.670	0.058	0.121	0.177	0.000	0.000	0.000	0.000
2.830	0.058	0.129	0.183	0.000	0.000	0.000	0.000
3.000 3.170	0.058 0.058	0.138 0.146	0.188 0.193	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
3.170	0.058	0.146	0.193	0.000	0.000	0.000	0.000
3.500	0.058	0.164	0.190	0.000	0.000	0.000	0.000
3.670	0.058	0.172	0.208	0.000	0.000	0.000	0.000
3.830	0.058	0.181	0.237	0.000	0.000	0.000	0.000
4.000	0.058	0.189	0.348	0.000	0.000	0.000	0.000
4.170	0.058	0.197	0.496	0.000	0.000	0.000	0.000
4.330	0.058	0.205	0.655	0.000	0.000	0.000	0.000
4.500	0.058	0.214	0.837	0.000	0.000	0.000	0.000
4.670	0.058	0.222	1.026	0.000	0.000	0.000	0.000
4.830	0.058	0.229	1.225	0.000	0.000	0.000	0.000
5.000	0.058	0.237	1.471	0.000	0.000	0.000	0.000
5.170	0.058	0.244	2.582	0.000	0.000	0.000	0.000
5.330	0.058	0.251	4.324	0.000	0.000	0.000	0.000
5.500	0.058	0.258	6.122	0.000	0.000	0.000	0.000
5.670	0.058	0.265	7.256	0.000	0.000	0.000	0.000
5.830	0.058	0.271 0.276	7.947	0.000	0.000 0.000	0.000 0.000	0.000 0.000
6.000	0.058	0.270	8.581	0.000	0.000	0.000	0.000

Trapezoidal Pond 2A

Bottom Length: 40.00 ft. Bottom Width: 40.00 ft. Depth: 4 ft.

Volume at riser head: 0.1689 acre-feet.

 Side slope 1:
 3 To 1

 Side slope 2:
 3 To 1

 Side slope 3:
 3 To 1

 Side slope 4:
 3 To 1

Discharge Structure

Riser Height: 3 ft.
Riser Diameter: 18 in.
Notch Type: Rectangular
Notch Width: 0.330 ft.
Notch Height: 1.333 ft.

Orifice 1 Diameter: 4.000 in. Elevation:-0.33 ft.

Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 7

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.036	0.000	0.249	0.000
0.0444	0.037	0.001	0.265	0.000
0.0889	0.037	0.003	0.281	0.000
0.1333	0.038	0.005	0.295	0.000
0.1778	0.038	0.006	0.309	0.000
0.2222	0.039	0.008	0.322	0.000
0.2667	0.039	0.010	0.335	0.000
0.3111	0.040	0.012	0.347	0.000
0.3556	0.040	0.013	0.359	0.000
0.4000	0.041	0.015	0.371	0.000
0.4444	0.041	0.017	0.382	0.000
0.4889	0.042	0.019	0.392	0.000
0.5333	0.042	0.021	0.403	0.000
0.5778	0.043	0.023	0.413	0.000
0.6222	0.043	0.025	0.423	0.000
0.6667	0.044	0.027	0.433	0.000
0.7111	0.045	0.029	0.443	0.000
0.7556	0.045	0.031	0.452	0.000
0.8000	0.046	0.033	0.461	0.000
0.8444	0.046	0.035	0.470	0.000
0.8889	0.047	0.037	0.479	0.000
0.9333	0.047	0.039	0.488	0.000
0.9778	0.048	0.041	0.496	0.000
1.0222	0.048	0.043	0.504	0.000
1.0667	0.049	0.045	0.513	0.000
1.1111	0.050	0.048	0.521	0.000
1.1556	0.050	0.050	0.529	0.000
1.2000	0.051	0.052	0.537	0.000
1.2444	0.051	0.054	0.544	0.000
1.2889	0.052	0.057	0.552	0.000
1.3333	0.052	0.059	0.560	0.000
1.3778	0.053	0.061	0.567	0.000
1.4222	0.054	0.064	0.574	0.000

1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7338 3.7778	0.054 0.055 0.055 0.056 0.057 0.057 0.058 0.058 0.059 0.060 0.061 0.062 0.062 0.063 0.064 0.065 0.066 0.066 0.067 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.072 0.072 0.073 0.074 0.075 0.076 0.076 0.076 0.079 0.079 0.079 0.079 0.081 0.081 0.082 0.083 0.084 0.085 0.084 0.085 0.084 0.085 0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.089 0.090	0.066 0.069 0.071 0.074 0.076 0.079 0.081 0.084 0.086 0.089 0.092 0.095 0.097 0.100 0.103 0.106 0.109 0.111 0.114 0.117 0.120 0.123 0.126 0.129 0.132 0.136 0.139 0.142 0.145 0.148 0.152 0.155 0.158 0.162 0.165 0.168 0.172 0.175 0.179 0.183 0.162 0.175 0.179 0.183 0.190 0.193 0.197 0.201 0.205 0.208 0.212 0.216 0.208 0.212 0.216 0.220 0.224 0.228 0.232	0.582 0.589 0.596 0.603 0.610 0.620 0.642 0.669 0.701 0.737 0.859 0.904 0.950 0.998 1.047 1.252 1.305 1.412 1.466 1.521 1.575 1.629 1.694 1.760 1.827 1.896 2.108 2.2426 2.745 3.133 3.572 4.050 4.553 5.065 5.574 6.065 6.524 6.940 7.867 8.071 8.241 8.482	0.000 0.000
3.6444	0.087	0.220	7.867	0.000
3.6889	0.088	0.224	8.071	0.000
3.7333	0.089	0.228	8.241	0.000

4.0444 0.094 0.256 9.502 0.000

Trapezoidal Pond 2B

Bottom Length: 600.00 ft. Bottom Width: 60.00 ft. Depth: 4 ft.

Volume at riser head: 2.9205 acre-feet.

Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1

Discharge Structure

Riser Height: 3 ft. Riser Diameter: 18 in. Notch Type: Notch Width: Rectangular 0.330 ft. Notch Height: 1.333 ft.

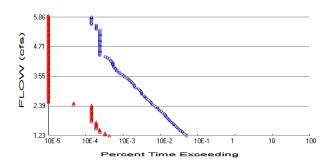
Orifice 1 Diameter: 4.000 in. Elevation:-0.333333333333333 ft.

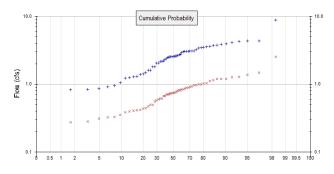
Element Outlets:

Outlet 1 Outlet 2

Outlet Flows To: Lateral Basin 7

Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.826 ′	0.000	0.250	0.000
0.0444	0.830	0.036	0.266	0.000
0.0889	0.834	0.073	0.282	0.000
0.1333	0.838	0.111	0.296	0.000
0.1778	0.842	0.148	0.310	0.000
0.2222	0.846	0.185	0.323	0.000
0.2667	0.850	0.223	0.336	0.000
0.3111	0.854	0.261	0.348	0.000
0.3556	0.858	0.299	0.360	0.000
0.4000	0.862	0.337	0.371	0.000
0.4444	0.867	0.376	0.382	0.000
0.4889	0.871	0.414	0.393	0.000
0.5333	0.875	0.453	0.404	0.000
0.5778	0.879	0.492	0.414	0.000
0.6222	0.883	0.531	0.424	0.000
0.6667	0.887	0.571	0.434	0.000
0.7111	0.891	0.610	0.443	0.000
0.7556	0.895	0.650	0.453	0.000
0.8000	0.899	0.690	0.462	0.000
0.8444	0.903	0.730	0.471	0.000
0.8889	0.907	0.770	0.480	0.000
0.9333	0.912	0.811	0.488	0.000
0.9778	0.916	0.851	0.497	0.000
1.0222	0.920	0.892	0.505	0.000
1.0667	0.924	0.933	0.513	0.000
1.1111	0.928	0.974	0.521	0.000
1.1556	0.932	1.016	0.529	0.000
1.2000	0.936	1.057	0.537	0.000
1.2444	0.940	1.099	0.545	0.000
1.2889	0.945	1.141	0.553	0.000
1.3333	0.949	1.183	0.560	0.000
1.3778	0.953	1.225	0.568	0.000
1.4222	0.957	1.268	0.575	0.000


1.5556 0.969 1.396 0.596 0.000 1.6000 0.974 1.439 0.603 0.000 1.6444 0.978 1.483 0.610 0.000 1.6889 0.982 1.526 0.621 0.000 1.7778 0.990 1.614 0.670 0.000 1.8222 0.994 1.658 0.702 0.000 1.8667 0.999 1.702 0.738 0.000 1.9111 1.003 1.747 0.776 0.000 1.9556 1.007 1.792 0.817 0.000 2.0000 1.011 1.836 0.860 0.000 2.0444 1.015 1.882 0.905 0.000 2.1778 1.028 2.018 1.048 0.000 2.1778 1.028 2.018 1.048 0.000 2.17778 1.028 2.018 1.049 0.000 2.1778 1.028 2.018 1.049 0.000 2.1778 1.028 2.018 1.049 0.000 2.2222
1.6889 0.982 1.526 0.621 0.000 1.7778 0.990 1.614 0.670 0.000 1.8222 0.994 1.658 0.702 0.000 1.8667 0.999 1.702 0.738 0.000 1.9111 1.003 1.747 0.776 0.000 1.9111 1.003 1.747 0.766 0.000 2.0000 1.011 1.836 0.860 0.000 2.0444 1.015 1.882 0.905 0.000 2.0889 1.020 1.927 0.951 0.000 2.1778 1.028 2.018 1.048 0.000 2.1778 1.028 2.018 1.048 0.000 2.2222 1.032 2.064 1.098 0.000 2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.4444 1.053 2.295 1.359 0.000 <t< td=""></t<>
1.7778 0.990 1.614 0.670 0.000 1.8622 0.994 1.658 0.702 0.000 1.9111 1.003 1.747 0.776 0.000 1.9556 1.007 1.792 0.817 0.000 2.00000 1.011 1.836 0.860 0.000 2.04844 1.015 1.882 0.905 0.000 2.1333 1.024 1.972 0.991 0.000 2.1778 1.028 2.018 1.048 0.000 2.22222 1.032 2.064 1.098 0.000 2.2667 1.036 2.110 1.149 0.000 2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.44000 1.049 2.249 1.306 0.000 2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6667
1.8667 0.999 1.702 0.738 0.000 1.9111 1.003 1.747 0.776 0.000 1.9556 1.007 1.792 0.817 0.000 2.0000 1.011 1.836 0.860 0.000 2.0444 1.015 1.882 0.905 0.000 2.0889 1.020 1.927 0.951 0.000 2.1778 1.028 2.018 1.048 0.000 2.1778 1.028 2.018 1.048 0.000 2.2667 1.036 2.110 1.149 0.000 2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.4489 1.057 2.342 1.413 0.000 2.4889 1.057 2.342 1.413 0.000 2.5778 1.066 2.437 1.522 0.000 2.7578 1.066 2.437 1.576 0.000 <t< td=""></t<>
1.9556 1.007 1.792 0.817 0.000 2.00444 1.015 1.882 0.905 0.000 2.0889 1.020 1.927 0.951 0.000 2.1333 1.024 1.972 0.999 0.000 2.1778 1.028 2.018 1.048 0.000 2.2222 1.032 2.064 1.098 0.000 2.3111 1.041 2.156 1.201 0.000 2.3111 1.041 2.156 1.201 0.000 2.4000 1.049 2.249 1.306 0.000 2.4889 1.057 2.342 1.413 0.000 2.4889 1.057 2.342 1.413 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.75778 1.066 2.437 1.522 0.000 2.75756 1.083 2.628 1.761 0.000
2.0444 1.015 1.882 0.905 0.000 2.0889 1.020 1.927 0.951 0.000 2.1333 1.024 1.972 0.999 0.000 2.1778 1.028 2.018 1.048 0.000 2.2222 1.032 2.064 1.098 0.000 2.2667 1.036 2.110 1.149 0.000 2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.44000 1.049 2.249 1.306 0.000 2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.66222 1.070 2.484 1.576 0.000 2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8889 1.096 2.773 1.966 0.000 2.9333
2.1333 1.024 1.972 0.999 0.000 2.1778 1.028 2.018 1.048 0.000 2.2222 1.032 2.064 1.098 0.000 2.2667 1.036 2.110 1.149 0.000 2.3111 1.041 2.156 1.201 0.000 2.4000 1.045 2.202 1.253 0.000 2.4400 1.049 2.249 1.306 0.000 2.44889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8889 1.096 2.773 1.966 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667
2.2222 1.032 2.064 1.098 0.000 2.2667 1.036 2.110 1.149 0.000 2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.4000 1.049 2.249 1.306 0.000 2.4444 1.053 2.295 1.359 0.000 2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.6667 1.074 2.532 1.630 0.000 2.7556 1.083 2.628 1.761 0.000 2.8800 1.087 2.628 1.761 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.1111
2.3111 1.041 2.156 1.201 0.000 2.3556 1.045 2.202 1.253 0.000 2.4000 1.049 2.249 1.306 0.000 2.4444 1.053 2.295 1.359 0.000 2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.6667 1.074 2.532 1.630 0.000 2.7556 1.083 2.628 1.761 0.000 2.8000 1.087 2.676 1.828 0.000 2.8444 1.091 2.724 1.897 0.000 2.9333 1.100 2.822 2.037 0.000 2.9978 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.1556 1.21 3.069 3.134 0.000 3.2000
2.4000 1.049 2.249 1.306 0.000 2.4444 1.053 2.295 1.359 0.000 2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.6667 1.074 2.532 1.630 0.000 2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8000 1.087 2.628 1.761 0.000 2.8444 1.091 2.724 1.897 0.000 2.8889 1.096 2.773 1.966 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0667 1.113 2.969 2.427 0.000 3.1556 1.121 3.069 3.134 0.000 3.2889
2.4889 1.057 2.342 1.413 0.000 2.5333 1.062 2.389 1.467 0.000 2.5778 1.066 2.437 1.522 0.000 2.6222 1.070 2.484 1.576 0.000 2.6667 1.074 2.532 1.630 0.000 2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8000 1.087 2.676 1.828 0.000 2.8444 1.091 2.724 1.897 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.1111 1.117 3.019 2.746 0.000 3.1556 1.121 3.069 3.134 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333
2.6222 1.070 2.484 1.576 0.000 2.6667 1.074 2.532 1.630 0.000 2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8000 1.087 2.676 1.828 0.000 2.8444 1.091 2.724 1.897 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667 1.113 2.969 2.427 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2844 1.130 3.169 4.051 0.000 3.3333 1.134 3.219 4.554 0.000 3.3778 1.142 3.320 5.575 0.000
2.7111 1.079 2.580 1.695 0.000 2.7556 1.083 2.628 1.761 0.000 2.8000 1.087 2.676 1.828 0.000 2.8444 1.091 2.724 1.897 0.000 2.8889 1.096 2.773 1.966 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667 1.113 2.969 2.427 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
2.8000 1.087 2.676 1.828 0.000 2.8444 1.091 2.724 1.897 0.000 2.8889 1.096 2.773 1.966 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667 1.113 2.969 2.427 0.000 3.1111 1.117 3.019 2.746 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
2.8889 1.096 2.773 1.966 0.000 2.9333 1.100 2.822 2.037 0.000 2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667 1.113 2.969 2.427 0.000 3.1111 1.117 3.019 2.746 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
2.9778 1.104 2.871 2.109 0.000 3.0222 1.108 2.920 2.201 0.000 3.0667 1.113 2.969 2.427 0.000 3.1111 1.117 3.019 2.746 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
3.0667 1.113 2.969 2.427 0.000 3.1111 1.117 3.019 2.746 0.000 3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
3.1556 1.121 3.069 3.134 0.000 3.2000 1.125 3.119 3.573 0.000 3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
3.2444 1.130 3.169 4.051 0.000 3.2889 1.134 3.219 4.554 0.000 3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
3.3333 1.138 3.270 5.066 0.000 3.3778 1.142 3.320 5.575 0.000
3.4222 1.147 3.371 6.066 0.000
3.4667 1.151 3.422 6.525 0.000 3.5111 1.155 3.474 6.941 0.000
3.5556 1.160 3.525 7.306 0.000 3.6000 1.164 3.577 7.615 0.000 3.6444 1.168 3.629 7.868 0.000
3.6889 1.173 3.681 8.072 0.000 3.7333 1.177 3.733 8.242 0.000
3.7778 1.181 3.785 8.483 0.000 3.8222 1.186 3.838 8.664 0.000
3.8667 1.190 3.891 8.840 0.000 3.9111 1.194 3.944 9.011 0.000
3.9556 1.199 3.997 9.179 0.000 4.0000 1.203 4.050 9.343 0.000

4.0444 1.207 4.104 9.503 0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 8.979 Total Impervious Area: 0.944

Mitigated Landuse Totals for POC #1
Total Pervious Area: 5.162
Total Impervious Area: 3.82

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 2,460675

 5 year
 3,857876

 10 year
 4.621008

 25 year
 5,399987

 50 year
 5,863931

 100 year
 6,245905

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.739848

 5 year
 1.123217

 10 year
 1.32814

 25 year
 1.534826

 50 year
 1.656892

 100 year
 1.756871

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	1.796	0.559
1950	2.376	0.725
1951	3.209	0.972
1952	2.330	0.577
1953	2.645	0.800
1954	3.589	1.189
1955	2.034	0.612
1956	3.751	1.117
1957	3.061	1.000
1958	3.099	0.704

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	1.278 1.308 3.401 2.778 3.037 2.457 2.520 2.992 2.717 3.076 2.566 8.867 1.616 2.179 2.530 3.558 2.046 2.938 0.080 4.119 3.478 1.614 3.740 2.545 4.308 1.392 0.958 1.223 2.199 0.827 0.910 1.048 2.613 3.065 3.510 2.514 2.178 4.339 4.353 3.893 2.600 1.241 0.838 3.953 3.071 0.858 1.407 2.571 1.474 1.812	0.438 0.408 1.025 0.745 0.810 0.751 0.670 0.906 0.782 0.962 0.887 2.529 0.419 0.664 0.697 1.033 0.594 0.883 0.032 1.275 0.835 0.496 1.138 0.764 1.369 0.442 0.329 0.412 0.329 0.412 0.329 0.412 0.329 0.412 0.710 0.326 0.352 0.310 0.810 0.833 0.992 0.736 0.611 1.270 1.470 1.203 0.859 0.467 0.272 1.197 0.920 0.280 0.385 0.731 0.395 0.499
--	---	---

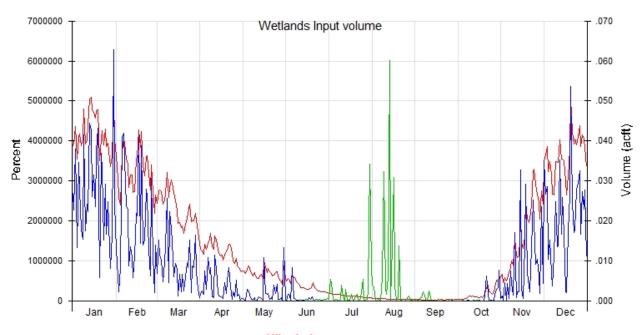
	_	
Ranked Ann	ual Peaks	
Ranked Annua	l Peaks for Pred	eveloped and Mitigated. POC #1
Rank	Predeveloped	
1	8.8672 ·	2.5294
2	4.3533	1.4702
3	4.3388	1.3691
4	4.3083	1.2748

6 3.9530 1.2026 7 3.8934 1.1965 8 3.7513 1.1886 9 3.7405 1.1379 10 3.5885 1.1166 11 3.5575 1.0327 12 3.5103 1.0249 13 3.4781 0.9999 14 3.4006 0.9921 15 3.2092 0.9724 16 3.0993 0.9618 17 3.0758 0.9196 18 3.0709 0.9065 19 3.0647 0.8869 20 3.0607 0.8826 21 3.0372 0.8587 22 2.9923 0.8347 23 2.9923 0.8347 23 2.9376 0.8333 24 2.7776 0.8098 25 2.7165 0.8096 26 2.6449 0.7997 27 2.6131 0.7817 28 2.6000 0.7638 29 2.5713 0.7507 30 2.5657 0.7453 31 2.5453 0.7360 32 2.5302 0.7309 33 2.5202 0.7253 34 2.5136 0.7095 35 2.4570 0.7038 36 2.3764 0.6967 37 2.3296 0.6700 38 2.1992 0.6641 41 2.0456 0.5941 42 2.0344 0.5772 43 1.8125 0.5585 44 1.7964 0.4991 45 1.6163 0.4958 46 1.6139 0.4670 47 1.4745 0.4416 48 1.4074 0.4376 49 1.3923 0.4187 50 1.3081 0.4120 51 1.2779 0.4082 52 1.2411 0.3953 53 1.2231 0.3848 54 1.0483 0.3520 55 0.9577 0.3294 60 0.0799 0.0323	8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 44 45 46 47 48 49 50 51 55 55 55 55 55 55 55 55	3.7513 3.7405 3.5885 3.5575 3.5103 3.4781 3.4006 3.2092 3.0993 3.0758 3.0709 3.0647 3.0607 3.0372 2.9923 2.9923 2.9923 2.9165 2.6131 2.6000 2.5713 2.5657 2.5453 2.5302 2.5702 2.5136 2.4570 2.3764 2.3296 2.1792 2.1779 2.0456 2.1792 2.1779 2.0456 2.1992 2.1779 1.2411 1.3923 1.3081 1.2779 1.2411 1.2231 1.0483 0.9577 0.9101 0.8584 0.8375 0.8274	1.1886 1.1379 1.1166 1.0327 1.0249 0.9999 0.9921 0.9724 0.9618 0.9196 0.9065 0.8869 0.8826 0.8587 0.8347 0.8333 0.8098 0.8096 0.7997 0.7453 0.7360 0.7360 0.7360 0.7369 0.7253 0.7095 0.7038 0.6967 0.6700 0.6641 0.6122 0.6111 0.5941 0.5772 0.5585 0.4991 0.4958 0.4670 0.416 0.4376 0.4187 0.4120 0.4082 0.3953 0.3848 0.3520 0.3258 0.3096 0.2800 0.2724	
---	--	--	--	--

Duration Flows

The Facility PASSED

Flow(cfs) Predev Mit Percentage Pass/	/Fail
1.2303 1060 9 0 Pass	
1.2771 987 7 0 Pass	
1.3239 894 7 0 Pass	
1.3707 822 5 0 Pass 1.4176 741 5 0 Pass	
1.3707 822 5 0 Pass 1.4176 741 5 0 Pass 1.4644 680 5 0 Pass 1.5112 626 4 0 Pass	
1.5112 626 4 0 Pass	
1.5580 579 4 0 Pass	
1.6048 531 4 0 Pass	
1.6516 489 4 0 Pass	
1.6984 459 4 0 Pass	
1.7452 425 4 0 Pass	
1.7920 391 3 0 Pass 1.8388 360 3 0 Pass	
1.8856 342 3 0 Pass	
1.9324 318 3 0 Pass	
1.9792 297 3 1/2 Pass	
2.0260 284 3 Pass	
2.0728 266 3 Pass 2.1196 238 3 Pass	
2.1196 238 3 1 Pass	
2.1664 221 3 Pass	
2.2132 204 3 1 Pass 2.2600 190 3 1 Pass	
2.2600 190 3 1 Pass 2.3068 173 3 1 Pass	
2.3536 159 3 1 Pass	
1.7452 425 4 0 Pass 1.7920 391 3 0 Pass 1.8388 360 3 0 Pass 1.8856 342 3 0 Pass 1.9324 318 3 0 Pass 1.9792 297 3 1 Pass 2.0260 284 3 1 Pass 2.0728 266 3 1 Pass 2.1196 238 3 1 Pass 2.2132 204 3 1 Pass 2.2600 190 3 1 Pass 2.3068 173 3 1 Pass 2.3536 159 3 1 Pass 2.4004 143 3 2 Pass	
2.4472 130 1 Pass	
2.4940 121 1 0 Pass	
2.5408 115 0 0 Pass	
2.5877 108 0 0 Pass	
2.6345 97 0 0 Pass 2.6813 88 0 Pass	
2.7281 81 0 Pass	
2.7749 79 0 Pass	
2.7749 79 0 0 Pass 2.8217 71 0 Pass	
2.8685 67 0 0 Pass	
2.9153 65 0 Pass	
2.9621 62 0 0 Pass	
3.0089 59 0 0 Pass 3.0557 54 0 Pass	
3.0557 54 0 0 Pass 3.1025 46 0 Pass	
3.1493 42 0 Pass	
3.1961 42 0 Pass	
3.2429 40 0 Pass	
3.2897 37 0 Pass	
3.3365 35 0 0 Pass	
3.3833 32 0 Pass	
3.4301 29 0 0 Pass 3.4769 27 0 Pass	
3.4769 27 0 0 Pass 3.5237 23 0 Pass	
3.5705 22 0 Pass	
3.6173 20 0 Pass	
3.6641 17 0 0 Pass	


0.7400	47	0	0	D
3.7109	17	0	0	Pass
3.7578	14	0	0	Pass
3.8046	14	0	0	Pass
3.8514	13	0	0	Pass
3.8982	12	Ö	Ö	Pass
3.9450	12	Ŏ	ŏ	Pass
	12 12 11	0	0	
3.9918	11	0	0	Pass
4.0386	11	0	0	Pass
4.0854	11	0	0	Pass
4.1322	10	0	0	Pass
4.1790	10	0	0	Pass
4.2258	9	0	0	Pass
4.2726 4.3194	8	0	0	Pass
4.3194	7	0	0	Pass
4.3662	5	0	0	Pass
4.4130	5	0	0	Pass
4.4598	5	Ö	Ö	Pass
4.5066	5	Ö	Ô	Pass
4.5534	5	Ö	Õ	Pass
4.6002	87555555555555555555555555	ŏ	0 0 0	Pass
4.6470	5	Ŏ	0	Pass
4.6938	5	0	0//	Pass
4.7406	5	0		
	ე 	0	0	Pass
4.7874	5	0	0 0	Pass
4.8342	5	0	0	Pass
4.8810	5	0	0	Pass
4.9279	5	0 /	0	Pass
4.9747	5	0	0	Pass
5.0215	5	0	0	Pass
5.0683	5	0	0	Pass
5.1151	5	$\langle \langle o \rangle \rangle$	0	Pass
5.1619	5	0	0	Pass
5.2087	5	0	0	Pass
5.2555	5	0	0	Pass
5.3023	5	0	0 0 0 0	Pass
5.3491	5	0	0	Pass
5.3959	4	0	0	Pass
5.4427			Ô	Pass
5.4895	4	0 0	0 0	Pass
5.5363	À	ŏ	Õ	Pass
5.5831	3	ŏ	0	Pass
	3	Ö	0 0 0	Pass
5.6299 5.6767	3	0	0	Pass
5.6767	ა ე	0	0	
5.7235	S S	0	0	Pass
5.7703	ა ი	0	0	Pass
5.8171	4 4 3 3 3 3 3 3	0	0	Pass
5.8639	3	0	0	Pass

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

Wetland Input Volumes

- Percent

Predeveloped

- Mitigated

Wetlands Input Volume for POC 1 Average Annual Volume (acft) Series 1: 501 POC 1 Predeveloped flow Series 2: 801 POC 1 Mitigated flow

Month	Series 1	Series 2	Percent	Pass/Fail
Jan	0.8248	1.2957	157.1	Fail
Feb	0.5507	0.9491	172.4	Fail
Mar	0.2951	0.7276	246.6	Fail
Apr	0.1046	0.3728	356.5	Fail
May	0.0554	0.2142	386.9	Fail
Jun	0.0164	0.1127	688.6	Fail
Jul	0.0001	0.0405	29684.7	Fail
Aug	0.0001	0.0146	25093.2	Fail
Sep	0.0001	0.0084	7021.9	Fail
Oct	0.0260	0.0523	201.4	Fail
Nov	0.2495	0.4844	194.2	Fail
Dec	0.6353	1.1181	176.0	Fail

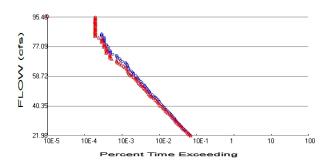
Day	Predevel	Mitigated	Percent	Pass/Fail
Jan1	0.0270	0.0387	143.7	
2	0.0227	0.0393	172.8	Fail
3	0.0381	0.0437	114.8	Pass
4	0.0134	0.0355	264.7	Fail
5	0.0346	0.0410	118.4	Pass
6	0.0279	0.0418	149.6	Fail
7	0.0176	0.0387	219.6	Fail
8	0.0154	0.0408	264.6	Fail
9	0.0416	0.0481	115.6	Pass
10	0.0176	0.0392	223.5	Fail
11	0.0242	0.0403	166.4	Fail
12	0.0224	0.0439	196.0	Fail
13	0.0445	0.0504	113.5	Pass
14	0.0426	0.0510	119.7	Pass

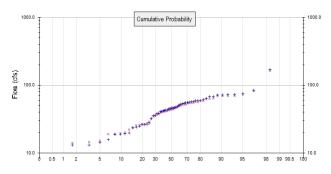
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 F2 34 56 78 90 11 12 34 56 78 91 11 11 11 11 11 11 11 11 11 11 11 11	0.0261 0.0314 0.0237 0.0376 0.0431 0.0058 0.0370 0.0327 0.0153 0.0291 0.0167 0.0248 0.0134 0.0081 0.0166 0.0628 0.0243 0.0127 0.0063 0.0023 0.00409 0.0419 0.0353 0.0023 0.0087 0.0135 0.0135 0.0108 0.0058 0.0112 0.0145 0.0389 0.0139 0.0212 0.0412 0.0145 0.0389 0.0139 0.0151 0.0280 0.0152 0.0151 0.0280 0.0260 0.0128 0.0062 0.0307 0.0111 0.0021 0.0140 0.0068 0.0152 0.0115 0.01027 0.0138	0.0477 0.0473 0.0478 0.0475 0.0477 0.0350 0.0405 0.0425 0.0391 0.0429 0.0386 0.0395 0.0355 0.0355 0.0363 0.0500 0.0405 0.0364 0.0307 0.0259 0.0240 0.0370 0.0405 0.0371 0.0259 0.0240 0.0371 0.0274 0.0354 0.0358 0.0427 0.0358 0.0427 0.0358 0.0427 0.0358 0.0427 0.0358 0.0427 0.0358 0.0318 0.0379 0.0358 0.0318 0.0379 0.0359 0.0363 0.0318 0.0379 0.0363 0.0318 0.0273 0.0219 0.0264 0.0274 0.0278 0.0278 0.0278 0.0273 0.0219 0.0264 0.0274 0.0278 0.0278 0.0273 0.0219 0.0264 0.0274 0.0278 0.0273 0.0219 0.0269	183.0 Fail 150.4 Fail 193.5 Fail 126.2 Fail 110.7 Pass 601.4 Fail 109.7 Pass 130.1 Fail 255.8 Fail 147.4 Fail 230.8 Fail 159.6 Fail 264.2 Fail 412.6 Fail 219.1 Fail 79.6 Fail 286.4 Fail 286.4 Fail 149.2 Fail 298.9 Fail 148.8 Fail 159.1 Fail 161.6 Fail 163.7 Pass 148.8 Fail 161.6 Fail 163.7 Pass 148.8 Fail 163.7 Pass 148.8 Fail 163.7 Fail 163.8 Fail 163.7 Fail 163.8 Fail 164.6 Fail 165.3 Fail 179.8 Fail
4 5	0.0115 0.0102 0.0047	0.0278 0.0273 0.0242	242.4 Fail 268.2 Fail 510.2 Fail

13	0.0061	0.0271	446.0	Fail
14	0.0093	0.0251	270.3	Fail
15	0.0079	0.0228	289.2	Fail
16	0.0012	0.0194	1559.0	Fail
17	0.0066	0.0195	293.6	Fail
18	0.0023	0.0184	790.4	Fail
19	0.0067	0.0189	280.8	Fail
20	0.0025	0.0170	678.2	Fail
21	0.0060	0.0191	320.1	Fail
22	0.0094	0.0207	220.3	Fail
23	0.0084	0.0219	259.7	Fail
24	0.0153	0.0241	157.9	Fail
25	0.0021	0.0198	957.1	Fail
26	0.0087	0.0201	231.9	Fail
27	0.0083	0.0199	239.3	Fail
28	0.0166	0.0218	131.6	Fail
29	0.0073	0.0203	278.4	Fail
30	0.0029	0.0173	593.2	Fail
31	0.0007	0.0145	2006.5	Fail
Apr1	0.0016	0.0130	835.9	Fail
2	0.0024	0.0124	517.4	Fail
3	0.0016	0.0116	718.0	Fail
4	0.0076	0.0142	188.0	Fail
5	0.0029	0.0129	438.4	Fail
6	0.0108	0.0144	133.9	Fail
7	0.0069	0.0154	224.1	Fail
8	0.0083	0.0169	204.5	Fail
9	0.0010	0.0137	1353.6	Fail
10	0.0007	0.0128	1727.3	Fail
11	0.0114	0.0162	141.8	Fail
12	0.0082	0.0154	187.2	Fail
13	0.0018	0.0130	724.7	Fail
14	0.0011	0.0119	1054.2	Fail
15	0.0010	0.0113	1173.2	Fail
16	0.0009	0.0115	1258.7	Fail
17	0.0006	0.0101	1650.8	Fail
18	0.0047	0.0116	247.3	Fail
19	0.0019	0.0124	636.9	Fail
20	0.0049	0.0126	256.4	Fail
21	0.0083	0.0142	171.6	Fail
22	0.0035	0.0140	402.6	Fail
23	0.0004	0.0119	2900.6	Fail
24	0.0023	0.0101	439.1	Fail
25	0.0010	0.0095	948.4	Fail
26	0.0052	0.0107	204.0	Fail
27	0.0012	0.0087	751.6	Fail
28	0.0016	0.0084	530.5	Fail
29	0.0001	0.0076	7743.0	Fail
30	0.0006	0.0073	1182.9	Fail
May1	0.0006	0.0075	1223.4	Fail
2	0.0003	0.0073	2623.9	Fail
3	0.0002	0.0069	2840.0	Fail
4	0.0030	0.0080	269.3	Fail
5	0.0024	0.0088	369.5	Fail
6	0.0014	0.0081	582.1	Fail
7	0.0004	0.0068	1737.4	Fail
8	0.0003	0.0062	2382.2	Fail
9	0.0009	0.0071	773.7	Fail

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.0000 0.0001 0.0009 0.0008 0.0006 0.0001 0.0108 0.0018 0.0019 0.0004 0.0008 0.0005 0.0039 0.0018 0.0042 0.0004	0.0063 0.0056 0.0057 0.0063 0.0066 0.0056 0.0101 0.0085 0.0071 0.0081 0.0073 0.0068 0.0062 0.0066 0.0070 0.0072 0.0062	16170.0 Fail 5072.0 Fail 620.1 Fail 798.6 Fail 1140.5 Fail 4543.8 Fail 92.8 Pass 463.1 Fail 441.1 Fail 420.1 Fail 1897.0 Fail 856.5 Fail 1306.6 Fail 168.4 Fail 380.5 Fail 171.8 Fail
27 28 29 30 31 Jun1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 Jul1 2 3	0.0003 0.0007 0.0000 0.0134 0.0003 0.0000 0.0016 0.0015 0.0000 0.0082 0.0006 0.0002 0.0002 0.0000	0.0051 0.0048 0.0042 0.0087 0.0058 0.0049 0.0056 0.0053 0.0044 0.0065 0.0059 0.0055 0.0048 0.0034 0.0034 0.0034 0.0034 0.0032 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0028 0.0029 0.0030 0.0029 0.0030 0.0028 0.0029 0.0021 0.0020 0.0019 0.0019	1501.1 Fail 674.4 Fail 24147.5 Fail 64.8 Fail 2041.5 Fail 42860.3 Fail 348.0 Fail 356.9 Fail 18893.1 Fail 79.1 Fail 988.6 Fail 1300.3 Fail 2195.6 Fail 2324.2 Fail 11303.2 Fail 29606.2 Fail 1233.8 Fail 2121.4 Fail 22159.6 Fail 22159.6 Fail 23359.4 Fail 395.4 Fail 395.4 Fail 341.8 Fail 341.8 Fail 1418.7 Fail 21634.1 Fail 33785.7 Fail 8464.5 Fail 31750.3 Fail 10920.0 Fail 12676.9 Fail 7729.2 Fail 40093.2 Fail 30435.4 Fail 50248.7 Fail 41262.5 Fail 532103.6 Fail
3 4 5 6	0.0000 0.0000 0.0000 0.0000	0.0018 0.0017 0.0017 0.0016	441379.1 Fail 38470.0 Fail 16123180.0 Fail 34868.5 Fail

_		0.0040	407045	
7	0.0000	0.0016	16734.5	Fail
8	0.0000 0.0000	0.0016 0.0016	5102.5	Fail
9 10	0.0000	0.0016	34871.8 386386.4	Fail Fail
11	0.0000	0.0013	94733.8	Fail
12	0.0000	0.0014	57794300.0	Fail
13	0.0000	0.0013	279485.1	Fail
14	0.0000	0.0013	28298.7	Fail
15	0.0000	0.0012	12215.2	Fail
16	0.0000	0.0012	17137.3	Fail
17	0.0000	0.0012	172998.4	Fail
18	0.0000	0.0012	10786.1	Fail
19	0.0000	0.0012	4200.5	Fail
20	0.0000	0.0012	131451.4	Fail
21	0.0000	0.0011	155932.1	Fail
22	0.0000	0.0010	44311010.0	Fail
23	0.0000 0.0000	0.0010	41661340.0	Fail
24 25	0.0000	0.0009 0.0009	197869.4 536635.9	Fail Fail
26	0.0000	0.0009	35580060.0	Fail
27	0.0000	0.0003	25492.9	Fail
28	0.0000	0.0008	34558.3	Fail
29	0.0000	0.0008	257157.2	
30	0.0000	0.0008	3431471.0	Fail
31	0.0000	0.0007	859975.3	Fail
Aug1	0.0000	0.0007	392594.6	Fail
2 3	0.0000	0.0007	342383.5	Fail
3	0.0000	0.0007	18039200.0	Fail
4	0.0000	0.0006	28279980.0	Fail
5	0.0000	0.0006	40660.4	Fail
6 7	0.0000	0.0006 0.0006	21767.8 18200210.0	Fail Fail
8	0.0000	0.0005	607829.1	Fail
9	0.0000	0.0005	3238471.0	Fail
10	0.0000	0.0005	323507.1	Fail
11	0.0000	0.0005	172521.0	Fail
12	0.0000	0.0005	581330.2	Fail
13	0.0000	0.0005	6011631.0	Fail
14	0.0000	0.0005	12748.1	Fail
15	0.0000	0.0004	1357267.0	Fail
16	0.0000	0.0004	3088170.0	Fail
17	0.0000 0.0000	0.0004	374067.3	Fail
18 19	0.0000	0.0004 0.0004	13916.7 88600.0	Fail Fail
20	0.0000	0.0004	1379876.0	Fail
21	0.0000	0.0004	11309.3	Fail
22	0.0000	0.0004	5188.1	Fail
23	0.0000	0.0004	5376.1	Fail
24	0.0000	0.0004	2223.8	Fail
25	0.0000	0.0004	29555.6	Fail
26	0.0000	0.0004	105147.4	Fail
27	0.0000	0.0003	128758.6	Fail
28	0.0000	0.0003	5843.6	Fail
29	0.0000	0.0003	12289.3	Fail
30 31	0.0000 0.0000	0.0003	34867.2 7499.1	Fail Fail
Sep1	0.0000	0.0003 0.0003	36797.4	Fail
2	0.0000	0.0003	8513.4	Fail
_	3.5555	2.2000	00.0.1	


3 4 5 6 7 8 9 10 11 2 13 14 15 6 7 18 9 10 11 2 13 14 15 6 7 18 9 10 11 2 13 14 15 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 1 22 23 14 15 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 12 23 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0000 0.0000	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0009 0.0009 0.0009 0.00010 0.0009 0.00012 0.00016 0.0003 0.0003 0.0003	17166.0 Fail 75441.7 Fail 71818.8 Fail 228029.2 Fail 115495.9 Fail 7493.7 Fail 6661.5 Fail 247291.3 Fail 104797.9 Fail 16428.9 Fail 3847.3 Fail 4562.4 Fail 13882.6 Fail 4216.2 Fail 2878.7 Fail 3887.5 Fail 3794.2 Fail 11280.6 Fail 6283.5 Fail 3023.4 Fail 5013.7 Fail 2581.0 Fail 5013.7 Fail 2581.0 Fail 4533.1 Fail 4669.9 Fail 4533.1 Fail 4533.5 Fail 8918.8 Fail 4533.5 Fail 1026.8 Fail 457.9 Fail 1902.2 Fail 1902.2 Fail 1902.2 Fail 1902.2 Fail 19521.6 Fail 2836.3 Fail 4947.6 Fail 2836.3 Fail 4947.6 Fail 3575.0 Fail 1902.2 Fail 1026.3 Fail 1026.3 Fail 1026.3 Fail 1026.3 Fail 1026.3 Fail 1026.3 Fail 1026.7 Fail 1026.7 Fail 1026.7 Fail 136.2 Fail 136.2 Fail 136.2 Fail
19	0.0000	0.0012	4407.0 Fail
20	0.0012	0.0016	136.2 Fail
21	0.0062	0.0032	51.8 Fail
22	0.0019	0.0039	202.7 Fail


31 N2 34 56 78 9 10 11 12 13 14 15 16 17 18 19 20 12 21 22 23 24 25 26 78 9 10 11 11 11 11 11 11 11 11 11 11 11 11	0.0005 0.0013 0.0001 0.0046 0.0001 0.0045 0.0006 0.0076 0.0043 0.0015 0.0171 0.0008 0.0022 0.0024 0.0328 0.0030 0.0006 0.0137 0.0293 0.0070 0.0037 0.0023 0.0133 0.0252 0.0199 0.0091 0.0104 0.0060 0.0019 0.0236 0.0019 0.0236 0.0019 0.0236 0.0019 0.0236 0.0103 0.0152 0.0072 0.0037 0.0112 0.0248 0.0135 0.0152 0.0072 0.0037 0.0112 0.0248 0.0135 0.0169 0.0025 0.0025 0.0025 0.0025 0.0027 0.0174 0.0266 0.0537 0.0275 0.0172 0.0275	0.0061 0.0067 0.0046 0.0059 0.0050 0.0055 0.0070 0.0084 0.0101 0.0090 0.0154 0.0115 0.0109 0.0132 0.0160 0.0248 0.0206 0.0197 0.0204 0.0240 0.0321 0.0331 0.0293 0.0268 0.0246 0.0242 0.0350 0.0366 0.0348 0.0268 0.0265 0.0348 0.0268 0.0349 0.0350 0.0366 0.0348 0.0268 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0355 0.0350 0.0355 0.0350 0.0350 0.0350 0.0350 0.0350 0.0366 0.0355 0.0355 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0366 0.0350 0.0366 0.0313 0.0377 0.0507 0.0421 0.0392 0.0391	514.6 4550.4 128.8 5441.0 121.5 152.8 111.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.5 1231.6	Fail Fail Fail Fail Fail Fail Fail Fail
24 25 26 27	0.0279 0.0295 0.0326 0.0167	0.0390 0.0411 0.0438 0.0387	139.4 134.5	Fail Fail Fail Fail

28	0.0274	0.0416	151.8 Fail
29	0.0229	0.0405	177.1 Fail
30	0.0277	0.0384	138.5 Fail
31	0.0110	0.0337	307.6 Fail

POC 2

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #2

Total Pervious Area: 186.753 Total Impervious Area: 6.031

Mitigated Landuse Totals for POC #2 Total Pervious Area: 174.057 Total Impervious Area: 14.175

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2

 Return Period
 Flow(cfs)

 2 year
 43,965007

 5 year
 65,684116

 10 year
 77,169118

 25 year
 88.683932

 50 year
 95.455897

 100 year
 100.9882

Flow Frequency Return Periods for Mitigated. POC #2

 Return Period
 Flow(cfs)

 2 year
 41.738753

 5 year
 62.023302

 10 year
 74.206754

 25 year
 88.086348

 50 year
 97.387256

 100 year
 105.880336

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2

Year	Predeveloped	Mitigated
1949	35.338	34.540
1950	45.145	43.770
1951	55.818	51.989
1952	45.068	45.304
1953	44.237	42.418
1954	61.254	58.360
1955	36.300	34.569
1956	75.282	72.626
1957	56.489	53.775
1958	55.900	55.318
1959	19.674	19.864

1960 26.125 25.488 1961 59.327 56.260 1962 53.249 51.651 1963 50.030 47.926 1964 46.024 44.039 1965 46.114 43.870 1966 57.171 54.586 1967 40.811 38.800 1968 52.541 49.987 1969 42.780 41.484 1970 170.563 163.045 1971 27.592 27.209 1972 42.695 41.105 1973 50.765 49.635 1974 72.122 69.856 1975 38.531 37.419 1976 53.700 51.513 1977 4.359 6.878 1978 72.907 69.419 1979 59.381 58.409 1980 32.423 31.444 1981 71.763 68.757 1982 47.775 45.922 <th></th>	
--	--

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2

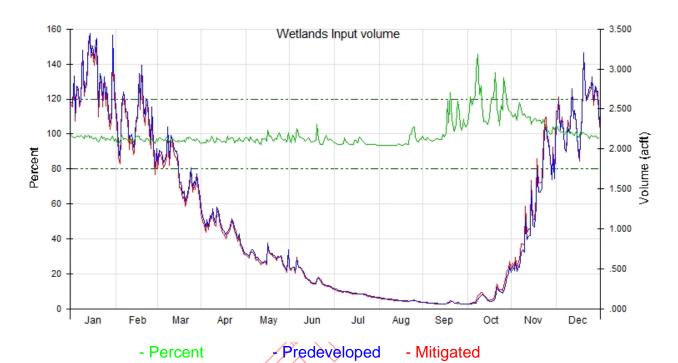
Rank	Predeveloped	Mitigated
1	170.5630	163.0450
2	83.1654	82.2237
3	75.2822	72.6257
4	72.9067	69.8557
5	72.7977	69.4191

7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 51 55 56 57 58 59 59	2.1222 1.7633 8.1723 7.8231 3.9564 1.2535 9.7947 9.3812 9.3272 7.2666 7.1709 6.4888 5.9000 5.8180 3.6998 3.2488 2.5413 0.7653 0.0304 8.4400 7.7753 6.8923 6.1444 6.0236 5.1451 5.0677 4.2374 3.0455 2.7800 2.6953 1.6312 1.0838 0.8108 8.5309 8.32999 5.3376 2.4227 7.5917 6.4220 6.2674 6.1245 4.7340 3.7288 9.6738	69.3162 68.7566 64.3947 63.3300 61.9678 58.4088 58.3597 56.2595 55.9947 55.3178 54.7637 54.5863 53.7747 51.9889 51.6510 51.5126 49.9873 49.6345 47.9259 46.9966 45.3035 44.5256 44.1845 41.4840 41.1052 40.5596 39.8878 38.7999 37.4194 36.6771 34.5693 34.5402 31.4437 28.9812 27.2091 26.5292 26.4515 25.6922 25.4883 23.2108 22.0989 19.8642 19.5439 18.8182 18.9843 14.984
--	---	---

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
21.9825	1438	1443	100	Pass
22.7247	1342	1332	99	Pass
23.4668	1250	1238	99	Pass
24.2090	1148	1144	99	Pass
24.9511	1061	1051	99	Pass
25.6933	993	971	97	Pass
26.4354	909	889	97	Pass
27.1776	855	831	97	Pass
27.9197	790	770	97	Pass
28.6619	733	710	96	Pass
29.4041	693	662	95	Pass
30.1462	647	620	95	Pass
30.8884	612	580	94	Pass
31.6305	574	551	95	Pass
32.3727	540	513	95	Pass
33.1148	511	476	93 _	Pass
33.8570	475	455	95	Pass
34.5991	449	421	93	Pass
35.3413	422	391	92	Pass
36.0835	388	359	92	Pass
36.8256	360	333	92	Pass
37.5678	338	307	90	Pass
38.3099	311	283	90	Pass
39.0521	287	267	93	
39.7942		256		Pass
40.5364	275	227	93	Pass
	259		87	Pass
41.2785	241	213	88	Pass
42.0207	218	201	92	Pass
42.7629	209	189	90	Pass
43.5050	200	181	90	Pass
44.2472	191	166	86	Pass
44.9893	175	147	84	Pass
45.7315	161	133	82	Pass
46.4736	151	122	80	Pass
47.2158	137	116	84	Pass
47.9579	123	110	89	Pass
48.7001	114	101	88	Pass
49.4423	111	97	87	Pass
50.1844	104	92	88	Pass
50.9266	99	87	87	Pass
51.6687	95	79	83	Pass
52.4109	89	73	82	Pass
53.1530	84	68	80	Pass
53.8952	76	63	82	Pass
54.6373	72	58	80	Pass
55.3795	67	56	83	Pass
56.1217	61	53	86	Pass
56.8638	57	50	87	Pass
57.6060	55	47	85	Pass
58.3481	53	43	81	Pass
59.0903	49	37	75	Pass
59.8324	42	34	80	Pass
60.5746	42	32	76	Pass
50.57 T U	-T L	U <u>Z</u>	70	1 433


61.3167	40	31	77	Pass
62.0589	37	30	81	Pass
62.8011	32	29	90	Pass
63.5432	31	28	90	Pass
64 2054	30	25	83	
64.2854		20		Pass
65.0275	29	23	79	Pass
65.7697	29	20	68	Pass
66.5118	27	18	66	Pass
67.2540	26	16	61	Pass
		10		
67.9961	21	15	71	Pass
68.7383	19	15	78	Pass
69.4805	18	11	61	Pass
70.2226	16	10	62	Pass
70.9648	15	10	66	Pass
70.3040				
71.7069	15	10	66	Pass
72.4491	12	10	83	Pass
72.4491 73.1912	10	8	80	Pass
73.9334	10	8	80	Pass
74.6755	10	8	80	Pass
75 1177		0	88	
75.4177	9	8		Pass
76.1599	9	<u>8</u>	88	Pass
76.9020	9	7	77/	Pass
77.6442	8	7	87	Pass
78.3863	8	7	87	Pass
79.1285	7	7	100	Pass
79.8706	7	6	85	Pass
80.6128	7	6	85	Pass
01.0120		6		
81.3549	7	6	85	Pass
82.0971	7	6	85	Pass
82.8393	7	5	71	Pass
83.5814	6	<< 4 \>	66	Pass
84.3236	6	4	66	Pass
85.0657	6	4	66	Pass
85.8079	4	∨⊤ ∕I	100	
00.0079		4		Pass
86.5500	4	4	100	Pass
87.2922	4	4	100	Pass
88.0343	4	4	100	Pass
88.7765	4	4	100	Pass
89.5187	4	4	100	Pass
90.2608	4	4	100	Pass
91.0030	4	4	100	Pass
91.7451	4	4	100	Pass
92.4873	4	4	100	Pass
93.2294	4	4	100	Pass
93.9716	4	4	100	Pass
94.7137	4	4	100	Pass
95.4559	4	4	100	
50.4009	4	4	100	Pass

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #2
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

Wetland Input Volumes

Wetlands Input Volume for POC 2
Average Annual Volume (acft)
Series 1: 502 POC 2 Predeveloped flow
Series 2: 802 POC 2 Mitigated flow

361163 Z.	002 F OC 2	willigated ne	3-VV	
Month	Series 1	Series 2	Percent	Pass/Fail
Jan	88.1071	86.2552	97.9	Pass
Feb	67.7631	65.5827	96.8	Pass
Mar	54.5738	52.7595	96.7	Pass
Apr	31.2606	30.1183	96.3	Pass
May	20.0884	19.5539	97.3	Pass
Jun	11.9694	11.6579	97.4	Pass
Jul	6.1646	5.8536	95.0	Pass
Aug	3.4479	3.2776	95.1	Pass
Sep	2.1180	2.1724	102.6	Pass
Oct	5.1739	6.0632	117.2	Pass
Nov	36.5533	38.9519	106.6	Pass
Dec	75.3808	75.5580	100.2	Pass

Day	Predevel	Mitigated	Percent	Pass/Fail
Jan1	2.5793	2.5565	99.1	Pass
2	2.5646	2.5252	98.5	Pass
3	2.9150	2.8563	98.0	Pass
4	2.3967	2.3484	98.0	Pass
5	2.7856	2.7549	98.9	Pass
6	2.7557	2.7197	98.7	Pass
7	2.5696	2.5225	98.2	Pass
8	2.6180	2.5993	99.3	Pass
9	3.2331	3.1794	98.3	Pass
10	2.7283	2.6569	97.4	Pass
11	2.7861	2.7593	99.0	Pass
12	2.8470	2.7915	98.1	Pass
13	3.3301	3.2979	99.0	Pass
14	3.4471	3.3716	97.8	Pass

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Feb 12 34 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 21 21 21 21 21 21 21 21 21 21 21 21 21	3.1705 3.2887 3.1290 3.3528 3.3528 3.3855 2.5173 2.9450 2.8462 2.5991 2.8296 2.7745 2.4779 2.3261 2.4779 2.3261 2.4838 3.4209 2.7736 2.5386 2.7118 2.6696 2.4633 2.1614 2.1763 2.0823 2.1614 2.1763 2.3459 2.4245 2.9396 2.5781 3.0501 2.6296 2.6024 2.6296 2.	3.1374 3.2049 3.0509 3.2720 3.2659 2.4027 2.8557 2.8104 2.5273 2.8397 2.5345 2.6956 2.4057 2.2399 2.4241 3.3861 2.6639 2.4383 2.1580 1.8999 1.8133 2.5200 2.6320 2.5946 2.3991 2.3744 1.9958 2.1168 2.1064 1.9338 1.9598 2.3028 2.3986 2.8981 2.4973 2.9612 2.4344 2.3006 2.5563 2.5340 2.2110 2.0052 2.4460 1.9826 1.6808 1.9457 1.7544 1.9402 1.9115 1.9028 1.7598 1.8138 1.9222 2.473	97.5.5.6.5.4.0.7.2.9.9.6.7.5.5.6.5.4.0.7.2.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	Pass Pass Pass Pass Pass Pass Pass Pass
4 5 6	1.8222 1.8831	1.7598 1.8138	96.6 96.3	Pass Pass

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 11 21 21 22 23 24 25 26 27 28 29 30 31 31 31 45 67 89 10 11 12 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	0.6185 0.5897 0.5753 0.5857 0.6007 0.5756 0.8044 0.7049 0.6847 0.6722 0.6581 0.6237 0.6520 0.6427 0.6523 0.65232 0.52543 0.5232 0.4751 0.5187 0.5035 0.5256 0.5199 0.4725 0.6302 0.5254 0.5254 0.5056 0.4792 0.4437 0.4048 0.3654 0.3231 0.3262 0.3248 0.3231 0.3262 0.3248 0.327 0.32916 0.2905 0.2859 0.2859 0.2625 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532	0.5846 0.5532 0.5588 0.5681 0.5850 0.5507 0.8199 0.6967 0.6832 0.6454 0.6406 0.6030 0.6447 0.6462 0.6531 0.5734 0.5345 0.5075 0.4533 0.7437 0.5078 0.4789 0.5209 0.5082 0.4501 0.6483 0.5203 0.4948 0.4653 0.4293 0.3881 0.3698 0.3567 0.3383 0.3135 0.3708 0.3708 0.3708 0.3798 0.3266 0.3015 0.2927 0.2889 0.2838 0.2757 0.2718 0.2604 0.2521 0.2403 0.2319	97.7 95.3 102.9 100.0 98.5 97.1 96.8 95.9 97.1 96.3 95.3 95.4 96.5 105.2 97.1 93.9 94.2 96.7 97.7 96.3 96.3 97.9 96.9	Pass Pass Pass Pass Pass Pass Pass Pass
29	0.2704	0.2604	96.3	Pass
30	0.2625	0.2521	96.0	Pass

7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 45 67 89 10 11 21 21 22 23 24 25 26 27 28 29 20 21 21 22 23 24 25 26 27 28 29 20 21 21 21 21 21 21 21 21 21 21 21 21 21	0.2195 0.2216 0.2211 0.2169 0.2111 0.2055 0.2003 0.1955 0.1955 0.1946 0.1911 0.1902 0.1889 0.1589 0.1589 0.1551 0.1520 0.1462 0.1462 0.1431 0.1373 0.1345 0.1318 0.1271 0.1272 0.1127 0.1000 0.0999 0.0979 0.0954 0.0957 0.0980 0.1035 0.0980 0.	0.2079 0.2172 0.2112 0.2056 0.1989 0.1931 0.1881 0.1844 0.1888 0.1871 0.1814 0.1869 0.1856 0.1851 0.1850 0.1717 0.1641 0.1580 0.1717 0.1641 0.1580 0.1428 0.1491 0.1455 0.1428 0.1401 0.1370 0.1340 0.1312 0.1286 0.1259 0.1233 0.1208 0.1190 0.1173 0.1147 0.1020 0.1050 0.1027 0.1050 0.1027 0.1050 0.1027 0.1050 0.1027 0.1050 0.1027 0.1050	94.7 Pass 98.0 Pass 95.5 Pass 94.7 Pass 94.2 Pass 94.0 Pass 96.6 Pass 95.0 Pass 95.3 Pass 96.6 Pass 95.3 Pass 94.0 Pass 94.0 Pass 93.8 Pass 93.8 Pass 93.7 Pass 93.6 Pass 93.6 Pass 93.6 Pass 93.6 Pass 93.6 Pass 93.5 Pass 93.5 Pass 93.5 Pass 93.5 Pass 93.5 Pass 93.7 Pass 93.7 Pass 93.8 Pass 93.8 Pass 93.8 Pass 93.9 Pass 93.9 Pass 93.9 Pass 93.10 Pass 9
28	0.0913	0.0873	95.6 Pass

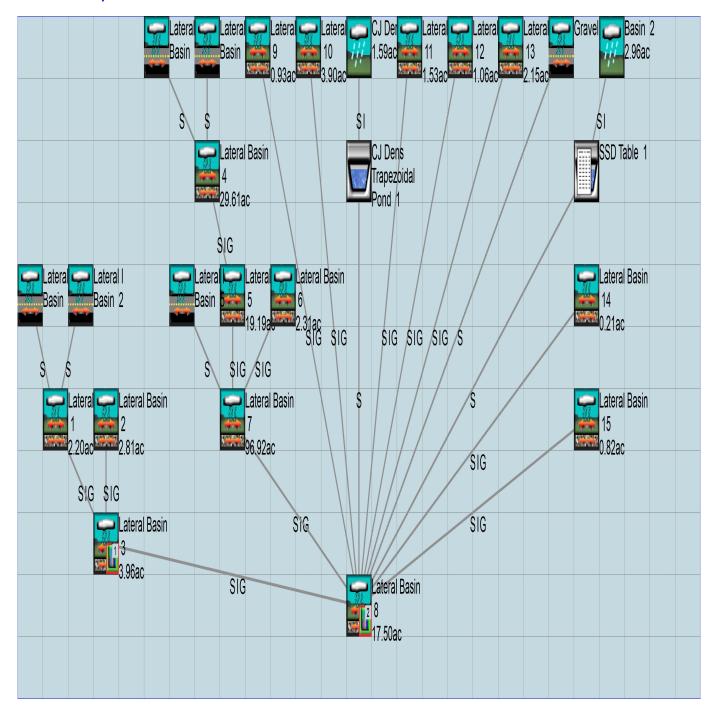
3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 12 23 24 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 12 23 4 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 12 22 23 24 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 12 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 20 12 20 12	0.0772 0.0758 0.0757 0.0758 0.0737 0.0715 0.0696 0.0682 0.0674 0.0668 0.0639 0.0628 0.0638 0.0639 0.0628 0.0723 0.0769 0.0833 0.0890 0.0820 0.0742 0.0682 0.0664 0.0669 0.0635 0.0599 0.0598 0.0600 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0571 0.0650 0.0593 0.0593 0.0571 0.1627 0.1735 0.1642 0.1416 0.1240 0.1059 0.0943 0.1037 0.1366 0.2699 0.2505 0.2185 0.2090 0.2982	0.0756 0.0737 0.0710 0.0687 0.0668 0.0657 0.0655 0.0650 0.0631 0.0618 0.0609 0.0635 0.0628 0.0631 0.0861 0.0818 0.1030 0.0966 0.0841 0.0755 0.0722 0.0788 0.0751 0.0663 0.0611 0.0647 0.0634 0.0646 0.0692 0.0757 0.0805 0.0825 0.1005 0.1756 0.1756 0.1523 0.1132 0.1139 0.1253 0.1132 0.1139 0.1253 0.1845 0.3074 0.2835 0.2299 0.2432 0.2255	98.0 97.4 96.1 96.3 97.4 96.8 97.4 96.8 97.4 96.8 97.5 96.8 97.5 101.0 102.0 103.0 104.0 105.0 1	Pass Pass Pass Pass Pass Pass Pass Pail Pail Pass Pass Pass Pass Pass Pass Pass Pas
22	0.2505	0.2835	113.2	Pass
23	0.2185	0.2299	105.2	Pass
24	0.2090	0.2432	116.3	Pass

28	2.7915	2.7619	98.9 Pass
29	2.7185	2.6756	98.4 Pass
30	2.7286	2.6564	97.4 Pass
31	2.3015	2.2600	98.2 Pass

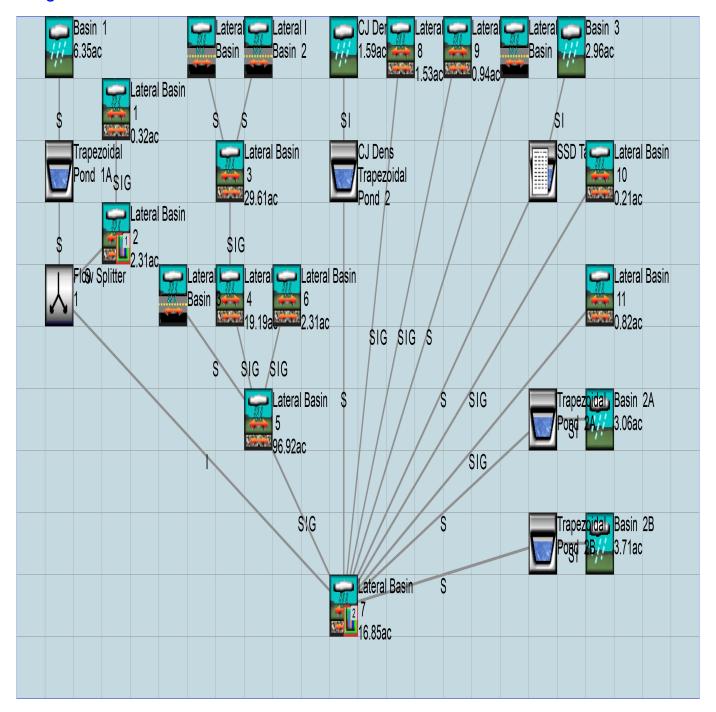
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes


No PERLND changes have been made.

IMPLND Changes


No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File RUN GLOBAL WWHM4 model simulation END 2008 09 30 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM END GLOBAL FILES <File> <Un#> <---->*** <-ID-> 9095 Wetland A.wdm WDM 26 MESSU 25 Pre9095 Wetland A.MES 27 Pre9095 Wetland A.L61 28 Pre9095 Wetland A.L62 POC9095 Wetland Al.dat 30 POC9095 Wetland A2.dat 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP 16 IMPLND IMPLND 17 PERLND 48 21 IMPLND 22 IMPLND 23 IMPLND PERLND 55 PERLND 58 PERLND 59 31 PERLND IMPLND 1 IMPLND IMPLND 8 IMPLND IMPLND 11 14 IMPLND 60 PERLND PERLND 61 62 PERLND 24 IMPLND PERLND 63 PERLND RCHRES RCHRES 47 PERLND PERLND 53 PERLND 49 PERLND 56 PERLND 57 PERLND 501 COPY COPY 502 COPY 2 COPY DISPLY DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1

- #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND

MAX

MAX

1

1

30

31

9

2

Lateral Basin 3 Lateral Basin 8

1

END DISPLY

COPY

END DISPLY-INFO1

```
TIMESERIES
                  NMN ***
    # - # NPT
    1
               1
                     1
  501
               1
                     1
  502
    2
                     1
  END TIMESERIES
END COPY
GENER
  OPCODE
          # OPCD ***
   #
  END OPCODE
  PARM
                     K ***
   #
  END PARM
END GENER
PERLND
  GEN-INFO
    <PLS ><---->NBLKS
                                          Unit-systems
                                                           Printer ***
                                        User t-series Engl Metr ***
                                                 in out
   48
           SG4, Forest, Steep
                                                       1
                                                                   0
                                                 1
   55
           SG4, Forest, Steep
                                                            27
                                                                   0
   58
           SG4, Forest, Steep
                                                            27
   59
           SG4, Forest, Mod
                                      1
                                                            27
                                                                   0
   31
           SG4, Field, Flat
                                                                   0
                                                 1
                                                            27
   60
           SG4, Lawn, Flat
                                      1
                                                 1
                                                       1
                                                            27
                                                                   0
           SG4, Forest, Steep
SG4, Field, Flat
SG4, Lawn, Steep
                                                  1
                                                            27
   61
   62
                                            1
                                                  1
                                                            27
                                                            27
   63
                                            1
                                                  1
           SG4, Field, Flat
                                      1
                                                            27
   64
                                            1
                                                  1
   47
           SG4, Field, Flat
                                            1
                                                            27
                                      7
                                                 1
           SG4, Field, Flat
   53
                                                            27
   54
           SG4, Forest, Steep
                                      1
                                            1
                                                            27
   49
           SG4, Forest, Mod
                                      1
                                            1
                                                            27
                                                                   0
                                                 1
           SG4, Field, Flat
SG4, Forest, Mod
   56
                                      1
                                            1
                                                 1
                                                            27
                                                                   0
                                                       1
                                      1
                                                            27
   57
  END GEN-INFO
  *** Section PWATER***
  ACTIVITY
    <PLS > ******** Active Sections **********************
          # ATMP SNOW PWAT
                              SED
                                    PST
                                         PWG PQAL MSTL PEST NITR PHOS TRAC
   48
                                0
                                      0
                                                                              0
               0
                     0
                           1
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                        0
   55
               0
                                 0
                                      0
                                            0
                                                  0
                                                             0
                                                                   0
                                                                         0
                                                                              0
                     0
                           1
                                                       0
   58
               0
                     0
                           1
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                                              0
   59
               0
                           1
                                 0
                                            0
                     0
                                      0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
   31
               0
                     0
                           1
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                                              0
               0
                                 0
                                                                              0
   60
                     0
                           1
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
   61
               0
                     Λ
                           1
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                        0
                                                                              0
   62
               0
                     0
                                 0
                                      0
                                            0
                                                  0
                                                             0
                                                                   0
                           1
                                                       0
                                                                         0
   63
               0
                           1
                                            0
   64
               0
                     0
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
   47
               0
                     Λ
                           1
                                 0
                                      n
                                            n
                                                  Ω
                                                       Λ
                                                             n
                                                                   0
                                                                        0
                                                                              n
   53
               0
                     0
                           1
                                 0
                                      n
                                            0
                                                  0
                                                       Λ
                                                             0
                                                                   0
                                                                        n
                                                                              0
   54
               0
                     0
                           1
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                        0
   49
                0
                     0
                                 0
                                            0
                                                  0
                                                             0
                                                                   0
                                                                              0
   56
                0
                     0
                           1
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                                              0
                                            0
                                                  0
                                                                   0
   57
               0
                     0
                           1
                                 0
                                      0
                                                       0
                                                             0
                                                                        0
                                                                              0
  END ACTIVITY
  PRINT-INFO
    # ATMP SNOW PWAT
                                         PWG PQAL MSTL PEST NITR PHOS TRAC
                              SED PST
   48
               0
                     0
                           4
                                0
                                      0
                                            0
                                                 0
                                                       0
                                                             0
                                                                   0
                                                                        0
                                                                              0
                                                                                    1
   55
               0
                     0
                           4
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                                              0
                                                                                          9
                                                                                          9
   58
               0
                     0
                           4
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                                              0
                                                                                          9
   59
               0
                     0
                           4
                                 0
                                      0
                                            0
                                                  0
                                                             0
                                                                   0
                                                                        0
                                                                              0
                                                       0
                                                                                    1
   31
               0
                     0
                           4
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                   0
                                                                        0
                                                                              0
                                                                                    1
                                                                                          9
                                                                                          9
   60
                     0
                                 0
                                            0
                                                             0
                                                                                    1
```

62 63 64 47 53 54 49	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	9 9 9 9 9 9 9 9 9 9
# - # CSN6 48 55 58 59 31 60 61 62 63 64 47 53 54 49 56	O RTOP U O O O O O O O O O O O O O O O O O O O	iable mon ZFG VCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VUZ VNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N VIFW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		flags VLE II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	** NFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		**		
PWAT-PARM2 <pls> # - # *** 48 55 58 59 31 60 61 62 63 64 47 53 54 49 56 57 END PWAT-PARM</pls>	FOREST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	input in LZSN 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10: Part 1NFILT 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	Г 14 14 14 14 13 32 24 14 33 33 34 14 14 33	* LSUR 400 400 400 400 400 400 400 400 400 40		SUR .15 .15 .05 .05 .05 .05 .05 .05 .05 .05		ARY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		GWRC 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
PWAT-PARM3	PWATER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	input in PETMIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INFEX	P II	* NFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** DEE	PFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BAS:	ETP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AGV	VETP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 56 57 END PWAT-	0 0 0 -PARM3	0 0 0	3 3 3	2 2 2	0 0 0	0 0 0	0 0 0
PWAT-PARN	PWATER input CEPSC U 0.2 0.2 0.2 0.2 0.15 0.1 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	info: ZSN 0.4 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4	Part 4 NSUR 0.35 0.35 0.35 0.35 0.35 0.30 0.25 0.30 0.30 0.30 0.30 0.35 0.35 0.35 0.3	INTFW 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRC 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	*** LZETP *** 0.7 0.7 0.7 0.7 0.4 0.25 0.7 0.4 0.25 0.4 0.25 0.4 0.7 0.4 0.7	
PWAT-STAT <pls> # - # 48 55 58 59 31 60 61 62 63 64 47 53 54 49 56 57 END PWAT-</pls>	*** Initial cond ran from 1990 *** CEPS S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	itions to end URS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	at start of 1992 (UZS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of simulation pat 1-11-95 IFWS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n LZS 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	*** AGWS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GWVS 0 0 0 0 0 0 0 0 0 0
# - # 16 17 21 22 23 1 4 5 8 11 14 24 END GEN-1	ROOF TOPS/FLAT ROADS/FLAT ROADS/FLAT ROADS/FLAT ROOF TOPS/FLAT ROADS/STEEP ROADS/FLAT ROOF TOPS/FLAT DRIVEWAYS/FLAT SIDEWALKS/FLAT PARKING/FLAT POND ROADS/FLAT INFO	> [Use		es Engl Metr			

ACTIVITY

```
<PLS > ******** Active Sections ********************
 # - # ATMP SNOW IWAT SLD IWG IQAL
 16
         0 0 1
                         0
                              0
                                   Ω
 17
                     1
 21
           0
                0
 22
           0
                0
                          0
                               0
                                    0
           0
                0
                          0
                               0
                                   0
 23
                     1
 1
           0
                0
                     1
                          0
                               0
                                   0
 4
           0
                0
                     1
                          0
                               0
 5
           0
                0
                     1
                          0
           0
 8
                0
                     1
                          0
                               0
                                   0
                          0
 11
           Ω
                Ω
                     1
                               0
                                   Ω
14
           0
                0
                     1
                          0
                               0
                                   0
 24
           0
END ACTIVITY
PRINT-INFO
 <ILS > ******* Print-flags ****** PIVL PYR
 # - # ATMP SNOW IWAT SLD IWG IQAL
                                        ******
        0
 16
              0
                     4
                          0
                              0
                                   0
 17
           0
                0
                     4
                          0
                               0
                                    0
                                         1
 21
           0
                Ω
                     4
                          0
                               Ω
                                    0
                                         1
           0
 22
                0
                     4
                          0
                               0
 23
           0
                0
           0
                0
                     4
                          0
                               0
                                    0
 1
           0
                     4
 4
               0
                          0
                               0
                                    0
                                         1
 5
           0
                0
                     4
                          0
                               0
                                    0
                                         1
 8
           0
                0
                     4
                          0
                                    0
                                         1
 11
           0
                0
                     4
                          0
                               0
                                    0
                                         1
 14
           0
                     4
                          0
                              0/
                                    0
                                         1
                                              9
                0
                               0
                     4
                                    0
                                         1
 24
           0
                0
END PRINT-INFO
IWAT-PARM1
 <PLS > IWATER variable monthly parameter value flags ***
 # - # CSNO RTOP VRS VNN RTLI
        0
                         V0
 16
                0
                     0
 17
           0
                0
                     0
                          0
                               0
 21
           0
                0
                     0
                          0
                               0
 22
           0
                     0
                0
                          0
                               0
 23
           0
                     0
                Ω
                          Ω
                               0
 1
           0
                0
                     0
                          0
                              0
 4
           0
                0
                    0
 5
           0
                0
                    0
                         0
                              0
           0
                0
                    0
                         0
                              0
 8
 11
           0
                0
                    0
                          0
                               0
 14
           0
                0
                     0
                          0
                               0
 24
           0
                0
                     0
                          0
                               0
END IWAT-PARM1
IWAT-PARM2
<PLS >
             IWATER input info: Part 2
                                          RETSC
             LSUR
                   SLSUR NSUR
                                         0.1
16
              400
                      0.01
                                 0.1
              400
 17
                       0.01
                                 0.1
                                           0.1
 21
              400
                       0.01
                                 0.1
                                           0.1
 22
              400
                       0.01
                                  0.1
                                           0.1
 23
              400
                                           0.05
                       0.1
                                  0.1
 1
              400
                       0.01
                                           0.1
                                 0.1
              400
                      0.01
                                 0.1
                                           0.1
 5
              400
                      0.01
                                 0.1
                                           0.1
 8
              400
                      0.01
                                 0.1
                                           0.1
 11
              400
                      0.01
                                 0.1
                                           0.1
 14
              400
                                  0.1
                       0.01
                                           0.1
 24
              400
                       0.01
                                  0.1
                                            0.1
END IWAT-PARM2
IWAT-PARM3
            IWATER input info: Part 3
 <PLS >
  # - # ***PETMAX PETMIN
```

```
0
                                  0
   16
   17
                                  0
                      0
   21
                      0
                                  0
                                  0
   22
                      0
   23
                      0
                                  0
    1
                      0
                                  0
    4
                                  0
                      0
    5
                      0
                                  0
    8
                      0
                                  0
   11
                      0
                                  0
                                  0
   14
                      0
                                  0
   24
                      0
  END IWAT-PARM3
  IWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
          # ***
    # -
                  RETS
                              SURS
   16
                      0
                                  0
   17
                      0
                                  0
   21
                                  0
                      0
   22
                      0
                                  0
   23
                      0
                                  0
                                  0
    1
                      0
                                  0
    5
                                  0
                      0
                                  0
                      0
    8
   11
                      0
                                  0
   14
                                  0
                      0
                                  0
   24
                      0
  END IWAT-STATE1
END IMPLND
SCHEMATIC
                                                                         * * *
                                                  <-Target->
                                                                 MBLK
<-Source->
                                <--Area-->
                                                                          * * *
          #
                                <-factor->
                                                            #
                                                                 Tbl#
<Name>
                                                  <Name>
Lateral I Basin
IMPLND
                                     0.3831
                                                  PERLND
                                                           47
                                                                    50
         16
Lateral Basin
                                                           49
                                     0.5559
                                                                    30
PERLND
         47
                                                  PERLND
         47
PERLND
                                     0.5559
                                                  PERLND
                                                           49
                                                                    34
                                                  PERLND
PERLND
         47
                                     0.5559
                                                           49
                                                                    38
                 10***
Lateral Basin
                                     0.2228
                                                           57
                                                                    30
PERLND
         59
                                                  PERLND
                                     0.2228
                                                  PERLND
                                                                    34
PERLND
         59
                                                           57
PERLND
         59
                                     0.2228
                                                  PERLND
                                                           57
                                                                    38
CJ Dens***
                                                                     2
PERLND
         31
                                      0.522
                                                  RCHRES
                                      0.522
                                                                     3
                                                             1
PERLND
         31
                                                  RCHRES
                                       0.38
                                                                     5
IMPLND
          1
                                                  RCHRES
                                                            1
IMPLND
                                      0.413
                                                  RCHRES
                                                                     5
                                                            1
                                                                     5
IMPLND
                                      0.096
                                                  RCHRES
                                                             1
                                                                     5
IMPLND
          8
                                      0.083
                                                  RCHRES
                                                            1
                                                                     5
                                      0.034
                                                            1
IMPLND
         11
                                                  RCHRES
                                                  RCHRES
                                                                     5
IMPLND
         14
                                      0.057
                                                            1
Lateral I Basin
IMPLND
                                     0.0454
                                                  PERLND
                                                           47
                                                                    50
         17
                 2***
Lateral Basin
                                                            49
                                     0.7098
                                                  PERLND
                                                                    30
PERLND
         48
PERLND
         48
                                     0.7098
                                                  PERLND
                                                           49
                                                                    34
PERLND
                                     0.7098
                                                  PERLND
                                                            49
                                                                    38
         48
        2***
Basin
         31
                                                             2
                                                                     2
PERLND
                                      1.119
                                                  RCHRES
                                                             2
                                                                     3
                                      1.119
PERLND
         31
                                                  RCHRES
                                      0.992
                                                                     5
IMPLND
                                                  RCHRES
                                                             2
          1
IMPLND
          4
                                      0.372
                                                  RCHRES
                                                             2
                                                                     5
                                                             2
                                                                     5
IMPLND
          5
                                      0.197
                                                  RCHRES
                                                             2
                                                                     5
                                      0.283
                                                  RCHRES
IMPLND
          8
                   3***
Lateral I Basin
                                     0.0459
                                                           53
                                                                    50
IMPLND
         21
                                                  PERLND
```

Lateral	T Dagir	n 4***						
IMPLND	22	11 4	0.0165	PERLND	53	50		
Lateral		4***	0.0103	PEKLIND	55	50		
PERLND	53	4	1.543	PERLND	54	30		
PERLND	53		1.543	PERLND		34		
PERLND	53		1.543	PERLND		38		
Lateral		5***	1.343	PEKLIND	34	30		
PERLND	54	5	0.198	PERLND	56	30		
PERLND	54		0.198	PERLND	56	34		
PERLND	54		0.198	PERLND	56	38		
Lateral	-	n 5***	0.190	PEKLIND	50	30		
IMPLND	23	11 5	0.0025	PERLND	56	50		
Lateral	-	6***	0.0025	PEKLIND	50	50		
	55	0	0 0220	PERLND	56	30		
PERLND PERLND	55 55		0.0238 0.0238			34		
	55 55			PERLND				
PERLND Gravel*			0.0238	PERLND	56	38		
			0 0051	DEDIMO	- 7	го		
IMPLND	24	7 4 4 4	0.0051	PERLND	57	50		
Lateral		7***	E E2E2	D=D1.11D		2.0		
PERLND	56		5.5373	PERLND	57	30		
PERLND	56		5.5373	PERLND	57	34		
PERLND_	56		5.5373	PERLND	57	38		
Lateral		9***						
PERLND	58		0.0531	PERLND		30		
PERLND	58		0.0531	PERLND	57	34		
PERLND	58		0.0531	PERLND	57	38		
Lateral	Basin	11***						
PERLND	60		0.0874	PERLND	57	30		
PERLND	60		0.0874	PERLND	57	34		
PERLND	60		0.0874	PERLND	57	38		
Lateral	Basin	12***						
PERLND	61	\'	0.0606	PERLND	57	30		
PERLND	61		0.0606	PERLND	57	34		
PERLND	61		0.0606	PERLND	57	38		
Lateral	Basin	13***	>					
PERLND	62		0.1228	PERLND	57	30		
PERLND	62		0.1228	PERLND	57	34		
PERLND	62		0.1228	PERLND	5 <i>7</i>	38		
Lateral		14***	0.1220	I LIKLIND	3,	30		
PERLND	63	- 1	0.012	PERLND	57	30		
PERLND	63		0.012	PERLND	5 <i>7</i>	34		
PERLND	63		0.012	PERLND	5 <i>7</i>	38		
Lateral		15***	0.012	LEKTIND	5 /	30		
PERLND	64	13	0.0468	PERLND	57	30		
PERLND			0.0468	PERLND		34		
PERLND			0.0468	PERLND		38		
Lateral		3***	0.0100	FEKLIND	37	50		
PERLND	49	3	0.2264	PERLND	57	30		
PERLND			0.2264	PERLND		34		
PERLND			0.2264	PERLND		38		
Lateral		3***	0.2204	PEKLIND	57	30		
PERLND		3 " " "	3.963	CODY	E O 1	12		
	49	8***	3.903	COPY	501	12		
Lateral		8^^	10 500	CODII	F00	1.0		
PERLND	57		17.503	COPY	502	12		
PERLND			17.503	COPY	502	13		
PERLND	57		17.503	COPY	502	14		
*****R	_	* * * * *						
RCHRES	1		.0571	PERLND		60		
RCHRES	2		.0571	PERLND	57	60		
END SCH	EMATIC							
NETWORK				_	_	_		
		rp> <-Member-><						***
<name></name>	#	<name> # #<-f</name>					<name> # #</name>	* * *
			48.4	DISPLY		INPUT		
COPY !	ou⊿ UUTI	PUT MEAN 11	48.4	DISPLY	2	INPUT	TIMSER 1	

```
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
   # - #<----><---> User T-series Engl Metr LKFG
                                                                        * * *
                                      in out
                                                                        * * *
   1 CJ Dens Trapezoi-030 1 1 1 1 28 0 1 2 SSD Table 1 1 1 1 28 0 1
 END GEN-INFO
  *** Section RCHRES***
   <PLS > ******** Active Sections *********************
   # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG ***
     END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ********* PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
   END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   END HYDR-PARM1
 HYDR-PARM2
                     LEN DELTH STCOR KS DB50
  # - # FTABNO
  <----><----><---->
   1 1 0.01 0.0 0.0 0.5 0.0
2 2 0.01 0.0 0.0 0.5 0.0
 END HYDR-PARM2
 HYDR-INIT
   <---->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
 FTABLE
  91 4
    Depth Area Volume Outflowl Velocity Travel Time***
    (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)***
 0.000000 \quad 0.022779 \quad 0.000000 \quad 0.000000
 0.055556 0.023264 0.001279 0.028883

      0.133330
      0.023264
      0.001279
      0.028883

      0.111111
      0.023753
      0.002585
      0.040847

      0.166667
      0.024248
      0.003918
      0.050027

      0.222222
      0.024748
      0.005279
      0.057766

      0.277778
      0.025253
      0.006668
      0.064584

      0.3333333
      0.025763
      0.008085
      0.070748

      0.388889
      0.026279
      0.009531
      0.076417

 0.444444 0.026799 0.011005 0.081693
  0.500000 0.027324 0.012509 0.086649
```

```
0.555556
          0.027855
                     0.014042
                                 0.091336
                                 0.095794
          0.028391
0.611111
                     0.015604
0.666667
          0.028931
                     0.017196
                                 0.100053
0.722222
          0.029477
                     0.018819
                                 0.104139
0.777778
                     0.020472
                                 0.108070
          0.030028
0.833333
          0.030584
                     0.022155
                                 0.111863
0.888889
          0.031145
                     0.023870
                                 0.115531
0.944444
          0.031712
                     0.025616
                                 0.119087
1.000000
          0.032283
                     0.027394
                                 0.122540
1.055556
           0.032860
                     0.029203
                                 0.125898
1.111111
          0.033441
                     0.031045
                                 0.129168
1.166667
          0.034028
                     0.032919
                                 0.132358
1.22222
          0.034620
                     0.034826
                                 0.135473
1.277778
          0.035216
                     0.036766
                                 0.138517
1.333333
           0.035818
                      0.038739
                                 0.141497
                     0.040746
1.388889
          0.036425
                                 0.144414
1.44444
          0.037038
                     0.042786
                                 0.147274
                                 0.150080
1.500000
          0.037655
                     0.044861
          0.038277
                     0.046970
1.555556
                                 0.152834
1.611111
          0.038905
                     0.049114
                                 0.155539
1.666667
          0.039537
                     0.051293
                                 0.158198
          0.040175
1.722222
                     0.053508
                                 0.160813
1.777778
          0.040818
                     0.055757
                                 0.163386
          0.041466
                     0.058043
                                 0.165919
1.833333
1.888889
          0.042119
                     0.060365
                                 0.168415
1.944444
          0.042777
                     0.062723
                                 0.170873
2.000000
          0.043440
                     0.065118
                                 0.173297
                     0.067550
2.055556
          0.044108
                                 0.186468
2.111111
          0.044782
                     0.070019
                                 0.208194
                                 0.235130
2.166667
           0.045460
                     0.072526
                     0.075070
                                0.266005
2.22222
          0.046144
2.277778
          0.046833
                     0.077653
                                0.300049
2.333333
           0.047526
                     0.080274
                                 0.336716
2.388889
           0.048225
                      0.082934
                                 0.375588
          0.048929
2.444444
                     0.085633
                               70.416328
2.500000
          0.049638
                                0.458652
                     0.088371
2.555556
          0.050353
                     0.091148
                                 0.502317
                     0.093965
2.611111
          0.051072
                                 0.547110
2.666667
          0.051796
                     0.096823
                                 0.592841
2.722222
          0.052526
                     0.099721
                                 0.639338
2.777778
          0.053261
                     0.102659
                                 0.686445
2.833333
          0.054000
                     0.105639
                                 0.734018
2.888889
          0.054745
                     0.108659
                                 0.781924
2.944444
          0.055495
                     0.111722
                                 0.830039
3.000000
          0.056250
                     0.114826
                                 0.878245
3.055556
          0.057010
                     0.117972
                                 0.936465
3.111111
          0.057775
                     0.121160
                                 0.996168
3.166667
           0.058546
                     0.124391
                                 1.057317
                     0.127665
3.22222
          0.059321
                                 1.119876
3.277778
          0.060102
                     0.130983
                                1.183814
          0.060887
                     0.134344
                                1.249100
3.333333
3.388889
           0.061678
                     0.137748
                                1.315705
3.44444
          0.062474
                     0.141197
                                1.753851
3.500000
          0.063275
                     0.144690
                                1.844582
3.555556
          0.064081
                     0.148228
                                 1.936961
3.611111
          0.064892
                     0.151810
                                 2.030957
           0.065708
                     0.155438
3.666667
                                 2.126544
3.722222
          0.066530
                     0.159111
                                 2.223694
3.777778
          0.067356
                     0.162830
                                 2.322382
3.833333
          0.068188
                     0.166595
                                 2.422583
                     0.170407
3.888889
          0.069024
                                 2.524275
3.944444
          0.069866
                     0.174265
                                 2.627436
4.000000
          0.070713
                     0.178170
                                 2.732044
4.055556
          0.071565
                     0.182122
                                 2.872469
          0.072422
                     0.186122
4.111111
                                 3.125264
4.166667
          0.073284
                     0.190169
                                 3.440530
4.22222
           0.074151
                      0.194264
                                 3.784790
          0.075024
4.277778
                     0.198408
                                 4.123963
          0.075901
                     0.202600
                                 4.425520
4.333333
4.388889
          0.076784
                     0.206842
                                 4.664787
```

```
4.44444
           0.077671
                      0.211132
                                 4.833535
                                 4.950246
            0.078564
  4.500000
                      0.215472
            0.079462
                      0.219862
                                 5.096106
  4.555556
  4.611111
            0.080365
                      0.224301
                                 5.212280
                      0.228791
  4.666667
            0.081273
                                 5.323343
  4.722222
            0.082186
                      0.233332
                                 5.429923
  4.777778
            0.083104
                      0.237923
                                 5.532527
                      0.242566
            0.084028
  4.833333
                                 5.631572
  4.888889
            0.084956
                      0.247260
                                 5.727410
  4.944444
            0.085890
                      0.252005
                                 5.820336
  5.000000
            0.086829
                      0.256803
                                 5.910602
 END FTABLE
              1
 FTABLE
   37
     Depth
                        Volume
                                 Outflow1 Velocity
                                                     Travel Time***
                Area
                                                       (Minutes) * * *
      (ft)
             (acres) (acre-ft)
                                 (cfs)
                                          (ft/sec)
  0.000000
            0.058000
                      0.000000
                                 0.000000
  0.170000
            0.058000
                      0.005193
                                 0.044755
  0.330000
                      0.011161
            0.058000
                                 0.062356
  0.500000
            0.058000
                      0.017609
                                 0.076754
                      0.024425
  0.670000
            0.058000
                                 0.088850
  0.830000
            0.058000
                      0.031543
                                 0.098891
 1.000000
            0.058000
                      0.038915
                                 0.108547
            0.058000
                      0.046504
  1.170000
                                 0.117412
  1.330000
            0.058000
                      0.054281
                                 0.125183
            0.058000
  1.500000
                      0.062221
                                 0.132943
            0.058000
  1.670000
                      0.070301
                                 0.140274
  1.830000
            0.058000
                      0.078501
                                 0.146840
  2.000000
            0.058000
                      0.086804
                                 0.153509
  2.170000
            0.058000
                      0.095192
                                 0.159900
  2.330000
            0.058000
                      0.103651
                                0.165690
                               0.171628
  2.500000
            0.058000
                      0.112165
  2.670000
            0.058000
                       0.120721
                                 0.177368
  2.830000
            0.058000
                       0.129303
                                0.182605
            0.058000
                      0.137899 0.188009
  3.000000
  3.170000
            0.058000
                     0.146495
                                 0.193263
  3.330000
            0.058000 (0.155077
                                 0.198080
  3.500000
            0.058000
                      0.163632
                                 0.203073
  3.670000
            0.058000
                      0.172146
                                 0.207947
                      0.180605
  3.830000
            0.058000
                                 0.236899
  4.000000
            0.058000
                      0.188994
                                 0.347589
  4.170000
            0.058000
                      0.197297
                                 0.495645
  4.330000
            0.058000
                      0.205497
                                 0.654966
                      0.213577
  4.500000
            0.058000
                                 0.836956
            0.058000
                                 1.025852
  4.670000
                      0.221516
  4.830000
            0.058000
                      0.229293
                                 1.225254
  5.000000
            0.058000
                      0.236883
                                 1.471327
  5.170000
            0.058000
                      0.244255
                                 2.581571
            0.058000
  5.330000
                      0.251373
                                 4.323604
  5.500000
            0.058000
                      0.258189
                                 6.122265
            0.058000
                       0.264636
                                 7,256359
  5,670000
                      0.270604
                                 7.946961
  5.830000
            0.058000
  6.000000
           0.058000
                      0.275798
                                 8.581160
 END FTABLE 2
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
         # <Name> # tem strg<-factor->strg <Name>
                                                      # #
                                                                    <Name> # #
<Name>
                                                      1 999 EXTNL
M \cap M
         2 PREC
                    ENGL
                             1.3
                                                                    PREC
                                             PERLND
                                                      1 999 EXTNL
WDM
         2 PREC
                    ENGL
                             1.3
                                             IMPLND
                                                                    PREC
                             0.8
WDM
         1 EVAP
                    ENGL
                                             PERLND
                                                      1 999 EXTNL
                                                                    PETINP
                                                      1 999 EXTNL
WDM
         1 EVAP
                    ENGL
                             0.8
                                             IMPLND
                                                                   PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
                  <Name> # #<-factor->strg <Name> # <Name>
                                                                  tem strg strg***
<Name>
COPY
       501 OUTPUT MEAN
                          1 1
                                 48.4
                                             MDM
                                                    501 FLOW
                                                                  ENGL
                                                                            REPL
```

COPY 502 OUTPUT END EXT TARGETS	MEAN 11	48.4	WDM	502 F	LOW EI	NGL REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER</name></volume>	2		<target <name=""></target>		<-Grp>	<-Member->*** <name> # #*** IVOL</name>
END MASS-LINK MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO	0.083333	RCHRES		INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK		0.083333	RCHRES		INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK		0.083333	COPY		INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK		0.083333	COPY		INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK		0.083333	COPY		INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK			PERLND		EXTNL	SURLI
MASS-LINK PERLND PWATER END MASS-LINK	34 IFWO 34	>	PERLND		EXTNL	IFWLI
MASS-LINK PERLND PWATER END MASS-LINK			PERLND		EXTNL	AGWLI
MASS-LINK IMPLND IWATER END MASS-LINK	SURO		PERLND		EXTNL	SURLI
MASS-LINK RCHRES ROFLOW END MASS-LINK		12.00000	PERLND		EXTNL	SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START
             1948 10 01
                              END
                                  2008 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME
            0 RUN
                  1
                                         UNIT SYSTEM
END GLOBAL
FILES
<File> <Un#>
               <---->***
<-ID->
               9095 Wetland A.wdm
WDM
          26
MESSU
          25
               Mit9095 Wetland A.MES
          27
               Mit9095 Wetland A.L61
          28
               Mit9095 Wetland A.L62
               POC9095 Wetland Al.dat
          30
               POC9095 Wetland A2.dat
          31
END FILES
OPN SEQUENCE
                      INDELT 00:15
   INGRP
                 50
     PERLND
     PERLND
                 34
     PERLND
                 31
     IMPLND
                  1
     IMPLND
                  2
     IMPLND
     IMPLND
                 14
     IMPLND
                 25
     IMPLND
                 26
                 27
     IMPLND
     PERLND
                 68
                  5
     IMPLND
     IMPLND
                  8
     IMPLND
                 11
                 70
     PERLND
                 71
     PERLND
                 28
     IMPLND
     PERLND
                 72
                 73
     PERLND
                 32
     PERLND
     RCHRES
                  1
     RCHRES
     RCHRES
     RCHRES
     RCHRES
                  5
     RCHRES
                  6
                 65
     PERLND
     PERLND
                 66
                 51
     PERLND
                 67
     PERLND
                 69
     PERLND
     COPY
                501
     COPY
                 1
                502
     COPY
                  2
     COPY
     DISPLY
     DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
        #<---->***TRAN PIVL DIG1 FIL1
                                                           PYR DIG2 FIL2 YRND
            Lateral Basin 2
                                                                     30
                                                                           9
   1
                                       MAX
                                                                  2
                                                             1
           Lateral Basin 7
                                       MAX
                                                             1
                                                                  2
                                                                     31
 END DISPLY-INFO1
END DISPLY
```

```
COPY
  TIMESERIES
                NMN ***
    # - # NPT
    1
             1
                  1
  501
  502
                    1
   2
              1
  END TIMESERIES
END COPY
GENER
  OPCODE
  # # OPCD ***
  END OPCODE
  PARM
                   K ***
  END PARM
END GENER
PERLND
  GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems
                                                      Printer ***
                                     User t-series Engl Metr ***
                                             in out
          SG4, Forest, Steep
   50
                                                   1
   34
          SG4, Lawn, Flat
                                                       27
   31
          SG4, Field, Flat
                                                       27
                                                              0
          SG4, Forest, Steep
                                                       27
                                                              0
   68
                                              1
                                                   1
          SG4, Lawn, Flat
   70
                                              1
                                                   1
                                                       27
          SG4, Field, Flat
SG4, Lawn, Steep
SG4, Field, Flat
   71
                                              1
                                                       27
   72
                                         1
                                              1
                                                       27
   73
                                         1
                                                       27
                                              1
          SG4, Field, Mod
                                   1
                                                       27
   32
                                         1
                                              1
   65
          SG4, Field, Flat
                                         1
                                                       27
                                   1
                                              1
   66
          SG4, Forest, Steep
                                   1
   51
          SG4, Forest, Mod
                                         1
                                              1
                                                       27
          SG4, Field, Flat
                                        1
   67
                                   1
                                                       27
                                                              0
                                              1
                                                   1
   69
          SG4, Forest, Mod
                                   1
                                        1
                                              1
  END GEN-INFO
  *** Section PWATER***
  ACTIVITY
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
   50
            0
                    0
                       1
                              0
                                   0
                                        0
                                                   0
                                                        0
                                                              0
                                                                   0
   34
              0
                    0
                              0
                                   0
                                         0
                                              Λ
                                                   0
                                                         0
                                                              0
                                                                   0
                                                                        0
                         1
   31
              0
                    0
                              0
                                   0
                                         0
                                              0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                         1
              0
   68
                    0
                         1
                              0
                                   0
                                         0
                                              0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
   70
              0
                    0
                         1
                              0
                                   0
                                         0
                                                        0
                                              0
                                                   0
                                                              0
                                                                   0
   71
              0
                    0
                         1
                              0
                                   0
                                         0
                                              0
                                                   0
                                                         0
                                                              0
                                                                   0
   72
              0
                              0
                                   0
                    0
                         1
                                         0
                                              0
                                                   0
                                                        0
                                                              0
                                                                   0
   73
              0
                   Λ
                         1
                              0
                                   0
                                         0
                                              0
                                                   0
                                                        0
                                                              0
                                                                   Ω
   32
              0
                   0
                         1
                              0
                                   0
                                         0
                                              0
                                                        0
                                                              0
                                                   0
                                                                   0
   65
              0
                                         0
              0
   66
                    Ω
                              0
                                   0
                                         0
                                              0
                                                   0
                                                      0
   51
              0
                    Ω
                        1
                              0
                                   0
                                         0
                                              0
                                                   Ω
                                                      0
                                                              0
                                                                   0
                                                                        n
   67
              0
                   0
                         1
                              0
                                   0
                                         0
                                              0
                                                   Ω
                                                        0
                                                              0
                                                                   0
                                                                        0
   69
              0
  END ACTIVITY
  PRINT-INFO
   <PLS > ************ Print-flags ************************ PIVL PYR
    # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC
   50
              0
                    0
                              0
                                   0
                                        0
                                              0
                                                   0
                                                        0
                                                                   0
   34
              0
                    0
                         4
                                   0
                                         0
                                              0
                                                   0
                                                         0
                                                                   0
                                                                        0
                              0
                                                              0
              0
                         4
                                         0
                                              0
                                                         0
                                                                        0
                                                                                   9
   31
                    n
                              0
                                   0
                                                   0
                                                              0
                                                                   0
                                                                             1
              0
   68
                    0
                         4
                              0
                                   0
                                         0
                                              0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                             1
   70
              0
                    0
                         4
                              0
                                   0
                                         0
                                              0
                                                   0
                                                         0
                                                              0
                                                                   0
                                                                        0
   71
              0
                    0
                         4
                              0
                                   0
                                         0
                                              0
                                                   0
                                                         0
                                                              0
                                                                   0
                                                                        0
   72
              0
                    0
                         4
                              0
                                   0
                                         0
                                              0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                                   9
                                                   0
                                                                             1
   73
              0
                    0
                         4
                              0
                                   0
                                         0
                                              0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                             1
                                                   0
   32
                    0
                                         0
                                                        0
                                                                             1
```

65 66 51 67 69 END PRINT-	0 0 0 0 0 0 INFO	0 0 0 0	4 4 4 4	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	L 9 L 9 L 9
PWAT-PARM1	PWATER SNO RT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Var OP U 0 0 0 0 0 0 0 0 0 0	riable ZFG 0 0 0 0 0 0 0 0 0		Chly VUZ 0 0 0 0 0 0 0 0 0 0	parame VNN V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eter VIFW 0 0 0 0 0 0 0 0	value VIRC 0 0 0 0 0 0 0 0 0 0	flag: VLE: 0 0 0 0 0 0 0 0 0 0	s ** INFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* HWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***		
PWAT-PARM2	PW **FORE	ATER ST 0 0 0 0 0 0 0 0 0		t inf ZSN 66666666666666666666666666666666666	ZN.	Part 2 IFILT 0.04 0.02 0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.04	>	LSUR 400 400 400 400 400 400 400 400 400 40		LSUR 0.15 0.05 0.05 0.15 0.05 0.15 0.05 0.15 0.1	К	OVARY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AGWRC 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
PWAT-PARM3	PW **PETM		inpu PET			Part 3 IFEXP 3 3 3 3 3 3 3 3 3 3 3 3 3 3		** NFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** DE:	EPFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BA	O O O O O O O O O O O O O O O O O O O	P	AGWETP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PWAT-PARM4 <pls> # - # 50 34 31 68</pls>	PWA CEP 0 0	SC .2 .1		info ZSN 0.4 0.2 0.4		nrt 4 NSUR 0.35 0.25 0.3	=	INTFW 2 2 2 2		IRC 0.4 0.4 0.4	I	ZETP 0.7 0.25 0.4 0.7	* * * * * *	

```
70
                   0.1
                              0.2
                                        0.25
                                                       2
                                                                0.4
                                                                          0.25
                                                       2
   71
                  0.15
                              0.4
                                         0.3
                                                                0.4
                                                                           0.4
   72
                  0.1
                              0.2
                                        0.25
                                                       2
                                                                0.4
                                                                           0.25
   73
                  0.15
                                                       2
                              0.4
                                         0.3
                                                                0.4
                                                                            0.4
   32
                  0.15
                              0.4
                                         0.3
                                                       2
                                                                0.4
                                                                            0.4
   65
                  0.15
                              0.4
                                         0.3
                                                       2
                                                                0.4
   66
                                        0.35
                                                       2
                              0.4
                                                                0.4
                                                                            0.7
                   0.2
                                                       2
                                                                            0.7
   51
                   0.2
                              0.4
                                        0.35
                                                                0.4
   67
                  0.15
                              0.4
                                         0.3
                                                       2
                                                                0.4
                                                                            0.4
                                                       2
   69
                   0.2
                              0.4
                                        0.35
                                                                0.4
                                                                            0.7
  END PWAT-PARM4
  PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
               ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
                                                                                      GWVS
                 CEPS
                             SURS
                                         UZS
                                                    IFWS
                                                                           AGWS
                                                                LZS
   50
                     0
                                0
                                            0
                                                       0
                                                                2.5
                                                                                         0
                                                                              1
   34
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   31
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
                                 0
   68
                     0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   70
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   71
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   72
                                 0
                                            0
                                                                                         0
                     0
                                                       0
                                                                2.5
                                                                              1
   73
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                                         0
                                 0
                                            0
                     0
                                                       0
                                                                2.5
                                                                                         0
   32
                                                                              1
                                 0
                                            0
                                                                                         0
   65
                     0
                                                       0
                                                                2.5
                                                                              1
   66
                     0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   51
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
                                 0
   67
                     0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
                                 0
                                            0
                                                       0
                                                                2.5
                                                                              1
                                                                                         0
   69
                     0
  END PWAT-STATE1
END PERLND
IMPLND
  GEN-INFO
                                                    Printer ***
    <PLS ><----Name--
                                     Unit-systems
                                         t-series Engl Metr ***
                                   User
                                           in
                                               out
                                                      27
                                                             0
    1
            ROADS/FLAT
                                      1
                                            1
                                                 1
    2
            ROADS/MOD
                                            1
                                                      27
                                                             0
                                      1
                                                 1
            ROOF TOPS/FLAT
                                      1
                                            1
                                                  1
                                                      27
                                                             0
   14
            POND
                                                      27
                                                             0
   25
            ROADS/FLAT
                                                      27
                                                             0
                                      1
                                            1
                                                 1
   26
            ROOF TOPS/FLAT
                                      1
                                            1
                                                 1
                                                      27
                                                             0
   27
            ROADS/STEEP
                                      1
                                            1
                                                 1
                                                      27
                                                             0
    5
            DRIVEWAYS/FLAT
                                            1
                                                 1
                                                      27
                                                             0
                                      1
    8
            SIDEWALKS/FLAT
                                            1
                                                  1
                                                      27
                                                             0
                                                      27
   11
            PARKING/FLAT
                                            1
                                                 1
                                                             0
                                      1
                                                      27
   28
            ROADS/FLAT
                                            1
                                                 1
                                                             0
  END GEN-INFO
  *** Section IWATER***
  ACTIVITY
    <PLS > ******** Active Sections *********************
         # ATMP SNOW IWAT SLD
                                    IWG IQAL
                                                * * *
    1
               0
                     0
                           1
                                 0
                                      0
                                            0
    2
               0
                                 0
                     0
                           1
                                      0
                                            0
               0
                                      0
                                            0
    4
                     0
                           1
                                 0
   14
               0
                     0
                           1
                                 0
                                      n
                                            0
   25
               0
                     0
                           1
                                 0
               0
   26
                     0
                                 0
                                      0
                                            0
   27
               0
                     0
                           1
                                 0
                                      0
                                            0
    5
               0
                     0
                           1
                                0
                                      0
                                            0
               0
    8
                     0
                           1
                                0
                                      0
                                            0
   11
               0
                     0
                           1
                                 0
                                      0
                                            0
   28
               0
                     0
                           1
                                 0
                                      0
                                            0
  END ACTIVITY
```

9095 Wetland A 7/11/2025 10:11:50 AM Page 113

PRINT-INFO

```
<ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL
                                                   9
  1
           0
                0
                       4
                            0
                                 0
  2
                  0
                             0
                                   0
                                             1
  4
             0
                  0
                                        0
                                                   9
 14
             0
                  0
                        4
                             0
                                   0
                                        0
             0
                        4
 25
                  0
                             0
                                  0
                                        0
                                             1
 26
            0
                  0
                        4
                             0
                                  0
                                       0
                                             1
 27
             0
                  0
                        4
                             0
                                   0
                                        0
                                             1
  5
             0
                  0
                        4
                             0
                                   0
                                        0
                                             1
             0
                             0
                                        0
                                                   9
  8
                  0
                        4
                                  0
                                             1
             0
                        4
                             0
                                        0
                                                   9
 11
                  Ω
                                   0
                                             1
 28
             0
                  0
                        4
                             0
                                   0
                                        0
                                             1
END PRINT-INFO
IWAT-PARM1
 <PLS > IWATER variable monthly parameter value flags ***
  # - # CSNO RTOP VRS VNN RTLI
  1
            0
                  0
                        0
                             0
                                   0
  2
             0
                  0
                        0
                             0
                                   0
  4
             0
                  0
                        0
                             0
                                   0
 14
             0
                  0
                        0
                             0
                                   0
 25
             0
                        0
                  0
                             0
                                   0
 26
             0
                  0
                        0
                             0
             0
 27
                  0
                        0
                             0
                                   0
             0
                        0
                             0
 5
                  0
                                   0
 8
             0
                  0
                        0
                             0
                                   0
 11
             0
                  0
                        0
                             0
 28
             0
                  0
                        0
                             0
                                   0
END IWAT-PARM1
IWAT-PARM2
               IWATER input info: Part 2
 <PLS >
                                                   * * *
                                              RETSC
               LSUR
                       SLSUR \
                                    NSUR
                          0.01
                400
                                     0.1
                                                0.1
  1
  2
                400
                          0.05
                                      0.1
                                                0.08
  4
                400
                          0.01
                                      0.1
                                                0.1
 14
                400
                          0.01
                                      0.1
                                                0.1
 25
                400
                          0.01
                                      0.1
                                                0.1
                          0.01
                400
 26
                                      0.1
                                                0.1
 27
                400
                          0.1
                                      0.1
                                                0.05
  5
                400
                          0.01
                                      0.1
                                                0.1
  8
                400
                          0.01
                                      0.1
                                                0.1
 11
                400
                          0.01
                                      0.1
                                                0.1
 28
                400
                          0.01
                                      0.1
                                                 0.1
END IWAT-PARM2
IWAT-PARM3
               IWATER input info: Part 3
 <PLS >
  # - # ***PETMAX
                     PETMIN
  1
                  0
                  0
                             0
                             0
  4
                  0
                             0
 14
                  0
 25
                  0
                             0
 26
                  0
                             0
 27
                  0
                             0
                             0
  5
                  0
                             0
  8
                  0
 11
                  Ω
                             0
 28
END IWAT-PARM3
IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
       # *** RETS
                         SURS
  1
                  0
                             0
  2
                  0
                             0
  4
                  0
                             0
 14
```

25		0	0
26		0	0
27		0	0
5		0	0
8		0	0
11		0	0
28		0	0
END	IWAT-STATE1		

END IMPLND

END THE END					
SCHEMATIC					
<-Source->	<area/>	<-Targe	t->	MBLK	* * *
<name> #</name>	<-factor->	<name></name>	#	Tbl#	* * *
Basin 1***					
PERLND 34	1.327	RCHRES	1	2	
PERLND 31	1.203	RCHRES	1	2	
IMPLND 1	0.178	RCHRES	1	5	
IMPLND 2	2.616	RCHRES	1	5	
IMPLND 4	0.844	RCHRES	1	5	
IMPLND 14	0.182	RCHRES	1	5	
Lateral Basin 1***					
PERLND 50	0.1394	PERLND	51	30	
PERLND 50	0.1394	PERLND	51	34	
PERLND 50	0.1394	PERLND	51	38	
Lateral I Basin 1***	\rightarrow				
IMPLND 25	0.0459	PERLND	65	50	
Lateral Basin 10***			0.0		
PERLND 72	0.0125	PERLND	69	30	
PERLND 72	0.0125	PERLND	69	34	
PERLND 72	0.0125	PERLND	69	38	
Lateral I Basin 2***	10.012	I LICLICE	0,5	30	
IMPLND 26	0.0165	PERLND	65	50	
CJ Dens***	() (0.0103	I LIKLIND	05	30	
PERLND 31	0.522	RCHRES	2	2	
PERLND 31	0.522	RCHRES	2	3	
IMPLND 1	0.38	RCHRES	2	5	
IMPLND 4	0.413	RCHRES	2	5 5	
IMPLND 5	0.096	RCHRES	2	5	
IMPLND 8	0.083	RCHRES	2	5	
IMPLND 11	0.034	RCHRES	2	5	
IMPLND 14	0.057	RCHRES	2	5	
Basin 3***	0.057	KCHKES	4	5	
PERLND 31	1.119	DCHDEC	3	2	
	1.119	RCHRES	3	3	
	0.992	RCHRES	3	5	
IMPLND 1 IMPLND 4	0.372	RCHRES RCHRES	3	5 5	
IMPLND 5	0.372		3	5	
IMPLND 8	0.197	RCHRES RCHRES	3	5 5	
	0.263	KCHKES	3	5	
	0 729	DOMEC	1	2	
PERLND 32 PERLND 32	0.728	RCHRES	4 4	2 3	
	0.728	RCHRES		5 5	
IMPLND 2 Basin 2B***	2.336	RCHRES	4	5	
	0 776	DOUDEG	_	2	
PERLND 32		RCHRES	5	2	
PERLND 32	0.776	RCHRES		3 5	
IMPLND 2	2.932	RCHRES	5	5	
Lateral Basin 3***	1 542	DED1.11D		2.0	
PERLND 65	1.543	PERLND		30	
PERLND 65	1.543	PERLND			
PERLND 65	1.543	PERLND	66	38	
Lateral I Basin 3***	0 000=				
IMPLND 27	0.0025	PERLND	67	50	
Lateral Basin 4***					
PERLND 66	0.198	PERLND			
PERLND 66	0.198	PERLND			
PERLND 66	0.198	PERLND	67	38	
Lateral I Basin 4***					
IMPLND 28	0.0053	PERLND	69	50	
Lateral Basin 5***					

PERLND 67		5.7512	חוא זמיזת	69	30		
PERLND 67		5.7512	PERLND PERLND	69	34		
PERLND 67		5.7512	PERLND	69	38		
Lateral Basin	6***	5.7512	FERTIND	0,5	30		
PERLND 68		0.0238	PERLND	67	30		
PERLND 68		0.0238	PERLND	67	34		
PERLND 68		0.0238	PERLND	67	38		
Lateral Basin	8***	0.0250		0.			
PERLND 70		0.0908	PERLND	69	30		
PERLND 70		0.0908	PERLND	69	34		
PERLND 70		0.0908	PERLND	69	38		
Lateral Basin	9***						
PERLND 71		0.0558	PERLND	69	30		
PERLND 71		0.0558	PERLND	69	34		
PERLND 71		0.0558	PERLND	69	38		
Lateral Basin	11***						
PERLND 73		0.0487	PERLND	69	30		
PERLND 73		0.0487	PERLND	69	34		
PERLND 73		0.0487	PERLND	69	38		
Lateral Basin	2***						
PERLND 51		2.31	COPY	501	12		
PERLND 51		2.31	COPY	501	13		
PERLND 51		2.31	COPY	501	14		
Lateral Basin	1 7***						
PERLND 69		16.852	COPY	502	12		
PERLND 69		16.852	COPY	502	13		
PERLND 69		16.852	COPY	502	14		
*****Routing	*****	///					
PERLND 50		0.322	COPY	1	12		
PERLND 50	<	0.322	COPY	1	13		
PERLND 50	`	0.322	COPY	1	14		
RCHRES 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	RCHRES	6	6		
RCHRES 6		.4329	PERLND	51	63		
RCHRES 6		>	COPY	1	17		
RCHRES 6		.0593	PERLND	69	66		
		.0000					
RCHRES 6			COPY	2	18		
PERLND 67		96.92		2 2	18 12		
PERLND 67 PERLND 67		96.92 96.92	COPY COPY COPY	2 2 2	18 12 13		
PERLND 67 PERLND 67 PERLND 67		96.92 96.92 96.92	COPY COPY	2 2 2 2	18 12 13 14		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2		96.92 96.92	COPY COPY COPY COPY PERLND	2 2 2 2 69	18 12 13 14 60		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2		96.92 96.92 96.92 .0593	COPY COPY COPY COPY PERLND COPY	2 2 2 2 69 2	18 12 13 14 60 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70		96.92 96.92 96.92 .0593	COPY COPY COPY PERLND COPY COPY	2 2 2 2 69 2	18 12 13 14 60 16 12		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70		96.92 96.92 96.92 .0593 1.53	COPY COPY COPY PERLND COPY COPY COPY	2 2 2 69 2 2	18 12 13 14 60 16 12		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 70		96.92 96.92 96.92 .0593 1.53 1.53	COPY COPY COPY PERLND COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2	18 12 13 14 60 16 12 13		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 70 PERLND 71		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2 2	18 12 13 14 60 16 12 13 14		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 70 PERLND 71 PERLND 71		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 72		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 15 14 15 16 12 13		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 PERLND 73		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 15 4 15 16 12 13 14		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.94 0.09 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 15 60 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 15 60 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 60 16 16 16 16 16 16 16 16 16 16 16 16 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5 RCHRES 5 RCHRES 5		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 15 60 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 60 16 16 16 16 16 16 16 16 16 16 16 16 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5 RCHRES 5 RCHRES 5 RCHRES 5 RCHRES 5		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.99 0.593 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.82	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 60 16 16 16 16 16 16 16 16 16 16 16 16 16		
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 75 P		96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.09 .0593 0.21 0.21 0.21 0.21 0.82 0.82 0.82 0.82 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16	<-Member->	***
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 75 P	Grp> <-Member-><-	96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.09 .0593 0.21 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.82 0.82 0.593 .0593	COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16		***
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5 RCHRES 7 RCHRE	Grp> <-Member-><-	96.92 96.92 96.92 .0593 1.53 1.53 1.53 0.94 0.94 0.09 .0593 0.21 0.21 0.21 0.21 0.82 0.82 0.82 0.82 .0593	COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 6 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16	<-Member-> <name> # # TIMSER 1</name>	
PERLND 67 PERLND 67 PERLND 67 RCHRES 2 RCHRES 2 PERLND 70 PERLND 70 PERLND 71 PERLND 71 PERLND 71 IMPLND 28 RCHRES 3 RCHRES 3 RCHRES 3 PERLND 72 PERLND 72 PERLND 72 PERLND 73 PERLND 73 PERLND 73 PERLND 73 PERLND 73 RCHRES 4 RCHRES 4 RCHRES 5 RCHRES 7 RCHR	Grp> <-Member-><- <name> # #<-</name>	96.92 96.92 96.92 .0593 1.53 1.53 1.53 1.53 0.94 0.94 0.09 .0593 0.21 0.21 0.21 0.21 0.82 0.82 0.82 0.82 0.593 .0593	COPY COPY COPY PERLND COPY COPY COPY COPY COPY COPY COPY COPY	2 2 2 2 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 12 13 14 60 16 12 13 14 12 13 14 15 60 16 12 13 14 12 13 14 60 16 <-Grp>	<Name $>$ # #	

```
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
                                                                     * * *
   RCHRES
           Name Nexits Unit Systems Printer
   # - #<----- User T-series Engl Metr LKFG
                                                                     * * *
                                                                      * * *
                                      in out
        Trapezoidal Pond-014 1 1 1 28 0
CJ Dens Trapezoi-050 1 1 1 1 28 0
SSD Table 1 1 1 1 28 0
Trapezoidal Pond-059 1 1 1 1 28 0
Trapezoidal Pond-061 1 1 1 28 0
Flow Splitter 1-017 2 1 1 28 0
   2
                                                         1
   3
   6
 END GEN-INFO
  *** Section RCHRES***
 ACTIVITY
   <PLS > ********* Active Sections *********************
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
          1 0 0 0 0 0 0 0 0
                              0
   3
                                                    0
   4
   5
                                                     0
   6
 END ACTIVITY
 PRINT-INFO
   <PLS > *********** Print flags ************ PIVL PYR
   ******
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit
                               * *
                       2 2 2
2 2 2
2 2 2
   1
           0 1 0 0
   3
                                                           2 2 2 2 2
           0 1 0 0 4 0 0 0
   4
           0 1 0 0 4 0 0 0 0
   5
           0 1 0 0 4 5 0 0 0
 END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR KS DB50
                                                                     * * *
  <----><----><---->
                                                                     * * *
       1 0.01 0.0 0.0 0.5 0.0
2 0.01 0.0 0.0 0.5 0.0
3 0.01 0.0 0.0 0.5 0.0
4 0.01 0.0 0.0 0.5 0.0
5 0.11 0.0 0.0 0.5 0.0
6 0.01 0.0 0.0 0.0 0.5
   1
   2.
   3
 END HYDR-PARM2
   TR-INIT

RCHRES Initial conditions for each HYDR section

Thitial value of COLIND Initial value of OUTDGT
 HYDR-INIT
   # - # *** VOL Initial value of COLIND Initial value of OUT 
*** ac-ft for each possible exit for each possible exit
                   <--><--><--> *** <--><--><-->
  <---->
                       4.0 0.0 0.0 0.0 0.0
                                                  0.0 0.0 0.0 0.0 0.0
```

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

```
2
                  0
                             4.0
                                   0.0
                                        0.0
                                              0.0
                                                   0.0
                                                              0.0
                                                                    0.0
                                                                    0.0
    3
                  0
                             4.0
                                   0.0
                                        0.0
                                                   0.0
                                              0.0
                                                              0.0
    4
                  Ω
                             4.0
                                   0.0
                                        0.0
                                              0.0
                                                   0.0
                                                              0.0
                                                                    0.0
    5
                  n
                             4.0
                                   0.0
                                        0.0
                                              0.0
                                                   0.0
                                                              0.0
                                                                    0.0
                                   0.0
                                        0.0
                                                                    0.0
    6
                             4.0
                                              0.0
                                                   0.0
                                                              0.0
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  FTABLE
   91
                                   Outflow1 Velocity
                                                        Travel Time***
     Depth
                 Area
                          Volume
                       (acre-ft)
                                    (cfs)
                                                          (Minutes) * * *
      (ft)
              (acres)
                                             (ft/sec)
  0.00000
                        0.000000
                                   0.00000
             0.036731
  0.044444
             0.037222
                        0.001643
                                   0.091535
  0.088889
             0.037717
                        0.003309
                                   0.129450
             0.038215
                        0.004996
  0.133333
                                   0.158543
  0.177778
             0.038716
                        0.006706
                                   0.183070
  0.22222
             0.039220
                        0.008438
                                   0.204679
  0.266667
             0.039728
                        0.010192
                                   0.224214
  0.311111
             0.040239
                        0.011969
                                   0.242179
             0.040753
                        0.013769
                                   0.258900
  0.355556
  0.400000
             0.041271
                        0.015592
                                   0.274605
  0.44444
             0.041792
                        0.017437
                                   0.289459
                                   0.303587
  0.488889
             0.042316
                        0.019307
  0.533333
             0.042843
                        0.021199
                                   0.317087
  0.577778
             0.043374
                        0.023115
                                   0.330034
  0.622222
             0.043907
                        0.025054
                                   0.342493
             0.044444
                                   0.354514
  0.666667
                        0.027018
  0.711111
             0.044985
                        0.029005
                                   0.366140
  0.755556
             0.045528
                        0.031017
                                   0.377409
  0.800000
             0.046075
                        0.033052
                                   0.388350
             0.046625
  0.844444
                        0.035112
                                 70.398992
                                   0.409357
             0.047179
                        0.037197
  0.888889
  0.933333
             0.047736
                       0.039306
                                   0.419466
  0.977778
             0.048295
                        0.041440
                                   0.429337
  1.022222
             0.048859
                        0.043599
                                   0.438987
  1.066667
             0.049425
                        0.045783
                                   0.448428
             0.049995
                        0.047992
                                   0.457675
  1.111111
  1.155556
             0.050568
                        0.050227
                                   0.466739
  1.200000
             0.051144
                        0.052487
                                   0.475630
  1.244444
             0.051724
                        0.054773
                                   0.484358
  1.288889
             0.052306
                        0.057085
                                   0.492931
  1.333333
             0.052893
                        0.059423
                                   0.501358
  1.377778
             0.053482
                        0.061787
                                   0.509646
  1.422222
             0.054074
                        0.064177
                                   0.517800
             0.054670
                        0.066593
  1.466667
                                   0.525829
  1.511111
             0.055269
                        0.069037
                                   0.533737
  1,555556
             0.055872
                        0.071506
                                   0.541529
             0.056478
                        0.074003
                                   0.549210
  1.600000
  1.644444
             0.057086
                        0.076527
                                   0.556786
             0.057699
                        0.079077
  1.688889
                                   0.564260
  1.733333
             0.058314
                        0.081655
                                   0.571636
  1.777778
             0.058933
                        0.084261
                                   0.578919
             0.059555
                        0.086894
  1.822222
                                   0.591601
  1.866667
             0.060180
                        0.089555
                                   0.621493
             0.060808
                        0.092243
  1.911111
                                   0.660532
  1.955556
             0.061440
                        0.094960
                                   0.706148
             0.062075
  2.000000
                        0.097705
                                   0.757001
  2.044444
             0.062714
                        0.100478
                                   0.812209
  2.088889
             0.063355
                        0.103279
                                   0.871125
             0.064000
                        0.106110
                                   0.933241
  2.133333
  2.177778
             0.064648
                        0.108968
                                   0.998141
  2.22222
             0.065299
                        0.111856
                                   1.065476
  2.266667
             0.065954
                        0.114773
                                   1.134943
  2.311111
             0.066612
                        0.117719
                                   1.206274
  2.355556
             0.067273
                        0.120694
                                   1.279234
  2.400000
             0.067938
                        0.123699
                                   1.353606
```

```
2.444444
          0.068605
                     0.126733
                                1.429196
2.488889
          0.069276
                                1.505823
                     0.129797
          0.069950
                     0.132891
                                1.583321
2.533333
2.577778
          0.070628
                     0.136015
                                1.661536
          0.071309
                     0.139169
                                1.740320
2.622222
2.666667
          0.071993
                     0.142354
                                1.819538
2.711111
          0.072680
                     0.145568
                                1.899061
2.755556
          0.073370
                     0.148814
                                1.978766
2.800000
          0.074064
                     0.152090
                                 2.058537
2.844444
          0.074761
                      0.155398
                                 2.154060
2.888889
          0.075462
                     0.158736
                                 2.251469
          0.076165
2.933333
                     0.162105
                                 2.350726
2.977778
          0.076872
                     0.165506
                                 2.451794
          0.077582
3.022222
                     0.168939
                                 2.558514
3.066667
           0.078296
                     0.172403
                                 2.785002
          0.079012
3.111111
                     0.175898
                                 3.104602
3.155556
          0.079732
                     0.179426
                                 3.492248
3.200000
          0.080455
                     0.182986
                                 3.932124
3.244444
          0.081182
                     0.186578
                                 4.410345
3.288889
          0.081912
                     0.190202
                                 4.913098
          0.082645
3.333333
                     0.193859
                                 5.426196
3.377778
          0.083381
                     0.197548
                                 5.935227
3.422222
          0.084120
                     0.201270
                                 6.426033
3.466667
          0.084863
                     0.205026
                                 6.885402
3.511111
          0.085609
                     0.208814
                                 7.301933
3.555556
          0.086359
                     0.212635
                                7.667028
3.600000
          0.087111
                     0.216490
                                7.975995
          0.087867
3.644444
                     0.220379
                                 8.229264
3.688889
          0.088626
                     0.224301
                                 8.433678
3.733333
          0.089388
                     0.228257
                                 8.603882
3.777778
          0.090154
                                8.844724
                     0.232246
          0.090923
                     0.236270
                                9.025761
3.822222
3.866667
           0.091695
                     0.240329
                                 9.202070
                                 9.374010
3.911111
           0.092471
                      0.244421
          0.093249
                     0.248548
                               79.541896
3.955556
          0.094031
                     0.252710
                                9.706005
4.000000
END FTABLE
            1
FTABLE
 90
   Depth
               Area
                        Volume
                                Outflow1
                                           Outflow2
                                                      Velocity
                                                                 Travel Time***
                                                                    (Minutes) * * *
                    (acre-ft)
                                  (cfs)
                                              (cfs)
                                                       (ft/sec)
    (ft)
            (acres)
0.000000
          0.002296
                     0.000000
                                 0.00000
                                           0.00000
0.111111
           0.002296
                     0.000255
                                 0.002261
                                           0.144730
0.222222
          0.002296
                     0.000510
                                 0.003198
                                           0.204679
0.333333
          0.002296
                                 0.003917
                     0.000765
                                           0.250679
0.44444
          0.002296
                     0.001020
                                 0.004523
                                           0.289459
                                 0.005057
0.555556
          0.002296
                     0.001275
                                           0.323625
0.666667
           0.002296
                     0.001530
                                 0.005539
                                           0.354514
0.777778
          0.002296
                     0.001786
                                 0.005983
                                           0.382919
                                 0.006396
0.888889
          0.002296
                     0.002041
                                           0.409357
1,000000
          0.002296
                     0.002296
                                 0.006784
                                           0.434189
           0.002296
                     0.002551
                                 0.007151
                                           0.457675
1.111111
1.222222
          0.002296
                     0.002806
                                 0.007500
                                           0.480014
          0.002296
                     0.003061
                                 0.007834
                                           0.501358
1.333333
1.44444
          0.002296
                     0.003316
                                 0.008154
                                           0.521830
                                           0.541529
1.555556
          0.002296
                     0.003571
                                 0.008461
          0.002296
                     0.003826
                                 0.008758
1.666667
                                           0.560535
1.777778
          0.002296
                     0.004081
                                 0.009046
                                           0.578919
          0.002296
                     0.004336
                                 0.009324
                                           0.640076
1.888889
2.000000
          0.002296
                     0.004591
                                 0.009594
                                           0.757001
          0.002296
                                           0.901811
2.111111
                     0.004846
                                 0.009857
2.22222
          0.002296
                     0.005102
                                 0.010113
                                           1.065476
2.333333
          0.002296
                     0.005357
                                 0.010363
                                           1.242564
                                 0.010607
2.44444
          0.002296
                     0.005612
                                           1.429196
                                 0.010845
2.555556
          0.002296
                     0.005867
                                           1.622348
2.666667
          0.002296
                     0.006122
                                 0.011079
                                           1.819538
2.777778
           0.002296
                      0.006377
                                 0.011307
                                           2.018650
2.888889
          0.002296
                     0.006632
                                 0.011531
                                           2.251469
                                 0.011751
3.000000
          0.002296
                     0.006887
                                           2.502997
                                 0.011966
3.111111
          0.002296
                      0.007142
                                           3.104602
```

```
3.222222
          0.002296
                     0.007397
                                0.012178
                                           4.167297
                                           5.426196
          0.002296
                     0.007652
                                0.012386
3.333333
3.44444
          0.002296
                     0.007907
                                0.012591
                                           6.660413
3.555556
          0.002296
                     0.008162
                                0.012792
                                           7.667028
          0.002296
                     0.008418
                                0.012991
3.666667
                                           8.336862
3.777778
          0.002296
                     0.008673
                                0.013186
                                           8.844724
                                           9.288566
3.888889
          0.002296
                     0.008928
                                0.013379
4.000000
          0.002296
                     0.009183
                                0.013568
                                           9.706005
4.111111
          0.002296
                     0.009438
                                0.013756
                                           10.10132
4.22222
           0.002296
                     0.009693
                                0.013940
                                           10.47774
4.333333
          0.002296
                     0.009948
                                0.014122
                                           10.83777
4.44444
          0.002296
                                           11.18342
                     0.010203
                                0.014302
4.555556
          0.002296
                     0.010458
                                0.014480
                                           11.51631
          0.002296
4.666667
                     0.010713
                                0.014656
                                           11.83776
4.777778
           0.002296
                     0.010968
                                0.014829
                                           12.14891
          0.002296
                     0.011223
                                0.015000
                                           12.45068
4.888889
                                           12.74390
5.000000
          0.002296
                     0.011478
                                0.015170
5.111111
          0.002296
                     0.011733
                                0.015338
                                           13.02925
5.22222
          0.002296
                     0.011989
                                0.015503
                                           13.30736
5.333333
          0.002296
                     0.012244
                                0.015667
                                           13.57874
5.44444
          0.002296
                     0.012499
                                0.015830
                                           13.84387
5.55556
                                           14.10317
          0.002296
                     0.012754
                                0.015991
5.666667
          0.002296
                     0.013009
                                0.016150
                                           14.35702
5.777778
          0.002296
                     0.013264
                                0.016307
                                           14.60573
5.888889
          0.002296
                     0.013519
                                0.016463
                                           14.84963
6.000000
          0.002296
                     0.013774
                                0.016618
                                           15.08897
6.111111
          0.002296
                     0.014029
                                0.016771
                                           15.32401
                                           15.55497
          0.002296
                     0.014284
6.22222
                                0.016923
6.333333
          0.002296
                     0.014539
                                0.017073
                                           15.78207
          0.002296
                     0.014794
                                0.017222
6.44444
                                           16.00549
                                0.017370
6.555556
          0.002296
                     0.015049
                                           16.22540
          0.002296
                     0.015305
                                0.017517
                                           16.44197
6.666667
6.777778
          0.002296
                     0.015560
                                0.017662
                                           16.65534
6.888889
           0.002296
                     0.015815
                                0.017806
                                           16.86566
7.000000
          0.002296
                     0.016070
                               0.017949
                                           17.07305
7.111111
          0.002296
                     0.016325
                                0.018091
                                           17.27764
7.22222
          0.002296
                    0.016580
                                0.018232
                                           17.47952
7.333333
          0.002296
                     0.016835
                                           17.67882
                                0.018372
7.44444
          0.002296
                     0.017090
                                0.018510
                                           17.87563
7.555556
          0.002296
                     0.017345
                                0.018648
                                           18.07003
          0.002296
                     0.017600
7.666667
                                0.018785
                                           18.26213
7.77778
          0.002296
                     0.017855
                                0.018920
                                           18.45198
7.888889
          0.002296
                     0.018110
                                0.019055
                                           18.63968
8.000000
          0.002296
                     0.018365
                                0.019189
                                           18.82530
                     0.018621
8.111111
          0.002296
                                0.019321
                                           19.00890
8.22222
          0.002296
                     0.018876
                                0.019453
                                           19.19055
8.333333
          0.002296
                     0.019131
                                0.019584
                                           19.37031
8.44444
           0.002296
                     0.019386
                                0.019714
                                           19.54824
          0.002296
                     0.019641
                                0.019844
                                           19.72439
8.555556
8.666667
          0.002296
                     0.019896
                                0.019972
                                           19.89882
8.777778
          0.002296
                     0.020151
                                0.020100
                                           20.07157
8.88889
          0.002296
                     0.020406
                                0.020227
                                           20.24270
9.000000
          0.002296
                     0.020661
                                0.020353
                                           20.41225
9.111111
          0.002296
                     0.020916
                                0.205392
                                           20.58025
9.22222
          0.002296
                     0.021171
                                0.389753
                                           20.74676
9.333333
          0.002296
                     0.021426
                                0.475336
                                           20.91182
9.44444
          0.002296
                     0.021681
                                0.545787
                                           21.07545
9.555556
          0.002296
                     0.021937
                                0.607870
                                           21.23770
9.666667
          0.002296
                     0.022192
                                0.664008
                                           21.39860
9.777778
          0.002296
                     0.022447
                                0.715642
                                           21.55819
9.888889
          0.002296
                     0.022702
                                0.763709
                                           21.71649
END FTABLE
             6
FTABLE
             2
 91
                       Volume
                                Outflow1 Velocity
                                                     Travel Time ***
   Depth
               Area
            (acres)
                    (acre-ft)
                                 (cfs)
                                          (ft/sec)
                                                       (Minutes) * * *
    (ft)
0.000000
          0.022779
                     0.000000
                                0.000000
                     0.001279
0.055556
          0.023264
                                0.028883
          0.023753
                     0.002585
                                0.040847
0.111111
                                0.050027
0.166667
          0.024248
                     0.003918
```

```
0.22222
          0.024748
                     0.005279
                                0.057766
                                0.064584
0.277778
          0.025253
                     0.006668
          0.025763
0.333333
                     0.008085
                                0.070748
0.388889
          0.026279
                     0.009531
                                0.076417
          0.026799
                     0.011005
0.44444
                                0.081693
0.500000
          0.027324
                     0.012509
                                0.086649
0.555556
          0.027855
                     0.014042
                                0.091336
                                0.095794
0.611111
          0.028391
                     0.015604
0.666667
          0.028931
                     0.017196
                                0.100053
0.722222
           0.029477
                     0.018819
                                0.104139
0.777778
          0.030028
                     0.020472
                                0.108070
0.833333
          0.030584
                     0.022155
                                0.111863
0.888889
          0.031145
                     0.023870
                                0.115531
0.944444
          0.031712
                     0.025616
                                0.119087
1.000000
           0.032283
                     0.027394
                                0.122540
1.055556
          0.032860
                     0.029203
                                0.125898
1.111111
          0.033441
                     0.031045
                                0.129168
1.166667
          0.034028
                     0.032919
                                0.132358
          0.034620
                     0.034826
1.222222
                                0.135473
1.277778
          0.035216
                     0.036766
                                0.138517
          0.035818
1.333333
                     0.038739
                                0.141497
1.388889
          0.036425
                     0.040746
                                0.144414
1.444444
          0.037038
                     0.042786
                                0.147274
1.500000
          0.037655
                     0.044861
                                0.150080
1.555556
          0.038277
                     0.046970
                                0.152834
          0.038905
                     0.049114
                                0.155539
1.611111
1.666667
          0.039537
                     0.051293
                                0.158198
1.722222
          0.040175
                     0.053508
                                0.160813
1.777778
          0.040818
                     0.055757
                                0.163386
1.833333
          0.041466
                     0.058043
                                0.165919
                                0.168415
          0.042119
1.888889
                     0.060365
1.944444
          0.042777
                     0.062723
                                0.170873
2.000000
          0.043440
                     0.065118
                                0.173297
2.055556
          0.044108
                      0.067550
                                0.186468
          0.044782
2.111111
                     0.070019
                               70.208194
          0.045460
                     0.072526
                                0.235130
2.166667
          0.046144
                     0.075070
                                0.266005
2.22222
                     0.07/7653
2.277778
          0.046833
                                0.300049
2.333333
          0.047526
                     0.080274
                                0.336716
2.388889
          0.048225
                     0.082934
                                0.375588
2.44444
          0.048929
                     0.085633
                                0.416328
2.500000
          0.049638
                     0.088371
                                0.458652
2.555556
          0.050353
                     0.091148
                                0.502317
2.611111
          0.051072
                     0.093965
                                0.547110
2.666667
          0.051796
                     0.096823
                                0.592841
          0.052526
                     0.099721
                                0.639338
2.722222
2.777778
          0.053261
                     0.102659
                                0.686445
2.833333
           0.054000
                     0.105639
                                0.734018
          0.054745
                                0.781924
2.888889
                     0.108659
2.944444
          0.055495
                     0.111722
                                0.830039
3,000000
          0.056250
                     0.114826
                                0.878245
3.055556
          0.057010
                     0.117972
                                0.936465
3.111111
          0.057775
                     0.121160
                                0.996168
          0.058546
                     0.124391
3.166667
                                1.057317
3.22222
          0.059321
                     0.127665
                                1.119876
3.277778
          0.060102
                     0.130983
                                1.183814
           0.060887
                     0.134344
3.333333
                                1.249100
3.388889
          0.061678
                     0.137748
                                1.315705
          0.062474
                     0.141197
                                1.753851
3.44444
3.500000
          0.063275
                     0.144690
                                1.844582
3.555556
          0.064081
                     0.148228
                                1.936961
3.611111
          0.064892
                     0.151810
                                2.030957
3.666667
          0.065708
                     0.155438
                                2.126544
          0.066530
                                2.223694
3.722222
                     0.159111
3.777778
          0.067356
                     0.162830
                                2.322382
3.833333
           0.068188
                     0.166595
                                 2.422583
3.888889
           0.069024
                      0.170407
                                 2.524275
3.944444
          0.069866
                     0.174265
                                2.627436
          0.070713
                     0.178170
                                2.732044
4.000000
4.055556
          0.071565
                     0.182122
                                2.872469
```

```
4.111111
           0.072422
                      0.186122
                                 3.125264
           0.073284
4.166667
                      0.190169
                                3.440530
           0.074151
                      0.194264
                                3.784790
4.22222
4.277778
           0.075024
                      0.198408
                                 4.123963
           0.075901
                      0.202600
4.333333
                                 4.425520
4.388889
           0.076784
                      0.206842
                                 4.664787
           0.077671
                      0.211132
                                 4.833535
4.44444
                                 4.950246
4.500000
           0.078564
                      0.215472
4.555556
           0.079462
                      0.219862
                                 5.096106
4.611111
           0.080365
                      0.224301
                                 5.212280
4.666667
           0.081273
                      0.228791
                                 5.323343
           0.082186
4.722222
                      0.233332
                                 5.429923
4.777778
           0.083104
                      0.237923
                                 5.532527
4.833333
           0.084028
                      0.242566
                                 5.631572
4.888889
           0.084956
                      0.247260
                                 5.727410
           0.085890
4.944444
                      0.252005
                                5.820336
           0.086829
5.000000
                      0.256803
                                5.910602
END FTABLE
             2
             3
FTABLE
 37
                                                     Travel Time ***
   Depth
               Area
                        Volume
                                Outflow1 Velocity
                                                        (Minutes) * * *
                     (acre-ft)
                                           (ft/sec)
    (ft)
            (acres)
                                  (cfs)
0.000000
           0.058000
                     0.000000
                                 0.000000
0.170000
           0.058000
                      0.005193
                                 0.044755
0.330000
           0.058000
                      0.011161
                                 0.062356
           0.058000
0.500000
                      0.017609
                                 0.076754
           0.058000
0.670000
                      0.024425
                                 0.088850
           0.058000
                      0.031543
0.830000
                                 0.098891
1.000000
           0.058000
                      0.038915
                                 0.108547
1.170000
           0.058000
                      0.046504
                                 0.117412
1.330000
           0.058000
                                0.125183
                      0.054281
1.500000
           0.058000
                      0.062221
                                0.132943
1.670000
           0.058000
                      0.070301
                                 0.140274
1.830000
           0.058000
                      0.078501
                                 0.146840
           0.058000
2.000000
                      0.086804
                               70.153509
2.170000
           0.058000
                      0.095192
                                0.159900
2.330000
           0.058000
                     0.103651
                                 0.165690
2.500000
           0.058000
                     0.112165
                                 0.171628
2.670000
           0.058000
                      0.120721
                                 0.177368
2.830000
           0.058000
                      0.129303
                                 0.182605
                      0.137899
3.000000
           0.058000
                                0.188009
3.170000
           0.058000
                      0.146495
                                 0.193263
3.330000
           0.058000
                      0.155077
                                 0.198080
3.500000
           0.058000
                      0.163632
                                0.203073
           0.058000
                                0.207947
3.670000
                      0.172146
3.830000
           0.058000
                      0.180605
                                0.236899
4.000000
           0.058000
                      0.188994
                                 0.347589
4.170000
           0.058000
                      0.197297
                                 0.495645
           0.058000
                      0.205497
                                 0.654966
4.330000
4.500000
           0.058000
                      0.213577
                                0.836956
4.670000
           0.058000
                      0.221516
                                1.025852
4.830000
           0.058000
                      0.229293
                                1.225254
5.000000
           0.058000
                      0.236883
                                1.471327
5.170000
           0.058000
                      0.244255
                                 2.581571
           0.058000
5.330000
                      0.251373
                                 4.323604
5.500000
           0.058000
                      0.258189
                                 6.122265
           0.058000
5.670000
                      0.264636
                                 7.256359
                                 7.946961
5.830000
           0.058000
                      0.270604
                     0.275798
           0.058000
                                8.581160
6.000000
END FTABLE
             3
FTABLE
 91
                                                     Travel Time ***
   Depth
               Area
                        Volume
                                Outflow1 Velocity
                                                        (Minutes) * * *
    (ft)
            (acres)
                     (acre-ft)
                                  (cfs)
                                           (ft/sec)
0.00000
           0.036731
                      0.000000
                                 0.249423
0.044444
           0.037222
                      0.001643
                                 0.265688
0.088889
           0.037717
                      0.003309
                                 0.281014
0.133333
           0.038215
                      0.004996
                                0.295546
                      0.006706
0.177778
           0.038716
                                 0.309397
0.22222
           0.039220
                      0.008438
                                 0.322653
```

```
0.266667
          0.039728
                     0.010192
                                 0.335386
                                 0.347653
0.311111
          0.040239
                     0.011969
0.355556
          0.040753
                     0.013769
                                 0.359501
0.400000
          0.041271
                     0.015592
                                 0.370971
          0.041792
                     0.017437
0.44444
                                 0.382097
0.488889
          0.042316
                     0.019307
                                 0.392908
0.533333
          0.042843
                     0.021199
                                 0.403430
0.577778
          0.043374
                     0.023115
                                 0.413684
          0.043907
                     0.025054
                                 0.423690
0.622222
0.666667
           0.044444
                     0.027018
                                 0.433465
0.711111
          0.044985
                     0.029005
                                 0.443024
0.755556
          0.045528
                     0.031017
                                 0.452381
0.800000
          0.046075
                     0.033052
                                 0.461549
0.844444
          0.046625
                     0.035112
                                 0.470538
0.888889
           0.047179
                      0.037197
                                 0.479359
          0.047736
                     0.039306
0.933333
                                 0.488020
0.977778
          0.048295
                     0.041440
                                 0.496530
                                 0.504897
          0.048859
                     0.043599
1.022222
          0.049425
                     0.045783
                                 0.513127
1.066667
1.111111
          0.049995
                     0.047992
                                 0.521228
                     0.050227
1.155556
          0.050568
                                 0.529204
                                 0.537062
1.200000
          0.051144
                     0.052487
1.244444
          0.051724
                     0.054773
                                 0.544807
1.288889
          0.052306
                     0.057085
                                 0.552443
1.333333
          0.052893
                     0.059423
                                 0.559975
1.377778
          0.053482
                     0.061787
                                 0.567407
1.422222
          0.054074
                     0.064177
                                 0.574742
1.466667
          0.054670
                     0.066593
                                 0.581986
1.511111
          0.055269
                     0.069037
                                 0.589140
1.555556
          0.055872
                     0.071506
                                 0.596209
                     0.074003
          0.056478
                                0.603194
1.600000
1.644444
          0.057086
                     0.076527
                                0.610100
1.688889
           0.057699
                     0.079077
                                 0.620375
1.733333
           0.058314
                      0.081655
                                 0.642041
          0.058933
1.777778
                     0.084261
                               70.669772
          0.059555
                     0.086894
                                0.701845
1.822222
1.866667
          0.060180
                     0.089555
                                 0.737371
          0.060808
                     0.092243
1.911111
                                 0.775763
1.955556
          0.061440
                     0.094960
                                 0.816593
2.000000
          0.062075
                     0.097705
                                 0.859525
          0.062714
                     0.100478
2.044444
                                 0.904284
2.088889
          0.063355
                     0.103279
                                 0.950638
2.133333
          0.064000
                     0.106110
                                 0.998389
2.177778
          0.064648
                     0.108968
                                1.047359
                     0.111856
2.22222
          0.065299
                                1.097392
2.266667
          0.065954
                     0.114773
                                1.148347
2.311111
          0.066612
                     0.117719
                                1.200093
2.355556
           0.067273
                     0.120694
                                 1.252514
2.400000
          0.067938
                     0.123699
                                 1.305499
2.44444
          0.068605
                     0.126733
                                1.358945
2.488889
           0.069276
                     0.129797
                                1.412757
2.533333
           0.069950
                     0.132891
                                1.466845
2.577778
           0.070628
                     0.136015
                                1.521123
          0.071309
2.622222
                     0.139169
                                1.575512
          0.071993
2.666667
                     0.142354
                                1.629933
2.711111
          0.072680
                     0.145568
                                1.694559
          0.073370
                     0.148814
                                 1.760580
2.755556
2.800000
          0.074064
                     0.152090
                                1.827810
2.844444
          0.074761
                     0.155398
                                1.896225
          0.075462
2.888889
                     0.158736
                                1.965803
          0.076165
2.933333
                     0.162105
                                 2.036522
2.977778
          0.076872
                     0.165506
                                 2.108363
3.022222
          0.077582
                     0.168939
                                 2.200074
          0.078296
3.066667
                     0.172403
                                 2.426285
                                 2.745613
          0.079012
                     0.175898
3.111111
3.155556
          0.079732
                     0.179426
                                 3.132993
3.200000
           0.080455
                      0.182986
                                 3.572608
3.244444
          0.081182
                     0.186578
                                 4.050573
           0.081912
                     0.190202
                                 4.553075
3.288889
3.333333
          0.082645
                     0.193859
                                 5.065927
```

```
3.377778
           0.083381
                      0.197548
                                 5.574717
                      0.201270
                                 6.065286
3.422222
           0.084120
3.466667
           0.084863
                      0.205026
                                 6.524422
3.511111
           0.085609
                      0.208814
                                 6.940726
                      0.212635
                                 7.305596
3.555556
           0.086359
3.600000
           0.087111
                      0.216490
                                 7.614344
3.644444
           0.087867
                      0.220379
                                 7.867396
3.688889
           0.088626
                      0.224301
                                 8.071598
3.733333
           0.089388
                      0.228257
                                 8.241592
3.777778
           0.090154
                      0.232246
                                 8.482230
3.822222
           0.090923
                      0.236270
                                 8.663064
3.866667
           0.091695
                      0.240329
                                 8.839175
           0.092471
                      0.244421
                                 9.010920
3.911111
3.955556
           0.093249
                      0.248548
                                 9.178613
4.000000
           0.094031
                      0.252710
                                 9.342533
END FTABLE
             4
             5
FTABLE
 91
                                Outflow1 Velocity
                                                     Travel Time***
   Depth
               Area
                        Volume
    (ft)
            (acres)
                     (acre-ft)
                                  (cfs)
                                           (ft/sec)
                                                        (Minutes) * * *
0.000000
           0.826446
                     0.000000
                                 0.250679
0.044444
           0.830488
                      0.036821
                                 0.266868
0.088889
           0.834534
                      0.073821
                                 0.282130
           0.838582
                      0.111002
                                 0.296607
0.133333
0.177778
           0.842634
                      0.148362
                                 0.310410
           0.846689
                      0.185902
                                 0.323625
0.22222
           0.850747
0.266667
                      0.223623
                                 0.336321
0.311111
           0.854809
                      0.261525
                                 0.348555
0.355556
           0.858874
                      0.299606
                                 0.360374
                                 0.371817
0.400000
           0.862942
                      0.337869
           0.867014
                      0.376312
0.44444
                                0.382919
0.488889
           0.871088
                      0.414937
                                0.393707
0.533333
           0.875166
                      0.453743
                                 0.404208
0.577778
           0.879247
                      0.492730
                                 0.414443
0.622222
           0.883332
                      0.531898
                               70.424431
                                 0.434189
           0.887420
                      0.571248
0.666667
0.711111
           0.891511
                     0.610780
                                 0.443733
           0.895605
0.755556
                      0.650493
                                 0.453075
0.800000
           0.899702
                      0.690389
                                 0.462229
           0.903803
0.844444
                      0.730467
                                 0.471206
           0.907907
                      0.770727
0.888889
                                 0.480014
0.933333
           0.912015
                      0.811170
                                 0.488663
0.977778
           0.916125
                      0.851795
                                 0.497163
1.022222
           0.920239
                      0.892603
                                 0.505519
1.066667
                                 0.513739
           0.924356
                      0.933594
                                 0.521830
           0.928477
                      0.974769
1.111111
1.155556
           0.932600
                      1.016126
                                 0.529797
1.200000
           0.936727
                      1.057666
                                 0.537647
           0.940857
1.244444
                      1.099391
                                 0.545383
1.288889
           0.944991
                      1.141298
                                 0.553011
1.333333
           0.949128
                      1.183390
                                 0.560535
1.377778
           0.953268
                      1.225665
                                 0.567960
1.422222
           0.957411
                      1.268125
                                 0.575289
1.466667
           0.961557
                      1.310769
                                 0.582526
1.511111
           0.965707
                      1.353597
                                 0.589673
1.555556
           0.969860
                      1.396609
                                 0.596736
           0.974017
                      1.439806
1.600000
                                 0.603715
1.644444
           0.978176
                      1.483189
                                 0.610615
           0.982339
1.688889
                      1.526756
                                 0.620981
1.733333
           0.986505
                      1.570508
                                 0.642711
1.777778
           0.990674
                      1.614445
                                 0.670481
                      1.658568
1.822222
           0.994847
                                 0.702585
1.866667
           0.999023
                      1.702876
                                 0.738134
                      1.747370
           1.003202
                                 0.776546
1.911111
1.955556
           1.007385
                      1.792049
                                 0.817392
2.000000
           1.011570
                      1.836915
                                 0.860337
2.044444
           1.015759
                      1.881967
                                 0.905107
2.088889
           1.019951
                      1.927205
                                 0.951472
           1.024147
                      1.972629
                                 0.999230
2.133333
2.177778
          1.028346
                      2.018240
                                 1.048207
```

```
2.22222
            1.032548
                       2.064038
                                 1.098245
            1.036753
                       2.110022
                                 1.149204
  2.266667
  2.311111
            1.040962
                       2.156194
                                 1.200954
  2.355556
            1.045173
                       2.202552
                                 1.253377
  2.400000
            1.049388
                       2.249098
                                 1.306363
  2.44444
            1.053607
                       2.295831
                                 1.359810
                                 1.413622
                      2.342752
  2.488889
            1.057828
                      2.389861
                                 1.467709
            1.062053
  2.533333
  2.577778
            1.066281
                       2.437157
                                 1.521986
  2.622222
            1.070513
                       2.484641
                                 1.576372
  2.666667
            1.074747
                       2.532314
                                 1.630791
  2.711111
            1.078985
                       2.580174
                                 1.695513
  2.755556
            1.083227
                       2.628224
                                 1.761542
  2.800000
            1.087471
                       2.676461
                                 1.828780
  2.844444
            1.091719
                       2.724888
                                 1.897204
            1.095970
                       2.773503
  2.888889
                                 1.966789
  2.933333
            1.100224
                       2.822307
                                 2.037516
  2.977778
            1.104482
                       2.871301
                                 2.109365
            1.108742
                       2.920484
                                 2.201078
  3.022222
  3.066667
            1.113006
                       2.969856
                                 2.427286
            1.117274
                       3.019418
                                 2.746612
  3.111111
            1.121544
  3.155556
                       3.069169
                                 3.133989
  3.200000
            1.125818
                      3.119111
                                 3.573602
            1.130095
                       3.169242
  3.244444
                                 4.051565
                       3.219564
  3.288889
            1.134376
                                 4.554064
                      3.270075
  3.333333
            1.138659
                                 5.066914
  3.377778
            1.142946
                       3.320778
                                 5.575702
            1.147236
  3.422222
                       3.371671
                                 6.066268
  3.466667
            1.151530
                       3.422754
                                 6.525403
                                 6.941704
  3.511111
            1.155827
                       3.474029
                       3.525495
  3.555556
            1.160127
                                 7.306572
            1.164430
                       3.577151
                                7.615318
  3.600000
                                 7.868368
  3.644444
            1.168736
                       3.629000
                                 8.072567
  3.688889
            1.173046
                       3.681039
  3.733333
            1.177359
                       3.733270 8.242560
  3.777778
            1.181675
                       3.785693
                                 8.483196
                      3.838308
            1.185995
                                 8.664028
  3.822222
                       3.891115
  3.866667
            1.190318
                                 8.840137
  3.911111
            1.194644
                       3.944114
                                 9.011880
                       3.997306
  3.955556
            1.198973
                                 9.179572
                       4.050690
                                 9.343490
            1.203306
  4.000000
  END FTABLE 5
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
                                                                                 * * *
<Name>
         # <Name> # tem strg<-factor->strg <Name>
                                                      #
                                                         #
                                                                    <Name> # #
MDM
         2 PREC
                     ENGL
                             1.3
                                             PERLND
                                                       1 999 EXTNL
                                                                    PREC
                                                      1 999 EXTNL
WDM
         2 PREC
                     ENGL
                             1.3
                                             IMPLND
                                                                    PREC
         1 EVAP
                                                      1 999 EXTNL
                                                                    PETINP
MDM
                     ENGL
                             0.8
                                             PERLND
                                                      1 999 EXTNL
                                                                    PETINP
WDM
         1 EVAP
                     ENGL
                             0.8
                                             IMPLND
WDM
         1 EVAP
                     ENGL
                             0.8
                                             RCHRES
                                                      1
                                                             EXTNL
                                                                    POTEV
WDM
         1 EVAP
                     ENGL
                             0.8
                                             RCHRES
                                                       4
                                                             EXTNL
                                                                    POTEV
                                                       5
WDM
         1 EVAP
                     ENGL
                             0.8
                                             RCHRES
                                                             EXTNL
                                                                    POTEV
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
                   <Name> # #<-factor->strg <Name>
                                                      # <Name>
                                                                  tem strg strg***
<Name>
                                  48.4
                                                    701 FLOW
COPY
         1 OUTPUT MEAN
                          1 1
                                             WDM
                                                                  ENGL
                                                                             REPL
COPY
       501 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                    801 FLOW
                                                                  ENGL
                                                                             REPL
                                                    702 FLOW
COPY
         2 OUTPUT MEAN
                          1 1
                                  48.4
                                             WDM
                                                                  ENGL
                                                                             REPL
                          1 1
       502 OUTPUT MEAN
                                  48.4
                                                    802 FLOW
COPY
                                             WDM
                                                                  ENGL
                                                                             REPL
END EXT TARGETS
MASS-LINK
                                                             <-Grp> <-Member->***
<Volume>
           <-Grp> <-Member-><--Mult-->
                                             <Target>
                   <Name> # #<-factor->
                                                                    <Name> # #***
<Name>
                                             <Name>
  MASS-LINK
```

PERLND PWATER END MASS-LINK	SURO 2		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK			0.083333	RCHRES	INFLOW	IVOL
MASS-LINK RCHRES ROFLOW END MASS-LINK	6 6			RCHRES	INFLOW	
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12		0.083333	СОРУ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13		0.083333	СОРУ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	14 AGWO 14		0.083333	СОРУ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15		0.083333	СОРУ	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16			СОРУ	INPUT	MEAN
MASS-LINK RCHRES OFLOW END MASS-LINK	17 OVOL 17	1	>	СОРУ	INPUT	MEAN
MASS-LINK RCHRES OFLOW END MASS-LINK	18 OVOL 18	2		СОРУ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK				PERLND	EXTNL	SURLI
MASS-LINK PERLND PWATER END MASS-LINK	IFWO			PERLND	EXTNL	IFWLI
MASS-LINK PERLND PWATER END MASS-LINK	AGWO			PERLND	EXTNL	AGWLI
MASS-LINK IMPLND IWATER END MASS-LINK	SURO			PERLND	EXTNL	SURLI
MASS-LINK RCHRES ROFLOW END MASS-LINK			12.00000	PERLND	EXTNL	SURLI
MASS-LINK RCHRES OFLOW END MASS-LINK	OVOL	1	12.00000	PERLND	EXTNL	SURLI
MASS-LINK RCHRES OFLOW END MASS-LINK	OVOL	2	12.00000	PERLND	EXTNL	SURLI

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2025; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

