9. Traffic Study

Camas Heights

Transportation Impact Study Camas, Washington

Date:

October 26, 2021

Prepared for:

Lennar Northwest

Prepared by:

Jennifer Danziger, PE

Melissa Webb, PE

Digitally signed by Jennifer Danziger Date: 2021.10.26 17:35:17-07'00'

Executive Summary	3
Project Description Introduction Location Description Transit Pedestrian and Bicycle Facilities	5 5 5 8 8
Site Trips Trip Generation Trip Distribution	11 11
Traffic Volumes Existing Conditions Background Conditions Buildout Conditions Planned Improvements	13 13 15 15 15
Safety Analysis Crash History Review Sight Distance Evaluation Access Spacing Warrant Analysis	19 19 21 21 22
Operational Analysis Intersection Capacity Analysis Performance Standards Delay & Capacity Analysis	24 24 24 24
Conclusions	29

List of Appendices

Appendix A – Site Information

Appendix B – Volumes

Appendix C - Safety

Appendix D - Operations

List of Figures

Figure 1: Project Location (image from Clark County MapsOnline)	6
Figure 2: Vicinity Map	10
Figure 3: Trip Distribution & Assignment	12
Figure 4: Existing Traffic Volumes	14
Figure 5: Year 2025 Background Conditions	17
Figure 6: Year 2025 Buildout Conditions	18
List of Tables	
Table 1: Vicinity Roadway Descriptions	6
Table 2: Study Intersection Descriptions	7
Table 3: Net Trip Generation Summary	11
Table 4: Crash Type Summary	20
Table 5: Crash Severity and Rate Summary	20
Table 6: Summary of Preliminary Traffic Signal Warrant Evaluation	22
Table 7: Capacity Analysis Summary	25
Table 8: Operations Comparision with Improvements at NE 58 th	
Street (SR 500)/NE 199 th Avenue	26
Table 9: Operations at NE 58 th Street (SR 500)/NE 199 th Avenue with	
Approved Subdivisions	26
Table 10: Operations with Planned Improvements at NE 13 th	
Street/NE 192 nd Avenue	27
Table 11: Operations with Restriping at NE Goodwin	
Road/NW Camas Meadows Drive	27
Table 12: Operations with Planned Improvements at NE 13 th	
Street/NE 192 nd Avenue	28

Executive Summary

- 1. The property located at 22630 NE 28th Street in Camas, Washington, has been proposed for development with up to 124 single-family homes. The existing home will be removed from the site. The 31.13-acre site abuts the north side of NE 28th Street between NE 232nd Avenue and NE Ingle Road.
- 2. Direct access will be taken from NE 28th Street. The site will also connect to an extension of N 87th Avenue which will allow for access to NE 28th Street via N Juniper Street.
- 3. The proposed development will result in a net increase of up to 123 dwelling units (DU). The trip generation calculations show that the proposed project is estimated to have a net increase in trip generation of 90 morning peak hour trips, 121 evening peak hour trips, and 1,220 daily trips.
- 4. No significant trends or crash patterns were identified at any of the study intersections.
- 5. The available sight lines exceed the 590-foot intersection sight distance recommendation.
- 6. Access spacing standards are met on the north side of NE 28th Street but the residential driveways on the south side will remain out of compliance.
- 7. The proposed development will include site frontage improvements consistent with a three-lane cross-section on NE 28th Street, thus providing a left-turn lane for the site access.
- 8. The proposed development will not meet the requirements for a right-turn lane at the site access.
- 9. The proposed development will not trigger the need for any new traffic signals compared with the background condition.
- 10. Four intersections in the study area were identified as exceeding the applicable agency standard:
 - Two of the intersections (NE 13th Street at NE 192nd Avenue and NE Goodwin Road/NE 28th Street at NE Ingle Road) have planned improvements with identified funding sources. With these improvements, the intersections will operate acceptably. No additional mitigation is necessary.
 - The intersection of NE 58th Street (SR 500) at NE 199th Avenue will exceed the Clark County operational threshold in both background and buildout conditions. A future roundabout has been identified as the preferred solution. Set up of a proportionate share costing methodology has been discussed but this project is not currently on any agency plans and no funding source has been identified. The impacts of the proposed development are minor compared with the background condition and, in the short term with only the approved subdivisions under construction, the intersection will function with moderate delays and below capacity. Therefore, no project-specific mitigation is recommended.
 - The northbound left-turn lane on NE Camas Meadows Drive at NE Goodwin Road will exceed the Camas threshold under background and buildout conditions, but demand will be well below capacity. Restriping NE Goodwin Road to provide a two-way, left-turn lane on between NW Friberg-Strunk Street and NW Camas Meadows Drive is recommended.
- 11. The intersection of NE 13th Street at NE 192nd Avenue has planned improvements that require a proportionate share contribution. The proposed Camas Heights development will contribute 26 evening (PM) peak hour trips to this intersection.

12. A roundabout at the intersection of NE 58th Avenue (SR 500) at NE 199th Avenue has been identified as the preferred improvement to address growing congestion. Should a proportionate share methodology be developed to fund future improvements, the proposed Camas Heights development will contribute 19 evening (PM) peak hour trips to this intersection.

Project Description

Introduction

The property located at 22630 NE 28th Street in Camas, Washington, has been proposed for development with up to 124 single-family homes. The existing single-family home on the site will be removed.

This report examines the traffic impacts of the proposed development on the transportation system in the vicinity of the project site. Based on correspondence with the Camas city engineer, this report conducts safety and capacity/level of service analyses at the following nine (9) intersections including the site access driveway:

- 1. NE 58th Street (SR 500) at NE 199th Avenue
- 2. NE 13th Street at NE 192nd Avenue
- 3. NE 13th Street/NE Goodwin Road at NE 202nd Avenue/NW Friberg-Strunk Street
- 4. NE Goodwin Road at NW Camas Meadows Drive
- 5. NE Goodwin Road/NE 28th Street at NE Ingle Road
- 6. NE 28th Street at N Juniper Street
- 7. NE 28th Street at Site Access
- 8. NE 28th Street at NE 232nd Avenue
- 9. SE Leadbetter Road at NE/SE Everett Street

All supporting data and calculations are included in the appendix to this report.

Location Description

The subject site is a 31.13-acre parcel, Property Identification Number 173157000, abutting the north side of NE 28th Street between NE 232nd Avenue and NE Ingle Road, as shown in Figure 1. Existing zoning is R-10 (Residential-10,000) which "is intended for single-family dwellings with densities of four to five dwellings per acre ... and an average lot size is ten thousand square feet."

The proposed development will remove the existing home on the site and construct up to 124 single-family homes. A direct access, shown as "C" Street in the site plan in Appendix A, will be taken from NE 28th Street. The site will also connect to an extension of N 87th Avenue from the adjacent development to the west. This connection will allow for access to NE 28th Street via N Juniper Street.

Figure 1 displays a vicinity map of the project site, with the project site outlined in blue. A site plan depicting the proposed project is provided in Appendix A.

Figure 1: Project Location (image from Clark County MapsOnline)

Vicinity Streets

The proposed development is expected to impact 14 roadways near the site. Table 1 provides a description of each of the vicinity roadways within the study area near the study intersections.

Table 1: Vicinity Roadway Descriptions

Street Name	Jurisdiction	Functional Classification	Cross- Section	Speed (MPH)	Curbs & Sidewalks	On-Street Parking	Bicycle Facilities
NE 58 th Street (SR 500)	WSDOT	State Route	2	Not Posted	None	None	None
NE 13 th Street	Clark County/ Camas	Collector/ Arterial	2-3	35	Partial	None	None
NE Goodwin Road	Camas	Arterial	2-3	50	Partial	None	Partial
NE 28 th Street	Camas/ Clark County	Arterial/ Rural Major Collector	2-3	50	Partial	None	None
SE Leadbetter Street	Camas	Arterial	2	40	Partial	None	None
NE 192 nd Avenue	Vancouver	Principal Arterial	2-3	40	Partial	None	None
NE 202 nd Avenue	Camas	Local	2	25	None	None	None

Table 1: Vicinity Roadway Descriptions

Street Name	Jurisdiction	Functional Classification	Cross- Section	Speed (MPH)	Curbs & Sidewalks	On-Street Parking	Bicycle Facilities
NW Friberg- Struck Road	Camas	Arterial	2-3	40	Both Sides	None	Both Sides
NW Camas Meadows Drive	Camas	Arterial	2-3	35	Partial	None	None
NE 199 th Avenue	Clark County	Rural Minor Collector	2	Not Posted	None	None	None
NE Ingle Road	City of Camas	Arterial	2-3	50	Partial	None	Partial
N Juniper Street	Camas	Local	2	Not Posted	Both Sides	None	None
NE 232 nd Avenue	Clark County/ Camas	Rural Major Collector/ Arterial	2	45	None	None	None
NE/SE Everett Street	Camas	Arterial	2-3	35	None	None	None

Study Intersections

Based on coordination with City of Camas staff, nine intersections were identified for analysis. A summarized description of the study intersections is provided in Table 2.

Table 2: Study Intersection Descriptions

	Intersection	Geometry	Traffic Control	Phasing/Stopped Approaches
1	NE 58 th Street (SR 500) at NE 199 th Avenue	Three-Legged	Stop-Controlled	NB Stop-Controlled
2	NE 13 th Street at NE 192 nd Avenue	Three-Legged	Traffic Signal	WB Protected SB Protected/Permitted Left
3	NE Goodwin Road at NW Friberg-Strunk Street	Four-Legged	Traffic Signal	EB Permitted/WB Protected Left NB/SB Permitted
4	NE Goodwin Road at NW Camas Meadows Drive	Three-Legged	Stop-Controlled	NWB Stop-Controlled
5	NE Goodwin Road/NE 28 th Street at NE Ingle Road	Three-Legged	Stop-Controlled	SEB Stop-Controlled
6	NE 28 th Street at N Juniper Street	Four-Legged	Stop-Controlled	SB Stop-Controlled NB Private Driveway
7	NE 28 th Street at Site Access (Future)	Three-Legged	Stop-Controlled	SB Stop-Controlled

Table 2: Study Intersection Descriptions

	Intersection	Geometry	Traffic Control	Phasing/Stopped Approaches
8	NE 28 th Street at NE 232 nd Avenue	Four-Legged	Stop-Controlled	NB/SB Stop-Controlled
9	SE Leadbetter Road at NE/SE Everett Street	Three-Legged	Stop-Controlled	SEB Stop-Controlled

A vicinity map showing the project site, vicinity streets, and study intersection configurations is shown in Figure 2 on page 10.

Transit

The study area does not have any fixed-route transit service at this time and C-Tran has no long-range plans to extend service. The closest C-Tran fixed service routes are Route 30 and Route 92:

- #30 Burton Route runs from downtown Vancouver to the Fisher's Landing Transit Center every day of the week. The closest stop to the study area is on NE 162nd Avenue at NE 18th Street almost four miles from the project site.
- C-Tran route 92 runs from the Fisher's Landing Transit Center through southern Camas along NW 6th Avenue and NE 3rd Avenue to Washougal. Service is available every day of the week. The closest stop to the study area is on NE 3rd Avenue at NE Franklin Street.

The C-Tran Camas Connector Dial-A-Ride service currently serves areas of the city south of Lacamas Lake. This service primarily operates by accepting telephone calls from riders traveling to/from a location inside a defined boundary. Outside of Camas, it has two morning, one afternoon, and one evening scheduled stop at Fisher's Landing Transit Center and Hiddenbrook Drive on SE 34th Street. The hours of operation are Monday through Friday from 5:30 to 9:15 AM and 2:00 to 7:00 PM.

Pedestrian and Bicycle Facilities

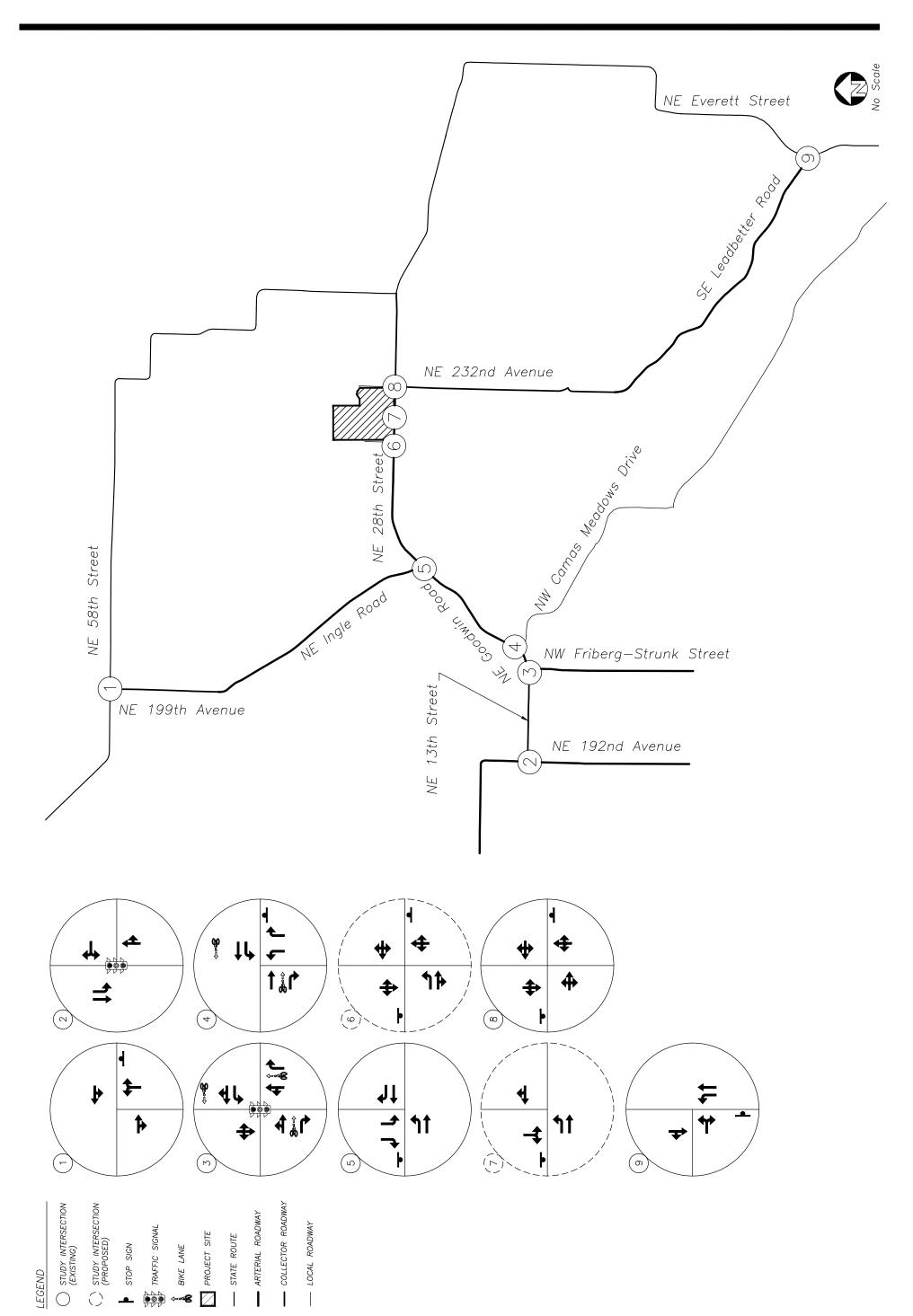
The street network surrounding the proposed development generally has no existing pedestrian or bicycle facilities. However, frontage improvements are required with development.

Segments of sidewalk have been constructed along NE 28th Street and NE Ingle Road. Eventually these segments will connect together as more development is proposed.

Segments of bike lanes have been constructed along NE Ingle Road and bike lanes or shoulders are present along segments of NE Goodwin Road. Other developments have widened NE 28th Street to provide three travel lanes but no bike lanes have been provided. Bike lanes may be added within redevelopment of lands on the south side of NE 28th Street.

Lacamas Lake Elementary School is located on the east side of NE 232nd Avenue approximately one mile south of NE 28th Street. Students from this elementary school generally attend Liberty Middle School and Camas High

Exhibit 7


School. The most direct route to these schools follows NE 232nd Avenue but NE 28th Street to SR 500 is another route option. Currently, none of these roadways have pedestrian or bicycle facilities suitable for students.

The location of the bus stop(s) that will serve these schools is currently unknown. The proposed development will include sidewalks that will enable students to access a bus stop within the development or one located on the north side of NE 28^{th} Street.

AAM YTINIDIV

Site Trips

Trip Generation

To estimate the number of trips that will be generated by the existing and proposed uses, trip equations from the *Trip Generation Manual*¹ were used. Specifically, data from land use code 210, Single-Family Detached Housing, was used to estimate site trip generation based on the number of dwelling units. Since the proposed development will remove the existing single-family home and construct up to 124 new single-family homes, the trip generation estimate shown in Table 3 is for the net increase of up to 123 dwelling units (DU). The detailed calculation is shown in Appendix A.

Table 3: Net Trip Generation Summary

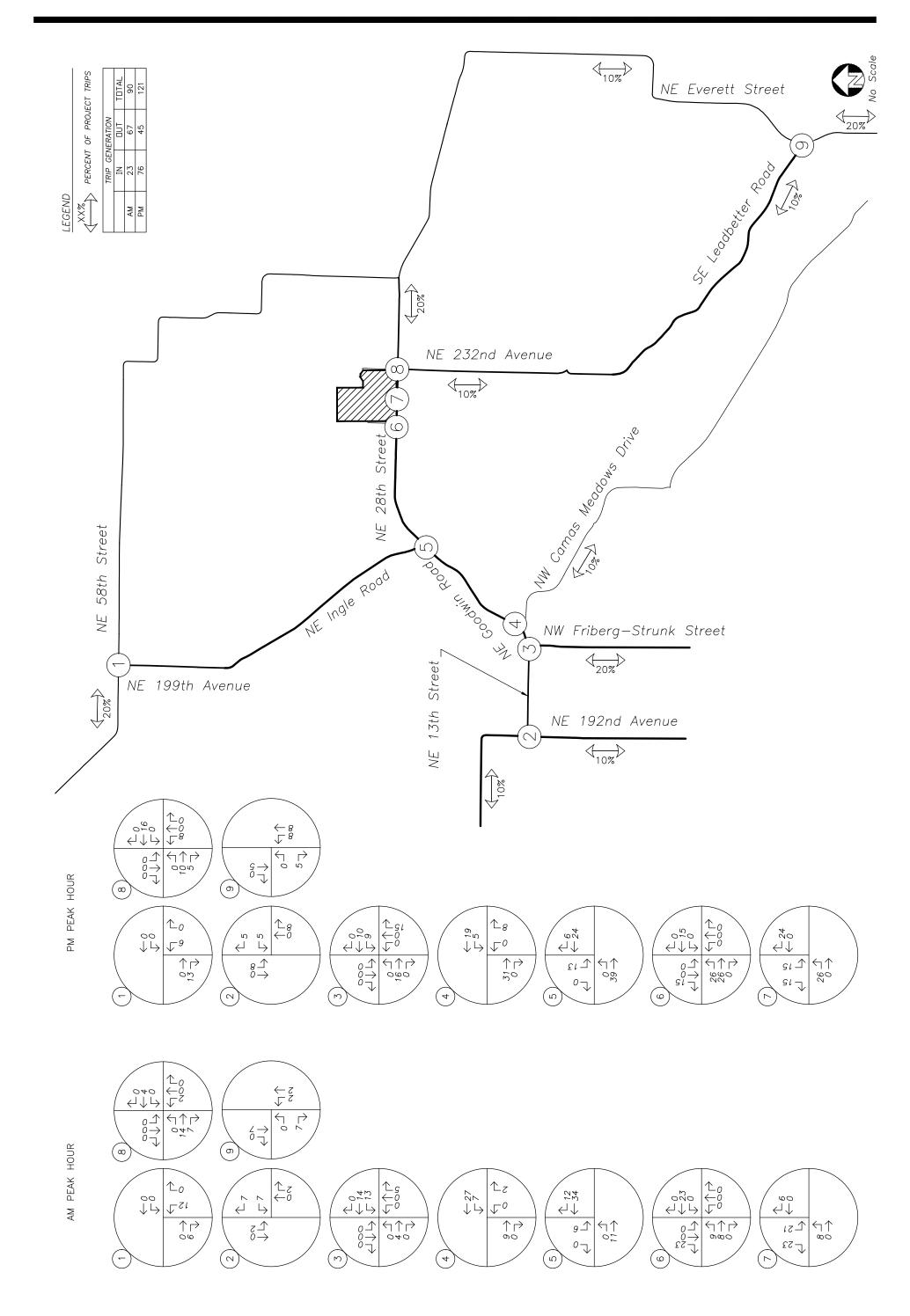
Land Use ITE		Morning Peak Hour				Eveni	ng Peak	Weekday	
Land Ose	Code	Size	In	Out	Total	In	Out	Total	Total
Single-Family Homes	210	123 DU	23	67	90	76	45	121	1,220

As shown in Table 3, the trip generation calculations show that the proposed project is estimated to have a net increase in trip generation of 90 morning peak hour trips, 121 evening peak hour trips, and 1,220 daily trips.

Trip Distribution

The directional distribution of site trips to and from the proposed site was estimated based on the locations of likely trip origins and destinations, locations of major transportation facilities in the site vicinity, and existing travel patterns at the study intersections. The following trip distribution was estimated and used for analysis:

- Approximately 70 percent of site trips will travel to/from the west on NE 28th Street
 - o Approximately 20 percent will travel to/from the north/west on NE Ingle Road/NE 199th Avenue to NE 58th Street
 - o Approximately 10 percent will travel to/from the south on NW Camas Meadows Drive
 - o Approximately 20 percent will travel to/from the south on NW Friberg-Strunk Street
 - o Approximately 10 percent will travel to/from the north/west on NE 192nd Avenue
 - o Approximately 10 percent will travel to/from the south on NE 192nd Avenue
- Approximately 30 percent of site trips will travel to/from the east on NE 28th Street
 - o Approximately 10 percent will travel to/from the south on NE 232nd Avenue/SE Leadbetter Street
 - o Approximately 10 percent will travel to/from destinations on SR 500 to NE Everett Street
 - o Approximately 10 percent will travel to/from locations east of the site on SR 500/local streets


The trip distribution and assignment for the total site trips generated during the morning and evening peak hours is shown in Figure 3. Note, approximately 35 percent of the site trips are assumed to travel on N Juniper Street via the internal connection to N 87th Avenue.

¹ Institute of Transportation Engineers (ITE), *Trip Generation Manual*, 11th Edition, 2021.

lancaster mobley

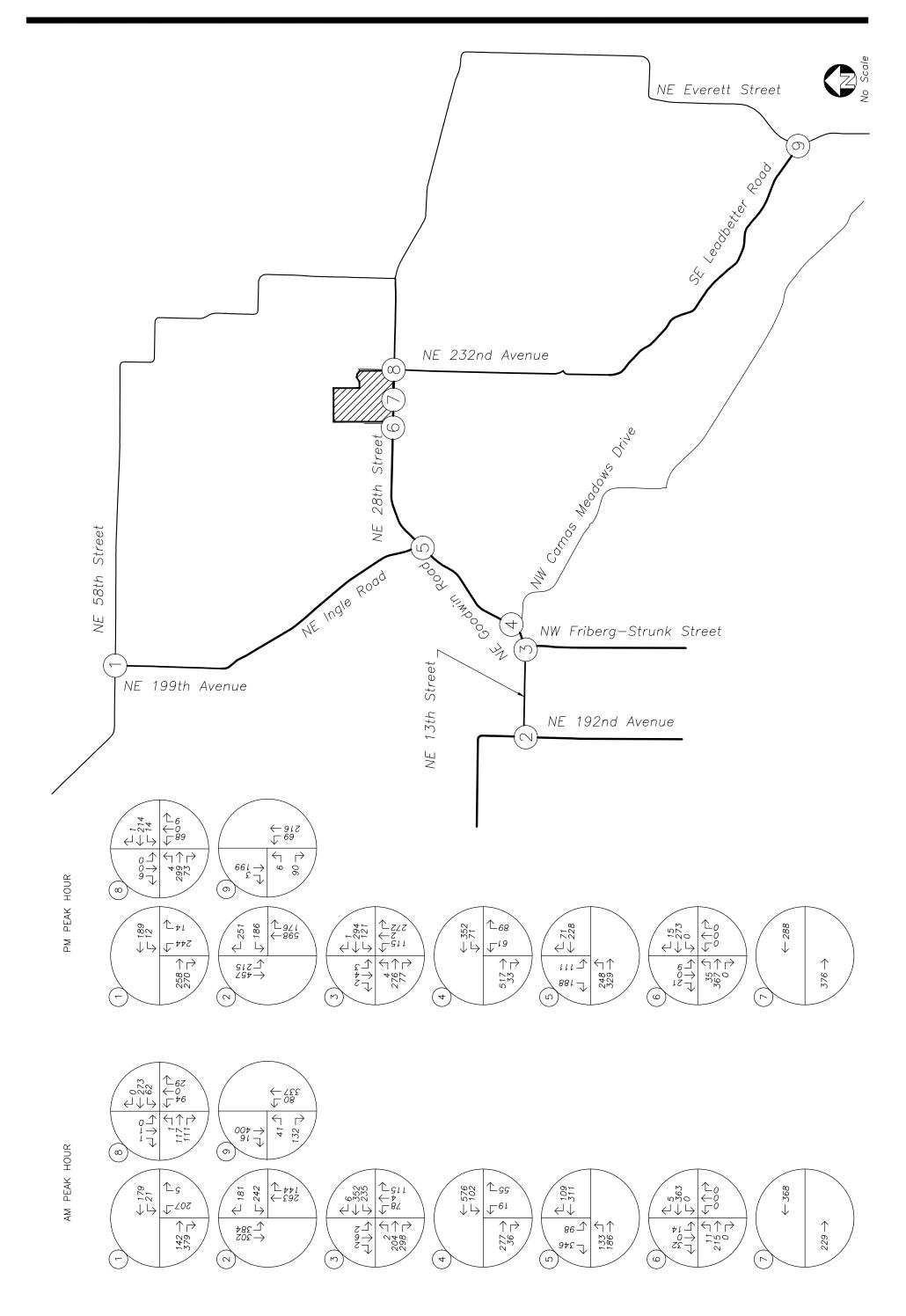
SITE TRIP DISTRIBUTION & ASSIGNMENT

Traffic Volumes

Existing Conditions

Due to the ongoing COVID-19 viral pandemic, traffic volumes have been depressed relative to normal conditions since mid-March 2020. Under these conditions, traditional traffic count data collection methods are not recommended. Therefore, the following methodology was used to adjust historical traffic counts at the study intersections to estimate year 2021 traffic conditions without the influence of COVID-19:

- New turning movement counts were collected on Thursday, September 16, 2021, at the study area intersections.
- Historical turning movement counts from Tuesday, September 24, 2019, were obtained at the intersection of NE 28th Street at NE 232nd Avenue for both morning and evening peak hours.
- Historical and present-day data from the PORTAL: Transportation Data Archive for Portland-Vancouver were obtained for the first three weeks of September from 2018 through 2021. Average midweek morning and evening peak directional hour volumes were calculated for each year of data. Three station locations were used in the evaluation:
 - o SR 14 at 192nd Avenue Station
 - o SR 14 at 6th Avenue Station
 - o SR 500 at 79th Street Station
- Average volumes for the historical years, 2018 and 2019, were grown by 2.0 percent per year and compared with the average volumes for 2021 for each direction of travel and peak hour for each station. Adjustment rates were calculated and averaged for all locations to develop a morning adjustment factor of 1.17 and an evening adjustment factor of 1.11.
- The adjustment factors were applied to all intersection turning movements for the morning and evening peak hours, respectively.
- With lower traffic volumes currently on roadways, peak hour factors (PHFs) are often lower as well. With higher volumes and more congestion, PHFs increase and begin to approach 1.0. The PHFs from the 2021 traffic counts were adjusted upwards to account for the higher volumes. For the morning peak hour, an upward adjustment factor of 1.08 was used, which is approximately half the volume adjustment rate. For the evening peak hour, an upward adjustment factor of 1.02 was used. No PHF was increased to more than 0.95.


Figure 4 shows the year 2021 existing traffic volumes at the study intersections during the morning and evening peak hours. Traffic counts and portal data are provided in Appendix B.

Year 2021 Existing Conditions AM & PM Peak Hours

lancaster mobley

TRAFFIC VOLUMES

Background Conditions

To provide analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. Two components were included in the background traffic estimates: 1) general growth and 2) growth associated with planned developments. An analysis year of 2025 was evaluated for opening year traffic conditions.

For the general background growth, the annual growth rate of 2.0 percent per year was applied to the adjusted year 2021 existing traffic volumes.

In addition to the general growth, two developments that are approved and under construction were included as in-process traffic. Portions of these developments were constructed at the time of the traffic counts. City of Camas staff provided estimates of the percent completion for each develop. The in-process projects include:

- 1. Green Mountain Estates Assumed to be 50 percent constructed
- 2. Green Mountain Planned Residential Development (PRD) Assumed to be 40 percent constructed The Master Plan for this development was approved in 2015 and the trips were vested. Buildout was estimated to occur in 2029. Several phases have been approved and are currently under construction. Phase 3 has been removed from the development as the land was purchased as open space.

All vested trips for these developments were added to the general growth to estimate the year 2025 background volumes shown in Figure 5 for the study intersections during the morning and evening peak hours. The in-process traffic volumes are included in Appendix B.

Buildout Conditions

Peak hour trips calculated to be generated by the proposed development, as described earlier within the *Site Trips* section, were added to the year 2025 background volumes to obtain the expected year 2025 buildout conditions. Figure 6 shows the resulting year 2025 buildout traffic volumes at the study intersections during the morning and evening peak hours.

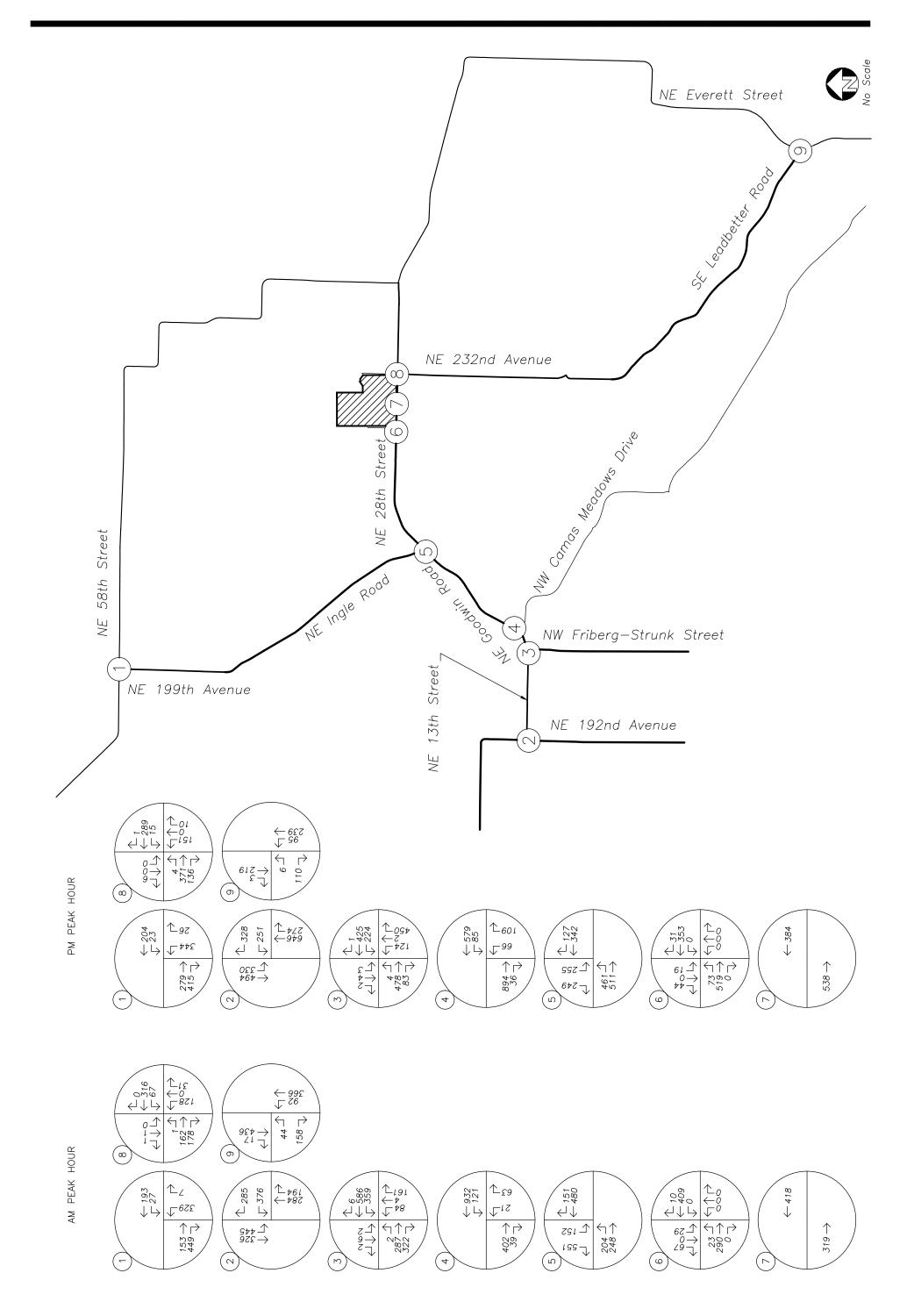
Planned Improvements

Frontage improvements on NE 28th Street are assumed to include a center turn lane at the new site access.

The Vancouver Six-Year Transportation Improvement Program (2022-2027) identifies NE 192nd Avenue & NE 13th Street Intersection Improvement as a partially funded project. The City currently has partial funding for design of the improvements and has collected a proportional share contribution from developments that contribute trips to the intersection. This project was not assumed to be in place for the opening year of the project.

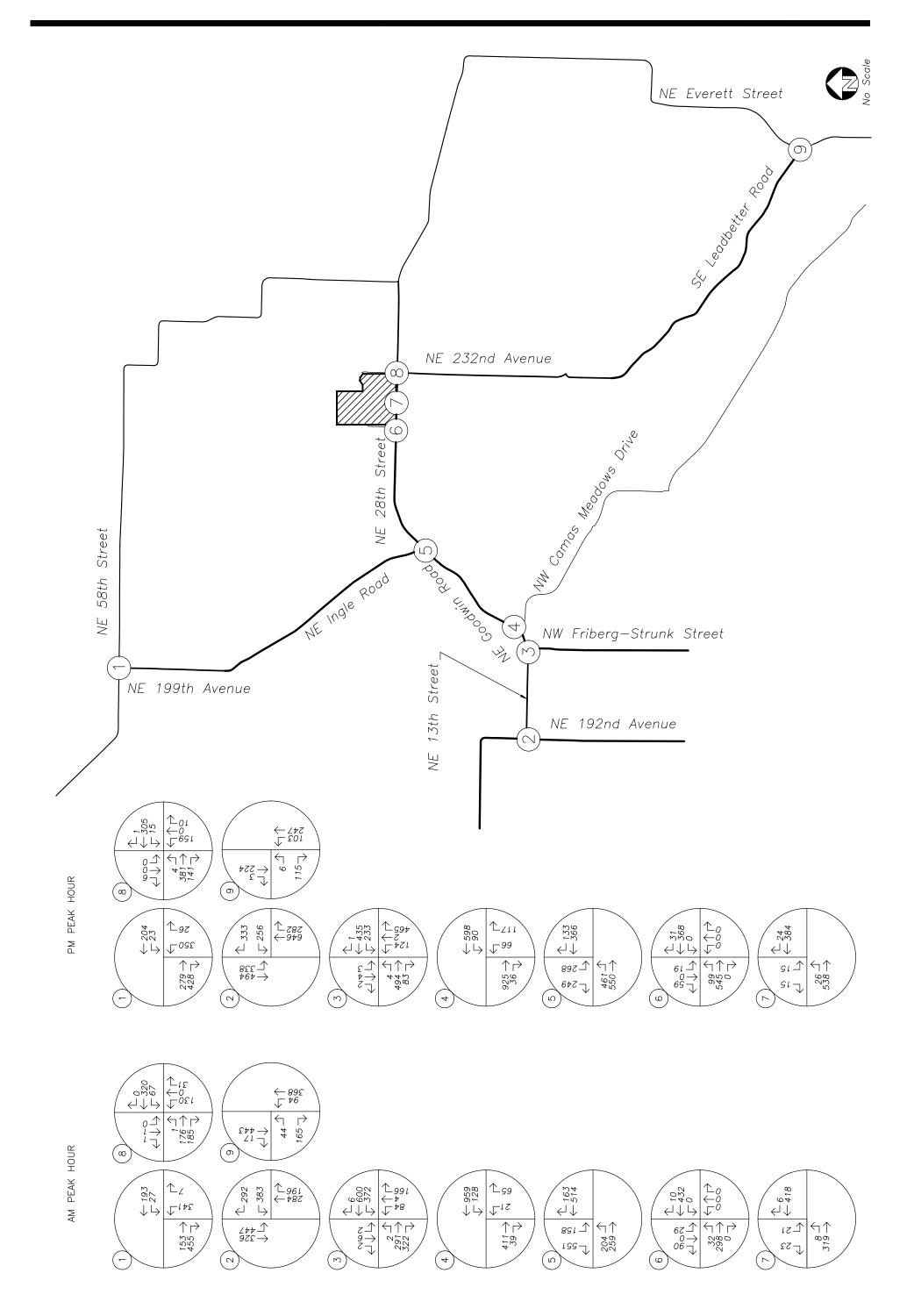
The Green Mountain PRD Master Plan was conditioned with adding an eastbound left-turn lane, westbound right-turn lane, and a traffic signal at the intersection of NE Goodwin Road/NE 28th Street and NE Ingle Road to be installed when warranted as phases of development occur. A Transportation Compliance Letter (TCL) was required for each phase of development to determine when the improvements would be needed. The first two elements have been completed. The signal was warranted with Phase 3 and assumed in the B1-POD. Since

Phase 3 will not occur, the current status of the signal construction is unclear, but design is underway. The intersection will initially be evaluated without the conditioned signal.


The Green Mountain PRD Master Plan identified that an eastbound right-turn lane was warranted at the intersection of NE 58th Street (SR 500) at NE 199th Avenue. The project was not conditioned with an improvement but was required to monitor the intersection operations in a TCL for each phase of development. As phases of development have occurred, the TCLs have indicated that WSDOT and Clark County would prefer a roundabout at this intersection. The TCLs have suggested that "WSDOT and Clark County will coordinate to administer a proportionate share impact mitigation methodology." This project is not currently on any agency plans and no funding source has been identified. Since neither the right-turn lane nor roundabout will be constructed prior to the buildout year for the proposed development, no improvements are assumed at this intersection.

Year 2023 Background Conditions AM & PM Peak Hours

lancaster mobley


TRAFFIC VOLUMES

Year 2023 Buildout Conditions AM & PM Peak Hours

TRAFFIC VOLUMES

Safety Analysis

Crash History Review

Using data obtained from the Washington State Patrol Collsion Analysis Tool, a review of five years of the most recent available crash history (January 2015 through December 2019) was performed at the study intersections. The crash data was evaluated based on the number of crashes, the type of collisions, and the severity of the collisions. Crash severity is based on injuries sustained by people involved in the crash, and includes five categories:

- No Injury Collision
- Minor (Possible or Evident) Injury Collision
- Serious Injury Collision
- Fatal Collision
- Unknown

Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated using the common assumption that traffic counted during the evening peak hour represents approximately 10 percent of the annual average daily traffic (AADT) at the intersection. Crash rates in excess of 1.00 crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

Table 4 provides a summary of crash types while Table 5 summarizes crash severities and rates for each of the study intersections. Detailed crash data is provided in Appendix C.

Crashes involving vulnerable users or resulting in serious or fatal injuries are discussed further below, organized by intersection.

NE Goodwin Road at NW Friberg-Strunk Street

One collision involving a pedestrian was reported in 2016. A southbound vehicle making a left turn collided with a pedestrian crossing the street. The contributing factor was listed as inattention. The injury severity was identified as minor.

NE Leadbetter Street at NE/SE Everett Street

One collision that resulted in a serious injury was reported in 2019. The collision involved northbound motorcyclist. No other vehicles were reported as part of the crash and contributing circumstances were listed as "other."

Crash Rates

All intersections had estimated crash rates well below 1.0.

Conclusion

No significant trends or crash patterns were identified at any of the study intersections.

Table 4: Crash Type Summary

					Crasł	n Type				Total
	Intersection	Angle	Turn	Fixed Object	Side swipe	Rear End	Other	Ped	Bike	Crashes
1	NE 58 th Street (SR 500) at NE 199 th Avenue	0	9	2	1	0	0	0	0	11
2	NE 13 th Street at NE 192 nd Avenue	0	4	0	1	1	0	0	0	6
3	NE Goodwin Road at NW Friberg-Strunk Street	0	1	0	0	0	0	1	0	2
4	NE Goodwin Road at NW Camas Meadows Drive	0	3	1	0	0	0	0	0	4
5	NE Goodwin Road/NE 28 th Street at NE Ingle Road	0	4	1	0	3	0	0	0	8
8	NE 28th Street at NE 232nd Avenue	0	1	1	1	3	0	0	0	6
9	SE Leadbetter Road at NE/SE Everett Street	0	1	0	0	1	0	0	0	2

Table 5: Crash Severity and Rate Summary

	Intersection		lnj	ury Sever	Total	AADT	Crash		
	intersection	None	Minor	Severe	Fatal	Unknown	Crashes	AADI	Rate
1	NE 58 th Street (SR 500) at NE 199 th Avenue	5	6	0	0	0	11	9,870	0.61
2	NE 13 th Street at NE 192 nd Avenue	5	1	0	0	0	6	18,830	0.17
3	NE Goodwin Road at NW Friberg-Strunk Street	1	1	0	0	0	2	11,710	0.09
4	NE Goodwin Road at NW Camas Meadows Drive	2	2	0	0	0	4	11,230	0.20
5	NE Goodwin Road/NE 28 th Street at NE Ingle Road	4	4	0	0	0	8	11,750	0.37
8	NE 28 th Street at NE 232 nd Avenue	4	1	0	0	1	6	6,880	0.48
9	SE Leadbetter Road at NE/SE Everett Street	1	0	1	0	0	2	5,830	0.19

Sight Distance Evaluation

A sight distance analysis was conducted at the site access driveway. To evaluate the sight distance available at these intersections, intersection sight distance was measured and recommended in accordance with the current AASHTO manual². According to AASHTO, the driver's eye is assumed to be 14.5 feet from the near edge of the nearest travel lane of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye-height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

Both intersection sight distance (ISD) and stopping sight distance (SSD) are assessed. The ISD is an operational measure, intended to provide sufficient line of sight along the major street so that a driver can turn from the minor street without impeding traffic flow. The SSD is the minimum requirement to ensure safe operation of the roadway. Stopping sight distance allows an oncoming driver to see a hazard in the roadway, react, and come to a complete stop if necessary to avoid a collision. As long as the available intersection sight distance is at least equal to the minimum required stopping sight distance for the design speed of the roadway, adequate sight distance is available for safe operation of the intersection.

NE 28th Street currently has a posted speed limit of 50 mph in both directions and a downward slope of one to two percent from east to west. It will be widened to a three-lane cross-section along the sight frontage; therefore, sight distance for the left-turn movement needs to account for the additional center lane. Based on these factors, the recommended ISD is 590 feet, and the required SSD is 440 feet for vehicles approaching from the east and 420 feet for vehicles approaching from the west.

Available sight lines at the access location are measured to exceed 600 feet in either direction assuming that the few existing trees along the edge of the site frontage are removed with the roadway widening. Based on the sight distance analysis, adequate sight distances are available at the proposed site access intersection to ensure safe and efficient operation along NE 28th Street. No mitigation for sight distance is necessary or recommended.

Access Spacing

Per Table 3 of the Camas *Engineering Design Standards for Streets*, as a designated arterial street, intersection access spacing requirements for NE 28th Street are a minimum of 660 feet to a maximum of 1,000 feet.

The proposed access will be located approximately 880 feet west of NE 232nd Avenue and approximately 1,000 feet east of N Juniper Street. On the north side of the street, one access to a single residence will be located approximately 660 feet west of the site access and no accesses will be located between the site access and NE 232nd Avenue. On the south side of the street, five residential driveways and a utility access will be located within 660 feet east of the proposed site access. One residential driveway will be located nearly opposite the proposed site access, and two other residential driveways on the south side will be located within 660 feet west of the proposed site access.

² American Association of State Highway and Transportation Officials (AASHTO), *A Policy on Geometric Design of Highways and Streets,* 7th Edition, 2018.

Warrant Analysis

Left-Turn Lane Warrants

The proposed development will include site frontage improvements consistent with a three-lane cross-section on NE 28th Street, thus providing a left-turn lane for the site access.

Right-Turn Lane Warrants

The proposed development will not meet the requirements for a right-turn lane at the site access. The warrant analysis is included in Appendix C.

The Green Mountain Planned Residential Development (PRD) Phase 2 identified the need for an eastbound right-turn lane on NE 58th Street (SR 500 at NE 199th Avenue); however, subsequent development approvals have indicated that WSDOT and Clark County would prefer a roundabout at this intersection, which would negate the need for the right-turn lane. This project is not currently on any agency plans and no funding source has been identified.

Preliminary Traffic Signal Warrants

Preliminary traffic signal warrants were examined for the unsignalized intersections in the study area based on the methodologies in the Manual on Uniform Traffic Control Devices (MUTCD). Warrant 1, *Eight Hour Vehicular Volumes*, was used from the MUTCD published by the Federal Highway Administration in 2009. Warrants were evaluated based on the common assumption that traffic counted during the evening peak hour represents ten percent of the ADT. Most of the unsignalized intersections currently have a posted speed of 50 mph; therefore, the 70% of standard is applicable. The results are summarized in Table 6 for year 2025 background and buildout conditions. Detailed information on the warrant analysis is included in Appendix C.

As shown in Table 6, traffic signal warrants are met at two of the study area intersections for both the 2025 background and buildout scenarios.

Table 6: Summary of Preliminary Traffic Signal Warrant Evaluation

		Warrant Met?				
	Intersection	2025 Background Condition	2025 Buildout Condition			
1	NE 58 th Street (SR 500) at NE 199 th Avenue	Yes	Yes			
4	NE Goodwin Road at NW Camas Meadows Drive	No	No			
5	NE Goodwin Road/NE 28 th Street at NE Ingle Road	Yes	Yes			
6	NE 28 th Street at N Juniper Street	No	No			
7	NE 28 th Street at Site Access	No	No			
8	NE 28 th Street at NE 232 nd Avenue	No	No			
9	SE Leadbetter Road at NE/SE Everett Street	No	No			

Exhibit 7

The intersection of NE 58th Street (SR 500) at NE 199th Avenue currently meets WSDOT standards for a traffic signal; however, prior development approvals have indicated that WSDOT and Clark County would prefer a roundabout at this intersection. Set up of a proportionate share costing methodology has been discussed but this project is not currently on any agency plans and no funding source has been identified. Since the roundabout will not be constructed prior to the buildout year for the proposed development, no improvements are assumed at this intersection.

A traffic signal at the intersection of NE Goodwin Road/NE 28th Street at NE Ingle Road has been required as a condition of approval for the Green Mountain PRD. The installation of the signal was not required with Phase 1 or Phase 2 approval. The TCL prepared for Phase 3 indicated a signal was warranted and the TCL for B1-POD assumed the signal was in place. Since Phase 3 will not occur, the current status of the signal construction is unclear, but design is underway. The intersection will initially be evaluated without the conditioned signal.

Operational Analysis

Intersection Capacity Analysis

A capacity and delay analysis were conducted for each of the study intersections per the signalized and unsignalized intersection analysis methodologies in the *Highway Capacity Manual* (HCM)³. Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little, or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v/c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

Performance Standards

The study area includes intersections in the City of Camas, City of Vancouver, and on a WSDOT facility in Clark County. The standards for these agencies are listed below.

- According to the Camas Transportation Impact Study Guidelines, a minimum LOS D should be maintained on collector and arterial streets.
- According to Vancouver Municipal Code 11.80.130, impacts occur when off-site intersection conditions are at a LOS F for signalized intersections, or when conditions are at LOS E and the v/c ratio is greater than 0.95 for signalized intersections, or when the v/c ratio for any lane on any approach is greater than 0.95 for unsignalized intersections.
- According to Clark County's Unified Development Code 40.350, performance standards require
 unsignalized intersections to operate at LOS E or better unless traffic signal warrants are met. If traffic
 signal warrants are met, the intersection is required to operate at LOS D or better. Individual
 movements at signalized intersections of regional significance are to operate with average delays of
 less than two cycle lengths or 240 seconds, whichever is less.
- According to Chapter 320 of the WSDOT Design Manual, thresholds are LOS C for rural and LOS D for urban non-NHS facilities, unless a WSDOT region specifies otherwise for specific route segments.

Delay & Capacity Analysis

The LOS, delay, and v/c results of the capacity analysis are shown in Table 7 for the morning and evening peak hours. For signalized intersections, the overall intersection operations are reported. For unsignalized intersections, the worst movement is reported with the applicable movement shown in parentheses.

³ Transportation Research Board, *Highway Capacity Manual 6th Edition*, 2016.

Table 7: Capacity Analysis Summary

Intersection (Jurisdiction)	A	AM Peak Hou	r	F	PM Peak Hou	ır
& Condition	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
1. NE 58 th Str	eet (SR 500)	at NE 199 th A	Avenue (State	EB/WB & C	lark County I	NB)
2021 Existing	C (NB)	24 (NB)	0.57 (NB)	D (NB)	26 (NB)	0.63 (NB)
2025 Background	F (NB)	88 (NB)	>1.00 (NB)	F (NB)	111 (NB)	>1.00 (NB)
2025 Buildout	F (NB)	100 (NB)	>1.00 (NB)	F (NB)	120 (NB)	>1.00 (NB)
	2. NE 13 th	Street at NE	192 nd Avenue	(Vancouver)	
2021 Existing	С	21	0.88	С	27	0.90
2025 Background	F	105	>1.00	F	103	>1.00
2025 Buildout	F	111	>1.00	F	108	>1.00
3.	NE Goodwin	Road at NW	Friberg-Stru	nk Street (Ca	amas)	
2021 Existing	В	13	0.52	В	12	0.42
2025 Background	В	18	0.68	С	22	0.61
2025 Buildout	В	19	0.70	С	24	0.62
4. N	IE Goodwin	Road at NW	Camas Mead	ows Drive (C	Camas)	
2021 Existing	C (NBL)	24 (NBL)	0.10 (NBL)	D (NBL)	27 (NBL)	0.28 (NBL)
2025 Background	F (NBL)	55 (NBL)	0.24 (NBL)	F (NBL)	134 (NBL)	0.81 (NBL)
2025 Buildout	F (NBL)	59 (NBL)	0.25 (NBL)	E (NBL)	169 (NBL)	0.90 (NBL)
5. NI	E Goodwin R	toad/NE 28 th	Street at NE	Ingle Road (Camas)	
2021 Existing	C (SBL)	23 (SBL)	0.52 (SBR)	F (SBL)	53 (SBL)	0.63 (SBR)
2025 Background	F (SBL)	145 (SBL)	>1.00 (SBL)	F (SBL)	>200 (SBL)	>1.00 (SBL)
2025 Buildout	F (SBL)	>200 (SBL)	>1.00 (SBR)	F (SBL)	>200 (SBL)	>1.00 (SBL)
	6. NE 28	S th Street at N	l Juniper Stre	et (Camas)		
2021 Existing	B (SB)	12 (SB)	0.09 (SB)	B (SB)	11 (SB)	0.05 (SB)
2025 Background	B (SB)	14 (SB)	0.21 (SB)	B (SB)	13 (SB)	0.14 (SB)
2025 Buildout	B (SB)	14 (SB)	0.27 (SB)	B (SB)	14 (SB)	0.17 (SB)
	7. NE	28 th Street a	t Site Access	(Camas)		
2025 Buildout	B (SB)	13 (SB)	0.10 (SB)	B (SB)	14 (SB)	0.07 (SB)
	8. NE 28	th Street at N	E 232 nd Aven	ue (Camas)		
2021 Existing	C (NB)	19 (NB)	0.37 (NB)	C (NB)	16 (NB)	0.19 (NB)
2025 Background	D (NB)	31 (NB)	0.58 (NB)	D (NB)	30 (NB)	0.55 (NB)
2025 Buildout	D (NB)	34 (NB)	0.62 (NB)	D (NB)	35 (NB)	0.61 (NB)
9.	SE Leadbe	tter Road at I	NE/SE Everet	t Street (Can	nas)	
2021 Existing	C (EB)	18 (EB)	0.43 (EB)	B (EB)	10 (EB)	0.13 (EB)
2025 Background	C (EB)	23 (EB)	0.54 (EB)	B (EB)	11 (EB)	0.17 (EB)

BOLDED results indicate operation above acceptable jurisdictional standards.

Four intersections in the study area were identified as exceeding the applicable agency standard.

NE 58th Street (SR 500) at NE 199th Avenue

This intersection meets the WSDOT LOS C standards for the highway movements (east/west) under all conditions but will exceed the Clark County threshold of LOS D for an intersection that meets signal warrants. NE 199th Avenue is expected to operate at LOS F for both 2025 background and buildout conditions.

Traffic volumes at this intersection currently warrant an eastbound right-turn lane and/or a traffic signal The original Green Mountain PRD Master Plan identified the eastbound right-turn lane as the recommended improvement but TCLs for subsequent phases have indicated that WSDOT and Clark County would prefer a future roundabout at this intersection.

Table 8: Operations Comparision with Improvements at NE 58th Street (SR 500)/NE 199th Avenue

Configuration &	P	M Peak Hou	ır	PM Peak Hour					
Condition	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C			
Add Eastbound Right-Turn Lane									
2025 Buildout	D (NB)	30 (NB)	0.75 (NB)	E (NB)	39 (NB)	0.83 (NB)			
Add Roundabout									
2025 Buildout	В	12	0.70 (EB)	В	12	0.69 (EB)			

As shown in Table 8, construction of a roundabout will result in low overall delays at the intersection and meet both agency standards. The eastbound right-turn lane is also effective at reducing delays on the northbound approach and would bring it into compliance with the Clark County threshold during the morning peak hour but not the evening peak hour. Thus, it would have less long-term utility.

The operational results in Table 7 and Table 8 reflect the operations analysis with all vested trips from the Green Mountain PRD. In reality, only about 40 percent of the total development is under construction or approved for construction at this time. Table 9 presents the intersection operations with just the approved subdivisions in Green Mountain.

Table 9: Operations at NE 58th Street (SR 500)/NE 199th Avenue with Approved Subdivisions

Condition	F	AM Peak Hou	ır	PM Peak Hour					
Condition	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C			
2025 Background	E (NB)	40 (NB)	0.78 (NB)	E (NB)	44 (NB)	0.82 (NB)			
2025 Buildout	E (NB)	45 (NB)	0.82 (NB)	E (NB)	48 (NB)	0.85 (NB)			

With only the approved subdivisions, this intersection meets the WSDOT standards for the highway movements (east/west) under all conditions but will exceed the Clark County threshold of LOS D for an intersection that meets signal warrants. NE 199th Avenue is expected to operate at LOS E for both 2025 background and buildout conditions but the forecast demand is not anticipated to exceed capacity.

As noted earlier, no improvements at this intersection are currently on any agency plans and no funding source has been identified. The impacts of the proposed development are minor compared with the background

condition and, in the short term with only the approved subdivisions under construction, the intersection will function with moderate delays and below capacity. Therefore, no mitigation is recommended.

Should a proportionate share methodology be developed to fund future improvements, the proposed Camas Heights development will contribute 19 evening (PM) peak hour trips to this intersection.

NE 13th Street at NE 192nd Avenue

This intersection will exceed the Vancouver threshold of LOS E and a v/c ratio greater than 0.95 for both 2025 background and buildout conditions.

The City of Vancouver has a planned improvement to add northbound right-turn and westbound right-turn lanes at the intersection and is collecting proportionate share contributions to help fund the project. With the planned improvements, the intersection will meet the Vancouver operational thresholds for 2025 buildout conditions, as shown in Table 10. No additional mitigation is necessary.

Table 10: Operations with Planned Improvements at NE 13th Street/NE 192nd Avenue

Condition	P	AM Peak Hou	r	PM Peak Hour				
Condition	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C		
2025 Buildout	В	19	0.85	В	18	0.81		

The proposed Camas Heights development will contribute 26 evening (PM) peak hour trips to this intersection.

NE Goodwin Road at NW Camas Meadows Drive

This northbound left-turn lane will exceed the Camas threshold of LOS D during the evening peak hour for 2025 background and buildout conditions. The proposed development does not add any trips to this movement but affects the operations because it adds to the through traffic on NE Goodwin Road.

This intersection was not analyzed as part of the Green Mountain PRD Master Plan; therefore, no issues or mitigation recommendations were included with that project.

A traffic signal is not warranted at this intersection even with the fully vested trips from the Green Mountain PRD. Although demand is well below capacity, one improvement to consider that could reduce delays is the striping of a two-way, left-turn lane on NE Goodwin Road between NW Friberg-Strunk Street and NW Camas Meadows Drive. This striping change would allow a two-stage left-turn movement for traffic turning from NW Camas Meadows Drive. With this change, operations of the northbound left-turn movement would meet the Camas threshold, as shown in Table 11.

Table 11: Operations with Restriping at NE Goodwin Road/NW Camas Meadows Drive

Condition	A	M Peak Hou	ır	PM Peak Hour					
Condition	LOS	Delay (s)		Delay (s)	V/C				
2025 Buildout	C (NBL)	24 (NBL) 0.11 (NBL)		C (NBL)	24 (NBL)	0.27 (NBL)			

Based on the operational improvements that can be gained with the modification, restriping NE Goodwin Road to provide a two-way, left-turn lane on between NW Friberg-Strunk Street and NW Camas Meadows Drive is recommended. This improvement would reduce delays for the northbound left-turn movement.

NE Goodwin Road/NE 28th Street at NE Ingle Road

The southbound left-turn lane will exceed the Camas threshold of LOS D for both the 2025 background and buildout conditions.

A traffic signal at the intersection of NE Goodwin Road/NE 28th Street at NE Ingle Road has been required as a condition of approval for the Green Mountain PRD. The installation of the signal was not required with Phase 1 or Phase 2 subdivision approval but was required with Phase 3 subdivision approval and assumed to be in place for the B1 South subdivision. Since Phase 3 will not occur, the current status of the signal construction is unclear, but design is underway.

With the planned improvements, the intersection will meet the Camas operational thresholds for 2025 buildout conditions, as shown in Table 12. No additional mitigation is necessary.

Table 12: Operations with Planned Improvements at NE 13th Street/NE 192nd Avenue

Camalinian	F	AM Peak Hou	r	PM Peak Hour				
Condition	LOS	Delay (s)	V/C	LOS	LOS Delay (s) V/C	V/C		
2025 Buildout	D	37	0.73	В	15	0.77		

Conclusion

Four intersections in the study area were identified as exceeding the applicable agency standard:

- Two of the intersections (NE 13th Street at NE 192nd Avenue and NE Goodwin Road/NE 28th Street at NE Ingle Road) have planned improvements with identified funding sources. With these improvements, the intersections will operate acceptably. No additional mitigation is necessary.
- The intersection of NE 58th Street (SR 500) at NE 199th Avenue will exceed the Clark County operational threshold in both background and buildout conditions. A future roundabout has been identified as the preferred solution. Set up of a proportionate share costing methodology has been discussed but this project is not currently on any agency plans and no funding source has been identified. The impacts of the proposed development are minor compared with the background condition and, in the short term with only the approved subdivisions under construction, the intersection will function with moderate delays and below capacity. Therefore, no mitigation is recommended. However, should a proportionate share methodology be developed to fund future improvements, the proposed Camas Heights development will contribute 19 evening (PM) peak hour trips to this intersection.
- The northbound left-turn lane on NE Camas Meadows Drive at NE Goodwin Road will exceed the Camas threshold under background and buildout conditions, but demand will be well below capacity. Restriping NE Goodwin Road to provide a two-way, left-turn lane on between NW Friberg-Strunk Street and NW Camas Meadows Drive is recommended.

Conclusions

Key findings of this study include:

- No significant trends or crash patterns were identified at any of the study intersections.
- The available sight lines exceed the 590-foot intersection sight distance recommendation.
- Access spacing standards are met on the north side of NE 28th Street but the residential driveways on the south side will remain out of compliance.
- The proposed development will include site frontage improvements consistent with a three-lane cross-section on NE 28th Street, thus providing a left-turn lane for the site access.
- The proposed development will not meet the requirements for a right-turn lane at the site access.
- The proposed development will not trigger the need for any new traffic signals compared with the background condition.
- Four intersections in the study area were identified as exceeding the applicable agency standard:
 - o Two of the intersections (NE 13th Street at NE 192nd Avenue and NE Goodwin Road/NE 28th Street at NE Ingle Road) have planned improvements with identified funding sources. With these improvements, the intersections will operate acceptably. No additional mitigation is necessary.
 - o The intersection of NE 58th Street (SR 500) at NE 199th Avenue will exceed the Clark County operational threshold in both background and buildout conditions. A future roundabout has been identified as the preferred solution. Set up of a proportionate share costing methodology has been discussed but this project is not currently on any agency plans and no funding source has been identified. The impacts of the proposed development are minor compared with the background condition and, in the short term with only the approved subdivisions under construction, the intersection will function with moderate delays and below capacity. Therefore, no project-specific mitigation is recommended.
 - o The northbound left-turn lane on NE Camas Meadows Drive at NE Goodwin Road will exceed the Camas threshold under background and buildout conditions, but demand will be well below capacity. Restriping NE Goodwin Road to provide a two-way, left-turn lane on between NW Friberg-Strunk Street and NW Camas Meadows Drive is recommended.
- The intersection of NE 13th Street at NE 192nd Avenue has planned improvements that require a proportionate share contribution. The proposed Camas Heights development will contribute 26 evening (PM) peak hour trips to this intersection.
- A roundabout at the intersection of NE 58th Avenue (SR 500) at NE 199th Avenue has been identified as the preferred improvement to address growing congestion. Should a proportionate share methodology be developed to fund future improvements, the proposed Camas Heights development will contribute 19 evening (PM) peak hour trips to this intersection.

Appendix A – Site Information

Site Plan

Trip Generation Calculations

NE 232ND AVENUE

JE 28TH

KEY MAP

N.T.S.

EXISTING LAND USE
RESDENTIAL AND AGRICULTURAL, ZONED R-10.

PROJECT PURPOSE

37.27 AC (1,623,311 SF)

AKS ENGINEERING & FORESTRY, LLC.
CONTACT: MICHAEL ANDREOTTI
9600 NE 126TH AVENUE, SUITE 2520
VANCOUVER, WA 98682 CONTACT

SUBDIVIDE 1 PARCEL INTO 121 SINGLE-FAMILY RESIDENTIAL LOTS WITH ASSOCIATED ROADS AND SITE IMPROVEMENTS. SITE AREA ELEVATIONS ARE BASED ON CLARK COUNTY BENCHMARK NO. 234, LOCARED AT THE INTERSECTION OF NE. 223ND AVENUE AND NE. 28TH STREET, ELEVATION = 350.91 FEET (NGVD29 (47)).

NONE*
7,000 SQUARE FEET
12,000 SQUARE FEET
60 FEET
90 FEET
50%** 15 FEET**
20 FEET*
5 FEET
10 FEET
15 FEET*
30 FEET MINIMUM FRONT YARD SETBACK MINIMUM FRONT YARD — GARAGE MINIMUM SIDE YARD MINIMUM STREET SIDE YARD

THE PROPOSED DEVELOPED IS USING DENSITY TRANSFER STANDARDS. NO AVERAGE LOT AREA IS REQUIRED.

WODIFICATION TO STANDARDS PROPOSED PER CMC 18,09,060

STATISTICS

1,623,311 SF (37.27 AC) 120,539 SF (2.77 AC) 113,259 SF (2.60 AC) 55,139 SF (1.27 AC) 8,879 SF (0.20 AC) 465,236 SF (10.68 AC) 8,226 SF TOTAL GROSS AREA:
NATURAL AREA TRACTS:
OPEN SPACE TRACTS:
STORMWINER TRACT:
ACESS TRACTS:
RIGHT—OF—WAY AREA:
AVERAGE LOT AREA:

DENSITY CALCULATIONS

TOTAL GROSS AREA: 1,623,311 SF (37.27 AC)
NATURAL & OPEN SPACE AREAS: 233,798 SF (5.37 AC)
NET SITE AREA: 1,389,513 SF (31.90 AC) MAXIMUM LOTS ALLOWED (31.90 AC x 4.3): PROPOSED LOTS: PROPOSED DENSITY (121 LOTS / 31.90 AC):

TRACT AREA & PURPOSE

TRACT A:	120,539 SF	Natural area
TRACT B:	55,139 SF	STORMWATER FACILITY
TRACT C:	1,309 SF	OPEN SPACE
TRACT D:	1,007 SF	OPEN SPACE
TRACT E:	1,998 SF	Private street
TRACT F:	56,082 SF	OPEN SPACE
TRACT G:	4,295 SF	Private street
TRACT H:	29,544 SF	OPEN SPACE
TRACT I:	1,453 SF	Private street
TRACT J:	25,317 SF	OPEN SPACE
TRACT K:	1,133 SF	Private street

THE PURPOSE OF THIS PRELIMINARY PLAT IS TO SHOW THE PROPOSED LOT DIMENSIONS AND AREAS FOR PLANNING PURPOSES. THIS IS NOT AN OFFICIAL PLAT AND IS NOT TO BE USED FOR SURVEY PURPOSES.

PROPOSED DEVELOPMENT STANDARDS

MINIMUM REAR YARD MINIMUM LOT FRONTAGE ON CUL—DE—SAC

137 LOTS 121 LOTS 3.79 LOTS/NET ACRE

Natural area	STORMWATER FACILITY	OPEN SPACE	OPEN SPACE	Private street	OPEN SPACE	Private street	OPEN SPACE	Private street	OPEN SPACE
120,539 SF	55,139 SF	1,309 SF	1,007 SF	1,998 SF	56,082 SF	4,295 SF	29,544 SF	1,453 SF	25,317 SF
TRACT A:	TRACT B:	TRACT C:	TRACT D:	TRACT E:	TRACT F:	TRACT G:	TRACT H:	TRACT 1:	TRACT J:

TRIP GENERATION CALCULATIONS

Land Use: Single-Family Detached Housing

Land Use Code: 210

Setting/Location General Urban/Suburban

Variable: Dwelling Units

Variable Value: 123

AM PEAK HOUR

Trip Equation: Ln(T)=0.91Ln(X)+0.12

	Enter	Exit	Total
Directional	26%	74%	
Distribution	2070	7470	
Trip Ends	23	67	90

PM PEAK HOUR

Trip Equation: Ln(T)=0.94Ln(X)+0.27

	Enter	Exit	Total
Directional Distribution	63%	37%	
Trip Ends	76	45	121

WEEKDAY

Trip Equation: Ln(T)=0.92Ln(X)+2.68

	Enter	Exit	Total
Directional	50%	50%	
Distribution	30 /0	30%	
Trip Ends	610	610	1,220

SATURDAY

Trip Equation: Ln(T)=0.94Ln(X)+2.56

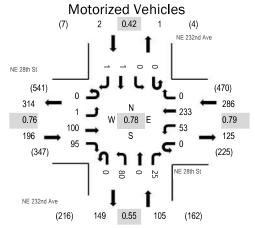
	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	596	596	1,192

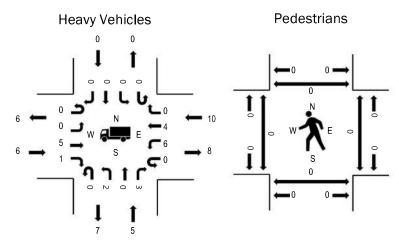
Source: Trip Generation Manual, Tenth Edition

Appendix B – Volumes

Traffic Counts

In-Process Trips




(303) 216-2439 www.alltrafficdata.net Location: 1 NE 232nd Ave & NE 28th St AM

Date: Thursday, September 16, 2021 **Peak Hour:** 07:25 AM - 08:25 AM

Peak 15-Minutes: 07:50 AM - 08:05 AM

Peak Hour

Note: Total study counts contained in parentheses.

	HV%	PHF
EB	3.1%	0.76
WB	3.5%	0.79
NB	4.8%	0.55
SB	0.0%	0.42
All	3.6%	0.78

Traffic Counts - Motorized Vehicles

Interval			28th St cound				28th St bound				2nd Ave bound			NE 232 South	2nd Ave bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	4	3	0	2	12	0	0	2	0	0	0	0	0	0	23	467
7:05 AM	0	0	6	5	0	0	16	0	0	2	0	0	0	0	0	0	29	510
7:10 AM	0	0	3	0	0	0	12	0	0	4	0	0	0	0	1	0	20	532
7:15 AM	0	0	5	6	0	1	16	0	0	4	0	0	0	0	0	0	32	553
7:20 AM	0	0	4	3	0	2	9	0	0	0	0	0	0	0	0	0	18	565
7:25 AM	0	0	5	5	0	2	25	0	0	6	0	0	0	0	0	0	43	589
7:30 AM	0	0	11	4	0	1	20	0	0	4	0	0	0	0	0	1	41	573
7:35 AM	0	0	7	2	0	3	19	0	0	9	0	0	0	0	0	0	40	580
7:40 AM	0	0	8	9	0	9	16	0	0	0	0	0	0	0	0	0	42	581
7:45 AM	0	1	6	15	0	9	20	0	0	5	0	0	0	0	0	0	56	569
7:50 AM	0	0	13	11	0	14	23	0	0	7	0	3	0	0	0	0	71	566
7:55 AM	0	0	12	11	0	6	7	0	0	9	0	7	0	0	0	0	52	537
8:00 AM	0	0	5	7	0	7	27	0	0	10	0	9	0	0	1	0	66	519
8:05 AM	0	0	10	8	0	1	15	0	0	13	0	4	0	0	0	0	51	
8:10 AM	0	0	12	6	0	0	16	0	0	6	0	1	0	0	0	0	41	
8:15 AM	0	0	5	10	0	0	21	0	0	8	0	0	0	0	0	0	44	
8:20 AM	0	0	6	7	0	1	24	0	0	3	0	1	0	0	0	0	42	
8:25 AM	0	0	6	6	0	1	8	0	0	3	2	0	0	0	1	0	27	
8:30 AM	0	0	8	13	0	1	19	0	0	5	0	0	0	0	0	2	48	
8:35 AM	0	0	9	5	0	2	19	0	0	6	0	0	0	0	0	0	41	
8:40 AM	0	0	9	1	0	0	9	0	0	9	1	0	0	0	0	1	30	
8:45 AM	0	0	14	3	0	1	28	0	0	6	0	1	0	0	0	0	53	
8:50 AM	0	0	17	4	0	0	16	0	0	5	0	0	0	0	0	0	42	
8:55 AM	0	0	11	6	0	0	10	0	0	4	0	3	0	0	0	0	34	
Count Total	0	1	196	150	0	63	407	0	0	130	3	29	0	0	3	4	986	_
Peak Hour	0	1	100	95	0	53	233	0	0	80	0	25	0	0	1	1	589	_

Location: 1 NE 232nd Ave & NE 28th St AM

Interval		Hea	avy Vehicle	es	-	Interval		Bicycle	es on Road	dway		Interval	Ped	lestrians/E	Bicycles or	n Crosswa	alk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	1	0	1	0	2	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	1	1	0	0	2	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	0	1	0	1	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	1	1	0	2	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	1	0	0	0	1	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	1	0	0	0	1	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	2	0	2	0	4	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	0	2	0	2	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	2	1	0	3	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	0	2	0	2	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	2	2	1	0	5	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	0	0	1	0	1	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	1	2	0	0	3	8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	0	0
8:30 AM	2	0	0	0	2	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	1	0	0	1	2	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	2	0	0	0	2	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	1	0	0	0	1	8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	15	8	12	1	36	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	6	5	10	0	21	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 2 NE 28th St & NE Ingle Rd AM

Location: 2 NE 28th St & NE Ingle Rd AM

Date: Thursday, September 16, 2021 **Peak Hour:** 07:40 AM - 08:40 AM

Peak 15-Minutes: 07:40 AM - 07:55 AM

Peak Hour

Note: Total study counts contained in parentheses.

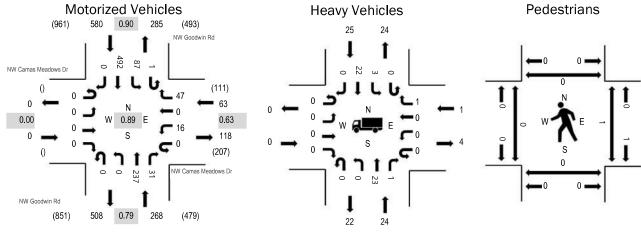
	HV%	PHF
EB	6.6%	0.84
WB	0.0%	0.00
NB	8.1%	0.78
SB	2.5%	0.94
All	5.5%	0.94

mamo odanio	141000	IIZCU	* Cilic	103														
Interval			ngle Rd cound				ngle Rd bound				8th St				8th St			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	7	0	0	0	0	0	4	8	0	0	0	14	6	39	788
7:05 AM	0	2	0	18	0	0	0	0	0	5	4	0	0	0	14	8	51	826
7:10 AM	0	2	0	14	0	0	0	0	0	5	4	0	0	0	10	8	43	853
7:15 AM	0	4	0	12	0	0	0	0	0	7	5	0	0	0	14	7	49	879
7:20 AM	0	3	0	17	0	0	0	0	0	7	10	0	0	0	9	5	51	919
7:25 AM	0	10	0	20	0	0	0	0	0	5	3	0	0	0	24	6	68	959
7:30 AM	0	6	0	13	0	0	0	0	0	7	8	0	0	0	25	6	65	972
7:35 AM	0	1	0	20	0	0	0	0	0	10	6	0	0	0	24	8	69	992
7:40 AM	0	5	0	24	0	0	0	0	0	12	17	0	0	0	19	8	85	1,012
7:45 AM	0	11	0	25	0	0	0	0	0	8	17	0	0	0	29	4	94	987
7:50 AM	0	5	0	21	0	0	0	0	0	7	18	0	0	0	28	11	90	979
7:55 AM	0	13	0	32	0	0	0	0	0	5	10	0	0	0	21	3	84	951
8:00 AM	0	5	0	18	0	0	0	0	0	9	11	0	0	0	27	7	77	922
8:05 AM	0	10	0	19	0	0	0	0	0	8	11	0	0	0	21	9	78	
8:10 AM	0	6	0	19	0	0	0	0	0	6	13	0	0	0	20	5	69	
8:15 AM	0	8	0	27	0	0	0	0	0	10	9	0	0	0	23	12	89	
8:20 AM	0	3	0	35	0	0	0	0	0	5	14	0	0	0	26	8	91	
8:25 AM	0	6	0	34	0	0	0	0	0	13	11	0	0	0	13	4	81	
8:30 AM	0	5	0	24	0	0	0	0	0	14	10	0	0	0	21	11	85	
8:35 AM	0	7	0	18	0	0	0	0	0	17	18	0	0	0	18	11	89	
8:40 AM	0	4	0	8	0	0	0	0	0	14	11	0	0	0	18	5	60	
8:45 AM	0	5	0	17	0	0	0	0	0	8	20	0	0	0	31	5	86	
8:50 AM	0	3	0	10	0	0	0	0	0	6	16	0	0	0	21	6	62	
8:55 AM	0	5	0	16	0	0	0	0	0	9	8	0	0	0	14	3	55	
Count Total	0	129	0	468	0	0	0	0	0	201	262	0	0	0	484	166	1,710	_
Peak Hour	0	84	0	296	0	0	0	0	0	114	159	0	0	0	266	93	1,012	<u>:</u>

Location: 2 NE 28th St & NE Ingle Rd AM

Interval		Hea	avy Vehicle	es	-	Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/f	Bicycles or	n Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	1	0	0	1	2	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	0	4	0	1	5	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	2	3	0	0	5	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	0	0	1	1	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	2	0	1	3	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	0	2	0	0	2	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	3	0	0	3	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	2	1	0	0	3	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	1	0	0	1	2	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	2	1	0	1	4	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	1	1	0	1	3	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	3	1	0	0	4	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	3	0	0	1	4	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	7	1	0	0	8	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	2	4	0	2	8	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	1	4	0	1	6	8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	0	0
8:30 AM	2	2	0	1	5	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	1	4	0	1	6	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	4	0	3	7	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	1	3	0	0	4	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	1	2	0	1	4	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	2	0	0	0	2	8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	32	42	0	17	91	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	25	22	0	9	56	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr AM


www.alltrafficdata.net

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr AM

Date: Thursday, September 16, 2021 Peak Hour: 07:35 AM - 08:35 AM

Peak 15-Minutes: 08:20 AM - 08:35 AM

Peak Hour

Note: Total study counts contained in parentheses.

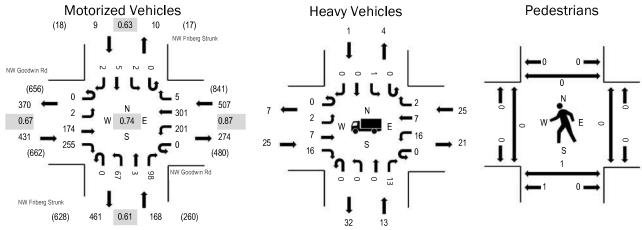
	HV%	PHF
EB	0.0%	0.00
WB	1.6%	0.63
NB	9.0%	0.79
SB	4.3%	0.90
All	5.5%	0.89

Interval	NV	V Camas Eastb	Meadow ound	s Dr	NV		Meadow bound	s Dr			odwin Rd Ibound			NW Goo South	dwin Rd bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	0	0	2	0	0	0	0	11	1	0	3	18	0	35	712
7:05 AM	0	0	0	0	0	2	0	1	0	0	9	0	0	8	24	0	44	749
7:10 AM	0	0	0	0	0	1	0	5	0	0	9	3	0	3	21	0	42	772
7:15 AM	0	0	0	0	0	1	0	2	0	0	11	3	0	2	26	0	45	790
7:20 AM	0	0	0	0	0	0	0	1	0	0	13	3	0	7	18	0	42	823
7:25 AM	0	0	0	0	0	2	0	1	0	0	7	3	0	10	39	0	62	874
7:30 AM	0	0	0	0	0	12	0	5	0	0	14	1	0	7	25	0	64	891
7:35 AM	0	0	0	0	0	0	0	7	0	0	20	2	0	5	35	0	69	911
7:40 AM	0	0	0	0	0	1	0	5	0	0	23	1	0	11	35	0	76	903
7:45 AM	0	0	0	0	0	1	0	5	0	0	19	1	0	13	41	0	80	883
7:50 AM	0	0	0	0	0	1	0	3	0	0	18	4	0	6	46	0	78	878
7:55 AM	0	0	0	0	0	2	0	4	0	0	15	7	1	9	37	0	75	857
8:00 AM	0	0	0	0	0	1	0	6	0	0	14	1	0	9	41	0	72	839
8:05 AM	0	0	0	0	0	0	0	4	0	0	22	1	0	4	36	0	67	
8:10 AM	0	0	0	0	0	2	0	1	0	0	12	3	0	5	37	0	60	
8:15 AM	0	0	0	0	0	4	0	3	0	0	16	0	0	8	47	0	78	
8:20 AM	0	0	0	0	0	0	0	2	0	0	28	2	0	8	53	0	93	
8:25 AM	0	0	0	0	0	3	0	4	0	0	21	6	0	4	41	0	79	
8:30 AM	0	0	0	0	0	1	0	3	0	0	29	3	0	5	43	0	84	
8:35 AM	0	0	0	0	0	1	0	1	0	0	27	4	0	1	27	0	61	
8:40 AM	0	0	0	0	0	1	0	2	0	0	21	0	0	6	26	0	56	
8:45 AM	0	0	0	0	0	1	0	2	0	0	28	2	0	4	38	0	75	
8:50 AM	0	0	0	0	0	0	0	2	0	0	16	6	0	4	29	0	57	
8:55 AM	0	0	0	0	0	0	0	3	0	0	17	2	0	6	29	0	57	
Count Total	0	0	0	0	0	39	0	72	0	0	420	59	1	148	812	0	1,551	_
Peak Hour	0	0	0	0	0	16	0	47	0	0	237	31	1	87	492	0	911	_

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr AM

Interval		Hea	avy Vehicle	es		Interval	•	Bicycle	s on Road	dway		Interval	Ped	destrians/E	Bicycles or	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	1	1	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	0	3	0	0	3	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	0	1	0	0	1	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	2	0	1	3	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	1	0	1	2	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	2	1	0	3	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	2	0	0	2	7:30 AM	0	0	0	0	0	7:30 AM	0	0	1	0	1
7:35 AM	0	2	1	0	3	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	2	0	0	2	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	1	0	0	1	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	0	0	1	1	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	0	3	0	4	7	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	0	0	3	3	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	0	1	0	1	2	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	0	0	3	3	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	0	5	0	6	11	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	0	4	0	3	7	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	0	3	0	2	5	8:25 AM	0	0	0	0	0	8:25 AM	0	0	1	0	1
8:30 AM	0	3	0	2	5	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	0	7	0	1	8	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	1	0	3	4	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	4	0	1	5	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	0	2	0	2	4	8:50 AM	0	1	0	0	1	8:50 AM	0	0	0	0	0
8:55 AM	0	0	0	2	2	8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	0	49	2	37	88	Count Total	0	1	0	0	1	Count Total	0	0	2	0	2
Peak Hour	0	24	1	25	50	Peak Hour	0	0	0	0	0	Peak Hour	0	0	1	0	1

Location: 4 NW Friberg Strunk & NW Goodwin Rd AM



Location: 4 NW Friberg Strunk & NW Goodwin Rd AM

Date: Thursday, September 16, 2021 Peak Hour: 07:40 AM - 08:40 AM

Peak 15-Minutes: 08:20 AM - 08:35 AM

Peak Hour

Note: Total study counts contained in parentheses.

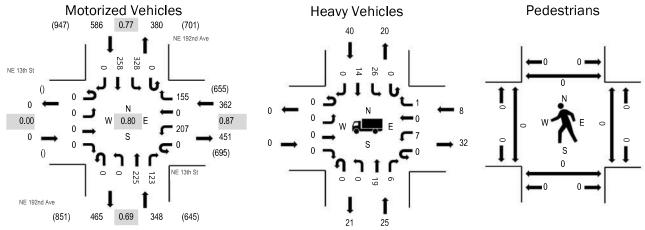
	HV%	PHF
EB	5.8%	0.67
WB	4.9%	0.87
NB	7.7%	0.61
SB	11.1%	0.63
All	5.7%	0.74

Interval			odwin Rd oound				odwin Ro bound	l			erg Strunk bound	(erg Strunk nbound	(Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	10	1	0	3	22	0	0	0	0	1	0	0	0	0	37	701
7:05 AM	0	0	5	3	0	8	12	0	0	1	0	4	0	0	0	0	33	736
7:10 AM	0	1	8	5	0	7	16	0	0	5	0	1	0	0	1	0	44	776
7:15 AM	0	0	12	13	0	8	18	0	0	1	0	3	0	0	1	0	56	822
7:20 AM	0	0	11	9	0	7	18	0	0	6	0	6	0	0	0	0	57	874
7:25 AM	0	1	9	14	0	5	19	0	0	4	1	0	0	0	3	0	56	942
7:30 AM	0	0	9	6	0	8	32	0	0	7	0	4	0	0	0	0	66	1,010
7:35 AM	0	0	19	8	0	7	22	0	0	0	0	4	0	0	1	0	61	1,074
7:40 AM	0	0	15	5	0	12	29	0	0	3	0	5	0	0	0	1	70	1,115
7:45 AM	0	0	20	7	0	9	24	0	0	2	0	4	0	0	1	0	67	1,110
7:50 AM	0	0	16	9	0	9	27	0	0	2	0	5	0	0	0	0	68	1,106
7:55 AM	0	0	11	8	0	20	36	0	0	1	1	8	0	0	1	0	86	1,099
8:00 AM	0	0	17	8	0	13	23	0	0	6	0	4	0	1	0	0	72	1,080
8:05 AM	0	0	9	14	0	15	25	0	0	2	0	8	0	0	0	0	73	
8:10 AM	0	0	10	33	0	8	26	0	0	7	0	6	0	0	0	0	90	
8:15 AM	0	0	12	41	0	26	18	1	0	3	0	6	0	0	1	0	108	
8:20 AM	0	0	13	43	0	22	23	2	0	9	0	12	0	0	1	0	125	
8:25 AM	0	0	12	37	0	28	23	0	0	7	1	14	0	0	1	1	124	
8:30 AM	0	2	18	35	0	22	25	1	0	11	1	14	0	1	0	0	130	
8:35 AM	0	0	21	15	0	17	22	1	0	14	0	12	0	0	0	0	102	
8:40 AM	0	0	16	3	0	4	23	1	0	6	1	10	0	1	0	0	65	
8:45 AM	0	0	21	6	0	4	20	0	0	3	0	8	0	0	0	1	63	
8:50 AM	0	0	17	2	0	11	25	0	0	0	0	6	0	0	0	0	61	
8:55 AM	0	1	16	5	0	13	21	0	0	4	1	5	0	0	1	0	67	
Count Total	0	5	327	330	0	286	549	6	0	104	6	150	0	3	12	3	1,781	_
Peak Hour	0	2	174	255	0	201	301	5	0	67	3	98	0	2	5	2	1,115	

Location: 4 NW Friberg Strunk & NW Goodwin Rd AM

Interval		Hea	avy Vehicle	es	-	Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles on	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	1	0	0	0	1	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	1	0	1	0	2	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	3	0	0	0	3	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	2	1	0	0	3	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	1	2	0	3	7:20 AM	1	0	0	0	1	7:20 AM	0	1	0	0	1
7:25 AM	2	2	0	1	5	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	2	0	0	0	2	7:30 AM	0	0	0	0	0	7:30 AM	0	1	0	0	1
7:35 AM	3	0	0	0	3	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	1	0	0	1	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	1	0	0	0	1	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	0	1	0	1	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	2	1	2	0	5	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	1	0	4	0	5	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	3	0	0	0	3	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	6	1	7	0	14	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	6	4	3	0	13	8:20 AM	0	0	0	0	0		0	0	0	0	0
8:25 AM	2	3	2	0	7	8:25 AM	1	0	0	0	1	8:25 AM	0	0	0	0	0
8:30 AM	3	1	5	1	10	8:30 AM	0	0	0	0	0	8:30 AM	0	1	0	0	1
8:35 AM	1	2	1	0	4	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	4	1	2	1	8	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	3	1	2	0	6	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	2	0	1	0	3	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	1	2	2	1	6	8:55 AM	1	0	0	0	1	010071111	0	1	0	0	1
Count Total	49	21	35	4	109	Count Total	3	0	0	0	3	Count Total	0	4	0	0	4
Peak Hour	25	13	25	1	64	Peak Hour	1	0	0	0	1	Peak Hour	0	1	0	0	1

Location: 5 NE 192nd Ave & NE 13th St AM



Location: 5 NE 192nd Ave & NE 13th St AM

Date: Thursday, September 16, 2021 **Peak Hour:** 07:40 AM - 08:40 AM

Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour

Note: Total study counts contained in parentheses.

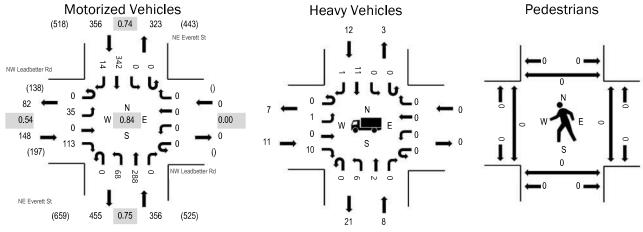
	HV%	PHF
EB	0.0%	0.00
WB	2.2%	0.87
NB	7.2%	0.69
SB	6.8%	0.77
All	5.6%	0.80

Interval Start Time		Eastb	3th St	D'. l.(West	3th St	D'. lu	U.T		bound	D'. I.i	U.T		bound	D'. l.t	T	Rolling Hour
-	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	
7:00 AM	0	0	0	0	0	17	0	7	0	0	12	5	0	6	9	0	56	982
7:05 AM	0	0	0	0	0	9	0	4	0	0	13	3	0	7	15	0	51	999
7:10 AM	0	0	0	0	0	11	0	11	0	0	10	7	0	9	17	0	65	1,048
7:15 AM	0	0	0	0	0	10	0	9	0	0	10	8	0	13	23	0	73	1,115
7:20 AM	0	0	0	0	0	9	0	13	0	0	26	13	0	21	19	0	101	1,167
7:25 AM	0	0	0	0	0	11	0	12	0	0	26	13	0	11	18	0	91	1,208
7:30 AM	0	0	0	0	0	17	0	9	0	0	15	11	0	17	13	0	82	1,255
7:35 AM	0	0	0	0	0	22	0	11	0	0	17	3	0	11	19	0	83	1,272
7:40 AM	0	0	0	0	0	12	0	17	0	0	20	12	0	18	21	0	100	1,296
7:45 AM	0	0	0	0	0	15	0	14	0	0	14	4	0	16	24	0	87	1,290
7:50 AM	0	0	0	0	0	15	0	13	0	0	12	4	0	17	26	0	87	1,289
7:55 AM	0	0	0	0	0	23	0	10	0	0	15	9	0	21	28	0	106	1,283
8:00 AM	0	0	0	0	0	19	0	12	0	0	11	6	0	12	13	0	73	1,265
8:05 AM	0	0	0	0	0	17	0	8	0	0	13	7	0	32	23	0	100	
8:10 AM	0	0	0	0	0	20	0	14	0	0	26	11	0	35	26	0	132	
8:15 AM	0	0	0	0	0	11	0	8	0	0	21	13	0	50	22	0	125	
8:20 AM	0	0	0	0	0	19	0	16	0	0	32	21	0	35	19	0	142	
8:25 AM	0	0	0	0	0	17	0	13	0	0	29	15	0	48	16	0	138	
8:30 AM	0	0	0	0	0	20	0	12	0	0	15	7	0	27	18	0	99	
8:35 AM	0	0	0	0	0	19	0	18	0	0	17	14	0	17	22	0	107	
8:40 AM	0	0	0	0	0	16	0	21	0	0	15	9	0	9	24	0	94	
8:45 AM	0	0	0	0	0	14	0	9	0	0	17	13	0	13	20	0	86	
8:50 AM	0	0	0	0	0	14	0	13	0	0	15	9	0	11	19	0	81	
8:55 AM	0	0	0	0	0	14	0	10	0	0	16	11	0	11	26	0	88	
Count Total	0	0	0	0	0	371	0	284	0	0	417	228	0	467	480	0	2,247	
Peak Hour	0	0	0	0	0	207	0	155	0	0	225	123	0	328	258	0	1,296	_

Location: 5 NE 192nd Ave & NE 13th St AM

Interval		Hea	avy Vehicle		,	Interval	•	Bicycle	es on Road	dway		Interval	Ped	estrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	1	1	2	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	0	1	1	1	3	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	0	0	0	2	2	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	1	0	4	5	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	4	2	3	9	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	2	2	0	4	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	3	0	1	4	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	0	3	0	2	5	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	2	0	1	3	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	2	0	2	4	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	1	0	1	2	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	0	3	1	4	8	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	0	0	2	2	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	0	2	2	0	4	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	1	1	7	9	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	0	3	0	8	11	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	0	3	0	4	7	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	0	2	1	3	6	8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	0	0
8:30 AM	0	1	2	2	5	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	0	5	1	6	12	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	5	2	2	9	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	5	1	2	8	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	0	5	3	2	10	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	0	2	2	2	6	8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	0	56	22	62	140	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	0	25	8	40	73	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 6 NE Everett St & NW Leadbetter Rd AM


www.alltrafficdata.net

Location: 6 NE Everett St & NW Leadbetter Rd AM

Date: Thursday, September 16, 2021 Peak Hour: 07:45 AM - 08:45 AM

Peak 15-Minutes: 08:05 AM - 08:20 AM

Peak Hour

Note: Total study counts contained in parentheses.

	HV%	PHF
EB	7.4%	0.54
WB	0.0%	0.00
NB	2.2%	0.75
SB	3.4%	0.74
All	3.6%	0.84

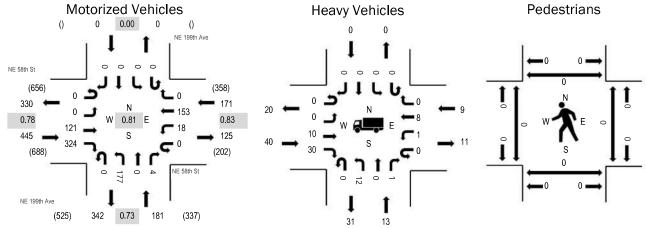
Interval			dbetter R	d			dbetter R bound	d			erett St bound				erett St bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	3	0	0	0	0	0	6	5	0	0	0	13	0	27	450
7:05 AM	0	0	0	0	0	0	0	0	0	3	3	0	0	0	14	0	20	496
7:10 AM	0	0	0	4	0	0	0	0	0	6	5	0	0	0	9	0	24	563
7:15 AM	0	1	0	0	0	0	0	0	0	0	10	0	0	0	14	0	25	625
7:20 AM	0	0	0	5	0	0	0	0	0	4	17	0	0	0	17	1	44	682
7:25 AM	0	1	0	6	0	0	0	0	0	2	7	0	0	0	15	2	33	718
7:30 AM	0	0	0	4	0	0	0	0	0	8	14	0	0	0	12	0	38	751
7:35 AM	0	0	0	10	0	0	0	0	0	5	6	0	0	0	10	0	31	790
7:40 AM	0	0	0	2	0	0	0	0	0	4	9	0	0	0	11	0	26	835
7:45 AM	0	0	0	7	0	0	0	0	0	16	13	0	0	0	22	1	59	860
7:50 AM	0	1	0	8	0	0	0	0	0	7	7	0	0	0	19	1	43	839
7:55 AM	0	3	0	26	0	0	0	0	0	3	23	0	0	0	23	2	80	835
8:00 AM	0	5	0	17	0	0	0	0	0	4	32	0	0	0	14	1	73	790
8:05 AM	0	4	0	14	0	0	0	0	0	2	38	0	0	0	27	2	87	
8:10 AM	0	4	0	3	0	0	0	0	0	7	36	0	0	0	35	1	86	
8:15 AM	0	4	0	8	0	0	0	0	0	4	26	0	0	0	38	2	82	
8:20 AM	0	3	0	9	0	0	0	0	0	3	21	0	0	0	44	0	80	
8:25 AM	0	5	0	4	0	0	0	0	0	5	28	0	0	0	23	1	66	
8:30 AM	0	2	0	4	0	0	0	0	0	5	33	0	0	0	33	0	77	
8:35 AM	0	4	0	6	0	0	0	0	0	7	17	0	0	0	41	1	76	
8:40 AM	0	0	0	7	0	0	0	0	0	5	14	0	0	0	23	2	51	
8:45 AM	0	1	0	3	0	0	0	0	0	4	10	0	0	0	20	0	38	
8:50 AM	0	0	0	6	0	0	0	0	0	6	12	0	0	0	15	0	39	
8:55 AM	0	1	0	2	0	0	0	0	0	5	18	0	0	0	9	0	35	
Count Total	0	39	0	158	0	0	0	0	0	121	404	0	0	0	501	17	1,240	_
Peak Hour	0	35	0	113	0	0	0	0	0	68	288	0	0	0	342	14	860	

Location: 6 NE Everett St & NW Leadbetter Rd AM

Interval		Hea	avy Vehicle		, o, o, o	Interval	•	Bicycle	es on Road	dway		Interval	Ped	estrians/E	Bicycles on	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	1	0	0	1	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	1	1	0	1	3	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	3	0	0	3	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	2	0	0	2	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	0	0	0	1	1	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	3	0	0	3	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	1	4	0	0	5	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	4	0	0	1	5	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	3	0	0	0	3	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	1	0	0	0	1	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	0	0	4	4	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	1	0	0	0	1	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	0	0	0	3	3	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	1	0	0	2	3	8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	0	0
8:30 AM	0	0	0	1	1	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	0	0	0	1	1	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	1	0	0	1	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	0	0	2	2	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	0	0	0	1	1	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0		0	0	0	0	0
Count Total	12	15	0	17	44	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	11	8	0	12	31	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 7 NE 199th Ave & NE 58th St AM

ALL TRAFFIC DATA SERVICES (303) 216-2439


www.alltrafficdata.net

Location: 7 NE 199th Ave & NE 58th St AM

Date: Thursday, September 16, 2021 Peak Hour: 07:40 AM - 08:40 AM

Peak 15-Minutes: 08:20 AM - 08:35 AM

Peak Hour

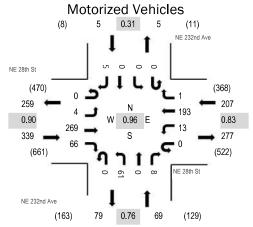
Note: Total study counts contained in parentheses.

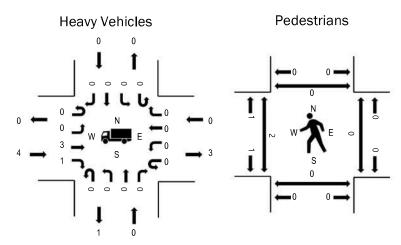
	HV%	PHF
EB	9.0%	0.78
WB	5.3%	0.83
NB	7.2%	0.73
SB	0.0%	0.00
All	7.8%	0.81

mamo ocumo	141000	IIZCU	* Cilic	103														
Interval			58th St bound				58th St bound				9th Ave nbound				9th Ave nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	8	4	0	1	18	0	0	14	0	0	0	0	0	0	45	637
7:05 AM	0	0	7	14	0	3	14	0	0	7	0	0	0	0	0	0	45	663
7:10 AM	0	0	1	11	0	0	15	0	0	13	0	0	0	0	0	0	40	666
7:15 AM	0	0	6	16	0	1	17	0	0	11	0	0	0	0	0	0	51	684
7:20 AM	0	0	4	17	0	3	16	0	0	12	0	1	0	0	0	0	53	689
7:25 AM	0	0	8	23	0	0	14	0	0	13	0	0	0	0	0	0	58	727
7:30 AM	0	0	2	15	0	0	10	0	0	12	0	0	0	0	0	0	39	741
7:35 AM	0	0	6	12	0	2	16	0	0	7	0	0	0	0	0	0	43	785
7:40 AM	0	0	8	22	0	3	22	0	0	16	0	1	0	0	0	0	72	797
7:45 AM	0	0	10	25	0	1	15	0	0	19	0	0	0	0	0	0	70	789
7:50 AM	0	0	12	22	0	0	18	0	0	14	0	0	0	0	0	0	66	763
7:55 AM	0	0	7	34	0	3	3	0	0	8	0	0	0	0	0	0	55	744
8:00 AM	0	0	13	25	0	1	15	0	0	17	0	0	0	0	0	0	71	746
8:05 AM	0	0	6	22	0	0	7	0	0	12	0	1	0	0	0	0	48	
8:10 AM	0	0	7	28	0	1	7	0	0	14	0	1	0	0	0	0	58	
8:15 AM	0	0	7	29	0	1	12	0	0	7	0	0	0	0	0	0	56	
8:20 AM	0	0	17	38	0	2	17	0	0	17	0	0	0	0	0	0	91	
8:25 AM	0	0	11	31	0	1	13	0	0	16	0	0	0	0	0	0	72	
8:30 AM	0	0	14	32	0	2	17	0	0	18	0	0	0	0	0	0	83	
8:35 AM	0	0	9	16	0	3	7	0	0	19	0	1	0	0	0	0	55	
8:40 AM	0	0	7	10	0	1	18	0	0	28	0	0	0	0	0	0	64	
8:45 AM	0	0	5	10	0	1	11	0	0	14	0	3	0	0	0	0	44	
8:50 AM	0	0	9	16	0	0	10	0	0	12	0	0	0	0	0	0	47	
8:55 AM	0	0	10	22	0	1	15	0	0	9	0	0	0	0	0	0	57	
Count Total	0	0	194	494	0	31	327	0	0	329	0	8	0	0	0	0	1,383	_
Peak Hour	0	0	121	324	0	18	153	0	0	177	0	4	0	0	0	0	797	,

Location: 7 NE 199th Ave & NE 58th St AM

Interval		Hea	avy Vehicle	es	-	Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles or	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	1	1	1	0	3	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	1	0	0	0	1	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	0	0	1	0	1	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	3	1	2	0	6	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	4	1	0	0	5	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	2	2	1	0	5	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	1	0	0	1	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	1	1	1	0	3	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	2	2	1	0	5	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	2	0	2	0	4	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	1	0	0	0	1	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	4	0	2	0	6	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	4	2	0	0	6	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	4	0	0	0	4	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	7	1	1	0	9	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	9	0	3	0	12	8:20 AM	0	0	0	0	0		0	0	0	0	0
8:25 AM	3	3	0	0	6	8:25 AM	0	0	0	0	0		0	0	0	0	0
8:30 AM	3	3	0	0	6	8:30 AM	0	0	0	0	0		0	0	0	0	0
8:35 AM	1	2	0	0	3	8:35 AM	0	1	1	0	2		0	0	0	0	0
8:40 AM	1	0	0	0	1	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	2	0	0	2	8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0
8:50 AM	0	1	0	0	1	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	3	0	1	0	4	8:55 AM	0	0	0	0	0		0	0	0	0	0
Count Total	56	23	16	0	95	Count Total	0	1	1	0	2	Count Total	0	0	0	0	0
Peak Hour	40	13	9	0	62	Peak Hour	0	1	1	0	2	Peak Hour	0	0	0	0	0




(303) 216-2439 www.alltrafficdata.net Location: 1 NE 232nd Ave & NE 28th St PM

Date: Thursday, September 16, 2021 **Peak Hour:** 04:05 PM - 05:05 PM

Peak 15-Minutes: 04:15 PM - 04:30 PM

Peak Hour

Note: Total study counts contained in parentheses.

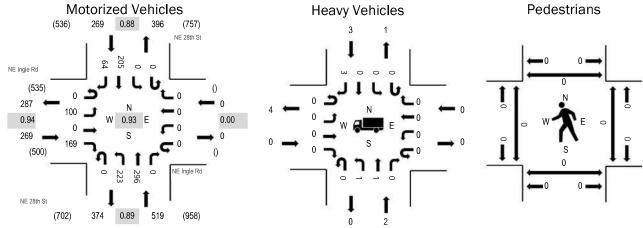
	HV%	PHF
EB	1.2%	0.90
WB	0.0%	0.83
NB	0.0%	0.76
SB	0.0%	0.31
All	0.6%	0.96

Interval			28th St bound				28th St bound				2nd Ave bound			NE 232 South	2nd Ave nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	24	6	0	1	12	0	0	5	0	1	0	0	0	0	49	616
4:05 PM	0	1	22	3	0	3	21	0	0	6	0	0	0	0	0	1	57	620
4:10 PM	0	0	16	10	0	0	13	0	0	10	0	0	0	0	0	0	49	620
4:15 PM	0	0	17	3	0	2	23	0	0	6	0	1	0	0	0	0	52	610
4:20 PM	0	0	30	2	0	0	19	0	0	3	0	0	0	0	0	0	54	606
4:25 PM	0	0	25	9	0	0	18	0	0	3	0	0	0	0	0	0	55	592
4:30 PM	0	1	25	7	0	1	9	0	0	6	0	0	0	0	0	0	49	584
4:35 PM	0	1	22	7	0	1	17	0	0	4	0	0	0	0	0	1	53	586
4:40 PM	0	1	24	3	0	1	11	0	0	7	0	1	0	0	0	1	49	580
4:45 PM	0	0	18	5	0	0	15	0	0	5	0	2	0	0	0	2	47	577
4:50 PM	0	0	31	6	0	1	15	0	0	4	0	1	0	0	0	0	58	574
4:55 PM	0	0	11	7	0	4	16	1	0	4	0	1	0	0	0	0	44	551
5:00 PM	0	0	28	4	0	0	16	0	0	3	0	2	0	0	0	0	53	550
5:05 PM	0	0	19	12	0	1	19	0	0	5	0	1	0	0	0	0	57	
5:10 PM	0	0	22	4	0	0	12	0	0	0	0	1	0	0	0	0	39	
5:15 PM	0	0	26	8	0	0	7	0	0	5	0	2	0	0	0	0	48	
5:20 PM	0	0	16	10	0	0	13	0	0	1	0	0	0	0	0	0	40	
5:25 PM	0	0	23	8	0	0	10	0	0	5	0	0	0	0	0	1	47	
5:30 PM	0	1	25	11	0	0	10	0	0	4	0	0	0	0	0	0	51	
5:35 PM	0	1	12	3	0	1	22	0	0	7	0	0	0	0	1	0	47	
5:40 PM	0	1	17	6	0	0	15	0	0	7	0	0	0	0	0	0	46	
5:45 PM	0	0	23	2	0	0	13	0	0	5	0	1	0	0	0	0	44	
5:50 PM	0	0	11	1	0	1	15	0	0	5	1	0	0	0	0	1	35	
5:55 PM	0	1	21	8	0	0	8	1	0	4	0	0	0	0	0	0	43	
Count Total	0	8	508	145	0	17	349	2	0	114	1	14	0	0	1	7	1,166	_
Peak Hour	0	4	269	66	0	13	193	1	0	61	0	8	0	0	0	5	620	_

Location: 1 NE 232nd Ave & NE 28th St PM

Interval		Hea	avy Vehicl	es		Interval	•	Bicycle	s on Road	dway		Interval	Ped	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	1	0	1	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	0	0	0	0	4:05 PM	0	1	0	0	1	4:05 PM	0	0	0	0	0
4:10 PM	1	0	0	0	1	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	1	0	0	0	1	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	1	0	0	0	1	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	1	0	0	0	1	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	1	0	0	0	1	5:00 PM	2	0	0	0	2
5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0	5:15 PM	2	0	0	0	2	5:15 PM	0	0	0	0	0
5:20 PM	0	1	0	0	1	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	1	0	0	0	1	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	1	0	0	0	1	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	1	0	1	5:35 PM	1	0	0	0	1	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	1	0	1	5:50 PM	1	0	0	0	1	5:50 PM	0	1	0	0	1
5:55 PM	0	1	0	0	1	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	6	2	3	0	11	Count Total	5	1	0	0	6	Count Total	2	1	0	0	3
Peak Hour	4	0	0	0	4	Peak Hour	1	1	0	0	2	Peak Hour	2	0	0	0	2

Location: 2 NE 28th St & NE Ingle Rd PM


www.alltrafficdata.net

Location: 2 NE 28th St & NE Ingle Rd PM

Date: Thursday, September 16, 2021 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

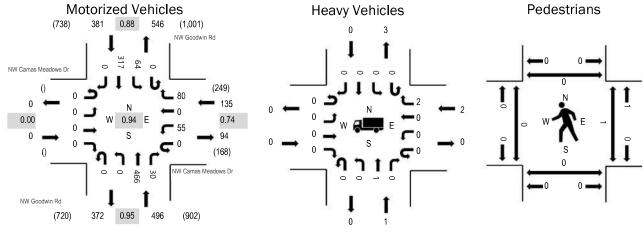
	HV%	PHF
EB	0.0%	0.94
WB	0.0%	0.00
NB	0.4%	0.89
SB	1.1%	0.88
All	0.5%	0.93

Interval		East	ngle Rd cound			West	ngle Rd bound			North	8th St bound			South	8th St nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	9	0	10	0	0	0	0	0	13	20	0	0	0	14	8	74	956
4:05 PM	0	8	0	9	0	0	0	0	0	13	22	0	0	0	19	9	80	980
4:10 PM	0	4	0	6	0	0	0	0	0	24	19	0	0	0	14	7	74	99
4:15 PM	0	4	0	9	0	0	0	0	0	10	20	0	0	0	24	8	75	1,01
4:20 PM	0	13	0	10	0	0	0	0	0	14	29	0	0	0	16	5	87	1,00
4:25 PM	0	8	0	13	0	0	0	0	0	8	26	0	0	0	19	5	79	999
4:30 PM	0	14	0	10	0	0	0	0	0	13	13	0	0	0	10	6	66	1,01
4:35 PM	0	8	0	16	0	0	0	0	0	13	24	0	0	0	19	4	84	1,04
4:40 PM	0	5	0	21	0	0	0	0	0	16	23	0	0	0	12	12	89	1,04
4:45 PM	0	8	0	13	0	0	0	0	0	18	26	0	0	0	21	5	91	1,05
4:50 PM	0	9	0	14	0	0	0	0	0	14	28	0	0	0	20	3	88	1,03
4:55 PM	0	6	0	12	0	0	0	0	0	7	19	0	0	0	23	2	69	1,03
5:00 PM	0	8	0	15	0	0	0	0	0	20	34	0	0	0	17	4	98	1,03
5:05 PM	0	11	0	14	0	0	0	0	0	25	15	0	0	0	20	6	91	
5:10 PM	0	9	0	14	0	0	0	0	0	24	30	0	0	0	15	4	96	
5:15 PM	0	12	0	8	0	0	0	0	0	14	23	0	0	0	7	4	68	
5:20 PM	0	11	0	13	0	0	0	0	0	16	21	0	0	0	14	5	80	
5:25 PM	0	9	0	17	0	0	0	0	0	13	33	0	0	0	14	8	94	
5:30 PM	0	7	0	17	0	0	0	0	0	25	26	0	0	0	13	5	93	
5:35 PM	0	6	0	15	0	0	0	0	0	23	12	0	0	0	21	8	85	
5:40 PM	0	4	0	17	0	0	0	0	0	24	29	0	0	0	20	10	104	
5:45 PM	0	6	0	6	0	0	0	0	0	21	19	0	0	0	17	3	72	
5:50 PM	0	8	0	13	0	0	0	0	0	15	22	0	0	0	18	5	81	
5:55 PM	0	11	0	10	0	0	0	0	0	16	26	0	0	0	13	0	76	
Count Total	0	198	0	302	0	0	0	0	0	399	559	0	0	0	400	136	1,994	
Peak Hour	0	100	0	169	0	0	0	0	0	223	296	0	0	0	205	64	1,057	

Location: 2 NE 28th St & NE Ingle Rd PM

Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Ped	estrians/E	Bicycles or	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	1	0	0	1	2	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	2	2	0	0	4	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	1	1	4:10 PM	0	0	0	0	0
4:15 PM	0	0	0	1	1	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	1	1	0	1	3	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	1	0	0	1	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	1	0	0	0	1	4:35 PM	0	1	0	0	1	4:35 PM	0	0	0	1	1
4:40 PM	0	1	0	0	1	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	1	1	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	1	1	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	1	0	0	1	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	0	0	5:10 PM	0	2	0	0	2	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	1	0	0	1	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	1	0	0	1	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	1	0	0	1	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	1	1	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	1	0	0	1	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	1	0	0	0	1	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	6	8	0	6	20	Count Total	0	5	0	1	6	Count Total	0	0	0	1	1
Peak Hour	0	2	0	3	5	Peak Hour	0	4	0	0	4	Peak Hour	0	0	0	0	0

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr PM


www.alltrafficdata.net

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr PM

Date: Thursday, September 16, 2021 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

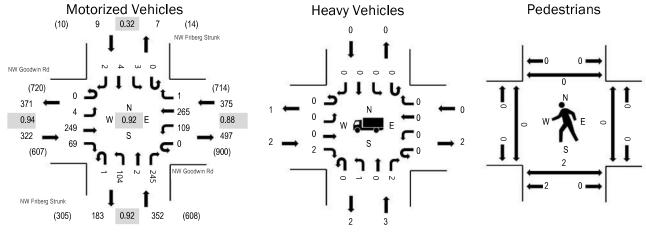
	HV%	PHF
EB	0.0%	0.00
WB	1.5%	0.74
NB	0.2%	0.95
SB	0.0%	0.88
All	0.3%	0.94

Interval	NV	Eastl	Meadow bound	s Dr			Meadow bound	s Dr			odwin Rd nbound			NW Goo South	dwin Rd bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	6	0	3	0	0	41	3	0	2	28	0	83	924
4:05 PM	0	0	0	0	0	4	0	6	0	0	21	3	0	6	20	0	60	938
4:10 PM	0	0	0	0	0	3	0	4	0	0	37	1	0	1	18	0	64	961
4:15 PM	0	0	0	0	0	3	0	8	0	0	29	0	0	10	30	0	80	985
4:20 PM	0	0	0	0	0	5	0	7	0	0	29	2	0	4	24	0	71	963
4:25 PM	0	0	0	0	0	4	0	5	0	0	33	2	0	3	33	0	80	970
4:30 PM	0	0	0	0	0	4	0	6	0	0	28	4	0	3	20	0	65	983
4:35 PM	0	0	0	0	0	1	0	5	0	0	32	0	0	3	31	0	72	998
4:40 PM	0	0	0	0	0	7	0	12	0	0	30	3	0	7	32	0	91	1,008
4:45 PM	0	0	0	0	0	7	0	3	0	0	49	3	0	3	29	0	94	1,012
4:50 PM	0	0	0	0	0	4	0	4	0	0	24	6	0	6	38	0	82	981
4:55 PM	0	0	0	0	0	7	0	1	0	0	40	2	0	6	26	0	82	977
5:00 PM	0	0	0	0	0	7	0	16	0	0	37	4	0	5	28	0	97	965
5:05 PM	0	0	0	0	0	4	0	8	0	0	37	1	0	4	29	0	83	
5:10 PM	0	0	0	0	0	3	0	9	0	0	45	2	0	5	24	0	88	
5:15 PM	0	0	0	0	0	0	0	6	0	0	35	2	0	0	15	0	58	
5:20 PM	0	0	0	0	0	4	0	5	0	0	36	3	0	5	25	0	78	
5:25 PM	0	0	0	0	0	8	0	3	0	0	46	2	0	7	27	0	93	
5:30 PM	0	0	0	0	0	2	0	7	0	0	41	2	0	5	23	0	80	
5:35 PM	0	0	0	0	0	3	0	8	0	0	35	2	0	9	25	0	82	
5:40 PM	0	0	0	0	0	6	0	10	0	0	41	1	0	9	28	0	95	
5:45 PM	0	0	0	0	0	2	0	3	0	0	30	2	0	3	23	0	63	
5:50 PM	0	0	0	0	0	3	0	7	0	0	37	1	0	5	25	0	78	
5:55 PM	0	0	0	0	0	0	0	6	0	0	36	2	0	4	22	0	70	
Count Total	0	0	0	0	0	97	0	152	0	0	849	53	0	115	623	0	1,889	
Peak Hour	0	0	0	0	0	55	0	80	0	0	466	30	0	64	317	0	1,012	

Location: 3 NW Goodwin Rd & NW Camas Meadows Dr PM

Interval		Hea	avy Vehicle	es		Interval	·	Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles on	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	1	0	2	3	4:00 PM	0	0	0	0	0	4:00 PM	0	0	1	0	1
4:05 PM	0	1	0	2	3	4:05 PM	0	0	0	0	0	4:05 PM	0	0	1	0	1
4:10 PM	0	0	0	0	0	4:10 PM	0	1	0	0	1	4:10 PM	0	0	0	0	0
4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	0	0	4:20 PM	0	1	0	0	1	4:20 PM	0	0	0	0	0
4:25 PM	0	2	0	1	3	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	1	1	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	1	1	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	1	0	0	1	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	1	0	0	1	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	2	0	2	5:00 PM	0	0	0	0	0
5:05 PM	0	0	0	0	0	5:05 PM	0	2	0	0	2	5:05 PM	0	0	1	0	1
5:10 PM	0	0	0	0	0	5:10 PM	0	1	0	0	1	5:10 PM	0	0	0	0	0
5:15 PM	0	0	1	0	1	5:15 PM	0	0	0	0	0	5:15 PM	0	0	4	0	4
5:20 PM	0	1	0	0	1	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	0	0	5:25 PM	0	1	0	0	1	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	1	0	1	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	1	0	0	1	5:35 PM	0	0	0	0	0
5:40 PM	0	0	1	0	1	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	1	0	1
5:50 PM	0	1	0	0	1	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	0	6	2	6	14	Count Total	0	9	3	1	13	Count Total	0	0	8	0	8
Peak Hour	0	1	2	0	3	Peak Hour	0	7	3	1	11	Peak Hour	0	0	5	0	5

Location: 4 NW Friberg Strunk & NW Goodwin Rd PM



Location: 4 NW Friberg Strunk & NW Goodwin Rd PM

Date: Thursday, September 16, 2021 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 04:45 PM - 05:00 PM

Peak Hour

Note: Total study counts contained in parentheses.

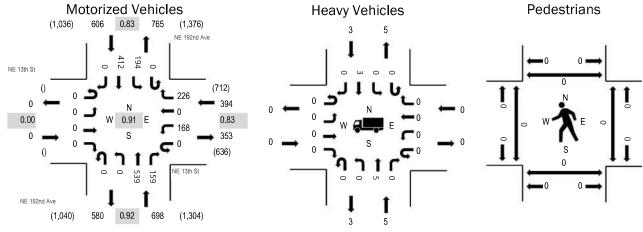
	HV%	PHF
EB	0.6%	0.94
WB	0.0%	0.88
NB	0.9%	0.92
SB	0.0%	0.32
All	0.5%	0.92

mamo odanto	141000	IIZCU	* Cilic	103														
Interval			odwin Ro oound	d			odwin Ro bound	t			erg Strunl nbound	<	1		erg Strunk nbound	<		Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	23	3	0	2	26	0	0	2	1	11	0	0	0	0	68	942
4:05 PM	0	1	16	6	0	2	18	0	0	5	0	19	0	0	0	0	67	970
4:10 PM	0	0	21	5	0	3	25	0	0	5	0	17	0	0	0	0	76	989
4:15 PM	0	0	15	3	0	7	18	0	0	2	1	12	0	0	0	0	58	1,017
4:20 PM	0	0	22	2	0	9	24	0	0	2	0	15	0	0	0	0	74	1,030
4:25 PM	0	0	16	2	0	4	26	0	0	4	0	13	0	0	0	0	65	1,022
4:30 PM	0	0	19	7	0	5	22	0	0	7	2	12	0	0	0	0	74	1,047
4:35 PM	0	0	19	8	0	9	31	0	0	13	0	15	0	0	0	0	95	1,057
4:40 PM	0	0	20	6	0	3	25	0	0	13	0	11	0	0	1	0	79	1,043
4:45 PM	0	0	27	4	0	3	35	0	0	11	0	25	0	0	0	0	105	1,058
4:50 PM	0	0	19	8	0	12	28	0	0	18	0	16	0	0	0	0	101	1,028
4:55 PM	0	0	20	7	0	11	24	1	0	5	0	12	0	0	0	0	80	1,002
5:00 PM	0	0	30	4	0	9	26	0	0	6	0	21	0	0	0	0	96	997
5:05 PM	0	1	15	6	0	18	19	0	0	11	0	16	0	0	0	0	86	
5:10 PM	0	0	26	5	0	8	22	0	1	16	0	25	0	0	1	0	104	
5:15 PM	0	1	23	7	0	5	12	0	0	7	0	16	0	0	0	0	71	
5:20 PM	0	0	16	3	0	11	13	0	0	5	0	18	0	0	0	0	66	
5:25 PM	0	0	20	8	0	8	18	0	0	7	1	26	0	1	0	1	90	
5:30 PM	0	0	23	4	0	12	18	0	0	2	0	23	0	1	0	1	84	
5:35 PM	0	1	12	8	0	7	27	0	0	1	0	22	0	1	2	0	81	
5:40 PM	0	1	18	5	0	5	23	0	0	15	1	25	0	0	1	0	94	
5:45 PM	0	0	21	4	0	8	19	1	0	8	0	14	0	0	0	0	75	
5:50 PM	0	0	13	6	0	7	19	1	0	7	0	22	0	0	0	0	75	
5:55 PM	0	0	24	3	0	7	18	0	0	10	0	13	0	0	0	0	75	
Count Total	0	5	478	124	0	175	536	3	1	182	6	419	0	3	5	2	1,939	_
Peak Hour	0	4	249	69	0	109	265	1	1	104	2	245	0	3	4	2	1,058	i
																		_

Location: 4 NW Friberg Strunk & NW Goodwin Rd PM

Interval		Hea	avy Vehicle		, o, o	Interval		Bicycle	es on Road	dway		Interval	Ped	estrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	4	0	4	4:00 PM	0	1	0	0	1	4:00 PM	0	0	0	0	0
4:05 PM	2	0	1	0	3	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	1	0	0	1	4:10 PM	0	0	0	0	0
4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	0	0	4:20 PM	0	1	0	0	1	4:20 PM	0	0	0	0	0
4:25 PM	2	0	0	0	2	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	1	0	1	4:30 PM	0	0	0	0	0	4:30 PM	0	1	0	0	1
4:35 PM	0	0	1	0	1	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0	4:45 PM	0	0	1	0	1	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0	4:50 PM	0	2	0	0	2
4:55 PM	0	0	0	0	0	4:55 PM	0	1	0	0	1	4:55 PM	0	0	0	0	0
5:00 PM	0	1	0	0	1	5:00 PM	2	0	0	0	2	5:00 PM	0	1	0	0	1
5:05 PM	0	0	0	0	0	5:05 PM	0	2	1	0	3	5:05 PM	0	0	0	0	0
5:10 PM	1	0	0	0	1	5:10 PM	0	1	0	0	1	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	1	0	0	1	5:20 PM	0	4	0	0	4	5:20 PM	0	4	0	0	4
5:25 PM	0	0	0	0	0	5:25 PM	0	1	0	0	1	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	1	0	1	5:30 PM	0	0	0	0	0
5:35 PM	1	0	0	0	1	5:35 PM	1	0	0	0	1	5:35 PM	0	1	0	0	1
5:40 PM	0	1	0	0	1	5:40 PM	0	0	1	0	1	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	1	0	0	0	1	5:45 PM	0	1	0	0	1
5:50 PM	1	0	0	0	1	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	0	1	0	1	5:55 PM	0	0	1	0	1	5:55 PM	0	0	0	0	0
Count Total	7	3	8	0	18	Count Total	4	12	5	0	21	Count Total	0	10	0	0	10
Peak Hour	2	3	0	0	5	Peak Hour	3	9	4	0	16	Peak Hour	0	8	0	0	8

Location: 5 NE 192nd Ave & NE 13th St PM


www.alltrafficdata.net

Location: 5 NE 192nd Ave & NE 13th St PM

Date: Thursday, September 16, 2021 Peak Hour: 04:35 PM - 05:35 PM

Peak 15-Minutes: 04:45 PM - 05:00 PM

Peak Hour

Note: Total study counts contained in parentheses.

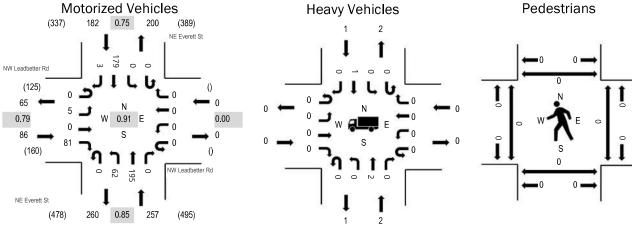
	HV%	PHF
EB	0.0%	0.00
WB	0.0%	0.83
NB	0.7%	0.92
SB	0.5%	0.83
All	0.5%	0.91

Interval		Eastl	13th St cound				3th St bound			North	2nd Ave nbound				2nd Ave nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	14	0	9	0	0	38	13	0	18	18	0	110	1,501
4:05 PM	0	0	0	0	0	13	0	10	0	0	39	8	0	10	25	0	105	1,550
4:10 PM	0	0	0	0	0	22	0	10	0	0	35	9	0	18	18	0	112	1,587
4:15 PM	0	0	0	0	0	12	0	4	0	0	44	10	0	9	28	0	107	1,618
4:20 PM	0	0	0	0	0	17	0	10	0	0	26	13	0	10	27	0	103	1,626
4:25 PM	0	0	0	0	0	17	0	9	0	0	37	10	0	13	22	0	108	1,646
4:30 PM	0	0	0	0	0	13	0	14	0	0	51	17	0	10	12	0	117	1,681
4:35 PM	0	0	0	0	0	16	0	26	0	0	40	7	0	18	26	0	133	1,698
4:40 PM	0	0	0	0	0	14	0	17	0	0	43	16	0	15	33	0	138	1,667
4:45 PM	0	0	0	0	0	18	0	24	0	0	53	14	0	18	38	0	165	1,652
4:50 PM	0	0	0	0	0	11	0	28	0	0	43	4	0	20	51	0	157	1,607
4:55 PM	0	0	0	0	0	16	0	24	0	0	37	15	0	16	38	0	146	1,573
5:00 PM	0	0	0	0	0	18	0	24	0	0	40	20	0	16	41	0	159	1,551
5:05 PM	0	0	0	0	0	14	0	18	0	0	46	10	0	19	35	0	142	
5:10 PM	0	0	0	0	0	8	0	19	0	0	54	18	0	14	30	0	143	
5:15 PM	0	0	0	0	0	12	0	17	0	0	48	10	0	12	16	0	115	
5:20 PM	0	0	0	0	0	9	0	11	0	0	46	17	0	14	26	0	123	
5:25 PM	0	0	0	0	0	17	0	11	0	0	44	14	0	17	40	0	143	
5:30 PM	0	0	0	0	0	15	0	7	0	0	45	14	0	15	38	0	134	
5:35 PM	0	0	0	0	0	19	0	6	0	0	26	7	0	13	31	0	102	
5:40 PM	0	0	0	0	0	11	0	22	0	0	44	8	0	14	24	0	123	
5:45 PM	0	0	0	0	0	18	0	17	0	0	45	11	0	8	21	0	120	
5:50 PM	0	0	0	0	0	9	0	15	0	0	42	16	0	12	29	0	123	
5:55 PM	0	0	0	0	0	13	0	14	0	0	44	13	0	13	27	0	124	
Count Total	0	0	0	0	0	346	0	366	0	0	1,010	294	0	342	694	0	3,052	_
Peak Hour	0	0	0	0	0	168	0	226	0	0	539	159	0	194	412	0	1,698	

Location: 5 NE 192nd Ave & NE 13th St PM

Interval		Hea	avy Vehicle		,	Interval		Bicycle	es on Road	dway		Interval	Ped	estrians/E	Bicycles on	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	1	2	3	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	2	0	3	5	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	1	0	1	2	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	0	0	1	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	2	2	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	1	0	1	2	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	1	1	0	2	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	1	0	0	1	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	1	0	0	1	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	2	2	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	0	0	0	1	1	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	3	0	0	3	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	1	1	2	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	1	0	1	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	1	0	1	2	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	1	0	0	1	5:55 PM	0	0	0	0	0		0	0	0	0	0
Count Total	0	13	4	14	31	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	0	5	0	3	8	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 6 NE Everett St & NW Leadbetter Rd PM


www.alltrafficdata.net

Location: 6 NE Everett St & NW Leadbetter Rd PM

Date: Thursday, September 16, 2021 Peak Hour: 04:05 PM - 05:05 PM

Peak 15-Minutes: 04:10 PM - 04:25 PM

Peak Hour

Note: Total study counts contained in parentheses.

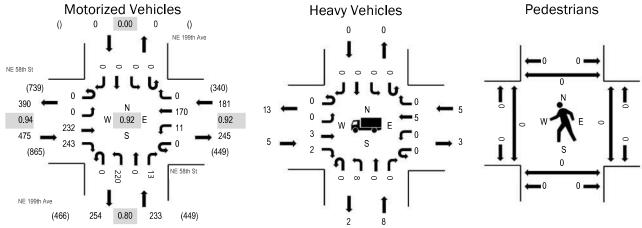
	HV%	PHF
EB	0.0%	0.79
WB	0.0%	0.00
NB	0.8%	0.85
SB	0.5%	0.75
All	0.6%	0.91

mamo counto	141000	IIZCU	* CITIC	103														
Interval			dbetter R bound	Rd			dbetter R bound	ld.			erett St bound				erett St bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	2	0	0	0	0	0	3	8	0	0	0	13	0	26	502
4:05 PM	0	1	0	5	0	0	0	0	0	7	21	0	0	0	13	0	47	525
4:10 PM	0	1	0	7	0	0	0	0	0	4	17	0	0	0	18	3	50	515
4:15 PM	0	1	0	10	0	0	0	0	0	1	13	0	0	0	20	0	45	507
4:20 PM	0	0	0	9	0	0	0	0	0	8	13	0	0	0	20	0	50	498
4:25 PM	0	1	0	0	0	0	0	0	0	5	13	0	0	0	14	0	33	492
4:30 PM	0	1	0	7	0	0	0	0	0	6	23	0	0	0	8	0	45	507
4:35 PM	0	0	0	7	0	0	0	0	0	7	17	0	0	0	16	0	47	500
4:40 PM	0	0	0	5	0	0	0	0	0	5	18	0	0	0	11	0	39	495
4:45 PM	0	0	0	6	0	0	0	0	0	5	15	0	0	0	9	0	35	497
4:50 PM	0	0	0	5	0	0	0	0	0	3	11	0	0	0	18	0	37	506
4:55 PM	0	0	0	9	0	0	0	0	0	4	18	0	0	0	17	0	48	504
5:00 PM	0	0	0	11	0	0	0	0	0	7	16	0	0	0	15	0	49	490
5:05 PM	0	1	0	5	0	0	0	0	0	5	14	0	0	0	11	1	37	
5:10 PM	0	0	0	11	0	0	0	0	0	6	12	0	0	0	12	1	42	
5:15 PM	0	0	0	5	0	0	0	0	0	2	19	0	0	0	10	0	36	
5:20 PM	0	1	0	5	0	0	0	0	0	5	18	0	0	0	14	1	44	
5:25 PM	0	0	0	9	0	0	0	0	0	3	20	0	0	0	16	0	48	
5:30 PM	0	0	0	3	0	0	0	0	0	4	19	0	0	0	11	1	38	
5:35 PM	0	1	0	8	0	0	0	0	0	7	15	0	0	0	11	0	42	
5:40 PM	0	0	0	6	0	0	0	0	0	5	21	0	0	0	7	2	41	
5:45 PM	0	0	0	7	0	0	0	0	0	6	15	0	0	0	15	1	44	
5:50 PM	0	0	0	5	0	0	0	0	0	5	10	0	0	0	14	1	35	
5:55 PM	0	0	0	5	0	0	0	0	0	1	15	0	0	0	13	0	34	
Count Total	0	8	0	152	0	0	0	0	0	114	381	0	0	0	326	11	992	_
Peak Hour	0	5	0	81	0	0	0	0	0	62	195	0	0	0	179	3	525	<u> </u>
																		=

Location: 6 NE Everett St & NW Leadbetter Rd PM

Interval		Hea	avy Vehicle	es	•	Interval	•	Bicycle	s on Road	dway		Interval	Ped	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	1	0	0	1	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	0	0	1	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	1	1	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	2	2	5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	1	0	0	1	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	0	3	0	3	6	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	0	2	0	1	3	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0

Location: 7 NE 199th Ave & NE 58th St PM


www.alltrafficdata.net

Location: 7 NE 199th Ave & NE 58th St PM

Date: Thursday, September 16, 2021 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:10 PM - 05:25 PM

Peak Hour

Note: Total study counts contained in parentheses.

	HV%	PHF
EB	1.1%	0.94
WB	2.8%	0.92
NB	3.4%	0.80
SB	0.0%	0.00
All	2.0%	0.92

Interval			58th St bound				58th St bound				9th Ave abound				9th Ave nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	20	15	0	0	10	0	0	9	0	1	0	0	0	0	55	797
4:05 PM	0	0	19	8	0	1	12	0	0	18	0	0	0	0	0	0	58	801
4:10 PM	0	0	18	15	0	2	17	0	0	20	0	1	0	0	0	0	73	821
4:15 PM	0	0	11	13	0	0	12	0	0	22	0	1	0	0	0	0	59	823
4:20 PM	0	0	20	18	0	1	13	0	0	18	0	2	0	0	0	0	72	843
4:25 PM	0	0	17	25	0	2	11	0	0	15	0	0	0	0	0	0	70	858
4:30 PM	0	0	20	19	0	0	13	0	0	18	0	0	0	0	0	0	70	852
4:35 PM	0	0	10	18	0	2	9	0	0	16	0	2	0	0	0	0	57	869
4:40 PM	0	0	12	22	0	1	10	0	0	12	0	1	0	0	0	0	58	871
4:45 PM	0	0	24	27	0	0	8	0	0	19	0	2	0	0	0	0	80	889
4:50 PM	0	0	23	15	0	2	17	0	0	20	0	1	0	0	0	0	78	877
4:55 PM	0	0	14	19	0	0	13	0	0	21	0	0	0	0	0	0	67	867
5:00 PM	0	0	16	16	0	0	15	0	0	10	0	2	0	0	0	0	59	857
5:05 PM	0	0	20	25	0	1	19	0	0	13	0	0	0	0	0	0	78	
5:10 PM	0	0	20	18	0	1	11	0	0	24	0	1	0	0	0	0	75	
5:15 PM	0	0	20	20	0	1	18	0	0	19	0	1	0	0	0	0	79	
5:20 PM	0	0	20	22	0	2	16	0	0	25	0	2	0	0	0	0	87	
5:25 PM	0	0	21	15	0	0	11	0	0	17	0	0	0	0	0	0	64	
5:30 PM	0	0	21	28	0	1	22	0	0	13	0	2	0	0	0	0	87	
5:35 PM	0	0	15	15	0	1	12	0	0	14	0	2	0	0	0	0	59	
5:40 PM	0	0	18	23	0	2	8	0	0	25	0	0	0	0	0	0	76	
5:45 PM	0	0	12	12	0	1	18	0	0	22	0	3	0	0	0	0	68	
5:50 PM	0	0	16	20	0	2	5	0	0	23	0	2	0	0	0	0	68	
5:55 PM	0	0	15	15	0	0	17	0	0	9	0	1	0	0	0	0	57	
Count Total	0	0	422	443	0	23	317	0	0	422	0	27	0	0	0	0	1,654	
Peak Hour	0	0	232	243	0	11	170	0	0	220	0	13	0	0	0	0	889	

Location: 7 NE 199th Ave & NE 58th St PM

Interval		Hea	avy Vehicle		,	Interval	•	Bicycle	s on Road	dway		Interval	Ped	estrians/E	Bicycles on	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	3	0	0	0	3	4:00 PM	0	0	1	0	1	4:00 PM	0	0	0	0	0
4:05 PM	1	0	0	0	1	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	2	0	0	0	2	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	2	0	3	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	3	1	0	0	4	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	1	1	0	2	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	1	0	2	0	3	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	2	2	0	4	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	2	0	0	0	2	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	1	0	1	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	1	0	0	1	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	2	1	0	0	3	4:55 PM	0	1	0	0	1	4:55 PM	0	0	0	0	0
5:00 PM	1	2	1	0	4	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	2	0	0	0	2	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	1	0	0	1	5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	2	0	2	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	1	0	0	1	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	2	1	0	3	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	2	0	0	2	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	0	1	0	1	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	17	15	13	0	45	Count Total	0	1	1	0	2	Count Total	0	0	0	0	0
Peak Hour	5	8	5	0	18	Peak Hour	0	1	0	0	1	Peak Hour	0	0	0	0	0

LOCATION: I CITY/STATE:	C0317	77 - NE				th St					ivietn	iou ior	uetermi	ming pe		JOB	#: 1506 Sep 24	60433
313 4 0 <u>98</u> 8 206 4 108 5		82 + 6	1				Qua	lin: 8:0	2 AM	8:20 unt:	O AM			32 • 0 82 49 • 19	- (-		€ 100 ← • 39 • 63 ←	
0 1		1	0			ST.	.				-	_		0	3 /		• 0 • 0	
NA +	N N	•	. + • NA • +	Δνε	- 1 1003		} →	Δνε		∯ NF 2	8th St	·		NA NA	, ,	A	t → NA	
5-Min Count Period Beginning At	Left		bound) Right	U	Left		bound) Right	U	Left		ound) Right	U	Left		bound) Right	U	Total	Hourly Totals
7:00 AM 7:05 AM 7:10 AM 7:15 AM 7:20 AM 7:25 AM 7:30 AM 7:40 AM 7:45 AM 7:50 AM	4 4 5 9 3 9 1 6 5 1 4 7	0 0 0 0 0 0 0 0 1	1 0 1 0 0 0 0 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 1 0 1 0 1 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 7 7 7 5 5 8 7 14 12	2 4 2 6 4 8 7 8 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 2 0 3 1 3 2 3 6	17 16 16 21 14 14 16 27 21 16 19	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 27 27 46 28 42 32 49 47 38 53	475
8:00 AM 8:05 AM	7 9	0	4	0	0	0	0	0	0	7	9	0	9 32	16 21	0	0	51 82	498 553
8:10 AM 8:15 AM 8:20 AM	10 7 8	0 0 1	8 6 5	0 0 0	0 0	2 0 0	0 0 0	0 0	0 0	8 9 5	10 13 6	0 0 0	5 8 2	14 12 19	0 0 0	0 0	57 55 46	583 592 610
8:25 AM 8:30 AM	4 10	0	0 2	0	0	0	1 0	0	0	9 7	7 6	0	0	25 25	1 0	0	47 51	615 634
8:35 AM 8:40 AM 8:45 AM 8:50 AM 8:55 AM	6 10 3 6 6	0 0 0 0	1 2 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 1 1 0	0 0 0 0	0 0 1 0	4 9 5 14 7	1 3 1 2 3	0 0 0 0	2 0 3 0 2	27 24 15 18 15	0 0 0 0 0	0 0 0 0	41 49 30 41 33	626 628 620 608 583
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastk Thru	ound Right	U	Left	Westl Thru	bound Right	U	То	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	104 4 0	0 0 0 0	72 8 0	0	0 0 0	8 0 0 0	0 0 0	0	0 0 0	96 4 0 0	128 0 0	0	180 0 0	188 20 0 0	0 0 0	0	3	76 86 0
Comments:																		
eport generate	d on 10	0/5/2019	9 4:56 PN	1					SOURC	E: Quali	tv Counts	. LLC (ŀ	nttp://w	ww.aua	alitycoun	s.net)	1-877-5	80-221

LOCATION: 10 CITY/STATE:	C0317	7 - NE	232nd <i>i</i>			th St					Wieti	100 101	determi	illing pe		JOB	#: 150 Sep 24	60434
234 + 1 = 310 = 371 + 60 =	0.85	-_ + 	0 + 169 165 4 + 318					lity		5:20 unts) PM			2.1 0 3.2 3 1.7			€ 0 ← • 24	
1		1	0			STO	+				(\$-	_		0 0		(OF	• 0 • 0	
NA + + 3	NA NA	+ 177 - N		Ave	IC03		E 232nd ibound)	Ave			Sth St					NA	• NA	Hourly Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Total	Total
4:00 PM 4:05 PM 4:10 PM 4:15 PM 4:15 PM 4:25 PM 4:30 PM 4:35 PM 4:35 PM 4:40 PM 4:45 PM 4:50 PM 5:50 PM 5:00 PM 5:15 PM 5:10 PM 5:15 PM 5:25 PM 5:30 PM 5:35 PM	5 3 7 6 3 3 4 6 6 8 7 6 7 6 3 4 4 6 6 3 4 4 6 6 3 4 4 6 6 4 4 6 6 4 4 4 6 4 4 6 4 6	1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	0 0 1 2 2 1 2 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 2 2 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0	24 15 19 18 19 25 22 29 25 27 16 5 35 30 34 23 29 25 33 17 15 24 19	3 3 4 12 3 4 8 5 3 7 3 1 6 3 5 9 5 4 3 5 6 7 7 2 5 6 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0	16 15 10 18 12 6 14 16 6 12 7 17 9 11 24 18 8 10 15 13 18 10 12	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 38 43 57 45 42 52 53 40 54 34 58 51 72 59 51 47 54 41 48 49 38 54	542 550 563 592 594 600 605 607 595 603 598 602 622
Peak 15-Min Flowrates	ا مقد		bound Bight		l of		bound		l of		ound		l of		oound		То	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	88 0 0	4 0 0 0	0 0 0	0	0 0 0	8 0 0 0	0 0 0	0	0 0 0	348 16 0 0	68 0 0	0	0 0 0	212 4 0 0	0 0 0	0	7:	28 20 0 0
Comments:																		

AM Peak Hour

(Sampled 7-9 AM for 3 weeks in September)

SR 14 east of 192nd

Year	EB	WB	Total
2021	559	944	1503
2020	429	810	1239
2019	551	1123	1674
2018	420	877	1297
2019+4%	573	1168	1741
Adjustment	1.025	1.237	1.158
2018+6%	445	930	1375
Adjustment	0.796	0.985	0.915
Average Adj.	0.911	1.111	1.037

SR 14 EB at 6th

Year	EB	WB	Total
2021	735	549	1284
2020	598	487	1085
2019	788	639	1427
2018	805	636	1441
2019+4%	820	665	1484
Adjustment	1.116	1.211	1.156
2018+6%	853	674	1527
Adjustment	1.161	1.228	1.189
Average Adj.	1.138	1.219	1.173

SR 500 EB at 79th

Year	EB	WB	Total
2021	311	247	558
2020	255	194	449
2019	416	281	697
2018	304	259	563
2019+4%	433	292	725
Adjustment	1.392	1.182	1.299
2018+6%	322	275	597
Adjustment	1.035	1.113	1.070
Average Adj.	1.214	1.148	1.185

Overall Average Adjustment	1.172
USE	1.17

PM Peak Hour

(Sampled 4-6 PM for 3 weeks in September)

SR 14 east of 192nd

Year	EB	WB	Total
2021	1077	883	1960
2020	959	799	1758
2019	1147	961	2108
2018	882	802	1684
2019+4%	1193	999	2192
Adjustment	1.108	1.131	1.118
2018+6%	935	850	1785
Adjustment	0.868	0.963	0.911
Average Adj.	0.988	1.047	1.015

SR 14 WB at 6th

Year	EB	WB	Total
2021	1400	527	1927
2020	1277	445	1722
2019	1488	534	2022
2018	1485	530	2015
2019+4%	1548	555	2103
Adjustment	1.106	1.053	1.091
2018+6%	1574	562	2136
Adjustment	1.124	1.066	1.108
Average Adj.	1.115	1.060	1.100

SR 500 EB at 79th

Year	EB	WB	Total
2021	317	492	809
2020	263	426	689
2019	325	566	891
2018	231	556	787
2019+4%	338	589	927
Adjustment	1.066	1.197	1.146
2018+6%	245	589	834
Adjustment	0.773	1.197	1.031
Average Adj.	0.920	1.197	1.088

Overall Average Adjustment	1.102
USE	1.11

SR 14 EB at 192nd											
starttime	speed	volume	starttime	peeds	volume	starttime	sbeed	volume	starttime	peeds	volume
9/7/2021 7:00	58.07	536	9/8/2020 7:00	58.99	429	9/3/2019 7:00	57.82	513	9/4/2018 7:00	58.95	402
9/7/2021 8:00	58.08	531	9/8/2020 8:00	58.8	466	9/3/2019 8:00	57.85	556	9/4/2018 8:00	59.01	403
9/8/2021 7:00	57.87	547	9/9/2020 7:00	59.2	483	9/4/2019 7:00	59.3	522	9/5/2018 7:00	58.64	430
9/8/2021 8:00	57.86	619	9/9/2020 8:00	58.3	527	9/4/2019 8:00	58.23	592	9/5/2018 8:00	58.46	429
9/9/2021 7:00	58.95	525	9/10/2020 7:00	58.68	484	9/5/2019 7:00	57.74	510	9/6/2018 7:00	59.26	437
9/9/2021 8:00	58.09	267	9/10/2020 8:00	58.9	505	9/5/2019 8:00	56.85	589	9/6/2018 8:00	58.69	420
9/14/2021 7:00	59.04	523	9/15/2020 7:00	59.8	366	9/10/2019 7:00	58.88	530	9/11/2018 7:00	59.21	408
9/14/2021 8:00	58.64	569	9/15/2020 8:00	59.15	411	9/10/2019 8:00	57.53	577	9/11/2018 8:00	58.63	449
9/15/2021 7:00	58.51	538	9/16/2020 7:00	59.29	409	9/11/2019 7:00	58.35	562	9/12/2018 7:00	58.94	492
9/15/2021 8:00	57.93	267	9/16/2020 8:00	59.2	446	9/11/2019 8:00	57.21	637	9/12/2018 8:00	59.59	427
9/16/2021 7:00	58.75	547	9/17/2020 7:00	59.54	412	9/12/2019 7:00	58.37	544	9/13/2018 7:00	59.98	425
9/16/2021 8:00	58.94	592	9/17/2020 8:00	58.24	421	9/12/2019 8:00	57.83	586	9/13/2018 8:00	58.75	391
9/21/2021 7:00	59.19	544	9/22/2020 7:00	58.65	504	9/17/2019 7:00	58.89	510	9/18/2018 7:00	59.69	396
9/21/2021 8:00	58.56	574	9/22/2020 8:00	58.31	503	9/17/2019 8:00	57.42	498	9/18/2018 8:00	58.27	389
9/22/2021 7:00	59.48	543	9/23/2020 7:00	58.94	461	9/18/2019 7:00	58.41	509	9/19/2018 7:00	58.73	411
9/22/2021 8:00	57.83	592	9/23/2020 8:00	58.31	477	9/18/2019 8:00	58.19	570	9/19/2018 8:00	59.08	366
9/23/2021 7:00	58.62	548	9/24/2020 7:00	58.09	472	9/19/2019 7:00	59.16	542	9/20/2018 7:00	59.49	441
9/23/2021 8:00	58.28	598	9/24/2020 8:00	57.91	486	9/19/2019 8:00	58.38	569	9/20/2018 8:00	59.59	444
Average	58.48	559	Average	58.79	459	Average	58.13	551	Average	59.05	420
SR 14 WB at 192nd											
starttime	speed	volume	starttime	peeds	volume	starttime	speed	volume	starttime	speed	volume
9/7/2021 7:00	58.16	995	9/8/2020 7:00	57.88	841	9/3/2019 7:00	56.96	1177	9/4/2018 7:00	51.19	1182
9/7/2021 8:00	58.39	810	9/8/2020 8:00	57.95	765	9/3/2019 8:00	57.08	1060	9/4/2018 8:00	50.27	1300
9/8/2021 7:00	58.05	993	9/9/2020 7:00	58.22	916	9/4/2019 7:00	56.47	1197	9/5/2018 7:00	51.99	809
9/8/2021 8:00	58.55	933	9/9/2020 8:00	57.85	804	9/4/2019 8:00	56.54	1144	9/5/2018 8:00	52.03	625
9/9/2021 7:00	58.18	995	9/10/2020 7:00	58.69	865	9/5/2019 7:00	57.05	1235	9/6/2018 7:00	50.94	209
9/9/2021 8:00	57.98	905	9/10/2020 8:00	57.88	811	9/5/2019 8:00	31.25	948	9/6/2018 8:00	50.74	290
9/14/2021 7:00	58.07	965	9/15/2020 7:00	58.77	794	9/10/2019 7:00	57.44	1246	9/11/2018 7:00	51.38	1196
9/14/2021 8:00	58.39	844	9/15/2020 8:00	58.58	649	9/10/2019 8:00	57.14	1017	9/11/2018 8:00	50.9	009
9/15/2021 7:00	58.38	972	9/16/2020 7:00	58.57	799	9/11/2019 7:00	57.26	1232	9/12/2018 7:00	50.35	743
9/15/2021 8:00	57.82	924	9/16/2020 8:00	58.68	829	9/11/2019 8:00	55.86	1036	9/12/2018 8:00	50.03	1438
9/16/2021 7:00	58.66	970	9/17/2020 7:00	58.52	786	9/12/2019 7:00	57.25	1161	9/13/2018 7:00	51.64	099
9/16/2021 8:00	57.25	606	9/17/2020 8:00	58.07	712	9/12/2019 8:00	57.39	1076	9/13/2018 8:00	50.2	664
9/21/2021 7:00	58.44	1027	9/22/2020 7:00	58.53	883	9/17/2019 7:00	57.32	1171	9/18/2018 7:00	51.84	1230
9/21/2021 8:00	57.86	686	9/22/2020 8:00	56.91	814	9/17/2019 8:00	57.64	996	9/18/2018 8:00	51.55	1230
9/22/2021 7:00	59.35	1012	9/23/2020 7:00	9.75	889	9/18/2019 7:00	57.05	1220	9/19/2018 7:00	52.49	637
9/22/2021 8:00	58.08	206	9/23/2020 8:00	57.95	808	9/18/2019 8:00	56.04	1086	9/19/2018 8:00	51.37	1229
9/23/2021 7:00	58.14	886	9/24/2020 7:00	57.75	868	9/19/2019 7:00	57.02	1215	9/20/2018 7:00	52.24	637
9/23/2021 8:00	57.77	902	9/24/2020 8:00	57.32	862	9/19/2019 8:00	57.92	1025	9/20/2018 8:00	51.41	617
Average	58.2	944	Average	58.1	810	Average	55.59	1123	Average	51.25	877

\$9eed volume 53.6 729 53.39 765 52.44 778 52.44 778 52.44 778 52.44 778 52.44 778 52.51 758 52.51 758 52.56 690 56.09 729 52.86 739 52.86 632 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 57.25 498 57.25 498 57.25 61	startume 9/8/2020 7:00 9/8/2020 8:00 9/9/2020 7:00 9/10/2020 7:00 9/15/2020 7:00	speed 54.55 53.88	volunie 598 604	startume 9/3/2019 7:00	52.94	725	startume 9/4/2018 7:00	52.82	705 767
53.6 729 53.7 675 53.39 765 53.44 778 55.44 694 52.51 758 55.86 719 55.85 740 55.33 723 54.02 719 55.33 723 56.09 729 56.09 729 56.09 729 56.09 729 56.09 729 56.09 729 57.86 618 58.26 618 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 607 58.30 523 58.31 577 58.32 577 58.33 577 58.33 577 58.33 577 58.34 524 58.35 579 58.35 58.35 58.35 58.36 58.35 58.37 55.37	72020 7:00 72020 8:00 72020 7:00 72020 7:00 72020 8:00 72020 8:00	54.55 53.88	598 604	9/3/2019 7:00	52.94	725	9/4/2018 7:00	52.82	705
53.07 675 53.39 765 52.44 778 52.44 778 52.51 758 52.52 742 52.53 740 52.92 742 52.53 723 52.02 749 52.96 690 52.96 690 52.96 690 52.96 739 52.96 739 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.96 690 52.97 52.98 725 58.28 632 58.28 632 58.28 632 58.29 646 58.28 632 58.29 579 58.29 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.39 579 58.31 577 58.31 577 58.32 58.33 577 58.33 577 58.33 577 58.34 524 58.35 58.35 585 58.36 585 58.37 58.37 585	72020 8:00 72020 7:00 72020 8:00 72020 7:00 72020 8:00	53.88	604		1474	777		14 70	757
53.39 765 52.44 778 52.44 778 52.44 778 52.51 758 52.52 742 52.53 740 52.92 742 53.85 740 52.92 742 52.92 742 52.93 723 52.96 690 52.98 735 53.89 735 53.89 735 53.89 735 53.89 735 53.89 579 53.80 523 53.80 523 53.80 523	72020 7:00 72020 8:00 72020 7:00 72020 8:00 72020 7:00			9/3/2019 8:00	51./4	, , ,	9/4/2018 8:00	51.78	20
52.44 778 55.74 694 52.51 758 55.86 719 55.33 723 54.02 742 55.33 723 55.03 723 55.00 729 55.09 729 55.09 729 55.26 690 55.26 690 55.26 618 58.26 618 58.26 618 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.26 618 57.25 498 57.25 618 57.25 498 57.25 498 57.25 498 57.25 622 58.30 57.9	/2020 8:00 /2020 7:00 /2020 8:00 /2020 7:00	54	680	9/4/2019 7:00	53.75	402	9/5/2018 7:00	51.87	715
55.74 694 52.51 758 52.86 719 52.92 742 53.85 740 53.85 740 53.85 740 53.36 779 55.33 723 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.09 729 55.00 729	/2020 7:00 /2020 8:00 /2020 7:00	55.06	733	9/4/2019 8:00	53.63	767	9/5/2018 8:00	50.94	908
52.51 758 55.86 719 55.32 742 55.33 723 55.33 723 55.17 776 55.26 690 56.09 729 56.09 729 56.09 729 58.28 632 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 629 58.36 622 58.31 577 58.32 577 58.33 577 58.33 577 58.34 461 58.33 577 58.36 622 58.37 5562 58.38 523 58.39 579 58.31 577 58.32 58.33 577 58.33 577 58.33 577 58.33 577 58.33 577 58.33 577 58.34 58.35 58.35 58.35	/2020 8:00 /2020 7:00	55.12	682	9/5/2019 7:00	53.62	712	9/6/2018 7:00	53.14	771
55.86 719 52.92 742 53.85 740 55.33 723 54.02 719 55.17 776 55.17 776 52.96 690 56.09 729 52.66 739 52.83 755 58.26 476 58.28 632 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 683 58.36 579 58.36 622 58.31 577 58.33 577 58.33 577 58.33 577 58.34 461 58.33 577 58.35 58.36 58.36 58.37 58.37 58.37 58.38 523 58.39 579 58.31 57.31 58.32 57.31 58.33 577 58.33 577 58.33 577 58.33 577 58.34 58.35 58.35 58.35 58.36 58.35	/2020 7:00	54.93	635	9/5/2019 8:00	50.29	788	9/6/2018 8:00	51.47	818
55.92 742 53.85 740 55.33 723 54.02 719 55.17 776 55.17 776 55.19 729 55.26 739 52.83 725 58.26 739 58.26 476 58.28 632 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 618 58.36 579 58.37 574 58.38 524 58.31 577 58.32 58.33 577 58.33 577 58.34 524 58.36 585 58.36 585 58.37 58.38 523 58.31 557 58.32 58.33 577 58.33 577 58.33 577 58.34 524 58.35 58.36 523	00.9 0000	57.06	515	9/10/2019 7:00	53.89	747	9/11/2018 7:00	52.47	728
53.85 740 55.33 723 54.02 719 55.17 776 55.17 776 55.26 690 55.26 739 55.83 755 58.26 476 58.28 632 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 618 58.36 579 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.36 585 58.36 585 58.37 58.39 579 58.38 523 58.31 577 58.32 58.33 577 58.33 577 58.33 577 58.34 524 58.36 58.5	72020 0.00	55.6	523	9/10/2019 8:00	53.71	722	9/11/2018 8:00	50.8	69/
55.33 723 723 723 724 756 55.09 729 756 690 55.09 729 729 729 729 729 729 729 729 729 72	9/16/2020 7:00	56.47	577	9/11/2019 7:00	54.77	292	9/12/2018 7:00	52.11	1185
54.02 719 53.36 751 55.17 776 55.09 729 56.09 729 55.08 729 55.26 690 55.28 755 53.89 735 58.26 476 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 488 57.25 488 57.25 488 57.25 488 57.25 488 57.25 488 57.25 618 58.36 579 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.35 58.36 58.36 58.5	9/16/2020 8:00	56.35	555	9/11/2019 8:00	51.05	882	9/12/2018 8:00	51.44	1019
53.36 751 55.17 776 55.09 729 55.09 729 55.09 729 55.83 755 53.89 735 53.89 735 58.26 476 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 488 57.25 488 57.26 618 57.26 618 57.27 58.30 579 58.33 577 58.33 577 58.33 577	9/17/2020 7:00	57.59	582	9/12/2019 7:00	54.68	756	9/13/2018 7:00	53.26	286
55.17 776 52.96 690 52.96 690 52.66 739 52.83 755 53.89 735 58.26 476 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 488 57.25 488 57.25 618 58.36 622 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.33 577 58.36 622 58.37 58.39 579	9/17/2020 8:00	55.33	554	9/12/2019 8:00	53.22	764	9/13/2018 8:00	50.28	09/
52.96 690 56.09 729 52.66 739 52.66 739 52.83 755 53.89 735 58.26 476 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 618 58.36 579 58.37 571 58.33 577 58.36 58.3	9/22/2020 7:00	52.78	725	9/17/2019 7:00	54.57	725	9/18/2018 7:00	53.65	778
52.66 739 52.66 739 52.83 755 53.89 735 58.26 476 58.26 476 58.26 618 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 618 57.25 628 58.36 579 58.31 577 58.33 577 58.33 577 58.33 577 58.34 524 58.33 577 58.35 58.35 58.36 58.36 58.37 58.37 58.38 577 58.39 579 58.31 577	9/22/2020 8:00	54.66	644	9/17/2019 8:00	52.58	969	9/18/2018 8:00	51.72	69/
52.66 739 52.83 755 53.89 735 58.28 632 58.28 632 58.26 476 58.28 632 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 632 58.36 579 58.31 577 58.33 577 58.33 577 58.33 577 58.33 577 58.34 524 58.33 577 58.33 577 58.33 577 58.33 577 58.34 524 58.33 577 58.33 577 58.33 577 58.33 577 58.33 577 58.33 577 58.34 58.54 58.35 58.55	9/23/2020 7:00	54.62	689	9/18/2019 7:00	52.06	1101	9/19/2018 7:00	54.18	803
53.89 735 53.89 735 53.89 735 53.89 735 58.26 476 58.26 476 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 607	9/23/2020 8:00	52.19	635	9/18/2019 8:00	53.68	1027	9/19/2018 8:00	52.01	89/
52.83 755 53.89 735 53.89 735 53.89 735 58.26 476 58.26 476 58.26 618 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 498 57.25 618 58.33 577 57.44 524 58.33 577 58.36 622 58.36 622 58.37 58.59 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.35 58.35 58.36 58.5	9/24/2020 7:00	54.38	714	9/19/2019 7:00	55.34	748	9/20/2018 7:00	53.83	761
53.89 735 speed volume 58 595 58.26 476 58.28 632 58.17 514 58.26 618 57.25 498 57.25 498 57.89 579 57.89 579 58.33 577 58.36 585 58.36 585 58.37 58.39 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.35 585 58.36 585 58.37 58.38 58.31 577 58.32 577 58.33 577 58.33 577 58.34 524 58.35 58.35 58.36 58.36 58.37 58.37 58.38 52.3	9/24/2020 8:00	54.23	688	9/19/2019 8:00	52.43	992	9/20/2018 8:00	52.67	784
speed volume 58 595 58.26 476 58.28 632 58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 58.36 585 58.01 482 58.03 523 58.03 523 58.03 523	Average	54.93	630	Average	53.22	788	Average	52.25	805
speed volume 58.26 476 58.28 632 58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 622 58.01 482 58.03 523 58.03 523 58.05 607									
58 595 58.26 476 58.28 632 58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 622 58.01 482 58.01 482 58.03 523 58.03 523 58.05 607	starttime	speed	volume	starttime	speed	volume	starttime	speed	volume
58.26 476 58.28 632 58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 585 58.01 482 58.03 523 58.03 523 58.03 523	9/8/2020 7:00	57.61	523	9/3/2019 7:00	57.01	723	9/4/2018 7:00	56.74	689
58.28 632 58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 585 58.01 482 58.03 523 58.03 523 58.05 607	/2020 8:00	58.21	457	9/3/2019 8:00	57.79	556	9/4/2018 8:00	57.48	614
58.17 514 58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 585 58.01 482 58.03 523 58.03 523 58.05 607	/2020 7:00	58.06	570	9/4/2019 7:00	56.92	707	9/5/2018 7:00	56.68	869
58.26 618 57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 622 58.01 482 58.03 523 58.03 523 58.05 607	/2020 8:00	58.89	501	9/4/2019 8:00	57.18	639	9/5/2018 8:00	57.34	584
57.25 498 57.89 579 59.4 461 58.33 577 57.44 524 58.36 585 58.01 482 58.58 622 58.03 523 58.62 607 57.91 505	9/10/2020 7:00	58.43	519	9/5/2019 7:00	56.55	735	9/6/2018 7:00	56.32	712
57.89 579 59.4 461 58.33 577 57.44 524 58.01 482 58.03 622 58.03 523 58.62 607 57.91 505	9/10/2020 8:00	57.97	487	9/5/2019 8:00	57.78	544	9/6/2018 8:00	56.79	268
59.4 461 58.33 577 57.44 524 58.36 585 58.01 482 58.58 622 58.03 523 58.62 607 57.91 505	9/15/2020 7:00	58.16	512	9/10/2019 7:00	57.26	717	9/11/2018 7:00	57.5	029
58.33 577 57.44 524 58.36 585 58.01 482 58.58 622 58.03 523 58.62 607 57.91 505	9/15/2020 8:00	59.28	383	9/10/2019 8:00	57.8	556	9/11/2018 8:00	57.46	547
57.44 524 58.36 585 58.01 482 58.58 622 58.03 523 58.62 607 57.91 505	9/16/2020 7:00	58.53	499	9/11/2019 7:00	57.15	720	9/12/2018 7:00	58.03	9/9
58.36 585 58.01 482 58.8 622 58.03 523 58.62 607 57.91 505	9/16/2020 8:00	28.67	416	9/11/2019 8:00	57.2	557	9/12/2018 8:00	58.15	532
58.01 482 58.58 622 58.03 523 58.62 607 57.91 505	9/17/2020 7:00	58.35	484	9/12/2019 7:00	57.27	869	9/13/2018 7:00	57.81	069
58.58 622 58.03 523 58.62 607 57.91 505	9/17/2020 8:00	57.95	413	9/12/2019 8:00	58.04	587	9/13/2018 8:00	58.14	563
58.03 523 58.62 607 57.91 505	9/22/2020 7:00	58.35	561	9/17/2019 7:00	57.73	688	9/18/2018 7:00	57.77	723
58.62 607 57.91 505	9/22/2020 8:00	57.39	479	9/17/2019 8:00	58.46	525	9/18/2018 8:00	58.44	564
57.91 505	9/23/2020 7:00	58.25	523	9/18/2019 7:00	57.76	663	9/19/2018 7:00	57.36	750
11	9/23/2020 8:00	28.67	461	9/18/2019 8:00	58.58	579	9/19/2018 8:00	58.14	557
57.18 601	9/24/2020 7:00	58.54	517	9/19/2019 7:00	57.49	729	9/20/2018 7:00	58.3	710
9/23/20218:00 58.26 488 9/24/2	9/24/2020 8:00	58.04	462	9/19/2019 8:00	58.02	287	9/20/2018 8:00	57.77	909
Average 58.12 549 Av	Average	58.3	487	Average	57.56	639	Average	57.57	989

SR 500 EB at 79th											
starttime	speed	volume	starttime	speed	volume	starttime	speed	volume	starttime	speed	volume
9/7/2021 7:00	49.95	300	9/8/2020 7:00	53.6	255	9/3/2019 7:00	44.43	457	9/4/2018 7:00	51.22	241
9/7/2021 8:00	48.82	283	9/8/2020 8:00	51.6	224	9/3/2019 8:00	47.35	412	9/4/2018 8:00	49.47	237
9/8/2021 7:00	49.17	326	9/9/2020 7:00	52.4	243	9/4/2019 7:00	44.98	428	9/5/2018 7:00	49.96	270
9/8/2021 8:00	49.61	296	9/9/2020 8:00	51.07	268	9/4/2019 8:00	51.11	325	9/5/2018 8:00	49.48	243
9/9/2021 7:00	48.24	318	9/10/2020 7:00	51.23	255	9/5/2019 7:00	41.36	527	9/6/2018 7:00	50.1	276
9/9/2021 8:00	48.71	311	9/10/2020 8:00	52.47	248	9/5/2019 8:00	44.81	426	9/6/2018 8:00	50.75	274
9/14/2021 7:00	47.25	317	9/15/2020 7:00	53.25	203	9/10/2019 7:00	44.03	487	9/11/2018 7:00	45.79	381
9/14/2021 8:00	50.08	304	9/15/2020 8:00	53.79	198	9/10/2019 8:00	51.25	351	9/11/2018 8:00	49.25	292
9/15/2021 7:00	48.88	318	9/16/2020 7:00	52.88	203	9/11/2019 7:00	44.23	462	9/12/2018 7:00	45.94	363
9/15/2021 8:00	51.86	335	9/16/2020 8:00	52.95	214	9/11/2019 8:00	49.08	332	9/12/2018 8:00	50.09	566
9/16/2021 7:00	48.24	315	9/17/2020 7:00	52.42	215	9/12/2019 7:00	41.06	473	9/13/2018 7:00	45.47	377
9/16/2021 8:00	51.69	284	9/17/2020 8:00	53.3	207	9/12/2019 8:00	48.68	343	9/13/2018 8:00	50.9	284
9/21/2021 7:00	49.09	348	9/22/2020 7:00	52.23	256	9/17/2019 7:00	44.76	484	9/18/2018 7:00	46.64	365
9/21/2021 8:00	50.3	313	9/22/2020 8:00	51.78	264	9/17/2019 8:00	46.39	333	9/18/2018 8:00	50.65	301
9/22/2021 7:00	50.41	318	9/23/2020 7:00	51.67	257	9/18/2019 7:00	44.26	460	9/19/2018 7:00	47.32	374
9/22/2021 8:00	51.21	290	9/23/2020 8:00	49.89	248	9/18/2019 8:00	45.33	393	9/19/2018 8:00	50.47	287
9/23/2021 7:00	48.06	301	9/24/2020 7:00	51.01	252	9/19/2019 7:00	45.7	441	9/20/2018 7:00	44.98	354
9/23/2021 8:00	49.12	317	9/24/2020 8:00	50.46	267	9/19/2019 8:00	48.56	350	9/20/2018 8:00	48.66	291
Average	49.48	311	Average	52.11	238	Average	45.97	416	Average	48.73	304
407 to SM OO SO											
מו מפת אם מר זכן	-	-	1111111111		<u>:</u>			<u>:</u>	1	7	
starttime	speed	volume	starttime	speed	volume	starttime	speed	volume	starttime	speed	volume
9/7/2021 7:00	46.82	249	9/8/2020 7:00	20	203	9/3/2019 7:00	45.99	288	9/4/2018 7:00	46.95	243
9/7/2021 8:00	48.61	241	9/8/2020 8:00	51.91	184	9/3/2019 8:00	46.34	288	9/4/2018 8:00	48.19	242
9/8/2021 7:00	45.64	276		48.73	222	9/4/2019 7:00	47.05	317	9/5/2018 7:00	45.65	267
9/8/2021 8:00	47.81	240		51.08	189	9/4/2019 8:00	49.69	281	9/5/2018 8:00	49.8	240
9/9/2021 7:00	47.54	263	9/10/2020 7:00	47.62	206	9/5/2019 7:00	43.54	303	9/6/2018 7:00	47.13	255
9/9/2021 8:00	46.86	258		50.84	197	9/5/2019 8:00	43.55	290	9/6/2018 8:00	47.26	238
9/14/2021 7:00	47.38	239	9/15/2020 7:00	52.62	177	9/10/2019 7:00	42.65	314	9/11/2018 7:00	46.27	271
9/14/2021 8:00	49.07	240	9/15/2020 8:00	51.78	170	9/10/2019 8:00	47.06	249	9/11/2018 8:00	47.22	250
9/15/2021 7:00	48.18	267	9/16/2020 7:00	52.27	189	9/11/2019 7:00	46.88	291	9/12/2018 7:00	45.82	272
9/15/2021 8:00	48.15	244	9/16/2020 8:00	52.75	165	9/11/2019 8:00	48.8	251	9/12/2018 8:00	47.8	252
9/16/2021 7:00	47.57	252	9/17/2020 7:00	50.1	218	9/12/2019 7:00	44.96	285	9/13/2018 7:00	45.04	284
9/16/2021 8:00	47.61	249	9/17/2020 8:00	52.52	175	9/12/2019 8:00	46.57	268	9/13/2018 8:00	49.41	235
9/21/2021 7:00	48.66	254	9/22/2020 7:00	50.07	207	9/17/2019 7:00	43.9	279	9/18/2018 7:00	45.16	302
9/21/2021 8:00	46.7	233	9/22/2020 8:00	49	191	9/17/2019 8:00	48.69	258	9/18/2018 8:00	48.64	244
9/22/2021 7:00	48.89	229	9/23/2020 7:00	52.14	206	9/18/2019 7:00	45.27	286	9/19/2018 7:00	44.66	280
9/22/2021 8:00	47.99	225	9/23/2020 8:00	50.38	186	9/18/2019 8:00	44.68	263	9/19/2018 8:00	46.88	262
9/23/2021 7:00	45.88	237	9/24/2020 7:00	50.87	207	9/19/2019 7:00	46.9	305	9/20/2018 7:00	43.78	289
9/23/2021 8:00	47.49	244	9/24/2020 8:00	50.34	196	9/19/2019 8:00	45.32	249	9/20/2018 8:00	47.71	238
Average	47.6	247	Average	50.83	194	Average	45.99	281	Average	46.85	259

SR 14 EB at 192nd											
starttime	speed	volume	starttime	speed	volume	starttime	speed	volume	starttime	speed	volume
9/7/2021 16:00	58.79	1105	9/8/2020 16:00	59.75	959	9/3/2019 16:00	59.08	1126	9/4/2018 16:00	58.26	835
9/7/2021 17:00	59.55	1095	9/8/2020 17:00	59.19	606	9/3/2019 17:00	59.23	1123	9/4/2018 17:00	59.22	826
9/8/2021 16:00	58.94	1062	9/9/2020 16:00	58.57	1013	9/4/2019 16:00	59.26	1132	9/5/2018 16:00	58.64	806
9/8/2021 17:00	59.48	1025	9/9/2020 17:00	59.05	1033	9/4/2019 17:00	59.24	1154	9/5/2018 17:00	58.98	930
9/9/2021 16:00	58.57	1157	9/10/2020 16:00	58.29	1018	9/5/2019 16:00	59.05	1152	9/6/2018 16:00	58.62	764
9/9/2021 17:00	59.65	1034	9/10/2020 17:00	59.2	626	9/5/2019 17:00	59.15	1174	9/6/2018 17:00	58.95	923
9/14/2021 16:00	59.81	1162	9/15/2020 16:00	29.06	897	9/10/2019 16:00	58.57	1149	9/11/2018 16:00	58.15	968
9/14/2021 17:00	58.86	1040	9/15/2020 17:00	60.11	929	9/10/2019 17:00	59.05	1102	9/11/2018 17:00	57.87	298
9/15/2021 16:00	58.95	1107	9/16/2020 16:00	59.29	941	9/11/2019 16:00	58.61	1137	9/12/2018 16:00	28	887
9/15/2021 17:00	59.23	1026	9/16/2020 17:00	59.1	919	9/11/2019 17:00	58.71	1209	9/12/2018 17:00	54.45	910
9/16/2021 16:00	59.49	1101	9/17/2020 16:00	58.85	932	9/12/2019 16:00	58.53	1121	9/13/2018 16:00	58.15	882
9/16/2021 17:00	58.85	1095	9/17/2020 17:00	59.73	891	9/12/2019 17:00	58.58	1217	9/13/2018 17:00	58.16	915
9/21/2021 16:00	58.73	1088	9/22/2020 16:00	59.63	985	9/17/2019 16:00	59.2	1085	9/18/2018 16:00	58.91	298
9/21/2021 17:00	59.72	1057	9/22/2020 17:00	58.58	1008	9/17/2019 17:00	58.74	1114	9/18/2018 17:00	58.76	912
9/22/2021 16:00	58.86	1079	9/23/2020 16:00	56.33	887	9/18/2019 16:00	59.05	1130	9/19/2018 16:00	58.84	848
9/22/2021 17:00	59.26	1001	9/23/2020 17:00	54.47	903	9/18/2019 17:00	59.73	1169	9/19/2018 17:00	58.04	899
9/23/2021 16:00	58.89	1065	9/24/2020 16:00	58.93	971	9/19/2019 16:00	59.04	1165	9/20/2018 16:00	57.69	918
9/23/2021 17:00	59.41	1094	9/24/2020 17:00	59.05	626	9/19/2019 17:00	58.98	1188	9/20/2018 17:00	58.7	882
Average	59.17	1077	Average	58.73	952	Average	58.99	1147	Average	58.24	882
La COT +0 dW Nt d3											
or the to	70000	981107	omitticto	70000	100	owither	0000	- B	amittacta	70000	920
9/7/2021 16:00	28	863	9/8/2020 16:00	57.21	754	9/3/2019 16:00	56.84	982	9/4/2018 16:00	51.62	683
9/7/2021 17:00	58.89	839	9/8/2020 17:00	58.27	729	9/3/2019 17:00	57.34	006	9/4/2018 17:00	53.85	645
9/8/2021 16:00	57.57	927	9/9/2020 16:00	57.09	860	9/4/2019 16:00	55.56	1024	9/5/2018 16:00	51.27	664
9/8/2021 17:00	58.65	809	9/9/2020 17:00	58.46	788	9/4/2019 17:00	57.05	925	9/5/2018 17:00	53.32	685
9/9/2021 16:00	57.91	957	9/10/2020 16:00	58.03	857	9/5/2019 16:00	56.41	971	9/6/2018 16:00	52.92	1171
9/9/2021 17:00	58.03	815	9/10/2020 17:00	57.69	751	9/5/2019 17:00	56.41	951	9/6/2018 17:00	52.5	1219
9/14/2021 16:00	57.64	918	9/15/2020 16:00	57.69	736	9/10/2019 16:00	57.01	966	9/11/2018 16:00	53.19	589
9/14/2021 17:00	58.32	857	9/15/2020 17:00	59.31	629	9/10/2019 17:00	56.9	949	9/11/2018 17:00	53.16	564
9/15/2021 16:00	58.07	894	9/16/2020 16:00	57.8	908	9/11/2019 16:00	56.61	666	9/12/2018 16:00	50.45	714
9/15/2021 17:00	28	891	9/16/2020 17:00	58.16	743	9/11/2019 17:00	56.91	952	9/12/2018 17:00	48.35	748
9/16/2021 16:00	57.28	944	9/17/2020 16:00	57.77	788	9/12/2019 16:00	56.38	1012	9/13/2018 16:00	50.69	979
9/16/2021 17:00	58.35	821	9/17/2020 17:00	59.29	720	9/12/2019 17:00	57.94	922	9/13/2018 17:00	53.7	1201
9/21/2021 16:00	57.35	976	9/22/2020 16:00	58.07	885	9/17/2019 16:00	99.99	883	9/18/2018 16:00	52.16	625
9/21/2021 17:00	28.67	860	9/22/2020 17:00	57.77	793	9/17/2019 17:00	57.1	916	9/18/2018 17:00	54.05	1181
9/22/2021 16:00	57.1	934	9/23/2020 16:00	37.09	904	9/18/2019 16:00	57.31	945	9/19/2018 16:00	52.32	631
9/22/2021 17:00	58.12	849	9/23/2020 17:00	56.03	893	9/18/2019 17:00	56.48	917	9/19/2018 17:00	52.94	1210
9/23/2021 16:00	57.74	911	9/24/2020 16:00	57.29	868	9/19/2019 16:00	56.11	1048	9/20/2018 16:00	52.12	661
9/23/2021 17:00	58.5	881	9/24/2020 17:00	57.51	795	9/19/2019 17:00	26.57	006	9/20/2018 17:00	53.73	619
Average	58.01	883	Average	26.7	799	Average	56.76	961	Average	52.35	802

SR 14 EB at 6th											
starttime	speed	volume	starttime	speed	volume	starttime	peeds	volume	starttime	speed	volume
9/7/2021 16:00	51.55	1494	9/8/2020 16:00	51.4	1277	9/3/2019 16:00	50.04	1501	9/4/2018 16:00	51.38	1473
9/7/2021 17:00	50.73	1469	9/8/2020 17:00	53.02	1157	9/3/2019 17:00	51.22	1428	9/4/2018 17:00	50.48	1495
9/8/2021 16:00	51.52	1449	9/9/2020 16:00	50.89	1371	9/4/2019 16:00	50.24	1466	9/5/2018 16:00	50.14	1537
9/8/2021 17:00	52.05	1312	9/9/2020 17:00	51.63	1407	9/4/2019 17:00	50.7	1451	9/5/2018 17:00	50.54	1536
9/9/2021 16:00	50.91	1515	9/10/2020 16:00	49.88	1354	9/5/2019 16:00	50.51	1530	9/6/2018 16:00	49.81	1272
9/9/2021 17:00	53.07	1322	9/10/2020 17:00	51.43	1262	9/5/2019 17:00	50.07	1545	9/6/2018 17:00	49.37	1531
9/14/2021 16:00	50.03	1500	9/15/2020 16:00	53.24	1190	9/10/2019 16:00	49.8	1548	9/11/2018 16:00	50.51	1509
9/14/2021 17:00	52.38	1336	9/15/2020 17:00	53.27	1246	9/10/2019 17:00	51.33	1450	9/11/2018 17:00	52.09	1422
9/15/2021 16:00	50.88	1418	9/16/2020 16:00	52.96	1267	9/11/2019 16:00	50.46	1482	9/12/2018 16:00	48.9	1322
9/15/2021 17:00	51.27	1327	9/16/2020 17:00	52.38	1215	9/11/2019 17:00	50.05	1529	9/12/2018 17:00	48.09	1629
9/16/2021 16:00	49.98	1476	9/17/2020 16:00	52.36	1240	9/12/2019 16:00	50.01	1456	9/13/2018 16:00	51.68	1457
9/16/2021 17:00	50.5	1392	9/17/2020 17:00	53.67	1186	9/12/2019 17:00	49.77	1551	9/13/2018 17:00	51.21	1543
9/21/2021 16:00	50.38	1435	9/22/2020 16:00	52.76	1329	9/17/2019 16:00	50.18	1427	9/18/2018 16:00	50.78	1503
9/21/2021 17:00	53.38	1351	9/22/2020 17:00	50.77	1313	9/17/2019 17:00	50.83	1454	9/18/2018 17:00	50.53	1499
9/22/2021 16:00	51.76	1356	9/23/2020 16:00	48.38	1518	9/18/2019 16:00	50.37	1462	9/19/2018 16:00	49.58	1443
9/22/2021 17:00	53.38	1256	9/23/2020 17:00	47.07	1409	9/18/2019 17:00	51.81	1495	9/19/2018 17:00	50.4	1479
9/23/2021 16:00	50.34	1407	9/24/2020 16:00	51.68	1303	9/19/2019 16:00	50.52	1480	9/20/2018 16:00	49.58	1585
9/23/2021 17:00	52.14	1382	9/24/2020 17:00	52.46	1216	9/19/2019 17:00	50.91	1536	9/20/2018 17:00	49.56	1494
Average	51.46	1400	Average	51.63	1292	Average	50.49	1488	Average	50.26	1485
SR 14 WB at 6th											
starttime	speed	volume	starttime	speed	volume	starttime	peeds	volume	starttime	speed	volume
9/7/2021 16:00	58.2	518	9/8/2020 16:00	58.63	439	9/3/2019 16:00	58.1	580	9/4/2018 16:00	56.97	565
9/7/2021 17:00	58.32	491	9/8/2020 17:00	58.3	402	9/3/2019 17:00	58.26	528	9/4/2018 17:00	57.55	502
9/8/2021 16:00	57.53	559	9/9/2020 16:00	58.28	496	9/4/2019 16:00	57.71	577	9/5/2018 16:00	57.33	564
9/8/2021 17:00	58.62	499	9/9/2020 17:00	58.64	444	9/4/2019 17:00	58.37	514	9/5/2018 17:00	57.9	562
9/9/2021 16:00	58.62	575	9/10/2020 16:00	58.26	511	9/5/2019 16:00	58.07	569	9/6/2018 16:00	57.9	508
9/9/2021 17:00	29.06	481	9/10/2020 17:00	58.39	422	9/5/2019 17:00	58.33	544	9/6/2018 17:00	58.12	528
9/14/2021 16:00	57.92	551	9/15/2020 16:00	59.18	442	9/10/2019 16:00	57.97	521	9/11/2018 16:00	58.35	484
9/14/2021 17:00	58.67	510	9/15/2020 17:00	59.57	379	9/10/2019 17:00	58.43	476	9/11/2018 17:00	58.55	485
9/15/2021 16:00	58.21	552	9/16/2020 16:00	58.87	468	9/11/2019 16:00	57.11	295	9/12/2018 16:00	57.48	532
9/15/2021 17:00	57.98	536	9/16/2020 17:00	59.74	409	9/11/2019 17:00	58.38	504	9/12/2018 17:00	57.52	483
9/16/2021 16:00	58.09	591	9/17/2020 16:00	58.01	455	9/12/2019 16:00	57.27	622	9/13/2018 16:00	57.51	546
9/16/2021 17:00	29.06	473	9/17/2020 17:00	59.45	389	9/12/2019 17:00	58.73	531	9/13/2018 17:00	58.81	497
9/21/2021 16:00	57.37	545	9/22/2020 16:00	58.7	510	9/17/2019 16:00	56.54	524	9/18/2018 16:00	57.17	999
9/21/2021 17:00	58.83	496	9/22/2020 17:00	58.45	438	9/17/2019 17:00	58.66	453	9/18/2018 17:00	58.55	527
9/22/2021 16:00	27.67	553	9/23/2020 16:00	56.59	495	9/18/2019 16:00	56.64	541	9/19/2018 16:00	57.51	540
9/22/2021 17:00	58.34	489	9/23/2020 17:00	56.69	400	9/18/2019 17:00	57.38	489	9/19/2018 17:00	58.32	539
9/23/2021 16:00	57.92	555	9/24/2020 16:00	57.99	505	9/19/2019 16:00	26.87	588	9/20/2018 16:00	58.03	580
9/23/2021 17:00	58.58	512	9/24/2020 17:00	59.01	405	9/19/2019 17:00	58.43	489	9/20/2018 17:00	59.07	535
Average	58.28	527	Average	58.49	445	Average	57.85	534	Average	57.92	530

SR 500 EB at 79th											
starttime	sbeed	volume	starttime	speed	volume	starttime	speed	volume	starttime	speed	volume
9/7/2021 16:00	50.91	326	9/8/2020 16:00	52.96	263	9/3/2019 16:00	51.99	282	9/4/2018 16:00	50.92	202
9/7/2021 17:00	50.76	340	9/8/2020 17:00	52.95	285	9/3/2019 17:00	52.83	333	9/4/2018 17:00	51.74	204
9/8/2021 16:00	50.39	311	9/9/2020 16:00	50.45	278	9/4/2019 16:00	51.55	293	9/5/2018 16:00	51.78	180
9/8/2021 17:00	51.46	283	9/9/2020 17:00	51.91	284	9/4/2019 17:00	51.06	339	9/5/2018 17:00	51.65	210
9/9/2021 16:00	49.65	312	9/10/2020 16:00	53.16	266	9/5/2019 16:00	51.02	311	9/6/2018 16:00	53.18	189
9/9/2021 17:00	50.56	314	9/10/2020 17:00	52.11	284	9/5/2019 17:00	49.83	389	9/6/2018 17:00	49	235
9/14/2021 16:00	50.41	319	9/15/2020 16:00	51.67	261	9/10/2019 16:00	51.9	317	9/11/2018 16:00	49.81	227
9/14/2021 17:00	51.34	324	9/15/2020 17:00	53.17	274	9/10/2019 17:00	51	343	9/11/2018 17:00	52.71	243
9/15/2021 16:00	51.08	308	9/16/2020 16:00	52.79	243	9/11/2019 16:00	51.73	310	9/12/2018 16:00	51.88	207
9/15/2021 17:00	51.32	332	9/16/2020 17:00	53.33	268	9/11/2019 17:00	50.4	348	9/12/2018 17:00	52.78	262
9/16/2021 16:00	50.44	330	9/17/2020 16:00	51.72	296	9/12/2019 16:00	50.68	314	9/13/2018 16:00	52.2	251
9/16/2021 17:00	50.9	325	9/17/2020 17:00	52.1	276	9/12/2019 17:00	52.33	334	9/13/2018 17:00	51.3	263
9/21/2021 16:00	50.76	318	9/22/2020 16:00	50.19	315	9/17/2019 16:00	50.17	291	9/18/2018 16:00	50.34	252
9/21/2021 17:00	51.14	312	9/22/2020 17:00	51.29	325	9/17/2019 17:00	50.04	331	9/18/2018 17:00	52.31	242
9/22/2021 16:00	51.51	276	9/23/2020 16:00	45.51	339	9/18/2019 16:00	51.71	304	9/19/2018 16:00	51.7	234
9/22/2021 17:00	51.07	324	9/23/2020 17:00	47.74	309	9/18/2019 17:00	50.88	342	9/19/2018 17:00	51.69	254
9/23/2021 16:00	50.89	320	9/24/2020 16:00	48.9	342	9/19/2019 16:00	50.55	318	9/20/2018 16:00	51.37	228
9/23/2021 17:00	50.98	328	9/24/2020 17:00	51.33	334	9/19/2019 17:00	51.17	357	9/20/2018 17:00	47.81	273
Average	50.87	317	Average	51.29	291	Average	51.16	325	Average	51.34	231
SR 500 WR at 79th											
starttime	pagus	emilo,	ctarttime	padus	emilox	ctarttime	pagus	emilov.	starttime	pagus	- me
9/7/2021 16:00	41.24	488	9/8/2020 16:00	43.7	447	9/3/2019 16:00	41.15	541	9/4/2018 16:00	41.72	507
9/7/2021 17:00	44.19	483	9/8/2020 17:00	43.31	445	9/3/2019 17:00	40.25	616	9/4/2018 17:00	40.93	587
9/8/2021 16:00	43.32	450	9/9/2020 16:00	42.02	461	9/4/2019 16:00	41.13	260	9/5/2018 16:00	42.41	503
9/8/2021 17:00	43.65	472	9/9/2020 17:00	44.38	413	9/4/2019 17:00	40.87	579	9/5/2018 17:00	41.15	565
9/9/2021 16:00	41.07	206	9/10/2020 16:00	42.94	430	9/5/2019 16:00	40.84	575	9/6/2018 16:00	39.05	476
9/9/2021 17:00	41.54	516	9/10/2020 17:00	44.79	429	9/5/2019 17:00	41.86	568	9/6/2018 17:00	42.02	537
9/14/2021 16:00	40.51	511	9/15/2020 16:00	44.9	389	9/10/2019 16:00	40.89	551	9/11/2018 16:00	39.84	547
9/14/2021 17:00	42.09	496	9/15/2020 17:00	46.15	409	9/10/2019 17:00	40.55	599	9/11/2018 17:00	41.15	604
9/15/2021 16:00	42.65	436	9/16/2020 16:00	46.15	373	9/11/2019 16:00	40.42	546	9/12/2018 16:00	41.73	565
9/15/2021 17:00	42.06	206	9/16/2020 17:00	46.32	385	9/11/2019 17:00	40.31	969	9/12/2018 17:00	41.4	266
9/16/2021 16:00	39.6	493	9/17/2020 16:00	44.33	404	9/12/2019 16:00	39.98	260	9/13/2018 16:00	41.63	556
9/16/2021 17:00	42.21	494	9/17/2020 17:00	45.68	396	9/12/2019 17:00	39.48	551	9/13/2018 17:00	41.7	591
9/21/2021 16:00	41.37	512	9/22/2020 16:00	43.93	463	9/17/2019 16:00	41.95	527	9/18/2018 16:00	41.14	528
9/21/2021 17:00	41.46	526	9/22/2020 17:00	44.05	449	9/17/2019 17:00	41.19	572	9/18/2018 17:00	40.65	631
9/22/2021 16:00	41.98	504	9/23/2020 16:00	43.92	442	9/18/2019 16:00	41.36	909	9/19/2018 16:00	41.49	522
9/22/2021 17:00	43.12	466	9/23/2020 17:00	42.98	424	9/18/2019 17:00	42.37	584	9/19/2018 17:00	41.2	583
9/23/2021 16:00	43.32	483	9/24/2020 16:00	41.35	458	9/19/2019 16:00	39.69	260	9/20/2018 16:00	40.48	551
9/23/2021 17:00	39.77	520	9/24/2020 17:00	42.36	459	9/19/2019 17:00	41.26	290	9/20/2018 17:00	39.56	594
Average	41.95	492	Average	44.07	426	Average	40.86	995	Average	41.07	556

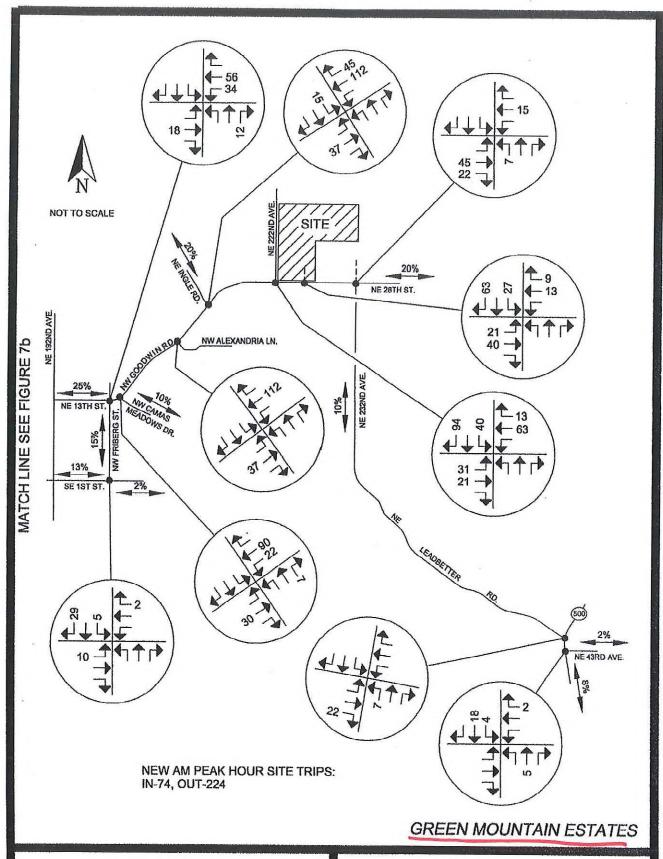


FIGURE 7a SITE TRAFFIC DISTRIBUTION/ ASSIGNMENT, AM PEAK HOUR

KELLY ENGINEERING 316 E. Fourth Plain, A-2, Vancouver, WA 98663 Phone: 360-433-7530

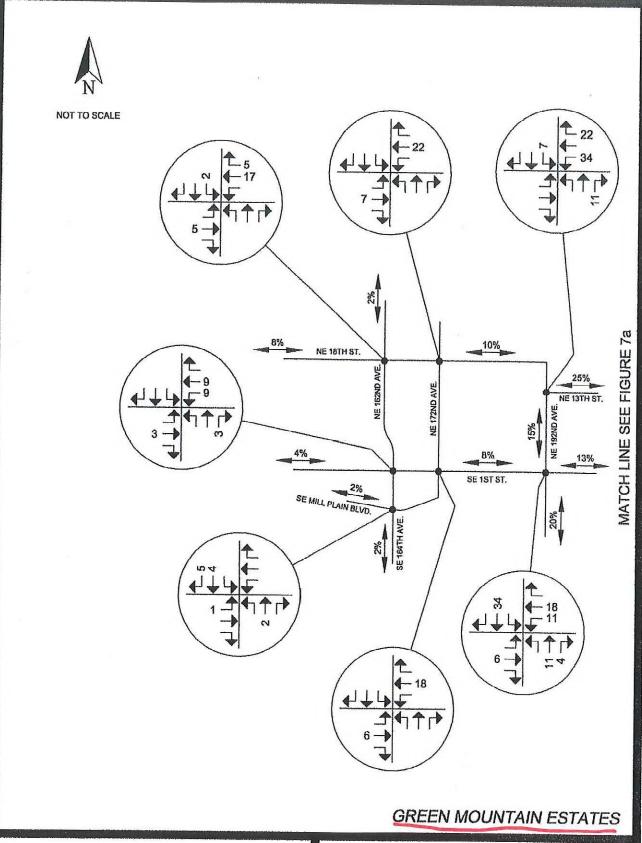


FIGURE 7b SITE TRAFFIC DISTRIBUTION/ ASSIGNMENT, AM PEAK HOUR

KELLY ENGINEERING

316 E. Fourth Plain, A-2, Vancouver, WA 98663 Phone: 360-433-7530

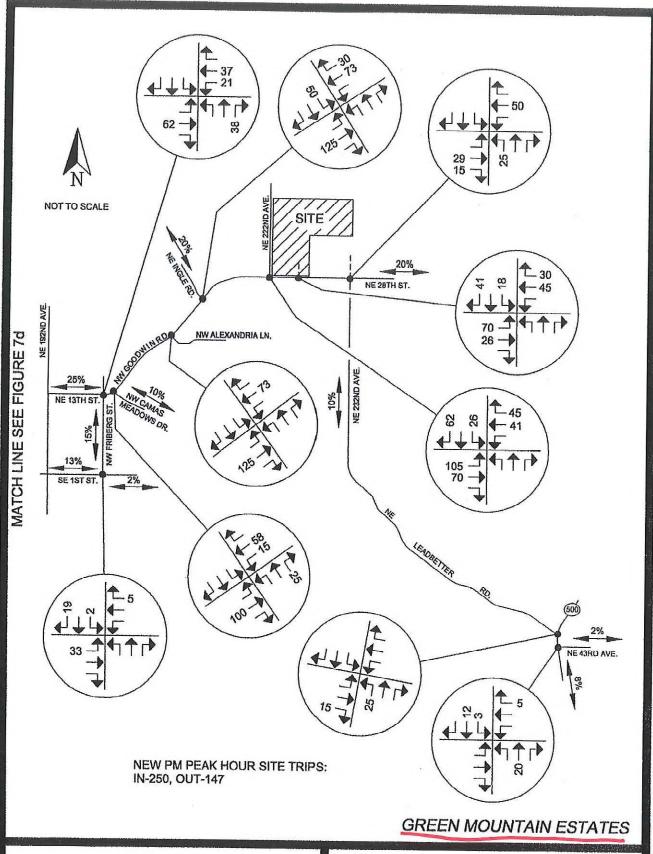


FIGURE 7c SITE TRAFFIC DISTRIBUTION/ ASSIGNMENT, PM PEAK HOUR

KELLY ENGINEERING 316 E. Fourth Plain, A-2, Vancouver, WA 98663 Phone: 360-433-7530

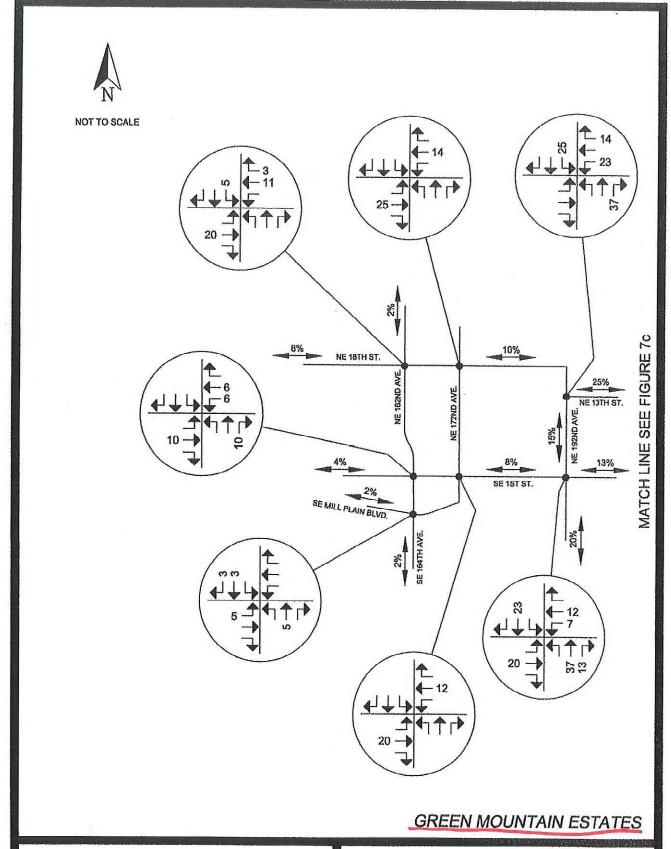


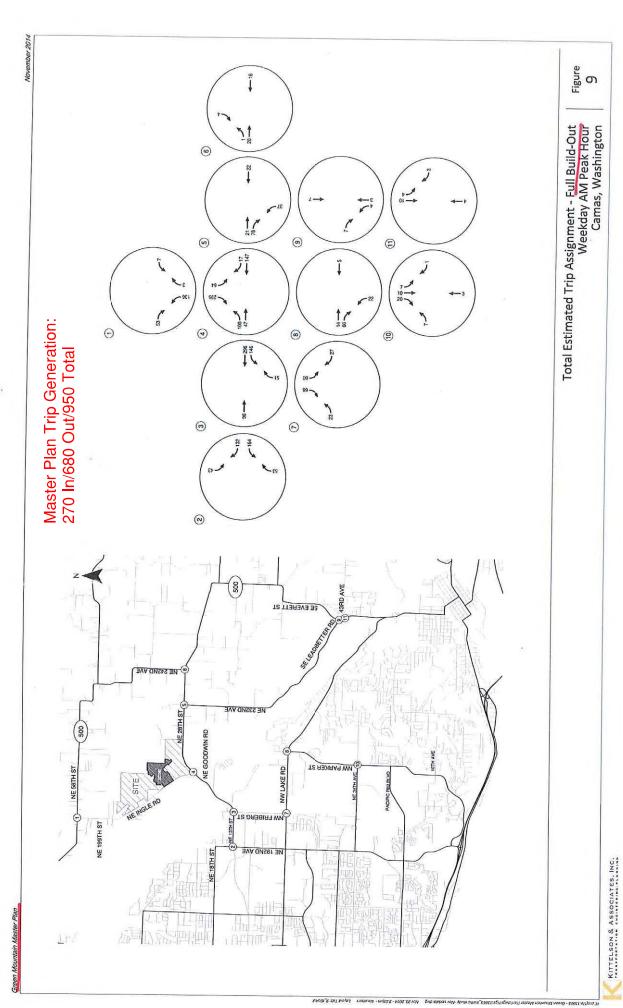
FIGURE 7d SITE TRAFFIC DISTRIBUTION/ ASSIGNMENT, PM PEAK HOUR

KELLY ENGINEERING

316 E. Fourth Plain, A-2, Vancouver, WA 98663 Phone: 360-433-7530

Project #23187 Page 6

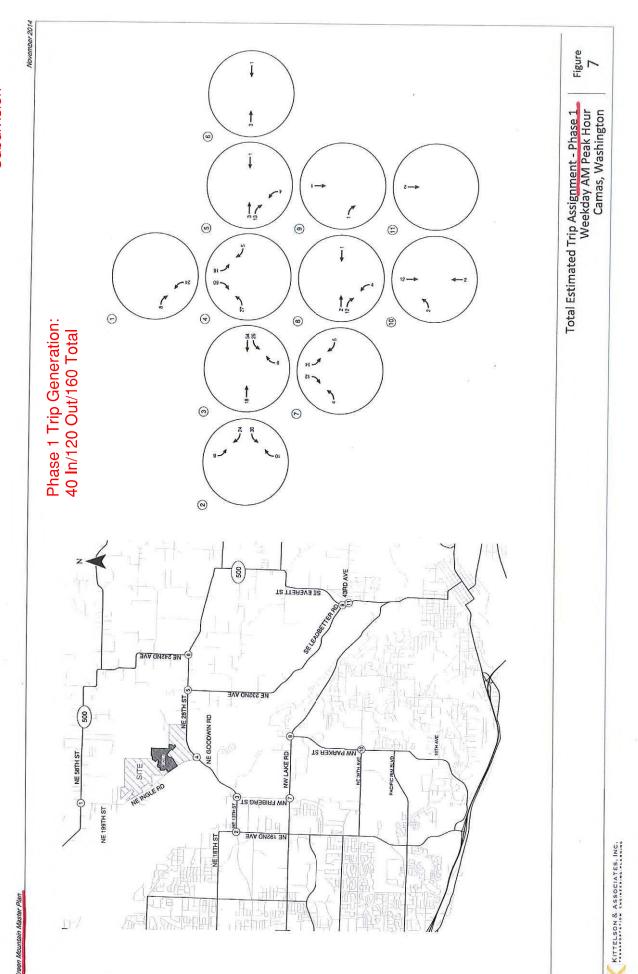
Table 2: Master Plan Trip Generation and Build-out Debiting (Includes Phase 1, 2 and 3)

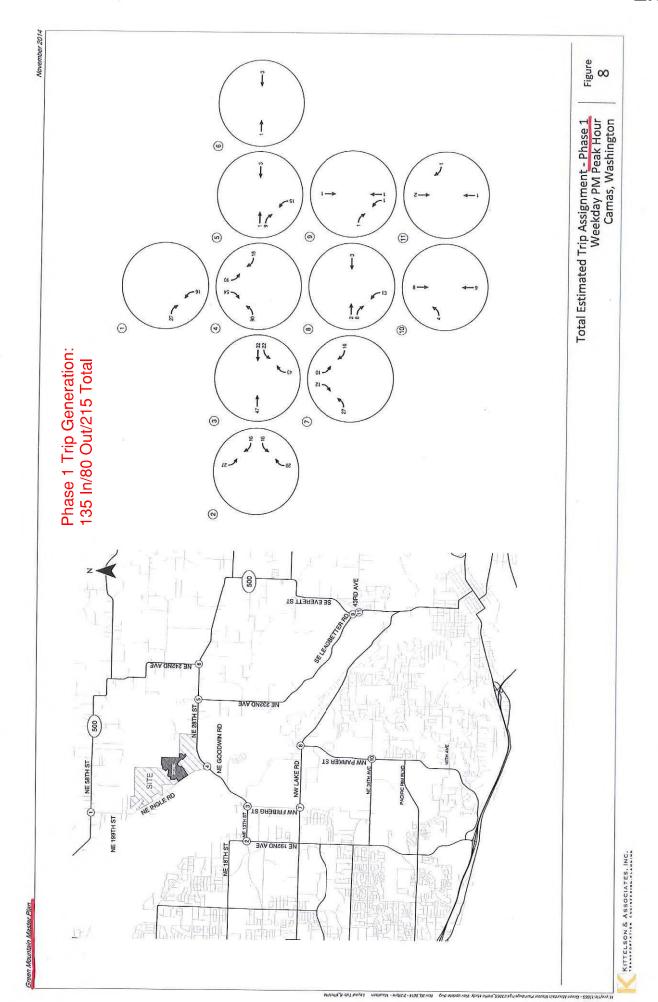

Legal Han	ITE	Size	Dolla	Week	day AM Peal	: Hour	Weekday PM Peak Kour			
Land Use	Code	Size		Total	lm	Out	Total	lm	Out	
Apartment	220	536 units	3,570	275	55	220	330	215	115	
Single-Family Detached Housing	210	764 units	7,270	575	145	430	765	480	285	
Total Residential (1,300 units)			10,840	850	200	650	1,095	695	400	
Internalization (6% Daily,54% PM)			630	0	0	0	60	30	30	
Shopping Center		90,000	6,340	145	90	55	560	270	290	
Internalization (10% Daily, 11% PM)	820	square feet	630	0	0	0	60	30	30	
Pass-By Trips (34%)		square reet	1,940	50	25	25	170	85	85	
	Total V	ested Trips	17,180	995	290	705	1,655	965	690	
	Less Inte	rnalization	1,260	0	0	0	120	60	60	
	Less Pa	ıss-by trips	1,940	50	25	25	170	85	85	
Vested Net New Tri	ps for Ful	l Build-out	13,980	945	265	680	1,365	820	545	
Deduct for Net No	ew Trips f	or Phase 1	1,914	150	40	110	200	125	<i>75</i>	
Deduct for Net N	Deduct for Net New Trips for Phase 2				40	130	230	145	85	
Deduct for Net No	Deduct for Net New Trips for Phase 3					90	160	100	60	
Deduct for Net New Trips	for B1 Sc	outh Phase	740	55	10	45	70	45	25	
	Rema	ining Trips	7,642	450	145	305	705	405	300	

UPDATE 10/21/21

Vested Net New Trips for Full Build-out	13,980	945	265	680	1,365	820	545
Phase 3 Deleted from Project	1,514	120	30	90	160	100	60
Revised Vesting	12,466	825	235	590	1,205	720	485
Phase 1 - 95% Constructed	1,818	143	38	105	190	119	71
Phase 2 - 80% Constructed	1,736	136	32	104	184	116	68
POD B1 - 0% Constructed	0	0	0	0	0	0	0
Remaining Vested Trips Not Constructed as of 8/16/21	8,912	547	165	382	831	485	346
Percentage of Vested Trips not Constructed	64%	58%	62%	56%	61%	59%	63%
			•	60%	•		
Percentage of Vested Trips Approved without Phase 3	39%	45%	38%	48%	41%	44%	38%
				42%			

50% Build-out 8-16-21

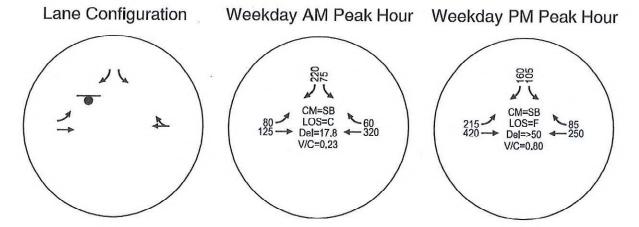

40% (See attached)



50% Build-out 8-16-21

40% (See attached)

Figure 10 Total Estimated Trip Assignment - Full Build-Out Weekday PM Peak Hour Camas, Washington (9) 6 (9) (3) Master Plan Trip Generation: 820 In/545 Out/1365 Total = 4 0 (0) (4) (9) 25-25 0 (b) (2) NE S4SND AVE 200 NW PARKER ST NE 199TH ST KITTELSON & ASSOCIATES, INC. IF/



Green Mountain Phase 2 November 8, 2016

Project #: 20495 Page 9

Operations of the intersection as a stop-controlled intersection are provided in Exhibit 2 assuming Phase 1 and 2 site development as well as approved background traffic. *Appendix G* contains the 2018 total traffic conditions traffic operations worksheets.

Exhibit 2: NE Ingle Road/NE Goodwin Road 2018 Total Traffic Lane Configuration and Operations

As seen in Exhibit 2, the southbound left-turn at NE Ingle/NE Goodwin Road is projected to operate at a LOS F during the weekday p.m. peak hour with buildout of Phase 2 but operates under capacity with a v/c ratio of 0.80. Installation of a westbound right-turn lane (previously recommended with development of the 203rd home) is recommended with Phase 2 site development and will improve intersection operations compared to those reported in Exhibit 2. Further, to meet City of Camas standards, provision of a center two-way left-turn lane is recommended on NE Goodwin Road east of NE Ingle Road to accommodate two stage southbound left-turns. Operations with these mitigations are shown in Table 4. *Appendix H* contains the supporting traffic operations worksheets.

Table 4: NE Ingle Road/NE Goodwin Road 2018 Total Traffic Operations

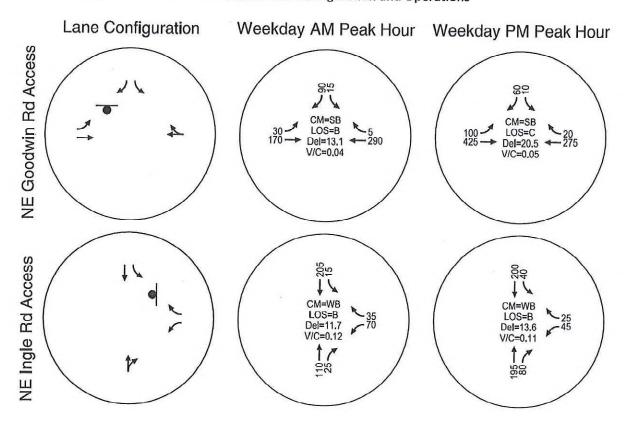
	Weekday AM	Peak Hour	Weekday PM Peak Hour		
Scenario	Delay	v/c	Delay	v/c	
Current Intersection Configuration (refer to Exhibit 2)	17.8 (LOS C)	0.23	87.9 (LOS F)	0.80	
Provision of a westbound right-turn lane	17.1 (LOS C)	0.22	75.1 (LOS F)	0,74	
Provision of a TWLTL on NE Goodwin Road	12.5 (LOS B)	0.15	25.8 (LOS D)	0.41	

Note: Operations shown are for the critical movement (southbound left-turn)
TWLTL = Two-way left-turn lane

Recognizing that the intersection satisfies City of Camas performance standards with these recommended mitigations, installation of a traffic signal is not recommended with Phase 2 development. Per the Master Plan conditions of approval, the developer shall monitor the need for installation of a traffic signal with future subdivision applications.

Green Mountain Phase 2 November 8, 2016

Project #: 20495 Page 10


NE 192nd Avenue/NE 13th Street

The Master Plan TIA identified a proposed proportionate cost sharing methodology to fund future construction of a northbound right-turn lane and a westbound right-turn lane on NE 13th Avenue at NE 192nd Avenue, provided in *Appendix I*. Under this methodology, each weekday p.m. peak hour trip would be assessed a fee of \$319. Based on the Phase 2 trip assignment (refer to *Appendix D*), Phase 2 adds 103 trips to the intersection of NE 192nd Avenue/NE 13th Street and therefore should be responsible for contributing \$32,857 towards future improvements at the intersection.

ON-SITE CIRCULATION AND OPERATIONS

As seen in Figure 2, Phase 2 is located in the southeast portion of the overall site, with access anticipated on NE 28th Street (NE Goodwin Road) via a neighborhood circulator. Phase 2 will be connected to Phase 1 via the extension of N. Boxwood Street, as shown in the site plan in Figure 1. Therefore, some trips were assumed to utilize the neighborhood circulator access on NE Ingle Road developed with Phase 1. The proposed lane configuration for the access on NE 28th Street (NE Goodwin Road) and weekday a.m. and p.m. peak hour operations are shown in Exhibit 3. The operations for the access on NE Ingle Road developed with Phase 1 are also shown. *Appendix J* contains the traffic operations worksheets for the Phase 2 access operations.

Exhibit 3: Site Accesses - 2018 Total Traffic Lane Configuration and Operations

Green Mountain Phase 2 November 8, 2016

Project #: 20495 Page 11

As seen in the exhibit, both accesses are projected to operate acceptably during both the weekday a.m. and p.m. peak hours. Anticipated queueing is provided in Table 4.

Table 5: Site Access Queueing - 2018 Total Traffic Conditions

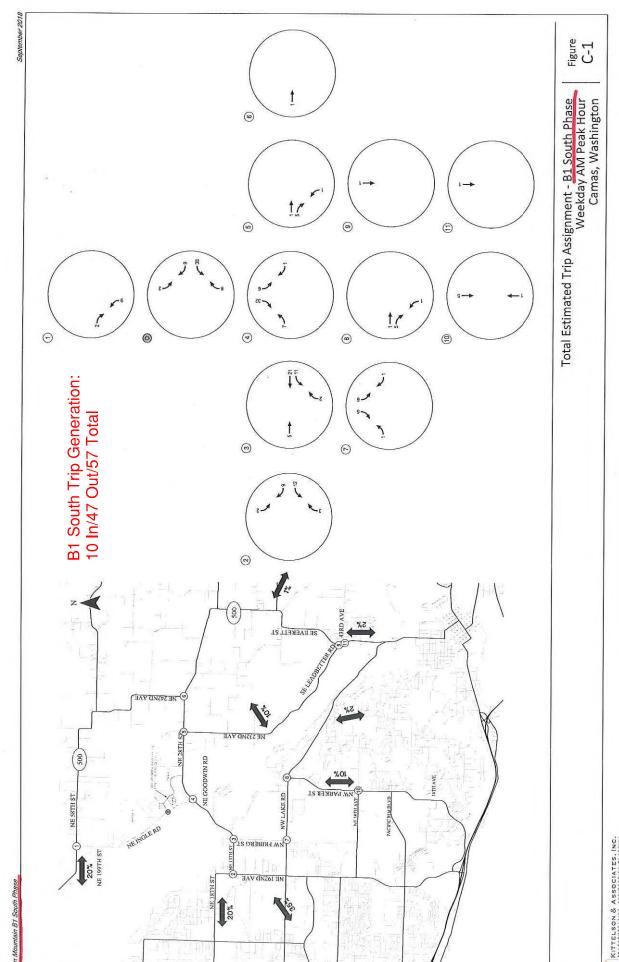
		95 th Percentile Queue					
Location	Movement	Weekday AM Peak Hour	Weekday PM Peak Hour				
	Eastbound left-turn	25	25				
NE Goodwin Road/	Westbound right-turn	<25	<25				
Site Access	Southbound left-turn	25	25				
	Southbound right-turn	25	25				
NET CONTRACTOR	Westbound left-turn	25	25				
NE Ingle Road/ Site Access	Westbound right-turn	25	25				
	Southbound left-turn	25	25				

As seen in table three, 95th percentile queues are anticipated to be one vehicle or less.

On-site landscaping, signage and any above-ground utilities should be provided appropriately to ensure that adequate sight distance is provided and maintained.

FINDINGS AND RECOMMENDATIONS

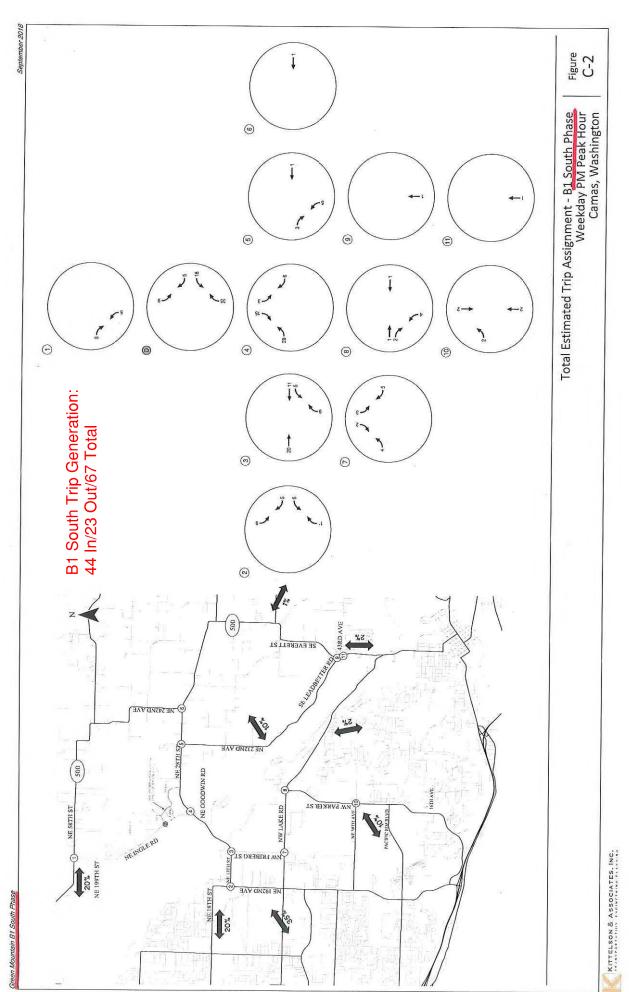
Based on the results of the transportation impact analysis, Phase 2 of the Green Mountain Master Plan can be developed while maintaining acceptable levels of service and safety at the study intersections without any required off-site mitigations. The primary findings and recommendations of this study are summarized below.


Phase 2 Trip Generation: 45 In/130 Out/175 Total AM 145 In/85 Out/230 Total PM

Trip Generation

- Phase 2 includes 230 single family homes and is estimated to generate 2,190 daily trips, 175 net new a.m. peak hour trips, and 230 net new p.m. peak hour trips.
- After accounting for Phase 1 and Phase 2; 9,885 daily; 620 weekday a.m. peak hour; and 935 weekday p.m. peak hour trips remain in the master plan approval.

NE 199th Avenue/NE 58th Street (SR 500)


- Consistent with prior analysis, the intersection of NE 199th Avenue/NE 58th Street (SR 500) continues to satisfy WSDOT's guidelines for a right-turn lane on the eastbound approach under existing conditions and all future scenarios during both the weekday a.m. and p.m. peak hours.
 - Given the lack of crash history related to eastbound right-turns and the relatively small impact of Phase 2 (nine eastbound right-turn trips during the weekday a.m.

KITTELSON & ASSOCIATES, INC.

0% Build-out 7-17-21

Approved Subdivision

Appendix C - Safety

Crash History Data

Right-Turn Lane Warrant Analysis

Preliminary Signal Warrant Analysis

	yclists	þ													
	Pedestrians Pedalcyclists	d Involved	0	0	0	0	0	0		0	0	0	0	0	0
	Pedest	ed Involved	0	0	0	0	0	0		0	0	0	0	0	0
Commercial School	Bus	Involved	z	z	Z	z	z	z		z	z	z	Z	z	z
	rs Carrier	Involved	z	z	z	z	z	z		z	z	z	z	z	Z
	Passengers	Involved	>-	z	>-	>-	>	>-		Z	z	>	z	z	z
Motor	Vehicles	Involved	2	2	2	2	2	2		2		2	2	2	
Hit	ld and	Run	z	z	z	z	z	Z		z	z	z	z	z	z
Damage	Threshold	Met	>	>	>	>	z	>		>	>	>	>	>	>
	Object	Struck							Earth Bank or	Ledge	Dirt Ditch Y				
	Collision	Туре													
Assumed	Collision	Type	on Turn	Turn	Turn	on Turn	0 uc	Turn		Turn	on Fixed	on Turn	Turn	on Turn	Fixed
		Severity	No Injury Collision Turn	Minor Injury Collision	Minor Injury Collision	No Injury Collision Turn	No Injury Collision	Minor Injury Collision	Minor Iniug	on	No Injury Collision Fix <mark>ed</mark>	No Injury Collision Turn	Minor Injury Collision	No Injury Collision Turn	Minor Injury Collision
		ion Injury	No Inj		Minor Inju Collision	No In	No In	Minor Inj Collision	iN	Collision		No Inj	Minor Inju Collision	No In	Minor Inj Collision
		Lighting Condition Injury Severity	Daylight	Dark-No Street Lights	Daylight	Daylight	Daylight	Daylight		Daylight	Dark-No Street Lights	Dark-No Street Lights	Dawn	Daylight	Daylight
	ther	Condition	Overcast	Overcast	_	Ļ	_	E		Overcast	iing	_	Overcast	Ę	Ę
	School Intersection Weather		Ove	Ove	Clear	Clear	Clear	Clear		Ove	Raining	Clear	Ove	Clear	Clear
	ol Inters	e Related	>	>-	>	>	>	>		>	>	>	>	>	>-
		Zone	Z	z	z	z	Z	Z		Z	z	z	Z	z	Z
	Block Mile	Number Post	10.27		10.3	10.27	10.27	10.6		10.27	10	10	10.3	19900	
	Secondary	fficway	NE 199TH AVENUE	NE 199TH ST	NE 199 AVE	NE 199TH AVE	NE 199TH AVE	NE 199TH AVE		NE 199TH AVE	NE 199TH STREET	199TH AVE	NE 199 AVE	NE 199TH AV	NE 58TH AVE
	Sec	icway Tra	퓓	Z	Z	뮏	Ŋ	뵘		NE	쀵	199	Z	N	
		Primary Trafficway Trafficway	SR 500	SR 500	SR 500	E/B SR-500	E/B SR-500	EB SR 500		WB SR-500	W SR 500	SR 500	SR 500	NE 58TH ST	NE 199TH ST
		Agency	State Patrol	State Patrol	State Patrol	State Patrol	State Patrol	State Patrol		State Patrol	State Patrol	State Patrol	State Patrol	County Sheriff	County Sheriff
		Jurisdiction	State Road	State Road	State Road	State Road	State Road	State Road		State Road	State Road	State Road	State Road	County Road	
		City	Vancouver	Vancouver	Vancouver	Vancouver	Vancouver	Vancouver		Vancouver	Vancouver	Vancouver	Vancouver	Vancouver	Battle Ground County Road
		County	Clark	Clark	Clark	Clark	Clark	Clark		Clark	Clark	Clark	Clark	Clark	Clark
		Collision Date	8/14/2015 12:45	11/24/2015 16:32	8/15/2016 17:43	8/26/2016 19:40	8/26/2016 19:40	4/21/2017 09:20		12/8/2018 09:25	2/1/2019 22:30	12/17/2019 19:03	12/18/2019 06:49	6/4/2015 20:15	5/7/2016 19:51
Collision	Report	Number	E455116	E487087	E576106	E577918	E577918	E666028		E871892	E888887	E995183	E997762	E430885	E541367

0		6		2		0	0	0	0	F		
Angle		Turn		Fixed		Sideswipe	Other	Rear	Ped			
No Injury Collision	Minor Injury	Collision	Serious Injury	Collision	Unknown Injury	Collision				9870	0.61	
2		9		0		0	F			AADT	Crash Rate	

	Pedalcyclists	lved									
		d Involved	0	0	0	0	0		0	0	0
	Pedestrians	Involved	0	0	0	0	0		0	0	0
School	Bus	Involved	z	z	z	z	z		z	z	z
Commercial	Carrier	Involved									
	Passengers Ca		Z	z	Z	z	Z		Z	z	Z
		ed Involved	z	z	z	z	z		>	>	z
	d Vehicles	n Involved	2	2	2	2	2		2	2	2
	Threshold and	Run	Z	z	>	>	>		Z	z	Z
		< Met	z	>	z	>	>		>	z	>
	on Object	Struck									
	on Collision	Туре			ipe						
Assumed	Collision	Туре	on Turn	0 no	No Injury Collision Sideswipe	0 no	on Turn		Turn	on Rear	on Turn
		' Severity	No Injury Collision Turn	No Injury Collision 0	jury Collisi	No Injury Collision 0	No Injury Collision Turn	Minor Injury	ion	No Injury Collision Rear	No Injury Collision Turn
		Lighting Condition Injury Severity	No I	No Ir	No Ir	No	No	Mino	Collision	No	No Ir
		iting Cond	Daylight	Daylight	Daylight	Daylight	Daylight		Daylight	Daylight	Daylight
		Ligh	Day	Day	Day	Day	Day		Day	Day	Day
	eather	Condition	Raining	Raining	Clear	Clear	Overcast		Clear	ear	ar
	Intersection Weather		Rai	Rai	Cle	Cle	ò		Ö	Clear	Clear
		Related	>	>	>	>	>		>	>	>
	School	. Zone	z	z	z	z	z		z	z	Z
	Block Mile	Number Post			00	00	00				
	Blo	N			1300	1300	1300				VE **
	Secondary	Trafficway	NE 13TH ST	NE 13TH ST	NE 13TH ST	NE 13TH ST	NE 13TH ST		NE 13TH ST	NE 13TH ST	NE 192ND AVE
	Š										
		Primary Trafficway	NE 192ND AVE	NE 192ND AVE	NE 192ND AVE	NE 192ND AVE	NE 192ND AVE		NE192ND AVE	NE 192ND AVE	NE 13TH ST
								I/City			
		Agency	Municipal/City	Municipal/City	Municipal/City	Municipal/City	Municipal/City	Municipal/City	Police	Municipal/City	Municipal/City
		Jurisdiction	City Street	City Street	City Street	City Street	City Street		City Street	City Street	City Street
		ty City	Vancouver	Vancouver	Vancouver	Vancouver	Vancouver		Vancouver	Vancouver	Vancouver
		County	' Clark	' Clark	Clark	Clark) Clark	Clark	Clark
		Collision Date	1/27/2015 15:17	1/27/2015 15:17	4/5/2015 11:25	4/5/2015 11:25	10/29/2016 13:14		11/4/2016 08:10	7/9/2019 17:05	3/11/2016 14:31
sion	ort										
Collision	Report	Number	E397774	E397774	E414042	E414042	E602417		E604519	E938605	E543867

No Injury Collision Angle 0
Minor Injury
Collision Turn 4
Serious Injury
Collision Fixed 0
Unknown Injury
Collision Sideswipe 1

Sideswipe 1
Other 0
Rear 1
Ped 0

18830

AADT Crash Rate

	sts			0		0
	Pedalcyclists					
	Pedestrians	Involved		0		_
School	Bus	Involved		z		z
Commercial	Carrier	hvolved		_		_
J	sengers C	Involved		_		_
Motor	Vehicles Pas			Z		Z
		Run In		Z 2		z
Damage	Threshold and	Met		>		z
	n Object				PEDESTRI	AN
þ	n Collision					
Assume	Collision	Туре		on Turn		Ped
		ry Severity		No Injury Collision Turn	Minor Injury	Collision
		ighting Condition Injury Severity		S _N	Min	O
		Lighting Co.		Daylight		Daylight
	<u></u>	on				
	School Intersection Weather	Related Condition		Clear		Clear
	' Intersecti	Related		>		>-
		Zone F		Z		z
	Block Mile	Number Post				20200
			RG-	_	TRUNK	20
	Secondary	Trafficway	NW FRIBERG-	STRUNK S	FRIBERG STRUNK	ST C
		Primary Trafficway Trafficway		NE GOODWIN RD STRUNK ST		NE GOODWIN RD ST
		Prima	ξ	NE G	>	NE G
		Agency	al/Cit	Police	Municipal/Cit	Police
		urisdiction		City Street		City Street
		Ī		O		Ü
		County City		rk Camas		rk Camas
				4:47 Clar):35 Clar
		Collision Date		4/27/2016 14:47 Clark		9/25/2016 10:35 Clark
Collision	Report	Jumber		720273		299992

0		-		0		0	0	0		2	
Angle		Turn		Fixed		Sideswipe 0	Other	Rear	Ped		
No Injury Collision Angle	Minor Injury	Collision	Serious Injury	Collision	Unknown Injury	Collision				11710	
—		_		0		0	2			AADT	0+00 4000

0			0	C		0
	0		0	0	0	0
	z		z	Z	2	z
z			z	Z	2	Z
z :	:		z	Z	<u> </u>	z
2 2 1	2 -	2 -		-		2
z z z	z z	zz	z	2		z
> Z > >	z > >	Z > >	> >	- >-	>	
0 0 Turn Turn	xed C. xed	p exi un	ixed CLJ	2 c	<u> </u>	
Collision	Collision Fi	Collision Fi	Sollision Fig.		≓ ≥	
Minor Injury Collision No Injury Collision Collision Collision	Minor Injury Collision No Injury Collision Collision	Collision No Injury C Minor Injury C Collision	No Injury C Minor Injur Collision	Minor Injury Collision	Collision Collision	
Daylight Daylight Daylight	Daylight Daylight	Daylight Daylight	Daylight Daylight	Daylight	Daylight	
Clear Clear Clear	ear iear	ear ear	ear ear	ear car	ear	
ō ο ο ο	ס ס 	ਹੋ ਂ ਹ	δ σ	5	Ō	
>	> >	> > >	> >	- >	>	
z z z z	z z z	z z z	z z	z z	z	
4600						
MEADOWS DR ROAD NW CAMAS NE GOODWIN RD MEADOWS DR NW CAMAS NE GOODWIN RD MEADOWS DR NW CAMAS NE GOODWIN RD MEADOWS DR NW CAMAS	EGODWIN JAD W CAMAS EADOWS DR W CAMAS EADOWS DR	N CAMAS W CAMAS W CAMAS W CAMAS EADOWS DR	M CAMAS EADOWS DR. M CAMAS EADOWS DR	A CAMAS A CAMAS EADOWS DR	FADOWS DR	
MIN RD MI	MIN RD MI	M N N N N N N N N N N N N N N N N N N N	M N N N N N N N N N N N N N N N N N N N		N N N N N N N N N N N N N N N N N N N	
MEADOWS DR NW CAMAS MEADOWS DR NE GOODWIN RD	NW CAMAS MEADOWS NE GOODV	MEADOWS NE GOODV	NE GOODV	NE GOODY OF THE COORDY OF THE	NE GOODV	
Police Municipal/City Police Municipal/City Police Municipal/City Police	Municipal/City Police Municipal/City Police Police	Police Municipal/City Police Municipal/City Police	Municipal/City Police Municipal/City Police	Municipal/City Police	Municipal/City Police	
City Street City Street City Street	City Street City Street	City Street City Street	City Street	City Street	City Street	
Camas Camas Camas	Camas	Camas	Camas	Camas	Camas	
Clark Clark						
8/30/2019 14:52 8/30/2019 14:52 3/16/2016 17:50 6/13/2019 17:55						
E955382 8/, E956118 3/, E930592 6/,						
E955 E526 E93(E955	E955 E526 E93C	E526	E93(E93C	

School	ved	C	Đ	0 0	0	C	0	0 0	0	0
Commercial	Involved	2		z z			z	z	z	
Motor Vobidos Bassas	verifies rasserigers Involved Involved			> >				>	Z	
H;		2	Z	z z	Z	z	Z		Z	
	Struck					Rock Bank or				
Assumed	Type		No injury Comision Real	No Injury Collision 0 No Injury Collision Rear	No Injury Collision Rear	Minor Injury Collision Fixed	Collision	Minor Injury Collision Turn	fur	Σ ₁
	Lighting Condition Injury Severity	Jo Street	o Street	Lights No II Daylight No II	Street	lo Street	Ħ			
3 (i+) (i+) (i+) (i+) (i+) (i+) (i+) (i+)	Related Condition		כועמ	Clear Raining	Clear	Overcast	Clear	Clear	Clear	Overcast
0	Zone	2		> > z z			· >	z	×	> Z
O O	e				2500			JAD .	N RD	
, action	secondary Primary Trafficway Trafficway			NE GOODWIN RD NE INGLE RD	NE GOODWIN RD NE INGLE RD	NE GOODWIN RD NE INGLE RD		ODWIN	NE INGLE RD NE GOODWIN RD	AD
	Agency Prin	al/City	al/City	Police NE (Municipal/City NE (oal/City	oal/City		Municipal/City Police NE I	oal/City
	Jurisdiction			City Street City Street						
	County City			rk Camas rk Camas						
	Collision Date Cou			1/16/2015 17:23 Clark 3/15/2016 09:00 Clark						
Collision	Number C			3677212 1/ 3767109 3/						

Commercial School	rrier Bus Pedestrians Pedalcyclists	Involved Involved Involved	0 O Z	0 O Z		0 O Z		0 Z	0 0 N	0 Z	0 V
Motor	Vehicles Passengers Carrier	Involved Involved Invo	z ≻	z >		z		z >	z	z	Z ≻
Damage Hit M	Threshold and Ve	Met Run In	Z	< N		Y Y		× ×	Y N 2	Y N 2	Y N 2
Assumed	Object .	Type Type Struck	lision Rear	lision 0	ıry	Fixed		Rear	lision Sideswipe	lision Rear	lision Turn
		Lighting Condition Injury Severity	Dusk No Injury Collision Rear	Dusk No Injury Collision	Unknown Injury	Daylight Collision	Minor Injury	Daylight Collision	Daylight No Injury Collision	Daylight No Injury Collision Rear	Daylight No Injury Collision Turn
	School Intersection Weather	Related Condition	Clear	Clear		Overcast		Clear	Clear	Clear	Raining
	School	Zone Re	> Z	> Z		≻ Z		≻ Z	> Z	> Z	> Z
	Block Mile	Number Post				23200		23200	23200	23200	23200
	Secondary	Primary Trafficway Trafficway	H ST NE 232ND AV	H ST NE 232ND AV	NE 232ND	H ST AVENUE		H ST NE 232ND AVE	H ST 232ND AV	H ST NE 232ND AVE	H ST NE 232ND AV
			nty Sheriff NE 28TH ST	nty Sheriff NE 28TH ST		nty Sheriff NE 28TH ST		nty Sheriff NE 28TH ST	nty Sheriff NE 28TH ST	Municipal/City NE 28TH ST	nty Sheriff NE 28TH ST
		Jurisdiction Agency	County Road County Sheriff	County Road County Sheriff		County Road County Sheriff		County Road County Sheriff	County Road County Sheriff	City Street Munic	County Road County Sheriff
		County City	Camas	Camas		Camas		Camas	Camas	Camas	Camas
		Collision Date County	8/7/2015 18:42 Clark	8/7/2015 18:42 Clark		5/20/2016 16:01 Clark		6/11/2017 15:58 Clark	8/31/2017 07:43 Clark	5/23/2019 16:54 Clark	12/20/2019 09:12 Clark
Collision	Report	Number Col	E452382 8/7,	E452382 8/7,		E545707 5/2		E681299 6/17	E707129 8/3	E923671 5/2	EA02765 12/

0		_		_		_	0	$_{\odot}$	0	9	
Angle		Turn		Fixed		Sideswipe 1	Other	Rear	Ped		
No Injury Collision Angle	Minor Injury	Collision	Serious Injury	Collision	Unknown Injury	Collision				0889	0.48
4		_		0		_	9			AADT	Crash Rate

and Vehicles Passengers Carrier Bus Pedestrians Pedalcyclists Run Involved Involved Involved Involved	2 × N N N N N N N N N N N N N N N N N N	Z	o Z
Vehicles Passengers Carrier Bus Involved Involved	Z Z Z	2	Z
Vehicles Passengers Involved Involved	2 ×		z
Vehicles Passengers Involved Involved	2 ×		
Vehicles	2		Z
7 F	z	4	
hold		Z	Z
Object Thres Struck Met		>	>
Collision Type			
Collision	on Turn	7 ()	Fixed
niury Severity	No Injury Collision Turn	Serious Injury	USION
Liahtina Condition Injury Severity			
Lighting	Daylight	+4	Javlight
Weather Condition	Raining	,	Dor
Intersection Weather Related Condition			
School Int Zone Re		> 2	> Z
Block Mile Number Post			
	TTER ST .	TTER	
Secondary v Trafficwav	SE LEADBETTER ST .	SE LEADBETTER	ZY CY
Primary Trafficway	SE EVERETT RD	NIE EVEDETT ST	EVEREII SI
Prin			
Agency	Municipal	Municipal/City	Police
Jurisdiction	City Street	, tio	City Street
Ą	Camas		Camas
County			
Collision Date	2/1/2019 16:07	2/10/2010	3/2019 16:05
Report Number Colli			

5830 0.19

AADT Crash Rate

Preliminary Right-Turn Lane Warrant Analysis

Project: 21129 - Camas Heights

Date: 10/18/2021

Scenario: 2023 Buildout PM Peak Hour

Speed 50 mph

AM Peak HourPM Peak HourDHV6DHV24DDHV402DDHV373Lane Needed?NoLane Needed?No

100 Consider right-turn lane Peak Hour Right-Turn Volume (DHV) 80 Consider right-turn pocket or taper 60 40 • PM Pea 20 Radius only AM Peak 0 0 100 200 300 400 500 600 700 **Peak Hour Approach Volume (DDHV)**

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Background PM Peak Hour

Major Street: NE 58th Street (SR 500) Minor Street: NE 199th Avenue

Number of Lanes: 1 Number of Lanes: 1

PM Peak 360 Total PM Peak 26 Rights

Hour Volumes:

Hour Volumes:

O

RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number	r of Lanes for Moving	ADT on	Major St.	ADT on I	Minor St.
Traffic	on Each Approach:	(total of both	n approaches)	(higher-volume approach)	
WARRANT 1, COND	ITION A	100%	70%	100%	70%
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, COND	ITION B				
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 8,910 6,200 Minor Street* 3,600 1,850 Yes Condition B: Interruption of Continuous Traffic Major Street 8,910 9,300 Minor Street* 3,600 950 No Combination Warrant (Not met until after adequate trial of other measures) 8,910 Major Street 7,440 Minor Street* 3,600 1,480 Yes

^{*} Minor street right-turning traffic volumes reduced by 00%.

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE 58th Street (SR 500) with RT Lane Minor Street: NE 199th Avenue

Number of Lanes: 1 Number of Lanes: 1

PM Peak 904 Peak 26 Rights

Hour Volumes:

Hour Volumes:

O

RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both	approaches)	(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 9,040 6,200 Minor Street* 3,660 1,850 Yes Condition B: Interruption of Continuous Traffic Major Street 9,040 9,300 Minor Street* 3,660 950 No Combination Warrant (Not met until after adequate trial of other measures) 9,040 Major Street 7,440 Minor Street* 3,660 1,480 Yes

^{*} Minor street right-turning traffic volumes reduced by 00%.

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE Goodwin Road Minor Street: NE Camas Heights Road

Number of Lanes: 1 Number of Lanes: 1

PM Peak PM Peak 114 Rights

Hour Volumes: Hour Volumes: Hour Volumes: 114 Nights
100% RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both approaches)		(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 16,100 6,200 Minor Street* 630 1,850 No Condition B: Interruption of Continuous Traffic Major Street 9,300 16,100 Minor Street* 630 950 No Combination Warrant (Not met until after adequate trial of other measures) 16,100 Major Street 7,440 Minor Street* 630 1,480 No

^{*} Minor street right-turning traffic volumes reduced by 100%.

1

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Background PM Peak Hour

Major Street: NE Goodwin/NE 28th Street Minor Street: NE Ingle Road

Number of Lanes: 1 Number of Lanes:

PM Peak PM Peak PM Peak 242 Right

Hour Volumes: 1282 Hour Volumes: 242 Rights

Hour Volumes: 100% RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both	approaches)	(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 12,820 6,200 Minor Street* 2,500 1,850 Yes Condition B: Interruption of Continuous Traffic 9,300 Major Street 12,820 Minor Street* 2,500 950 Yes Combination Warrant (Not met until after adequate trial of other measures) Major Street 12,820 7,440 Minor Street* 2,500 1,480 Yes

^{*} Minor street right-turning traffic volumes reduced by 100%.

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE Goodwin/NE 28th Street Minor Street: NE Ingle Road

Number of Lanes: 1 Number of Lanes: 1

PM Peak 505 Total PM Peak 243 Pi ki

Hour Volumes: 1345 Hour Volumes: 242 Rights

Hour Volumes: 100% RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both approaches)		(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 13,450 6,200 Minor Street* 2,630 1,850 Yes Condition B: Interruption of Continuous Traffic Major Street 9,300 13,450 Minor Street* 2,630 950 Yes Combination Warrant (Not met until after adequate trial of other measures) Major Street 13,450 7,440 Minor Street* 2,630 1,480 Yes

^{*} Minor street right-turning traffic volumes reduced by 100%.

1

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE 28th Avenue Minor Street: N Juniper Street

Number of Lanes: 1 Number of Lanes:

PM Peak Pour Volumes: 76 Total PM Peak 58 Rights Hour Volumes: Hour Volumes: 76 Total PM Peak 58 Rights

50% RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both approaches)		(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 10,160 6,200 Minor Street* 470 1,850 No Condition B: Interruption of Continuous Traffic Major Street 9,300 10,160 Minor Street* 470 950 No Combination Warrant (Not met until after adequate trial of other measures) Major Street 10,160 7,440 1,480 Minor Street* 470 No

^{*} Minor street right-turning traffic volumes reduced by 50%.

1

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE 28th Street Minor Street: Site Access

Number of Lanes: 1 Number of Lanes:

PM Peak 946 PM Peak 15 Rights

Hour Volumes:

Hour Volumes:

Hour Volumes:

50%

RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving		ADT on	Major St.	ADT on Minor St.		
Traffic	on Each Approach:	(total of both approaches)		(higher-volume approach)		
WARRANT 1, COND	ITION A	100%	70%	100%	70%	
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	
1	1	8,850	6,200	2,650	1,850	
2 or more	1	10,600	7,400	2,650	1,850	
2 or more	2 or more	10,600	7,400	3,550	2,500	
1	2 or more	8,850	6,200	3,550	2,500	
WARRANT 1, COND	ITION B					
1	1	13,300	9,300	1,350	950	
2 or more	1	15,900	11,100	1,350	950	
2 or more	2 or more	15,900	11,100	1,750	1,250	
1	2 or more	13,300	9,300	1,750	1,250	

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 9,460 6,200 Minor Street* 230 1,850 No Condition B: Interruption of Continuous Traffic Major Street 9,300 9,460 Minor Street* 230 950 No Combination Warrant (Not met until after adequate trial of other measures) Major Street 9,460 7,440 Minor Street* 230 1,480 No

^{*} Minor street right-turning traffic volumes reduced by 50%.

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE 28th Street Minor Street: NE 232nd Avenue

Number of Lanes: 1 Number of Lanes: 1

PM Peak PM Peak 9 Rights

Hour Volumes: Hour Volumes: 50% RT Discount

Warrant Used:

100 percent of standard warrants used

X 70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number of Lanes for Moving Traffic on Each Approach: WARRANT 1, CONDITION A			Major St. n approaches)	ADT on Minor St. (higher-volume approach)	
		100%	70%	100%	70%
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, COND	ITION B				
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

	Approach Volumes	Minimum Volumes	Is Signal Warrant Met?
Warrant 1			
Condition A: Minimum Vehicular Volume			
Major Street	8,240	6,200	
Minor Street*	1,620	1,850	No
Condition B: Interruption of Continuous Traffic			
Major Street	8,240	9,300	
Minor Street*	1,620	950	No
Combination Warrant (Not met until after adequ	uate trial of other mea.	sures)	
Major Street	8,240	7,440	
Minor Street*	1,620	1,480	Yes

^{*} Minor street right-turning traffic volumes reduced by 50%.

Project: 21129 - Camas Heights

Date: 10/25/2021

Scenario: 2023 Buildout PM Peak Hour

Major Street: NE/SE Everett Street Minor Street: NE Leadbetter Street

Number of Lanes: 1 Number of Lanes: 1

PM Peak Peak 118 Total PM Peak 112 Rights

Hour Volumes: Hour Volumes: 112 kights
50% RT Discount

Warrant Used:

X 100 percent of standard warrants used
70 percent of standard warrants used due to 85th percentile speed in excess

of 40 mph or isolated community with population less than 10,000.

Number	of Lanes for Moving	ADT on	Major St.	ADT on I	Minor St.
Traffic	on Each Approach:	(total of both	approaches)	(higher-volume approach)	
WARRANT 1, COND	ITION A	100%	70%	100%	70%
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, COND	ITION B				
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Is Signal Warrant Approach Volumes Minimum Volumes Met? Warrant 1 Condition A: Minimum Vehicular Volume Major Street 5,580 8,850 Minor Street* 620 2,650 No Condition B: Interruption of Continuous Traffic Major Street 5,580 13,300 Minor Street* 620 1,350 No Combination Warrant (Not met until after adequate trial of other measures) Major Street 5,580 10,640 Minor Street* 620 2,120 No

^{*} Minor street right-turning traffic volumes reduced by 50%.

Appendix D - Operations

LOS Definitions

Synchro Reports

Level of Service Definitions

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C. Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

- Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.
- Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.
- Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.
- Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.
- Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.
- Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

Level of Service Criteria For Signalized Intersections

Level of Service (LOS)	Control Delay per Vehicle (Seconds)
А	<10
В	10-20
С	20-35
D	35-55
E	55-80
F	>80

Level of Service Criteria For Unsignalized Intersections

Level of Service (LOS)	Control Delay per Vehicle (Seconds)
А	<10
В	10-15
С	15-25
D	25-35
E	35-50
F	>50

Intersection						
Int Delay, s/veh	5.7					
				14/5-		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- ₽			स्	W	
Traffic Vol, veh/h	142	379	21	179	207	5
Future Vol, veh/h	142	379	21	179	207	5
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	9	9	5	5	7	7
Mvmt Flow	163	436	24	206	238	6
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	599	0	635	381
Stage 1	-	-	-	-	381	-
Stage 2	-	-	-	-	254	-
Critical Hdwy	-	-	4.15	-	6.47	6.27
Critical Hdwy Stg 1	-	-	-	-	5.47	-
Critical Hdwy Stg 2	-	_	-	-	5.47	_
Follow-up Hdwy	-	-	2.245	-	3.563	3.363
Pot Cap-1 Maneuver	_	_	963	-	435	655
Stage 1	_	_	_	_	680	-
Stage 2	_	_	_	_	777	_
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	963	_	423	655
Mov Cap-1 Maneuver	_		-	_	423	000
Stage 1	_	_	_	_	680	-
<u> </u>		•			755	
Stage 2	-	-	-	-	100	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		24.1	
HCM LOS					С	
					14/51	14/5-
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		427	-	-	963	-
HCM Lane V/C Ratio		0.571	-	-	0.025	-
HCM Control Delay (s)		24.1	-	-	8.8	0
HCM Lane LOS		С	-	-	Α	Α
HCM 95th %tile Q(veh)		3.5	-	-	0.1	-

	•	4	†	~	\	 			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		f.		ሻ	†			
Traffic Volume (vph)	242	181	263	144	384	302			
Future Volume (vph)	242	181	263	144	384	302			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.0		4.0	4.0			
Lane Util. Factor	1.00		1.00		1.00	1.00			
Frt	0.94		0.95		1.00	1.00			
Flt Protected	0.97		1.00		0.95	1.00			
Satd. Flow (prot)	1706		1691		1687	1776			
Flt Permitted	0.97		1.00		0.14	1.00			
Satd. Flow (perm)	1706		1691		254	1776			
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86			
Adj. Flow (vph)	281	210	306	167	447	351			
RTOR Reduction (vph)	23	0	16	0	0	0			
Lane Group Flow (vph)	468	0	457	0	447	351			
Heavy Vehicles (%)	2%	2%	7%	7%	7%	7%			
		Z 70		1 70					
Turn Type	Prot		NA		pm+pt	NA			
Protected Phases	8		2		1	6			
Permitted Phases	00.0		00.0		6	00.4			
Actuated Green, G (s)	33.6		32.3		63.4	63.4			
Effective Green, g (s)	34.1		32.8		63.9	63.9			
Actuated g/C Ratio	0.32		0.31		0.60	0.60			
Clearance Time (s)	4.5		4.5		4.5	4.5			
√ehicle Extension (s)	3.0		3.0		3.0	3.0			
∟ane Grp Cap (vph)	548		523		519	1070			
ı/s Ratio Prot	c0.27		0.27		c0.22	0.20			
//s Ratio Perm					c0.30				
v/c Ratio	0.85		0.87		0.86	0.33			
Uniform Delay, d1	33.6		34.6		25.7	10.4			
Progression Factor	1.00		1.00		1.00	1.00			
Incremental Delay, d2	12.3		15.0		13.7	0.2			
Delay (s)	45.9		49.6		39.4	10.6			
Level of Service	D		D		D	В			
Approach Delay (s)	45.9		49.6			26.7			
Approach LOS	D		D			С			
Intersection Summary									
HCM 2000 Control Delay			38.2	F	ICM 2000	Level of Service	е	D	
HCM 2000 Volume to Capac	city ratio		0.88						
Actuated Cycle Length (s)			106.0	S	Sum of lost	t time (s)		12.0	
Intersection Capacity Utilizat	tion		78.4%			of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

	•	•	†	<i>></i>	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
_ane Configurations	W		1		*	↑	
raffic Volume (veh/h)	242	181	263	144	384	302	
uture Volume (veh/h)	242	181	263	144	384	302	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	No	1.00	1.00	No	
Adj Sat Flow, veh/h/ln	1870	1870	1796	1796	1796	1796	
Adj Flow Rate, veh/h	281	175	306	144	447	351	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	
Percent Heavy Veh, %	2	2	7	7	7	7	
Cap, veh/h	323	201	364	171	520	1043	
Arrive On Green	0.31	0.30	0.31	0.31	0.21	0.58	
Sat Flow, veh/h	1046	651	1155	543	1711	1796	
						351	
Grp Volume(v), veh/h	457	0	0	450 1698	447		
Grp Sat Flow(s),veh/h/ln	1701	0	0		1711	1796	
Q Serve(g_s), s	18.4	0.0	0.0	17.9	11.5	7.4	
Cycle Q Clear(g_c), s	18.4	0.0	0.0	17.9	11.5	7.4	
Prop In Lane	0.61	0.38	0	0.32	1.00	4040	
ane Grp Cap(c), veh/h	526	0	0	535	520	1043	
//C Ratio(X)	0.87	0.00	0.00	0.84	0.86	0.34	
vail Cap(c_a), veh/h	962	0	0	843	892	1759	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Ipstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	
Iniform Delay (d), s/veh	23.7	0.0	0.0	23.2	13.7	7.9	
ncr Delay (d2), s/veh	4.6	0.0	0.0	4.5	4.3	0.2	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	7.6	0.0	0.0	7.1	4.0	2.3	
Insig. Movement Delay, s/veh							
.nGrp Delay(d),s/veh	28.3	0.0	0.0	27.7	18.0	8.1	
nGrp LOS	С	Α	Α	С	В	Α	
Approach Vol, veh/h	457		450			798	
pproach Delay, s/veh	28.3		27.7			13.7	
Approach LOS	С		С			В	
imer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	19.2	26.8				46.1	26.4
Change Period (Y+Rc), s	4.5	20.0 4.5				46.1	4.5
Max Green Setting (Gmax), s	30.5	35.5				70.5	40.5
• , , , , , , , , , , , , , , , , , , ,							
Max Q Clear Time (g_c+l1), s	13.5	19.9				9.4	20.4
Green Ext Time (p_c), s	1.3	2.4				2.2	1.5
ntersection Summary							
HCM 6th Ctrl Delay			21.3				
HCM 6th LOS			С				
Notes							

HCM Signalized Intersection Capacity Analysis 3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

	۶	→	•	•	←	•	•	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	ሻ	ĵ»			4	7		4	
Traffic Volume (vph)	2	204	298	235	352	6	78	4	115	2	6	2
Future Volume (vph)	2	204	298	235	352	6	78	4	115	2	6	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	1.00		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.99	
Satd. Flow (prot)		1791	1491	1719	1804			1679	1495		1645	
Flt Permitted		0.99	1.00	0.95	1.00			0.95	1.00		0.54	
Satd. Flow (perm)		1783	1491	1719	1804			1679	1495		897	
Peak-hour factor, PHF	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	3	258	377	297	446	8	99	5	146	3	8	3
RTOR Reduction (vph)	0	0	277	0	0	0	0	0	122	0	3	0
Lane Group Flow (vph)	0	261	100	297	454	0	0	104	24	0	11	0
Confl. Peds. (#/hr)	1					1						
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	6%	6%	5%	5%	5%	8%	8%	8%	11%	11%	11%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Prot	Perm	NA	
Protected Phases		2		1	6		8	8	8		4	
Permitted Phases	2		2							4		
Actuated Green, G (s)		18.0	18.0	18.6	41.1			11.2	11.2		4.0	
Effective Green, g (s)		18.5	18.5	19.1	41.6			11.7	11.7		4.5	
Actuated g/C Ratio		0.27	0.27	0.27	0.60			0.17	0.17		0.06	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		472	395	470	1075			281	250		57	
v/s Ratio Prot		17.5	000	c0.17	0.25			c0.06	0.02		01	
v/s Ratio Perm		c0.15	0.07	00.17	0.20			00.00	0.02		c0.01	
v/c Ratio		0.55	0.25	0.63	0.42			0.37	0.10		0.20	
Uniform Delay, d1		22.1	20.2	22.3	7.6			25.8	24.6		30.9	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.4	0.3	2.8	0.3			0.8	0.2		1.7	
Delay (s)		23.5	20.5	25.0	7.9			26.6	24.8		32.6	
Level of Service		C	C	C	A			C	C		C	
Approach Delay (s)		21.8			14.7			25.5			32.6	
Approach LOS		C			В			C			C	
Intersection Summary												
HCM 2000 Control Delay			19.2	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.52									
Actuated Cycle Length (s)			69.8	Sı	um of lost	time (s)			16.5			
Intersection Capacity Utilization			51.5%			of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 6th Signalized Intersection Summary 3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

10/18/2021

	ၨ	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	7	₽			4	7		4	_
Traffic Volume (veh/h)	2	204	298	235	352	6	78	4	115	2	6	2
Future Volume (veh/h)	2	204	298	235	352	6	78	4	115	2	6	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1811	1811	1826	1826	1826	1781	1781	1781	1737	1737	1737
Adj Flow Rate, veh/h	3	258	187	297	446	8	99	5	76	3	8	3
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Percent Heavy Veh, %	6	6	6	5	5	5	8	8	8	11	11	11
Cap, veh/h	87	447	372	398	1021	18	192	10	179	11	28	11
Arrive On Green	0.24	0.25	0.25	0.23	0.57	0.56	0.11	0.12	0.12	0.02	0.03	0.02
Sat Flow, veh/h	6	1800	1499	1739	1788	32	1619	82	1510	355	946	355
Grp Volume(v), veh/h	261	0	187	297	0	454	104	0	76	14	0	0
Grp Sat Flow(s), veh/h/ln	1805	0	1499	1739	0	1820	1701	0	1510	1655	0	0
Q Serve(g_s), s	0.0	0.0	4.6	6.8	0.0	6.1	2.5	0.0	2.0	0.4	0.0	0.0
Cycle Q Clear(g_c), s	5.5	0.0	4.6	6.8	0.0	6.1	2.5	0.0	2.0	0.4	0.0	0.0
Prop In Lane	0.01	0.0	1.00	1.00	0.0	0.02	0.95	0.0	1.00	0.21	0.0	0.21
Lane Grp Cap(c), veh/h	513	0	372	398	0	1040	201	0	179	49	0	0.21
V/C Ratio(X)	0.51	0.00	0.50	0.75	0.00	0.44	0.52	0.00	0.43	0.29	0.00	0.00
Avail Cap(c_a), veh/h	1157	0.00	912	1058	0.00	2385	1035	0.00	919	1007	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	14.1	0.00	13.8	15.3	0.00	5.2	17.9	0.0	17.5	20.4	0.00	0.0
Incr Delay (d2), s/veh	0.8	0.0	1.0	2.8	0.0	0.3	2.0	0.0	1.6	3.1	0.0	0.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	0.0	1.3	2.5	0.0	1.3	0.9	0.0	0.6	0.2	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	44.0	40.4	0.0		00.0	0.0	40.4	00.5	0.0	0.0
LnGrp Delay(d),s/veh	14.9	0.0	14.8	18.1	0.0	5.5	20.0	0.0	19.1	23.5	0.0	0.0
LnGrp LOS	В	Α	В	В	A	A	В	Α	В	С	Α	A
Approach Vol, veh/h		448			751			180			14	
Approach Delay, s/veh		14.9			10.5			19.6			23.5	
Approach LOS		В			В			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	13.8	14.6		5.3		28.4		9.1				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	25.5	25.5		25.5		55.5		25.5				
Max Q Clear Time (g_c+l1), s	8.8	7.5		2.4		8.1		4.5				
Green Ext Time (p_c), s	0.8	2.0		0.0		3.1		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			13.2									
HCM 6th LOS			13.2 B									
Notes												

User approved pedestrian interval to be less than phase max green.

Intersection							
Int Delay, s/veh	1.7						
-		EDD	WDL	WDT	NDI	NDD	Ī
	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑	7	<u>ነ</u>	†	<u>ነ</u>	7	
Traffic Vol, veh/h	277	36	102	576	19	55	
Future Vol, veh/h	277	36	102	576	19	55	
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-		-	None	-	None	
Storage Length	-	150	50	-	100	0	
Veh in Median Storage, #		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	9	9	4	4	2	2	
Mvmt Flow	292	38	107	606	20	58	
Major/Minor NA	210-1		Majora		Minora		Ī
	ajor1		Major2		Minor1	000	
Conflicting Flow All	0	0	330	0	1112	292	
Stage 1	-	-	-	-	292	-	
Stage 2	-	-	-	-	820	-	
Critical Hdwy	-	-	4.14	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	-	2.236	-	3.518		
Pot Cap-1 Maneuver	-	-	1218	-	231	747	
Stage 1	-	-	-	-	758	-	
Stage 2	-	-	-	-	433	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1218	-	211	747	
Mov Cap-2 Maneuver	-	-	-	-	211	-	
Stage 1	-	-	-	-	758	-	
Stage 2	-	_	-	_	395	-	
A			\^/D		NE		
Approach	EB		WB		NB		
HCM Control Delay, s	0		1.2		13.7		
HCM LOS					В		
Minor Lane/Major Mvmt	ı	NBLn1 I	VIRI n2	EBT	EBR	WBL	
Capacity (veh/h)		211	747		-	1218	
HCM Lane V/C Ratio		0.095				0.088	
				-			
HCM Control Delay (s) HCM Lane LOS		23.8	10.2	-	-	8.2	
		C	В	-	-	A	
HCM 95th %tile Q(veh)		0.3	0.3	-	-	0.3	

Intersection							
Int Delay, s/veh	7.5						
		EDT	WET	MES	051	ODD	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	100	100	^	100	\	7	
Traffic Vol, veh/h	133	186	311	109	98	346	
Future Vol, veh/h	133	186	311	109	98	346	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control RT Channelized	Free	Free	Free	Free	Stop	Stop	
	130	None	-	None 100	-	None 80	
Storage Length		<u>-</u>	<u>-</u>		0		
Veh in Median Storage	•	0	0	-	0	-	
Grade, %	05	0	0	0E	0	<u>-</u> 05	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	140	406	3	3	7	7	
Mvmt Flow	140	196	327	115	103	364	
Major/Minor	Major1	N	//ajor2		Minor2		
Conflicting Flow All	442	0	-	0	803	327	
Stage 1	-	-	_	-	327	-	
Stage 2	-	-	-	-	476	-	
Critical Hdwy	4.18	-	_	-	6.47	6.27	
Critical Hdwy Stg 1	-	-	-	-	5.47	-	
Critical Hdwy Stg 2	-	-	-	-	5.47	-	
Follow-up Hdwy	2.272	-	-	-	3.563	3.363	
Pot Cap-1 Maneuver	1087	-	-	-	346	703	
Stage 1	-	-	-	-	720	-	
Stage 2	-	-	-	-	615	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1087	-	-	-	301	703	
Mov Cap-2 Maneuver	-	-	-	-	301	-	
Stage 1	-	-	-	-	627	-	
Stage 2	-	-	-	-	615	-	
Approach	EB		WB		SB		
					17.2		
HCM Control Delay, s	3.7		0				
HCM LOS					С		
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1	SBLn2
Capacity (veh/h)		1087	-	-	-	301	703
HCM Lane V/C Ratio		0.129	-	-	-	0.343	
HCM Control Delay (s)		8.8	-	-	-	23.1	15.5
HCM Lane LOS		Α	-	-	-	С	С
HCM 95th %tile Q(veh)	0.4	-	-	-	1.5	3

Intersection						
	1					
Int Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ	•	f)		W	
Traffic Vol, veh/h	11	215	363	5	14	32
Future Vol, veh/h	11	215	363	5	14	32
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-, ··· -	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	1	1
Mymt Flow	13	250	422	6	16	37
WWW. Tiow	10	200	122	•	10	01
	Major1	N	//ajor2	1	Minor2	
Conflicting Flow All	428	0	-	0	701	425
Stage 1	-	-	-	-	425	-
Stage 2	-	-	-	-	276	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1126	-	_	-	406	631
Stage 1	-	_	_	_	662	-
Stage 2	-	_	-	-	773	-
Platoon blocked, %		_	_	_	.,,	
Mov Cap-1 Maneuver	1126	_		-	401	631
Mov Cap-1 Maneuver	1120			_	503	001
Stage 1	_	-	_	_	654	
9		-			773	-
Stage 2	-	-	-	-	113	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		11.8	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1126	-	-	-	586
HCM Lane V/C Ratio		0.011	-	-	-	0.091
HCM Control Delay (s)		8.2	-	-	-	11.8
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.3

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4	-		4	
Traffic Vol, veh/h	1	117	111	62	273	0	94	0	29	0	1	1
Future Vol, veh/h	1	117	111	62	273	0	94	0	29	0	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	_		-	-	None
Storage Length	-	-	-	-	-	-	-	_	_	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	_	-	0	-
Grade, %	-	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	3	3	3	3	3	3	5	5	5	0	0	0
Mvmt Flow	1	139	132	74	325	0	112	0	35	0	1	1
Major/Minor	Major1			Major2			Minor1		N	/linor2		
Conflicting Flow All	325	0	0	271	0	0	681	680	205	698	746	325
Stage 1	-	-	-		-	-	207	207	-	473	473	-
Stage 2	-	_	-	-		-	474	473	_	225	273	_
Critical Hdwy	4.13	_	_	4.13	_	-	7.15	6.55	6.25	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	-	-		-	6.15	5.55	-	6.1	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	-	6.15	5.55	_	6.1	5.5	_
Follow-up Hdwy	2.227	_	-	2.227		-		4.045		3.5	4	3.3
Pot Cap-1 Maneuver	1229	_	_	1287	_	_	360	369	828	358	344	721
Stage 1	-	_	_	-	_	_	788	725	-	576	562	-
Stage 2	-	_	-	_	_	_	566	553	-	782	688	_
Platoon blocked, %		_	_		_	_						
Mov Cap-1 Maneuver	1229	-	-	1287	-	-	339	343	828	324	320	721
Mov Cap-2 Maneuver	-	-	-	-	-	-	339	343	-	324	320	-
Stage 1	_	_	_	_	_	_	787	724	_	575	523	_
Stage 2	_	-	_	_	_	_	524	514	-	749	687	-
, J												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			1.5			19.4			13.2		
HCM LOS							С			В		
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		394	1229	-	-	1287	-	-	443			
HCM Lane V/C Ratio		0.372		-	-	0.057	-	-	0.005			
HCM Control Delay (s)		19.4	7.9	0	-	8	0	-	13.2			
HCM Lane LOS		С	Α	A	-	A	A	-	В			
HCM 95th %tile Q(veh)		1.7	0	-	-	0.2	-	-	0			

Intersection						
Int Delay, s/veh	3.9					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/F		<u>ነ</u>	<u></u>	ĵ.	
Traffic Vol, veh/h	41	132	80	337	400	16
Future Vol, veh/h	41	132	80	337	400	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	115	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	7	7	2	2	3	3
Mvmt Flow	45	145	88	370	440	18
				_		
	Minor2		Major1		Major2	
Conflicting Flow All	995	449	458	0	-	0
Stage 1	449	-	-	-	-	-
Stage 2	546	-	-	-	-	-
Critical Hdwy	6.47	6.27	4.12	-	-	-
Critical Hdwy Stg 1	5.47	-	-	-	-	-
Critical Hdwy Stg 2	5.47	-	-	-	-	-
Follow-up Hdwy	3.563	3.363	2.218	-	-	-
Pot Cap-1 Maneuver	266	600	1103	-	-	_
Stage 1	633	-	-	_	-	-
Stage 2	571	-	_	-	_	_
Platoon blocked, %	J. 1			_	_	_
Mov Cap-1 Maneuver	245	600	1103		_	_
Mov Cap-1 Maneuver	245	- 000	1100		-	_
Stage 1	582	_	-		_	-
		-	-	-		
Stage 2	571	_	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.9		1.6		0	
HCM LOS	С					
		NE	NET	EDL 4	0.5.	000
Minor Lane/Major Mvm	it	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1103	-		-	-
HCM Lane V/C Ratio		0.08	-	0.425	-	-
LIGHTO (ID I /)				400		
HCM Control Delay (s)		8.5	-		-	-
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		8.5 A 0.3	-	18.9 C 2.1	-	-

Intersection						
	7					
Int Delay, s/veh	′					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.	-	_	ની	W	_
Traffic Vol, veh/h	258	270	12	189	244	14
Future Vol, veh/h	258	270	12	189	244	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	None	-	None
Storage Length	-	-		_	0	-
Veh in Median Storage,	# 0	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	1	1	3	3	3	3
Mymt Flow	274	287	13	201	260	15
MMIIIL FIOW	214	201	13	201	200	15
Major/Minor M	ajor1	ľ	Major2	- 1	Minor1	
Conflicting Flow All	0	0	561	0	645	418
Stage 1	_	-	_	_	418	_
Stage 2		-		_	227	_
Critical Hdwy	_	_	4.13	_	6.43	6.23
Critical Hdwy Stg 1	-	_	-	_	5.43	-
Critical Hdwy Stg 2	_	_	_	_	5.43	_
Follow-up Hdwy	_	_	2.227	_	3.527	3 327
Pot Cap-1 Maneuver	_		1005	_	435	633
		-			662	033
Stage 1	-	-	-	-		
Stage 2	-	-	-	-	808	-
Platoon blocked, %	-	-	4005	-	400	000
Mov Cap-1 Maneuver	-	-	1005	-	428	633
Mov Cap-2 Maneuver	-	-	-	-	428	-
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	796	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		26.3	
HCM LOS	U		0.0		20.3 D	
TICIVI LOS					U	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		436	-	_	1005	-
HCM Lane V/C Ratio		0.63	_	_	0.013	-
HCM Control Delay (s)		26.3	_	_	8.6	0
HCM Lane LOS		D	_	_	A	A
HCM 95th %tile Q(veh)		4.2	_	_	0	-
TOW JOHN JUNIO Q(VOII)		7.∠			U	_

	•	•	†	~	/	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		ĵ.		ሻ	†	
Traffic Volume (vph)	186	251	598	176	215	457	
Future Volume (vph)	186	251	598	176	215	457	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.92		0.97		1.00	1.00	
Flt Protected	0.98		1.00		0.95	1.00	
Satd. Flow (prot)	1716		1823		1805	1900	
Flt Permitted	0.98		1.00		0.07	1.00	
Satd. Flow (perm)	1716		1823		131	1900	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	200	270	643	189	231	491	
RTOR Reduction (vph)	41	0	9	0	0	0	
Lane Group Flow (vph)	429	0	823	0	231	491	
Heavy Vehicles (%)	0%	0%	1%	1%	0%	0%	
Turn Type	Prot		NA		pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases					6		
Actuated Green, G (s)	30.4		53.5		70.7	70.7	
Effective Green, g (s)	30.9		54.0		71.2	71.2	
Actuated g/C Ratio	0.28		0.49		0.65	0.65	
Clearance Time (s)	4.5		4.5		4.5	4.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	481		894		285	1228	
v/s Ratio Prot	c0.25		c0.45		c0.10	0.26	
v/s Ratio Perm					0.43		
v/c Ratio	0.89		0.92		0.81	0.40	
Uniform Delay, d1	38.0		26.1		32.3	9.3	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	18.4		14.5		15.9	0.2	
Delay (s)	56. <u>4</u>		40.5		48.1	9.5	
Level of Service	E 50.4		D		D	Α	
Approach Delay (s)	56.4		40.5			21.9	
Approach LOS	Е		D			С	
Intersection Summary							
HCM 2000 Control Delay			37.6	Н	CM 2000	Level of Service	се
HCM 2000 Volume to Capa	city ratio		0.90				
Actuated Cycle Length (s)			110.1		um of lost		
Intersection Capacity Utiliza	ition		89.8%	IC	CU Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	•	†	/	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		î,		ሻ	†	
Traffic Volume (veh/h)	186	251	598	176	215	457	
Future Volume (veh/h)	186	251	598	176	215	457	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1885	1885	1900	1900	
Adj Flow Rate, veh/h	200	227	643	178	231	491	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	1	1	0	0	
Cap, veh/h	223	253	713	197	297	1202	
Arrive On Green	0.28	0.28	0.50	0.50	0.09	0.63	
Sat Flow, veh/h	794	901	1421	393	1810	1900	
Grp Volume(v), veh/h	428	0	0	821	231	491	
Grp Sat Flow(s), veh/h/ln	1698	0	0	1814	1810	1900	
			0.0	38.0	5.3	11.8	
Q Serve(g_s), s	22.4	0.0					
Cycle Q Clear(g_c), s	22.4	0.0	0.0	38.0	5.3	11.8	
Prop In Lane	0.47	0.53	0	0.22	1.00	4000	
Lane Grp Cap(c), veh/h	477	0	0	910	297	1202	
V/C Ratio(X)	0.90	0.00	0.00	0.90	0.78	0.41	
Avail Cap(c_a), veh/h	626	0	0	1180	413	1606	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	32.0	0.0	0.0	21.0	19.6	8.4	
Incr Delay (d2), s/veh	13.0	0.0	0.0	8.1	6.2	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	10.6	0.0	0.0	16.2	2.8	4.1	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	45.0	0.0	0.0	29.0	25.7	8.6	
LnGrp LOS	D	Α	Α	С	С	Α	
Approach Vol, veh/h	428		821			722	
Approach Delay, s/veh	45.0		29.0			14.1	
Approach LOS	D		С			В	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	12.1	50.3				62.4	29.9
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	13.5	59.5				77.5	33.5
Max Q Clear Time (g_c+l1), s	7.3	40.0				13.8	24.4
Green Ext Time (p_c), s	0.3	5.8				3.2	1.0
Intersection Summary							
			27.0				
HCM 6th Ctrl Delay							
HCM 6th LOS			С				
Notes							

	۶	→	•	•	←	•	•	†	<i>></i>	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	*	f)			ર્ન	7		4	
Traffic Volume (vph)	4	276	77	121	294	1	115	2	272	3	4	2
Future Volume (vph)	4	276	77	121	294	1	115	2	272	3	4	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	0.96		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.98	
Satd. Flow (prot)		1880	1561	1805	1899			1793	1542		1813	
Flt Permitted		1.00	1.00	0.95	1.00			0.95	1.00		0.95	
Satd. Flow (perm)		1872	1561	1805	1899			1793	1542		1755	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	4	294	82	129	313	1	122	2	289	3	4	2
RTOR Reduction (vph)	0	0	57	0	0	0	0	0	229	0	2	0
Lane Group Flow (vph)	0	298	25	129	314	0	0	124	60	0	7	0
Confl. Peds. (#/hr)	2					2						
Confl. Bikes (#/hr)			3			4			9			
Heavy Vehicles (%)	1%	1%	1%	0%	0%	0%	1%	1%	1%	0%	0%	0%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases		2		1	6		8	8			4	
Permitted Phases	2	_	2	•			_		8	4	•	
Actuated Green, G (s)	_	17.4	17.4	8.6	30.5			11.6	11.6		2.3	
Effective Green, g (s)		17.9	17.9	9.1	31.0			12.1	12.1		2.8	
Actuated g/C Ratio		0.31	0.31	0.16	0.54			0.21	0.21		0.05	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		578	482	283	1016			374	322		84	
v/s Ratio Prot		0,0	102	c0.07	0.17			c0.07	OLL		0-1	
v/s Ratio Perm		c0.16	0.02	00.07	0.17			00.07	0.04		c0.00	
v/c Ratio		0.52	0.05	0.46	0.31			0.33	0.19		0.08	
Uniform Delay, d1		16.4	14.0	22.2	7.5			19.5	18.9		26.3	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		0.8	0.0	1.2	0.2			0.5	0.3		0.4	
Delay (s)		17.2	14.1	23.3	7.7			20.0	19.1		26.8	
Level of Service		В	В	C	Α			20.0 B	В		C	
Approach Delay (s)		16.5			12.2			19.4			26.8	
Approach LOS		В			В			В			20.0 C	
Intersection Summary												
HCM 2000 Control Delay			16.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.42	1.								
Actuated Cycle Length (s)			57.9	Sı	um of lost	time (s)			16.5			
Intersection Capacity Utilization	1		53.5%			of Service			A			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 6th Signalized Intersection Summary 3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

10/18/2021

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	₽			4	7		4	
Traffic Volume (veh/h)	4	276	77	121	294	1	115	2	272	3	4	2
Future Volume (veh/h)	4	276	77	121	294	1	115	2	272	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.97	1.00		0.96	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	4	294	39	129	313	1	122	2	145	3	4	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	97	521	433	199	932	3	302	5	262	15	20	10
Arrive On Green	0.27	0.28	0.28	0.11	0.49	0.48	0.16	0.17	0.17	0.01	0.02	0.01
Sat Flow, veh/h	7	1873	1554	1810	1893	6	1768	29	1534	599	799	400
Grp Volume(v), veh/h	298	0	39	129	0	314	124	0	145	9	0	0
Grp Sat Flow(s),veh/h/ln	1880	0	1554	1810	0	1899	1797	0	1534	1798	0	0
Q Serve(g_s), s	0.0	0.0	0.7	2.6	0.0	3.9	2.4	0.0	3.3	0.2	0.0	0.0
Cycle Q Clear(g_c), s	5.3	0.0	0.7	2.6	0.0	3.9	2.4	0.0	3.3	0.2	0.0	0.0
Prop In Lane	0.01		1.00	1.00		0.00	0.98		1.00	0.33		0.22
Lane Grp Cap(c), veh/h	594	0	433	199	0	935	307	0	262	45	0	0
V/C Ratio(X)	0.50	0.00	0.09	0.65	0.00	0.34	0.40	0.00	0.55	0.20	0.00	0.00
Avail Cap(c_a), veh/h	2207	0	1776	987	0	3404	1400	0	1196	420	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	11.9	0.0	10.3	16.4	0.0	5.9	14.4	0.0	14.6	18.5	0.0	0.0
Incr Delay (d2), s/veh	0.7	0.0	0.1	3.5	0.0	0.2	0.9	0.0	1.8	2.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	0.0	0.2	1.1	0.0	0.9	0.8	0.0	1.0	0.1	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	40.4	40.0	0.0	0.4	45.0	0.0	40.4	00.7	0.0	0.0
LnGrp Delay(d),s/veh	12.6	0.0	10.4	19.9	0.0	6.1	15.3	0.0	16.4	20.7	0.0	0.0
LnGrp LOS	В	Α	В	В	A	A	В	A	В	С	A	A
Approach Vol, veh/h		337			443			269			9	
Approach Delay, s/veh		12.3			10.2			15.9			20.7	
Approach LOS		В			В			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	8.2	14.7		5.0		23.0		10.6				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	20.5	43.5		8.5		68.5		29.5				
Max Q Clear Time (g_c+l1), s	4.6	7.3		2.2		5.9		5.3				
Green Ext Time (p_c), s	0.3	2.0		0.0		2.0		1.1				
Intersection Summary												
HCM 6th Ctrl Delay			12.4									
HCM 6th LOS			В									

User approved pedestrian interval to be less than phase max green.

User approved changes to right turn type.

Intersection						
Int Delay, s/veh	3					
	EDT	EDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7		↑		7
Traffic Vol, veh/h	517	33	71	352	61	89
Future Vol, veh/h	517	33	71	352	61	89
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	50	-	100	0
Veh in Median Storage, 7	# 0	-	-	0	0	_
Grade, %	0	-	_	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	1	1
Mymt Flow	544	35	75	371	64	94
IVIVIIIL I IOW	J 44	55	73	311	04	34
Major/Minor Ma	ajor1	1	Major2	ı	Minor1	
Conflicting Flow All	0	0	579	0	1065	544
Stage 1	-	_	_	_	544	_
Stage 2	_	_	-	_	521	_
Critical Hdwy	-	_	4.1	_	6.41	6.21
Critical Hdwy Stg 1	_		7.1	_	5.41	0.21
	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	5.41	- 000
Follow-up Hdwy	-	-	2.2	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	1005	-	248	541
Stage 1	-	-	-	-	584	-
Stage 2	-	-	-	-	598	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1005	-	229	541
Mov Cap-2 Maneuver	-	-	-	-	229	-
Stage 1	_	-	_	_	584	_
Stage 2	_	_	-	_	553	-
Olago Z					500	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.5		18.6	
HCM LOS					С	
Minor Lane/Major Mvmt	N	NBLn1		EBT	EBR	WBL
Capacity (veh/h)		229	541	-	-	1005
HCM Lane V/C Ratio		0.28	0.173	-	-	0.074
HCM Control Delay (s)		26.7	13	_	-	8.9
HCM Lane LOS		D	В	-	-	Α
HCM 95th %tile Q(veh)		1.1	0.6	_	_	0.2
			3.0			J.L

Intersection							
Int Delay, s/veh	8.6						
		CDT	WET	MDD	051	000	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	249	220	220	71	<u>ነ</u>	100	
Traffic Vol, veh/h	248	329 329	228 228	71 71	111 111	188 188	
Future Vol, veh/h	248 0	329	228	71 0	111	188	
Conflicting Peds, #/hr Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	Free -	None	rree -		Stop	None	
Storage Length	130	None -	_	100	0	80	
Veh in Median Storage		0	0	100	0	0U -	
Grade, %	3 , # ■	0	0	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	95	93	1	1	95	0	
Mvmt Flow	261	346	240	75	117	198	
IVIVIIIL I IOW	201	540	240	13	117	130	
	Major1	N	//ajor2	N	/linor2		
Conflicting Flow All	315	0	-	0	1108	240	
Stage 1	-	-	-	-	240	-	
Stage 2	-	-	-	-	868	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1257	-	-	-	234	804	
Stage 1	-	-	-	-	805	-	
Stage 2	-	-	-	-	414	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1257	-	-	-	185	804	
Mov Cap-2 Maneuver	-	-	-	-	185	-	
Stage 1	-	-	-	-	638	-	
Stage 2	-	-	-	-	414	-	
Approach	EB		WB		SB		
HCM Control Delay, s	3.7		0		26.5		
HCM LOS	VII				D		
Minor Lanc/Major Myn	nt	EBL	EBT	WPT	W/PD	SBLn1 S	RI n2
Minor Lane/Major Mvn	iit.		EDI	WBT			
Capacity (veh/h)		1257	-	-	-	185	804
HCM Control Doloy (c)	\	0.208	-	-		0.632	
HCM Control Delay (s) HCM Lane LOS		8.6	-	-	-	52.9	10.9
	١	A	-	-	-	F 3.6	B
HCM 95th %tile Q(veh)	8.0	-	-	-	3.0	1

Intersection						
Int Delay, s/veh	0.9					
			14/5-7	14/5-5	05:	055
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			₽		W	
Traffic Vol, veh/h	35	367	273	15	9	21
Future Vol, veh/h	35	367	273	15	9	21
Conflicting Peds, #/hr	0	0	0	0	2	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	1	1	0	0	1	1
Mvmt Flow	39	408	303	17	10	23
N 4 ' 10 4' N			4 ' 0		4: 0	
	/lajor1		Major2		Minor2	
Conflicting Flow All	320	0	-	0	800	312
Stage 1	-	-	-	-	312	-
Stage 2	-	-	-	-	488	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
	2.209	-	-	-	3.509	
Pot Cap-1 Maneuver	1246	-	-	-	356	731
Stage 1	-	-	-	-	744	-
Stage 2	-	-	-	-	619	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1246	-	-	-	345	731
Mov Cap-2 Maneuver	-	-	-	-	460	_
Stage 1	-	_	_	-	721	_
Stage 2	-	-	_	_	619	_
5.a.g						
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		11.1	
HCM LOS					В	
Minor Lane/Major Mvmt	1	EBL	EBT	WBT	WBR:	SRI n1
		1246		VVD1	VVDIC	621
Capacity (veh/h) HCM Lane V/C Ratio		0.031				0.054
HCM Control Delay (s)		0.031	-	-		11.1
HCM Lane LOS			-	-	-	
HCM 95th %tile Q(veh)		0.1	-	-	-	0.2

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDN	VVDL	vvb1	אטוע_	INDL		אטוז	JDL		JDK
Traffic Vol, veh/h	4	299	73	14	214	1	68	4> 0	9	0	4	6
Future Vol, veh/h	4	299	73	14	214	1	68	0	9	0	0	6
Conflicting Peds, #/hr	0	299	0	0	0	0	00	0	2	2	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	1100	-	None	- 1100	-	None	- Clop	Olop -	None	Olop -	- Olop	None
Storage Length	_	_	140110	_	_	TVOIC	_	_	-	_	_	-
Veh in Median Storage	.# -	0	_	_	0	_	_	0		_	0	_
Grade, %	,	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	1	1	1	0	0	0	0	0	0	0	0	0
Mymt Flow	4	311	76	15	223	1	71	0	9	0	0	6
		J 1 1										
Major/Minor	Maiant			Malano			line and			Ain a :: O		
	Major1			Major2			Minor1	011		/linor2	0.40	004
Conflicting Flow All	224	0	0	387	0	0	614	611	351	618	649	224
Stage 1	-	-	-	-	-	-	357	357	-	254	254	-
Stage 2	-	-	-	- 4 4	-	-	257	254	-	364	395	-
Critical Hdwy	4.11	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1 6.1	5.5	-
Critical Hdwy Stg 2	2 200			2.2	-	=	6.1 3.5	5.5	3.3	3.5	5.5	2 2
Follow-up Hdwy Pot Cap-1 Maneuver	2.209 1351	-	-	1183	-	-	407	411	3.3 697	3.5 404	391	3.3 820
•			-		-	=	665	632	697	755	701	
Stage 1 Stage 2	-	-	-	-	-	-	752	701	-	659	608	-
Platoon blocked, %	-	-	-	-	-	-	132	701		009	000	
Mov Cap-1 Maneuver	1351	-	_	1183		_	398	404	696	392	384	820
Mov Cap-2 Maneuver	1331	-	-	1103	-	-	398	404	090	392	384	020
Stage 1	-	_	_	_	_	-	662	629	-	752	691	_
Stage 2	_	_	_	_		_	736	691	_	646	606	_
Glaye 2	_		_		_	_	130	091	_	040	000	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.5			15.6			9.4		
HCM LOS							С			Α		
Minor Lane/Major Mvm	it l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		419	1351	-	-	1183	-	-	820			
HCM Lane V/C Ratio		0.191	0.003	-	-	0.012	-	-	0.008			
HCM Control Delay (s)		15.6	7.7	0	-	8.1	0	-	9.4			
HCM Lane LOS		С	Α	A	-	Α	A	-	Α			
HCM 95th %tile Q(veh)		0.7	0	-	-	0	-	-	0			

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7/	LDIN	ሻ	<u>↑</u>	<u>180</u>	ODIN
Traffic Vol, veh/h	6	90	69	216	199	3
Future Vol, veh/h	6	90	69	216	199	3
Conflicting Peds, #/hr	0	0	09	0	0	0
~		Stop	Free	Free	Free	Free
RT Channelized	Stop -	None		None		None
		None	115		-	None
Storage Length	0	-		-	-	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	1	1	1	1
Mvmt Flow	7	98	75	235	216	3
Major/Minor Mi	inor2		Major1	Λ	/lajor2	
Conflicting Flow All	603	218	219	0	_	0
Stage 1	218		-	_	_	_
Stage 2	385	_	_	_	_	_
Critical Hdwy	6.4	6.2	4.11	-	-	_
Critical Hdwy Stg 1	5.4	-		_	_	_
Critical Hdwy Stg 2	5.4	_			_	_
Follow-up Hdwy	3.5	3.3	2.209			
Pot Cap-1 Maneuver	465	827	1356		-	_
Stage 1	823	021	1000		_	
Stage 2	692	-	_	-	-	-
Platoon blocked, %	092		•		-	
	420	007	1250	-		-
Mov Cap-1 Maneuver	439	827	1356		-	-
Mov Cap-2 Maneuver	439	-	-	-	-	-
Stage 1	778	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Approach	EB		NB		SB	
	10.3		1.9		0	
HCM LOS	В		1.0		- 0	
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1356	-		-	-
HCM Lane V/C Ratio		0.055	-	0.133	-	-
HCM Control Delay (s)		7.8	_	10.3	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)		0.2	_	0.5	-	-

Intersection								
Int Delay, s/veh	25.9							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1			4	W			
Traffic Vol, veh/h	153	449	27	193	329	7		
Future Vol, veh/h	153	449	27	193	329	7		
Conflicting Peds, #/hr	0	0	0	0	0	0		
_	Free	Free	Free	Free	Stop	Stop		
RT Channelized	_			None	_	None		
Storage Length	_	-	_	-	0	-		
Veh in Median Storage, #	# 0	_	_	0	0	-		
Grade, %	0	-	_	0	0	-		
Peak Hour Factor	87	87	87	87	87	87		
Heavy Vehicles, %	9	9	5	5	7	7		
Mymt Flow	176	516	31	222	378	8		
IVIVIIIL I IOW	170	310	31	222	310	U		
Major/Minor Ma	ajor1	P	Major2	I	Minor1			
Conflicting Flow All	0	0	692	0	718	434		
Stage 1	_	-	_	_	434	-		
Stage 2	_	-	-	-	284	-		
Critical Hdwy	_	_	4.15	_	6.47	6.27		
Critical Hdwy Stg 1	_	_	-	_	5.47	-		
Critical Hdwy Stg 2	_	_	_	_	5.47	_		
Follow-up Hdwy	_	_	2.245			3.363		
Pot Cap-1 Maneuver	_	_	889	_	388	611		
Stage 1	_	_	- 000	_	643	-		
Stage 2	_	-	-	-	753	_		
Platoon blocked, %	-		_	_	155	-		
•		-	000		270	044		
Mov Cap-1 Maneuver	-	-	889		~ 372	611		
Mov Cap-2 Maneuver	-	-	-	_	~ 372	-		
Stage 1	-	-	-	-	643	-		
Stage 2	_			-	723	-		
Approach	EB		WB		NB		Ī	
HCM Control Delay, s	0		1.1		88.4			
HCM LOS	U		1.1		60.4 F			
TICIVI LOG								
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT		
Capacity (veh/h)		375	_	-	889	-	ĺ	
HCM Lane V/C Ratio		1.03	_	-	0.035	-		
HCM Control Delay (s)		88.4	_	_	9.2	0		
HCM Lane LOS		F	_	-	A	A		
HCM 95th %tile Q(veh)		12.8	_	_	0.1	-		
, ,								
Notes								
~: Volume exceeds capa			elay exc				١	utation Not Defined

	•	•	†	~	\	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		f		ሻ	†	
Traffic Volume (vph)	376	285	284	194	445	326	
Future Volume (vph)	376	285	284	194	445	326	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.94		0.95		1.00	1.00	
Flt Protected	0.97		1.00		0.95	1.00	
Satd. Flow (prot)	1706		1678		1687	1776	
Flt Permitted	0.97		1.00		0.10	1.00	
Satd. Flow (perm)	1706		1678		178	1776	_
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	
Adj. Flow (vph)	437	331	330	226	517	379	
RTOR Reduction (vph)	23	0	20	0	0	0	
Lane Group Flow (vph)	745	0	536	0	517	379	
Heavy Vehicles (%)	2%	2%	7%	7%	7%	7%	
Turn Type	Prot		NA		pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases					6		
Actuated Green, G (s)	40.5		35.5		70.5	70.5	
Effective Green, g (s)	41.0		36.0		71.0	71.0	
Actuated g/C Ratio	0.34		0.30		0.59	0.59	
Clearance Time (s)	4.5		4.5		4.5	4.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	582		503		495	1050	
v/s Ratio Prot	c0.44		0.32		c0.27	0.21	
v/s Ratio Perm					c0.35		
v/c Ratio	1.28		1.07		1.04	0.36	
Uniform Delay, d1	39.5		42.0		36.5	12.7	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	138.8		58.5		52.5	0.2	
Delay (s)	178.3		100.5		89.1	12.9	
Level of Service	F		F		F	В	
Approach Delay (s)	178.3		100.5			56.9	
Approach LOS	F		F			E	
Intersection Summary							
HCM 2000 Control Delay			109.8	Н	ICM 2000	Level of Service	ε
HCM 2000 Volume to Capac	city ratio		1.16				
Actuated Cycle Length (s)			120.0		um of lost		
Intersection Capacity Utiliza	tion		99.7%	IC	CU Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h Arrive On Green Sat Flow, veh/h Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh LnGrp Delay(d3),s/veh LnGrp LOS Approach Vol, veh/h Approach LOS F Movement WBL MBL MBL Arive Adit Approach LOS Parking Adj Approach LOS Parking Adj Adj Adj Adj Adj Adj Adj Ad	285 285 0 1.00 1.00 1870 296 0.86 2 234 0.34 684 0 0.0 0.0	NBT 284 284 0 1.00 No 1796 330 0.86 7 312 0.30 1041 0 0 0.0	194 194 0 1.00 1.00 1796 203 0.86 7 192 0.30 640 533 1681 36.0	SBL 445 445 0 1.00 1.00 1796 517 0.86 7 502 0.26 1711 517 1711	\$BT 326 326 326 0 1.00 No 1796 379 0.86 7 1063 0.59 1796 379			
Traffic Volume (veh/h) 376 Future Volume (veh/h) 376 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Work Zone On Approach No Adj Sat Flow, veh/hIn 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/hIn 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%)	285 0 1.00 1.00 1870 296 0.86 2 234 0.34 684 0 0.0 0.0	284 284 0 1.00 No 1796 330 0.86 7 312 0.30 1041 0 0	194 0 1.00 1.00 1796 203 0.86 7 192 0.30 640 533 1681	445 445 0 1.00 1.00 1796 517 0.86 7 502 0.26 1711 517	326 326 0 1.00 No 1796 379 0.86 7 1063 0.59 1796 379			
Future Volume (veh/h) 376 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Work Zone On Approach No Adj Sat Flow, veh/h/ln 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 VC Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 734 Approach Delay, s/veh 734 Approach Delay, s/veh 734	285 0 1.00 1.00 1870 296 0.86 2 234 0.34 684 0 0.0 0.0	284 284 0 1.00 No 1796 330 0.86 7 312 0.30 1041 0 0	194 0 1.00 1.00 1796 203 0.86 7 192 0.30 640 533 1681	445 0 1.00 1.00 1796 517 0.86 7 502 0.26 1711 517	326 0 1.00 No 1796 379 0.86 7 1063 0.59 1796			
Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Work Zone On Approach No Adj Sat Flow, veh/h/In 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s), veh/h/In 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 Upstream Filter(I) 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F	0 1.00 1.00 1870 296 0.86 2 234 0.34 684 0 0 0.0	0 1.00 No 1796 330 0.86 7 312 0.30 1041 0 0	0 1.00 1.00 1796 203 0.86 7 192 0.30 640 533 1681	0 1.00 1.00 1796 517 0.86 7 502 0.26 1711 517	1.00 No 1796 379 0.86 7 1063 0.59 1796			
Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Work Zone On Approach No Adj Sat Flow, veh/h/In 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s), veh/h/In 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 Upstream Filter(I) 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F	1.00 1.00 1870 296 0.86 2 234 0.34 684 0 0 0.0	1.00 No 1796 330 0.86 7 312 0.30 1041 0 0	1.00 1.00 1796 203 0.86 7 192 0.30 640 533 1681	1.00 1.00 1796 517 0.86 7 502 0.26 1711 517	1.00 No 1796 379 0.86 7 1063 0.59 1796			
Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Work Zone On Approach No Adj Sat Flow, veh/h/ln 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/	1.00 1870 296 0.86 2 234 0.34 684 0 0 0.0 0.0	No 1796 330 0.86 7 312 0.30 1041 0 0	1.00 1796 203 0.86 7 192 0.30 640 533 1681	1.00 1796 517 0.86 7 502 0.26 1711 517	No 1796 379 0.86 7 1063 0.59 1796			
Work Zone On Approach No Adj Sat Flow, veh/h/ln 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s), veh/hIn 1697 Q Serve(g_s), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	1870 296 0.86 2 234 0.34 684 0 0 0.0 0.0	No 1796 330 0.86 7 312 0.30 1041 0 0	1796 203 0.86 7 192 0.30 640 533 1681	1796 517 0.86 7 502 0.26 1711 517	No 1796 379 0.86 7 1063 0.59 1796			
Work Zone On Approach No Adj Sat Flow, veh/h/ln 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d), s/veh 172.7 Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	296 0.86 2 234 0.34 684 0 0 0.0 0.0	1796 330 0.86 7 312 0.30 1041 0 0	203 0.86 7 192 0.30 640 533 1681	517 0.86 7 502 0.26 1711 517	1796 379 0.86 7 1063 0.59 1796			
Adj Sat Flow, veh/h/ln 1870 Adj Flow Rate, veh/h 437 Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	296 0.86 2 234 0.34 684 0 0 0.0 0.0	330 0.86 7 312 0.30 1041 0 0	203 0.86 7 192 0.30 640 533 1681	517 0.86 7 502 0.26 1711 517	379 0.86 7 1063 0.59 1796 379			
Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s), veh/hIn 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.86 2 234 0.34 684 0 0 0.0 0.0	0.86 7 312 0.30 1041 0 0	0.86 7 192 0.30 640 533 1681	0.86 7 502 0.26 1711 517	0.86 7 1063 0.59 1796 379			
Peak Hour Factor 0.86 Percent Heavy Veh, % 2 Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s), veh/hIn 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	2 234 0.34 684 0 0 0.0 0.0	0.86 7 312 0.30 1041 0 0	7 192 0.30 640 533 1681	7 502 0.26 1711 517	7 1063 0.59 1796 379			
Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	234 0.34 684 0 0 0.0 0.0	7 312 0.30 1041 0 0	192 0.30 640 533 1681	7 502 0.26 1711 517	7 1063 0.59 1796 379			
Cap, veh/h 345 Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Jpstream Filter(I) 1.00 Juniform Delay (d), s/veh 39.6 ncr Delay (d2), s/veh 133.1 nitial Q Delay(d3), s/veh 0.0 Wile BackOfQ(50%), veh/ln 38.2 Jnsig. Movement Delay, s/veh 172.7 _nGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	234 0.34 684 0 0 0.0 0.0	312 0.30 1041 0 0 0	192 0.30 640 533 1681	502 0.26 1711 517	1063 0.59 1796 379			
Arrive On Green 0.34 Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.34 684 0 0 0.0 0.0 0.0	0.30 1041 0 0 0	0.30 640 533 1681	0.26 1711 517	0.59 1796 379			
Sat Flow, veh/h 1010 Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d), s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	684 0 0 0.0 0.0 0.40	0 0 0 0.0	640 533 1681	1711 517	1796 379			
Grp Volume(v), veh/h 734 Grp Sat Flow(s),veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d), s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0 0.0 0.0 0.40	0 0 0.0	533 1681	517	379			
Grp Sat Flow(s), veh/h/ln 1697 Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0 0.0 0.0 0.40	0.0	1681					
Q Serve(g_s), s 41.0 Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0 0.0 0.40	0.0			1796			
Cycle Q Clear(g_c), s 41.0 Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0 0.40		.3D U	31.0	13.1			
Prop In Lane 0.60 Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d), s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.40	0.0	36.0	31.0	13.1			
Lane Grp Cap(c), veh/h 580 V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7			0.38	1.00	10.1			
V/C Ratio(X) 1.27 Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0	0	504	502	1063			
Avail Cap(c_a), veh/h 580 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.00	0.00	1.06	1.03	0.36			
HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/In 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0	0	504	502	1063			
Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/In 38.2 Unsig. Movement Delay, s/veh 172.7 LnGrp Delay(d),s/veh 172.7 Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	1.00	1.00	1.00	1.00	1.00			
Uniform Delay (d), s/veh 39.6 Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.00	0.00	1.00	1.00	1.00			
Incr Delay (d2), s/veh 133.1 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0	0.0	42.1	36.6	12.7			
Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0	0.0	55.9	48.1	0.2			
%ile BackOfQ(50%),veh/ln 38.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0	0.0	0.0	0.0	0.0			
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0	0.0	22.2	16.2	5.0			
LnGrp Delay(d),s/veh 172.7 LnGrp LOS F Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	0.0	0.0		10.2	0.0			
LnGrp LOSFApproach Vol, veh/h734Approach Delay, s/veh172.7	0.0	0.0	98.0	84.6	12.9			
Approach Vol, veh/h 734 Approach Delay, s/veh 172.7	A	A	F	F	В			
Approach Delay, s/veh 172.7	, <u>, , </u>	533	<u> </u>		896			
		98.0			54.3			
Approach LOO		90.0 F			D D			
Timer - Assigned Phs 1	2				6	8		
Phs Duration (G+Y+Rc), s 35.0	40.0				75.0	45.0		
Change Period (Y+Rc), s 4.5	4.5				4.5	4.5		
Max Green Setting (Gmax), s 30.5	35.5				70.5	40.5		
Max Q Clear Time (g_c+l1), s 33.0	38.0				15.1	43.0		
Green Ext Time (p_c), s 0.0	0.0				2.4	0.0		
Intersection Summary								
HCM 6th Ctrl Delay		105.2						
HCM 6th LOS		F						
Notes		-						

HCM Signalized Intersection Capacity Analysis
3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	¥	f)			र्स	7		4	
Traffic Volume (vph)	2	287	322	359	586	6	84	4	161	2	6	2
Future Volume (vph)	2	287	322	359	586	6	84	4	161	2	6	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	1.00		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.99	
Satd. Flow (prot)		1792	1491	1719	1806			1679	1495		1645	
Flt Permitted		0.99	1.00	0.95	1.00			0.95	1.00		0.47	
Satd. Flow (perm)		1783	1491	1719	1806			1679	1495		776	
Peak-hour factor, PHF	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	3	363	408	454	742	8	106	5	204	3	8	3
RTOR Reduction (vph)	0	0	212	0	0	0	0	0	176	0	3	0
Lane Group Flow (vph)	0	366	196	454	750	0	0	111	28	0	11	0
Confl. Peds. (#/hr)	1					1						
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	6%	6%	5%	5%	5%	8%	8%	8%	11%	11%	11%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Prot	Perm	NA	
Protected Phases		2		1	6		8	8	8		4	
Permitted Phases	2		2							4		
Actuated Green, G (s)		24.1	24.1	26.5	55.1			11.3	11.3		4.7	
Effective Green, g (s)		24.6	24.6	27.0	55.6			11.8	11.8		5.2	
Actuated g/C Ratio		0.29	0.29	0.32	0.66			0.14	0.14		0.06	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		518	433	548	1186			234	208		47	
v/s Ratio Prot		010	100	c0.26	0.42			c0.07	0.02		.,	
v/s Ratio Perm		c0.21	0.13	00.20	0.12			00.01	0.02		c0.01	
v/c Ratio		0.71	0.45	0.83	0.63			0.47	0.14		0.24	
Uniform Delay, d1		26.8	24.5	26.7	8.5			33.5	31.9		37.8	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		4.4	0.8	10.0	1.1			1.5	0.3		2.6	
Delay (s)		31.2	25.3	36.7	9.6			35.1	32.2		40.4	
Level of Service		C	C	D	A			D	C		D	
Approach Delay (s)		28.0			19.8			33.2			40.4	
Approach LOS		C			В			C			D	
Intersection Summary												
HCM 2000 Control Delay			24.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	/ ratio		0.68									
Actuated Cycle Length (s)			84.6	Sı	um of lost	time (s)			16.5			
Intersection Capacity Utilization	n		68.0%			of Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 6th Signalized Intersection Summary 3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

10/25/2021

	ᄼ	→	\rightarrow	•	←	•	•	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	, N	ĵ»			ર્ન	7		4	
Traffic Volume (veh/h)	2	287	322	359	586	6	84	4	161	2	6	2
Future Volume (veh/h)	2	287	322	359	586	6	84	4	161	2	6	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1811	1811	1826	1826	1826	1781	1781	1781	1737	1737	1737
Adj Flow Rate, veh/h	3	363	218	454	742	8	106	5	134	3	8	3
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Percent Heavy Veh, %	6	6	6	5	5	5	8	8	8	11	11	11
Cap, veh/h	61	484	403	528	1151	12	224	11	208	9	24	9
Arrive On Green	0.26	0.27	0.27	0.30	0.64	0.63	0.13	0.14	0.14	0.02	0.03	0.02
Sat Flow, veh/h	3	1802	1499	1739	1803	19	1624	77	1510	355	946	355
Grp Volume(v), veh/h	366	0	218	454	0	750	111	0	134	14	0	0
Grp Sat Flow(s), veh/h/ln	1806	0	1499	1739	0	1822	1700	0	1510	1655	0	0
Q Serve(g_s), s	0.0	0.0	7.5	14.9	0.0	15.3	3.7	0.0	5.1	0.5	0.0	0.0
Cycle Q Clear(g_c), s	11.3	0.0	7.5	14.9	0.0	15.3	3.7	0.0	5.1	0.5	0.0	0.0
Prop In Lane	0.01	0.0	1.00	1.00	0.0	0.01	0.95	0.0	1.00	0.21	0.0	0.21
Lane Grp Cap(c), veh/h	530	0	403	528	0	1163	235	0	208	42	0	0.21
V/C Ratio(X)	0.69	0.00	0.54	0.86	0.00	0.64	0.47	0.00	0.64	0.33	0.00	0.00
Avail Cap(c_a), veh/h	817	0.00	643	746	0.00	1684	730	0.00	648	710	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	20.3	0.0	19.0	19.9	0.0	6.7	24.3	0.0	24.7	29.1	0.0	0.00
Incr Delay (d2), s/veh	1.6	0.0	1.1	7.2	0.0	0.6	1.5	0.0	3.3	4.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.5	0.0	2.5	6.3	0.0	4.0	1.4	0.0	1.8	0.0	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	2.0	0.5	0.0	4.0	1.7	0.0	1.0	0.2	0.0	0.0
LnGrp Delay(d),s/veh	22.0	0.0	20.1	27.1	0.0	7.3	25.8	0.0	28.0	33.6	0.0	0.0
	22.0 C	0.0 A	20.1 C	27.1 C	0.0 A		23.6 C	0.0 A	20.0 C	33.0 C		
LnGrp LOS			U	U		A			U	<u> </u>	A 4.4	A
Approach Vol, veh/h		584			1204			245			14	
Approach Delay, s/veh		21.3			14.8			27.0			33.6	
Approach LOS		С			В			С			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	22.4	20.3		5.5		42.7		12.4				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	25.5	25.5		25.5		55.5		25.5				
Max Q Clear Time (g c+l1), s	16.9	13.3		2.5		17.3		7.1				
Green Ext Time (p_c), s	1.0	2.4		0.0		6.2		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			18.2									
HCM 6th LOS			В									
Notes												

User approved pedestrian interval to be less than phase max green.

Intersection						
Int Delay, s/veh	1.8					
Mayamant	EDT	EDD	WDL	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	100	7	124	†		7
Traffic Vol, veh/h	402	39	121	932	21	63
Future Vol, veh/h	402	39	121	932	21	63
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	50	-	100	0
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	9	9	4	4	2	2
Mvmt Flow	423	41	127	981	22	66
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	464	0	1658	423
Stage 1	-	-	-	-	423	-
Stage 2	-	-	-	-	1235	-
Critical Hdwy	-	_	4.14	_	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.236	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1087	-	107	631
Stage 1	_	_	-	-	661	_
Stage 2	_	_	-	-	274	_
Platoon blocked, %	_	_		_		
Mov Cap-1 Maneuver		_	1087	_	94	631
Mov Cap-1 Maneuver		_	1001		94	00 I
Stage 1			_	_	661	-
•					242	-
Stage 2	<u>-</u>	-	-	-	242	-
Approach	EB		WB		NB	
HCM Control Delay, s	. 0		1		22.2	
HCM LOS			-		C	
Minor Lane/Major Mvi	mt I	NBLn1 I	NBLn2	EBT	EBR	WBL
Capacity (veh/h)		94	631	-	-	1087
HCM Lane V/C Ratio		0.235	0.105	-	-	0.117
HCM Control Delay (s	3)	54.7	11.4	_	-	8.8
HCM Lane LOS	,	F	В	_	_	Α
HCM 95th %tile Q(vel	h)	0.8	0.4	_	_	0.4
TOW JOHN JUHIC Q(VE	''/	0.0	0.7	_	_	0.7

Intersection								
Int Delay, s/veh	37.1							
		EDT	MOT	WDD	001	000		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	\	↑	100	7	1 50	7		
Traffic Vol, veh/h	204	248	480	151	152	551		
Future Vol, veh/h	204	248	480	151	152	551		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	400	None		None	-	None		
Storage Length	130	-	-	100	0	80		
Veh in Median Storage		0	0	-	0	-		
Grade, %	95	0 95	95	95	95	95		
Peak Hour Factor	95	95			95	95		
Heavy Vehicles, % Mvmt Flow	215	261	505	3 159	160	580		
IVIVITIL FIOW	213	201	505	109	UOI	300		
Major/Minor	Major1	N	Major2	1	Minor2			
Conflicting Flow All	664	0	-	0	1196	505		
Stage 1	-	-	-	-	505	-		
Stage 2	-	-	-	-	691	-		
Critical Hdwy	4.18	-	-	-	6.47	6.27		
Critical Hdwy Stg 1	-	-	-	-	5.47	-		
Critical Hdwy Stg 2	-	-	-	-	5.47	-		
Follow-up Hdwy	2.272	-	-	-	3.563	3.363		
Pot Cap-1 Maneuver	897	-	-	-		~ 557		
Stage 1	-	-	-	-	596	-		
Stage 2	-	-	-	-	488	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver		-	-	-	~ 153	~ 557		
Mov Cap-2 Maneuver	-	-	-	-	~ 153	-		
Stage 1	-	-	-	-	453	-		
Stage 2	-	-	-	-	488	-		
Approach	EB		WB		SB			
HCM Control Delay, s			0		91.3			
HCM LOS	4.0				91.3 F			
TIGIVI LOG					r			
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1	SBLn2	
Capacity (veh/h)		897	-	-	-	153	557	
HCM Lane V/C Ratio		0.239	-	-		1.046	1.041	
HCM Control Delay (s)	10.3	-	-	-	144.6	76.6	
HCM Lane LOS		В	-	-	-	F	F	
HCM 95th %tile Q(veh	1)	0.9	-	-	-	8.2	16.3	
Notes								
~: Volume exceeds ca	nacity	\$∙ Do	lav evo	eeds 30)()e	+· Comr	outation Not Defined	*: All major volume in platoon
volume exceeds ca	ipacity	φ. De	iay exc	ceus 30	105	r. Comp	butation Not Delined	. Ali major volume in piatoon

Intersection						
Int Delay, s/veh	1.8					
			14/5-	14/5-	051	055
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			₽		W	
Traffic Vol, veh/h	23	290	409	10	29	67
Future Vol, veh/h	23	290	409	10	29	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	1	1
Mvmt Flow	27	337	476	12	34	78
	/lajor1		//ajor2		Minor2	
Conflicting Flow All	488	0	-	0	873	482
Stage 1	-	-	-	-	482	-
Stage 2	-	-	-	-	391	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1070	-	-	_	322	586
Stage 1	-	-	-	-	623	-
Stage 2	-	-	-	-	686	-
Platoon blocked, %		_	-	_		
Mov Cap-1 Maneuver	1070	-	_	-	314	586
Mov Cap-2 Maneuver	-	-	_	_	436	-
Stage 1	-	-	-	_	607	-
Stage 2	_		_	_	686	_
Olage Z		_			000	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		13.6	
					В	
HCM LOS						
HCM LOS						
		ED!	CDT	WDT	WDD	CDI4
Minor Lane/Major Mvmt	i .	EBL	EBT	WBT	WBR :	
Minor Lane/Major Mvmt	i	1070	-	-	-	531
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	<u> </u>	1070 0.025	EBT - -	WBT - -	WBR :	531 0.21
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	1070 0.025 8.5	-	-	-	531 0.21 13.6
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		1070 0.025	-	-	-	531 0.21

Intersection												
Int Delay, s/veh	6.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	_		4	-		4	_	_	4	
Traffic Vol, veh/h	1	162	178	67	316	0	128	0	31	0	1	1
Future Vol, veh/h	1	162	178	67	316	0	128	0	31	0	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	_	-	None	-	_		-	-	None
Storage Length	_	-	-	-	-	-	-	_	-	-	-	_
Veh in Median Storage	·,# -	0	-	_	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	_
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	3	3	3	3	3	3	5	5	5	0	0	0
Mvmt Flow	1	186	205	77	363	0	147	0	36	0	1	1
Major/Minor I	Major1		1	Major2		1	Minor1		N	Minor2		
Conflicting Flow All	363	0	0	391	0	0	809	808	289	826	910	363
Stage 1	-	-	-	-	-	-	291	291	-	517	517	-
Stage 2	-	_	-	-		_	518	517	-	309	393	-
Critical Hdwy	4.13	_	_	4.13	_	-	7.15	6.55	6.25	7.1	6.5	6.2
Critical Hdwy Stg 1		_	_	-	_	-	6.15	5.55	-	6.1	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	-	6.15	5.55	-	6.1	5.5	_
Follow-up Hdwy	2.227	_	-	2.227		_		4.045		3.5	4	3.3
Pot Cap-1 Maneuver	1190	_	_	1162	_	-	295	311	743	293	277	686
Stage 1	-	_	_		_	-	710	666	-	545	537	-
Stage 2	_	_	-	_	_	_	535	529	-	705	609	_
Platoon blocked, %		-	_		-	-						
Mov Cap-1 Maneuver	1190	-	-	1162	-	-	275	285	743	261	254	686
Mov Cap-2 Maneuver	-	-	_	-	-	-	275	285	-	261	254	-
Stage 1	-	_	-	_	-	-	709	665	-	544	492	-
Stage 2	-	-	-	-	-	-	489	485	-	671	608	-
3. 3												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			1.5			31.4			14.8		
HCM LOS							D			В		
Minor Lane/Major Mvm	nt l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		313	1190			1162	-	-	371			
HCM Lane V/C Ratio		0.584	0.001	-	-	0.066	-	-	0.006			
HCM Control Delay (s)		31.4	8	0	_	8.3	0	-	14.8			
HCM Lane LOS		D	A	A	-	Α	A	-	В			
HCM 95th %tile Q(veh))	3.5	0	-	-	0.2	-	-	0			

Intersection						
Int Delay, s/veh	5					
-		===	Maria	NET	057	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥				₽	
Traffic Vol, veh/h	44	158	92	366	436	17
Future Vol, veh/h	44	158	92	366	436	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	115	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	7	7	2	2	3	3
Mvmt Flow	48	174	101	402	479	19
	Minor2		Major1		/lajor2	
Conflicting Flow All	1093	489	498	0	-	0
Stage 1	489	-	-	-	-	-
Stage 2	604	-	-	-	-	-
Critical Hdwy	6.47	6.27	4.12	-	-	-
Critical Hdwy Stg 1	5.47	-	-	-	-	-
Critical Hdwy Stg 2	5.47	-	-	-	-	-
Follow-up Hdwy		3.363	2.218	-	-	-
Pot Cap-1 Maneuver	232	569	1066	_	-	-
Stage 1	606	-	-	_	_	_
Stage 2	536	_	_	-	-	_
Platoon blocked, %	300			_	_	_
Mov Cap-1 Maneuver	210	569	1066	_	_	_
Mov Cap-1 Maneuver	210	505 -	1000	-	-	_
•	548	_	_	_	_	_
Stage 1	536	•	-		-	-
Stage 2	JJ0	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	23.2		1.8		0	
HCM LOS	C		- 110			
	J					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1066	-		-	-
HCM Lane V/C Ratio		0.095	-	0.535	-	-
HCM Control Delay (s))	8.7	_	23.2	-	_
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)	0.3	-	3.1	-	-
	,					

Intersection									
Int Delay, s/veh	32.1								
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	î,		_	र्स	N/				
Traffic Vol, veh/h	279	415	23	204	344	26			
Future Vol., veh/h	279	415	23	204	344	26			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-	None	-	None	-				
Storage Length	-	_	-	-	0	-			
Veh in Median Storage,	# 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	94	94	94	94	94	94			
Heavy Vehicles, %	1	1	3	3	3				
Mvmt Flow	297	441	24	217	366	28			
					000				
Majar/Minar N	10:041		Majara		Minout				
	/lajor1		Major2		Minor1	E40			
Conflicting Flow All	0	0	738	0	783	518			
Stage 1	-	-	-	-	518	=			
Stage 2	-	-	4.40	-	265	- 0.00			
Critical Hdwy	-	-	4.13	-	6.43	6.23			
Critical Hdwy Stg 1	-	-	-	-	5.43	-			
Critical Hdwy Stg 2	-	-	-	-	5.43	-			
Follow-up Hdwy	-	-	2.227			3.327			
Pot Cap-1 Maneuver	-	-	863	-	~ 361	556			
Stage 1	-	-	-	-	596	-			
Stage 2	-	-	-	-	777	-			
Platoon blocked, %	-	-		-					
Mov Cap-1 Maneuver	-	-	863		~ 349	556			
Mov Cap-2 Maneuver	-	-	-	-	~ 349	-			
Stage 1	-	-	-	-	596	-			
Stage 2	-	-	-	-	752	-			
Approach	EB		WB		NB				
HCM Control Delay, s	0		0.9		111.4				
HCM LOS			0.0		F				
110.111 200					•				
NA' 1 /NA - ' NA		NIDL . 4	ГОТ		MOL	MOT			
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)		358	-	-	863				
HCM Lane V/C Ratio		1.099	-		0.028	-			
HCM Control Delay (s)		111.4	-	-	9.3				
HCM Lane LOS		F	-	-	Α				
HCM 95th %tile Q(veh)		14.6	-	-	0.1	-			
Notes									
~: Volume exceeds cap	acity	\$: De	lay exc	eeds 30	00s	+: Com	outation Not Defined	*: All major volume in platoon	
	7		,						

	•	•	†	~	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		f)		*	†	
Traffic Volume (vph)	251	328	646	274	330	494	
Future Volume (vph)	251	328	646	274	330	494	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.92		0.96		1.00	1.00	
Flt Protected	0.98		1.00		0.95	1.00	
Satd. Flow (prot)	1717		1806		1805	1900	
Flt Permitted	0.98		1.00		0.06	1.00	
Satd. Flow (perm)	1717		1806		121	1900	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	270	353	695	295	355	531	
RTOR Reduction (vph)	39	0	13	0	0	0	
Lane Group Flow (vph)	584	0	977	0	355	531	
Heavy Vehicles (%)	0%	0%	1%	1%	0%	0%	
Turn Type	Prot		NA		pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases					6		
Actuated Green, G (s)	33.5		58.5		77.5	77.5	
Effective Green, g (s)	34.0		59.0		78.0	78.0	
Actuated g/C Ratio	0.28		0.49		0.65	0.65	
Clearance Time (s)	4.5		4.5		4.5	4.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	486		887		289	1235	
v/s Ratio Prot	c0.34		0.54		c0.15	0.28	
v/s Ratio Perm					c0.65		
v/c Ratio	1.20		1.10		1.23	0.43	
Uniform Delay, d1	43.0		30.5		41.2	10.2	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	108.8		62.0		129.4	0.2	
Delay (s)	151.8		92.5		170.6	10.4	
Level of Service	F		F		F	В	
Approach Delay (s)	151.8		92.5			74.6	
Approach LOS	F		F			Е	
Intersection Summary							
HCM 2000 Control Delay			100.9	Н	CM 2000	Level of Servic	Э
HCM 2000 Volume to Capa	city ratio		1.25				
Actuated Cycle Length (s)			120.0		um of lost		
Intersection Capacity Utiliza	tion		113.0%	IC	CU Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	•	†	/	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1>		ሻ	^	
Traffic Volume (veh/h)	251	328	646	274	330	494	
Future Volume (veh/h)	251	328	646	274	330	494	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1885	1885	1900	1900	
Adj Flow Rate, veh/h	270	310	695	284	355	531	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	1	1	0	0	
Cap, veh/h	224	257	625	256	286	1235	
Arrive On Green	0.28	0.28	0.49	0.49	0.13	0.65	
Sat Flow, veh/h	789	906	1272	520	1810	1900	
Grp Volume(v), veh/h	581	0	0	979	355	531	
Grp Sat Flow(s), veh/h/ln	1698	0	0	1792	1810	1900	
Q Serve(g_s), s	34.0	0.0	0.0	59.0	15.0	16.3	
Cycle Q Clear(g_c), s	34.0	0.0	0.0	59.0	15.0	16.3	
Prop In Lane	0.46	0.53	0.0	0.29	1.00	10.0	
Lane Grp Cap(c), veh/h	481	0.00	0	881	286	1235	
V/C Ratio(X)	1.21	0.00	0.00	1.11	1.24	0.43	
Avail Cap(c_a), veh/h	481	0.00	0.00	881	286	1235	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	43.1	0.00	0.0	30.6	41.7	10.2	
Incr Delay (d2), s/veh	111.8	0.0	0.0	65.7	134.3	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	29.0	0.0	0.0	39.6	14.7	6.2	
Unsig. Movement Delay, s/veh		0.0	0.0	33.0	14.7	0.2	
LnGrp Delay(d),s/veh	154.9	0.0	0.0	96.3	176.0	10.4	
	154.9 F			90.3 F	176.0 F	10.4 B	
LnGrp LOS		A	A 070	Г	Г		
Approach Vol, veh/h	581		979			886	
Approach Delay, s/veh	154.9		96.3			76.8	
Approach LOS	F		F			Е	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	19.0	63.0				82.0	38.0
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	14.5	58.5				77.5	33.5
Max Q Clear Time (g_c+l1), s	17.0	61.0				18.3	36.0
Green Ext Time (p_c), s	0.0	0.0				3.6	0.0
Intersection Summary							
HCM 6th Ctrl Delay			103.1				
HCM 6th LOS			F				
			'				
Notes							

	٠	→	•	•	←	•	•	†	<u> </u>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	ሻ	1		1152	4	7		4	OBIT
Traffic Volume (vph)	4	478	83	224	425	1	124	2	450	3	4	2
Future Volume (vph)	4	478	83	224	425	1	124	2	450	3	4	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	,,,,,	4.0	4.0	4.0	4.0	,,,,,,		4.0	4.0	,,,,,	4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	0.96		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.98	
Satd. Flow (prot)		1880	1562	1805	1899			1793	1537		1813	
Flt Permitted		1.00	1.00	0.95	1.00			0.95	1.00		0.65	
Satd. Flow (perm)		1876	1562	1805	1899			1793	1537		1199	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	4	509	88	238	452	1	132	2	479	3	4	2
RTOR Reduction (vph)	0	0	56	0	0	0	0	0	395	0	2	0
Lane Group Flow (vph)	0	513	32	238	453	0	0	134	84	0	7	0
Confl. Peds. (#/hr)	2					2						
Confl. Bikes (#/hr)			3			4			9			
Heavy Vehicles (%)	1%	1%	1%	0%	0%	0%	1%	1%	1%	0%	0%	0%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases		2		1	6		. 8	8			4	
Permitted Phases	2		2						8	4		
Actuated Green, G (s)		29.5	29.5	16.7	50.7			13.8	13.8		3.6	
Effective Green, g (s)		30.0	30.0	17.2	51.2			14.3	14.3		4.1	
Actuated g/C Ratio		0.37	0.37	0.21	0.63			0.18	0.18		0.05	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		689	574	380	1191			314	269		60	
v/s Ratio Prot				c0.13	0.24			c0.07				
v/s Ratio Perm		c0.27	0.02						0.05		c0.01	
v/c Ratio		0.74	0.06	0.63	0.38			0.43	0.31		0.12	
Uniform Delay, d1		22.5	16.7	29.3	7.4			30.0	29.4		37.0	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		4.4	0.0	3.2	0.2			0.9	0.7		0.9	
Delay (s)		26.8	16.7	32.5	7.6			30.9	30.0		37.9	
Level of Service		С	В	С	Α			С	С		D	
Approach Delay (s)		25.4			16.2			30.2			37.9	
Approach LOS		С			В			С			D	
Intersection Summary												
HCM 2000 Control Delay			23.7	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.61									
Actuated Cycle Length (s)			81.6		um of lost	. ,			16.5			
Intersection Capacity Utilization	1		71.4%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	•	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	7	ĵ»			ર્ન	7		₩.	
Traffic Volume (veh/h)	4	478	83	224	425	1	124	2	450	3	4	2
Future Volume (veh/h)	4	478	83	224	425	1	124	2	450	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	4	509	45	238	452	1	132	2	319	3	4	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	53	632	523	302	1061	2	445	7	388	11	15	7
Arrive On Green	0.33	0.34	0.34	0.17	0.56	0.55	0.24	0.25	0.25	0.01	0.02	0.01
Sat Flow, veh/h	3	1879	1556	1810	1895	4	1770	27	1544	599	799	400
Grp Volume(v), veh/h	513	0	45	238	0	453	134	0	319	9	0	0
Grp Sat Flow(s),veh/h/ln	1882	0	1556	1810	0	1899	1797	0	1544	1798	0	0
Q Serve(g_s), s	0.0	0.0	1.4	8.9	0.0	9.7	4.3	0.0	13.7	0.3	0.0	0.0
Cycle Q Clear(g_c), s	17.6	0.0	1.4	8.9	0.0	9.7	4.3	0.0	13.7	0.3	0.0	0.0
Prop In Lane	0.01		1.00	1.00		0.00	0.99		1.00	0.33		0.22
Lane Grp Cap(c), veh/h	671	0	523	302	0	1063	451	0	388	33	0	0
V/C Ratio(X)	0.76	0.00	0.09	0.79	0.00	0.43	0.30	0.00	0.82	0.27	0.00	0.00
Avail Cap(c_a), veh/h	1343	0	1082	539	0	1995	714	0	614	153	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	21.4	0.0	16.0	28.2	0.0	9.0	21.5	0.0	24.9	34.2	0.0	0.0
Incr Delay (d2), s/veh	1.8	0.0	0.1	4.6	0.0	0.3	0.4	0.0	5.0	4.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.4	0.0	0.5	4.0	0.0	3.4	1.7	0.0	5.1	0.2	0.0	0.0
Unsig. Movement Delay, s/veh			40.0				0.1.0					
LnGrp Delay(d),s/veh	23.2	0.0	16.0	32.8	0.0	9.2	21.9	0.0	29.9	38.5	0.0	0.0
LnGrp LOS	С	A	В	С	A	Α	С	A	С	D	A	A
Approach Vol, veh/h		558			691			453			9	
Approach Delay, s/veh		22.6			17.3			27.5			38.5	
Approach LOS		С			В			С			D	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	15.7	27.7		5.3		43.4		21.7				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	20.5	48.5		5.5		73.5		27.5				
Max Q Clear Time (g_c+l1), s	10.9	19.6		2.3		11.7		15.7				
Green Ext Time (p_c), s	0.5	3.6		0.0		3.1		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			21.9									
HCM 6th LOS			С									

User approved pedestrian interval to be less than phase max green.

User approved changes to right turn type.

Intersection						
Int Delay, s/veh	6.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1004	7	<u>ነ</u>	†	<u>ነ</u>	100
Traffic Vol, veh/h	894	36	85	579	66	109
Future Vol, veh/h	894	36	85	579	66	109
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	50	-	100	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	1	1
Mymt Flow	941	38	89	609	69	115
WIVIII I IOW	UTI	00	00	000	00	110
Major/Minor M	lajor1	ı	Major2	ا	Minor1	
Conflicting Flow All	0	0	979	0	1728	941
Stage 1	_	_	_	_	941	_
Stage 2	_	-	_	-	787	_
Critical Hdwy	_	_	4.1	_	6.41	6.21
Critical Hdwy Stg 1	_	_	_	_	5.41	0.21
Critical Hdwy Stg 2	-	_	_	_	5.41	-
	_	_	2.2			
Follow-up Hdwy	-	-			3.509	3.309
Pot Cap-1 Maneuver	-	-	713	-	98	321
Stage 1	-	-	-	-	381	-
Stage 2	-	-	-	-	450	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	713	-	86	321
Mov Cap-2 Maneuver	-	-	-	-	86	-
Stage 1	-	-	_	-	381	-
Stage 2	_	-	_	_	394	_
Jugo Z					J0 7	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.4		64.5	
HCM LOS					F	
N. 1		NDI (1	IDI C	EDT	EDD	MO
Minor Lane/Major Mvmt		NBLn1		EBT	EBR	WBL
Capacity (veh/h)		86	321	-	-	713
HCM Lane V/C Ratio		0.808	0.357	-	-	0.125
HCM Control Delay (s)		134.3	22.3	_	-	10.8
HCM Lane LOS		F	С	-	-	В
HCM 95th %tile Q(veh)		4.2	1.6	_	_	0.4

Intersection								
Int Delay, s/veh	320.5							
		EDT	WOT	WDD	ODI	ODD		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	`		↑	107	\	7		
Traffic Vol, veh/h	461	511	342	127	255	249		
Future Vol, veh/h	461	511	342	127	255	249		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	130	-	-	100	0	80		
Veh in Median Storage	e,# -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehicles, %	0	0	1	1	0	0		
Mvmt Flow	485	538	360	134	268	262		
Major/Minor	Major1	N	Major2	ı	Minor2			
Conflicting Flow All	494	0	viajuiz_	0	1868	360		
Stage 1	494	-	-	-	360	300		
Stage 2		•	-	_	1508	-		
Critical Hdwy	4.1	-		_	6.4	6.2		
	4.1	-	-	-	5.4	0.2 <u>-</u>		
Critical Hdwy Stg 1	_	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	5.4	-		
Follow-up Hdwy	2.2	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	1080	-	-	-	~ 81	689		
Stage 1	-	-	-	-	710	-		
Stage 2	-	-	-	-	~ 204	-		
Platoon blocked, %	4000	-	-	-				
Mov Cap-1 Maneuver		-	-	-	~ 45	689		
Mov Cap-2 Maneuver	-	-	-	-	~ 45	-		
Stage 1	-	-	-	-	391	-		
Stage 2	-	-	-	-	~ 204	-		
Approach	EB		WB		SB			
HCM Control Delay, s	5.2		0	\$ 1	1226.7			
HCM LOS	0.2			Ψ	F			
TIOW EOO					'			
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1 S		
Capacity (veh/h)		1080	-	-	-	45	689	
HCM Lane V/C Ratio		0.449	-	-		5.965	0.38	
HCM Control Delay (s)	11	-	-	\$ 2	2411.5	13.4	
HCM Lane LOS		В	-	-	-	F	В	
HCM 95th %tile Q(veh	1)	2.4	-	-	-	31.2	1.8	
Notes								
~: Volume exceeds ca	nacity	\$: Do	lay ovo	eeds 30)()e	t. Comr	outation Not Defined	*: All major volume in platoon
volume exceeds ca	ιμαυιιγ	φ. De	iay exc	CCUS 3(005	r. 60111µ	butation Not Delined	. Ali major volume in piatoon

Internaction						
Intersection	4 4					
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	(_	¥	
Traffic Vol, veh/h	73	519	353	31	19	44
Future Vol, veh/h	73	519	353	31	19	44
Conflicting Peds, #/hr	0	0	0	0	2	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	_
Grade, %	_	0	0	-	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	1	1	0	0	1	1
Mvmt Flow	81	577	392	34	21	49
N.A. ' (N.A.					4: 0	
	Major1		//ajor2		Minor2	
Conflicting Flow All	426	0	-	0	1150	409
Stage 1	-	-	-	-	409	-
Stage 2	-	-	-	-	741	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.209	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1139	-	-	-	220	645
Stage 1	-	-	-	-	673	-
Stage 2	-	-	-	-	473	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1139	-	-	-	204	645
Mov Cap-2 Maneuver	-	-	-	-	336	-
Stage 1	-	-	-	-	625	-
Stage 2	-	-	-	-	473	-
. J						
Annragah	ED		WD		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		13.3	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1139		_		505
HCM Lane V/C Ratio		0.071	_	-		0.139
HCM Control Delay (s)		8.4		_	_	13.3
HCM Lane LOS		Α	-	-	_	В
HCM 95th %tile Q(veh	١	0.2	_	_	_	0.5
HOW SOUL WILL OF VEHI	1	0.2		-		0.5

Int Delay, s/veh
Movement EBL EBT EBR WBL WBR WBR NBL NBR SBL SBT SBR Lane Configurations 4 4 371 136 15 289 1 151 0 10 0 0 6 Future Vol, veh/h 4 371 136 15 289 1 151 0 10 0 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 2 2 0 0 Sign Control Free Free Free Free Free Free Free Stop
Lane Configurations Image: Configuration of the properties of
Traffic Vol, veh/h 4 371 136 15 289 1 151 0 10 0 0 6 Future Vol, veh/h 4 371 136 15 289 1 151 0 10 0 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 2 2 0 0 Sign Control Free Free Free Free Free Free Stop
Future Vol, veh/h 4 371 136 15 289 1 151 0 10 0 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 2 2 0 0 Sign Control Free Free Free Free Free Free Stop Sto
Conflicting Peds, #/hr 0 0 0 0 0 0 0 2 2 0 0 Sign Control Free Free Free Free Free Free Stop O -
Sign Control Free Stop On O - - None - - None -
RT Channelized - - None - - None - - 0 - - - - - - - - - - - - - - - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 <t< td=""></t<>
Storage Length -
Veh in Median Storage, # - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 </td
Grade, % - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 96 </td
Peak Hour Factor 96
Heavy Vehicles, % 1 1 1 0 0 0 0 0 0 0 0 0
NIVITIL FIOW 4 380 142 10 301 1 157 U 10 U U 6
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All 302 0 0 528 0 0 802 799 459 806 870 302
Stage 1 465 465 - 334 334 -
Stage 2 337 334 - 472 536 -
Critical Hdwy 4.11 4.1 7.1 6.5 6.2 7.1 6.5 6.2
Critical Hdwy Stg 1 6.1 5.5 - 6.1 5.5 -
Critical Hdwy Stg 2 6.1 5.5 - 6.1 5.5 -
Follow-up Hdwy 2.209 2.2 3.5 4 3.3 3.5 4 3.3
Pot Cap-1 Maneuver 1265 1049 305 321 606 303 292 742
Stage 1 581 566 - 684 647 -
Stage 2 681 647 - 576 527 -
Platoon blocked, %
Mov Cap-1 Maneuver 1265 1049 297 314 605 292 285 742
Mov Cap-2 Maneuver 297 314 - 292 285 -
Stage 1 578 563 - 681 635 -
Stage 2 663 635 - 562 524 -
Approach EB WB NB SB
HCM Control Delay, s 0.1 0.4 30 9.9
HCM LOS D A
TIOW LOO
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 307 1265 1049 742
HCM Lane V/C Ratio 0.546 0.003 0.015 0.008
HCM Control Delay (s) 30 7.9 0 - 8.5 0 - 9.9
HCM Lane LOS D A A - A A - A
HCM 95th %tile Q(veh) 3.1 0 0 0

Intersection						
Int Delay, s/veh	3					
		E85	NE	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		<u>ነ</u>	↑	(
Traffic Vol, veh/h	6	110	95	239	219	3
Future Vol, veh/h	6	110	95	239	219	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	115	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	1	1	1	1
Mvmt Flow	7	120	103	260	238	3
Major/Minor A	line 2		Maiart		laia 2	
	/linor2		Major1		/lajor2	
Conflicting Flow All	706	240	241	0	-	0
Stage 1	240	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.11	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5		2.209	-	-	-
Pot Cap-1 Maneuver	405	804	1331	-	-	-
Stage 1	805	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	374	804	1331	-	-	-
Mov Cap-2 Maneuver	374	-	-	-	-	-
Stage 1	743	_	-	-	_	_
Stage 2	636	_	_	-	_	_
- 1.5.go -						
A					65	
Approach	EB		NB		SB	
HCM Control Delay, s	10.7		2.3		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1331	NDT		<u>-</u>	אופט
HCM Lane V/C Ratio		0.078		0.166	-	-
		7.9		10.7		-
HCM Long LOS			-		-	
HCM Lane LOS		A	-	В	-	-
HCM 95th %tile Q(veh)		0.3	-	0.6	-	-

Intersection									
Int Delay, s/veh	29.8								
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
ane Configurations	1≽	_		सी	W				
raffic Vol, veh/h	153	455	27	193	341	7			
uture Vol, veh/h	153	455	27	193	341	7			
onflicting Peds, #/hr	0	0	0	0	0	0			
ign Control	Free	Free	Free	Free	Stop	Stop			
T Channelized	-	None	-	None	-	None			
torage Length	-	-	-	-	0	-			
eh in Median Storage	e,# 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
eak Hour Factor	87	87	87	87	87	87			
eavy Vehicles, %	9	9	5	5	7	7			
vmt Flow	176	523	31	222	392	8			
ajor/Minor	Major1	ı	Major2	1	Minor1				
nflicting Flow All	0	0	699	0	722	438			
Stage 1	-	-	-	-	438	-			
Stage 2	-	-	-	-	284	-			
itical Hdwy	-	-	4.15	-	6.47	6.27			
tical Hdwy Stg 1	-	-	-	-	5.47	-			
tical Hdwy Stg 2	-	-	-	-	5.47	-			
llow-up Hdwy	-	-	2.245	-	3.563	3.363			
t Cap-1 Maneuver	-	-	884	-	~ 386	608			
Stage 1	-	-	-	-	640	-			
Stage 2	-	-	-	-	753	-			
atoon blocked, %	-	-		-					
ov Cap-1 Maneuver	-	-	884	-	~ 371	608			
ov Cap-2 Maneuver	-	-	-	-	~ 371	-			
Stage 1	-	-	-	-	640	-			
Stage 2	-	-	-	-	723	-			
proach	EB		WB		NB				
CM Control Delay, s	0		1.1		100.1				
ICM LOS					F				
inor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT			
apacity (veh/h)		374	-	-	884	-			
CM Lane V/C Ratio		1.07	-	-	0.035	-			
CM Control Delay (s))	100.1	-	-	9.2	0			
CM Lane LOS		F	-	-	Α	Α			
CM 95th %tile Q(veh	1)	14	-	-	0.1	-			
otes									
Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s	+: Comr	outation Not Defined	*: All major volume in p	olatoon
5 5,00000 00	Facily	ψ. Β	, 0.10				The state of the s		

	•	•	†	~	/	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		1>		ሻ	†		
Traffic Volume (vph)	383	292	284	196	447	326		
Future Volume (vph)	383	292	284	196	447	326		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0		4.0		4.0	4.0		
Lane Util. Factor	1.00		1.00		1.00	1.00		
Frt	0.94		0.94		1.00	1.00		
Flt Protected	0.97		1.00		0.95	1.00		
Satd. Flow (prot)	1705		1678		1687	1776		
Flt Permitted	0.97		1.00		0.10	1.00		
Satd. Flow (perm)	1705		1678		178	1776		
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86		
Adj. Flow (vph)	445	340	330	228	520	379		
RTOR Reduction (vph)	23	0	21	0	0	0		
Lane Group Flow (vph)	762	0	537	0	520	379		
Heavy Vehicles (%)	2%	2%	7%	7%	7%	7%		
Turn Type	Prot		NA		pm+pt	NA		
Protected Phases	8		2		1	6		
Permitted Phases					6			
Actuated Green, G (s)	40.5		35.5		70.5	70.5		
Effective Green, g (s)	41.0		36.0		71.0	71.0		
Actuated g/C Ratio	0.34		0.30		0.59	0.59		
Clearance Time (s)	4.5		4.5		4.5	4.5		
Vehicle Extension (s)	3.0		3.0		3.0	3.0		
Lane Grp Cap (vph)	582		503		495	1050		
v/s Ratio Prot	c0.45		0.32		c0.27	0.21		
v/s Ratio Perm					c0.35			
v/c Ratio	1.31		1.07		1.05	0.36		
Uniform Delay, d1	39.5		42.0		36.5	12.7		
Progression Factor	1.00		1.00		1.00	1.00		
Incremental Delay, d2	151.2		59.4		54.4	0.2		
Delay (s)	190.7		101.4		90.9	12.9		
Level of Service	F		F		F	В		
Approach Delay (s)	190.7		101.4			58.0		
Approach LOS	F		F			Е		
Intersection Summary								
HCM 2000 Control Delay			115.3	Н	CM 2000	Level of Service	е	
HCM 2000 Volume to Capac	city ratio		1.17					
Actuated Cycle Length (s)			120.0		um of lost			
Intersection Capacity Utiliza	tion		100.8%	IC	CU Level c	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

	•	•	†	<i>></i>	>	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		∱		ሻ	^	
Traffic Volume (veh/h)	383	292	284	196	447	326	
Future Volume (veh/h)	383	292	284	196	447	326	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1796	1796	1796	1796	
Adj Flow Rate, veh/h	445	305	330	205	520	379	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	
Percent Heavy Veh, %	2	2	7	7	7	7	
Cap, veh/h	343	235	311	193	502	1063	
Arrive On Green	0.34	0.34	0.30	0.30	0.26	0.59	
Sat Flow, veh/h	1005	689	1036	644	1711	1796	
Grp Volume(v), veh/h	751	0	0	535	520	379	
Grp Sat Flow(s), veh/h/ln	1696	0	0	1680	1711	1796	
Q Serve(g_s), s	41.0	0.0	0.0	36.0	31.0	13.1	
Cycle Q Clear(g_c), s	41.0	0.0	0.0	36.0	31.0	13.1	
Prop In Lane	0.59	0.41	0.0	0.38	1.00	10.1	
Lane Grp Cap(c), veh/h	580	0.41	0	504	502	1063	
V/C Ratio(X)	1.30	0.00	0.00	1.06	1.04	0.36	
Avail Cap(c_a), veh/h	580	0.00	0.00	504	502	1063	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	39.6	0.0	0.0	42.1	36.6	12.7	
Incr Delay (d2), s/veh	145.6	0.0	0.0	57.3	49.8	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	40.2	0.0	0.0	22.4	16.5	5.0	
Unsig. Movement Delay, s/ver		0.0	0.0	ZZ. 1	10.5	5.0	
LnGrp Delay(d),s/veh	185.2	0.0	0.0	99.4	86.3	12.9	
	103.2 F	Α		99. 4 F	60.5 F	12.9 B	
LnGrp LOS		A	A 525	Г	Г		
Approach Vol, veh/h	751		535			899	
Approach Delay, s/veh	185.2		99.4			55.4	
Approach LOS	F		F			E	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	35.0	40.0				75.0	45.0
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	30.5	35.5				70.5	40.5
Max Q Clear Time (g_c+l1), s	33.0	38.0				15.1	43.0
Green Ext Time (p_c), s	0.0	0.0				2.4	0.0
Intersection Summary							
HCM 6th Ctrl Delay			110.8				
HCM 6th LOS			F				
Notes							

User approved volume balancing among the lanes for turning movement.

HCM Signalized Intersection Capacity Analysis
3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

	۶	→	•	•	+	•	•	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	J.	f)			र्स	7		4	
Traffic Volume (vph)	2	291	322	372	600	6	84	4	166	2	6	2
Future Volume (vph)	2	291	322	372	600	6	84	4	166	2	6	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	1.00		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.99	
Satd. Flow (prot)		1792	1491	1719	1806			1679	1495		1645	
Flt Permitted		0.99	1.00	0.95	1.00			0.95	1.00		0.47	
Satd. Flow (perm)		1783	1491	1719	1806			1679	1495		776	
Peak-hour factor, PHF	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	3	368	408	471	759	8	106	5	210	3	8	3
RTOR Reduction (vph)	0	0	208	0	0	0	0	0	181	0	3	0
Lane Group Flow (vph)	0	371	200	471	767	0	0	111	29	0	11	0
Confl. Peds. (#/hr)	1					1						
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	6%	6%	5%	5%	5%	8%	8%	8%	11%	11%	11%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Prot	Perm	NA	
Protected Phases		2		1	6		. 8	8	8		4	
Permitted Phases	2		2							4		
Actuated Green, G (s)		24.5	24.5	26.5	55.5			11.4	11.4		4.7	
Effective Green, g (s)		25.0	25.0	27.0	56.0			11.9	11.9		5.2	
Actuated g/C Ratio		0.29	0.29	0.32	0.66			0.14	0.14		0.06	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		523	438	545	1188			234	209		47	
v/s Ratio Prot				c0.27	c0.42			c0.07	0.02			
v/s Ratio Perm		0.21	0.13								c0.01	
v/c Ratio		0.71	0.46	0.86	0.65			0.47	0.14		0.24	
Uniform Delay, d1		26.8	24.5	27.3	8.6			33.7	32.1		38.1	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		4.4	0.8	13.4	1.2			1.5	0.3		2.6	
Delay (s)		31.2	25.3	40.7	9.9			35.2	32.4		40.7	
Level of Service		С	С	D	Α			D	С		D	
Approach Delay (s)		28.1			21.6			33.4			40.7	
Approach LOS		С			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			25.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	itv ratio		0.70									
Actuated Cycle Length (s)	,		85.1	S	um of lost	time (s)			16.5			
Intersection Capacity Utilizat	ion		68.9%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 6th Signalized Intersection Summary 3: NW Friberg-Strunk St/NE 202nd Ave & NE 13th Ave/NE Goodwin Rd

10/25/2021

	۶	→	•	•	•	4	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	f.			र्स	7		4	
Traffic Volume (veh/h)	2	291	322	372	600	6	84	4	166	2	6	2
Future Volume (veh/h)	2	291	322	372	600	6	84	4	166	2	6	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1811	1811	1826	1826	1826	1781	1781	1781	1737	1737	1737
Adj Flow Rate, veh/h	3	368	218	471	759	8	106	5	140	3	8	3
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Percent Heavy Veh, %	6	6	6	5	5	5	8	8	8	11	11	11
Cap, veh/h	59	484	402	541	1160	12	228	11	212	9	24	9
Arrive On Green	0.26	0.27	0.27	0.31	0.64	0.64	0.13	0.14	0.14	0.02	0.03	0.02
Sat Flow, veh/h	3	1802	1499	1739	1803	19	1624	77	1510	355	946	355
Grp Volume(v), veh/h	371	0	218	471	0	767	111	0	140	14	0	0
Grp Sat Flow(s), veh/h/ln	1806	0	1499	1739	0	1822	1700	0	1510	1655	0	0
Q Serve(g_s), s	0.0	0.0	7.8	16.1	0.0	16.3	3.8	0.0	5.5	0.5	0.0	0.0
Cycle Q Clear(g_c), s	11.9	0.0	7.8	16.1	0.0	16.3	3.8	0.0	5.5	0.5	0.0	0.0
Prop In Lane	0.01	0.0	1.00	1.00	0.0	0.01	0.95	0.0	1.00	0.21	0.0	0.21
Lane Grp Cap(c), veh/h	528	0	402	541	0	1172	239	0	212	42	0	0.21
V/C Ratio(X)	0.70	0.00	0.54	0.87	0.00	0.65	0.46	0.00	0.66	0.34	0.00	0.00
Avail Cap(c_a), veh/h	788	0.00	621	720	0.00	1625	704	0.00	625	685	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	21.2	0.00	19.7	20.4	0.00	6.9	25.0	0.0	25.6	30.2	0.00	0.00
• , ,	1.7		1.1	8.9	0.0	0.9	1.4	0.0	3.5	4.6	0.0	
Incr Delay (d2), s/veh		0.0										0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.8	0.0	2.6	7.1	0.0	4.4	1.5	0.0	2.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	00.0	00.0	0.0	7.5	00.4	0.0	00.0	04.0	0.0	0.0
LnGrp Delay(d),s/veh	22.9	0.0	20.8	29.3	0.0	7.5	26.4	0.0	29.0	34.8	0.0	0.0
LnGrp LOS	С	Α	С	С	Α	Α	С	A	С	С	A	A
Approach Vol, veh/h		589			1238			251			14	
Approach Delay, s/veh		22.1			15.8			27.9			34.8	
Approach LOS		С			В			С			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	23.5	20.8		5.6		44.4		12.8				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	25.5	25.5		25.5		55.5		25.5				
Max Q Clear Time (g_c+l1), s	18.1	13.9		2.5		18.3		7.5				
Green Ext Time (p_c), s	1.0	2.3		0.0		6.4		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			19.2									
HCM 6th LOS			19.2 B									
			D									
Notes												

User approved pedestrian interval to be less than phase max green.

Intersection						
Int Delay, s/veh	1.9					
Movement	EDT	EDD	WDL	\M/DT	NDL	NIPD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7	\	↑	ች	7
Traffic Vol, veh/h	411	39	128	959	21	65
Future Vol, veh/h	411	39	128	959	21	65
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	50	-	100	0
Veh in Median Storage, #	# 0	-	_	0	0	-
Grade, %	0	-	_	0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	9	9	4	4	2	2
Mymt Flow	433	41	135	1009	22	68
IVIVIIIL I IOW	400	71	100	1003	22	00
Major/Minor Ma	ajor1	ľ	Major2		Minor1	
Conflicting Flow All	0	0	474	0	1712	433
Stage 1	-	-	- ''	-	433	-
Stage 2	_	_	_	_	1279	_
Critical Hdwy	_		4.14	_	6.42	6.22
Critical Hdwy Stg 1	_	_	4.14		5.42	0.22
	-	-	-	-		
Critical Hdwy Stg 2	-	-	0.000	-	5.42	0.040
Follow-up Hdwy	-	-	2.236		3.518	
Pot Cap-1 Maneuver	-	-	1078	-	100	623
Stage 1	-	-	-	-	654	-
Stage 2	-	-	-	-	261	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1078	-	88	623
Mov Cap-2 Maneuver	-	-	-	-	88	-
Stage 1	_	-	_	_	654	-
Stage 2		_	_	_	228	-
Olago Z					220	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		23.1	
HCM LOS					С	
Minor Lane/Major Mvmt	1	VBLn11		EBT	EBR	WBL
Capacity (veh/h)		88	623	-	-	1078
HCM Lane V/C Ratio		0.251	0.11	-	-	0.125
HCM Control Delay (s)		59.1	11.5	-	-	8.8
HCM Lane LOS		F	В	-	-	Α
HCM 95th %tile Q(veh)		0.9	0.4	_	_	0.4
		3.0	J. 1			J.

Intersection								
Int Delay, s/veh	66.2							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	"		₽			- 7		
Traffic Vol, veh/h	204	259	514	163	158	551		
Future Vol, veh/h	204	259	514	163	158	551		
Conflicting Peds, #/hr	. 0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	130	-	-	-	0	80		
Veh in Median Storag	je,# -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehicles, %	8	8	3	3	7	7		
Mvmt Flow	215	273	541	172	166	580		
Majay/Mines	Maland		Ania C		Alm c :: O			
Major/Minor	Major1		//ajor2		Minor2	00-		
Conflicting Flow All	713	0	-	0	1330	627		
Stage 1	-	-	-	-	627	-		
Stage 2	-	-	-	-	703	-		
Critical Hdwy	4.18	-	-	-	6.47	6.27		
Critical Hdwy Stg 1	-	-	-	-	5.47	-		
Critical Hdwy Stg 2	-	-	-	-	5.47	-		
Follow-up Hdwy	2.272	-	-	-	3.563			
Pot Cap-1 Maneuver	860	-	-	-	~ 166	~ 475		
Stage 1	-	-	-	-	523	-		
Stage 2	-	-	-	-	482	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver		-	-		~ 125	~ 475		
Mov Cap-2 Maneuver	-	-	-	-	~ 125	-		
Stage 1	-	-	-	-	392	-		
Stage 2	-	-	-	-	482	-		
Approach	EB		WB		SB			
			0		169.5			
HCM LOS	4.7		U					
HCM LOS					F			
Minor Lane/Major Mvi	mt_	EBL	EBT	WBT	WBR	SBLn1	SBLn2	
Capacity (veh/h)		860	-	-	-	125	475	
HCM Lane V/C Ratio		0.25	_	_	_		1.221	
HCM Control Delay (s	s)	10.6	_	_		259.1		
HCM Lane LOS	,	В	_	_	_	F	F	
HCM 95th %tile Q(vel	h)	1	_	-	_	10.9	22.7	
Notes		A -						* **
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30	JUs ·	+: Comp	outation Not Defined	*: All major volume in platoon

Intereseties						
Intersection	0.0					
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	(-	W	
Traffic Vol, veh/h	32	298	432	10	29	90
Future Vol, veh/h	32	298	432	10	29	90
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	_	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	_
Grade, %	_	0	0	-	0	_
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	1	1
Mvmt Flow	37	347	502	12	34	105
		•				
	Major1		/lajor2		Minor2	
Conflicting Flow All	514	0	-	0	929	508
Stage 1	-	-	-	-	508	_
Stage 2	-	-	-	-	421	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1046	-	-	-	298	567
Stage 1	-	-	-	-	606	-
Stage 2	_	-	_	_	664	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1046	-	_	_	288	567
Mov Cap 1 Maneuver	-	_	_	_	414	- 001
Stage 1	_	_	_	_	585	_
Stage 2	-		-	_	664	-
Olaye 2		_			004	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.8		0		14.4	
HCM LOS					В	
Minor Long/Major Mum	.4	EDI	EDT	WDT	WDD	CDI 51
Minor Lane/Major Mvm	11.	EBL	EBT	WBT		SBLn1
Capacity (veh/h)		1046	-	-	-	520
HCM Lane V/C Ratio		0.036	-	-		0.266
HCM Control Delay (s)		8.6	-	-	-	14.4
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	1.1

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			₽		Y	
Traffic Vol, veh/h	8	319	418	6	21	23
Future Vol, veh/h	8	319	418	6	21	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	1	1
Mvmt Flow	9	371	486	7	24	27
N.A. ' (N.A.)					A: C	
	Major1		//ajor2		Minor2	
Conflicting Flow All	493	0	-	0	879	490
Stage 1	-	-	-	-	490	-
Stage 2	-	-	-	-	389	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-		3.309
Pot Cap-1 Maneuver	1065	-	_	-	319	580
Stage 1	-	-	-	-	618	-
Stage 2	-	-	_	-	687	-
Platoon blocked, %		-	_	_		
Mov Cap-1 Maneuver	1065	-	_	_	316	580
Mov Cap-2 Maneuver	-	_	_	_	439	- 000
Stage 1	_		_	-	613	_
Stage 2	_				687	
Glage 2		_			001	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		13	
HCM LOS					В	
Minor Long/Major M.	.4	EDI	EDT	WDT	WDD	CDL4
Minor Lane/Major Mvm	IL	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1065	-	-	-	503
HCM Lane V/C Ratio		0.009	-	-	-	0.102
HCM Control Delay (s)		8.4	-	-	-	13
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.3

Intersection												
Int Delay, s/veh	6.7											
	EDI	EDT	EDD	WDI	MOT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL_	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	470	405	C7	4	0	400	- ♣	0.4	^	4	4
Traffic Vol, veh/h	1	176	185	67	320	0	130	0	31	0	1	1
Future Vol, veh/h	1	176	185	67	320	0	130	0	31	0	1	1
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	3	3	3	3	3	3	5	5	5	0	0	0
Mvmt Flow	1	202	213	77	368	0	149	0	36	0	1	1
Major/Minor	Major1			Major2			Minor1		N	/linor2		
Conflicting Flow All	368	0	0	415	0	0	834	833	309	851	939	368
Stage 1	300	U	U	410	<u>-</u>	U	311	311	309	522	522	500
Stage 2						_	523	522		329	417	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.15	6.55	6.25	329 7.1	6.5	6.2
	4.13	-	-	4.13	-			5.55		6.1	5.5	0.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.15 6.15	5.55	-	6.1		-
Critical Hdwy Stg 2	2 227			2.227	-				2 245		5.5	2.2
Follow-up Hdwy	2.227	-	-		-	-	3.545	4.045		3.5	4	3.3
Pot Cap-1 Maneuver	1185		-	1139	-	-	284	301	724	282	266	682
Stage 1	-	-	-	-	-	-	693	653	-	542	534	-
Stage 2	-	-	-	-	-	-	532	526	-	688	595	-
Platoon blocked, %	4405	-	-	4400	-	-	001	075	704	050	0.40	000
Mov Cap-1 Maneuver	1185	-	-	1139	-	-	264	275	724	250	243	682
Mov Cap-2 Maneuver	-	-	-	-	-	-	264	275	-	250	243	-
Stage 1	-	-	-	-	-	-	692	652	-	541	489	-
Stage 2	-	-	-	-	-	-	485	481	-	653	594	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			1.5			34.3			15.1		
HCM LOS				1.0			D-1.5			C		
TOW LOO							U			U		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		301	1185	-	-	1139	_	-	358			
HCM Lane V/C Ratio		0.615	0.001	-	-	0.068	-	-	0.006			
HCM Control Delay (s)		34.3	8	0	-	8.4	0	-	15.1			
HCM Lane LOS		D	Α	Α	-	Α	Α	-	С			
HCM 95th %tile Q(veh)	3.8	0	-	-	0.2	-	-	0			
	,											

Intersection									
Int Delay, s/veh	34.5								
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	1			4	W				
Traffic Vol, veh/h	279	428	23	204	350	26			
Future Vol, veh/h	279	428	23	204	350	26			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-		-		- -				
Storage Length	_	-	_	-	0	-			
Veh in Median Storage	e.# 0	_	_	0	0	_			
Grade, %	0	_	_	0	0	_			
Peak Hour Factor	94	94	94	94	94	94			
Heavy Vehicles, %	1	1	3	3	3	3			
Mvmt Flow	297	455	24	217	372	28			
WWW. LIOW	201	700	4 7	211	012	20			
Majay/Mina-	Maisut		Aniano		lingut				
	Major1		Major2		Minor1	EOF			
Conflicting Flow All	0	0	752	0	790	525			
Stage 1	-	-	-	-	525	-			
Stage 2	-	-	4.40	-	265	- 0.00			
Critical Hdwy	-	-	4.13	-	6.43	6.23			
Critical Hdwy Stg 1	-	-	-	-	5.43	-			
Critical Hdwy Stg 2	-	-	-	-	5.43	-			
Follow-up Hdwy	-	-	2.227			3.327			
Pot Cap-1 Maneuver	-	-	853	-	~ 358	551			
Stage 1	-	-	-	-	591	-			
Stage 2	-	-	-	-	777	-			
Platoon blocked, %	-	-		-					
Mov Cap-1 Maneuver	-	-	853		~ 347	551			
Mov Cap-2 Maneuver	-	-	-	-	~ 347	-			
Stage 1	-	-	-	-	591	-			
Stage 2	-	-	-	-	752	-			
Approach	EB		WB		NB				
HCM Control Delay, s	0		0.9		119.6				
HCM LOS					F				
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)		356			853	-			
HCM Lane V/C Ratio		1.124	_	_	0.029	-			
HCM Control Delay (s)		119.6	_	_	9.3	0			
HCM Lane LOS		F	_	-	A	Ā			
HCM 95th %tile Q(veh	1)	15.3	-	-	0.1	-			
Notes	,								
~: Volume exceeds ca	nacity	\$. Do	lay ovo	eeds 30	Ne	+· Comr	outation Not Defined	*: All major volume in platoon	
~. volume exceeds ca	pacity	φ: De	ay exc	eeus 30	JUS	T. Comp	outation Not Defined	. Ali major volume in piatoon	

	•	•	†	~	/	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		£		*	†	
Traffic Volume (vph)	256	333	646	282	338	494	
Future Volume (vph)	256	333	646	282	338	494	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.92		0.96		1.00	1.00	
Flt Protected	0.98		1.00		0.95	1.00	
Satd. Flow (prot)	1718		1804		1805	1900	
Flt Permitted	0.98		1.00		0.06	1.00	
Satd. Flow (perm)	1718		1804		122	1900	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	275	358	695	303	363	531	
RTOR Reduction (vph)	39	0	13	0	0	0	
Lane Group Flow (vph)	594	0	985	0	363	531	
Heavy Vehicles (%)	0%	0%	1%	1%	0%	0%	
Turn Type	Prot		NA		pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases					6		
Actuated Green, G (s)	33.9		57.7		77.1	77.1	
Effective Green, g (s)	34.4		58.2		77.6	77.6	
Actuated g/C Ratio	0.29		0.49		0.65	0.65	
Clearance Time (s)	4.5		4.5		4.5	4.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	492		874		294	1228	
v/s Ratio Prot	c0.35		0.55		c0.16	0.28	
v/s Ratio Perm					c0.64		
v/c Ratio	1.21		1.13		1.23	0.43	
Uniform Delay, d1	42.8		30.9		41.1	10.4	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	111.0		71.8		131.5	0.2	
Delay (s)	153.8		102.7		172.5	10.6	
Level of Service	F		F		F	В	
Approach Delay (s)	153.8		102.7			76.4	
Approach LOS	F		F			E	
Intersection Summary							
HCM 2000 Control Delay			106.2	H	CM 2000	Level of Servi	се
HCM 2000 Volume to Capac	city ratio		1.25				
Actuated Cycle Length (s)			120.0		um of lost		
Intersection Capacity Utilizat	ion		114.5%	IC	CU Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	•	†	/	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1		ች		
Traffic Volume (veh/h)	256	333	646	282	338	494	
Future Volume (veh/h)	256	333	646	282	338	494	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1885	1885	1900	1900	
Adj Flow Rate, veh/h	275	315	695	292	363	531	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	1	1	0	0	
Cap, veh/h	226	259	611	257	292	1229	
Arrive On Green	0.29	0.28	0.48	0.48	0.13	0.65	
Sat Flow, veh/h	790	905	1260	530	1810	1900	
Grp Volume(v), veh/h	591	0	0	987	363	531	
Grp Sat Flow(s), veh/h/ln	1698	0	0	1790	1810	1900	
Q Serve(g_s), s	34.4	0.0	0.0	58.2	15.4	16.4	
Cycle Q Clear(g_c), s	34.4	0.0	0.0	58.2	15.4	16.4	
Prop In Lane	0.47	0.53	0.0	0.30	1.00	10.4	
_ane Grp Cap(c), veh/h	487	0.55	0	868	292	1229	
V/C Ratio(X)	1.21	0.00	0.00	1.14	1.24	0.43	
Avail Cap(c_a), veh/h	487	0.00	0.00	868	292	1229	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	42.9	0.00	0.00	31.0	41.6	10.4	
Incr Delay (d2), s/veh	114.2	0.0	0.0	75.7	134.6	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.2	
%ile BackOfQ(50%),veh/ln	29.7	0.0	0.0	41.6	19.5	6.3	
, , ,		0.0	0.0	41.0	19.5	0.3	
Unsig. Movement Delay, s/veh	157.1	0.0	0.0	106.6	176.2	10.6	
LnGrp Delay(d),s/veh	157.1 F			100.6 F	176.2 F		
LnGrp LOS		<u>A</u>	A	<u> </u>	г	B	
Approach Vol, veh/h	591		987			894	
Approach Delay, s/veh	157.1		106.6			77.9	
Approach LOS	F		F			Е	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	19.4	62.2				81.6	38.4
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	14.9	57.7				77.1	33.9
Max Q Clear Time (g_c+l1), s	17.4	60.2				18.4	36.4
Green Ext Time (p_c), s	0.0	0.0				3.6	0.0
Intersection Summary							
HCM 6th Ctrl Delay			108.3				
HCM 6th LOS			F				
			Г				
Notes							

User approved volume balancing among the lanes for turning movement.

	۶	→	•	•	←	•	•	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	7	4Î			र्स	7		4	
Traffic Volume (vph)	4	494	83	233	435	1	124	2	465	3	4	2
Future Volume (vph)	4	494	83	233	435	1	124	2	465	3	4	2
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	0.96		1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00			1.00	0.85		0.97	
Flt Protected		1.00	1.00	0.95	1.00			0.95	1.00		0.98	
Satd. Flow (prot)		1880	1562	1805	1899			1793	1537		1813	
Flt Permitted		1.00	1.00	0.95	1.00			0.95	1.00		0.63	
Satd. Flow (perm)		1876	1562	1805	1899			1793	1537		1170	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	4	526	88	248	463	1	132	2	495	3	4	2
RTOR Reduction (vph)	0	0	56	0	0	0	0	0	407	0	2	0
Lane Group Flow (vph)	0	530	32	248	464	0	0	134	88	0	7	0
Confl. Peds. (#/hr)	2					2						
Confl. Bikes (#/hr)			3			4			9			
Heavy Vehicles (%)	1%	1%	1%	0%	0%	0%	1%	1%	1%	0%	0%	0%
Turn Type	Perm	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases		2		1	6		. 8	8			4	
Permitted Phases	2		2						8	4		
Actuated Green, G (s)		30.3	30.3	17.3	52.1			14.3	14.3		3.7	
Effective Green, g (s)		30.8	30.8	17.8	52.6			14.8	14.8		4.2	
Actuated g/C Ratio		0.37	0.37	0.21	0.63			0.18	0.18		0.05	
Clearance Time (s)		4.5	4.5	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		691	575	384	1194			317	272		58	
v/s Ratio Prot				c0.14	0.24			c0.07				
v/s Ratio Perm		c0.28	0.02						0.06		c0.01	
v/c Ratio		0.77	0.06	0.65	0.39			0.42	0.32		0.12	
Uniform Delay, d1		23.2	17.0	30.0	7.6			30.6	30.0		37.9	
Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		5.1	0.0	3.7	0.2			0.9	0.7		1.0	
Delay (s)		28.3	17.1	33.7	7.8			31.5	30.7		38.9	
Level of Service		С	В	С	Α			С	С		D	
Approach Delay (s)		26.7			16.8			30.9			38.9	
Approach LOS		С			В			С			D	
Intersection Summary												
HCM 2000 Control Delay			24.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	v ratio		0.62		J 2000							
Actuated Cycle Length (s)	,		83.6	Sı	um of lost	time (s)			16.5			
Intersection Capacity Utilization	n		72.8%			of Service			C			
Analysis Period (min)			15		3 20701	. 5017100						
c Critical Lane Group												

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	7	₽			ર્ન	7		↔	
Traffic Volume (veh/h)	4	494	83	233	435	1	124	2	465	3	4	2
Future Volume (veh/h)	4	494	83	233	435	1	124	2	465	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	4	526	45	248	463	1	132	2	335	3	4	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	49	642	532	308	1071	2	456	7	398	11	14	7
Arrive On Green	0.33	0.34	0.34	0.17	0.56	0.56	0.25	0.26	0.26	0.01	0.02	0.01
Sat Flow, veh/h	3	1879	1556	1810	1895	4	1770	27	1545	599	799	400
Grp Volume(v), veh/h	530	0	45	248	0	464	134	0	335	9	0	0
Grp Sat Flow(s),veh/h/ln	1882	0	1556	1810	0	1899	1797	0	1545	1798	0	0
Q Serve(g_s), s	0.0	0.0	1.5	9.9	0.0	10.6	4.5	0.0	15.5	0.4	0.0	0.0
Cycle Q Clear(g_c), s	19.5	0.0	1.5	9.9	0.0	10.6	4.5	0.0	15.5	0.4	0.0	0.0
Prop In Lane	0.01		1.00	1.00		0.00	0.99		1.00	0.33		0.22
Lane Grp Cap(c), veh/h	679	0	532	308	0	1073	463	0	398	32	0	0
V/C Ratio(X)	0.78	0.00	0.08	0.81	0.00	0.43	0.29	0.00	0.84	0.28	0.00	0.00
Avail Cap(c_a), veh/h	1258	0	1013	505	0	1868	669	0	575	143	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.7	0.0	16.8	30.0	0.0	9.4	22.6	0.0	26.5	36.6	0.0	0.0
Incr Delay (d2), s/veh	2.0	0.0	0.1	5.0	0.0	0.3	0.3	0.0	7.5	4.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.3	0.0	0.5	4.5	0.0	3.8	1.8	0.0	6.0	0.2	0.0	0.0
Unsig. Movement Delay, s/veh			10.0									
LnGrp Delay(d),s/veh	24.7	0.0	16.9	35.0	0.0	9.7	23.0	0.0	34.0	41.1	0.0	0.0
LnGrp LOS	С	A	В	С	Α	A	С	A	С	D	A	A
Approach Vol, veh/h		575			712			469			9	
Approach Delay, s/veh		24.1			18.5			30.9			41.1	
Approach LOS		С			В			С			D	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	16.8	29.7		5.4		46.5		23.4				
Change Period (Y+Rc), s	4.5	4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s	20.5	48.5		5.5		73.5		27.5				
Max Q Clear Time (g_c+l1), s	11.9	21.5		2.4		12.6		17.5				
Green Ext Time (p_c), s	0.5	3.7		0.0		3.2		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			23.7									
HCM 6th LOS			С									
N												

User approved pedestrian interval to be less than phase max green.

User approved changes to right turn type.

Intersection						
Int Delay, s/veh	8.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>	7	ሻ	<u></u>	ሻ	7
Traffic Vol, veh/h	925	36	90	598	66	117
Future Vol, veh/h	925	36	90	598	66	117
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	150	50	-	100	0
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	1	1
Mymt Flow	974	38	95	629	69	123
IVIVIIIL I IOW	314	30	30	023	03	123
Major/Minor	Major1		Major2	1	Minor1	
Conflicting Flow All	0	0	1012	0	1793	974
Stage 1	-	-	-	-	974	-
Stage 2	-	-	-	-	819	-
Critical Hdwy	-	-	4.1	-	6.41	6.21
Critical Hdwy Stg 1	_	_	_	-	5.41	-
Critical Hdwy Stg 2	_	-	-	_	5.41	-
Follow-up Hdwy	_	_	2.2	-	3.509	3.309
Pot Cap-1 Maneuver	-	_	693	-	89	307
Stage 1	-	-	-	-	368	-
Stage 2	_	_	_	_	435	_
Platoon blocked, %	_	_		_	100	
Mov Cap-1 Maneuver	_	_	693	_	77	307
Mov Cap 1 Maneuver	_	_	- 000	_	77	-
Stage 1	_		_	_	368	_
	-	-	-	_	375	_
Stage 2	-	-	-	-	313	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.4		76.7	
HCM LOS					F	
Minaul on a /Maiau NA		NIDI :- 4 I	NDI O	EDT	EDD	WDI
Minor Lane/Major Mvr	nt	NBLn1 I		EBT	EBR	WBL
Capacity (veh/h)		77	307	-	-	693
HCM Lane V/C Ratio		0.902		-	-	0.137
HCM Control Delay (s)	169.3	24.4	-	-	11
HCM Lane LOS		F	С	-	-	В
HCM 95th %tile Q(veh	1)	4.7	1.9	-	-	0.5

Intersection									
Int Delay, s/veh	401.7								
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	7	•	^	7	Ť	7			
Traffic Vol, veh/h	461	550	366	133	268	249			
Future Vol, veh/h	461	550	366	133	268	249			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-	None	_	None	-	None			
Storage Length	130	-	_	100	0	80			
Veh in Median Storage		0	0	-	0	_			
Grade, %	-	0	0	_	0	_			
Peak Hour Factor	95	95	95	95	95	95			
Heavy Vehicles, %	0	0	1	1	0	0			
Mvmt Flow	485	579	385	140	282	262			
WWITH TOW	400	319	303	140	202	202			
Major/Minor I	Major1	N	Major2	N	Minor2				
						205			
Conflicting Flow All	525	0	-	0	1934	385			
Stage 1	-	-	-	-	385	-			
Stage 2	-	-	-	-	1549	-			
Critical Hdwy	4.1	-	-	-	6.4	6.2			
Critical Hdwy Stg 1	-	-	-	-	5.4	-			
Critical Hdwy Stg 2	-	-	-	-	5.4	-			
Follow-up Hdwy	2.2	-	-	-	3.5	3.3			
Pot Cap-1 Maneuver	1052	-	-	-	~ 73	667			
Stage 1	-	-	-	-	692	-			
Stage 2	-	-	-	-	~ 195	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	1052	-	-	-	~ 39	667			
Mov Cap-2 Maneuver	-	-	-	-	~ 39	-			
Stage 1	-	-	-	-	373	-			
Stage 2	-	-	-	-	~ 195	-			
Approach	EB		WB		SB				
HCM Control Delay, s	5.2		0	\$ 1	564.7				
HCM LOS	J.2		•	Ψ	F				
					•				
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WRR	SBLn1	SRI n2		
	IL.		LDI	VVDI	VVDIX				
Capacity (veh/h)		1052			-	39	667		
HCM Carter Dalay (a)		0.461	-	-		7.233			
HCM Control Delay (s)		11.3	-	-		3005.7	13.8		
HCM Lane LOS		В	-	-	-	F	В		
HCM 95th %tile Q(veh))	2.5	-	-	-	33.5	1.9		
Notes									
~: Volume exceeds cap	oacity	\$: De	lay exc	eeds 30)0s	+: Com	outation Not Defined	*: All major volume in platoon	

Intersection						
Int Delay, s/veh	1.7					
					00/	005
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			₽		W	
Traffic Vol, veh/h	99	545	368	31	19	59
Future Vol, veh/h	99	545	368	31	19	59
Conflicting Peds, #/hr	0	0	0	0	2	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	1	1	0	0	1	1
Mvmt Flow	110	606	409	34	21	66
	/lajor1		//ajor2		Minor2	
Conflicting Flow All	443	0	-	0	1254	426
Stage 1	-	-	-	-	426	-
Stage 2	-	-	-	-	828	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.209	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1122	-	-	_	191	631
Stage 1	-	-	-	-	661	-
Stage 2	-	-	-	-	431	-
Platoon blocked, %		-	-	_		
Mov Cap-1 Maneuver	1122	-	_	-	172	631
Mov Cap-2 Maneuver	-	-		-	304	-
Stage 1	_	_	_	_	596	_
Stage 2	_	_	_	_	431	_
Olago 2					101	
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		13.7	
HCM LOS					В	
Minor Lane/Major Mvmt	1	EBL	EBT	WBT	WBR:	CDI n1
			LDI	VVDI	WDIN .	
Capacity (veh/h)		1122	-	-	-	500
HCM Lane V/C Ratio		0.098	-	-		0.173
LICM Comfool Delett (a)						13/
HCM Control Delay (s)		8.6	-	-	-	
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		8.6 A 0.3	-	-	-	B 0.6

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WDK		ODK_
Lane Configurations	ነ	†	♣	0.4	Y	4.5
Traffic Vol, veh/h	26	538	384	24	15	15
Future Vol, veh/h	26	538	384	24	15	15
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	2	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	1	1	0	0	1	1
Mvmt Flow	29	598	427	27	17	17
Major/Minor	Major1	N	/lajor2		Minor2	
						444
Conflicting Flow All	454	0	-	0	1099	441
Stage 1	-	-	-	-	441	-
Stage 2	-	-	-	-	658	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.209	-	-	-	3.509	
Pot Cap-1 Maneuver	1112	-	-	-	236	618
Stage 1	-	-	-	-	651	-
Stage 2	-	-	-	-	517	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1112	-	-	-	230	618
Mov Cap-2 Maneuver	-	-	-	-	363	-
Stage 1	_	-	-	-	634	_
Stage 2	_	-	-	-	517	-
			14/5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		13.5	
HCM LOS					В	
Minor Lane/Major Mvm	nt .	EBL	EBT	WBT	WBR:	SDI n1
	IL		LDT	VVDI		
Capacity (veh/h)		1112	-	-	-	457
HCM Cartral Palace (a)		0.026	-	-		0.073
HCM Control Delay (s)		8.3	-	-	-	13.5
HCM Lane LOS	,	A	-	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	0.2

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIN	WDL_	₩	ופייי	NDL_	4	וטוז	ODL	4	ופט
Traffic Vol, veh/h	4	381	141	15	305	1	159	0	10	0	0	6
Future Vol, veh/h	4	381	141	15	305	1	159	0	10	0	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	2	2	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	1166	-	None	1166	-	None	Stop -	Stop -	None	Stop -	Olop -	None
Storage Length	_	_	INUITE			INOILE			NOIIE	_		INUITE
Veh in Median Storage	. # -	0	_	_	0	_	_	0	_	_	0	_
Grade, %	-, π =	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	1	1	1	0	0	0	0	0	0	0	0	0
Mymt Flow	4	397	147	16	318	1	166	0	10	0	0	6
manici low		001	171	10	010		100	- 0	- 10		- 0	
	Major1			Major2			Minor1			/linor2		
Conflicting Flow All	319	0	0	544	0	0	833	830	473	837	903	319
Stage 1	-	-	-	-	-	-	479	479	-	351	351	-
Stage 2	-	-	-	-	-	-	354	351	-	486	552	-
Critical Hdwy	4.11	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.209	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1247	-	-	1035	-	-	290	308	595	288	279	726
Stage 1	-	-	-	-	-	-	571	558	-	670	636	-
Stage 2	-	-	-	-	-	-	667	636	-	566	518	-
Platoon blocked, %		-	-	40.5	-	-						
Mov Cap-1 Maneuver	1247	-	-	1035	-	-	282	301	594	277	272	726
Mov Cap-2 Maneuver	-	-	-	-	-	-	282	301	-	277	272	-
Stage 1	-	-	-	-	-	-	568	555	-	667	624	-
Stage 2	-	-	-	-	-	-	649	624	-	552	515	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.4			34.6			10		
HCM LOS							D			В		
Minor Lane/Major Mvm	n f I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1			
		291	1247	LDI	רטוג	1035		יוטיי	726			
Capacity (veh/h) HCM Lane V/C Ratio		0.605	0.003	=	-	0.015	-		0.009			
HCM Control Delay (s)		34.6	7.9	0		8.5	0	-	10			
HCM Lane LOS		34.6 D	7.9 A	A	-	6.5 A	A		В			
HCM 95th %tile Q(veh)	1	3.7	0 0	- -	-	0 0	- -	-	0			
How som while Q(ven)		3.1	U	_	•	U			U			

Intersection						
Int Delay, s/veh	3					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	↑	4	
Traffic Vol, veh/h	6	115	103	247	224	3
Future Vol, veh/h	6	115	103	247	224	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	115	-	-	-
Veh in Median Storage,	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	1	1	1	1
Mvmt Flow	7	125	112	268	243	3
Majau/Minau	No and		Antona		Ania D	
	/linor2		Major1		/lajor2	
Conflicting Flow All	737	245	246	0	-	0
Stage 1	245	-	-	-	-	-
Stage 2	492	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.11	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5		2.209		-	-
Pot Cap-1 Maneuver	389	799	1326	-	-	-
Stage 1	800	-	-	-	-	-
Stage 2	619	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	356	799	1326	-	-	-
Mov Cap-2 Maneuver	356	-	_	-	-	-
Stage 1	733	-	_	_	_	_
Stage 2	619	_	_	-	_	_
	•					
			, in		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	10.8		2.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	f	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1326	IND I			אפט
HCM Lane V/C Ratio		0.084		0.175	-	-
					-	-
HCM Control Delay (s)		8	-		-	-
HCM Lane LOS		A	-	В	-	-
HCM 95th %tile Q(veh)		0.3	-	0.6	-	-

Intersection						
Int Delay, s/veh	8.9					
				14		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		- 7		र्स	- W	
Traffic Vol, veh/h	153	455	27	193	341	7
Future Vol, veh/h	153	455	27	193	341	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	_
Grade, %	0	_	-	0	0	_
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	9	9	5	5	7	7
Mymt Flow	176	523	31	222	392	8
		0_0			002	
	lajor1	<u> </u>	Major2		Minor1	
Conflicting Flow All	0	0	699	0	460	176
Stage 1	-	-	-	-	176	-
Stage 2	-	-	-	-	284	-
Critical Hdwy	-	-	4.15	_	6.47	6.27
Critical Hdwy Stg 1	-	_	-	_	5.47	_
Critical Hdwy Stg 2	-	_	-	-	5.47	_
Follow-up Hdwy	_	_	2.245	-		3.363
Pot Cap-1 Maneuver	_	_	884	_	550	854
Stage 1	_	_	_	_	843	-
Stage 2	_	_	_	_	753	_
Platoon blocked, %	_	_		_	700	
Mov Cap-1 Maneuver		_	884	_	528	854
Mov Cap-1 Maneuver	-		004	_	528	004
Stage 1	_	_	_	_	843	_
•	-	•		-	723	-
Stage 2	-	-	-	-	123	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		29.5	
HCM LOS					D	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		532	-	-	884	-
HCM Lane V/C Ratio		0.752	-	-	0.035	-
HCM Control Delay (s)		29.5	-	-	9.2	0
HCM Lane LOS		D	-	-	Α	Α
HCM 95th %tile Q(veh)		6.5	-	-	0.1	-

	•	•	†	~	/	+		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻ	7	†	7	ሻ	†		
Traffic Volume (vph)	383	292	284	196	447	326		
Future Volume (vph)	383	292	284	196	447	326		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.5	4.0	4.5	4.0	4.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1770	1583	1776	1509	1687	1776		
Flt Permitted	0.95	1.00	1.00	1.00	0.26	1.00		
Satd. Flow (perm)	1770	1583	1776	1509	466	1776		
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86		
Adj. Flow (vph)	445	340	330	228	520	379		
RTOR Reduction (vph)	0	234	0	150	0	0		
Lane Group Flow (vph)	445	106	330	78 7 0/	520	379		
Heavy Vehicles (%)	2%	2%	7%	7%	7%	7%		
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA		
Protected Phases	8		2		1	6		
Permitted Phases	00.4	8	00.0	2	6	50.0		
Actuated Green, G (s)	28.4	28.4	23.6	23.6	53.3	53.3		
Effective Green, g (s)	28.9	28.4	24.1	23.6	53.8	53.8		
Actuated g/C Ratio	0.32	0.31	0.27	0.26	0.59	0.59		
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	563	495	471	392	622	1053		
v/s Ratio Prot	c0.25	0.07	0.19	0.05	c0.24	0.21		
v/s Ratio Perm	0.70	0.07	0.70	0.05	c0.26	0.20		
v/c Ratio	0.79	0.22	0.70	0.20	0.84	0.36		
Uniform Delay, d1	28.1	22.9	30.0	26.2	15.1	9.5		
Progression Factor	1.00 7.4	1.00 0.2	1.00 4.7	1.00 0.3	1.00 9.5	1.00 0.2		
Incremental Delay, d2 Delay (s)	35.6	23.2	34.7	26.4	24.6	9.8		
Level of Service	35.6 D	23.2 C	34.7 C	26.4 C	24.0 C			
	30.2	U	31.3	U	U	A 18.3		
Approach Delay (s) Approach LOS	30.2 C		31.3 C			10.3 B		
	U		U			D		
Intersection Summary								
HCM 2000 Control Delay			25.7	Н	CM 2000	Level of Service	e	
HCM 2000 Volume to Capac	ity ratio		0.85					
Actuated Cycle Length (s)			90.7		um of lost			1
Intersection Capacity Utilizat	ion		70.9%	IC	CU Level o	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24. Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35. Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17. Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8		•	4	†	<i>></i>	/	+	
Traffic Volume (veh/h) 383 292 284 196 447 326 Future Volume (veh/h) 383 292 284 196 447 326 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/m/ln 1870 1870 1796 1796 1796 Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 <t< th=""><th>Movement</th><th>WBL</th><th>WBR</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th></th></t<>	Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Traffic Volume (veh/h) 383 292 284 196 447 326 Future Volume (veh/h) 383 292 284 196 447 326 Initial Q (Qb), veh 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 Adrig Sat Flow, veh/h/Ih 1870 1870 1870 1796 1796 1796 1796 Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Percent Heavy Veh,% 2 2 7	Lane Configurations	ሻ	7	*	7	7	*	
Initial Q (Qb), veh			292					
Ped-Bike Adj(A_pbT)	Future Volume (veh/h)	383	292	284	196	447	326	
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 1870 1870 1796 1796 1796 1796 1796 Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	Initial Q (Qb), veh	0	0	0	0	0	0	
Work Zone On Approach No No No No Adj Sat Flow, vehl/h/In/In 1870 1870 1796 1796 1796 1796 Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Percent Heavy Veh, % 2 2 7 7 7 7 Cap, veh/h 547 474 441 363 625 1025 Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Gry Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/h 1781 1585 1796 1522 1711 1796 Q Serve(g_c), s	Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Adj Sat Flow, veh/h/ln 1870 1870 1796 1796 1796 Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 Percent Heavy Veh, % 2 2 7 7 7 7 Cap, veh/h 547 474 441 363 625 1025 Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Gry Volume(v), veh/h 445 305 330 205 520 379 Gry Sat Flow(s), veh/h/h/In 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 V/C Ratio(X)	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Flow Rate, veh/h 445 305 330 205 520 379 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 Percent Heavy Veh,% 2 2 7 7 7 7 Cap, veh/h 547 474 444 363 625 1025 Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Grp Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/In 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 V/C Ratio(X) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Percent Heavy Veh, % 2 2 7 7 7 7 Cap, veh/h 547 474 441 363 625 1025 Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Grp Sat Flow(s), veh/h/n 1445 305 330 205 520 379 Grp Sat Flow(s), veh/h/n 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37								
Percent Heavy Veh, % 2 2 7 7 7 7 7 7 7 7								
Cap, veh/h 547 474 441 363 625 1025 Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Grp Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/In 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platon Ratio								
Arrive On Green 0.31 0.30 0.25 0.24 0.26 0.57 Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Grp Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/h 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOf(50%), veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 22.9 24.6 12.0 Approach Vol, veh/h 750 535 899 Approach Color C C C B A Approach Vol, veh/h 750 535 899 Approach LOS C C C C B A Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay	•							
Sat Flow, veh/h 1781 1585 1796 1522 1711 1796 Grp Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/ln 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6								
Grp Volume(v), veh/h 445 305 330 205 520 379 Grp Sat Flow(s), veh/h/ln 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d2), s/veh 20.9 19.9 22.8 21.9 12.1								
Grp Sat Flow(s),veh/h/In 1781 1585 1796 1522 1711 1796 Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(i) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Inc Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Q Serve(g_s), s 15.1 10.9 11.1 7.8 13.1 7.5 Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 6.2 3.9 4.5								
Cycle Q Clear(g_c), s 15.1 10.9 11.1 7.8 13.1 7.5 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement De								
Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 547 474 441 363 625 1025 V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh 24.0 21.4 25.3 23.3 15.1 7.9	(0)							
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.	(0)			11.1			7.5	
V/C Ratio(X) 0.81 0.64 0.75 0.57 0.83 0.37 Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LOS C C C C B A Approach Vol, veh/h 750 535 899 Approach LOS C C							100=	
Avail Cap(c_a), veh/h 986 865 950 794 1146 2082 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LOS C C C C B A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C C B Fimer - Assigned Phs 1 2 6 8 Fimer - Assigned Phs 1 2 6 8 Fimer - G B Fimer - Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	, .							
HCM Platoon Ratio 1.00 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp Delay(d),s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LnGr C C C C B A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Uniform Delay (d), s/veh 20.9 19.9 22.8 21.9 12.1 7.6 incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LOS C C C C B A A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C C B B A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 intersection Summary								
Incr Delay (d2), s/veh 3.0 1.5 2.6 1.4 3.0 0.2								
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								
%ile BackOfQ(50%),veh/ln 6.2 3.9 4.5 2.6 4.2 2.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LOS C C C C B A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	• ()							
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh LnGrp Delay(d),s/veh LnGrp Delay(d),s/veh LnGrp LOS C C C C C B A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 Max Green Setting (Gmax), s 36.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 Green Ext Time (p_c), s 16 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	•							
LnGrp Delay(d),s/veh 24.0 21.4 25.3 23.3 15.1 7.9 LnGrp LOS C C C C B A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	,		3.9	4.5	2.6	4.2	2.2	
LnGrp LOS C C C C C C B A Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	•		24.4	25.2	22.2	15.1	7.0	
Approach Vol, veh/h 750 535 899 Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8								
Approach Delay, s/veh 22.9 24.6 12.0 Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8			U		U	В		
Approach LOS C C B Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8								
Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	- 1 1							
Phs Duration (G+Y+Rc), s 21.3 20.1 41.3 24.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	Approach LOS	U		C			B	
Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8		1	2					
Max Green Setting (Gmax), s 36.7 34.1 75.3 35.7 Max Q Clear Time (g_c+l1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8		21.3	20.1				41.3	24.1
Max Q Clear Time (g_c+I1), s 15.1 13.1 9.5 17.1 Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8	Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Green Ext Time (p_c), s 1.6 2.5 2.4 2.5 Intersection Summary HCM 6th Ctrl Delay 18.8		36.7	34.1					35.7
Intersection Summary HCM 6th Ctrl Delay 18.8								
HCM 6th Ctrl Delay 18.8	Green Ext Time (p_c), s	1.6	2.5				2.4	2.5
HCM 6th Ctrl Delay 18.8	Intersection Summary							
•				18.8				
HOW OUT LOO	HCM 6th LOS			В				

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	7	ኘ	<u> </u>	ሻ	7
Traffic Vol, veh/h	411	39	128	959	21	65
Future Vol, veh/h	411	39	128	959	21	65
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	150	50	-	100	0
Veh in Median Storage,		-	-	0	2	_
Grade, %	0	_		0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	9	9	4	4	2	2
Mymt Flow	433	41	135	1009	22	68
WWITCHIOW	700	71	100	1000		00
	lajor1		Major2	N	Minor1	
Conflicting Flow All	0	0	474	0	1712	433
Stage 1	-	-	-	-	433	-
Stage 2	-	-	-	-	1279	-
Critical Hdwy	-	-	4.14	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	-
Follow-up Hdwy	-	-	2.236	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1078	-	100	623
Stage 1	-	-	-	-	654	-
Stage 2	-	-	-	-	261	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1078	_	88	623
Mov Cap-2 Maneuver	-	-	-	-	210	-
Stage 1	_	_	-	-	654	_
Stage 2	_	_	_	_	228	_
2.5.33 =						
A .			1645			
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		14.6	
HCM LOS					В	
Minor Lane/Major Mvmt	1	NBLn1N	NBLn2	EBT	EBR	WBL
Capacity (veh/h)		210	623			1078
HCM Lane V/C Ratio		0.105	0.11	-		0.125
HCM Control Delay (s)		24.2	11.5	_	_	8.8
HCM Lane LOS		C	В	_		A
HCM 95th %tile Q(veh)		0.3	0.4	_	_	0.4

	•	→	+	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ň	†	†	7	Ĭ	7	
Traffic Volume (vph)	204	259	514	163	158	551	
Future Volume (vph)	204	259	514	163	158	551	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	1759	1845	1568	1687	1509	
Flt Permitted	0.18	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	324	1759	1845	1568	1687	1509	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	215	273	541	172	166	580	
RTOR Reduction (vph)	0	0	0	66	0	282	
Lane Group Flow (vph)	215	273	541	106	166	298	
Heavy Vehicles (%)	8%	8%	3%	3%	7%	7%	
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm	
Protected Phases	5	2	6		4		
Permitted Phases	2			6		4	
Actuated Green, G (s)	41.0	41.0	25.9	25.9	18.2	18.2	
Effective Green, g (s)	41.0	41.0	25.9	25.9	18.2	18.2	
Actuated g/C Ratio	0.59	0.59	0.37	0.37	0.26	0.26	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	388	1042	690	586	443	396	
v/s Ratio Prot	c0.08	0.16	c0.29		0.10		
v/s Ratio Perm	0.25			0.07		c0.20	
v/c Ratio	0.55	0.26	0.78	0.18	0.37	0.75	
Uniform Delay, d1	10.0	6.8	19.2	14.5	20.8	23.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.7	0.1	5.8	0.1	0.5	7.9	
Delay (s)	11.7	6.9	25.0	14.7	21.4	31.4	
Level of Service	В	A	C	В	C	С	
Approach Delay (s)		9.0	22.5		29.1		
Approach LOS		Α	С		С		
Intersection Summary							
HCM 2000 Control Delay			21.7	Н	CM 2000	Level of Service	е
HCM 2000 Volume to Capac	city ratio		0.73				
Actuated Cycle Length (s)			69.2		ım of lost		
Intersection Capacity Utiliza	tion		69.5%	IC	U Level d	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	۶	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	†	7	*	1
Traffic Volume (veh/h)	204	259	514	163	158	551
Future Volume (veh/h)	204	259	514	163	158	551
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1781	1781	1856	1856	1796	1796
Adj Flow Rate, veh/h	215	273	541	172	166	580
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	8	8	3	3	7	7
Cap, veh/h	312	897	624	529	632	562
Arrive On Green	0.10	0.50	0.34	0.34	0.37	0.37
Sat Flow, veh/h	1697	1781	1856	1572	1711	1522
Grp Volume(v), veh/h	215	273	541	172	166	580
Grp Sat Flow(s), veh/h/ln	1697	1781	1856	1572	1711	1522
Q Serve(g_s), s	6.1	7.1	21.5	6.4	5.3	29.0
Cycle Q Clear(g_c), s	6.1	7.1	21.5	6.4	5.3	29.0
Prop In Lane	1.00		_ 1,10	1.00	1.00	1.00
Lane Grp Cap(c), veh/h	312	897	624	529	632	562
V/C Ratio(X)	0.69	0.30	0.87	0.33	0.26	1.03
Avail Cap(c_a), veh/h	352	1157	851	721	632	562
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	17.5	11.4	24.4	19.4	17.3	24.8
Incr Delay (d2), s/veh	4.8	0.2	7.2	0.4	0.2	46.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	2.3	9.4	2.1	1.9	7.2
Unsig. Movement Delay, s/veh			J. I		110	
LnGrp Delay(d),s/veh	22.3	11.6	31.6	19.8	17.5	71.2
LnGrp LOS	C	В	C	В	В	F
Approach Vol, veh/h		488	713		746	·
Approach Delay, s/veh		16.3	28.8		59.2	
Approach LOS		В	20.0 C		59.2 E	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		44.5		34.0	13.1	31.4
Change Period (Y+Rc), s		5.0		5.0	5.0	5.0
Max Green Setting (Gmax), s		51.0		29.0	10.0	36.0
Max Q Clear Time (g_c+l1), s		9.1		31.0	8.1	23.5
Green Ext Time (p_c), s		1.5		0.0	0.1	3.0
Intersection Summary						
HCM 6th Ctrl Delay			37.3			
HCM 6th LOS			57.5 D			
HOW OUT LOO			ט			

Intersection						
Intersection Delay, s/v	eh 12.4					
Intersection LOS	В					
Approach		EB	WE	}	NB	
Entry Lanes		1	•		1	
Conflicting Circle Lane	es	1	,		1	
Adj Approach Flow, ve		699	253	}	400	
Demand Flow Rate, ve		762	266)	428	
Vehicles Circulating, v	eh/h	33	419		192	
Vehicles Exiting, veh/h		652	20 ²		603	
Follow-Up Headway, s		3.186	3.186		3.186	
Ped Vol Crossing Leg,	#/h	0	(0	
Ped Cap Adj		1.000	1.000		1.000	
Approach Delay, s/veh)	14.9	9.7		9.9	
Approach LOS		В	P		Α	
Lane	Left		Left	Left		
Designated Moves	TR		LT	LR		
Assumed Moves	TR		LT	LR		
RT Channelized						
Lane Util	1.000		1.000	1.000		
Critical Headway, s	5.193		5.193	5.193		
Entry Flow, veh/h	762		266	428		
Cap Entry Lane, veh/h			743	933		
Entry HV Adj Factor	0.918		0.951	0.935		
Flow Entry, veh/h	699		253	400		
Cap Entry, veh/h	1003		707	872		
V/C Ratio	0.697		0.358	0.459		
Control Delay, s/veh	14.9		9.7	9.9		
LOS	В		A	A		
95th %tile Queue, veh	6		2	2		

Intersection						
	11.5					
•				14		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7		4	Y	
Traffic Vol, veh/h	279	428	23	204	350	26
Future Vol, veh/h	279	428	23	204	350	26
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	-	-	0	-
Veh in Median Storage, #	4 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	1	1	3	3	3	3
Mvmt Flow	297	455	24	217	372	28
NA - I - u/NAI-u - u NA	-!4		4-!0		A!A	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	752	0	562	297
Stage 1	-	-	-	-	297	-
Stage 2	-	-	-	-	265	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	853	-	486	740
Stage 1	-	-	-	-	752	-
Stage 2	-	-	-	-	777	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	853	-	470	740
Mov Cap-2 Maneuver	-	-	-	-	470	-
Stage 1	_	_	-	-	752	-
Stage 2	-	_	-	-	752	-
5 ta.g. =						
	==		14/5		NE	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		39.4	
HCM LOS					Е	
Minor Lane/Major Mvmt	ı	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	<u> </u>	482		LDIX	853	1101
HCM Lane V/C Ratio			-		0.029	
		0.83	-			<u>-</u>
HCM Long LOS		39.4	-	-	9.3	0
HCM Lane LOS HCM 95th %tile Q(veh)		8.2	-	-	0.1	Α
			-			_

	•	•	†	~	/	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ň	7	†	7	ሻ	†	
Traffic Volume (vph)	256	333	646	282	338	494	
Future Volume (vph)	256	333	646	282	338	494	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.5	4.0	4.5	4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1615	1881	1599	1805	1900	
Flt Permitted	0.95	1.00	1.00	1.00	0.14	1.00	
Satd. Flow (perm)	1805	1615	1881	1599	268	1900	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	275	358	695	303	363	531	
RTOR Reduction (vph)	0	280	0	101	0	0	
Lane Group Flow (vph)	275	78	695	202	363	531	
Heavy Vehicles (%)	0%	0%	1%	1%	0%	0%	
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases		8		2	6		
Actuated Green, G (s)	19.1	19.1	40.8	40.8	59.9	59.9	
Effective Green, g (s)	19.6	19.1	41.3	40.8	60.4	60.4	
Actuated g/C Ratio	0.22	0.22	0.47	0.46	0.69	0.69	
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	402	350	882	741	447	1304	
v/s Ratio Prot	c0.15		0.37		c0.14	0.28	
v/s Ratio Perm		0.05		0.13	c0.42		
v/c Ratio	0.68	0.22	0.79	0.27	0.81	0.41	
Uniform Delay, d1	31.4	28.3	19.7	14.5	18.9	6.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	4.8	0.3	4.7	0.2	10.7	0.2	
Delay (s)	36.1	28.7	24.4	14.7	29.7	6.2	
Level of Service	D	С	C	В	С	A	
Approach Delay (s)	31.9		21.4			15.7	
Approach LOS	С		С			В	
Intersection Summary							
HCM 2000 Control Delay			22.0	Н	ICM 2000	Level of Service	е
HCM 2000 Volume to Capac	city ratio		0.81				
Actuated Cycle Length (s)			88.0		um of lost		
Intersection Capacity Utilizat	tion		76.9%	IC	CU Level of	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	4	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	1	7	ሻ	1	
Traffic Volume (veh/h)	256	333	646	282	338	494	
Future Volume (veh/h)	256	333	646	282	338	494	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1885	1885	1900	1900	
Adj Flow Rate, veh/h	275	315	695	292	363	531	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	1	1	0	0	
Cap, veh/h	440	380	842	703	429	1225	
Arrive On Green	0.24	0.24	0.45	0.44	0.14	0.64	
Sat Flow, veh/h	1810	1610	1885	1598	1810	1900	
Grp Volume(v), veh/h	275	315	695	292	363	531	
Grp Sat Flow(s),veh/h/ln	1810	1610	1885	1598	1810	1900	
Q Serve(g_s), s	9.7	13.3	23.1	8.9	6.9	9.8	
Cycle Q Clear(g_c), s	9.7	13.3	23.1	8.9	6.9	9.8	
Prop In Lane	1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	440	380	842	703	429	1225	
V/C Ratio(X)	0.63	0.83	0.82	0.42	0.85	0.43	
Avail Cap(c_a), veh/h	684	597	1636	1375	654	2261	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	24.1	25.9	17.3	13.7	13.7	6.3	
Incr Delay (d2), s/veh	1.5	5.5	2.1	0.4	6.3	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.1	5.4	8.9	2.9	3.0	2.8	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	25.6	31.4	19.4	14.1	20.1	6.5	
LnGrp LOS	С	С	В	В	С	Α	
Approach Vol, veh/h	590		987			894	
Approach Delay, s/veh	28.7		17.9			12.0	
Approach LOS	С		В			В	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	14.1	35.9				50.1	21.4
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	18.5	61.5				84.5	26.5
Max Q Clear Time (g_c+l1), s	8.9	25.1				11.8	15.3
Green Ext Time (p_c), s	0.8	6.3				3.6	1.6
Intersection Summary							
HCM 6th Ctrl Delay			18.3				

Intersection						
Int Delay, s/veh	2.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	025	7	ነ	†	\	117
Traffic Vol, veh/h	925	36	90	598	66	117
Future Vol, veh/h	925	36	90	598	66	117
Conflicting Peds, #/hr		_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	50	-	100	0
Veh in Median Storag		-	-	0	2	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	1	1
Mvmt Flow	974	38	95	629	69	123
Major/Minor	Majort	ı	Majora		Minor1	
Major/Minor	Major1		Major2		Minor1	074
Conflicting Flow All	0	0	1012	0	1793	974
Stage 1	-	-	-	-	974	-
Stage 2	-	-	-	-	819	-
Critical Hdwy	-	-	4.1	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	-	-	2.2	-	3.509	3.309
Pot Cap-1 Maneuver	-	-	693	-	89	307
Stage 1	-	-	-	-	368	-
Stage 2	-	-	-	-	435	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	r -	-	693	-	77	307
Mov Cap-2 Maneuver		-	-	-	259	-
Stage 1	-	-	-	-	368	-
Stage 2	-	-	-	-	375	-
. y - =						
	==		\A/D		М	
Approach	EB		WB		NB	
HCM Control Delay, s	s 0		1.4		24.2	
HCM LOS					С	
Minor Lane/Major Mv	mt l	NBLn1 I	NRI n2	EBT	EBR	WBL
	iiit l			LDI		
Capacity (veh/h)		259	307		-	693
HCM Cartral Dalay		0.268		-	-	0.137
HCM Control Delay (s	S)	23.9	24.4	-	-	11
HCM Lane LOS		С	С	-	-	В
HCM 95th %tile Q(ve	h)	1.1	1.9	-	-	0.5

	•	→	←	•	/	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	1		7	7	7		
Traffic Volume (vph)	461	550	366	133	268	249		
Future Volume (vph)	461	550	366	133	268	249		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	1900	1881	1599	1805	1615		
Flt Permitted	0.25	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	471	1900	1881	1599	1805	1615		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	485	579	385	140	282	262		
RTOR Reduction (vph)	0	0	0	86	0	156		
Lane Group Flow (vph)	485	579	385	54	282	106		
Heavy Vehicles (%)	0%	0%	1%	1%	0%	0%		
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm		
Protected Phases	5	2	6		4			
Permitted Phases	2			6		4		
Actuated Green, G (s)	42.9	42.9	19.7	19.7	15.4	15.4		
Effective Green, g (s)	42.9	42.9	19.7	19.7	15.4	15.4		
Actuated g/C Ratio	0.63	0.63	0.29	0.29	0.23	0.23		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	651	1193	542	461	406	364		
v/s Ratio Prot	c0.20	0.30	0.20		c0.16			
v/s Ratio Perm	c0.27			0.03		0.07		
v/c Ratio	0.75	0.49	0.71	0.12	0.69	0.29		
Uniform Delay, d1	9.3	6.8	21.7	17.9	24.3	21.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	4.6	0.3	4.4	0.1	5.1	0.4		
Delay (s)	13.9	7.1	26.1	18.0	29.4	22.4		
Level of Service	В	Α	С	В	С	С		
Approach Delay (s)		10.2	24.0		26.0			
Approach LOS		В	С		С			
Intersection Summary								
HCM 2000 Control Delay			17.6	H	CM 2000	Level of Servi	ce	В
HCM 2000 Volume to Capac	city ratio		0.77					
Actuated Cycle Length (s)			68.3	Sı	um of lost	time (s)	1	15.0
Intersection Capacity Utilizat	tion		72.2%			of Service		С
Analysis Period (min)			15					
c Critical Lane Group								

	۶	→	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	<u> </u>	<u> </u>	7	ሻ	7
Traffic Volume (veh/h)	461	550	366	133	268	249
Future Volume (veh/h)	461	550	366	133	268	249
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	.,00	No	No		No	
Adj Sat Flow, veh/h/ln	1900	1900	1885	1885	1900	1900
Adj Flow Rate, veh/h	485	579	385	140	282	262
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0.93	0.93	0.93	1	0.33	0.33
Cap, veh/h	624	1129	513	435	389	346
Arrive On Green	0.23	0.59	0.27	0.27	0.21	0.21
Sat Flow, veh/h	1810	1900	1885	1598	1810	1610
Grp Volume(v), veh/h	485	579	385	140	282	262
Grp Sat Flow(s),veh/h/ln	1810	1900	1885	1598	1810	1610
Q Serve(g_s), s	8.9	9.3	9.8	3.7	7.6	8.0
Cycle Q Clear(g_c), s	8.9	9.3	9.8	3.7	7.6	8.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	624	1129	513	435	389	346
V/C Ratio(X)	0.78	0.51	0.75	0.32	0.72	0.76
Avail Cap(c_a), veh/h	869	2175	1295	1097	691	614
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	9.8	6.2	17.4	15.2	19.1	19.3
Incr Delay (d2), s/veh	3.0	0.4	2.2	0.4	2.6	3.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	1.9	3.6	1.1	2.8	0.3
Unsig. Movement Delay, s/veh	1					
LnGrp Delay(d),s/veh	12.9	6.6	19.7	15.6	21.7	22.7
LnGrp LOS	В	Α	В	В	С	С
Approach Vol, veh/h		1064	525		544	
Approach Delay, s/veh		9.4	18.6		22.2	
Approach LOS		A	В		C	
					0	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		36.1		16.3	16.9	19.3
Change Period (Y+Rc), s		5.0		5.0	5.0	5.0
Max Green Setting (Gmax), s		60.0		20.0	19.0	36.0
Max Q Clear Time (g_c+l1), s		11.3		10.0	10.9	11.8
Green Ext Time (p_c), s		3.6		1.3	1.0	2.5
Intersection Summary						
HCM 6th Ctrl Delay			14.9			
HCM 6th LOS			14.9 B			
			D			
Notes						

User approved pedestrian interval to be less than phase max green.

Intersection						
Intersection Delay, s/ve	eh 12.1				<u> </u>	
Intersection LOS	В					
Approach		EB	WE	3	NB	
Entry Lanes		1		1	1	
Conflicting Circle Lane	S	1		1	1	
Adj Approach Flow, ve		752	24	1	400	
Demand Flow Rate, ve		760	249	9	412	
Vehicles Circulating, ve	eh/h	25	383	3	300	
Vehicles Exiting, veh/h		607	329	9	485	
Follow-Up Headway, s		3.186	3.186	6	3.186	
Ped Vol Crossing Leg,	#/h	0)	0	
Ped Cap Adj		1.000	1.000		1.000	
Approach Delay, s/veh		13.7	8.		11.1	
Approach LOS		В	1	4	В	
Lane	Left		Left	Left		
Designated Moves	TR		LT	LR		
Assumed Moves	TR		LT	LR		
RT Channelized						
Lane Util	1.000		1.000	1.000		
Critical Headway, s	5.193		5.193	5.193		
Entry Flow, veh/h	760		249	412		
Cap Entry Lane, veh/h			770	837		
Entry HV Adj Factor	0.990		0.970	0.971		
Flow Entry, veh/h	752		241	400		
Cap Entry, veh/h	1090		747	813		
V/C Ratio	0.690		0.323	0.492		
Control Delay, s/veh	13.7		8.7	11.1		
LOS	В		Α	В		
95th %tile Queue, veh	6		1	3		

Intersection						
Int Delay, s/veh	11.9					
•	EBT	EBR	WBL	WBT	NBL	NBR
Movement		EDK	VVDL_			NDK_
Lane Configurations	770	222	40	4	700	4.5
Traffic Vol, veh/h	279	333	13	204	288	15
Future Vol, veh/h	279	333	13	204	288	15
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, a		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	1	1	3	3	3	3
Mvmt Flow	297	354	14	217	306	16
Major/Minor M	aior1	N	Major2		Minor1	
	ajor1		Major2		Minor1	474
Conflicting Flow All	0	0	651	0	719	474
Stage 1	-	-	-	-	474	-
Stage 2	-	-	-	-	245	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	
Pot Cap-1 Maneuver	-	-	931	-	394	588
Stage 1	-	-	-	-	624	-
Stage 2	-	-	-	-	793	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	931	-	387	588
Mov Cap-2 Maneuver	-	-	-	-	387	-
Stage 1	_	-	-	_	624	-
Stage 2	-	_	_	_	780	-
J					. 00	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		44.2	
HCM LOS					Е	
Minor Lana/Major My		IDI -1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		394	-	-	•••	-
HCM Lane V/C Ratio		0.818	-		0.015	-
HCM Control Delay (s)		44.2	-	-	8.9	0
HCM Lane LOS		Е	-	-	Α	Α
HCM 95th %tile Q(veh)		7.4	-	-	0	-

Intersection						
Int Delay, s/veh	10.4					
		ED.0	14/51	\A/D.T	NE	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	_
Traffic Vol, veh/h	153	421	23	193	262	5
Future Vol, veh/h	153	421	23	193	262	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	9	9	5	5	7	7
Mvmt Flow	176	484	26	222	301	6
Major/Minor	Nois-1		Aniar?		Minora	
	/lajor1		Major2		Minor1	440
Conflicting Flow All	0	0	660	0	692	418
Stage 1	-	-	-	-	418	-
Stage 2	-	-	4.45	-	274	0.07
Critical Hdwy	-	-	4.15	-	6.47	6.27
Critical Hdwy Stg 1	-	-	-	-	5.47	-
Critical Hdwy Stg 2	-	-	-	-	5.47	-
Follow-up Hdwy	-	-	2.245	-	3.563	
Pot Cap-1 Maneuver	-	-	914	-	402	624
Stage 1	-	-	-	-	654	-
Stage 2	-	-	-	-	761	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	914	-	389	624
Mov Cap-2 Maneuver	-	-	-	-	389	-
Stage 1	-	-	-	-	654	-
Stage 2	-	-	-	-	737	-
<u> </u>						
A			1640		NE	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		40.3	
HCM LOS					Е	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		392			914	
HCM Lane V/C Ratio		0.783	_		0.029	_
HCM Control Delay (s)		40.3	-	_	9.1	0
HCM Lane LOS		+0.5 E	_	_	Α.	A
HCM 95th %tile Q(veh)		6.7	-	_	0.1	-
HOW JOHN JOHN WINCH		0.7	_		0.1	_

Intersection						
Int Delay, s/veh	11.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	¥	
Traffic Vol, veh/h	153	427	23	193	274	5
Future Vol, veh/h	153	427	23	193	274	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- 100		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage,	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	9	9	5	5	7	7
Mymt Flow	176	491	26	222	315	6
IVIVIII I IOW	170	431	20	222	010	U
Major/Minor M	/lajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	667	0	696	422
Stage 1	-	-	-	-	422	-
Stage 2	-	-	-	-	274	-
Critical Hdwy	_	-	4.15	_	6.47	6.27
Critical Hdwy Stg 1	-	-	-	-	5.47	-
Critical Hdwy Stg 2	-	-	_	_	5.47	-
Follow-up Hdwy	-	-	2.245	-	3.563	3.363
Pot Cap-1 Maneuver	-	-	909	_	400	621
Stage 1	-	-	-	-	651	-
Stage 2	_	-	-	-	761	-
Platoon blocked, %	_	-		_		
Mov Cap-1 Maneuver	_	_	909	_	387	621
Mov Cap-2 Maneuver	_	_	-	-	387	-
Stage 1	_	_	_	_	651	_
Stage 2	_	-	-	_	736	_
Olaye 2	_	_			1 00	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		45.1	
HCM LOS					Е	
Minor Long/Major Musel		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mymt						
Capacity (veh/h)		390	-	-	909	-
HCM Lane V/C Ratio		0.822	-		0.029	-
HCM Control Delay (s)		45.1 _	-	-	9.1	0
HCM Lane LOS		Е	-	-	Α	Α
HCM 95th %tile Q(veh)		7.5	-	_	0.1	_

Intersection						
Int Delay, s/veh	13					
				=		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	٦			- 4	W	
Traffic Vol, veh/h	279	346	13	204	294	15
Future Vol, veh/h	279	346	13	204	294	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	_	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	1	1	3	3	3	3
Mvmt Flow	297	368	14	217	313	16
					0.0	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	665	0	726	481
Stage 1	-	-	-	-	481	-
Stage 2	-	-	-	-	245	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	_	-	_	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	_	919	-	390	583
Stage 1	-	_	_	-	620	-
Stage 2	-	_	-	_	793	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	919	_	383	583
Mov Cap-2 Maneuver	_	_	- -	_	383	- 000
Stage 1	_		_	_	620	_
•		_		_	780	
Stage 2	-	_	-	_	700	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		48.2	
HCM LOS					Е	
Minor Long/Maior M.		UDL 4	ГРТ	EDD	WDI	WDT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		389	-	-	919	-
HCM Lane V/C Ratio		0.845	-	-	0.015	-
HCM Control Delay (s)		48.2	-	-	9	0
HCM Lane LOS		Е	-	-	Α	Α
HCM 95th %tile Q(veh)		8	-	-	0	-