

Preliminary Storm Drainage Report

PREPARED FOR:

Panattoni Development Company, Inc. 1821 Dock Street, Suite 100 Tacoma, WA 98402

PROJECT:

Camas Business Center 4723 NW Lake Road Camas, WA 98607 2200867.10

PREPARED BY:

Matt Whittlesey, EIT Project Engineer

REVIEWED BY:

Bart Brynestad, PE Project Manager

J. Matthew Weber, PE Principal

DATE:

October 2021

I hereby state that this Preliminary Storm Drainage Report for the Camas Business Center project has been prepared by me or under my supervision, and meets the standard of care and expertise that is usual and customary in this community for professional engineers. I understand that City of Camas does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me.

Preliminary Storm Drainage Report

PREPARED FOR:

Panattoni Development Company, Inc. 1821 Dock Street, Suite 100 Tacoma, WA 98402

PROJECT:

Camas Business Center 4723 NW Lake Road Camas, WA 98607 2200867.10

PREPARED BY:

Matt Whittlesey, EIT Project Engineer

REVIEWED BY:

Bart Brynestad, PE Project Manager

J. Matthew Weber, PE Principal

DATE:

October 2021

Table of Contents

Section	Page
SECTION A — Project Overview	1
Site Information	1
SECTION B — Minimum Requirements	1
Determination of Applicable Minimum Requirements	1
SECTION C — Soils Evaluation	2
SECTION D — Source Control	2
SECTION E — Onsite Stormwater Management BMPs	3
SECTION F — Runoff Treatment Analysis and Design	3
SECTION G — Flow Control Analysis and Design	3
SECTION H — Wetlands Protection	4
SECTION I — Other Permits	4
SECTION J — Conveyance Analysis and Design	5
SECTION K — Offsite Analysis	5
SECTION L — Approval Conditions Summary	5
SECTION M — Special Reports and Studies	5
SECTION N — Maintenance and Operation Manual	5
CONCLUSION	5

Appendices

Appendix A

Exhibits

A-1	Vicinity Map
A-2	New Development Minimum Requirements Flow Chart
A-3	Existing Conditions Map
A-4	Developed Conditions Map
A-5	Environmental Constraints Map
A-6	FEMA Map
A-7	NRCS Soils Map

Appendix B

Calculations

B-1	Predeveloped Basin Map
B-2	Developed Basin Map
B-3	Flow Control Calculations
B-4	Water Quality Calculations
B-5	Wetland Protection Calculations
B-6	WWHM Report

Appendix C

Draft Geotechnical Report

Terra Associates, Inc. July 12, 2021

Wetland and Fish and Wildlife Habitat Assessment Report

Soundview Consultants October 2021

SECTION A — Project Overview

This Preliminary Storm Drainage Report accompanies the civil engineering plans submitted for the Site Plan Review process for the proposed Camas Business Center project.

The Camas Business Center project proposes to develop approximately 74.5 acres located in an LI/BP (Light Industrial/Business Park) zoning district with three warehouse/distribution facilities, totaling approximately 970,000 square feet. Site improvements include approximately 1,300 combined parking spaces for passenger vehicles and semi-trailers, maneuvering areas, concrete aprons, wet and dry utilities, stormwater facilities, and landscaping. Improvements also include the construction of a north-south public road and an east-west public road on the project site. The project is proposed to be completed in three phases. The first phase will consist of Building A, all onsite roads, and the site stormwater facilities. The second and third phases will consist of Building B and Building C, respectively.

This report demonstrates that the stormwater design for this project meets the requirements of the 2019 Department of Ecology (Ecology) *Stormwater Management Manual for Western Washington (SWMMWW)*, as supplemented by the *Camas Stormwater Design Standards Manual (CSDSM)*.

Site Information

The site is located in a portion of the Southeast Quarter of Section 29, Township 02 North, Range 03 East, in the city of Camas, Clark County, Washington. The site consists of Parcel Nos. 176170000 and 176155000. The site is bounded by industrial development to the north, golf courses and industrial/commercial development to the east and west, and NW Lake Road to the south. The site is currently minimally developed, with a single-family residence and multiple barns and outbuildings on the southern portion of the site. Groundcover of the southern half of the site is predominately grass and the apparent use is livestock pasture. The northern half of the site contains scattered stands of fir, ash, and oak trees, as well as large thickets of blackberries. Four distinct wetland areas have been identified on the site. One is located on the east-central portion of the site and the remaining three are located in the northern portion of the site. Refer to Appendix C for the *Wetland and Fish and Wildlife Habitat Assessment Report* (Critical Areas Report) by Soundview Consultants dated October 2021. Topography slopes from east to west and south to north, with approximately 60 feet of relief across the site. Slopes are generally moderate in the southern and northern portions, with a steep south-north slope along the central portion of the site.

Proposed stormwater facilities include a closed conveyance system and a large combined wetpond/detention facility. Stormwater will be discharged at the site's natural outfall located in a wetland buffer in the northwest portion of the site.

SECTION B — Minimum Requirements

Determination of Applicable Minimum Requirements

Based on the information in the table below, the proposed project is subject to Minimum Requirements 1 through 9. Refer to Appendix A for the New Development Minimum Requirements Flow Chart.

Development Impact Areas (Preliminary)		
Existing Hard Surface Area	0.3 ac	
New Hard Surface Area	48.0 ac	

Development Impact Areas (Preliminary)		
Replaced Hard Surface Area	0.3 ac	
Amount of Native Vegetation Converted to Lawn or Landscape	17.8 ac	
Amount of Native Vegetation Converted to Pasture	0.00 ac	
Total Amount of Land Disturbing Activity	66.4 ac	

SECTION C — Soils Evaluation

The soils onsite are mapped by the Natural Resources Conservation Service (NRCS) as primarily Hesson clay loam (HcB & HcD), as well as Powell silt loam (PoB), with the wetland areas mapped as Cove silty clay loam (CwA). HcB and HcD soils are defined by NRCS as Hydrologic Soil Group C. CwA and PoB soils are defined by NRCS as Hydrologic Soil Group D. Refer to the NRCS Soils Map in Appendix A.

A field investigation performed by Terra Associates, Inc. revealed the site soils generally consist of 3 to 12 feet of medium stiff to very stiff silt, with varying amounts of sand and gravel. In some test pits in the north and north-central portions of the site, Columbia River Basalt (bedrock) was observed within the upper 3 to 9 feet. Groundwater was observed in 8 of 80 test pits between 2.5 and 12 feet below grade. Refer to Appendix C for the Draft Geotechnical Report.

For stormwater modeling, Clark County classifies soils into Soil Groups (SG) 1 through 5. Per the *CSDSM*, it is appropriate to use the Clark County Soil Group definitions within the Western Washington Hydrology Model (WWHM) for storm facility sizing. The onsite soils are defined by the *Clark County Stormwater Manual* as SG3 and SG4. However, the project geotechnical report indicates that infiltration is not feasible in the onsite soils due to soil gradation, high groundwater concerns, and shallow depth to bedrock. Therefore, the onsite soils most closely match SG4, which is defined as "poorly drained soils (slowly infiltrating C soils, as well as D soils)." For stormwater facility sizing, the onsite soils have been modeled as SG4 in the WWHM program. This is consistent with the development of the project immediately to the west, Dwyer Creek Business Center, which contains similar soil conditions.

SECTION D — Source Control

The proposed project is required to provide source control of pollution. The following are proposed measures to be implemented as part of the civil plans.

- All pollutants, including waste materials and demolition debris created onsite during construction, shall be handled and disposed of in a manner that does not cause contamination of surface water.
- Cover, containment, and protection from vandalism shall be provided for all chemicals, liquid products, petroleum products, and non-inert wastes present on the site (see Chapter 173-304 WAC for the definition of inert waste).
- Maintenance and repair of heavy equipment and vehicles that may result in discharge or spillage of pollutants to the ground or into surface water runoff must be conducted using spill prevention measures such as drip pans.
- Concrete Handling (BMP C151) and Sawcutting and Surface Pollution Prevention (BMP C152) shall be used to prevent or treat contamination of surface water runoff by pH modifying sources.
- Landscaping and Lawn/Vegetation Management (BMP S411) shall be used to control fertilizer and pesticide applications, soil erosion, and site debris to prevent contamination of stormwater.

SECTION E — Onsite Stormwater Management BMPs

To satisfy this requirement, the project will implement List 2 Best Management Practices (BMPs) to the maximum extent feasible. Because of the nature of the site's soils and relatively high groundwater, infiltration is not feasible for the site. Refer to Appendix C for the Draft Geotechnical Report and additional information on site soils.

Lawn and Landscaped Areas

Post Construction Soil Quality and Depth will be implemented in accordance with BMP T5.13.

Roofs

Dispersion is not feasible because there is no vegetated flow path available for dispersion. Additionally, infiltration is not feasible due to the soils onsite. Lastly, perforated stub-out connections would likely conflict with the shallow groundwater. Roof runoff will be tight lined to the proposed detention system.

Other Hard Surfaces (Roads, Sidewalks, Driveways)

Runoff from all other hard surfaces such as driveways, sidewalks, roadways, and access aisles will be directed to the combination wetpond and detention pond.

Full dispersion is not feasible because there is not an adequate vegetated flow path available. Permeable pavement is not feasible because infiltration is not feasible on the site and because of high groundwater levels. Bioretention BMPs are not feasible because infiltration is not feasible on the site and because of high groundwater levels. Lastly, sheet flow dispersion is not feasible because there is not an adequate vegetated flow path available.

SECTION F — Runoff Treatment Analysis and Design

Because the project is located in the Lacamas watershed and above the dam at the south end of Round Lake, phosphorus treatment is required per the *CSDSM*. Basic and phosphorus treatment will be provided for all applicable surfaces by a combined wetpond/detention pond. The wetpond consists of dead storage located directly beneath the live storage portion of the pond. To comply with *SWMMWW* requirements for phosphorus treatment, the wetpond has been designed as a Large Wetpond. This necessitates increasing the calculated treatment volume by a factor of 1.5. The combined wetpond/detention pond has been preliminarily sized as part of this submittal. WWHM was used to determine the required treatment volume. Preliminary calculations are included in Appendix B.

It is anticipated that some areas of the project site will not be able to be conveyed to the main stormwater facility. Basic and phosphorus treatment for these surfaces will be provided by proprietary filter units that have Ecology General Use Level Designation (GULD) approval for basic and phosphorus treatment. Sizing calculations for these units will be included in the final engineering submittal.

SECTION G — Flow Control Analysis and Design

The proposed project is required to provide flow control for all applicable surfaces. Flow control will be provided by the combined wetpond/detention pond. The detention portion of the pond consists of the live storage volume, which is located on top of the dead storage, or treatment volume. The combined facility will discharge into the buffer of onsite Wetland B, which is the

natural discharge location of the predeveloped site. The combined wetpond/detention pond has been preliminarily sized as part of this submittal. WWHM was used to determine the required detention volume. As discussed in Section C, onsite soils were modeled as Clark County SG4. To comply with wetlands protection requirements, a portion of the site consisting of the Building C roof will discharge to a flow splitter and then to Wetland A. The flow splitter will be designed to convey flows under 0.4 CFS to the wetland and flows over 0.4 CFS to the detention pond. Per the *SWMMWW*, areas requiring flow control can bypass the facility if the 100-year peak discharge from the bypass area is less than 0.4 CFS. The detention facility has been sized to accommodate the bypass area, which is modeled as discharging straight to the point of compliance and bypassing the detention facility. Preliminary calculations are included in Appendix B.

SECTION H — Wetlands Protection

Four wetlands are identified onsite. Wetland C will be filled and Wetlands A, B, and D will remain. Refer to Appendix C for the Critical Areas Report, which contains a detailed breakdown of the existing wetlands and relevant project conditions.

Per the Critical Areas Report, Wetlands A and D require compliance with *SWMMWW* Minimum Requirement 8 – Wetlands Protection. The project will comply with this requirement to the maximum extent feasible by attempting to maintain the existing hydroperiods of the wetlands. This project will use Method 2, which uses the WWHM model to compare predeveloped and developed discharges to the wetland for the following criteria:

Criteria 1. Mean Daily Total Discharge Volumes from the Site

Total volume of water into a wetland on daily basis should not be more than 20% higher or lower than the pre-project volumes.

Calculate the average of the total discharge volumes from the site for each day over the period
of precipitation record in the approved model for pre- and post-project scenarios. There will be
365 (366 for a leap year) average daily values for the pre-project scenario and 365 (366 for a
leap year) for the post-project. No day can exceed 20% change in volume.

Criteria 2. Mean Monthly Total Discharge Volumes from the Site

Total volume of water into a wetland on a monthly basis should not be more than 15% higher or lower than the pre-project volumes.

 Calculate the average of the monthly total discharge volumes from the site for each calendar month over the period of precipitation record in the approved model for pre- and post-project scenarios. No month can exceed 15% change in volume.

The criteria will be met for Wetland D because its tributary basin consists only of its buffer area, which will remain undisturbed in the developed condition. The criteria will be met to the maximum extent feasible for Wetland A. The offsite portion of Wetland A's tributary basin will be conveyed to the wetland by a ditch or culvert in the developed condition. To match the existing hydroperiod as closely as possible, runoff from the Building C roof will be conveyed directly to the wetland. A flow splitter will send low flows to the wetland, while any flows exceeding the bypass allowance of the flow control facility will be conveyed to the detention pond. Preliminary wetland hydroperiod calculations are included in Appendix B.

SECTION I — Other Permits

 Department of Ecology National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit

SECTION J — Conveyance Analysis and Design

A full analysis of the conveyance capacity of the onsite stormwater pipe network will be provided with the final engineering submittal.

SECTION K — Offsite Analysis

The site has been evaluated for offsite runon from upland parcels, and the downstream flow path has been evaluated to ensure that the developed discharge location is consistent with the existing discharge location. A formal offsite analysis is not applicable for this project because it is not anticipated to have a significant adverse impact on the downstream or upstream drainage systems, per *CSDSM* Section 9.02. The combined wetpond/detention pond has been designed in accordance with *SWMMWW* requirements to maintain existing flow rates leaving the site and to remove phosphorus and other contaminants, as required. Additionally, the project has accommodated runon from upland parcels by conveying drainage either around the project site or into onsite wetlands, as appropriate.

SECTION L — Approval Conditions Summary

There are no conditions of approval related to stormwater in the provided City of Camas Pre-Application Meeting Notes dated December 3, 2020.

SECTION M — Special Reports and Studies

Included in the appendices are the following reports:

- Draft Geotechnical Report by Terra Associates, Inc., dated July 12, 2021
- Wetland and Fish and Wildlife Habitat Assessment Report by Soundview Consultants, dated October 2021

SECTION N — Maintenance and Operation Manual

The stormwater facilities will be privately owned and maintained. A Maintenance and Operation manual will be included with the final engineering submittal.

CONCLUSION

The proposed Camas Business Center project proposes to construct 970,000 square feet of single-story warehouse/distribution facilities on 74.5 acres. Site improvements include approximately 1,300 combined parking spaces for passenger vehicles and semi-trailers, maneuvering areas, concrete aprons, wet and dry utilities, stormwater facilities, landscaping, and construction of two public roads within the site. If constructed per plan, the stormwater system will manage anticipated runoff volumes based on the design criteria of the 2019 Ecology *Stormwater Management Manual for Western Washington (SWMMWW)*. This report and associated plans were prepared within the guidelines established by City of Camas.

This analysis is based on data and records either supplied to or obtained by AHBL. These documents are referenced within the text of the analysis. The analysis has been prepared using procedures and practices within the standard accepted practices of the industry.

AHBL, Inc.

15 24

Matt Whittlesey, Eff Project Engineer

MKW/lsk

October 2021

Q:\2020\2200867\WORDPROC\Reports\20211019 Rpt (Prelim TIR) 2200867.10.docx

Appendix A

Exhibits

A-1......Vicinity Map
A-2.....New Development Minimum Requirements Flow Chart
A-3.....Existing Conditions Map
A-4....Developed Conditions Map
A-5....Environmental Constraints Map
A-6....FEMA Map
A-7....NRCS Soils Map

Chapter 1: General Requirements Continued

Figure 1.2: New Development Minimum Requirements Flow Chart

DATE: October 18, 2021 FILENAME: Q:\2020\2200867\10_CIV\CAD_SEPA\2200867-SH-GRAD.dwg

National Flood Hazard Layer FIRMette

Legend

250 500

n

1,500

1,000

2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

unmapped and unmodernized areas car regulatory purposes.

	MAP LEGE	ND	MAP INFORMATION	
Area of Interest (A	OI) f Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.	
Soils		M Very Stony Spot	Warning: Soil Map may not be valid at this scale.	
Soil M	ap Unit Polygons	wet Spot	Enlargement of maps beyond the scale of mapping can cause	
Soli Mi	ap Unit Lines	∆ Other	misunderstanding of the detail of mapping and accuracy of s line placement. The maps do not show the small areas of	
Special Point Fo		 Special Line Features 	contrasting soils that could have been shown at a more deta	
	ut Wat	er Features		
Borrov	/ Pit	 Streams and Canals 	Please rely on the bar scale on each map sheet for map measurements.	
💥 Clay S	pot +	nsportation Rails	Source of Map: Natural Resources Conservation Service	
♦ Closed	I Depression	Interstate Highways	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
💥 Gravel	Pit 🥏	US Routes	Maps from the Web Soil Survey are based on the Web Mero	
Gravel	ly Spot	🥪 Major Roads	projection, which preserves direction and shape but distorts	
🔇 Landfil	I	Local Roads	Albers equal-area conic projection, should be used if more	
🙏 🛛 Lava F	low Bac	kground	accurate calculations of distance or area are required.	
🚲 Marsh	or swamp	Aerial Photography	This product is generated from the USDA-NRCS certified da of the version date(s) listed below.	
🙊 Mine d	r Quarry		Soil Survey Area: Clark County, Washington	
Miscel	laneous Water		Survey Area Data: Version 18, Jun 4, 2020	
O Perenr	nial Water		Soil map units are labeled (as space allows) for map scales	
V Rock C	Dutcrop			
+ Saline	Spot		Date(s) aerial images were photographed: Oct 15, 2018— 18, 2018	
Sandy	Spot		The orthophoto or other base map on which the soil lines we	
Severe	ely Eroded Spot		compiled and digitized probably differs from the backg	
Sinkho	le		shifting of map unit boundaries may be evident.	
Slide of	r Slip			
ø Sodic :	Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CvA	Cove silty clay loam, 0 to 3 percent slopes	109.8	14.8%
CwA Wetlands Soil Group:	Cove silty clay loam, thin solum, 0 to 3 percent slopes	38.9	5.2%
DoB	Dollar loam, 0 to 5 percent slopes	75.5	10.2%
HcB NE+S Soil Group:	Hesson clay loam, 0 to 8 C percent slopes	303.5	40.8%
HcD Central+E Soil Group:	Hesson clay loam, 8 to 20 C percent slopes	57.8	7.8%
HcE	Hesson clay loam, 20 to 30 percent slopes	3.5	0.5%
HcF	Hesson clay loam, 30 to 55 percent slopes	0.0	0.0%
HgB	Hesson gravelly clay loam, 0 to 8 percent slopes	1.9	0.3%
LgB	Lauren gravelly loam, 0 to 8 percent slopes	34.3	4.6%
LgD	Lauren gravelly loam, 8 to 20 percent slopes	10.6	1.4%
OmE	Olympic stony clay loam, 3 to 30 percent slopes	0.4	0.1%
Ров N/NW Soil Group: D	Powell silt loam, 0 to 8 percent slopes	72.4	9.7%
PoD	Powell silt loam, 8 to 20 percent slopes	14.2	1.9%
W	Water	1.6	0.2%
WrB	Wind River gravelly loam, 0 to 8 percent slopes	19.3	2.6%
Totals for Area of Interest		743.8	100.0%

Appendix B

Calculations

B-1	Predeveloped Basin Map
B-2	Developed Basin Map
B-3	Flow Control Calculations
B-4	Water Quality Calculations
B-5	Wetland Protection Calculations
B-6	WWHM Report

NOTE:

A

FOR THE PRELIMINARY ENGINEERING SUBMITTAL, THE STORMWATER FACILITY WAS SIZED TO ACCOMODATE THE ENTIRE PROJECT SITE

PREDEVELOPED:	ONSITE BA	ASIN	
Available Pe SG4, Forest, Flat	rvious Acres 74.46	Available Impervious Ac	cres
Per Imp Bas	vious Total 74 ervious Total 0 sin Total 74	I.46 Acres Acres I.46 Acres	
DEVELOPED:	ONSITE	BASIN	
Available Pervi SG4, Forest, Flat SG4, Lawn, Flat	ious Acres 8.38 13.6	Available Impervious ROADS/FLAT ROOF TOPS/FLAT POND	Acres 26.3 20 4.13
Pe Im Ba	ervious Total pervious Total Isin Total	21.98 Acres 50.43 Acres 72.41 Acres	
	BLDG C	ROOF	
Available Perviou	us Acres	Available Impervious	Acres 2.1
F	Pervious Total mpervious Total Basin Total	OAcres2.1Acres2.1Acres	
2215 North 30th 5 Suite 300 Tacoma, WA 984	CAMAS BUSIN 2200867.10	ESS CENTER	EXHIBIT
A H B L 253.383.2422 TEI 253.383.2572 FA		DL CALCULATIONS	D-3

Predeveloped Mitigated Run Scenario Basic Elements	BLDG C ROOF ONSITE BASIN FLOW SPLITTER FLOW SPLITTER DECENTION DECENTION DE CARDA DE C	
Water Quality On-Line BMP 24 hour Volume Standard Flow R TO PROVIDE PHOSPH AS A "LARGE WETPO REQUIRED DEAD STO 8.79 * 1.5 = 13.19 AC-F	(ac-ft) 8.7911 ate (cfs) 12.516 Standard Flow Rate (cfs) 6.9417 HORUS TREATMENT, THE FACILITY IS SIZED DND". A FACTOR OF 1.5 IS ADDED TO THE DRAGE VOLUME.	
2215 North 30th Street Suite 300 Tacoma, WA 98403	CAMAS BUSINESS CENTER 2200867.10	
A H B L 253.383.2422 TEL 253.383.2572 FAX	WATER QUALITY CALCULATIONS	D-4

Per the Critical Areas Report by Soundview Consultants, Wetland Hydroperiod Protection is applicable to Wetland A and Wetland D on the project site. See the next page for the flowchart determination of wetland protection. The project will provide hydroperiod protection to the maximum extent feasible. Method 2 will be used to analyze wetland hydroperiod impacts. Criteria for Method 2 are listed below:

Method 2: Site Discharge Modeling

An alternative way to predict the risk to the wetland hydroperiod from stormwater discharges is to assess the changes in total volume of flows into a wetland that result from the development project. The size of the wetland and its capacity are not known or needed to utilize Method 2. The risk to wetland functions will be assumed to increase as the total discharge volumes from the site into the wetland diverge from the pre-project conditions. The risk will be decreased if the divergence is smaller.

As stormwater generated at the project site passes through the wetland buffer, total discharge volumes from the site to the wetland are to be calculated at the outflow of the wetland buffer. The existing or required length and area of wetland buffer per local and/or state regulations around the wetland should be included as an element in the model under both pre-project (existing) and post-project scenarios.

Criteria for Method 2

The project proponent must ensure they are meeting both of the following Method 2 criteria in order to comply with Wetland Hydroperiod Protection.

Criteria 1. Mean Daily Total Discharge Volumes from the Site

Total volume of water into a wetland on daily basis should not be more than 20% higher or lower than the pre-project volumes.

• Calculate the average of the total discharge volumes from the site for each day over the period of precipitation record in the approved model for pre- and post-project scenarios. There will be 365 (366 for a leap year) average daily values for the pre-project scenario and 365 (366 for a leap year) for the post-project. No day can exceed 20% change in volume.

Criteria 2. Mean Monthly Total Discharge Volumes from the Site

Total volume of water into a wetland on a monthly basis should not be more than 15% higher or lower than the pre-project volumes.

• Calculate the average of the monthly total discharge volumes from the site for each calendar month over the period of precipitation record in the approved model for pre- and post-project scenarios. No month can exceed 15% change in volume.

The guidance for implementing Method 2 and assessing the criteria above in the respective model is provided in section <u>I-C.5 Wetland Hydroperiod Data Collection and Evaluation Procedures</u>.

2215 North 30th Street Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX CAMAS BUSINESS CENTER 2200867.10

WETLAND PROTECTION CALCULATIONS

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements

It is assumed that the tributary area for Wetland D consists primarily of its wetland buffer as delineated by Soundview Consultants. Since the buffer will either be untouched or mitigated in the developed condition, it is assumed that there is no impact to the hydroperiod for this wetland.

WWHM was used to model the predeveloped and developed flows discharging to Wetland A, in accordance with the SWMMWW. The wetland has a large tributary area located outside the project boundary to the east. In the developed condition, this area will be connected to the Wetland A buffer with a ditch or culvert, so the flows will be maintained. The onsite portion of the wetland's tributary basin will be developed, and will not discharge to the wetland. In an attempt to match existing flows as much as possible, runoff from the 2.1-acre Building C roof will discharge directly to the Wetland A buffer. The maximum 100-year flow that is allowed to bypass the project flow control facility is 0.4 CFS. A flow splitter will direct flows less than 0.4 CFS to the wetland buffer. Flows greater than 0.4 CFS will be directed to the detention pond. Because of existing site conditions, it does not appear possible to meet all monthly and daily flow criteria for Method 2. The months of October and November usually receive too high of flows before other months reach the lower flow matching threshold. Sending clean roof runoff from Building C to the wetland after the flow splitter is intended as a maximum feasible effort to match the predeveloped wetland hydroperiod while also meeting flow control standards for the developed site. The WWHM calculations are summarized as follows:

SCENARIOS				
		SCENARIOS		
🗱 🗹 Predeveloped			-	BLDG C
	TRIBUTART			ROOF
📅 🗌 Mitigated	BASIN			ROOT
Bun Scenario				
		Run Scenario		
Basic Elements		Basic Elements		
	WETLAND			FLOW
	AREA			SPLITER
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		1 🔤 🔤 🖾		
	New L			

2215 North 30th Street Suite 300 Tacoma, WA 98403 253.383.2422 TEL

253.383.2572 FAX

CAMAS BUSINESS CENTER 2200867.10

WETLAND PROTECTION CALCULATIONS

PREDEVELOPED

Element Name Runoff Type Downstream Connect Element Type Soil (PERLND) Type Lateral Area (ac)	TRIBUTARY BASIN Surface Interflow ion Lateral Basin 2 Lateral Basin 2 Lateral Pervious Flow Basin SG4, Forest, Mod 23.2 SG4, Forest, Mod	Groundwater Lateral Basin 2
Element Name Runoff Type Downstream Connecti Element Type Soil (PERLND) Type Lateral Area (ac)	WETLAND BOUNDARY Surface Interflow 0 Lateral Pervious Flow Basin SG4, Forest, Flat 1.3	Groundwater 0 Chang
DEVELOPED		
Element Name Runoff Type Downstream Connecti Element Type Soil (PERLND) Type Lateral Area (ac)	TRIBUTARY BASIN Surface Interflow Lateral Basin 2 Lateral Basin 2 Lateral Pervious Flow Basin SG4, Forest, Mod 12.1	Designate as E Groundwater Lateral Basin 2 Change
E lement Name Runoff Type Downstream Connecti Element Type Soil (PERLND) Type Lateral Area (ac)	on WETLAND BOUNDARY Surface Interflow 0 0 Lateral Pervious Flow Basin SG4, Forest, Flat 1.3	Designate Groundwate
Subbasin Name: BLD	G C ROOF	for POC:
Surface Flows To : Flow Splitt Area in Basin Available Pervi	er 1 Flow Splitter 1 Prove Sp	Groundwater
2215 North 30th Street Suite 300	CAMAS BUSINESS CENTER 2200867.10	EXHIB
Tacoma, WA 98403 253.383.2422 7 253.383.2572	WETLAND PROTECTION CALCULATIONS	B-5

Wetlan	ds Input V	olume		
Averag	e Annual V	olume (acf	t)	
Series	1: 501 PO	C 1 Predev	eloped f	low
Series	2: 801 PO	C 1 Mitiga	ted flow	7
Month	Series 1	Series 2 P	ercent H	ass/Fail
Jan	11.1561	7.3026	65.5	Fail
Feb	8.7303	5.5606	63.7	Fail
Mar	6.9579	4.4421	63.8	Fail
Apr	3.8972	2.4826	63.7	Fail
May	2.3682	1.5538	65.6	Fail
Jun	1.3142	0.8758	66.6	Fail
Jul	0.6352	0.3857	60.7	Fail
Aug	0.2929	0.1880	64.2	Fail
Sep	0.1330	0.1303	97.9	Pass
Oct	0.3629	0.5376	148.2	Fail
Nov	3.6264	3.1054	85.6	Pass
Dec	8.9691	6.2563	69.8	Fail

2215 North 30th Street Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX CAMAS BUSINESS CENTER 2200867.10

WETLAND PROTECTION CALCULATIONS

<section-header>

General Model Information

Project Name:	20211013_CLARK SG_Detention w flow splitter
Site Name:	
Site Address:	
City:	
Report Date:	10/19/2021
Gage:	Lacamas
Data Start:	1948/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.000 (adjusted)
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use SG4, Forest, Flat	acre 74.46
Pervious Total	74.46
Impervious Land Use	acre
Impervious Total	0
Basin Total	74.46
Element Flows To: Surface	Interflow

Groundwater
Mitigated Land Use

Basin 1

Bypass:	No	
GroundWater:	No	
Pervious Land Use SG4, Forest, Flat SG4, Lawn, Flat	acre 8.38 13.6	
Pervious Total	21.98	
Impervious Land Use ROADS FLAT ROOF TOPS FLAT POND	acre 26.3 20 4.13	
Impervious Total	50.43	
Basin Total	72.41	
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1	Groundwater

Basin 2

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROOF TOPS FLAT	acre 2.1
Impervious Total	2.1
Basin Total	2.1
Element Flows To: Surface Flow Splitter 1	Interflow Flow Splitter 1

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1

Bottom Length: Bottom Width:	314.01 ft. 104.67 ft.
Depth:	6 ft.
Volume at riser head:	4.5281 acre-feet.
Side slope 1:	3 To 1
Side slope 2:	3 To 1
Side slope 3:	3 To 1
Side slope 4:	3 To 1
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	54 in.
Notch Type:	Rectangular
Notch Width:	4.475 ft.
Notch Height:	0.860 ft.
Orifice 1 Diameter:	12.996 inElevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.754	0.000	0.000	0.000
0.0667	0.758	0.050	1.183	0.000
0.1333	0.762	0.101	1.673	0.000
0.2000	0.766	0.152	2.049	0.000
0.2667	0.770	0.203	2.366	0.000
0.3333	0.773	0.254	2.646	0.000
0.4000	0.777	0.306	2.898	0.000
0.4667	0.781	0.358	3.131	0.000
0.5333	0.785	0.410	3.347	0.000
0.6000	0.789	0.463	3.550	0.000
0.6667	0.793	0.515	3.742	0.000
0.7333	0.797	0.569	3.924	0.000
0.8000	0.801	0.622	4.099	0.000
0.8667	0.805	0.675	4.266	0.000
0.9333	0.809	0.729	4.427	0.000
1.0000	0.813	0.783	4.583	0.000
1.0667	0.817	0.838	4.733	0.000
1.1333	0.821	0.892	4.879	0.000
1.2000	0.824	0.947	5.020	0.000
1.2667	0.828	1.002	5.158	0.000
1.3333	0.832	1.058	5.292	0.000
1.4000	0.836	1.113	5.423	0.000
1.4667	0.840	1.169	5.550	0.000
1.5333	0.844	1.225	5.675	0.000
1.6000	0.848	1.282	5.797	0.000
1.6667	0.853	1.339	5.917	0.000
1.7333	0.857	1.396	6.034	0.000
1.8000	0.861	1.453	6.149	0.000
1.8667	0.865	1.510	6.262	0.000
1.9333	0.869	1.568	6.372	0.000
2.0000	0.873	1.626	6.481	0.000
2.0667	0.877	1.685	6.588	0.000

2.1333	0.881	1.743	6.694	0.000
2.2000	0.885	1.802	6.900	0.000
2.3333	0.893	1.921	7.001	0.000
2.4000	0.897	1.980	7.100	0.000
2.5333	0.906	2.1040	7.295	0.000
2.6000	0.910	2.161	7.390	0.000
2.6667	0.914	2.222	7.484	0.000
2.7355	0.978	2.203	7.669	0.000
2.8667	0.926	2.406	7.760	0.000
2.9333	0.930	2.468	7.849	0.000
3.0667	0.939	2.593	8.026	0.000
3.1333	0.943	2.655	8.113	0.000
3.2000	0.947	2.718	8.198	0.000
3.3333	0.956	2.845	0.203 8.367	0.000
3.4000	0.960	2.909	8.451	0.000
3.4667	0.964	2.973	8.533	0.000
3.5333	0.968	3.038	8.696	0.000
3.6667	0.977	3.167	8.776	0.000
3.7333	0.981	3.233	8.855	0.000
3.8000	0.985	3.298	8.934 9.012	0.000
3.9333	0.994	3.430	9.089	0.000
4.0000	0.998	3.497	9.166	0.000
4.0007	1.002	3.563	9.242	0.000
4.2000	1.011	3.698	9.610	0.000
4.2667	1.015	3.765	10.13	0.000
4.3333	1.020	3.833	11.58	0.000
4.4667	1.028	3.970	12.46	0.000
4.5333	1.033	4.038	13.43	0.000
4.6000	1.037	4.107	14.47	0.000
4.7333	1.046	4.246	16.77	0.000
4.8000	1.050	4.316	18.02	0.000
4.0007	1.054	4.300	20.70	0.000
5.0000	1.063	4.528	22.12	0.000
5.0667	1.068	4.599	23.01	0.000
5.1333	1.072	4.670 4.742	24.58	0.000
5.2667	1.081	4.814	28.96	0.000
5.3333	1.085	4.886	31.62	0.000
5.4000	1.090	4.958	34.55 37 71	0.000
5.5333	1.099	5.104	41.08	0.000
5.6000	1.103	5.178	44.62	0.000
5.7333	1.107	5.251 5.325	48.30 52 11	0.000
5.8000	1.116	5.400	56.02	0.000
5.8667	1.121	5.474	60.00	0.000
Ე.Ყ ᲙᲙᲙ	1.125	5.549	04.U1	0.000

6.0000	1.130	5.624	68.04	0.000
6.0667	1.134	5.700	72.05	0.000

Flow Splitter 1

Bottom Length:	10.00 ft.
Bottom Length:	10.00 ft.
Depth:	10 ft.
Side slope 1:	0 To 1
Side slope 2:	0 To 1
Side slope 3:	0 To 1
Side slope 4:	0 To 1
Threshold Splitter	Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Primary(cfs)	Secondary(cfs)
0.000	0.002	0.000	0.400	0.000
0.111	0.002	0.000	0.400	0.000
0.222	0.002	0.000	0.400	0.000
0.333	0.002	0.000	0.400	0.000
0.444	0.002	0.001	0.400	0.000
0.555	0.002	0.001	0.400	0.000
0.666	0.002	0.001	0.400	0.000
0.777	0.002	0.001	0.400	0.000
0.888	0.002	0.002	0.400	0.000
1.000	0.002	0.002	0.400	0.000
1.111	0.002	0.002	0.400	0.000
1.222	0.002	0.002	0.400	0.000
1.333	0.002	0.003	0.400	0.000
1 444	0.002	0.003	0 400	0.000
1 555	0.002	0.003	0 400	0.000
1.666	0.002	0.003	0.400	0.000
1 777	0.002	0.004	0.400	0.000
1 888	0.002	0.004	0.400	0.000
2 000	0.002	0.004	0.400	0.000
2 111	0.002	0.004	0.400	0.000
2 222	0.002	0.005	0.400	0.000
2 333	0.002	0.005	0.400	0.000
2.000	0.002	0.005	0.400	0.000
2 555	0.002	0.005	0.400	0.000
2.666	0.002	0.006	0.400	0.000
2.000	0.002	0.000	0.400	0.000
2 888	0.002	0.000	0.400	1000
3,000	0.002	0.000	0.400	1000
3 111	0.002	0.000	0.400	1000
3 222	0.002	0.007	0.400	1000
3 333	0.002	0.007	0.400	1000
3 444	0.002	0.007	0.400	1000
3 555	0.002	0.008	0.400	1000
3 666	0.002	0.008	0.400	1000
3 777	0.002	0.008	0.400	1000
3 888	0.002	0.008	0.400	1000
4 000	0.002	0.000	0.400	1000
4 111	0.002	0.009	0.400	1000
4 222	0.002	0.000	0.400	1000
4 333	0.002	0.000	0.400	1000
4.000	0.002	0.000	0.400	1000
4 555	0.002	0.010	0.400	1000
4 666	0.002	0.010	0.400	1000
4 777	0.002	0.011	0 400	1000
4 888	0.002	0.011	0.400	1000
5 000	0.002	0.011	0 400	1000
5.111	0.002	0.011	0.400	1000
	J.J.J.			

	5.222 5.333 5.444 5.555 5.666 5.777 5.888 6.000 6.111 6.222 6.333 6.444 6.555 6.666 6.777 6.888 7.000 7.111 7.222 7.333 7.444 7.555 7.666 7.777 7.888 8.000 8.111 8.222 8.333 8.444 8.555 8.666 8.777 8.888 9.000 9.111 9.222 9.333 9.444 9.555 9.666 9.777 9.888 10.00 10.11	0.002 0.	0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.023 0.023 0.023	0.400 0.00 0.00 0.00 0.00	1000 1000 1000 1000 1000 1000 1000 100
--	---	--	---	--	---

Discharge Structure		
Riser Height:	0 ft.	
Riser Diameter:	0 in.	
Element Flows To:		
Outlet 1	Outlet 2	
	Trapezoidal Pond	1

Analysis Results

+ Predeveloped x M

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	74.46
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 21.98 Total Impervious Area: 52.53

Flow Frequency Method: Log Pearson Type III 17B

 Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 18.681146

 5 year
 29.245431

 10 year
 35.00982

 25 year
 40.890677

 50 year
 44.391847

 100 year
 47.273752

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	14.261005
5 year	22.742621
10 year	29.778976
25 year	40.497423
50 year	49.949516
100 year	60.782942
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Predeveloped	witigate
1949	14.587	14.398
1950	19.127	13.294
1951	25.266	10.530
1952	14.811	20.294
1953	19.981	9.566
1954	27.846	10.976
1955	15.503	9.116
1956	30.402	32.492
1957	23.122	14.867
1958	17.153	30.030

1959	9.971	7.692
1960	9.849	12.218
1961	27.379	18.311
1962	18.371	10.959
1963	20.414	10.220
1964	19.483	10.149
1965	17.467	18.536
1966	22.323	14.592
1967	19.451	10.088
1968	25.433	17.504
1969	20.723	42.731
1970	67.738	67.365
1971	10.713	8.350
1972	18.216	9.684
1973	18.142	19.588
1974	28.569	33.387
1975	15.568	9.500
1976	22.378	17.462
1977	0.609	7.503
1978	31.898	25.805
1977	21.590	23.156
1978	13.203	8.684
1979	30.324	24.051
1980	20.408	25.176
1981	33.951	21.279
1982	11.077	8.674
1983	8.538	13.624
1984	10.547	10.493
1985	18.406	15.342
1986	7.107	8.616
1987	7.722	9.314
1988	7.005	8.319
1988	19.868	9.652
1989	21.857	8.896
1990	25.691	29.572
1991	19.642	20.630
1995	16.298	24.733
1996	31.169	45.778
1997	36.096	31.706
1998	29.181	14.547
1999	21.808	19.897
2000	10.560	6.863
2001	6.086	7.190
1998	29.181	14.547
1999	21.808	19.897
2000	10.560	6.863
2001	6.086	7.190
2002	31.850	12.914
2003	25.039	20.677
2004	6.872	9.975
2005	10.272	9.421
2006	19.216	10.447
2007	9.513	22.046
2008	11.164	18.186

Ranked Annual Peaks

 Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

 Rank
 Predeveloped
 Mitigated

 1
 67.7383
 67.3645

 2
 36.0959
 45.7783

 3
 33.9509
 42.7307

 4
 31.8977
 33.3871

5 6 7 8 9 10 11 12 13 14 15 16 17 18 90	31.8498 31.1687 30.4023 30.3236 29.1813 28.5688 27.8457 27.3787 25.6912 25.4326 25.2658 25.0390 23.1223 22.3775 22.3230 21.9566	32.4920 31.7056 30.0302 29.5716 25.8046 25.1764 24.7327 24.0511 23.1563 22.0462 21.2794 20.6766 20.6297 20.2943 19.8966 10.5890
21	21.8081	18.5356
22	21.5896	18.3113
23	20.7233	18.1856
24	20.4139	17.5035
25	20.4083	17.4616
26	19.9811	15.3420
27	19.8677	14.8665
28	19.6419	14.5921
29	19.4826	14.5468
30	19.4513	14.3979
31	19.2158	13.6239
32	19.1265	13.2044
32 33 34 35 36 37 38 39 40 41 42 43 44	18.4055 18.3714 18.2164 18.1421 17.4672 17.1525 16.2977 15.5683 15.5034 14.8106 14.5874 13.2028	12.9135 12.2182 10.9756 10.9587 10.5302 10.4931 10.4474 10.2196 10.1485 10.0883 9.9749 9.6841
45	11.1635	9.6523
46	11.0769	9.5660
47	10.7132	9.5002
48	10.5601	9.4207
49	10.5471	9.3136
50	10.2721	9.1155
51	9.9713	8.8955
52	9.8491	8.6837
53	9.5129	8.6737
54	8.5385	8.6157
55	7.7218	8.3505
56	7.1068	8.3193
57	7.0050	7.6917
58	6.8720	7.5030
59	6.0857	7.1900
60	0.6093	6.8626

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
9.3406	1041	1298	124	Fail
9.6946	959	994	103	Fail
10.0487	894	852	95	Pass
10.4027	811	763	94	Pass
10.7568	746	711	95	Pass
11.1108	693	658	94	Pass
11,4649	632	621	98	Pass
11.8189	583	597	102	Fail
12,1730	536	561	104	Fail
12.5271	484	527	108	Fail
12.8811	456	498	109	Fail
13 2352	425	463	108	Fail
13 5892	403	438	108	Fail
13 9433	367	405	110	Fail
14 2973	336	379	112	Fail
14 6514	314	358	114	Fail
15 0054	298	343	115	Fail
15 3595	281	326	116	Fail
15 7135	265	309	116	Fail
16.0676	253	290	114	Fail
16 4216	238	278	116	Fail
16 7757	200	267	120	Fail
17 1297	201	246	120	Fail
17 4838	186	231	124	Fail
17 8379	175	219	125	Fail
18 1010	167	207	123	Fail
18 5460	145	180	120	Fail
18 9000	130	166	110	Fail
19 2541	126	149	118	Fail
19 6081	113	130	123	Fail
19 9622	104	131	125	Fail
20.3162	101	121	119	Fail
20.6703	95	110	115	Fail
21 0243	90	101	112	Fail
21 3784	85	94	110	Pass
21 7324	80	89	111	Fail
22 0865	71	83	116	Fail
22 4405	62	81	130	Fail
22 7946	59	75	127	Fail
23 1487	57	75	131	Fail
23 5027	56	69	123	Fail
23 8568	53	64	120	Fail
24 2108	52	56	107	Pass
24 5649	48	53	110	Pass
24 9189	45	49	108	Pass
25 2730	39	47	120	Fail
25 6270	35	47	134	Fail
25 9811	33	41	124	Fail
26.3351	30	40	133	Fail
26 6892	27	37	137	Fail
27 0432	27	35	129	Fail
27 3973	24	35	145	Fail
27 7513	23	35	152	Fail
28.1054	22	33	150	Fail

28.4594	20	32	160	Fail
28.8135	16	28	175	Fail
29.1676	15	28	186	Fail
29.5216	14	25	178	Fail
29.8757	14	22	157	Fail
30.2297	14	18	128	Fail
30.5838	12	17	141	Fail
30 9378	11	17	154	Fail
31 2919	ġ	17	188	Fail
31 6459	ğ	16	177	Fail
32 0000	7	14	200	Fail
32 3540	7	13	185	Fail
32.3340	7	10	171	Fail
33 0621	7	12	171	Fail
33 /162	7	12	167	Fail
22 7702	7	11	157	Fail
33.110Z	6	11	107	Fall
34.1243	0	11	103	Fall
34.4784	ю С	11	183	Fall
34.8324	6	11	183	Fall
35.1865	6	9	150	Fall
35.5405	6	8	133	Fail
35.8946	6	1	116	Fail
36.2486	5	1	140	Fail
36.6027	5	6	120	Fail
36.9567	5	6	120	Fail
37.3108	5	6	120	Fail
37.6648	5	6	120	Fail
38.0189	5	6	120	Fail
38.3729	5	6	120	Fail
38.7270	5	5	100	Pass
39.0810	5	5	100	Pass
39.4351	4	5	125	Fail
39.7892	4	5	125	Fail
40.1432	4	5	125	Fail
40.4973	4	5	125	Fail
40.8513	4	5	125	Fail
41.2054	4	5	125	Fail
41.5594	4	5	125	Fail
41.9135	3	5	166	Fail
42.2675	3	5	166	Fail
42.6216	3	5	166	Fail
42.9756	3	3	100	Pass
43.3297	3	3	100	Pass
43 6837	3	3	100	Pass
44 0378	3	3	100	Pass
<u>14.0070</u> <u>14</u> 3018	3	3	100	Paee
TT.JJJ10	5	5	100	1 033

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Flow Splitter 1 POC		377.97				3.52			
Flow Splitter 1 POC		377.97				3.52			
Total Volume Infiltrated		755.93	0.00	0.00		3.52	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 2

POC #2 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	?	Basin 74.46a	1 C			

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1948 10 01 2008 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 WDM 20211013_CLARK SG_Detention w flow splitter.wdm MESSU 25 Pre20211013_CLARK SG_Detention w flow splitter.MES 27 Pre20211013_CLARK SG_Detention w flow splitter.L61 Pre20211013_CLARK SG_Detention w flow splitter.L62 28 POC20211013_CLARK SG_Detention w flow splitter1.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 28 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 MAX 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1)1 1 1 501 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 27 0 28 SG4, Forest, Flat 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # -# ATMP SNOW PWATSEDPSTPWGPQALMSTLPESTNITRPHOSTRAC***2800100000000 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* 28 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 28
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2 WAT-PARM2 <PLS > PWATER input info: Part 2 *** # - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC 28 0 6 0.04 400 0.05 0 0.96 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR 28 0 0 3 2 0 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * INTFW IRC LZETP *** 2 0.4 0.7
 # #
 CEPSC
 UZSN
 NSUR

 28
 0.2
 0.4
 0.35
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1 GWVS 28 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 74.46COPY5011274.46COPY50113 PERLND 28 PERLND 28 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS * * * DB50 <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section # *** . *** ac-ft <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 1.3 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 1.3 IMPLND 1 999 EXTNL PREC <Name> # # *** WDM WDM

END IMPLND

WDM	I	1	EVAP	ENGL	0	.8		PERLND	1	999	EXTNL	PE:	LIND	
WDM	I	1	EVAP	ENGL	0	.8		IMPLND	1	999	EXTNL	PE:	FINP	
END	EXT	SOU	JRCES											
EXT	' TARG	ETS	3											
<-V	olume	è−>	<-Grp>	<-Member	<u>-><</u>	Mu	lt>Tran	<-Volur	ne->	<mer< td=""><td>nber></td><td>Tsys</td><td>Tgap</td><td>Amd ***</td></mer<>	nber>	Tsys	Tgap	Amd ***
<na< td=""><td>.me></td><td>#</td><td></td><td><name> #</name></td><td>‡ #<</td><td>-fac</td><td>tor->strg</td><td><name></name></td><td>#</td><td><nar< td=""><td>ne></td><td>tem</td><td>strg</td><td>strg***</td></nar<></td></na<>	.me>	#		<name> #</name>	‡ #<	-fac	tor->strg	<name></name>	#	<nar< td=""><td>ne></td><td>tem</td><td>strg</td><td>strg***</td></nar<>	ne>	tem	strg	strg***
COP END	PY 5 EXT	D1 TAF	OUTPUT RGETS	MEAN			48.4	WDM	501	FLOV	V	ENGL		REPL
MAS	S-LIN	IK												
<vo< td=""><td>lume></td><td>•</td><td><-Grp></td><td><-Member</td><td><u>-><</u></td><td>Mu</td><td>lt></td><td><target< td=""><td>t></td><td></td><td><-Grp</td><td>> <-1</td><td>lember</td><td><u>>***</u></td></target<></td></vo<>	lume>	•	<-Grp>	<-Member	<u>-><</u>	Mu	lt>	<target< td=""><td>t></td><td></td><td><-Grp</td><td>> <-1</td><td>lember</td><td><u>>***</u></td></target<>	t>		<-Grp	> <-1	lember	<u>>***</u>
<na M</na 	.me> IASS-L	JINF	ζ	<name> ‡ 12</name>	ŧ #<	-fac	tor->	<name></name>				<na< td=""><td>ame> ‡</td><td>‡ #***</td></na<>	ame> ‡	‡ #***
PER	LND		PWATER	SURO		0.08	3333	COPY			INPUT	' MEZ	AN	
E	ND MA	ASS-	-LINK	12										
M	IASS-L	JINF	ζ	13										
PER	LND		PWATER	IFWO		0.08	3333	COPY			INPUT	' MEZ	AN	
E	ND MA	ASS-	-LINK	13										

END MASS-LINK

END RUN

Mitigated UCI File

RUN GLOBAL WWHM4 model simulation END 2008 09 30 START 1948 10 01 END 3 0 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 20211013_CLARK SG_Detention w flow splitter.wdm MESSU 25 Mit20211013_CLARK SG_Detention w flow splitter.MES 27 Mit20211013_CLARK SG_Detention w flow splitter.L61 Mit20211013_CLARK SG_Detention w flow splitter.L62 POC20211013_CLARK SG_Detention w flow splitter2.dat 28 31 END FILES OPN SEOUENCE INGRP INDELT 00:15 34 PERLND 1 IMPLND IMPLND 4 IMPLND 14 2 RCHRES COPY 502 COPY COPY 602 DISPLY 2 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Flow Splitter 1 2 MAX 1 2 31 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 2 1 1 502 1 1 602 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 34 SG4, Lawn, Flat 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 4 0 0 1 0 0 0 0 0 0 0 0 0 0 34

PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ******** 34 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE
 INFC
 HWT

 34
 0
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2
 VWA1-PARM2

 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY

 34
 0
 6
 0.02
 400
 0.05
 0
 AGWRC 0.96 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP 0 34 0 3 2 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 INTFW 2 LZETP *** # - # CEPSC UZSN NSUR IRC 34 0.1 0.2 0.25 0.4 0.25 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1 GWVS # -0 34 0 END PWAT-STATE1 END PERLND TMPTIND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** 0 ROADS/FLAT 1 1 ROOF TOPS/FLAT 4 1 14 POND 1 END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL 0 0 1 0 0 0 1 $\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$ 4 0 0 0 14 0 0 0 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** 1 4 14 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI ***

END ACTIVITY

0 1 0 0 0 0 4 0 0 0 0 0 14 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2 * * * <PLS > # - # *** LSUR SLSUR NSUR RETSC 1 400 0.01 0.1 0.1 4 400 0.01 0.1 0.1 14 400 0.01 0.1 0.1 END IWAT-PARM2 IWAT-PARM3 * * * IWATER input info: Part 3 <PLS > # - # ***PETMAX PETMIN 0 1 Ο 4 0 0 14 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 1 0 0 0 4 0 14 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <-Source-> <--Area--> <-Target-> MBLK * * * * * * <Name> # <-factor-> <Name> # Tbl# Basin 2*** IMPLND 4 2.1 RCHRES 1 5 Basin 1*** PERLND 34 13.6 COPY 502 12 PERLND 34 13.6 COPY 602 12 perlnd 34 13.6 COPY 502 13 PERLND 34 13.6 COPY 602 13 IMPLND 26.3 COPY 502 15 1 IMPLND 26.3 COPY 602 15 1 COPY 502 15 IMPLND 4 20 4 20 602 15 IMPLND COPY IMPLND 14 4.13 COPY 502 15 4.13 COPY 602 15 IMPLND 14 *****Routing***** 2.1 COPY 502 15 IMPLND 4 IMPLND 4 2.1 COPY 602 15 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # #<-factor->strg <Name> # # * * * <Name> # # COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out Flow Splitter 1-007 2 1 1 1 28 0 1 1

END GEN-1 *** Secti	INFO Ion RCHRES*	* * *					
ACTIVITY <pls> # - # 1 END ACTIV</pls>	********** HYFG ADFG 1 0 /ITY	*** Active CNFG HTFG 0 0	Sections SDFG GQFG 0 0	********** OXFG NUFG 0 0	********* PKFG PHFG 0 0	*******	
PRINT-INE	FO *********** HYDR ADCA 4 0 C-INFO	CONS HEAT 0 0	int-flags SED GQL 0 0	********** OXRX NUTR 0 0	********* PLNK PHCB 0 0	PIVL PYR PIVL PYR 1 9	* * * * * * * * *
HYDR-PARN RCHRES # - #	11 Flags for VC A1 A2 FG FG FG * * *	r each HYDR A3 ODFVFG FG possib * * *	Section for each le exit * * *	*** ODGTFG *** possib * *	for each le exit * * *	FUNCT possib **	*** for each le exit *
1 END HYDR-	0 1 0 -PARM1	0 4 5	0 0 0	0 0	0 0 0	2 2	2 2 2
HYDR-PARN # - #	12 FTABNO	LEN	DELTH	STCOR	KS	DB50	* * *
2> 1 END HYDR-	-PARM2	0.01	0.0	0.0	0.5	0.0	~ ~ ~
HYDR-INIT RCHRES # - # <>< 1 END HYDR- END RCHRES	F Initial c *** VOL *** ac-ft <> 0 -INIT	conditions Initia for eac <>< 4.0	for each H l value h possible ><>< 0.0 0.0	HYDR sectio of COLIND e exit <><> 0.0 0.0	n Initia for eac *** <>< 0.0	l value h possible ><>< 0.0 0.0	*** of OUTDGT exit > 0.0 0.0
SPEC-ACTION END SPEC-AC FTABLES FTABLE 90 5 Depth	NS CTIONS 1 Area	Volume	Outflow1	Outflow2	Velocity	Travel Tin	me***
(IL) 0.000000 0.111111 0.222222 0.33333 0.444444 0.555556 0.666667 0.777778 0.888889 1.000000 1.11111 1.222222 1.33333 1.444444 1.555556 1.666667 1.777778 1.88889 2.000000 2.111111 2.222222 2.33333 2.444444 2.555556 2.666667 2.77778	(acres) 0.002296	(acre-it) 0.000000 0.000255 0.000510 0.000765 0.001020 0.001275 0.001530 0.001786 0.002041 0.002296 0.002551 0.002806 0.003316 0.003571 0.003826 0.004846 0.004336 0.004591 0.004846 0.004591 0.004846 0.005102 0.005357 0.005612 0.005867 0.006122 0.006377	(CIS) 0.4000000 0.40000000 0.40000000 0.40000000 0.40000000 0.40000000000	(CIS) 0.000000 0.000000 0.000000 0.000000 0.000000 11.00000 21.00000 31.00000 41.00000 51.00000 61.00000 101.0000 101.0000 101.0000 111.0000 101.00000 101.00000 101.00000 101.00000 101.00000 101.00000 100	(IT/Sec)	(Minute	3)***

2.888889 3.000000 3.111111 3.222222 3.33333 3.444444 3.555556 3.666667 3.77778 3.88889 4.00000 4.111111 4.222222 4.333333 4.44444 4.555556 4.666667 4.777778 4.888889 5.000000 5.111111 5.222222 5.333333 5.444444 5.555556 5.666667 5.777778 5.888889 6.000000 6.111111 6.222222 6.333333 6.444444 6.555556 5.666667 5.777778 5.888889 6.000000 6.111111 6.222222 6.333333 6.444444 6.555556 6.666667 6.777778 8.88889 7.000000 7.111111 7.222222 7.33333 7.444444 7.555556 7.666667 7.77778	0.002296 0.002296	0.006632 0.007142 0.007397 0.007652 0.007907 0.008162 0.008418 0.008673 0.009183 0.009438 0.009438 0.009438 0.009943 0.009943 0.010203 0.10203 0.010458 0.010203 0.010458 0.010713 0.010968 0.011223 0.012244 0.012499 0.012244 0.012499 0.012244 0.012754 0.013519 0.013519 0.013519 0.013519 0.013519 0.013519 0.013519 0.013549 0.013519 0.013549 0.014794 0.015049 0.015560 0.015815 0.016325 0.016350 0.01790 0.017345 0.017600 0.017855	0.400000 0.400000	$\begin{array}{c} 211.0000\\ 221.0000\\ 221.0000\\ 231.0000\\ 241.0000\\ 251.0000\\ 261.0000\\ 271.0000\\ 311.0000\\ 401.0000\\ 411.0000\\ 411.0000\\ 431.0000\\ 431.0000\\ 431.0000\\ 431.0000\\ 431.0000\\ 511.0000\\$
5.222222 5.333333 5.444444 5.555556	0.002296 0.002296 0.002296 0.002296	0.011989 0.012244 0.012499 0.012754	0.400000 0.400000 0.400000 0.400000	421.0000 431.0000 441.0000 451.0000
5.666667 5.777778 5.888889	0.002296 0.002296 0.002296	0.013009 0.013264 0.013519	0.400000 0.400000 0.400000	461.0000 471.0000 481.0000
6.000000 6.111111 6.222222 6.333333 6.444444	0.002296 0.002296 0.002296 0.002296	$\begin{array}{c} 0.013774\\ 0.014029\\ 0.014284\\ 0.014539\\ 0.014794 \end{array}$	$\begin{array}{c} 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ 0\end{array}$	491.0000 501.0000 511.0000 521.0000 531.0000
6.555556 6.666667 6.777778	0.002296 0.002296 0.002296 0.002296	0.015049 0.015305 0.015560 0.015815	$\begin{array}{c} 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ \end{array}$	541.0000 551.0000 561.0000 571.0000
7.000000 7.11111 7.222222 7.333333	0.002296 0.002296 0.002296 0.002296	0.016070 0.016325 0.016580	0.400000 0.400000 0.400000	581.0000 591.0000 601.0000
7.444444 7.555556 7.666667	0.002296 0.002296 0.002296 0.002296	0.017090 0.017345 0.017600	0.400000 0.400000 0.400000	621.0000 631.0000 641.0000
7.888889 8.000000 8.111111	0.002296 0.002296 0.002296 0.002296	0.017855 0.018110 0.018365 0.018621	$\begin{array}{c} 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ 0.400000\\ \end{array}$	651.0000 661.0000 671.0000 681.0000
8.222222 8.333333 8.444444 8.555556	0.002296 0.002296 0.002296 0.002296	0.018876 0.019131 0.019386 0.019641	0.400000 0.400000 0.400000 0.400000	691.0000 701.0000 711.0000 721.0000
8.666667 8.777778 8.888889 9.000000	0.002296 0.002296 0.002296 0.002296	0.019896 0.020151 0.020406 0.020661	0.400000 0.400000 0.400000 0.400000	731.0000 741.0000 751.0000 761.0000
9.111111 9.222222 9.333333 9.444444	0.002296 0.002296 0.002296 0.002296	0.020916 0.021171 0.021426 0.021681	0.400000 0.400000 0.400000 0.400000	771.0000 781.0000 791.0000 801.0000
9.555556 9.666667 9.77778 9.888889	0.002296 0.002296 0.002296 0.002296	0.021937 0.022192 0.022447 0.022702	$0.400000 \\ 0.400000 \\ 0.400000 \\ 0.400000 \\ 0.400000$	811.0000 821.0000 831.0000 841.0000
END FTABLE END FTABLES	ι Ι			

EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # ***

WDM 2 P WDM 2 P WDM 1 E WDM 1 E	PREC PREC VAP VAP	ENGL ENGL ENGL ENGL	1 1 0 0	L.3 L.3 D.8 D.8	PERLND IMPLND PERLND IMPLND	1 1 1 1	999 999 999 999	EXTNL EXTNL EXTNL EXTNL	PRI PRI PET	EC EC FINP FINP	
END EXT SOUR	CES										
EXT TARGETS <-Volume-> < <name> # COPY 2 0 COPY 502 0 COPY 602 0 RCHRES 1 H RCHRES 1 H RCHRES 1 H RCHRES 1 H END EXT TARG</name>	-Grp> DUTPUT DUTPUT IYDR IYDR IYDR IYDR IYDR IYDR IYDR	<-Membe <name> MEAN MEAN MEAN RO O STAGE</name>	r->< # #< 1 1 1 1 1 1 1 1 2 1 1 1	<mult>Tran <-factor->strg 48.4 48.4 48.4 1 1 1 1</mult>	<-Volu <name> WDM WDM WDM WDM WDM WDM WDM</name>	me-> # 702 802 902 1002 1003 1004 1005	<mem <nam FLOW FLOW FLOW FLOW FLOW STAG</nam </mem 	ber>	Tsys tem ENGL ENGL ENGL ENGL ENGL ENGL	Tgap strg	Amd *** strg*** REPL REPL REPL REPL REPL REPL REPL REPL
MASS-LINK <volume> < Name> MASS-LINK IMPLND I</volume>	-Grp>	<-Membe <name> 5 SURO</name>	r->< # #<	<mult> <-factor-> 0.083333</mult>	<targe <name> RCHRES</name></targe 	t>		<-Grp INFLO	> <-1 <na< td=""><td>Member ame> ‡ DL</td><td>?−>*** ‡ #***</td></na<>	Member ame> ‡ DL	?−>*** ‡ #***
END MASS-L MASS-LINK PERLND P END MASS-L	NATER INK	5 12 SURO 12		0.083333	COPY			INPUT	ME <i>l</i>	AN	
MASS-LINK PERLND P END MASS-L	WATER JINK	13 IFWO 13		0.083333	СОРҮ			INPUT	ME <i>l</i>	λN	
MASS-LINK IMPLND I END MASS-L	WATER	15 SURO 15		0.083333	COPY			INPUT	ME <i>l</i>	AN	

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2021; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Appendix C

Draft Geotechnical Report

Terra Associates, Inc. July 12, 2021

Wetland and Fish and Wildlife Habitat Assessment Report

Soundview Consultants October 2021

GEOTECHNICAL REPORT

Camas Business Center 4707 and 4723 – Northwest Lake Road Camas, Washington

Project No. T-8553

Terra Associates, Inc.

Prepared for:

Panattoni Development Company Tacoma, Washington

July 12, 2021

TERRA ASSOCIATES, Inc.

Consultants in Geotechnical Engineering, Geology and Environmental Earth Sciences

> July 12, 2021 Project No. T-8553

Mr. Bjorn Brynestad Panattoni Development Company 1821 Dock Street, Suite 100 Tacoma, Washington 98402

Subject: Geotechnical Report Camas Business Center 4707 and 4723 – Northwest Lake Road Camas, Washington

Dear Mr. Brynestad:

As requested, we have conducted a geotechnical engineering study for the subject project. The attached report presents our findings and recommendations for the geotechnical aspects of project design and construction.

Our field exploration indicates the site is generally underlain by 1 to 11 inches of organic topsoil overlying medium stiff to very stiff silts with varying amounts of sand and gravel to the termination of the test pits. Test pits in the central and south-central portions of the site terminated in deposits of medium dense sands with varying silt and gravel contents. Additionally, Columbia River Basalt was encountered in the north and north-central portions of the site within the upper three to nine feet. Groundwater was observed in 28 of the 80 test pits at depths of 2.5 to 12 feet.

In our opinion, soil and groundwater conditions at the site will be suitable for support of the development as planned, provided recommendations contained herein are incorporated into project design and construction specifications.

We trust the information provided in the attached report is sufficient for your current needs. If you have any questions or need additional information, please call.

Sincerely yours, TERRA ASSOCIATES, INC.

Michael J. Xenos, E.I.T. Staff Engineer

Carolyn S. Decker, P.E. Project Engineer

TABLE OF CONTENTS

Page No.

1.0	Projec	ct Description	1
2.0	Scope	e of Work	1
3.0	Site C	Conditions	2
	3.1	Surface	2
	3.2	Soils	2
	3.3	Groundwater	
	3.4	Geologic Hazards	
		3.4.1 Erosion Hazard Areas	3
		3.4.2 Landslide Hazard Areas	5
		3.4.3 Seismic Hazard Areas	5
3.5	Seism	ic Site Class	6
4.0	Discu	ssion and Recommendations	6
	4.1	General	6
	4.2	Site Preparation and Grading	7
	4.3	Preload/Surcharge	8
	4.4	Excavations	9
	4.5	Foundations	9
	4.6	Floor Slabs	
	4.7	Stormwater Facilities	
	4.8	Infiltration Feasibility	
	4.9	Drainage	
	4.10	Utilities	
	4.11	Pavements	13
5.0	Addit	ional Services	14
6.0	Limit	ations	115

Figures

Vicinity Map	Figure	1
Exploration Location Plan	Figure	2
Settlement Marker Detail	Figure	3
Typical Wall Drainage Detail	Figure	4

Appendices

Field Exploration and Laboratory	7 Testing	Appendix A
----------------------------------	-----------	------------

Geotechnical Report Camas Business Center 4707 and 4723 – Northwest Lake Road Camas, Washington

1.0 PROJECT DESCRIPTION

The project consists of developing the site with six industrial buildings with dock-high loading, along with a stormwater pond, associated access, parking, and utility improvements. Based on preliminary site plans prepared by Synthesis PLLC dated February 23, 2021, final floor areas are expected to range from approximately 35,775 square feet to 301,500 square feet. The preliminary site plans also show a stormwater pond in the northwestern portion of the site. Grading plans were not available at the time of this report. Based on the existing site topography we expect cuts and fills of up to approximately 10 feet will be required to achieve final pad elevations across the building area.

We anticipate the building will be constructed using precast reinforced concrete tilt-up perimeter wall panels with interior isolated columns supporting a steel or wood-truss roof system. We expect structural loads will be light, about 100 to 150 kips for isolated columns and 4 to 6 kips per foot for continuous perimeter bearing walls. Maximum product loading on the floors is not expected to exceed 350 pounds per square foot (psf).

The recommendations contained in the following sections of this report are based on the above design features. If actual features vary or changes are made, we should review them in order to modify our recommendations, as required. We should review the final design drawings and specifications to verify our recommendations have been properly interpreted and incorporated into project design and construction.

2.0 SCOPE OF WORK

Our work was completed in accordance with our authorized proposal dated January 21, 2021. Accordingly, on May 24, 2021, through May 26, 2021, we observed soil and groundwater conditions at 80 test pits excavated to maximum depths of 6 to 12 feet below current site grades. Using the information obtained from this subsurface exploration, we performed analyses to develop geotechnical recommendations for development at the site.

Specifically, this report addresses the following:

- Soil and groundwater conditions.
- Seismic design parameters per the current International Building Code (IBC).
- Geologic Hazards per the City of Camas Municipal Code.
- Site preparation and grading.
- Building preload/surcharge program.
- Excavations.

- Foundations including foundation alternatives.
- Slab-on-grade floors.
- Stormwater facilities.
- Infiltration feasibility.
- Drainage.
- Utilities.
- Pavements.

Recommendations outlined in this report regarding drainage are associated with soil strength, design earth pressures, erosion, and stability. Design and performance issues with respect to moisture as it relates to the structure environment are beyond Terra Associates, Inc.'s purview. A building envelope specialist or contractor should be consulted to address these issues, as needed.

3.0 SITE CONDITIONS

3.1 Surface

The site consists of 2 tax parcels totaling approximately 74 acres located at 4707 and 4723 NW Lake Road in Camas, Washington. The approximate site location is shown on Figure 1.

The site is currently occupied by 3 structures in the south-central portion of the site along with associated access and landscaping. The remainder of the site is vacant and predominately covered with brush and weeds, with the exception of the northwestern portion, which is covered with mature trees. Site topography in the southern portion of the site generally consists of a slope that descends from the east to the west with an overall relief of approximately 42 feet. At the approximate midpoint of the site from north to south, there is a moderate-to-steep slope that descends from the south to the north with an overall relief of approximately 48 feet. The grade then transitions to a slight slope, that continues to descend to the north with an overall relief of approximately 20 feet.

3.2 Soils

In general, the soil conditions at the site consist of approximately 1 to 11 inches of organic topsoil overlying 3 to 12 feet of medium stiff to very stiff silt with varying amounts of sand and gravel to the termination of the test pits. There were instances, most notably in the central and south-central portions of the site, where the test pits terminated in deposits of medium dense sand with silt and silty sand (with varying gravel contents), and similar deposits were occasionally exposed in the very north and southwest portions of the site. Additionally, Columbia River Basalt was encountered in the north and north-central portions of the site, also contained one to 6 feet of gravel with silt and sand to silty gravel with sand material underlying the upper silts. We observed, approximately 3 feet of fill material in Test Pit TP-78 with occasional organic and construction debris.

The *Geologic Map of the Camas Quadrangle, Clark County, Washington*, by R.C. Evarts and J.E. O'Connor (2008) maps the site as Quarternary-tertiary Sedimentary Conglomerate (Qt_c). This map unit is consistent with the underlying basalt bedrock observed in our field explorations. However, the upper silts, sands, and gravels observed in the test pits are more consistent with Sand and Silt Facies (Qf_s), and Gravel Facies (Qfg), which are mapped roughly 1,000 feet to the southwest and 2,000 feet to the northeast, respectively.

The preceding discussion is intended to be a brief review of the soil conditions observed at the site. More detailed descriptions are presented on the Test Pit Logs attached in Appendix A. The approximate location of the test pits is shown on attached Figure 2.

3.3 Groundwater

We observed minor to moderate groundwater seepage in 8 of the 80 test pits excavated. Groundwater was primarily observed in the test pits north of the wetland area, as well as in test pits located in the central, south-central, and southwest portions of the site at depths ranging from approximately 2.5 to 12 feet below existing grades. The observed seepage was typically observed within sandy or gravelly deposits, or perched within sandy seams or around pockets of gravel contained within the silt deposits.

Our observations in the test pits indicate observed groundwater levels correspond with the local groundwater table associated with Lacamas Creek located approximately 2,400 feet to the northeast. Groundwater seepage depth observations were made during the late spring, so groundwater is expected to be between seasonal high and seasonal low levels.

Mottled soils were observed throughout many of the test pits which indicated the presence of perched groundwater throughout much of the site. The occurrence of shallow perched groundwater is typical for sites underlain by fine-grained soils or relatively shallow bedrock. Fluctuations in the static groundwater level will occur seasonally. Typically, groundwater will reach maximum levels during the wet winter months. Based on our experience with groundwater conditions in the area, we would expect the seasonal high groundwater level to reach up to existing site grades.

3.4 Geologic Hazards

Chapter 16.59.010 of the City of Camas Municipal Code (CMC) defines geologic hazards as "...areas susceptible to erosion hazard, landslide hazard, seismic hazard, mine hazard, and other geologic events." We have evaluated the site for these hazards in the following sections below.

3.4.1 Erosion Hazard Areas

Chapter 16.59.020.A of the CMC defines erosion hazard areas as "…areas where there is not a mapped or designated landslide hazard, but where there are steep slopes equal to or greater than forty percent slope. Steep slopes which are less than ten feet in vertical height and not part of a larger steep slope system, and steep slopes created through previous legal grading activity are not regulated steep slope hazard areas."

The majority of the soils observed on the site are classified as Hesson clay loam, 0 to 8 percent slopes, in the south and northeast, and Powel silt loam, 0 to 8 percent slopes in the north by the United States Department of Agriculture Natural Resources Conservation Service (NRCS). Additionally, pockets of soils classified as Cove silty clay loam, thin solum, 0 to 3 percent slopes are located throughout the site. Over the site with existing slope gradients, these soils will have a slight to moderate potential for erosion when exposed.

The soils classified as Hesson clay loam, 8 to 20 percent slopes located at the approximate north-south midpoint along the moderate-to-steep slope will have a severe potential for erosion when exposed. Therefore, it is our opinion that an erosion hazard exists along the moderate-to-steep slope in the approximate center of the site.

Implementation of temporary and permanent Best Management Practices (BMPs) for preventing and controlling erosion will be required and will mitigate the erosion hazard. At a minimum, we recommend implementing the following erosion and sediment control BMPs prior to, during, and immediately following construction activities at the site.

Prevention

- Limit site clearing and grading activities to the relatively dry months (typically May through September).
- Limit disturbance to areas where construction is imminent.
- Locate temporary stockpiles of excavated soils no closer than ten feet from the crest of the slope.
- Provide temporary cover for cut slopes and soil stockpiles during periods of inactivity. Temporary cover may consist of durable plastic sheeting is securely anchored to the ground surface or straw mulch.
- Establish permanent cover by seeding, in conjunction with a mulch cover or appropriate hydroseeding, over exposed areas that will not be disturbed for a period of 30 days or more.

Containment

- Install a silt fence along site margins and downslope of areas that will be disturbed. The silt fence should be in place before clearing and grading is initiated.
- Intercept surface water flow and route the flow away from the slope to a stabilized discharge point. Surface water must not discharge at the top or onto the face of the steep slope.
- Provide onsite sediment retention for collected runoff.

The contractor should perform a daily review and maintenance of all erosion and sedimentation control measures at the site.

3.4.2 Landslide Hazard Areas

Chapter 16.59.020.B of the CMC defines landslide hazard areas as "...areas potentially subject to landslides based on a combination of geologic, topographic, and hydrologic factors. They include areas susceptible because of any combination of bedrock, soil, slope (gradient), slope aspect, structure, hydrology, or other factors. Examples of these may include, but are not limited to the following:

- 1. Areas of pervious slope failures including areas of unstable old or recent landslides;
- 2. Areas with all three of the following characteristics:
 - a. Slopes steeper than 15 percent,
 - b. Hillsides intersecting geologic contacts with permeable sediments overlying a low permeability sediment or bedrock, and
 - c. Any springs or ground water seepage;
- 3. Slopes that are parallel or sub-parallel to planes of weakness, such as bedding planes, joint systems and fault planes in subsurface materials;
- 4. Areas mapped by:
 - Washington Department of Natural Resources Open File Report: Slope Stability of Clark County, 1975, as having potential instability, historical or active landslides, or as older landslide debris, and
 - b. The Washington Department of Natural Resources Open File Report: Geologic Map of the Vancouver Quadrangle, Washington and Oregon, 1987, as landslides;
- 5. Slopes greater than eighty percent, subject to rock fall during earthquake shaking;
- 6. Areas potentially unstable as a result of rapid stream incision, stream bank erosion, and stream undercutting the toe of the slope;
- 7. Areas located in a canyon or on an active alluvial fan, presently or potentially subject to inundation by debris flows, debris torrents, or catastrophic flooding."

The onsite slopes do not match any of the above descriptions nor is the site located on the Washington Department of Natural Resources' Geologic Landslide Hazard Map. Therefore, in our opinion, the site does not present a landslide hazard as defined by the CMC in our opinion.

3.4.3 Seismic Hazard Areas

Chapter 16.59.020.C of the CMC defines seismic hazard areas as "... areas that are subject to severe risk of damage as a result of earthquake-induced soil liquefaction, ground shaking amplification, slope failure, settlement, or surface faulting. Relative seismic hazard is mapped on the NEHRP site class map of Clark County, published by the Washington Department of Natural Resources."

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of fine-grained sands underlying the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction; thus, eliminating the soil's strength.

The NEHRP Site Class Map of Clark County, published by the Washington State DNR and dated September 2004, classifies the site as Seismic Site Class B to C, which typically present negligible risk for soil liquefaction. Additionally, based on the soil and groundwater conditions we observed, the risk for soil liquefaction occurring at the site is negligible due to the relative density of the soils and amount of cohesive material that would be sufficient to resist the cyclical loading of a seismic event. Columbia River Basalt likely underlies most of the site as evidenced by the north and north-central test pits. Therefore, in our opinion, the site would not be considered a seismic hazard area as defined by the CMC.

3.5 Seismic Site Class

Based on soil conditions observed in the test pits and our knowledge of the area geology, per Chapter 16 of the 2018 International Building Code (IBC), Site Class "C" should be used in structural design.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 <u>General</u>

Based on our study, development of the site as proposed is feasible from a geotechnical engineering standpoint. The primary geotechnical concern at the site is the presence of soil strata susceptible to consolidation under the planned building loads. The compressible soils consist of layers of medium stiff to very stiff silts that vary in thickness across the site. These soils are compressible and, if not mitigated, will likely experience unacceptable levels of differential settlement under proposed project loads.

Given the depth to the compressible silt layers, in our opinion, the potential post-construction building settlements can be mitigated by implementing a preload/surcharge program. This would entail raising site grades to finish floor elevation for a period of time to induce settlements prior to application of building loads. Building construction can begin after completion of the preload/surcharge program. The building can be supported on conventional spread footings bearing on the preload structural fill. Floor slabs can be similarly supported on the preload structural fill and pavements can be supported on structural fill or compacted native soils.

If building schedules do not allow for a surcharge program to take place, the building can be supported on ground improved by installing vibrated stone columns, which would preclude the need for a fill surcharge program.

The upper silt soils and lower silty sand to silty gravel soils observed at the site contain a significant amount of fines and will be difficult to compact as structural fill when too wet. The ability to use native soil soils from site excavations as structural fill will depend on its moisture content and the prevailing weather conditions at the time of construction. If grading activities will take place during winter, the owner should be prepared to import clean granular material for use as structural fill and backfill. Alternatively, stabilizing the moisture in the native and existing fill soils with cement or lime can be considered.

Detailed recommendations regarding these issues and other geotechnical design considerations are provided in the following sections. These recommendations should be incorporated into the final design drawings and construction specifications.

4.2 Site Preparation and Grading

To prepare the site for construction, all vegetation, organic surface soils, and other deleterious material should be stripped and removed from the site. Surface stripping depths of 1 to 11 inches should be expected to remove the organic surface soils and vegetation. In the developed portions of the site, demolition of existing structures should include removal of existing foundations and buried asphalt, and abandonment of underground septic systems and other buried utilities. Abandoned utility pipes that fall outside of new building areas can be left in place, provided they are sealed to prevent intrusion of groundwater seepage and soil. Organic topsoil will not be suitable for use as structural fill, but may be used for limited depths in nonstructural areas.

Once clearing and stripping operations are complete, cut and fill operations can be initiated to establish desired building grades. Prior to placing fill, all exposed bearing surfaces should be observed by a representative of Terra Associates, Inc. to verify soil conditions are as expected and suitable for support of new fill or building elements. Our representative may request a proofroll using heavy rubber-tired equipment to determine if any isolated soft and yielding areas are present. If excessively yielding areas are observed and they cannot be stabilized in place by compaction, the affected soils should be excavated and removed to firm bearing and grade restored with new structural fill. If the depth of excavation to remove unstable soils is excessive, the use of geotextile fabrics such as Mirafi 500X or an equivalent fabric can be used in conjunction with clean granular structural fill. Our experience has shown, in general, a minimum of 18 inches of a clean, granular structural fill place and compacted over the geotextile fabric should establish a stable bearing surface.

Our study indicates a majority of the native soils contain a sufficient percentage of fines (silt- and clay-sized particles) that will make them difficult to compact as structural fill if they are too wet or too dry. Accordingly, the ability to use these upper native soils from site excavations as structural fill will depend on their moisture content and the prevailing weather conditions when site grading activities take place. Soils that are too wet to properly compact could be dried by aeration during dry weather conditions or mixed with an additive such as cement or lime to stabilize the soil and facilitate compaction. If an additive is used, additional Best Management Practices (BMPs) for its use will need to be incorporated into the Temporary Erosion and Sedimentation Control plan (TESC) for the project.

Additionally, the bedrock soils will be difficult to reuse as structural fill. If bedrock is used, it will need to be crushed into pieces that are smaller than 6 inches in diameter and then compacted in 6 inch lifts.

If grading activities are planned during the wet winter months, or if they are initiated during the summer and extend into fall and winter, the contractor should be prepared to import wet-weather structural fill. For this purpose, we recommend importing a granular soil that meets the following grading requirements:

U.S. Sieve Size	Percent Passing
6 inches	100
No. 4	75 maximum
No. 200	5 maximum*

*Based on the 3/4-inch fraction.

Prior to use, Terra Associates, Inc. should examine and test all materials to be imported to the site for use as structural fill.

Structural fill should be placed in uniform loose layers not exceeding 6 or 12 inches and compacted to a minimum of 95 percent of the soil's maximum dry density, as determined by American Society for Testing and Materials (ASTM) Test Designation D-698 (Standard Proctor). The moisture content of the soil at the time of compaction should be within two percent of its optimum, as determined by this ASTM standard. In nonstructural areas, the degree of compaction can be reduced to 90 percent.

4.3 Preload/Surcharge

We recommend preloading the building area to limit building and floor slab settlements to tolerable levels. For this procedure, we recommend placing structural fill in the building areas to the design floor elevation, and delaying building construction until settlement under this fill load has occurred. The preload fill should extend a minimum of two feet beyond the building perimeter. A minimum fill depth of five feet is recommended.

Total settlement under the preload/surcharge fill is estimated in the range of 8 to 13 inches. These settlements are expected to occur in about 4 to 6 weeks following full application of the building fill.

To verify the amount of settlement and the time rate of movement, the preload program should be monitored by installing settlement markers. The settlement markers should be installed on the existing grade prior to placing any building or preload fills. Once installed, elevations of both the fill height and marker should be taken daily until the full height of the preload is in place. Once fully preloaded, readings should continue weekly until the anticipated settlements have occurred. A typical settlement marker detail is provided as Figure 3.

It is critical that the grading contractor recognize the importance of the settlement marker installations. All efforts must be made to protect the markers from damage during fill placement. It is difficult, if not impossible, to evaluate the progress of the preload program if the markers are damaged or destroyed by construction equipment. As a result, it may be necessary to install new markers and extend the surcharging time period in order to ensure that settlements have ceased and building construction can begin.

4.4 Excavations

All excavations at the site associated with confined spaces, such as those for utility construction, must be completed in accordance with local, state, or federal requirements. Based on current Washington Industrial Safety and Health Act (WISHA) regulations, the lower medium dense sands and medium dense to dense gravels found on the project site would be classified as Type C soils. The upper, medium stiff to very stiff silts would be classified as Type B soil.

Accordingly, temporary excavations in Type C soils should have their slopes laid back at an inclination of 1.5:1 (Horizontal:Vertical) or flatter, from the toe to the crest of the slope. Side slopes in Type B soils can be laid back at a slope inclination of 1:1 or flatter. If there is insufficient space to complete the excavations in this manner, or if excavations greater than 20 feet in depth are planned, temporary shoring to support the excavations may be required. Properly designed and installed shoring trench boxes can be used to support utility trench excavations where required.

Based on our study, groundwater should be anticipated within excavations extending below depths of about 7 to 12 feet below native surface grades. Excavations extending below this depth may encounter groundwater with volumes and flow rates sufficient to require some level of dewatering. Shallow excavations that do not extend more than two to three feet below the groundwater table can likely be dewatered by conventional sump-pumping procedures along with a system of collection trenches. Deeper excavations will require dewatering by well points or isolated deep-pump wells. The utility subcontractor should be prepared to implement excavation dewatering by well point or deep-pump wells, as needed. This will be an especially critical consideration for any deep excavations such for lift stations and sanitary sewer tie-ins.

This information is provided solely for the benefit of the owner and other design consultants and should not be construed to imply that Terra Associates, Inc. assumes responsibility for job site safety. It is understood that job site safety is the sole responsibility of the project contractor.

4.5 Foundations

Following the completion of the preload program. The building may be supported on conventional spread footing foundations bearing on subgrade prepared as recommended in Section 4.2 of this report. Perimeter foundations exposed to the weather should bear at a minimum depth of 1.5 feet below final exterior grades for frost protection. Interior foundations can be constructed at any convenient depth below the floor slab.

Building foundations should bear on a minimum of two feet of structural fill that replaces the native silt soils.

We recommend designing foundations bearing on two feet of structural fill for a net allowable bearing capacity of 2,500 psf. For short-term loads, such as wind and seismic, a one-third increase in this allowable capacity can be used. Following successful completion of the preload/surcharge program, with structural loading as anticipated and this bearing stress applied, estimated total foundation settlements of about one-inch and differential settlement of $\frac{1}{2}$ -inch should be expected.

For designing foundations to resist lateral loads, a base friction coefficient of 0.35 can be used. Passive earth pressures acting on the sides of the footings can also be considered. We recommend calculating this lateral resistance using an equivalent fluid weight of 300 pounds per cubic foot (pcf). We recommend not including the upper 12 inches of soil in this computation because it can be affected by weather or disturbed by future grading activity. This value assumes the foundations will be backfilled with structural fill as described in Section 4.2 of this report. The values recommended include a safety factor of 1.5.

Ground Improvement

As an alternative to the surcharging the building foundations, the buildings can be supported on improved ground using vibrated stone columns. This method creates highly densified columns of graded aggregate that would extend through the upper medium stiff soils into the underlying medium dense to dense sands and gravels. Due to the methods used to construct the columns, some improvement of the adjacent soils is also realized. Moreover, these methods can provide liquefaction mitigation by providing drainage paths and reduced pore pressures during ground shaking, and by constructing stiff, non-liquefiable inclusions in the soils. Once constructed, conventional spread footing foundations can be designed to bear immediately above the stone columns.

These ground improvement techniques are typically completed on a design/build approach with both design and construction completed by a specialty contractor. We can assist in contracting and selecting the specialty contractor, if desired.

4.6 Floor Slabs

Slab-on-grade floors may be supported on subgrade prepared as recommended in Section 4.2 of this report. Immediately below the floor slabs, we recommend placing a four-inch-thick capillary break layer of clean, free-draining, coarse sand or fine gravel that has less than five percent passing the No. 200 sieve. This material will reduce the potential for upward capillary movement of water through the underlying soil and subsequent wetting of the floor slabs.

The capillary break layer will not prevent moisture intrusion through the slab caused by water vapor transmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer, then cover the membrane with a layer of clean sand or fine gravel to protect it from damage during construction and aid in uniform curing of the concrete slab. It should be noted, if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will be ineffective in assisting in uniform curing of the slab and can actually serve as a water supply for moisture transmission through the slab and affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. We recommend floor designers and contractors refer to the current American Concrete Institute (ACI) Manual of Concrete Practice for further information regarding vapor barrier installation below slab-on-grade floors.

With the subgrade prepared as recommended, design of the floor slab for storage rack loading and lift truck vehicle traffic, a subgrade modulus of 100 pounds per square inch per inch of deflection (pci) can be used.

4.7 Stormwater Facilities

No stormwater plans were available at the time of this report.

Detention Vault

If onsite detention will be provided by a buried vault, we expect that the bottom of the excavation would likely expose native, medium dense sands with silt, medium dense to dense silty gravels with sand, stiff to very stiff silts, and/or hard, moderately weathered Columbia River Basalt. Vault foundations supported by these native soils may be designed for an allowable bearing capacity of 4,000 psf provided that the foundation subgrade is at least 8 feet below current site grades. For short-term loads, such as seismic, a one-third increase in this allowable capacity can be used. Wet subgrade conditions that are easily disturbed by construction traffic will be exposed at the bottom of the vault excavation. To maintain a stable foundation subgrade, the native soils should be overexcavated a minimum depth of 12 inches below foundation grade and restored with clean 1 ¼-inch to 2-inch crushed rock.

Vault walls should be designed as below-grade retaining walls. The magnitude of earth pressure development on engineered retaining walls will partly depend on the quality of the wall backfill. We recommend placing and compacting wall backfill as structural fill as described in Section 4.2 of this report. To prevent overstressing the walls during backfilling, heavy construction machinery should not be operated within 5 feet of the wall. Wall backfill in this zone should be compacted with hand-operated equipment. To prevent hydrostatic pressure development, wall drainage must also be installed. A typical wall drainage detail is shown on Figure 4.

With the recommended wall backfill and drainage, we recommend designing the vault walls for an earth pressure imposed by an equivalent fluid weighing 50 pcf. Any portion of the wall for which drainage cannot be provided should be designed for an earth pressure equivalent to a fluid weighing 85 pcf. For evaluating walls under seismic loading, an additional uniform earth pressure equivalent to 8H psf, where H is the height of the below-grade wall in feet, can be used. These values assume a horizontal backfill condition. Where applicable, a uniform horizontal traffic value of 75 psf should be included in design of vault walls.

The detention vault will be subject to uplift pressures if drainage is not provided for the detention vault walls. For design, uplift forces should be based on a groundwater elevation equal to the current ground surface. The weight of the structure and the weight of the soil above its foundation will provide resistance to uplift. A soil unit weight of 120 pcf can be used in designing the structure to resist uplift forces.

Detention Pond

If fill berms will be constructed, the berm locations should be stripped of topsoil, duff, and soils containing organic material prior to the placement of fill. The fill berms should be constructed by placing structural fill in accordance with recommendations outlined in Section 4.2 of this report. Material used to construct pond berms should consist of predominately granular soils with a maximum size of 3 inches and a minimum of 20 percent fines.

Terra Associates, Inc. should examine and test all onsite or imported materials proposed for use as berm fill prior to their use.

It is possible that pockets of sandy or gravelly soils may be exposed within the pond area. Therefore, it may be necessary to line the dead storage portion of the pond for water quality purposes depending on the final grades and exposed soils.

Due to the exposure to fluctuating stored water levels and wave action, soils exposed on the interior side slopes of the ponds may be subject to some risk of periodic shallow instability or sloughing. Establishing interior slopes at a 3:1 gradient will significantly reduce or eliminate this potential. Exterior berm slopes and interior slopes above the maximum water surface should be graded to a finished inclination no steeper than 2:1. Finished slope faces should be thoroughly compacted and vegetated to guard against erosion.

We should review the stormwater plans when they are completed and revise our recommendations, if required.

4.8 Infiltration Feasibility

Based on our study, subsurface conditions are generally not favorable for infiltration of site stormwater. The surficial silt soils and relatively shallow silty sand soils observed at the site contain a high percentage of soil fines that would impede any downward migration of site stormwater. Additionally, the relatively shallow bedrock observed in the north and north-central portions of the site likely underlies the rest of the site and would not be a suitable receptor of site stormwater. Even low impact development (LID) techniques would likely fill up and overtop during rain events and cause minor local flooding. While zones of sands with silt and gravels were observed below the upper silts in the southwest and north portions of the site, there is an insufficient volume of material to support infiltration and many of these soils contained observable groundwater seepage which indicates site stormwater could not properly infiltrate into these deposits. Based on these soil conditions, infiltration at the site is not feasible and the stormwater should be managed using a conventional system.

4.9 Drainage

Surface

Final exterior grades should promote free and positive drainage away from the site at all times. Water must not be allowed to pond or collect adjacent to foundations or within the immediate building areas. We recommend providing a positive drainage gradient away from the building perimeters. If this gradient cannot be provided, surface water should be collected adjacent to the structures and directed to appropriate storm facilities.

Subsurface

In our opinion, with floor slabs at or elevated above the adjacent exterior grade, and positive drainage away from the structure maintained, installation of conventional perimeter foundation drains would not be necessary for the industrial grade building.

If positive drainage away from the building perimeters is not provided, or where landscaping is completed adjacent to the buildings, we recommend installing a continuous drain along the outside lower edge of the perimeter building foundations. The drains can be laid to grade at an invert elevation equivalent to the bottom of footing grade. The drains can consist of four-inch diameter perforated PVC pipe that is enveloped in washed half-to three-quarter-inch gravel-sized drainage aggregate. The aggregate should extend six inches above and to the sides of the pipe. The foundation drains and roof downspouts should be tightlined separately to an approved point of controlled discharge. All drains should be provided with cleanouts at easily accessible locations and should be serviced at least once each year.

4.10 Utilities

Utility pipes should be bedded and backfilled in accordance with American Public Works Association (APWA), or City of Camas specifications. As a minimum, trench backfill should be placed and compacted as structural fill, as described in Section 4.2 of this report. As noted, the native soils are moisture sensitive and close moisture control will be required to facilitate proper compaction. If utility construction takes place during the wet winter months, it will likely be necessary to import suitable wet weather fill for utility trench backfilling.

The utility contractor should also be prepared for encountering unstable soft alluvial soils below the pipe invert elevations. If not removed from below the pipe and replaced with crushed rock or additional bedding material, pipe deflections may occur as a result of the soil yielding and compressing in response to loading imposed during trench backfilling. The need to overexcavate and stabilize the pipe foundation before backfilling should be evaluated by observation and testing during construction. We recommend utilizing pipe connections that can accommodate the anticipated settlements discussed above.

4.11 Pavements

Pavement subgrades should be prepared as described in Section 4.2 of this report. Regardless of the degree of relative compaction achieved, the subgrade must be firm and relatively unyielding before paving. The subgrade should be proofrolled with heavy rubber-tired construction equipment such as a loaded 10-yard dump truck to verify this condition.

The pavement design section is dependent upon the supporting capability of the subgrade soils and the traffic conditions to which it will be subjected. We expect traffic at the facility will consist of cars and light trucks, along with heavy traffic in the form of tractor-trailer rigs. For design considerations, we have assumed traffic in parking and in car/light truck access pavement areas can be represented by an 18-kip Equivalent Single Axle Loading (ESAL) of 50,000 over a 20-year design life. For heavy traffic pavement areas, we have assumed an ESAL of 300,000 would be representative of the expected loading. These ESALs represent loading approximately equivalent to 3 and 18, loaded (80,000-pound GVW) RV rigs traversing the pavement daily in each area, respectively.

With a stable subgrade prepared as recommended, we recommend the following options for pavement sections:

Light Traffic and Parking:

- Two inches of hot mix asphalt (HMA) over six inches of crushed rock base (CRB)
- Full depth HMA 4 inches

Heavy Traffic:

- Three inches of HMA over 8 inches of CRB
- Full depth HMA 5.5 inches

For exterior Portland cement concrete (PCC) pavement, we recommend the following:

- 6 inches of PCC over two inches of CRB
 - 28-day compressive strength 4,000 psi
 - o Control joints spaced at a maximum of 15 feet.

Soil cement stabilization or constructing a soil cement base for support of the pavement section can also be considered as an alternative to the above conventional pavement sections. Assuming a properly constructed soil cement base having a minimum thickness of 12 inches and a minimum 7-day compressive strength of 100 pounds per square inch (psi), a minimum HMA pavement thickness of 3 inches would be required for the heavy traffic areas. The design of the soil cement base should be completed using samples of the subgrade exposed at the time of construction.

The paving materials used should conform to the Washington State Department of Transportation (WSDOT) specifications for half-inch class HMA, PCC, and CRB.

Long-term pavement performance will depend on surface drainage. A poorly drained pavement section will be subject to premature failure resulting from surface water infiltrating the subgrade soils and reducing their supporting capability. For optimum performance, we recommend surface drainage gradients of at least two percent. Some degree of longitudinal and transverse cracking of the pavement surface should be expected over time. Regular maintenance should be planned to seal cracks as they occur.

5.0 ADDITIONAL SERVICES

Terra Associates, Inc. should review project designs and specifications to verify that earthwork and foundation recommendations have been properly interpreted and incorporated into project design. We should also provide geotechnical services during construction to observe compliance with our design concepts, specifications, and recommendations. This will allow for expedient design changes if subsurface conditions differ from those anticipated prior to the start of construction.

6.0 LIMITATIONS

We prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranty, expressed or implied, is made. This report is the copyrighted property of Terra Associates, Inc. and is intended for specific application to the Camas Business Center in Camas, Washington. This report is for the exclusive use of Panattoni Development Company and their authorized representatives.

The analyses and recommendations presented in this report are based on data obtained from the subsurface explorations completed onsite. Variations in soil conditions can occur, the nature and extent of which may not become evident until construction. If variations appear evident, Terra Associates, Inc. should be requested to reevaluate the recommendations in this report prior to proceeding with construction.

APPENDIX A FIELD EXPLORATION AND LABORATORY TESTING

Camas Business Center Camas, Washington

On May 24, 2021, through May 26, 2021, we completed our site exploration by observing soil conditions at 80 test pits. The test pits were excavated using a track-mounted excavator to maximum depths of approximately 6 to 12 feet below existing site grades. Test pit locations were determined in the field by measuring from existing site features. The approximate location of the test pits is shown on the attached Exploration Location Plan, Figure 2. Test Pit Logs are presented on Figures A-2 through A-81.

A geotechnical engineer from our office conducted the field exploration. Our representative classified the soil conditions encountered, maintained a log of each test pit, obtained representative soil samples, and recorded water levels observed during excavation. All soil samples were visually classified in accordance with the Unified Soil Classification System (USCS) described on Figure A-1.

Representative soil samples obtained from the test pits were placed in sealed plastic bags and taken to our laboratory for further examination and testing. The moisture content of selected samples was measured and is reported on the corresponding Test Pit Logs. Grain size analyses were also performed on select samples. The results are shown on Figures A-82 and A-83.

	MAJOR DIVISIONS				TYPICAL DESCRIPTION		
D SOILS		0041/51.0	Clean Gravels (less	GW	Well-graded gravels, gravel-sand mixtures, little or no fines.		
	irger e	More than 50%	than 5% fines)	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines.		
	erial la ve siz	is larger than No.	Gravels with	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.		
AINE	6 mate 00 sie	4 31676	fines	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.		
SE GR	n 50% No. 2(SANDS	Clean Sands	SW	Well-graded sands, sands with gravel, little or no fines.		
OARS	re tha than I	More than 50%	5% fines)	SP	Poorly-graded sands, sands with gravel, little or no fines.		
ŭ	Mo	is smaller than	Sands with	SM	Silty sands, sand-silt mixtures, non-plastic fines.		
			fines	SC	Clayey sands, sand-clay mixtures, plastic fines.		
	naller e			ML	Inorganic silts, rock flour, clayey silts with slight plasticity.		
SOILS	rial sn ve siz	SILTS AND Liquid Limit is les	CLAYS ss than 50%	CL	Inorganic clays of low to medium plasticity. (Lean clay)		
	mate 10 siev			OL	Organic silts and organic clays of low plasticity.		
RAIN	than 50% r han No. 200			МН	Inorganic silts, elastic.		
NE G		SILTS AND Liquid Limit is grea	CLAYS ater than 50%	СН	Inorganic clays of high plasticity. (Fat clay)		
ш	More t			ОН	Organic clays of high plasticity.		
		HIGHLY OR	GANIC SOILS	PT	Peat.		
			DEFINITI	ON OF TER	RMS AND SYMBOLS		
COHESIONLESS	Dens Very Loos Med Dens Very	sity <u>F</u> Loose Se Jum Dense Se Dense	Standard Penet Resistance in Blo 0-4 4-10 10-30 30-50 >50	tration ows/Foot	☐ 2" OUTSIDE DIAMETER SPILT SPOON SAMPLER ☐ 2.4" INSIDE DIAMETER RING SAMPLER OR ☐ 2.4" INSIDE DIAMETER RING SAMPLER OR SHELBY TUBE SAMPLER ▼ WATER LEVEL (Date) Tr TORVANE READINGS, tsf		
COHESIVE	Standard Penetr Consistancy Resistance in Blow Very Soft 0-2 Soft 2-4 Medium Stiff 4-8 Stiff 8-16 Very Stiff 16-32 Hord >22		tration ows/Foot	PpPENETROMETER READING, tsfDDDRY DENSITY, pounds per cubic footLLLIQUID LIMIT, percentPIPLASTIC INDEXNSTANDARD PENETRATION, blows per foot			
	Terra Associates, Inc. Consultants in Geotechnical Engineering				UNIFIED SOIL CLASSIFICATION SYSTEM CAMAS BUSINESS CENTER VANCOUVER, WASHINGTON Proi No. T-8553 Date: ILINE 2021 Figure A-1		
L		Environme	mai Earth Science	15			

		I	OG OF TEST PIT	NO. TP-	1		FIGURE	A-2
	PRO	JECT NAME: Camas Business Ce	nter	_ PROJ. NO): <u>T-8553</u>	_LOGGI	ED BY:MJX	
		ATION: Camas, Washington	_ SURFACE CONDITIONS	: <u>Grass</u>	DEPTI		DX. ELEV: <u>NA</u>	
		E LOGGED. <u>May 20, 2021</u>		R . <u>NA</u>	DEPT	TUCA	/ING. <u>INA</u>	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0-		(7-inches organic TOPSOIL)						
1—		Brown SILT, moist, scattered r	ootlets, occasional cobble	weak ceme	ntation. (ML)			24.6
2—								24.0
3—		Brown SILT with sand, fine to	coarse sand, moist, mottle	d. (ML)			medium stiff	34.1
4—								
5-								
633								
7—		BEDROCK: Moderate strength (Columbia River Basalt)	n, brown to gray, fine to co	arse, modera	ately weather	ed.		60.0
8—								
9—		Test Pit terminated at approxir	nately 9 feet.					61.2
10 —		No groundwater seepage observed.	erved.					
11 —				1				
					<u> </u>	erra		

		LOG OF TEST PIT NO. TP-	-2	FIGURE	A-3
	PRO	DJECT NAME: Camas Business Center PROJ. NO) : <u>T-8553</u> LOGGE	D BY: MJX	
	LOC DAT	EXTION: Camas, Washington SURFACE CONDITIONS: Tall Grass	APPRO	DX. ELEV: <u>NA</u> ING:NA	
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	(%) M
0		(7-inches organic TOPSOIL) Brown SILT, moist, trace rootlets, weak cementation. (ML)			22.4
2—					28.4
3— 4—		Brown SILT with sand, fine to coarse sand, moist, mottled. (ML)		medium stiff	51.5
5—					
6—	3	BEDROCK: Moderate strength, brown to gray, fine to coarse, modera (Columbia River Basalt)	ately weathered.		58.2
7—					
8—		Test Pit terminated at approximately 8 feet. No groundwater seepage observed.			52.5
9—		No caving observed.			
10 —		<u> </u>			
NOT			Terra	alatan ku	_

		LOG OF TES	T PIT NO. TP-3		FIGURE	A-4
	PRO	DJECT NAME: Camas Business Center	PROJ. NO: <u>T</u>	-8553 LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE CON	DITIONS: Blackberries		DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: May 26, 2021 DEPTH TO GROU	NDWATER: NA	DEPTH TO CAV	ING:NA	_
Depth (ft)	Sample No.	Descriptio	on		Consistency/ Relative Density	(%) M
0-		(9-inches organic TOPSOIL)				
1—		Brown SILT, moist, trace rootlets, weak cementa	ation. (ML)			29.0
2—		Brown SILT with sand to sandy SILT, fine to coa moderate cementation. (ML)	rse sand, moist, mottled	below 8 feet,		
3—					medium stiff	35.0
4—						
5—						
6—						35.8
7—						
8—					very stiff	
9—						
10 —		Test Pit terminated at approximately 10 feet. No groundwater seepage observed.				35.9
11						
NOTE	: This	is subsurface information pertains only to this test pit location a	nd should not be	Terra	ciates. In	C.

interpreted as being indicative of other locations at the site.

		L	OG OF TEST PIT NO. 1	ſP-4	FIGURE	A-5
	PRC	JECT NAME: Camas Business Cel	nter PRO.	J. NO: <u>T-8553</u> LOO	GED BY: MJX	
	LOC	ATION: Camas, Washington	_ SURFACE CONDITIONS: Blackbe	erries API	PROX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 26, 2021</u>	_DEPTH TO GROUNDWATER: 9 ft	DEPTH TO (CAVING: <u>NA</u>	
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M
0—		(8-inches organic TOPSOIL)				
1—	•	Brown SILT with sand, fine sar	nd, moist, scattered rootlets, weak	cementation. (ML)		
2—						29.9
3—	-				medium stiff	
4—	a	Brown sandy SILT, fine to coa (ML)	rse sand, moist to wet, weak to mo	derate cementation.		
5—						29.0
6						
8—					stiff	30.6
9—						
10 —		Test Pit terminated at approxim	nately 10 feet			41.1
11 —		Minor groundwater seepage of No caving observed.	bserved at approximately 9 feet.			
12 —						
				Ter	ra	

		L	OG OF TEST PIT NO. TI	P-5		FIGURE	A-6
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX						6
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: Blackberr	ries	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 26, 2021</u>	DEPTH TO GROUNDWATER: NA	DEPTH	TO CAV	ING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(7-inches organic TOPSOIL)					
1—		Brown SILT, moist, trace rootlet	s, weak cementation. (ML)				
2—							20.3
3—		Brown SILT with sand, fine to co	parse sand, moist, moderate ceme	ntation. (ML)		medium stiff	
4—							34.5
5—							
6—							
7—					-		34.4
8—						stiff	
9—		Brownish-gray sandy SILT, fine	to coarse sand, moist, weak ceme	ntation. (ML)			
10-		Test Pit terminated at approxima No groundwater seepage obser No caving observed.	ately 10 feet. ved.				26.3
12-							

		I	LOG OF TEST PIT I	NO. TP-6		FIGURE	A-7
	PRO	JECT NAME: Camas Business Ce	nter	_ PROJ. NO: <u>T-8553</u>	LOGG	ED BY:MJX	
		ATION: Camas, Washington	SURFACE CONDITIONS:			DX. ELEV: <u>NA</u>	
		E LOGGED. <u>May 20, 2021</u>			THIOCA	/ING. <u>INA</u>	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0—		(8-inches organic TOPSOIL)			ĥ		
1—	-	Brown SILT, dry to moist, trace	e rootlets, weak cementation	n. (ML)			12.0
2—							13.0
3—						medium stiff	
4—	e	Brown sandy SILT, moist, fine cementation. (ML)	to coarse sand, moist to we	et, weak to moderate			24.9
5—							
6—							
7—							
8—							30.7
9—						stiff	
10 —							35.1
11 —		Test Pit terminated at approvi	mately 11 feet				
12 —		Minor groundwater seepage o No caving observed.	bserved at approximately 10) feet.			
13 —					£		
					Terra		

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OF TEST PIT NO. TP-7	FIGURE	A-8
100	PRO	JECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGE	ED BY:MJX	
		ATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPRO	DX. ELEV: <u>NA</u>	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0_		(8-inches organic TOPSOIL)		
1—	i.	Brown SILT, moist, trace rootlets, weak cementation. (ML)		
2—				13.8
3—		Brown SILT with sand, fine to coarse sand, moist. (ML)	medium stiff	
4—	Č,			31.4
5—		Brown sandy SILT, fine to coarse sand, moist, weak to moderate cementation. (ML)		
6—				
7—				27.2
8—	9		stiff	
9—				
10 —	8 0	Brownish-gray sandy SILT, fine to medium sand, moist to wet, weak cementation. (ML)		36.9
11 —		Test Pit terminated at approximately 11 feet.		
12 —	9	Minor groundwater seepage observed at approximately 10 feet. No caving observed.		
13 —				

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

LOG OF TEST PIT NO. TP-8 FIGURE A-9					
PRO	ED BY:MJX				
LOC	OX. ELEV: <u>NA</u>				
DAT	TE LOGGED: May 26, 2021 DEI	PTH TO GROUNDWATER: 9 ft	DEPTH TO CA	VING: <u>NA</u>	_
Depth (ft) Sample No.		Description		Consistency/ Relative Density	(%) M
0	(10 inches organic TOPSOU)				
1-	Brown SILT, dry to moist, trace roc	otlets, weak cementation. (ML)			13.8
2—					
3-	Brown SILT with sand, fine sand, r	noist, occasional rootlet. (ML)		medium stiff	23.1
4—					
5—	Brown sandy SILT, fine to coarse s	sand, moist, weak cementatior	n. (ML)		26.7
6—					
7—				stiff	
8—					
9—	Brownish-gray silty SAND, fine to r	nedium sand, wet. (SM)		medium dense	37.1
10 —	Test Pit terminated at approximate	ly 10 feet.			5
11 -	Minor groundwater seepage obser No caving observed.	ved at approximately 9 feet.			
12					

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

LOG OF TEST PIT NO. TP-9 FIGURE A-10								
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX							
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA							
	DAT	E LOGGED: May 26, 2021 DEPTH	TO GROUNDWATER:	10 ft	DEPTH	I TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0_		(9-inches organic TOPSOIL)				12-1		
1—	0	Brown SILT, moist, trace rootlets, wea	k cementation. (ML)				modium atiff	15.0
2—							medium sun	15.0
3—		Brown SILT with sand to sandy SILT, cementation. (ML)	fine to coarse sand, m	oist to v	vet, weak			2
4—	125							31.1
5—							stiff to very stiff	
6—								
7—	8 O	Brownish-gray sandy SILT, fine sand,	moist to wet, weak cer	mentati	on, interbedded	d silty		42.0
8—		SAND seams. (ML)						
9—	25						stiff	34.7
10 —	4							
11 –		Test Pit terminated at approximately 1	1 feet					37.7
12 —	9	Minor groundwater seepage observed No caving observed.	at approximately 10 fe	eet.				
13 —								
					T	-		

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

	LOG OF TEST PIT NO. TP-10 FIGURE A-11						
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: <u>MJX</u>						
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA						
	DAT	E LOGGED: May 26, 2021	DEPTH TO GROUNDWATE	R: <u>7 ft</u> D	EPTH TO CAN	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(10-inches organic TOPSOII)				
1—		Brown SILT, moist, trace roo	tlets, weak cementation. (ML	.)			10.7
2—							19.7
3—		Brown to brownish-gray SIL1	Γ with sand, fine to coarse sa	nd, moist to wet, wea	 ak		
4—	- E	cementation. (ML)				medium stiff	34.2
5—							
6—							
7—							
8—						stiff	35.6
9—							
10 —		Test Pit terminated at approx	kimately 10 feet.				38.3
11 —	-	Minor groundwater seepage No caving observed.	observed at approximately 7	feet.			
12 —							
					Terra	8 - 1 81 - 200	

LOG OF TEST PIT NO. TP-11 FIGURE A-12							
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX						
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA						
	DAT	E LOGGED: May 26, 2021 DEPTH TO GROUNDWATER: 11 ft DEPTH TO CAV	VING:NA	_			
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M			
0-		(11-inches organic TOPSOIL)					
1—		Brown SILT, dry to moist, trace rootlets, occasional cobble, weak cementation. (ML)		14.4			
2—				14.4			
3—		Brown SILT with sand, fine to medium sand, moist. (ML)	medium stiff	22.0			
4—							
5—	¢.						
6—	5 6	Gray sandy SILT, fine sand, moist to wet, mottled, alternating layers of brown silty SAND (MI)		39.4			
7—							
8—				33.4			
9—	9		stiff				
10 —	3						
11 —							
12 —		Test Pit terminated at approximately 12 feet.		42.2			
13 —		Moderate groundwater seepage observed at approximately 11 feet. No caving observed.					
14 —							
		Terra					

LOG OF TEST PIT NO. TP-12 FIGURE A-13						A-13	
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX						
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA						
	DAT	E LOGGED: <u>May 26, 2021</u> DEPT	H TO GROUNDWATER: 9 ft	DEPTH T	O CAV	/ING : <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(8-inches organic TOPSOIL)					
1—	-0	Gray SILT with sand, fine sand, mois	st, mottled, occasional rootle	t. (ML)			
2—						modium atiff	21.9
3—						medium sun	
4—	- C						
5—		Brownish-gray sandy SILT, fine to cc	parse sand, moist to wet, mo	ttled. (ML)			38.2
6—							
7—						stiff	
8—							
9—		BEDROCK: Moderate strength, brow (Columbia River Basalt)	n to gray, fine to coarse, mo	derately weathered.			58.2
10 — 11 —		Test Pit terminated at approximately Minor groundwater seepage observe No caving observed.	10 feet. ed at approximately 9 feet.				
12 —							

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

LOG OF TEST PIT NO. TP-13 FIGURE A-14							
	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX						
	LOCATION: Camas, Washington SURFACE CONDITIONS: Grass/shrubs APPROX. ELEV: NA						
	DAT	TE LOGGED: May 26, 2021 DEP	TH TO GROUNDWATER: 10 ft	DEPTH T	O CAVING:NA		
Depth (ft)	Sample No.		Description		Consistency/ Relative Densit	W (%)	
0-		(11-inches organic TOPSOIL)					
1—		Brownish-gray SILT with sand, fine	sand, moist, mottled, occasio	nal rootlet. (ML)			
2—	1979 1					19.6	
3—	100 1				medium stiff		
4—	čie.						
5—	21					36.6	
6—		Brownish-gray sandy SILT, fine to o (ML)	coarse sand, moist to wet, mo	ttled, weak cementa	ation.		
7—	24					36.8	
8—					stiff		
9—	8						
10 —		Test Pit terminated at approximatel	y 10 feet.			37.3	
11 —		Minor groundwater seepage observing observed.	ved at approximately 10 feet.				
12 —							
					vrra		

	LOG OF TEST PIT NO. TP-14 FIGURE A-15						
44,000	PROJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGGED BY: MJX						
	LOCATION: Camas, Washington SURFACE CONDITIONS: Blackberries APPROX. ELEV: NA						
	DAT	TE LOGGED: May 26, 2021 DEPTH TO GROUNDWATER: 9 ft DEPTH TO C	AVING: <u>NA</u>	_			
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M			
0-		(10-inches organic TOPSOIL)					
1—	Č.	Gray SILT, moist, trace rootlets, occasional gravel, weak cementation. (ML)	medium stiff	22.2			
2—	8						
3—	2	Brownish-gray to gray SILT with sand, moist, mottled, occasional rootlet. (ML)		28.1			
4—	.5						
5—			stiff				
6—							
7—	2)						
8—		Brownish-gray SAND with silt, fine to coarse sand, moist to wet, interbededd mottled sandy SILT seams. (SP-SM)					
9—			medium dense				
10 —	8	Test Pit terminated at approximately 10 feet. Minor groundwater seepage observed at approximately 9 feet.		41.4			
11-		No caving observed.					
12-							

		LOG C	F TEST PIT NO. TP-15		FIGURE	A-16
1	PRO	DJECT NAME: Camas Business Center	PROJ. NO:	T-8553 LOGGE	D BY:MJX	
	LOC	ATION: Camas, Washington SUR	FACE CONDITIONS: Grass/shrubs	APPRC	DX. ELEV : <u>NA</u>	
	DAT	E LOGGED: May 26, 2021 DEPTH	TO GROUNDWATER: 10 ft	DEPTH TO CAV	NA	_
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M
0		(9-inches organic TOPSOIL)				
1—	10	Gray SILT with sand, fine sand, moist,	mottled. (ML)			
2—						26.3
3—	с. С				medium stiff	
4-	20					
5—		Brownish-gray sandy SILT, fine to coa	rse sand, moist to wet, mottled, v	veak cementation.		34.7
6-		(ML)				
7–	8					
8—	8				stiff	
9—	e C					
10 —	a.					47.8
11 –		Test Pit terminated at approximately 1	1 feet.			
12 —	9	Minor groundwater seepage observed No caving observed.	at approximately 10 feet.			
13						
			1	Terra		

		LOG	OF TEST PIT NO. T	P-16		FIGURE	A-17
100	PRO	JECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
	LOC	ATION: Camas, Washington S	URFACE CONDITIONS: Blackbe	rries	APPRC	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 26, 2021 DEF	PTH TO GROUNDWATER: 7 ft	DEPTH T	O CAV	/ING : <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(10-inches organic TOPSOIL)					
1—		Gray SILT, dry to moist, trace rooth	ets, occasional gravel, weak ce	ementation. (ML)		medium stiff	24.9
2—							
3—	5	Brownish-gray to gray SILT with sa	and, fine sand, moist, mottled. (ML)			25.2
4—							
5—	ê 9	Brownish-gray to gray sandy SILT, fine to coarse sand, moist to wet, interbedded SAND					33.2
6—	5						
7—						stiff	38.5
8—							
9—	20 2						
10 —	0						
11 —	4						
12 —	9	Test Pit terminated at approximate	lv 12 feet				34.1
13 —		Minor groundwater seepage observed.	ved at approximately 7 feet.				
14 —							
				Te	rra		

		LOG OF TEST	PIT NO. TP-1	17		FIGURE	A-18
	PRO	OJECT NAME: Camas Business Center	PROJ. NO	D : <u>T-8553</u>	LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE COND	ITIONS: Grass/shrub)S	APPRO	DX. ELEV: <u>NA</u>	?
	DAT	TE LOGGED: May 26, 2021 DEPTH TO GROUN	DWATER: 8 ft	DEPTH	ΤΟ CA	/ING: <u>NA</u>	_
Depth (ft)	Sample No.	Description				Consistency/ Relative Density	(%) M
0-		(8 inches organic TOPSOIL)					
1—	-	Dark gray SILT, moist, trace rootlets, weak cemen	tation. (ML)			medium stiff	21.4
2—	e	Gray SILT with sand, fine sand, moist, mottled, oc	casional rootlet, oc	casional grave	 I.		28.9
3—							
4—							
5—						stiff	37.3
6—							
7—							
8—		Gray SAND with silt, fine to coarse sand, wet, inte	rbedded SILT sean	ns. (SP-SM)		medium dense	33.7
9_		BEDROCK: Moderate strength, brown to gray, fine (Columbia River Basalt)	e to coarse, modera	ately weathered	d.		24.2
11-		Test Pit terminated at approximately 10 feet. Minor groundwater seepage observed at approxim No caving observed.	nately 8 feet.				34.2
12 —			T				

		LOG OF TEST PIT NO. TP-18	FIGURE	A-19
	PRO	DJECT NAME: Camas Business Center PROJ. NO: T-8553 LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington SURFACE CONDITIONS: Grass/shrubs APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 26, 2021 DEPTH TO GROUNDWATER: 9 ft DEPTH TO CAN	/ING: <u>NA</u>	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0-		(9-inches organic TOPSOIL)		
1—	e.	Brown SILT, moist, trace rootlet, weak cementation. (ML)		22.6
2—				
3—		Brownish-gray sandy SILT, fine to medium sand, moist, mottled, occasional gravel. (ML)	medium stiff	
4—				28.9
5—				
6—	5	Brown to brownish-gray sandy SILT, fine to coarse sand, moist, weak cementation. (ML)		40.0
7—			stiff	
8—	8			
9—		Brown SAND with silt, fine to coarse sand, wet, interbedded SILT seams. (SP-SM)		
10 —			medium dense	37.4
11 —		Tost Ditterminated at enpreviewately 44 fast		
12 —	9	Minor seepage observed at approximately 9 feet. No caving observed.		
13 —				

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

LOG OF TEST PIT NO. TP-19						
	PRO	DJECT NAME: Camas Business Center PROJ. NO: T-8553 LOGG	ED BY:MJX			
	LOC	ATION: Camas, Washington SURFACE CONDITIONS: Grass/shrubs APPR	OX. ELEV: <u>NA</u>	*		
	DAT	E LOGGED: May 26, 2021 DEPTH TO GROUNDWATER: NA DEPTH TO CA	VING: <u>NA</u>	_		
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M		
0-						
1—		(8-inches organic TOPSOIL) Brown SILT, moist, trace rootlets, occasional gravel, weak cementation. (ML)		21.8		
2—	4					
3—		Brown SILT with sand, fine sand, moist, occasional rootlet. (ML)	medium stiff	24.0		
4—	3					
5—		Brownish-gray sandy SILT, fine to coarse sand, moist, mottled. (ML)	-	40.1		
6-				26.5		
۲ <i>—</i> م_		Brownish-gray SILT with sand, fine sand, moist, mottled. (ML)		30.5		
9-			stiff	44 5		
10		Brownish-gray sandy SILT, fine to coarse sand, moist, mottled. (ML)				
10-		Test Pit terminated at approximately 10 feet. No groundwater seepage observed. No caving observed.		1		
12 —						

		LC	DG OF TEST PIT N	NO. TP-20		FIGURE	A-21
	PRC	JECT NAME: Camas Business Cent	er	_ PROJ. NO: <u>T-85</u>	553 LOGG	ED BY:MJX	
		ELOGGED: May 25, 2021	SURFACE CONDITIONS	Tall Grass	DEPTH TO CAV	DX. ELEV: <u>NA</u>	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	W (%)
0-		(4-inches organic TOPSOIL)					
1—		Brown SILT, dry, trace rootlets.	(ML)				
2—		Brown SILT with sand, fine to c	oarse sand, moist, trace g	ravel. (ML)			14.4
3—	- 1					medium stiff	37.5
4—	<u>-</u>						
5—							
6—		BEDROCK: Moderate strength, (Columbia River Basalt)	brown to gray, fine to coa	rse, moderately v	veathered.		53.2
7—							
8—							
9—		Test Pit terminated at approxim No groundwater seepage obser No caving observed.	ately 9 feet. ved.				54.7
10 —		n er ski sak er ne 🗨 Skriftsski i har 715.					
NOTE					Terra		-

			LOG OF TEST PIT	NO. T	P-21		FIGURE	A-22
	PRO	JECT NAME: Camas Business (Center	PROJ	. NO: <u>T-8553</u>	_LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington	SURFACE CONDITION	IS : <u>Tall Gra</u>	SS	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED:May 25, 2021	DEPTH TO GROUNDWA	TER: <u>NA</u>	DEPT	H TO CAV	/ING:NA	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOII	ř			Ĭ		
1—		Brown SILT, dry, occasional	rootlet, weak cementation	. (ML)			medium stiff	22.7
2—								
3—		Reddish-brown SILT, moist,	trace sand, occasional col	oble, weak	cementation. (M	L)		23.7
4-							stiff	
5-								54.0
6-		Brown silty GRAVEL with sa scattered cobbles. (GM)	nd, fine to coarse sand, fin	e to coars	e gravel, moist,		dense	51.9
7–		BEDROCK: Moderate streng (Columbia River Basalt)	gth, brown to gray, fine to c	oarse, mo	derately weather	ed.		
8-		Test Pit terminated at appro No groundwater seepage of	ximately 8 feet. served.					55.3
9—		No caving observed.						
10 -				1				
					/···	erra		

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OF TEST F	PIT NO. TI	P-22		FIGURE	A-23
	PRO	OJECT NAME: Camas Business Center	PROJ	NO: <u>T-8553</u>	_LOGG	ED BY:MJX	3
	LOC	CATION: Camas, Washington SURFACE CONDIT	TONS: Tall Gras	SS	_ APPRC	DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUND	WATER: 2.5 ft	DEPT	H TO CAV	/ING:NA	_
Depth (ft)	Sample No.	Description				Consistency/ Relative Density	(%) M
0-		(10-inches organic TOPSOIL)					
		Brown SILT, moist, occasional rootlet, weak cemen	tation. (ML)				
1—						medium stiff	33.2
2—							
3—		Light brown SILT with sand and gravel, fine to coars weak cementation. (ML)	se sand, fine to	o coarse gravel,	moist,		65.8
4—						stiff	
5—	9	BEDROCK: Moderate strength, brown to gray, fine (Columbia River Basalt)	to coarse, mod	derately weather	ed.		
6—	9	Test Pit terminated at approximately 6 feet. Minor groundwater seepage observed at approxima No caving observed.	itely 2.5 feet.				56.6
7—							
8-							
					Corro		

		LOG OF TES	T PIT NO. TP-23	ł	FIGURE	A-24
	PRO	DJECT NAME: Camas Business Center	PROJ. NO:	<u>T-8553</u> LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE CO	NDITIONS: Tall Grass	APPRC	DX. ELEV : <u>NA</u>	
	DAT	re Logged: <u>May 25, 2021</u> DEPTH TO GROU	JNDWATER: <u>NA</u>	DEPTH TO CAV	/ING: <u>NA</u>	
Depth (ft)	Sample No.	Descripti	ion		Consistency/ Relative Density	(%) M
0—		(4-inches organic TOPSOIL)				
1—	-	Brown SILT, dry, scattered rootlets, moderate c	ementation. (ML)			2010/11/2
2—						14.8
3—		Brown SILT with sand, fine to coarse sand, moi	st. (ML)		medium stiff	41.4
4—						
5—						
6-	0					
7—		BbEDROCK: Moderate strength, brown to gray (Columbia River Basalt)	, fine to coarse, modera	tely weathered.		51.6
8—	-	Test Bit terminated at approximately 9 feet				
9—	-	No groundwater seepage observed. No caving observed.				
10-						
NOTE	. Th:-	is subsurface information partning only to this test of the sting	and abould not be	Terra	olotoo la	-

	LOG OF TEST PIT NO. TP-24 FIGURE A-25							
	PRO	JECT NAME: Camas Business Ce	enter	PROJ. NO:	<u>T-8553</u>		D BY:MJX	
	LOC	ATION: Camas, Washington	SURFACE CONDITION	S: Tall Grass		APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 25, 2021	_DEPTH TO GROUNDWAT	ER: <u>NA</u>	DEPTH	TO CAV	ING:NA	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)						
1—	9	Brown SILT with sand, fine to	coarse sand, dry to moist	trace gravel. (ML)			
2—	4							11.6
3—	č,						medium stiff	53.5
4—	i.							
5—								
6—								57.0
7—	6 - 10	BEDROCK: Moderate strengt (Columbia River Basalt)	h, brown to gray, fine to co	parse, moderat	ely weathere			59.9
8—	6							
9—		Test Pit terminated at approxi No groundwater seepage obs	mately 9 feet. erved.					54.9
10 —	E.	No caving observed.						
11 —				1				
				1	/::- T	erra		

		LOG	OF TEST PIT NO. 1	FP-25		FIGURE	A-26
	PRO	DJECT NAME: Camas Business Center	PRC	J. NO : <u>T-8553</u>	_LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington SU	RFACE CONDITIONS: <u>Tall G</u>	rass	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED:May 24, 2021 DEP1	TH TO GROUNDWATER: NA	DEPTH	I TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—		Brown SILT, dry to moist, trace rootl	ets, weak cementation. (ML	.)			19.7
2—	-						
3—		Brown SILT with sand, fine to coarse	e sand, moist, slightly mottle	ed. (ML)		medium stiff	
4—	-						35.4
5—							
6—							
7—							
8—		Brownish-gray to gray sandy SILT, f	ne to medium sand, moist,	mottled. (ML)		stiff	38.6
9—							
10 — 11 —		Test Pit terminated at approximately No groundwater seepage observed. No caving observed.	10 feet.				32.9
				T	erra		

		LOG	OF TEST PIT NO. TH	P-26		FIGURE	A-27
	PRO	DJECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington SUI	RFACE CONDITIONS: <u>Tall Gra</u>	SS	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 25, 2021 DEPT	H TO GROUNDWATER: NA	DEPTH	TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0—		(7-inches organic TOPSOIL)					
		Brown SILT with sand, fine to coarse	sand, moist, mottled, occasi	ional gravel. (ML)			
1–	-						
						medium stiff	24.3
2—							
3—		BEDROCK: Moderate strength, brow	n to gray, fine to coarse, mo	derately weather	ed.		29.9
		(Columbia River Basalt)					
4—							
5—							
6-	_						29.5
		Test Pit terminated at approximately No groundwater seepage observed.	6 feet.				
7–		The caving observed.					
8-							
NOTE	: This	s subsurface information pertains only to this tes	t pit location and should not be	T	erra	ciates In	C.

interpreted as being indicative of other locations at the site.

		LOG	OF TEST PIT NO. TP-27		FIGURE	A-28
	PRO	DJECT NAME: Camas Business Center	PROJ. NO: <u>T-</u>	8553 LOGGE	ED BY:MJX	8
	LOC	ATION: Camas, Washington SUR	FACE CONDITIONS: Tall Grass	APPRC	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 25, 2021 DEPTH	TO GROUNDWATER: NA	DEPTH TO CAV	NA NA	_
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M
0-		(11-inches organic TOPSOIL)				
1–		Brown SILT, dry, scattered rootlets, m	oderate cementation. (ML)			40.4
2—	-					10.4
3—		Brown SILT with sand, fine to coarse	sand, moist. (ML)		medium stiff	47.4
4—						
5—	-					
6—						
7-		BEDROCK: Moderate strength, browr (Columbia River Basalt)	to gray, fine to coarse, moderately	weathered.		50.0
8- 9-						53.0
9- 10-		Test Pit terminated at approximately 9 No groundwater seepage observed. No caving observed.	feet.			
				Terra		

		LOG OF	TEST PIT NO. TP-28	ĺ	FIGURE	A-29
	PRC	DJECT NAME: Camas Business Center	PROJ. NO:	T-8553 LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFA	CE CONDITIONS: Tall Grass	APPRC	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 25, 2021</u> DEPTH TO	O GROUNDWATER: NA	DEPTH TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.	[Description		Consistency/ Relative Density	(%) M
0-		(5-inches organic TOPSOIL)				
1—		Brown SILT, dry to moist, trace rootlets,	weak cementation. (ML)		10 00000	
2—					medium stiff	16.7
3—		Brownish-gray sandy SILT, fine sand, m	oist, moderate cementation. (M	IL)		37.0
4—					medium stiff to stiff	
5—						
6-	9 8	BEDROCK: Moderate strength, brown to (Columbia River Basalt)	gray, fine to coarse, moderate	ely weathered.		
7—						54.0
8—	•	Test Pit terminated at approximately 8 fe No groundwater seepage observed.	eet.			
9—		No caving observed.				
10 —			T			
NOTE	· Thi	s subsurface information pertains only to this test pit	location and should not be	Terra	ciatas In	~

	LOG OF TEST PIT NO. TP-29 FIGURE A-30									
	PRO	JECT NAME: Camas Business (Center	PROJ	. NO: <u>T-8553</u>	LOGGE	ED BY:MJX			
	LOC	ATION: Camas, Washington	SURFACE CONDITION	S : <u>Tall Gra</u>	SS	APPRO	DX. ELEV: <u>NA</u>			
	DAT	E LOGGED: May 25, 2021	DEPTH TO GROUNDWAT	ER: <u>9 ft</u>	DEPTH	TO CAV	ING:NA	_		
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M		
0-		(4-inches organic TOPSOIL))							
1—	i C	Reddish-brown SILT, moist,	trace rootlets. (ML)					26.9		
2—										
3—		Brown SILT with sand, fine t	o coarse sand, moist, some	e mottling.	(ML)			35.0		
4—										
5—							medium stiff			
6—	G							39.0		
7—	2									
8—										
9—	9 0	Dark gray silty SAND, fine to	o coarse sand, wet. (SM)							
10 —	4						medium dense	53.9		
11 —			en et su stream-et at							
12 —	9	Test Pit terminated at approx No groundwater seepage ob No caving observed.	ximately 11 feet. oserved.							
13 —										
					/	orra				

		LOG	G OF TEST PIT NO. TI	P-30	FIGURE	A-31
	PRC	DJECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u> LOGG	ED BY:MJX	
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: Blackbe	rries APPR	OX. ELEV: <u>NA</u>	
į	DAT	TE LOGGED: May 25, 2021 DE	PTH TO GROUNDWATER: NA	DEPTH TO CA	VING: <u>NA</u>	
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M
0-		(11-inches organic TOPSOIL)				
1—		Brown SILT, moist, trace rootlets.	(ML)			
2—						29.9
3—					medium stiff	
4—		Brown SILT with sand, fine to coa	rse sand, moist, mottled. (ML)			34.9
5—						
6—						
7—		BEDROCK: Moderate strength, bi (Columbia River Basalt)	rown to gray, fine to coarse, mo	derately weathered.		33.4
8—						
9—						
10 —		Test Pit terminated at approximate No groundwater seepage observe	ely 10 feet. ed.			56.2
11 –		No caving observed.				
12 —		1			1	
				Torra		

PROJECT NAME: Camas Business Center PROJ. NO: T-8553 LOGGED BY: MJX LOCATION: Camas, Washington SURFACE CONDITIONS: Blackberries APPROX. ELEV: NA DATE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: 8 ft DEPTH TO CAVING: NA 0 (10-inches organic TOPSOIL) Brown SILT, moist, trace rootlets. (ML) Image: Comparison of the coarse sand, moist. (ML) 2 Brown SILT, with sand, fine to coarse sand, moist. (ML) Image: Coarse sand, moist. (ML) Image: Coarse sand, moist. (ML) 4 Gray SILT with sand, fine to coarse sand, moist. (ML) Istiff Image: Coarse sand, moist. (ML) Image: Coarse sand, moist. (ML) 7 Cray SILT with sand, fine to coarse sand, moist, mottled. (ML) Image: Coarse sand, moist, mottled. (ML) Image: Coarse sand, moist, mottled. (ML) 7 Image: Coarse sand, moist, mottled. (ML) Image: Coarse sand, moist, mottled. (ML) Image: Coarse sand, moist, mottled. (ML) 7 Image: Coarse sand, moist, mottled. (ML) Image: Coarse sand, mottled. (ML) Imag		LOG OF TEST PIT NO. TP-31 FIGURE A-32							
LOCATION: Camas, Washington SURFACE CONDITIONS: Blackberries APPROX. ELEV: NA DATE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: 6 ft DEPTH TO CAVING:NA 0 0 Consistency/ Relative Density Consistency/ Relative Density 0 (10-inches organic TOPSOIL) Brown SILT, moist, trace rootlets. (ML) medium stiff 2 Brown SILT, moist, trace rootlets. (ML) medium stiff medium stiff 4 Gray SILT with sand, fine to coarse sand, moist. (ML) stiff medium stiff 5 Gray SILT with sand, fine to coarse sand, moist. (ML) stiff medium dense 10 Oark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT medium dense 11 Test Pit terminated at approximately 12 feet. Ninor groundwater seepage observed at approximately 8 feet. No caving observed. in the second at approximately 8 feet. No caving observed. in the second at approximately 8 feet.		PRO	OJECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	LOGG	ED BY:MJX		
DATE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: B:ft DEPTH TO CAVING: NA Image: State of the state of t]	LOC	CATION: Camas, Washington SURFACE CONDITIO	INS: <u>Blackb</u> e	erries	APPRO	DX. ELEV: <u>NA</u>		
Orgge Oescription Consistency/ Relative Density 0 (10-inches organic TOPSOIL) Brown SILT, moist, trace rootlets. (ML) 2 Brown SILT, moist, trace rootlets. (ML) medium stiff 3 Brown SILT with sand, fine to coarse sand, moist. (ML) medium stiff 4 Gray SILT with sand, fine to coarse sand, moist. (ML) stiff 6 Gray SILT with sand, fine to coarse sand, moist, mottled. (ML) stiff 8 Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) medium dense 10 Test Pit terminated at approximately 12 feet. medium dense 11 Test Pit terminated at approximately 12 feet. Minor groundwater seepage observed at approximately 8 feet. 14 No caving observed. Image: Start		DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUNDWA	ATER: <u>8 ft</u>	DEPTH	TO CA	/ING: <u>NA</u>	_	
0 (10-inches organic TOPSOIL) 1- Brown SILT, moist, trace rootlets. (ML) 2-	Depth (ft)	Sample No.	Description				Consistency/ Relative Density	(%) M	
1- Brown SILT, moist, trace rootlets. (ML) 2-	0		(10-inches organic TOPSOIL)						
2-	1-		Brown SILT, moist, trace rootlets. (ML)					24.6	
3- Brown SILT with sand, fine to coarse sand, moist. (ML) medium stiff. 4- Gray SILT with sand, fine to coarse sand, moist. (ML) stiff. 6- Gray SILT with sand, fine to coarse sand, moist, mottled. (ML) stiff. 7- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) medium dense 10- Test Pit terminated at approximately 12 feet. medium dense 11- Test Pit terminated at approximately 12 feet. Minor groundwater seepage observed at approximately 8 feet. No caving observed. 14 Minor groundwater seepage observed. Image: Minor groundwater seepage observed.	2-	13 1							
4- - 5- - 6- Gray SILT with sand, fine to coarse sand, moist, mottled. (ML) 7- stiff 8- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) 10- medium dense 11- - 12- Test Pit terminated at approximately 12 feet. Minor groundwater seepage observed at approximately 8 feet. No caving observed. 14 -	3—	4	Brown SILT with sand, fine to coarse sand, moist. (ML		medium stiff	32.5			
5- Gray SILT with sand, fine to coarse sand, moist, mottled. (ML) 7- Stiff 8- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) 9- medium dense 11- Test Pit terminated at approximately 12 feet. Minor groundwater seepage observed at approximately 8 feet. No caving observed. 14-	4—								
6- Gray SILT with sand, fine to coarse sand, moist, mottled. (ML) 7- stiff 8- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) 9- medium dense 10- medium dense 11- Test Pit terminated at approximately 12 feet. 13- Minor groundwater seepage observed at approximately 8 feet. 14- No caving observed.	5—								
7- stiff 8- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) 9- medium dense 11- medium dense 11- Test Pit terminated at approximately 12 feet. No caving observed. 14- No caving observed.	6-	S	Grav SII T with sand fine to coarse sand moist mottl	led (ML)				37.9	
8- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SILT seam. (SM) 9- medium dense 10- medium dense 11- Test Pit terminated at approximately 12 feet. Minor groundwater seepage observed at approximately 8 feet. No caving observed. 14	7-		Gray Giel With Sand, mile to coarse sand, moist, moth				stiff		
9- Dark gray silty SAND, fine to coarse sand, wet, occasional gravel, occasional SIL1 9- medium dense 10- medium dense 11- Test Pit terminated at approximately 12 feet. 13- Minor groundwater seepage observed at approximately 8 feet. 14- No caving observed.	8-	i 0						58.7	
10- medium dense 11- medium dense 12- Test Pit terminated at approximately 12 feet. 13- Minor groundwater seepage observed at approximately 8 feet. 14- 14-	9—	8	Dark gray silty SAND, fine to coarse sand, wet, occas seam. (SM)	ional grave	el, occasional SILT				
11 - 12 - 13 - 13 - 14 -	10 —	2					medium dense		
12 - Test Pit terminated at approximately 12 feet. 13 - Minor groundwater seepage observed at approximately 8 feet. 14 - No caving observed.	11_	4							
12 Test Pit terminated at approximately 12 feet. 13 Minor groundwater seepage observed at approximately 8 feet. 14 No caving observed.								00-4	
13 No caving observed. 14	12 –		Test Pit terminated at approximately 12 feet.	ly 8 foot				54.4	
14	13 —		No caving observed.	iy o ieet.					
	14								

	LOG OF TEST PIT NO. TP-32 FIGURE A-33							
	PRO	JECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGGI	ED BY:MJX		
	LOC	ATION: Camas, Washington SU	IRFACE CONDITIONS: Blackbe	rries	APPRO	DX. ELEV: <u>NA</u>		
	DAT	E LOGGED: May 25, 2021 DEPT	TH TO GROUNDWATER: <u>3 ft</u>	DEPTH		/ING: <u>NA</u>	_	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M	
0-		(10-inches organic TOPSOIL)						
1—		Dark brown SILT, moist, trace sand,	trace rootlets. (ML)					
2—	ē.					medium stiff	27.0	
3—		Reddish-brown SILT, moist. (ML)					33.7	
4—	đ					stiff		
5—								
6—							39.2	
7—						very stiff		
8—		BEDROCK: Moderate strength, brov (Columbia River Basalt)	wn to gray, fine to coarse, mo	derately weathered	 I.		48.1	
9—		()						
10 —		Test Pit terminated at approximately	10 feet.					
11 –		No caving observed.	eu al approximately 5 leet.					
12 —								
				_				

		LOG OF TEST PIT NO	D. TP-33		FIGURE	A-34
	PRO	DJECT NAME: Camas Business Center	PROJ. NO: <u>T-8553</u>	LOGG	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE CONDITIONS: B	lackberries	APPRO	DX. ELEV: <u>NA</u>	
	DAT	IE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER:	NA DEF	PTH TO CA	/ING: <u>NA</u>	_
Depth (ft)	Sample No.	Description			Consistency/ Relative Density	(%) M
0—		(9-inches organic TOPSOIL)				
1—		Reddish-brown SILT, moist, trace rootlets. (ML)				
2—	-				1	21.7
3—		Brown SILT with sand, fine to coarse sand, moist, mottled. ((ML)		medium stiff	40.3
4—						
5—		BEDROCK: Moderate strength, brown to gray, fine to coars (Columbia River Basalt)	e, moderately weath	ered.		24.6
6-	0					
7—						22.9
8—		Test Pit terminated at approximately 8 feet.				24.7
9—		No caving observed.				
10 —						
NOTE	- Thie	is subsurface information pertains only to this test pit location and should not	he	Terra	ciatos In	~

	LOG OF TEST PIT NO. TP-34 FIGURE A-35								
	PRO	OJECT NAME: Camas Business Center	PROJ. NO: <u>T-8553</u>	LOGGI	ED BY:MJX				
	LOC	CATION: Camas, Washington SURFACE CONDITIONS: B	lackberries	_ APPRO	DX. ELEV: NA				
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER:	NA DEPT	Н ТО СА	/ING: <u>NA</u>				
Depth (ft)	Sample No.	Description			Consistency/ Relative Density	(%) M			
0-		(10-inches organic TOPSOIL)							
1—	-	Brown SILT, moist, trace rootlets, occasional organic. (ML)							
2—						24.9			
3-					medium stiff	30.8			
2		Brown SILT with sand, fine to coarse sand, moist, mottled.	(ML)						
4—									
5—		Gray SILT, moist, mottled, interbedded SAND seams. (ML)				23.0			
6—									
7—									
8—					stiff				
9—									
10 —									
11 —		Test Plt terminated at approximately 11 feet.				41.8			
12 —		No groundwater observed. No caving observed.							
13 –									
NOTE	: This reted	is subsurface information pertains only to this test pit location and should not d as being indicative of other locations at the site.	be	Terra Asso	ciates, In Geotechnical Enginee	C.			

		LOG OF TEST I	PIT NO. T	P-35		FIGURE	A-36
	PRO	OJECT NAME: Camas Business Center	PRO.	J. NO: <u>T-8553</u>	LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE CONDI	FIONS: Blackbe	erries	APPRO	DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUND	WATER: NA	DEPTH	TO CAV	/ING: <u>NA</u>	
Depth (ft)	Sample No.	Description				Consistency/ Relative Density	(%) M
0-		(Q inches organic TOPSOIL)					
1—		Dark brown to brown SILT, moist, trace rootlets. (M	L)				34.0
2—							
3—						medium stiff	
4—	12	Brown SILT with sand, fine to coarse sand, moist, r	nottled. (ML)				36.4
5—							
6—	5 (š	Brown silty GRAVEL with sand, fine to coarse sand	l, fine to coars	e gravel, moist, m	ottled,		23.3
7—						dense	
8—		Brown to gray SILT, moist, mottled, interbedded SA	AND with silt s	eams. (ML)			31.9
9—	9					stiff	
10 —	4						
11 — 12 —	4	Test Pit terminated at approximately 11 feet. No groundwater seepage observed. No caving observed.					31.4
13 —							

LOG OF TEST PIT NO. TP-36 FIGURE							
	PRO	OJECT NAME: Camas Business Center PROJ. NO: T-8553	B LOGG	ED BY:MJX			
	LOC	CATION: Camas, Washington SURFACE CONDITIONS: Grass/shrubs		DX. ELEV: <u>NA</u>			
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: 9 ft D	DEPTH TO CAN	/ING: <u>NA</u>			
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	(%) M		
0-		(4-inches organic TOPSOIL)					
1—	21.5 2	Brown SILT, dry, trace rootlets, occasional gravel, weak cementation. (ML)			14.8		
2—					14.0		
3—		Brown to gray SILT with sand, fine to coarse sand, moist, mottled. (ML)		medium stiff			
4—	12.25				36.4		
5—							
6—							
7—	8 0	Reddish-brown SILT, moist to wet, trace sand. (ML)			35.1		
8—	2 ¹			stiff			
9—	210	Gray clayey SILT, moist. (ML)					
10 —	4			very stiff	32.9		
11 —		Test Pit terminated at approximately 11 feet.					
12 —	9	Moderate groundwater seepage observed at approximately 9 feet. No caving observed.					
13 —							

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG	OF TEST PIT NO. TP-37		FIGURE	A-38
	PRO	DJECT NAME: Camas Business Center	PROJ. NO:	8553 LOGG	ED BY:MJX	
	LOC	CATION: Camas, Washington SU	RFACE CONDITIONS: Grass/shrubs	APPRC	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 25, 2021</u> DEPT	H TO GROUNDWATER: NA	DEPTH TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M
0-		(2-inches organic TOPSOIL)				
1—	-0	Brown SILT, moist, trace rootlets, we	eak cementation. (ML)			04.0
2—						24.2
3—		Brown SILT with sand, fine to coarse	e sand, moist, mottled, occasional gra	avel. (ML)	medium stiff	
4—						33.4
5—						
6—		Reddish-brown SILT, moist. (ML)				
7—						30.2
8—					stiff	
9—	•					
10 —	-	Test Bit terminated at approximately	10 feet			29.5
11 —		No groundwater seepage observed. No caving observed.	10 1000			
12 —			1			
				Terra	1742 W 4200	

	LOG OF TEST PIT NO. TP-38 FIGURE A-39								
	PRO	JECT NAME: Camas Business Cent	ter F	PROJ. NO: <u>T-8553</u>	LOGGI	ED BY:MJX	6		
	LOC	ATION: Camas, Washington	_ SURFACE CONDITIONS: Gra	ass/shrubs	APPRO	DX. ELEV: <u>NA</u>	°		
	DAT	E LOGGED: May 25, 2021	DEPTH TO GROUNDWATER: <u>N</u>	JA DE	РТН ТО САУ	/ING: <u>NA</u>	_		
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0-		(5-inches organic TOPSOIL)							
1—	-	Brown SILT, moist, trace rootlet	s, weak cementation. (ML)				22.4		
2—	-						10000		
3—	2					medium stiff			
4—	-	Brown to gray SILT with sand, f	ine to coarse sand, moist, mo	ottled. (ML)			32.8		
5—									
6-									
7—	-						36.0		
8—						stiff			
9—									
10 — 11 —		Test Pit terminated at approxim No groundwater seepage obser No caving observed.	ately 10 feet. ved.				33.3		
12 –									
NOTE	OTE: This subsurface information pertains only to this test pit location and should not be								

interpreted as being indicative of other locations at the site.

	LOG OF TEST PIT NO. TP-39 FIGURE A-40							
	PRO	DJECT NAME: Camas Business Center PROJ. NO: T-8553	LOGGE	ED BY:MJX				
	LOC	CATION: Camas, Washington SURFACE CONDITIONS: Tall Grass	APPRC	DX. ELEV: <u>NA</u>				
	DAT	TE LOGGED: May 24, 2021 DEPTH TO GROUNDWATER: 10 ft DEPTH T	O CAV	ING :NA	_			
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	(%) M			
0_		(5-inches organic TOPSOIL)	1					
1—		Brown SILT, moist, trace rootlets, weak cementation. (ML)			20.0			
2—	19				20.0			
3—	1							
4—		Brownish-grav to grav sandy SILT fine to coarse sand moist mottled (ML)		medium stiff				
5—	2				38.5			
6—	3							
7—								
8—	9							
9—	20			stiff				
10 —	a	Blueish-gray silty SAND with gravel, fine to coarse sand, fine to coarse gravel, wet, (SM)		68.3			
11 —	4			medium dense				
12 —	9	Test Pit terminated at approximately 12 feet						
13 —		Moderate groundwater seepage observed at approximately 10 feet. No caving observed.						
14 —								

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OI	TEST PIT NO. T	P-40		FIGURE	A-41
	PRO	DJECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA							
	DAT	TE LOGGED: May 24, 2021 DEPTH	O GROUNDWATER: NA	DEPTH	TO CAV	VING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—		Brown SILT, dry to moist, trace rootlets	weak cementation. (ML)				14.5
2—	d						14.5
3—						medium stiff	
4—	đ	Brown SILT with sand to clayey SILT w mottled. (ML)	ith sand, fine to coarse sa	and, moist, slightly		medium sun	35.2
5—							
6—							
7—							
8—						stiff	
9—		Brownish-gray to gray sandy SILT, fine	to coarse sand, moist, m	ottled. (ML)			
10 —		Test Pit terminated at approximately 10 No groundwater seepage observed.	feet.				35.8
11-		No caving observed.					
12 —		1					

		L	OG OF TEST PIT	NO. T	P-41		FIGURE	A-42
	PRO	JECT NAME: Camas Business Cer	nter	_ PRO	J. NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
	LOC	ATION: Camas, Washington	_ SURFACE CONDITIONS	: <u>Tall Gra</u>	ass	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 24, 2021</u>	_DEPTH TO GROUNDWATE	R : <u>NA</u>	DEPTH	TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)						
1—		Brown SILT, dry to moist, trace	e rootlets, weak cementatio	on. (ML)				
2—	191							14.9
3—							medium stiff	
4—	3	Brown SILT with sand to claye mottled. (ML)	y SILT with sand, fine to c	oarse sa	nd, moist, slightly			
5—								35.1
6—								
7—		Brownish-gray to gray sandy S gravel. (ML)	GILT, fine to coarse sand, n	noist, me	ottled, occasional		10.000	33.3
8—							stiff	
9—								
10 —		Test Pit terminated at approxim	nately 10 feet. erved.					35.1
11 —		No caving observed.						
12 —								
					T	orra		

		LC	OG OF TEST PIT	NO. TP-42		FIGURE	A-43
	PRO	JECT NAME: Camas Business Cent	er	PROJ. NO: <u>T-</u>	8553 LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS	: Tall Grass		DX. ELEV: <u>NA</u>	2
	DAT	E LOGGED: May 24, 2021	DEPTH TO GROUNDWATE	R : <u>NA</u>	DEPTH TO CAV	/ING: <u>NA</u>	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—	•	Brown SILT, dry to moist, scatte	red rootlets, weak cemer	ntation. (ML)			47.0
2—							17.0
3—						medium stiff	
4—		Brown SILT with sand, fine to co	parse sand, moist, slightly	v mottled. (ML)		inculain chii	36.4
5—							
6-							
7—		Gray sandy SILT, fine sand, mo	ist, mottled. (ML)				36.8
8—						stiff	
9—							
10 —		Test Pit terminated at approximation	ately 10 feet.				36.5
11 —		No groundwater seepage obser No caving observed.	ved.				
12 —				T			
					🚃 Terra		

	LOG OF TEST PIT NO. TP-43 FIGURE A-44								
	PRO	DJECT NAME: Camas Business Ce	enter	PRO	J. NO: <u>T-8553</u>	LOGGI	ED BY:MJX		
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: 1	all Gra	155	_ APPRO	DX. ELEV: <u>NA</u>	7	
	DAT	E LOGGED: May 24, 2021	_DEPTH TO GROUNDWATER	: <u>NA</u>	DEP	TH TO CAN	/ING: <u>NA</u>	_	
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M	
0-		(6-inches organic TOPSOIL)							
1—		Brown SILT, moist, trace root	lets, weak cementation. (ML)						
2—								18.0	
3—							medium stiff		
4—									
5—		Brown SILT with sand to clay mottled. (ML)	ey SILT with sand, fine to me	dium s	and, moist, sligh	ntly		31.7	
6—									
7—									
8—							stiff		
9—									
10 —		Test Pit terminated at approxi	mately 10 feet					38.4	
11 —		No groundwater seepage obs No caving observed.	erved.						
12 —									
NOTE	: This reted	s subsurface information pertains only t as being indicative of other locations a	o this test pit location and should not t the site.	be		Terra Asso Consultants ir Consultants of Environ	ciates, In Geotechnical Enginee Beology and mental Earth Sciences	C.	

	LOG OF TEST PIT NO. TP-44 FIGURE A-45								
	PRO	DJECT NAME: Camas Business Center	Р	ROJ. NO: <u>T-8553</u>	LOGGI	ED BY:MJX			
	LOC	ATION: Camas, Washington S	SURFACE CONDITIONS: Tal	Grass	_ APPRO	DX. ELEV: <u>NA</u>			
	DAT	E LOGGED: May 24, 2021 DE	PTH TO GROUNDWATER: N	A DEPT	Н ТО САУ	/ING: <u>NA</u>	_		
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0-		(6-inches organic TOPSOIL)							
1—		Brown SILT, moist, trace rootlets,	weak cementation. (ML)						
2—							27.3		
3—						medium stiff			
4—	a n	Brown SILT with sand, fine to coar	se sand, moist, slightly mo	ttled. (ML)		medium sun	38.0		
5—									
6—									
7—	9 - S	Brownish-gray to gray sandy SILT	, fine sand, moist, mottled.	(ML)			38.0		
8—						stiff			
9—									
10 —		Test Pit terminated at approvimate	aly 10 feet				35.8		
11 —		No groundwater seepage observe No caving observed.	d.						
12 —									
					Ferra				

	LOG OF TEST PIT NO. TP-45 FIGURE A-46							
	PRO	DJECT NAME: Camas Business Center	PRO.	J. NO: <u>T-8553</u>	LOGG	ED BY:MJX		
	LOC	CATION: Camas, Washington SUR	FACE CONDITIONS: Tall Gra	ass	APPRO	DX. ELEV: <u>NA</u>		
	DAT	TE LOGGED: May 24, 2021 DEPTH	TO GROUNDWATER: NA	DEPTH	TO CAV	VING: <u>NA</u>	_	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M	
0-		(6-inches organic TOPSOIL)						
1—	i.	Brown SILT, moist, trace rootlets, wea	ak cementation. (ML)				00.0	
2—	4						20.8	
3—						medium stiff		
4—	8	Brown SILT with sand to clayey SILT mottled. (ML)	with sand, fine to medium s	and, moist, slightly	/		36.3	
5—								
6-								
7— 8—						stiff		
9—								
		Gray silty SAND, fine to coarse sand,	moist, mottled, occasional	gravel. (SM)		medium dense		
10 — 11 —		Test Pit terminated at approximately 1 No groundwater seepage observed. No caving observed.	0 feet.				37.9	
12 —								

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

	FIGURE	A-47					
4100	PRO	DJECT NAME: Camas Business Center	PROJ	J. NO: <u>T-8553</u>	LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFAC	E CONDITIONS: Tall Gra	155	APPRO	DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: May 24, 2021 DEPTH TO	GROUNDWATER: NA	DEPTH	TO CAV	/ING:NA	_
Depth (ft)	Sample No.	De	scription			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—		Red SILT, moist, scattered rootlets, weak	cementation. (ML)				
2—	1					medium stiff	17.6
3—							
4—		Gray clayey SILT, moist, mottled, trace sa	nd. (ML)				34.0
5—	č.						
6—							
7—							
8—						stiff	
9—							
10 —		Blueish-gray clayey SILT, moist, mottled, t	race sand. (ML)				
11 —							52.4
12 —	-						
13 —		Test Pit terminated at approximately 12 fer No groundwater seepage observed. No caving observed.	ət.				
14 —							
				_			

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

	LOG OF TEST PIT NO. TP-47 FIGURE A-48							
	PRO	DJECT NAME: Camas Business Center	PROJ. I	NO: <u>T-8553</u> LOGGI	ED BY:MJX			
	LOC	CATION: Camas, Washington SURFACE	CONDITIONS: Tall Grass	s APPRO	DX. ELEV: <u>NA</u>			
	DAT	TE LOGGED: <u>May 24, 2021</u> DEPTH TO G	ROUNDWATER: NA	DEPTH TO CAV	/ING:NA	_		
Depth (ft)	Sample No.	Dese	ription		Consistency/ Relative Density	(%) M		
0-		(9-inches organic TOPSOIL)						
1—		Brown SILT, moist, trace rootlets, weak cen	entation. (ML)			10.4		
2—	10 10				medium stiff	13.4		
3—								
4—	.3	Brown SILT with sand, fine to coarse sand,	moist, mottled. (ML)			29.3		
5—		Gray sandy SILT, fine sand, moist, mottled.	(ML)					
6—					stiff	39.8		
7—	0							
8—		Blueish-gray silty SAND, fine to coarse sand	d, moist, trace organics	, interbedded SILT				
9—	3	seams. (SM)			medium dense	52.7		
10 —								
11—	-14 -	Test Pit terminated at approximately 10 feet No groundwater seepage observed. No caving observed.						
12 —								

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

	LOG OF TEST PIT NO. TP-48 FIGURE A-49								
	PRO	JECT NAME: Camas Business Cer	nter	_ PRO	J. NO: <u>T-8553</u>		ED BY:MJX	3	
	LOC	ATION: Camas, Washington	_ SURFACE CONDITIONS:	Tall Gra	ass	APPRC	DX. ELEV: <u>NA</u>		
	DAT	E LOGGED: May 24, 2021	DEPTH TO GROUNDWATER	R: <u>NA</u>	DEPTH	TO CAV	/ING: <u>NA</u>	_	
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M	
0-		(7-inches organic TOPSOIL)							
1_		Brown SILT, dry to moist, trace	e rootlets, weak cementation	ո. (ML)					
								15.7	
2—									
0									
3-									
4—		Drown CKT with condition to a	correction mainting	(1 1)			medium stiff	36.0	
		Brown SKT with sand, line to c	oarse sand, moist, mottied.	(IVIL)					
5-									
6—									
7—									
8-								6. 	
		Blueish-gray silty SAND, fine to	o coarse sand, wet, interbed	dded S	ILT seams. (SM)				
9—							medium dense	40.8	
10 —									
11 —	19 1	Test Pit terminated at approxim No groundwater seepage observed. No caving observed.	nately 10 feet. erved.						
12 —									
					T	0 11 10 0			

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OF	TEST PIT NO. T	P-49		FIGURE	A-50
I	PRO	DJECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
1	Loc	CATION: Camas, Washington SURFA	ACE CONDITIONS: Tall Gra	SS	APPRC	DX. ELEV: <u>NA</u>	
1	DAT	TE LOGGED: <u>May 24, 2021</u> DEPTH T	O GROUNDWATER: NA	DEPTH	ΤΟ CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0_		(7-inches organic TOPSOIL)					
1—		Brown SILT, moist, scattered rootlets, w	eak cementation. (ML)				
2—							18.6
3—		Brown SILT with sand, fine to coarse sa	nd, moist, mottled, occas	ional gravel. (ML)		medium stiff	31.5
4-							
5—							
6—		Gray sandy SILT, fine sand, moist, mott	led. (ML)				
7—						stiff	42.1
8—		Blueish-gray silty SAND, fine to medium	sand, moist, interbeddeo	I SILT seams. (SM)		
9—						medium dense	
10 —		Test Pit terminated at approximately 10	feet.				71.2
11 -		No groundwater seepage observed. No caving observed.					
12							

	LOG OF TEST PIT N	IO. TP-50		FIGURE	A-51
P	PROJECT NAME: Camas Business Center	_ PROJ. NO: <u>T-8553</u>	LOGG	ED BY:MJX	
L	LOCATION: Camas, Washington SURFACE CONDITIONS:	Tall Grass	APPRO	DX. ELEV: <u>NA</u>	
D	DATE LOGGED: May 24, 2021 DEPTH TO GROUNDWATER	R: <u>NA</u> DEP	TH TO CAN	/ING: <u>NA</u>	_
Depth (ft)	o อุ อุ อุ อุ อุ อุ อุ อุ			Consistency/ Relative Density	(%) M
0	(6-inches organic TOPSOIL)				
1—	Red SILT, moist, scattered rootlets, weak cementation. (N	IL)			18.6
2—					10.0
3—	Brown SILT with sand, fine to coarse sand, moist, mottled	. (ML)		medium stiff	
4—					40.8
5-					37.7
	Gray sandy SILT, fine to meduim sand, moist, mottled. (M	L)			57.7
7—				stiff	
8—	Blueish-gray silty SAND, fine to coarse sand, moist to wet	, interbbed SILT layers	. (SM)		
9—				medium dense	
10 — 11 —	Test Pit terminated at approximately 10 feet. No groundwater seepage observed. No caving observed.				60.4
12					

	LOG OF TEST PIT NO. TP-51 FIGURE A-52									
1	PRO	DJECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	_LOGGE	ED BY:MJX				
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA									
	DAT	TE LOGGED: May 24, 2021 DEPT	H TO GROUNDWATER: <u>12 ft</u>	DEPTH	I TO CAV	/ING : <u>NA</u>	_			
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M			
0_		(10 inches grappic TOPSOIL)								
1—		Brown SILT, moist, scattered rootlets	, weak cementation. (ML)							
2–	8						21.3			
3—	2 li					medium stiff				
4—		Grayish-brown SILT with sand to sar	dy SILT, fine to medium sar	nd, moist, mottled.	(ML)	ing allowed which the Addenia Pro-	40.1			
5—	ŝ									
6—	5									
7-		Blueish-gray silty SAND, fine to coar	se sand, moist to wet, interb	edded SILT layers	3.					
8—							69.6			
9—	2					medium dense				
10 -	3									
11 -	4									
12 -	ę.						31.9			
13 —		Test Pit terminated at approximately Minor groundwater seepage observe No caving observed.	12 feet. d at approximately 12 feet.							
14										

		LOG	OF TEST PIT NO.	TP-52		FIGURE	A-53		
	PRO	JECT NAME: Camas Business Center	PR	OJ. NO : <u>T-8553</u>	_LOGG	ED BY:MJX			
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA								
	DAT	E LOGGED: May 24, 2021 DEP	TH TO GROUNDWATER: NA	DEPTH	TO CA	/ING: <u>NA</u>	_		
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0—		(6-inches organic TOPSOIL)							
1—	-	Brown SILT, dry to moist, trace root	tlets, weak cementation. (M	L)			14.6		
2—							14.0		
3—									
4—						meaium sun			
5—		Brown SILT with sand to clayey SIL	T with sand, fine to coarse	sand, moist, slightly			34.6		
6—		motued. (ML)							
7—									
8—						stiff			
9—									
10 —		Test Pit terminated at approvimately	v 10 feet				39.5		
11 —		No groundwater seepage observed No caving observed.							
12 –				1					
NOTE	. T b:-	autourfoos information portains anti-to-this t	at sit leastion and should not be	T	erra	alataa ka			

	LOG OF TEST PIT NO. TP-53 FIGURE A-54									
	PRC	DJECT NAME: Camas Business Center	PR	OJ. NO : <u>T-8553</u>	_LOGGI	ED BY:MJX				
	LOC	ATION: Camas, Washington S	URFACE CONDITIONS: Tall	Grass	APPRO	DX. ELEV: <u>NA</u>				
	DAT	E LOGGED: May 24, 2021 DEP	TH TO GROUNDWATER: NA	DEPT	H TO CA	/ING: <u>NA</u>	_			
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M			
0-		(5-inches organic TOPSOIL)								
1—		Brown SILT, moist, scattered rootle	ets, weak cementation. (ML))			47.0			
2—	4						17.8			
3—	2					medium stiff				
4—	13									
5—										
6—	8	Brown SILT with sand to clayey SIL mottled. (ML)	T with sand, fine to coarse	sand, moist, slightly	/		38.2			
7—	0									
8—						stiff				
9—	•									
10 —	e.	Test Pit terminated at approximatel	y 10 feet.				38.2			
11 —	4	No groundwater seepage observed No caving observed.	Î.							
12 —										
					erra					

		L	OG OF TEST PIT NO	D. TF	P-54		FIGURE	A-55
	PRO	JECT NAME: Camas Buisness Cer	nter	PROJ.	NO: <u>T-8553</u>	LOGG	ED BY:MJX	
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA							
	DAT	E LOGGED: May 24, 2021	_DEPTH TO GROUNDWATER:	NA	DEPTH	TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0—		(5-inches organic TOPSOIL)				17.		
1—	C.	Brown SILT, dry to moist, scat seam. (ML)	tered rootlets, weak cementa	tion, o	ccasional clayey	SILT		15.6
2—	6							
3—								
4—	3						medium stiff	
5-								36.1
0-								
7—	2							
8—								
9-		Brown SILT with sand, fine to	coarse sand, moist, occasion	al grav	/el. (ML)		medium stiff to stiff	33.6
11-		Test Pit terminated at approxim No groundwater seepage observed.	nately 10 feet. erved.					55.0
10		.						
12-								
						erra		

		LOG	OF TEST PIT NO. T	P-55		FIGURE	A-56			
	PRO	JECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	LOGG	ED BY:MJX				
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA									
	DAT	E LOGGED: May 24, 2021 DEPTH	TO GROUNDWATER: NA	DEPTH	H TO CAV	ING:NA	_			
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M			
0-		(4-inches organic TOPSOIL)								
1—		Brown SILT, moist, slightly mottled, tr	ace rootlets, weak cementa	tion. (ML)			16.9			
2—										
3—							31.7			
4—						medium stiff				
5—										
6—										
7—	0									
8—		Brown silty SAND, fine to coarse sand	d, moist, trace gravel. (SM)							
9—						medium dense				
10 —		Test Pit terminated at approvimately	10 feet				30.1			
11 —	-	No groundwater seepage observed. No caving observed.								
12 —										
					erra					

	LOG OF TEST PIT NO. TP-56 FIGURE A-57								
	PRO	JECT NAME: Camas Business Ce	nter	_ PRO	J. NO: <u>T-8553</u>	LOGG	ED BY:MJX		
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS:	Tall Gra	ass	APPRO	DX. ELEV: <u>NA</u>		
	DAT	E LOGGED: <u>May 24, 2021</u>	_DEPTH TO GROUNDWATE	R : <u>NA</u>	DEPTH	TO CAV	VING:NA	_	
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M	
0-		(7-inches organic TOPSOIL)				1.1			
1—		Brown SILT, dry to moist, scat	tered rootlets, weak cemen	tation. (ML)				
2—							medium stiff	13.6	
3—									
4—	8	Brownish-gray to gray SILT wi	ith sand, fine to medium sar	nd, mois	st, mottled. (ML)			48.0	
5—	1								
6—									
7—	0	Blueish-gray sandy SILT, fine	to coarse sand, moist to we	et, trace	organics. (ML)		stiff	47.8	
8—									
9—								55.4	
10 —		Test Pit terminated at approximate on the second se	mately 10 feet.						
11 —		No caving observed.							
12 —									
						erra			

		LOG	OF TEST PIT I	NO. TP-57		FIGURE	A-58
1	PRO	JECT NAME: Camas Business Center		PROJ. NO: <u>T-</u>	8553 LOGGI	ED BY:MJX	
)	LOC	DX. ELEV: <u>NA</u>					
	DAT	E LOGGED: May 24, 2021 DEF	TH TO GROUNDWATE	R: <u>10 ft</u>	DEPTH TO CAV	ING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0		(7-inches organic TOPSOIL)					
1–		Brown SILT, moist, trace rootlets, v	weak cementation. (ML	.)			47.5
2—							17.5
3—						medium stiff	
4—	1						
5—		Brown to gray SILT with sand, fine	to coarse sand, moist	to wet, mottled.	(ML)		34.7
6—							
7—	,						
8—						stiff	35.1
9—							
10 —		Test Pit terminated at approximate Minor groundwater seepage obser	ly 10 feet. ved at approximately 1	0 feet.			34.6
11-		No caving observed.					
12							
				····· ×	🛒 Terra		

	LOG OF TEST PIT NO. TP-58 FIGURE A-59									
	PRO	DJECT NAME: Camas Business Co	enter PI	ROJ. NO: <u>T-8553</u>	LOGG	ED BY:MJX				
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: Tall	Grass	APPRO	DX. ELEV: <u>NA</u>				
	DAT	E LOGGED: May 24, 2021	DEPTH TO GROUNDWATER: N/	ADEP	TH TO CA	/ING: <u>NA</u>				
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M			
0—		(8-inches organic TOPSOIL)								
1—		Brown SILT, dry to moist, sca	attered rootlets, weak cementatio	n. (ML)						
2—						medium stiff	16.9			
3—										
4—		Brown to gray SILT with sand	l, fine to coarse sand, moist, mot	tled. (ML)			35.1			
5—										
6-										
7—						stiff	35.8			
8—										
9—										
10 —							34.9			
11 —	-	Test Pit terminated at approxi No groundwater seepage obs No caving observed.	imately 10 feet. served.							
12 –										
NOTE	: This reted	s subsurface information pertains only a as being indicative of other locations a	to this test pit location and should not be t the site.		Terra Asso Consultants in Enviror	ciates, In Geotechnical Enginee Seology and Imental Earth Sciences	C.			

		I	LOG OF TEST PIT N	IO. TP-59		FIGURE	A-60		
	PRC	JECT NAME: Camas Business Co	enter	_ PROJ. NO: <u>T-85</u>	553 LOGG	ED BY:MJX			
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA								
	DAT	E LOGGED: May 24, 2021	_DEPTH TO GROUNDWATER	R : <u>NA</u>	_DEPTH TO CA	/ING: <u>NA</u>			
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0-		(6-inches organic TOPSOIL)							
1—	-	Brown SILT, moist, trace root	lets, weak cementation. (ML)					
2—							25.8		
3—						medium stiff			
4—	a in	Brown to gray SILT with sand	l, fine to coarse sand, moist,	mottled. (ML)			35.1		
5—									
6							28.0		
7-							30.9		
8—						stiff			
9—									
10 —	-	Test Pit terminated at approx	imately 10 feet				38.4		
11 —		No groundwater seepage obs No caving observed.	served.						
12 –									
NOTE	: This	s subsurface information pertains only	to this test pit location and should no	ot be	Terra	ciates In	c		

interpreted as being indicative of other locations at the site.

	LOG OF TEST PIT NO. TP-60 FIGURE A-61								
	PRO	DJECT NAME: Camas Business Center	PRO.	J. NO: <u>T-8553</u>	LOGGI	ED BY:MJX			
	LOCATION: Camas, Washington SURFACE CONDITIONS: Tall Grass APPROX. ELEV: NA								
	DATE LOGGED: May 24, 2021 DEPTH TO GROUNDWATER: 8 ft DEPTH TO CAVING: NA								
Depth (ft)	Sample No.	Des	scription			Consistency/ Relative Density	(%) M		
0-									
1—	i.	(8-inches organic TOPSOIL) Red SILT, moist, trace rootlets, weak ceme	entation. (ML)						
2—	č.						22.5		
3—									
4—	8	Brownish-gray to gray clayey SILT with sar gravel. (ML)	nd, fine to coarse sand	d, moist, mottled, tr	ace		37.0		
5—									
6—							34.2		
7—						stiff			
8—		Blueish-gray silty SAND with gravel, fine to	coarse sand, fine to c	coarse gravel, wet.	(SM)				
9—						medium dense	30.1		
10 —		Test Pit terminated at approximately 10 fee	et.						
11-		No caving observed.	pproximately o leet.						
12 –									

		LOG OF TI	EST PIT NO. TP	-61		FIGURE	A-62		
	PRO	DJECT NAME: Camas Business Center	PROJ. N	NO: <u>T-8553</u>	LOGGE	ED BY:MJX			
	LOCATION: Camas, Washington SURFACE CONDITIONS: Duff/understory APPROX. ELEV: NA								
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GI	ROUNDWATER: NA	DEPTH	ΤΟ CAV	/ING:NA	_		
Depth (ft)	Sample No.	Desc	ription			Consistency/ Relative Density	(%) M		
0-		(5 inches organic TOPSOIL)							
1—	ć	Brown SILT, moist, trace rootlets, weak cem	entation. (ML)				19.6		
2—									
3—	9. 19	Brown SILT with sand, fine to coarse sand, r	noist, mottled. (ML)			medium stiff			
4—	Ğ.						36.2		
5—									
6—		Gray SILT with sand and gravel, fine to coar mottled. (ML)	se sand, fine to coarse	gravel, moist,			5		
7—						stiff	40.1		
8—									
9—	9	Blueish-gray to dark gray SILT to SILT with	sand, fine to coarse sar	nd, moist, trace			49.1		
10 —	સ્	gravel. (ML)				very stiff	41.7		
11 — 12 —		Test Pit terminated at approximately 11 feet. No groundwater seepage observed. No caving observed.							
13 —									

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OF TE	ST PIT NO. TP-62		FIGURE	A-63		
100	PRO	DJECT NAME: Camas Business Center	PROJ. NO: _	T-8553 LOGGI	ED BY:MJX			
	LOCATION: Camas, Washington SURFACE CONDITIONS: Duff/understory APPROX. ELEV: N.							
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GR	OUNDWATER: NA	DEPTH TO CAV	/ING: <u>NA</u>	_		
Depth (ft)	Sample No.	Descr	iption		Consistency/ Relative Density	(%) M		
0_		(6-inches organic TOPSOIL)						
1—	10	Brown SILT, moist, numerous roots, scattere	d rootlets. (ML)					
						18.7		
2—								
3—		Brown SILT with sand, fine to coarse sand, n	noist, mottled, occasional c	organic. (ML)		30.4		
4—	10			3	medium stiff			
F	3							
5-								
6—	S							
7—	s 0					41.4		
8	2	moist, mottled, trace cobbles. (GP-GM)	ie to coarse sand, fine to c	oarse gravel,				
0								
9—	8				medium dense			
10 —	ą							
11 —						36.3		
		Test Pit terminated at approximately 11 feet.				00.0		
12 —	Q.	No caving observed.						
13 —								

	LOG OF TEST PIT NO. TP-63 FIGURE A-64								
	PRO	DJECT NAME: Camas Business Center	PROJ	. NO : <u>T-8553</u>	LOGG	ED BY:MJX			
	LOC	CATION: Camas, Washington SURF	ACE CONDITIONS: Tall Gra	SS	APPRO)X. ELEV: <u>NA</u>			
	DAT	TE LOGGED: May 25, 2021 DEPTH	O GROUNDWATER: 7 ft	DEPTH	TO CA	/ING:NA	_		
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0-		(7 inches erganic TOPSOIL)							
1—	10	Dark brown SILT, moist, mottled, occas	ional rootlet. (ML)			medium stiff	18.0		
2—									
3—		Gray SILT with sand, fine to coarse sar	d, moist, mottled. (ML)				35.0		
4—	a	Grav SILT. moist. mottled. (ML)				stiff			
Б							28.0		
5— 6—		Brown to gray GRAVEL with silt and sa moist to wet, mottled, scattered cobbles	nd, fine to coarse sand, fi s. (GP-GM)	ne to coarse grave	 il,		30.9		
, in the second s									
7—							58.0		
8—						medium dense			
9—									
10 —									
11 —							50.4		
12 —	9	Test Pit terminated at approximately 11 Moderate groundwater seepage observ No caving observed.	feet. ed at approximately 7 fee	t.					
13									
				T					

	LOG OF TEST PIT NO. TP-64 FIGURE A-65								
	PRO	DJECT NAME: Camas Business Center	PROJ. NO:	T-8553 LOGGE	ED BY:MJX				
	LOC	CATION: Camas, Washington SURF			DX. ELEV: <u>NA</u>				
3	DAT	E LOGGED: <u>May 25, 2021</u> DEPTH	TO GROUNDWATER: <u>NA</u>		/ING: <u>NA</u>				
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M			
0-		(6-inches organic TOPSOIL)							
1—	e.	Brown SILT, moist, numerous rootlets,	weak cementation. (ML)		medium stiff	19.7			
2—		Gray to dark gray SILT, moist, mottled,	occasional rootlet. (ML)			22.1			
3—									
4—									
5—						37.4			
6—					stiff				
7—						41.0			
8—									
9—									
10 —									
11 —			f1			54.0			
12 —	1.	No groundwater seepage observed. No caving observed.							
13 —									
			133	Terra					

	LOG OF TEST PIT NO. TP-65 FIGURE A-66							
	PRO	JECT NAME: Camas Business Ce	enter	PROJ.	NO: <u>T-8553</u>	_ LOGGI	ED BY:MJX	
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: G	Grass		_ APPRO	DX. ELEV: NA	
	DAT	E LOGGED:May 25, 2021	_DEPTH TO GROUNDWATER:	NA	DEPT	H TO CA	/ING: <u>NA</u>	
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M
0-		(4-inches organic TOPSOIL)				Ĩ		
1—		Brown SILT, moist, trace root	Brown SILT, moist, trace rootlets, weak cementation. (ML)					15.0
2—		Gray to dark gray SILT, moist	, mottled, occasional rootlet. (I	ML)				33.6
3—							stiff	
4—	ai.							
5—		Brown to gray GRAVEL with s moist, mottled, scattered cobb	silt and sand, fine to coarse sa	and, fin	e to coarse grav	rel,		25.4
6—								
7—	9						medium dense	
8—								
9—								
10 —		T. (D') (36.0
11 —		No groundwater seepage obs No caving observed.	erved.					
12 —								
NOTE	: This reted	s subsurface information pertains only t as being indicative of other locations at	o this test pit location and should not to the site.	be			ciates, In Geotechnical Enginee Beology and mental Earth Sciences	C.

		LOG	OF TEST PIT NO. T	P-66		FIGURE	A-67
	PRO	DJECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	_LOGGE	ED BY:MJX	
	LOC	CATION: Camas, Washington SI	JRFACE CONDITIONS: Grass		APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 25, 2021 DEP	TH TO GROUNDWATER: <u>NA</u>	DEPTH	I TO CAV	ING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)			1-1		
1—		Brown SILT, moist, trace rootlets, w	eak cementation. (ML)				16.6
2—	1						10.0
3—	2	Brown to gray SILT with sand, fine t	o medium sand, moist, mottle	ed. (ML)		medium stiff	30.4
4—	3						
5—							
6-							
7—	o	Brown to gray silty GRAVEL with sa mottled. (GM)	and, fine to coarse sand, fine	to coarse gravel, i	noist,		47.8
8—						medium dense	
9—							
10-		Test Pit terminated at approximately No groundwater seepage observed No caving observed.	y 10 feet.				48.0
12 —							
				-			

	LOG OF TEST PIT NO. TP-67 FIGURE A-68								
	PRO	JECT NAME: Camas Business	Center Pf	ROJ. NO: <u>T-8553</u>	_ LOGG	ED BY:MJX			
	LOC	ATION: Camas, Washington	SURFACE CONDITIONS: Gras	SS	_ APPRO	DX. ELEV: <u>NA</u>			
	DAT	E LOGGED: May 25, 2021	DEPTH TO GROUNDWATER: N/	DEPTI	H TO CA	/ING: <u>NA</u>			
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M		
0-		(6-inches organic TOPSOI)						
1—		Brown SILT, moist, trace roo	, otlets, weak cementation. (ML)						
2—	с. С						21.1		
3—		Brown SILT with sand, fine	to coarse sand, moist, mottled. (M	 L)		medium stiff			
4—	4						33.5		
5—									
6-		Gray SILT with sand, fine to	medium sand, moist, mottled. (M	_)			38.9		
7-						stiff			
9-									
10 —		Brown to gray SILT, moist, r	nottled. (ML)			very stiff	31.5		
11-		Test Pit terminated at appro No groundwater seepage of No caving observed.	ximately 10 feet. oserved.						
12 —									
					orra				

	LOG OF TEST PIT NO. TP-68 FIGURE A-69							
41000	PRO	OJECT NAME: Camas Business Center	PROJ. NO: <u>T-8553</u>	LOGG	ED BY:MJX			
	LOC	CATION: Camas, Washington SURFACE CONDITIONS: G	°ass	APPRO	DX. ELEV: <u>NA</u>			
	DAT	TE LOGGED: May 25, 2021 DEPTH TO GROUNDWATER:	NA DEPTH	TO CA	/ING:NA			
Depth (ft)	Sample No.	Description			Consistency/ Relative Density	(%) M		
0_		(5 inches ergenie TOPSOII.)						
1—	1	Brown SILT, moist, trace rootlets, weak cementation. (ML)						
2—						20.1		
3—		Brown SILT with sand, fine to coarse sand, moist, mottled. (medium stiff	43.8		
4—								
5—								
6—	G							
7—	8 D	Gray SILT with sand to sandy SILT, fine sand, moist. (ML)				39.6		
8—								
9—	8 - 11 8 - 11	Blueish-gray SILT to SILT with sand, fine sand, moist. (ML)			stiff	44.6		
10 —	4							
11 —		Test Pit terminated at approximately 11 feet				32.3		
12 —	C.	No groundwater seepage observed. No caving observed.						
13 —								

	LOG OF TEST PIT NO. TP-69 FIGURE A-70								
	PRO	DJECT NAME: Camas Business Center PROJ. NO: T-8553 LOGG	ED BY:MJX						
]	LOC	ATION: Camas, Washington SURFACE CONDITIONS: Grass APPRO	DX. ELEV: <u>NA</u>						
	DAT	E LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: NA DEPTH TO CAN	/ING: <u>NA</u>						
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M					
0		(7-inches organic TOPSOIL)							
1–	111	Brown SILT, moist, trace rootlets, occasional organic, weak cementation. (ML)							
2—	Ş			21.0					
3—	4	Brown SILT with sand, fine to coarse sand, moist, mottled. (ML)	modium stiff						
4-			medium sum	35.7					
5—									
6—									
7—	s - 0	Brown to gray SILT with gravel, fine to coarse gravel, moist, mottled, scattered cobbles.		25.4					
8—	j.	(ML)							
9—	9 0	Brown to gray SILT with sand and gravel, fine to coarse sand, fine to coarse gravel,	stiff	56.3					
10 —	4	moist, mottled, trace cobbles. (ML)							
11 -	a .			57.2					
12 —	24 24	Test Pit terminated at approximately 11 feet. No groundwater seepage observed. No caving observed.							
13									

	LOG OF TEST PIT NO. TP-70 FIGURE A-71								
	PRO	DJECT NAME: Camas Business Center	PROJ	l. NO: <u>T-8553</u> LC	DGGED BY: MJX				
	LOC	CATION: Camas, Washington SU	RFACE CONDITIONS: Grass	AF	PPROX. ELEV: <u>NA</u>				
	DAT	E LOGGED: May 25, 2021 DEPT	TH TO GROUNDWATER: 9 ft	DEPTH TO	CAVING:NA	_			
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	(%) M			
0-									
1—	10	Brown SILT, dry to moist, trace root	ets, weak cementation. (ML)			12.0			
2—						13.0			
3—	1				medium stiff				
4—		Brown SILT with sand, fine to coarse	e sand, moist, mottled. (ML)			33.6			
5—									
6—	8					2212			
7-		Brown GRAVEL with silt and sand, f mottled, trace cobbles. (GP-GM)	ine to coarse sand, fine to co	arse gravel, moist,		39.9			
8— 0_					medium dense				
9 10 —	8				medium dense				
11						26.3			
12-	9	Test Pit terminated at approximately Minor groundwater seepage observe No caving observed.	11 feet. ed at approximately 9 feet.			20.0			
13 —		I.							

	LOG OF TEST PIT NO. TP-71 FIGURE A-72							
	PRO	DJECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGGE	ED BY:MJX		
]	LOC	CATION: Camas, Washington SURFAC	E CONDITIONS: Grass		APPRO	DX. ELEV: <u>NA</u>		
	DAT	TE LOGGED: May 25, 2021 DEPTH TO	GROUNDWATER: 9 ft	DEPTH	TO CAV	ING:NA	_	
Depth (ft)	Sample No.	De	scription			Consistency/ Relative Density	(%) M	
0	-	(6 inches organic TOPSOL)						
1—		Brown SILT, moist, trace rootlets, weak ce	ementation. (ML)				17.0	
2–	() ()						17.2	
3—	1. T.					medium stiff		
4—		Brown SILT with sand, fine to coarse sand	l, moist, mottled. (ML)					
5—	2						37.7	
6—	5							
7—		Brown GRAVEL with silt and sand, fine to	coarse sand, fine to co	arse gravel, moist	to		17.8	
8—	35	wet, mottled, trace cobbles, occasional bo	ulder. (GP-GM)					
9—	240					medium dense		
10 —	3							
11 -	4							
12 –	8	Test Pit terminated at approximately 12 fe	et				39.8	
13 —	1	Moderate groundwater seepage observed No caving observed.	at approximately 9 fee	t.				
14 –								
				-				

	LOG OF TEST PIT NO. TP-72 FIGURE A-73							
	PRO	DJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGG	ED BY:MJX					
	LOC	ATION: Camas, Washington SURFACE CONDITIONS: Grass APPR	DX. ELEV: <u>NA</u>					
	DAT	E LOGGED: May 25, 2021 DEPTH TO GROUNDWATER: 10 ft DEPTH TO CA	VING: <u>NA</u>					
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M				
0-		(7-inches organic TOPSOIL)						
1—	6	Brown SILT, moist, trace rootlets, weak cementation. (ML)		20.5				
2—								
3—			medium stiff					
4—	a • .	Brown SILT with sand, fine to coarse sand, moist, mottled. (ML)		35.3				
5—								
6—				2312				
7—		Gray sandy SILT, fine sand, moist, slighlty mottled. (ML)		36.0				
8—			stiff					
9—								
10 —	4 0	Brown to gray GRAVEL with silt and sand, fine to coarse sand, fine to coarse gravel, moist to wet, mottled. (GP-GM)	medium dense	40.1				
11 — 12 —		Test Pit terminated at approximately 11 feet. Minor groundwater seepage observed at approximately 10 feet. No caving observed.						
13 —								

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

	LOG OF TEST PIT NO. TP-73 FIGURE A-74							
	PRC	DJECT NAME: Camas Business Center		PROJ. NO: <u>T-8553</u>	LOGGI	ED BY:MJX		
	LOC	CATION: Camas, Washington SU	RFACE CONDITIONS: G	rass	APPRO	DX. ELEV: <u>NA</u>		
	DAT	E LOGGED: <u>May 24, 2021</u> DEP1	TH TO GROUNDWATER:	NA D	EPTH TO CAV	ING:NA	_	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M	
0-		(6-inches organic TOPSOIL)						
1—	•	Brown SILT, moist, trace rootlets, or cementation. (ML)	ccasional cobble, occasi	ional organic, wea	k		20.8	
2—							20.0	
3—						0 1022		
4—		Brown to gray SILT with sand, fine to	o medium sand, moist, ı	mottled. (ML)		medium stiff	34.5	
5—								
6—							35.1	
7—								
8—		Blueish-gray SILT with sand to sand	y SILT, fine to medium	sand, moist. (ML)		stiff		
9—							31.7	
10 —		Test Pit terminated at approximately	10 feet.					
11 —	-	No groundwater seepage observed. No caving observed.						
12 —								
					Terra			

	LOG OF TEST PIT NO. TP-74 FIGURE A-75								
	PRC	JECT NAME: Camas Business (Center	PROJ	. NO : <u>T-8553</u>	LOGG	ED BY:MJX		
	LOC	ATION: Camas, Washington	SURFACE CONDITION	S: Grass		APPRO)X. ELEV: <u>NA</u>	2	
	DAT	E LOGGED: <u>May 24, 2021</u>	DEPTH TO GROUNDWAT	ER: <u>NA</u>	DEPTH	TO CAV	/ING:NA	_	
Depth (ft)	Sample No.		Description				Consistency/ Relative Density	(%) M	
0_		(6-inches organic TOPSOII)			1			
1_		Brown SILT, dry to moist, tra	, ace rootlets, weak cementat	ion. (ML)					
28								16.6	
2—									
3—									
4—		Brown to gray SILT with san	d, fine to coarse sand, mois	t, mottled	. (ML)		medium stiff	42.6	
5—									
6—									
7—									
8—		Brown silty GRAVEL with sa	and, fine to coarse sand, fine	e to coars	e gravel, moist,			30.2	
9—		scattered CODDIES. (GIM)					medium dense		
10 —		Test Pit terminated at appro	ximately 10 feet.						
11 —		No groundwater seepage of No caving observed.	oserved.						
12 -									
						orra			

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG OF TEST PIT NO. TP-75	FIGURE	A-76
	PRO	DJECT NAME: Camas Business Center PROJ. NO: <u>T-8553</u> LOGG	ED BY:MJX	
	LOC	ATION: Camas, Washington SURFACE CONDITIONS: Grass APPR	OX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 24, 2021 DEPTH TO GROUNDWATER: NA DEPTH TO CA	VING:NA	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0—		(8-inches organic TOPSOIL)		
1—	-	Brown SILT, moist, trace rootlets, weak cementation. (ML)		
2—	-			19.5
3—	-		medium stiff	
4—	-			
5—		Brown to gray SILT with sand, fine to coarse sand, moist, mottled. (ML)		40.9
6—				
7—	-			35.3
8—			stiff	
9—				
10 —				39.1
11 —	-	Test Pit terminated at approximately 10 feet. No groundwater seepage observed. No caving observed.		
12 –				
NOTE	: This	s subsurface information pertains only to this test pit location and should not be as being indicative of other locations at the site.	ciates, In	C.

interpreted as being indicative of other locations at the site.

		LOG	OF TEST PIT NO. TP	-76		FIGURE	A-77
1	PRO	DJECT NAME: Camas Business Center	PROJ.	NO: <u>T-8553</u>	LOGG	ED BY:MJX	
)	LOC	CATION: Camas, Washington SUF	RFACE CONDITIONS: Grass		APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: May 24, 2021 DEPT	H TO GROUNDWATER: 7 ft	DEPTH	TO CAV	ING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0		(9-inches organic TOPSOIL)			ju.		
1—	(Brown SILT with gravel, dry to moist, cementation. (ML)	fine to coarse gravel, trace ro	otlets, weak			17.3
2—	14						1001010-0
3—						medium stiff	
4—	4						
5—		Brown to gray SILT with sand, fine to (ML)	coarse sand, moist, mottled,	occasional grave).		36.9
6-							
7—	9 P	Brown SAND with silt, fine to medium SM)	sand, moist to wet, interbedo	ded silt seams. (S	 8P-		37.7
8—						medium dense	
9—		Gray SILT, moist. (ML)				stiff	49.6
10 — 11 —		Test Pit terminated at approximatley Moderate groundwater seepage observed.	10 feet. rved at approximately 7 feet.				
12							

		LOG OF TE	ST PIT NO. TF	9-77		FIGURE	A-78
	PRO	OJECT NAME: Camas Business Center	PROJ.	NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFACE Co	ONDITIONS: Grass		APPRO	DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: <u>May 24, 2021</u> DEPTH TO GRO	DUNDWATER: 11 ft	DEPTH	ΤΟ CAV	VING:NA	_
Depth (ft)	Sample No.	. Descri	otion			Consistency/ Relative Density	(%) M
0		(11 inches organic TOPSOIL)			1		
1—		Brown SILT, moist, trace rootlets, weak ceme	ntation. (ML)				
2—	9		NG 11.27 (2 4 5) 1 8				19.2
3—	2 ju						
4—		Brown SILT with sand, fine to coarse sand, m	oist, mottled, occasio	onal gravel. (ML)			41.5
5—							
6—	G					medium stiff	
7—							
8—	2						
9—							
10 —	D						
11 —	4 0	Brown silty SAND with gravel, fine to coarse s	and, fine to coarse g	ıravel, wet, occas	ional	medium dense	48.8
12 —	9	Test Pit terminated at approximately 12 feet					
13 —		Minor groundwater seepage observed at appr No caving observed.	oximately 11 feet.				
14 —							

		LOG O	F TEST PIT NO. T	P-78		FIGURE	A-79
	PRO	DJECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	_LOGGI	ED BY:MJX	
	LOC	CATION: Camas, Washington SURI	ACE CONDITIONS: Grass		_ APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 24, 2021</u> DEPTH	TO GROUNDWATER: NA	DEPT	H TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(11-inches organic TOPSOIL)					
1—	-	FILL: Brown SILT, moist, trace rootlets occasional plastic debris. (ML)	, occasional organic, occa	sional metal deb	ris,		22.9
2—							22.0
3—		Brown to gray SILT with sand, fine to c	oarse sand, moist, mottle	d. (ML)		medium stiff	33.7
4—							
5—							
6—							39.5
7—						stiff	
8—		Gray SILT, moist, mottled. (ML)					
9—						very stiff	
10 —							27.5
11 —	4	Test Pit terminated at approximately 10 No groundwater seepage observed. No caving observed.	0 feet.				
12 —							
NOTE	Thic	s subsurface information portains only to this test of	it location and should not be		Ferra	oiotoo In	

		LOG OF 1	TEST PIT NO. T	P-79		FIGURE	A-80
4,000	PRO	DJECT NAME: Camas Business Center	PROJ	. NO: <u>T-8553</u>	LOGG	ED BY:MJX	
	LOC	CATION: Camas, Washington SURFAC	E CONDITIONS: Tall Gra	ISS	APPRO	DX. ELEV: <u>NA</u>	
	DAT	TE LOGGED: May 24, 2021 DEPTH TO	GROUNDWATER: NA	DEPTH	TO CAV	/ING: <u>NA</u>	_
Depth (ft)	Sample No.	De	scription			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—		Brown SILT, dry to moist, scattered rootlet	s, weak cementation. (ML)			19.0
2—							10.0
3—	i c	Brown SILT with sand to clayey SILT with	sand, fine to coarse sa	nd, moist, slightly		medium stiff	
4—							34.4
5—	2 2						
6—							
1							
8—	a 0	Brownish-gray sandy SILT, fine to coarse	sand, moist, mottled. (N	мL)		stiff	
9—	8						46.0
10 —	a o.	Gray SILT with sand, fine to coarse sand, blueish-gray SILT with sand. (ML)	moist to wet, mottled, a	alternating layers o	 f	modium stiff to	
11-	4					stiff	50.6
12 — 13 —		Test Pit terminated at approximately 12 fee No groundwater seepage observed. No caving observed.	ət.				
14 —							

Terra Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

		LOG	OF TEST PIT NO. T	P-80		FIGURE	A-81
	PRO	JECT NAME: Camas Business Center	PRO	J. NO: <u>T-8553</u>	LOGGE	ED BY:MJX	
	LOC	CATION: Camas, Washington SI	JRFACE CONDITIONS: <u>Tall Gr</u>	ass	APPRO	DX. ELEV: <u>NA</u>	
	DAT	E LOGGED: <u>May 24, 2021</u> DEP	TH TO GROUNDWATER: NA	DEPTH	TO CAV	VING:NA	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0-		(6-inches organic TOPSOIL)					
1—		Brown SILT, moist, trace rootlets, w	eak cementation. (ML)				
12							25.2
2—							
3—	e 1	Drown Cll T with condito clover Cll	T with and fine to serve a				
4		mottled. (ML)	I with sand, line to coarse s	and, moist, slightly		medium stiff	22.7
4							33.7
5—							
6—							
_							
7-							
8—							
9—						stiff	
		Brownish-gray sandy SILT, fine to c	oarse sand, moist, mottled. (ML)			
10 —		Test Pit terminated at approximatel	y 10 feet.				35.7
11 —		No caving observed.					
12 –							
				T	orra		

Tested By: FQ

WETLAND AND FISH AND WILDLIFE HABITAT ASSESSMENT REPORT

CAMAS BUSINESS CENTER

OCTOBER 2021

WETLAND AND FISH AND WILDLIFE HABITAT ASSESSMENT REPORT

CAMAS BUSINESS CENTER

OCTOBER 8, 2021

PROJECT LOCATION

4707 & 4723 Northwest Lake Road Camas, Washington 98607

PREPARED FOR

PANATTONI DEVELOPMENT COMPANY, INC. 1821 DOCK STREET, SUITE 100 TACOMA, WASHINGTON 98402

PREPARED BY

Soundview Consultants LLC 2907 Harborview Drive GIG Harbor, Washington 98335 (253) 514-8952

Executive Summary

Soundview Consultants LLC (SVC) has been assisting Panattoni Development Company Inc. (Applicant) with a wetland and fish and wildlife habitat assessment and environmental planning to support the proposed Camas Business Center industrial development on a 74.06-acre site located at 4707 & 4723 Northwest Lake Road in the City of Camas, Washington. The subject property consists of two tax parcels situated in the Southeast ¹/₄ of Section 29, Township 02 North, Range 03 East, W.M (Clark County Tax Parcel Numbers 176155000, and 176170000).

SVC performed an investigation and assessment of potentially regulated wetlands, streams, and other fish and wildlife habitat conservation areas on the subject property and publicly accessible areas within 300 feet of the site in December 2020, with follow-up investigations in April 2021. Using current methodology, SVC identified four potentially regulated wetlands (Wetlands A - D) on the subject property, and one potentially regulated stream (Offsite Stream Z) offsite to the west of the subject property. Wetland A is classified as Category III wetland with 4 total habitat points, and subject to a standard 80-foot buffer based on proposed high intensity land use per Camas Municipal Code (CMC) 16.53.040.B.2 Table 16.53.040-1. Wetland B is classified as a Category III wetland with 5 total habitat points and subject to a standard 120-foot buffer per CMC 16.53.040.B.2 Table 16.53.040-3. Wetland C is classified as a Category IV wetland and is likely exempt from buffer regulations per Camas Municipal Code (CMC) 16.53.010.C.2.a due to its isolated location in the landscape and small size (less than 4,350 square feet). Wetland D is classified as a Category III wetland with 6 total habitat points and subject to a standard 135-foot buffer per CMC 16.53.040.B.2 Table 16.53.040-3. Offsite Stream Z is likely a Type F stream with no known salmonid presence in accordance with Washington Department of Fish and Wildlife (WDFW) SalmonScape data and subject to a standard 75-foot buffer per CMC 16.61.040.D. The stream buffer is not anticiapted to project onto the subject property. No other potentially regulated wetlands or fish and wildlife habitat conservation areas were identified within 300 feet of the subject property.

The Applicant proposes industrial development of the subject property to create a business center that includes three buildings, internal access roads, parking and loading areas, utilities, and stormwater facilities. Necessary critical area impacts and mitigation requirements are outlined in a wetland mitigation plan prepared under separate cover. The table below summarizes the identified wetlands and streams and summarizes the potential regulatory status by local, state, and federal agencies.

Feature Name	Size/Length Onsite	Category/ Type ¹	Regulated Under CMC 16.53 & 16.61	Regulated Under RCW 90.48	Regulated Under Clean Water Act
Wetland A	56,558 sf	III	Yes	Yes	Likely
Wetland B	32,343 sf	III	Yes	Yes	Likely
Wetland C	3,167 sf	IV	No - Exempt	Yes	Not Likely
Wetland D	9,074 sf	III	Yes	Yes	Assumed
Offsite Stream Z	N/A (Offsite)	F	Yes	Yes	Likely

 Wetlands classified according to Washington State Department of Ecology (WSDOE) wetland rating system for western Washington (Hruby, 2014); streams classified according Washington Department of Natural Resources (DNR) Water Typing System and CMC 16.61.040.

Table of Contents

Chapter 1. Introduction	
Chapter 2. Property Location	
2.1 Proposed Location	,
2.2 Proposed Project	
Chapter 3. Methods	
Chapter 4. Existing Conditions	
4.1 Landscape Setting	
4.2 Soils	
4.3 Vegetation	
4.4 Wetland and Stream Inventories and Priority Habitats and Species	
4.6 Precipitation	
Chapter 5. Results	
5.1 Wetlands	
5.2 Offsite Stream Z14	
5.3 Non-Regulated Farm Pond14	
Chapter 6. Regulatory Considerations	
6.1 Local Critical Areas Buffer Requirements	
6.2 State and Federal Considerations	
Chapter 7. Closure	
Chapter 8. References	

Figures

Figure 1.	Vicinity Map	2
Figure 2.	Aerial View of the Subject Property	5

Tables

Table 1. Precipitation Summary ¹	7
Table 2. Wetland Summary	8
Table 3. Wetland A Summary	
Table 4. Wetland B Summary	11
Table 5. Wetland C Summary	
Table 5. Wetland D Summary	

Appendices

- Appendix A Methods and Tools
- Appendix B Background Information
- Appendix C Existing Conditions Map
- Appendix D Data Forms
- Appendix E Wetland Rating Forms
- Appendix F Wetland Rating Maps
- Appendix G Qualifications
Chapter 1. Introduction

Soundview Consultants LLC (SVC) has been assisting Panattoni Development Company Inc. (Applicant) with a wetland and fish and wildlife habitat assessment and environmental planning to support the proposed Camas Business Center industrial development on a 74.06-acre site located at 4707 & 4723 Northwest Lake Road in the City of Camas, Washington. The subject property consists of two tax parcels situated in the Southeast ¹/₄ of Section 29, Township 02 North, Range 03 East, W.M (Clark County Tax Parcel Numbers 176155000, and 176170000).

The purpose of the wetland and fish and wildlife habitat assessment report is to identify the presence of potentially regulated wetlands and fish and wildlife habitat conservation areas that may be found on or near the subject property.

This report provides conclusions and recommendations regarding:

- Site description and area of assessment;
- Background research and identification of potential critical areas within the vicinity of the site;
- Identification and assessment of potentially regulated wetlands and streams;
- Existing site map detailing identified wetlands and offsite stream; and
- Supplemental information necessary for local, state, and federal regulatory review.

Chapter 2. Property Location

2.1 Proposed Location

The subject property is located at located at 4707 & 4723 Northwest Lake Road in the City of Camas, Washington. The subject property consists of two tax parcels situated in the Southeast ¹/₄ of Section 29, Township 02 North, Range 03 East, W.M (Clark County Tax Parcel Numbers 176155000, and 176170000).

To access the subject property, heading southbound on Interstate-5 from the Ridgefield area, keep right at the fork to take the exit for Interstate 205 S toward Salem. After 10.1 miles, use the right two lanes to take exit 27 for Washington-14 East towards Camas. Continue for 4.3 miles, then take exit 10 for Southeast 192nd Avenue. Turn left on Southeast 192nd Avenue then right on Southeast Brady Road. At the traffic circle in 0.1 mile, take the first exit and stay on Southeast Brady Road. Follow Southeast Brady Road for 1.6 miles where it becomes Northwest Parker Street. Continue for 1.6 miles, and then turn left on Northwest Lake Road, where the property will be located on the right-hand side after 0.5 miles.

Figure 1. Vicinity Map.

2.2 Proposed Project

The Applicant proposes industrial development of the subject property to create a business center that includes three buildings, internal access roads, parking and loading areas, utilities, and stormwater facilities. Necessary critical area impacts and mitigation requirements are outlined in a wetland mitigation plan prepared under separate cover.

Chapter 3. Methods

SVC investigated, assessed, and/or delineated potentially regulated wetlands, streams and other fish and wildlife habitat on the subject property in December 2020 and April 2021. All determinations were made using observable vegetation, hydrology, and soils in conjunction with data from the U.S. Geological Survey (USGS) topographic maps, National Resource Conservation Service (NRCS) soil survey, U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI), Washington State Department of Natural Resources (DNR) water typing system, Washington Department of Fish and Wildlife (WDFW) Priority Habitats and Species (PHS) and SalmonScape mapping tools, Clark County GIS, and various orthophotographic resources. Appendix A contains further details for the methods and tools used to prepare this report.

Wetland boundaries were determined using the routine approach described in the U.S. Army Corps of Engineers (USACE) *Wetlands Delineation Manual* (Environmental Laboratory, 1987) and modified according to the guidelines established in the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual*: *Western Mountains, Valleys, and Coast Region* (Version 2.0) (USACE, 2010) and *Field Indicators of Hydric Soils in the United States* (NRCS, 2018). Qualified wetland scientists marked boundaries of wetlands with orange surveyor's flagging labeled alpha-numerically and tied to 3-foot lath or vegetation at formal sampling locations (DP-1 through DP-21) to mark the points where detailed data was collected. Additional tests pits were excavated at regular intervals inside and outside of the wetland boundaries to further confirm the delineation.

SVC classified all wetlands using both the hydrogeomorphic (Brinson, 1993) and Cowardin (Cowardin, 1979) classification systems. Following classification and assessment, WSDOE-trained scientists rated and categorized all wetlands using the *Washington State Wetlands Rating System for Western Washington* (Hruby, 2014) and the definitions established in Camas Municipal Code (CMC) 16.53.020.

The fish and wildlife habitat assessment was conducted during the same site visit by qualified fish and wildlife biologists. The experienced biologists made visual observations using stationary and walking survey methods for both aquatic and upland habitats noting any special habitat features or signs of fish and wildlife activity.

Chapter 4. Existing Conditions

4.1 Landscape Setting

The subject property is located in a mixed light-commercial and industrial setting in the City of Camas. The parcels are undeveloped and sparsely forested, and currently used as grazing land for cattle (Figure 2). A single-family residence and associated infrastructure including a driveway, detached garage, and equipment storage shed/barn is located on the southern portion of the subject property. The site is bounded by commercial buildings to the north, undeveloped land and commercial buildings to the east, Northwest Lake Road to the south, and a golf course and commercial properties to the west. Topography onsite is generally flat with a slight downwards slope from to south to north. Elevation ranges from approximately 295 feet above mean sea level (amsl) on the southern portion of the site to approximately 244 feet amsl on the northern portion of the site. A topographic map is provided in Appendix B1. The subject property is located within Water Resource Inventory Area (WRIA) 28 – Salmon-Washougal.

Figure 2. Aerial View of the Subject Property

4.2 Soils

The NRCS Soil Survey of Clark County, Washington identifies four soil series on the subject property: Cove silty clay loam, thin solum, 0 to 3 percent (CwA), Hesson clay loam, 0 to 8 percent slopes (HcB), Hesson clay loam, 8 to 20 percent slopes (HcD), and Powell silt loam, 0 to 8 percent slopes (PoB). A soil map is provided in Appendix B2. Below is a detailed description of each soil series.

5

Cove silty clay loam, thin solum, 0 to 3 percent (CwA)

According to the survey, Cove silty clay loam, thin solum, 0 to 3 percent (CwA) is part of the Cove series of soils mapped by the NRCS in Clark County. The Cove series consists of deep, very poorly drained soils that were formed in water-laid deposits in old lakes and ponds. The CwA soils occur in low, wet basins and depressions on terraces in the central part of the county. A typical soil profile is a silty clay loam for the first 10 inches of depth and is a very dark grayish brown. From 10 to 14 inches, the soil is a dark-gray silty loam. Immediately below, is an extremely firm, black clay layer about 7 inches thick. The underlying material to a depth of about 60 inches is and olive-colored silt laom. Cove silty clay loam, thin solum, 0 to 3 percent slopes, is listed as hydric on the Clark County Hydric Soils List (NRCS, N.d.).

Hesson clay loam, 0 to 8 percent slopes (HcB)

According to the survey, Hesson clay loam, 0 to 8 percent slopes (HcB) is part of the Hesson series of soils mapped by the NRCS in Clark County. The Hesson series consists well-drained soils in mostly level to gently rolling terrain. Parent material is deeply weathered, old alluvium that consists of varying amounts of gravel. Annual precipitation typically varies between 50 and 60 inches. In a typical profile, the surface layer is a dark reddish-brown clay loam about 4 inches thick. Below this layer is a friable, dark reddish-brown clay loam about 10 inches thick. A reddish-brown clay to a depth of about 91 inches. The Hesson clay loam, 0 to 8 percent slopes (HcB) is listed as non-hydric on the Clark County Hydric Soils List (NRCS, N.d.).

Hesson clay loam, 8 to 20 percent slopes (HcD)

According to the survey, this soil is similar to the Hesson clay loam 0 to 8 percent except the surface layer is generally, 1 to 2 inches thinner, and up to 4 inches thinner where erosion has been active. The Hesson clay loam, 8 to 20 percent slopes (HcD) is listed as non-hydric on the Clark County Hydric Soils List (NRCS, N.d.).

Powell silt loam, 0 to 8 percent slopes (PoB)

According to the survey, the Powell series is a moderately, well-drained, medium textured soil found in rolling terrains. The annual precipitation is typically around 50 inches. Powell soils are used for row crops, hay production, pasture and timber. The Powell silt loam, 0 to 8 percent slopes (PoB) surface layer is dark brown silt loam to a depth of about 17 inches. Below the surface layer is a friable, mottled, grayish-brown silt loam about 6 inches thick. The following layer, to a depth of approximately 22 inches is a dark yellowish-brown silt loam that is firm, and mottled brown heavy silt loam in the lower part. Below this layer to a depth of approximately 63 inches is a firm, mottled, darkbrown heavy silt loam. The Powell silt loam, 0 to 8 percent slopes (PoW) is listed as non-hydric on the Clark County Hydric Soils List (NRCS, N.d.)

4.3 Vegetation

Vegetation on the subject property consists of an actively grazed pasture with partially forested areas on the west and northern portions of the property. The grazed areas on the property exhibited evidence of disturbance and heavily compacted soils from cattle activity. Vegetation in these areas consisted of common pasture grasses including tall fescue (*Schedonorus arundinaceus*), common velvetgrass (*Holcus lanatus*), orchard grass (*Dactylis glomerata*), Kentucky bluegrass (*Poa pratensis*), and soft rush (*Juncus effusus*). The forested portion of the site is generally dominated by a canopy of Oregon ash (*Fraxinus latifolia*), with smaller amounts of Douglas fir (*Psuedotsuga menziesii*), oneseed hawthorn (*Crataegus monogyna*), and hardhack (*Spiraea douglasii*). Non-native, invasive species were prevalent throughout the site, including Himalayan blackberry (*Rubus armeniacus*) (particularly in the north and northwest portions of the property), reed canarygrass (*Phalaris arundinacea*), and bird's-foot trefoil (*Lotus corniculatus*).

4.4 Wetland and Stream Inventories and Priority Habitats and Species

The USFWS NWI map (Appendix B3), WDFW PHS Map (Appendix B4), and Clark County Stream and Wetland Inventory (Appendix B5) do not identify any potentially regulated wetlands, streams, or priority habitats or species on the subject property. The Clark County Stream and Wetland Inventory map and the USFWS NWI map identify potential wetlands offsite within 300 feet to the west of the subject property, associated with a potential offsite stream identified by Clark County and DNR (Appendix B6). DNR classifies the offsite stream as a Type F (fish-bearing) stream. The WDFW SalmonScape map (Appendix B7) does not identify potential salmonid presence within the offsite stream, or within 300 feet of the site. The WDFW PHS map identifies potential caves or cave-rich areas within the township, but not necessarily on the subject property. No other potential wetlands, streams, or other priority habitats or species are documented on or within 300 feet of the subject property.

4.6 Precipitation

Precipitation data was obtained from the National Oceanic and Atmospheric Administration (NOAA) weather station at Portland International Airport in order to obtain percent of normal precipitation during and preceding the investigation. A summary of data collected is provided in Table 1.

Date	Day of	Day Before	1 Week Prior	2 Weeks Prior	30 Days Prior (Observed/Normal)	Year to Date (Observed/Normal) ²	Percent of Normal (Year to Date ²)
12/21/2020	0.33	1.43	2.80	3.96	4.99/5.98	10.80/12.89	84
04/06/2021	0.00	0.00	0.00	0.33	1.37/3.82	24.19/27.99	86
04/07/2021	0.00	0.00	0.00	0.33	1.12/3.79	24.19/28.09	86

 Table 1. Precipitation Summary¹.

1. Precipitation levels provided in inches. Data obtained from NOAA (http://w2.weather.gov/climate/xmacis.php?wfo=pqr) for Sea-Tac airport.

2. Year-to-Date precipitation is for the water year from the preceding October 1st to the onsite date.

Precipitation data during the December 21, 2020 site investigation were within the statistical normal range for the prior 30 days and for the year-to-date (approximately 84 percent of normal). This investigation followed a heavy storm event where 1.43 inches of precipitation accumulation was reported the previous day, and 1.76 inches reported in the prior 24-48 hours. Precipitation data for the April 6 and 7, 2021 site visits were drier than normal for the prior 30 days though within the statistical normal range for the year-to-date (approximately 86 percent of normal). Precipitation data suggests that conditions were at the lower end of the normal range during the April 2021 delineation work, which was completed during the early growing season. Such conditions were considered in making professional wetland boundary determinations.

Chapter 5. Results

The site investigations on December 21, 2020, and April 6 and 7, 2021 identified and delineated four wetlands (Wetlands A - D) on the subject property and identified one stream (Offsite Stream Z) offsite to the west of the subject property. No other wetlands, streams, or other fish and wildlife habitat conservation areas were identified within 300 feet of the subject property during the site investigations.

5.1 Wetlands

SVC identified and delineated four wetlands (Wetlands A - D) on the subject property. The identified wetlands contained indicators of wetland hydrology, hydric soils, and a predominance of hydrophytic vegetation according to current wetland delineation methodology. The data forms (DP-1 through DP-21), wetland rating forms, and wetland rating maps are provided in Appendices D, E, and F, respectively. Table 2 summarizes the wetlands identified during the site investigations.

	Predominant	t Wetland Class	Wetland Size	Standard Buffer		
Wetland	Cowardin ¹	HGM ²	WSDOE ³	City of Camas ⁴	Onsite (sq ft)	Width (feet)
Α	PFOC	Depressional	III	III	56,558	80
В	PFO/EMBC	Slope	III	III	32,343	120
С	PEMB	Slope	IV	IV	3,167	N/A^5
D	PFO/SS/EMBC	Depressional	III	III	9,074	135

Table 2. Wetland Summary

Notes:

 Cowardin et al. (1979); Federal Geographic Data Committee (2013); class based on vegetation: PFO = Palustrine Forested, PSS = Scrub-Shrub, PEM = Palustrine Emergent. Modifiers for Water Regime: B = Seasonally Saturated, C = Seasonally Flooded.
 Bringon M. M. (1993)

Brinson, M. M. (1993).
 Current WSDOE rating (Hr

Current WSDOE rating (Hruby, 2014).
 Current WSDOE rating system (Hruby, 2014) per CMC 16.53.020.B.

Current WSDOE rating system (Hr
 Exempt per CMC 16.53.010.C.2.a

5.1.1 Wetland A

Wetland A is 56,558 square feet (1.30 acres) in size and is located on the northern portion of the subject property. Hydrology for Wetland A is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent uplands. A culvert is located on the west end of the wetland and reduces the storage capacity of the wetland. Wetland vegetation is dominated by an overstory of Oregon ash, with an understory of oneseed hawthorn, hardhack, and shortawn foxtail (*Alopecurus aequalis*). Non-native, invasive species observed in Wetland A include Himalayan blackberry, reed canarygrass, meadow foxtail, and bird's-foot trefoil. Wetland A is a Palustrine Forested, Seasonally Flooded (PFOC) wetland. Wetland A is a Category III depressional wetland with a habitat score of 4 points under current WSDOE wetland rating methodology (Hruby, 2014). Table 3 provides a detailed summary of Wetland A.

5.1.2 Wetland B

Wetland B is 32,343 square feet (0.74 acre) in size and is located on the western portion of the subject property, extending offsite to the west. Hydrology for Wetland B is provided by direct precipitation, a seasonally high-water table, and surface runoff from adjacent uplands. A culvert provides hydraulic connectivity between Wetland A and Wetland B. Wetland vegetation is dominated by an overstory of Oregon ash, with an understory dominated by tall fescue and Kentucky bluegrass, and non-native, invasives Himalayan blackberry, reed canarygrass, and bird's-foot trefoil. Wetland B is a Palustrine Forested/Emergent, Seasonally Flooded/Seasonally Saturated (PFO/EMBC) wetland. Wetland B is a Category III slope wetland with a habitat score of 5 points under current WSDOE wetland rating methodology (Hruby, 2014). Table 4 provides a detailed summary of Wetland B.

5.1.2 Wetland C

Wetland C is 3,167 square feet (0.07 acre) in size and located on the eastern portion of the subject property. Hydrology for Wetland C is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent uplands. Wetland vegetation is dominated by soft rush, with smaller amounts of common velvetgrass, Kentucky bluegrass, and tall fescue. Wetland C is a Palustrine, Emergent, Seasonally Saturated (PEMB) wetland. Wetland C is a Category IV slope wetland under current WSDOE wetland rating methodology (Hruby, 2014). Table 4 provides a detailed summary of Wetland C.

5.1.2 Wetland D

Wetland D is 9,074 square feet (0.21 acre) in size and located in the northwestern corner of the subject property. Hydrology for Wetland B is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent uplands. Wetland vegetation is dominated by an overstory of Oregon ash with an understory consisting of hardhack, oneseed hawthorn, soft rush, and fringed willow herb (*Epilobium ciliatum*), as well non-native invasive species including Himalayan blackberry, rambler rose (*Rosa multiflora*), bull thistle (*Cirsium vulgare*), reed canarygrass, tall fescue, and bird's foot trefoil. Wetland D is a Palustrine Forested/Scrub-shrub/Emergent, Seasonally Flooded/Seasonally Saturated (PFO/SS/EMBC) wetland. Wetland D is a Category III depressional wetland with a habitat score of 6 points under current WSDOE wetland rating methodology (Hruby, 2014). Table 4 provides a detailed summary of Wetland D.

WETLAND A – INFORMATION SUMMARY					
Location:	Located on the northern portion of the	subject property, centrally l	ocated.		
		Local Jurisdiction	City of Camas		
		WRIA	28 – Salmon-		
TRACT /	A A A A A A A A A A A A A A A A A A A		Washougal		
		WSDOE Rating (Hruby, 2014)	III		
了一层小型中国		City of Camas Rating	III		
		City of Camas Buffer Width	80		
		Wetland Size	56,558 SF		
the second		Cowardin	, DEOC		
and the second		Classification	PFOC		
A CONTRACTOR OF THE OWNER		HGM Classification	Depressional		
	The second s	Wetland Data Sheet(s)	DP-3W		
		Upland Data Sheet(s)	DP-4U		
		Boundary Flag color	Orange		
Dominant	Wetland vegetation is dominated by	an overstory of Oregon	ash., with an understory		
Vegetation	comprised of native and non-native shr	ubs and herbaceous plants ir	cluding reed canary grass,		
vegetation	Himalayan blackberry, shortawn foxtail, hardhack and tall fescue.				
Soils	Hydric soil indicator F3 (Depleted Matrix) was observed.				
Hydrology Hydrology for Wetland A is provided by direct precipitation			asonally high water table,		
11, 41010gj	and surface runoff from adjacent wetlands.				
Rationale for	Wetland boundaries were determined by topographic drop and a transition to a hydrophytic				
Delineation	plant community.				
Rationale for	Wetland rating based on the current WSDOE wetland rating system for Western Washington				
Local Rating	(Hruby, 2014) per CMC 16.53.020.B.	2			
	Wetland Function	is Summary			
Water Quality	Wetland A has moderate potential to improve water quality due to the presence of an outlet, seasonal ponding in more than half the wetland unit, and being located in an area of land use that generates pollutants. However, these functions are limited by the small amount of persistent, ungrazed plants throughout the wetland unit and lack of stormwater entering the wetland. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintaining water quality. This wetland scores 7 out of 9 points				
Hydrologic	This wetland has moderate potential to reduce flooding and erosion due to moderate storage potential during wet periods, the moderate contribution of storage within the watershed, and the presence of a constricted outlet (culvert) leading to a downgradient wetland. These functions are limited by less the 25% of the contributing basin being covered in intensive human land uses. This wetland scores 6 out of 9 points for hydrologic functions.				
Habitat	mammal and bird forage and cover. We and is relatively low in species diversity special habitat features (snags and logs) support habitat connectivity between the habitat fragmentation and surrounding habitat function.	etland A has only one Cowar y. However, Wetland A con . The surrounding landscap the wetland and other potent g land uses. Wetland A sco	din class and hydroperiod, ntains limited priority and e has a limited potential to tial habitat due to existing ores 4 out of 9 points for		
Buffer Condition	The buffer for Wetland A is considerent native invasive, Himalayan blackberry.	ed degraded as it contains e	xtensive amounts of non-		

Table 3. Wetland A Summary

WETLAND B – INFORMATION SUMMARY					
Location:	Located on the western portion of the	subject property, extending	offsite to the west.		
		Local Jurisdiction	City of Camas		
		WDIA	28 – Salmon-		
		WKIA	Washougal		
WARD AN	A THE MANAGER	WSDOE Rating	III		
ALL STA		(Hruby, 2014)	111		
COL MAN		City of Camas Rating	III		
ALE TO AL		City of Camas Buffer	120		
	A HALL A LA	Width	120		
The Charles of the		Wetland Size	32,343 SF		
		Cowardin	PEO/EMBC		
	A CONTRACT OF A	Classification			
	The American States	HGM Classification	Slope		
A CONTRACT OF THE OWNER	and the second s	Wetland Data Sheet(s)	DP-5W		
		Upland Data Sheet(s)	DP-4U and DP-15U		
		Boundary Flag color	Orange		
Dominant	Wetland vegetation is dominated by	an overstory of Oregon	ash, with an understory		
Vegetation	dominated by tall fescue and Kentuc	cky bluegrass, and non-nat	ive, invasives Himalayan		
blackberry, reed canarygrass, and bird's-foot trefoil.					
Soils	Hydric soil indicator F3 (Depleted Matrix) was observed.				
Hydrology	Hydrology for Wetland B is provided	drology for Wetland B is provided by direct precipitation, a seasonally high water table,			
ilyarology	and surface runoff from adjacent wetlands.				
Rationale for	Wetland boundaries were determined by a transition to a hydrophytic plant community and				
Delineation	hydric soils.				
Rationale for	Wetland rating based on the current WS	SDOE wetland rating system	n for Western Washington		
Local Rating	(Hruby, 2014) per CMC 16.53.020.B.				
	Wetland Function	is Summary			
	Wetland B has some potential to improve water quality due to relatively low slope grade of				
	the wetland unit, surrounding land uses that generate pollutants and being located in a sub-				
Water Quality	basin with 303(d) listed waters and an area identified as important for maintaining water				
	quality. However, the wetland lacks the appropriate types and coverage of plants needed to				
	trap sediments and pollutants. This wetland scores 6 out of 9 points for water quality function.				
	This wetland has some potential to rec	luce flooding and erosion d	lue to being located in an		
	area that generates excess surface runoff and surface flooding problems down-gradient.				
Hydrologic	However, these functions are limited by the lack of dense, uncut, rigid plants in the wetland				
	unit required to reduce surface water velocities. This wetland scores 5 out of 9 points for				
hydrologic function.					
	Wildlife habitat functions provided by t	the wetland are considered l	ow and may include small		
	mammal and bird forage and cover.	Wetland B contains some	plant diversity with two		
Habitat	Cowardin classes, two hydroperiods,	and low interspersion of h	abitat. The surrounding		
	landscape has a low potential to suppor	rt habitat connectivity betwe	the wetland and other		
	potential nabitat due to existing habita	to for habitat for and surrou	nung nign intensity land		
	The offeite buffer for Wetland A is set	is for habitat function.	ing autonoiro ana ante - C		
Buffer Condition	The offsite buffer for Wetland A is con	isidered degraded as it conta	ans extensive amounts of		
	non-native invasive, Himalayan blackbe	erry.			

Table 4. Wetland B Summary

WETLAND C – INFORMATION SUMMARY						
Location:	Located on the eastern boundary of the	e subject property.				
		Local Jurisdiction	City of Camas			
		WDIA	28 – Salmon-			
New States	a state state press	WAIA	Washougal			
	A SHALLAND A STALLAND AND A SHALLAND AND AND AND AND AND AND AND AND AND	WSDOE Rating	IV			
	and and a start of the start of	(Hruby, 2014)	1 V			
		Clark County Rating	IV			
and the second		Clark County Buffer Width	N/A			
		Wetland Size	3,167 SF			
	A A A A A A A A A A A A A A A A A A A	Cowardin	DEMB			
		Classification	I LAVID			
		HGM Classification	Slope			
A DEFINITION OF		Wetland Data Sheet(s)	DP-10W			
	TANK AND MER	Upland Data Sheet(s)	DP-11U			
		Boundary Flag color	Orange			
Dominant	Wetland vegetation is dominated by so	ft rush, with smaller amount	s of common velvetgrass,			
Vegetation	Kentucky bluegrass, and tall fescue.					
Soils	Hydric soil indicator F6 (Redox Dark S	Surface) was observed.				
Hydrology	Hydrology for Wetland C is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.					
Rationale for	Wetland boundaries were determined by a transition to hydric soils and a hydrophytic plant					
Delineation	community.					
Rationale for	Wetland rating based on the current WS	SDOE wetland rating system	n for Western Washington			
Local Rating	(Hruby, 2014) per CMC 16.53.020.B.					
	Wetland Function	is Summary				
	Wetland C has some potential to impro	ove water quality due to the	relatively low slope grade			
	of the wetland and being located in an area with surrounding land uses that generate					
	pollutants. However, the wetland lacks the appropriate types and coverage of plants needed					
Water Quality	to trap sediments and pollutants. The value of any water quality improvement functions					
	within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters					
	and in area identified as important for maintaining water quality. This wetland scores 6 out					
	of 9 points for water quality functions.		· · · · 1 C			
	This wetland has some potential to reduce flooding and erosion due to potential excess surface					
Hydrologic	runoff entering the wetland, however, these functions are limited due to the lack of dense,					
	uncut, rigid vegetation required to reduce surface water velocities. This wetland scores 5 out					
	Wildlife habitat functions provided by	the wetland are low and m	au include small mammal			
	Wildlife habitat functions provided by the wetland are low and may include small mammal					
	class one hydroperiod and no interspe-	rsion of habitat. The surrou	nding landscape has a low			
Habitat	potential to support habitat connectivit	v between the wetland and c	other potential habitat due			
	to existing habitat fragmentation and su	urrounding high intensity lar	nd uses. Wetland C scores			
	4 out of 9 points for habitat function					
	The area surrounding Wetland C is con-	sidered degraded due to beir	ng an actively grazed cattle			
Buffer Condition	pasture. Wetland C buffer is likely waive	ed from buffer requirements	per CMC 16.53.010.C.2.a.			

Table 5. Wetland C Summary

Location: Located on the northwest corner of the subject property. Local Jurisdiction City of Camas WIA 28 – Salmon-Washoogal WBDE Rating HI City of Camas Rating Depressional Wetland Vegetation Sola Dominant Wetland vegetation is dominated by a canopy of Cregon sah with an understory consisting of han	WETLAND D – INFORMATION SUMMARY					
Uncell jurisdiction City of Camas WRA 28 – Salmon-Washogal WSDDE Rating (Hruby, 2014) III City of Camas Butling IIII City of Camas Butling IIII City of Camas Butling IIII Wetland vegetation is dominated by a canopy of Oregon ask with an understory consisting of hardhack, onesced hawthorn, soft rush, and fringed willow hetch, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefol. Soils Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoil from adjacent wetlands. Rationale for Local Rating Wetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community. Rationale for Uvetland D	Location:	Located on the northwest corner of the	subject property.			
WRIA 28 – Salmon-Washougal WSDOE Rating III (itruby, 2014) Detector (itruby, 2014) Detectrub, Itrub (itruby, 2014)<			Local Jurisdiction	City of Camas		
With a second			WRIA	28 – Salmon-Washougal		
Water Quality Wetland Discord of the wetland Dispondent of the unit. However, the land use in the area, and seasonal ponding in greater than half the unit. However, the land use in the area, and seasonal ponding in greater than half the unit. However, the land use in the area, and seasonal ponding in greater than half the unit. However, the land use in the area, and seasonal ponding in greater than thalf the unit. However, the land use in the area, and seasonal ponding in greater than thalf the unit. However, the land use in the area, and seasonal ponding in greater than thalf the unit. However, the land use in the area, and seasonal ponding in greater than thalf the unit. However, the land use in the area, and seasonal ponding in greater than thalf the unit. However, the land use in the area immediately surrounding the wetland as an exert and the use of any water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important tor maintain water quality. This wetland as and bard stores. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland seaso for the sures of the vaters for dista and multipe priority and habital features. The surrounding area greaters evolution to the surrounding the wetland as the wetland D counts in moderate quality. This wetland seasons of the vaters deal and and order to the state of the vater and an area identified as important for maintain water quality. This wetland seasors for the of points for habitat features. The surrounding area greaters evolution and active surrounding area. The immediate surrounding area greaters evolution area is a concervity between the wetland and other potential habitat de uce sis for widely dester			WSDOE Rating (Hruby, 2014)	III		
Water Quality Wetland D has moderate polential to improve water quality improvement. The value of any water quality improvement is locations provided by the values in the values and the restored as the vertice in the values of any water quality improvement. The value of any water quality improvement during the values in the area, and using any other served. The value of any water quality improvement during the values in the area immediately surrounding the wethend is increased as the wethand is located in a sub-basin with 303(d) listed waters and any down during area. The value of any water quality improvement during area of the values for the values for the values in the area inducidately surrounding the wethand secres 0 out of 9 points for the values for hydrologic function. Hydrologic This wetland for inported by the vertice flow and a transition to a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality improvement and is increased in the value of any water quality improvement and is increased to the value of any water quality improvement during wet provide. The small size of the values and any for hydrologic function. Hydrologic This wetland bas some potential to reduce flowing and erosin due to the lack of an outlet and moderate storage potential to reduce flowing start quality			City of Camas Rating	III		
With 1.53 With 1.53 With 1.53 Weith 9,074 SF Cowardin PFO/SS/EMBC HGM Classification Depressional Weith Data Sheet(s) DP-13W Upland Data Sheet(s) DP-13W Upland Data Sheet(s) DP-13W Boundary Flag color Orange Methada on-seed hawthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalyan blackberry, rambler rose, bull thistic, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delated nor from adjacent wetlands. Wetland tating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.8. Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in grater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement and area identified as important for maintain water quality. This wetland rative to the size of the watershed results in lower hydrologic bunefit on the suround		The state of the second second second	City of Camas Buffer	125		
Wetand Size 9,074 SF Cowardin DFO/SS/EMBC Idassification DFO/SS/EMBC HGM Classification DFO/SS/EMBC HGM Classification DFO/SS/EMBC Wetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardnack, onesced hawhorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology Wetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community. Rationale for Delineation Wetland D is provided by direct precipitation, a scasonally high water table, and surface runoff from adjacent wetlands. Water Quality Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the area; and scasonal ponding in greater than half the unit. However, the lad use in the area immediately surrounding the wetland os not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and crosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the watland relative to the		A CONTRACTOR OF A CONTRACTOR O	Width	135		
Water Quality Wetland Dispersion of the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16:53(20).8. Water Quality Wetland Dispersion of the water share polytaria of moderate polytaria of moderate storage optimis for water quality functions. Water Quality Wetland Dispersion of the water share polytaria of moderate and main and a disers of our of 9 points for water quality functions. Hydrologic Wetland Dispersion of the watershare potential to result in some and a disers of our of 9 points for hydrologic functions. Hydrologic Wetland construction of the watershare potential to result were reading the water quality functions. Buffer Condition Wetland and the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutaria main water quality. This wetland some potential to result were reading and does not generate pollutaria moderate discust and surge the water share to be society. This wetland has some potential to reduce flooding and erosion due to the lack of an outlet, persistent, ungrazed vegetation of more than 30 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutaris and stormwater discharge, limiting potential for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet, be size of the watershed results in lower hydrologic benefit to the surrounding the wetland scores 6 out of 9 points for hydrologic functions moderate and maintain water quality. This wetland has asome potential to reduce flooding	D A CARL	A CARLER AND A CAR	Wetland Size	9,074 SF		
HGM Classification Depressional Wetland Data Sheet(s) DP-12W Dominant Vegetation Wetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardhack, onesced hawthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology treform adjacent wetlands. Rationale for Declineation Wetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community. Rationale for Declineation Wetland Functions Summary Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate polutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and a area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosito due to the lack of an outlet and moderate storage potential to reduce flooding and erosito due to the lack of an outlet and endetheropotential horeid			Cowardin Classification	PFO/SS/EMBC		
Wetland Data Sheet(s) DP-12W Upland Data Sheet(s) DP-13U Boundary Flag color Orange Dominant Wetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardhack, oneseed hawhorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delineation Delineation plant community. Rationale for Wetland Duandaries were determined by topographic drop and a transition to a hydrophytic Delineation Local Rating Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions. Within the vetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and a area identified as important for maintain water quality. This wetland scores 7 out of 9 points for hydrologic functions. Hy		A CARLES AND A CARLES	HGM Classification	Depressional		
Upland Data Sheet(s) DP-13U Boundary Flag color Orange Dominant Wetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardhack, onesced hawthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology for Wetland D is provided by direct precipitation, a scasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delineation Wetland boundaries were determined by topographic drop and a transition to a hydrophytic Delineation Local Rating Wetland Dus anderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland bound storage potential to from avater quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watersder results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excess	The state of the		Wetland Data Sheet(s)	DP-12W		
Boundary Flag color Orange Dominant Vegetation Wetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardhack, onesced hawthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delineation Wetland tating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B. Water Quality Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding in greater dual half the unit. However, the land use in the area immediately surrounding in greater dual half the unit. However, the land use in the area inmediately surrounding in greater dual half the wint. To water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to roduce flooding and crosin due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates exccssive runoff, s			Upland Data Sheet(s)	DP-13U		
Dominant VegetationWetland vegetation is dominated by a canopy of Oregon ash with an understory consisting of hardhack, oneseed havthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil.SoilsHydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed.HydrologyHydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Watter QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due			Boundary Flag color	Orange		
Dominant Vegetation hardhack, onesced hawthorn, soft rush, and fringed willow herb, and non-native invasive species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delta do bundaries were determined by topographic drop and a transition to a hydrophytic plant community. Rationale for Wetland atting based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B. Wetland Tungta based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B. Wetland atting based on the current wetlands in presistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderat storage potential to reduce flooding and erosion due to the lac		Wetland vegetation is dominated by a c	anopy of Oregon ash with a	n understory consisting of		
Vegetation species including Himalayan blackberry, rambler rose, bull thistle, reed canarygrass, tall fescue, and bird's foot trefoil. Soils Hydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed. Hydrology Hydroky for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands. Rationale for Delineation Wetland Doundaries were determined by topographic drop and a transition to a hydrophytic plant community. Rationale for Local Rating Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The sum all size of the watland relative to the watens for hydrologic functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The sum all size of the watland relative to the waters for water quality functions.	Dominant	hardhack, oneseed hawthorn, soft rus	h, and fringed willow herb	, and non-native invasive		
and bird's foot trefoil.SoilsHydric soil inficators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed.HydrologyHydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Water QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat connectivity between the wetland scores 6 out of 9 points for hydrologic functionHydrologicWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover.	Vegetation	species including Himalayan blackberry,	, rambler rose, bull thistle, re	ed canarygrass, tall fescue,		
SoilsHydric soil indicators A11 (Depleted Below Dark Surface) and F3 (Depleted Matrix) were observed.HydrologyHydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Wetland Tunctions SummaryWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality inprovement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions Wetland D ontains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to sup		and bird's foot trefoil.				
Observed.Observed.HydrologyHydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the 	Soils	Hydric soil indicators A11 (Depleted I	Below Dark Surface) and F	3 (Depleted Matrix) were		
HydrologyHydrology for Wetland D is provided by direct precipitation, a seasonally high water table, and surface runoff from adjacent wetlands.Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Water QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat fangmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for hydrologic functionHudi	0010	observed.				
Rationale for DelineationWetland boundaries were determined by topographic drop and a transition to a hydrophytic plant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Wetland D wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential to increase vecessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat founction.Buffer ConditionWetland D uffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (Pobulity tremuloide), and Himalavan blackberry.	Hydrology	Hydrology Hydrology for Wetland D is provided by direct precipitation, a seasonally high water table, a surface runoff from adjacent wetlands.				
Delineationplant community.Rationale for Local RatingWetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B.Wetland Tunctions SummaryWater QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWidlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function.Buffer ConditionWetland uses. Wetland	Rationale for	Wetland boundaries were determined by topographic drop and a transition to a hydrophytic				
Rationale for Local Rating Wetland rating based on the current WSDOE wetland rating system for Western Washington (Hruby, 2014) per CMC 16.53.020.B. Water Quality Wetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions. Hydrologic This wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic function Habitat Wildlife habitat functions provided by the wetland is unocerate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function. Buffer Condition Wetland D scores 6 out of 9 points for hydrologic points or habitat function.	Delineation	plant community.				
Local Rating(Hruby, 2014) per CMC 16.53.020.B.Wetland Functions SummaryWater QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic function wildlife habitat functions provided by the wetland is moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat fonction.HabitatWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Pohulus fremuloidel</i>), and Himalavan blackberry.	Rationale for	Wetland rating based on the current WS	SDOE wetland rating system	n for Western Washington		
Wetland Functions SummaryWater QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat founction.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloide</i>), and Himalayan blackberry.	Local Rating	(Hruby, 2014) per CMC 16.53.020.B.				
Water QualityWetland D has moderate potential to improve water quality due to the lack of an outlet, persistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function.Buffer ConditionWetland Duffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Pobulus tremuloides</i>), and Himalayan blackberry.		Wetland Function	is Summary			
Water Qualitypersistent, ungrazed vegetation of more than 50 percent of the areas, and seasonal ponding in greater than half the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		Wetland D has moderate potential to	improve water quality due	to the lack of an outlet,		
Water Qualitygreater than han the unit. However, the land use in the area immediately surrounding the wetland does not generate pollutants and stormwater discharge, limiting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat for suproving high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		persistent, ungrazed vegetation of more	than 50 percent of the areas	s, and seasonal ponding in		
Water QualityWetland does not generate polutiants and stormwater discharge, infiniting potential for water quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		greater than half the unit. However, the land use in the area immediately surrounding the				
HydrologicHit value of any water quarky improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.	Water Quality	wetland does not generate pollutants and stormwater discharge, limiting potential for water				
HydrologicWetland is inferenced as the wednat is focated in a sub-basin with 500(g) listed waters and an area identified as important for maintain water quality. This wetland scores 7 out of 9 points for water quality functions.HydrologicThis wetland has some potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat formetion and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Popalus tremuloides</i>), and Himalayan blackberry.		quality improvement. The value of any water quality improvement functions within the wetland is increased as the wetland is located in a sub-basin with 303(d) listed waters and an				
HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		area identified as important for maintain water quality. This wetland scores 7 out of 9 points				
HydrologicThis wetland has some potential to reduce flooding and erosion due to the lack of an outlet and moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		for water quality functions.				
Hydrologicand moderate storage potential during wet periods. The small size of the wetland relative to the size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		This wetland has some potential to red	uce flooding and erosion du	e to the lack of an outlet		
Hydrologicthe size of the watershed results in lower hydrologic benefit to the surrounding area. The immediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		and moderate storage potential during wet periods. The small size of the wetland relative to				
Hydrologicimmediate surrounding area generates excessive runoff, stormwater discharge, and intensive human land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Popalus tremuloides</i>), and Himalayan blackberry.	Hudrologia	the size of the watershed results in lower hydrologic benefit to the surrounding area. The				
Habitathuman land uses. The hydrologic functions provided onsite are valuable to society. This wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.	Hydrologic	immediate surrounding area generates excessive runoff, stormwater discharge, and intensive				
Wetland scores 6 out of 9 points for hydrologic functionHabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		human land uses. The hydrologic functions provided onsite are valuable to society. This				
HabitatWildlife habitat functions provided by the wetland is moderate and may include small mammal and bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		wetland scores 6 out of 9 points for hyd	Irologic function			
Habitatand bird forage and cover. Wetland D contains moderate diversity with three Cowardin classes, two hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		Wildlife habitat functions provided by the	ne wetland is moderate and r	nay include small mammal		
Habitattwo hydroperiods, moderate interspersion of habitat and multiple priority and habitat features. The surrounding landscape has a low potential to support habitat connectivity between the wetland and other potential habitat due to existing habitat fragmentation and surrounding high intensity land uses. Wetland D scores 6 out of 9 points for habitat function.Buffer ConditionWetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		and bird forage and cover. Wetland D co	ontains moderate diversity w	ith three Cowardin classes,		
Buffer Condition Wetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.	Habitat	two hydroperiods, moderate interspersio	on of habitat and multiple pr	nority and habitat features.		
Buffer Condition Wetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		The surrounding landscape has a low j	potential to support habitat	tion and automatica high		
Buffer Condition Wetland D buffer is in fair condition with dominant vegetation including Oregon ash, quaking aspen (<i>Populus tremuloides</i>), and Himalayan blackberry.		intensity land uses Wotland D sectors (out of 9 points for habitat fr	uon and surrounding high		
Buffer Condition aspen (<i>Populus tremuloides</i>), and Himalavan blackberry.		Wetland D buffer is in fair condition wi	th dominant vegetation inclu	iding Oregon ach quaking		
	Buffer Condition	aspen (<i>Populus tremuloides</i>), and Himalava	n blackberry.	unis Oregon asii, quakiiig		

Table 5. Wetland D Summary

5.2 Offsite Stream Z

One stream (Offsite Stream Z) was identified offsite to the west of the subject property. Offsite Stream Z is identified by the DNR water typing map as a Type F (fish habitat) stream. The WDFW SalmonScape inventory does not identify any potential salmonid presence within Offsite Stream Z. SVC was unable to access the offsite stream; however high-resolution LiDAR imagery, topographic maps, and aerial imagery suggest that Offsite Stream Z may be a tributary to Lacamas Creek. Based on the WDFW SalmonScape Inventory and DNR water typing map, Offsite Stream Z is a Type F stream that lacks documented or potential salmonid presence. As such, Offsite Stream Z is classified as a Type F stream (without anadromous salmonids).

5.3 Non-Regulated Farm Pond

An excavated farm pond was identified on the south-central portion of the subject property during the site investigations. The farm pond was located in the middle of an actively grazed cattle pasture and utilized by livestock. The farm pond exhibited sharp edges typical of artificially excavated features rather than natural wetland conditions. The farm pond is slightly elevated relative to the surrounding land suggesting the banks are occasionally built up and reinforced. Topography in this area of the site slopes downgradient from east to west. An elevated dirt road/trail bisects the property in a north south direction and acts as an impoundment of overland storm flows, creating surface water in the farm pond during the rainy season. Therefore, the farm pond was determined to be an artificially and intentionally created feature for use by cattle based on land use, the presence of a road, and geomorphic positioning. Per CMC 16.53.010.C.2.b, *wetlands created from nonwetland sites, including, but not limited to, irrigation and drainage ditches, grass-lined swales, canals, detention facilities, wastewater treatment facilities, stormwater facilities, farm ponds, and landscape amenities, shall be exempt from wetland regulations. As such, the farm pond is likely considered a non-regulated feature by the City of Camas.*

Chapter 6. Regulatory Considerations

The site investigations in December of 2020 and April of 2021 identified and delineated four wetlands (Wetlands A - D) on the subject property and one stream (Offsite Stream Z) offsite to the west of the subject property. No other wetlands, streams, or other fish and wildlife habitat conservation areas were identified within 300 feet of the subject property during the site investigations.

6.1 Local Critical Areas Buffer Requirements

CMC 16.53.020.B describes wetland categorizations with reference to the *Washington State Wetlands Rating System for Western Washington-Revised – Washington State Department of Ecology Publication No. 04-06-029, published August 2014* (Hruby, 2014). Category IV wetlands are typically more disturbed, smaller, and/or more isolated in the landscape than Category I, II, or III wetlands. Category IV wetlands provide low levels of functions and score less than 16 out of 27 points on the *Revised Washington State Wetland Rating System for Western Washington* (Hruby, 2014). Category III wetlands have generally been disturbed in some ways and are often less diverse or more isolated from other natural resources in the landscape than Category II wetlands. Category III provide moderate levels of functions and score between 16 to 19 points on the *Revised Washington State Wetland Rating System for Western Washington State State Wetland Rating System for Western Washington* (Hruby, 2014).

Wetland A is classified as Category III wetland with 4 total habitat points, and subject to a standard 80-foot buffer based on proposed high intensity land use per CMC 16.53.040 Table-3. Wetland B is classified as a Category III wetland with 5 total habitat points and subject to a standard 120-foot buffer based on the proposed high intensity land use. Wetland C is classified as a Category IV wetland and is likely exempt from buffer regulations per CMC 16.53.010.C.2.a. Wetland D is classified as a Category III wetland with 6 total habitat points and subject to a standard 135-foot buffer.

Offsite Stream Z is likely a Type F stream with no known salmonid presence in accordance with Washington Department of Fish and Wildlife (WDFW) SalmonScape data and subject to a standard 75-foot buffer per CMC 16.61.040.D. The stream buffer is not anticipated to project onto the subject property.

6.2 State and Federal Considerations

In a December 2, 2008 memorandum from the Environmental Protection Agency (EPA) and USACE, joint guidance is provided that describes waters that are to be regulated under section 404 of the CWA (USACE, 2008). This memorandum was amended on February 2, 2012 where the EPA and USACE issued a final guidance letter on waters protected by the CWA.

The 2012 guidance describes the following waters where jurisdiction would be asserted: 1) traditional navigable waters, 2) interstate waters, 3) wetlands adjacent to traditional navigable waters, 4) non-navigable tributaries of traditional navigable waters that are relatively permanent meaning they contain water at least seasonally (e.g. typically three months and does not include ephemeral waters), and 5) wetlands that directly abut permanent waters. The regulated waters are those associated with naturally occurring waters and water courses and not artificial waters (i.e. stormwater pond outfalls).

The 2012 memorandum further goes on to describe waters where jurisdiction would likely require further analysis: 1) Tributaries to traditional navigable waters or interstate waters, 2) Wetlands adjacent to jurisdictional tributaries to traditional navigable waters or interstate waters, and 3) Waters that fall under the "other waters" category of the regulations.

In addition, the 2012 guidance identifies thirteen waters or areas where jurisdiction will not be asserted: 1) Wet areas that are not tributaries or open waters and do not meet the agencies regulatory definition of "wetlands", 2) Waters excluded from coverage under the CWA by existing regulations, 3) Waters that lack a "significant nexus: where one is required for a water to be jurisdictional, 4) Artificially irrigated areas that would revert to upland if the irrigation ceased, 5) Artificial lakes or ponds created by excavating and/or diking dry land to collect and retain water and which are used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing, 6) Artificial reflecting pools or swimming pools excavated in uplands, 7) Small ornamental waters created by excavating and/or diking dry land to construction activity, 9) Groundwater, including groundwater drained through subsurface drainage systems, 10) Erosional features (gullies and rills), 11) Non-wetland swales, 12) Ditches that are excavated wholly in uplands, drain only uplands or non-jurisdictional waters, and have no more than ephemeral flow, and 13) Ditches that do not contribute flow, either directly or through other waterbodies, to a traditional navigable water, interstate water, or territorial sea.

As a tributary to a traditionally navigable water, Offsite Stream Z Creek is likely regulated by USACE as WOTUS. Wetlands A and B likely contribute surface waters to Offsite Stream Z and are likely regulated as an adjacent wetlands. Wetlands C and D are likely non-jurisdictional waters as they do not have surface water connections to Offsite Stream Z, they do not contain direct surface water connection to any traditional navigable water or a tributary to a traditional navigable water, and are also not considered "adjacent" wetlands. However, the project will assume jurisdiction of Wetland D to expedite the review process.

Future industrial development is anticipated to require complete fill of Wetland C. Once an approved jurisdictional determination is obtained from the USACE confirming the non-jurisdictional status of the identified wetland, an Administrative Order will be sought from WSDOE for the required wetland fill.

All identified wetlands (Wetlands A-D) and stream (Offsite Stream Z) are likely to be regulated as waters of the state by WSDOE under RCW 90.48.

Chapter 7. Closure

The findings and conclusions documented in this report have been prepared for specific application to this project. They have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. Our work was also performed in accordance with the terms and conditions set forth in our proposal. The conclusions and recommendations presented in this report are professional opinions based on an interpretation of information currently available to us and are made within the operation scope, budget, and schedule of this project. No warranty, expressed or implied, is made. In addition, changes in government codes, regulations, or laws may occur. Due to such changes, our observations and conclusions applicable to this project may need to be revised wholly or in part.

All wetland boundaries delineated by SVC are based on conditions present at the time of the site inspection and considered preliminary until the flagged wetland boundaries are validated by the jurisdictional agencies. Validation of the wetland boundaries by the regulating agency provides a certification, usually written, that the wetland boundaries verified are the boundaries that will be regulated by the agencies until a specific date or until the regulations are modified. Only the regulating agencies can provide this certification.

As wetlands are dynamic communities affected by both natural and human activities, changes in wetland and waterbody boundaries may be expected; therefore, wetland delineations cannot remain valid for an indefinite period of time. Local agencies typically recognize the validity of wetland delineations for a period of five years after completion of a wetland delineation report. Development activities on a site five years after the completion of this wetland delineation report may require revision of the wetland delineation. In addition, changes in government codes, regulations, or laws may occur. Due to such changes, our observations and conclusions applicable to this site may need to be revised wholly or in part.

Chapter 8. References

- Brinson, M. M. 1993. *A hydrogeomorphic classification for wetlands, Technical Report WRP-DE-4*. U.S. Army Engineer Waterways Experiment Station. Vicksburg, Mississippi.
- Camas Municipal Code (CMC). 2021. *Title 16 Environment Critical Areas*. https://library.municode.com/wa/camas/codes/code_of_ordinances?nodeId=TIT16EN_CRA R. Current through May 28, 2021.
- Cowardin, L.M. V. Carter, F. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States.* U.S. Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
- Hruby, T. 2014. *Washington State Wetland Rating System for Western Washington Revised.* Washington State Department of Ecology Publication #04-06-029.
- McGee, Dale A. 1972. *Soil Survey of Clark County Area, Washington.* Soil Conservation Service United States Department of Agriculture, Soil Conservation Service, in cooperation with the Washington Agricultural Experiment Station. Natural Resource Conservation Service.
- Munsell® Color, 2000. Munsell® Soil Color Charts. New Windsor, New York.
- Natural Resources Conservation Service (NRCS). 2001. *Hydric Soils List: Clark County Area, Washington.* U.S. Department of Agriculture. Washington D.C.
- NRCS. N.d. Soil Data Access Hydric Soils List (Soil Data Access Live). Website: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1316620.html.
- NRCS. 2018. *Field Indicators of Hydric Soils in the United States, Version 8.2.* L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
- U.S. Army Corps of Engineers (USACE). 2008. Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States. EPA/USACE. December 2, 2008.
- USACE and Environmental Protection Agency (EPA). 2012. *Guidance on Identifying Waters Protected* by the Clean Water Act. EPA/USACE. February 17, 2012.
- USACE. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL

TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.

USACE. 2018. National Wetland Plant List, version 3.4. http://wetland-plants.usace.army.mil/.

Appendix A — Methods and Tools

Parameter	Method or Tool	Website	Reference
Wetland Delineation	USACE 1987 Wetland Delineation Manual	http://el.erdc.usace.army.mi l/elpubs/pdf/wlman87.pdf	Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
	Western Mountains, Valleys, and Coast Region Regional Supplement	http://www.usace.army.mil /Portals/2/docs/civilworks /regulatory/reg_supp/west _mt_finalsupp.pdf	U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR- 10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Wetland Classification	USFWS / Cowardin Classification System	http://www.fws.gov/wetlan ds/Documents/Classificatio n-of-Wetlands-and- Deepwater-Habitats-of-the- United-States.pdf https://www.fgdc.gov/stan dards/projects/wetlands/nv cs-2013	 Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Government Printing Office, Washington, D.C. Federal Geographic Data Committee. 2013. Classification of Wetlands and Deepwater Habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
	Hydrogeomorphic Classification (HGM) System	http://el.erdc.usace.army.mi l/wetlands/pdfs/wrpde4.pd f	Brinson, M. M. (1993). "A hydrogeomorphic classification for wetlands," Technical Report WRP-DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
Wetland Rating	2014 Washington State Wetland Rating System	http://www.ecy.wa.gov/bib lio/0406025.html	Hruby, T . 2014. Washington State wetland rating system for western Washington –Revised. Publication # 04-06-025.
Wetland Indicator Status	2018 National Wetland Plant List	http://wetland- plants.usace.army.mil/	U.S. Army Corps of Engineers. 2018. National Wetland Plant List, version 3.4.
Plant Names	USDA Plant Database	http://plants.usda.gov/	Website.
Soils Data	NRCS Soil Survey	http://websoilsurvey.nrcs.u sda.gov/app/	Website GIS data based upon: McGee, Dale A. 1972. Soil Survey of Clark County Area, Washington. Soil Conservation Service United States Department of Agriculture, Soil Conservation Service, in cooperation with the Washington Agricultural Experiment Station. Natural Resource Conservation Service.
	Clark County Hydric Soils List	http://www.wa.nrcs.usda.g ov/technical/soils/hydric_li sts/hydsoil-wa-653.pdf	Natural Resources Conservation Service. 2001. Hydric Soils List: Clark County Area, Washington. U.S. Department of Agriculture. Washington D.C.

Table A1.	Methods	and tools	used to	prepare	the report.
-----------	---------	-----------	---------	---------	-------------

Parameter	Method or Tool	Website	Reference
Threatened and Endangered Species	Washington Natural Heritage Program	http://data- wadnr.opendata.arcgis.com/ datasets/wnhp-current- element-occurrences	Washington Natural Heritage Program (Data published 07/19/17). Endangered, threatened, and sensitive plants of Washington. Washington State Department of Natural Resources, Washington Natural Heritage Program, Olympia, WA
	Washington Priority Habitats and Species	http://wdfw.wa.gov/hab/p hspage.htm	Priority Habitats and Species (PHS) Program Map of priority habitats and species in project vicinity. Washington Department of Fish and Wildlife.
Species of Local Importance	WDFW GIS Data	http://wdfw.wa.gov/mappi ng/salmonscape/	Website
Report Preparation	Camas Municipal Code (CMC)	https://library.municode.co m/wa/camas/codes/code_ of_ordinances?nodeId=TIT 16EN_CRAR	CMC Title 16 – Environment – Critical Areas

Appendix B — Background Information

This appendix includes a Clark County Topographic map (B1); NRCS Soil Survey map (B2); USFWS NWI map (B3); WDFW PHS map (B4); Clark County Stream and Wetland Inventory map (B5); DNR Stream Typing map (B6); and WDFW SalmonScape map (B7).

Appendix B1. Clark County Topographic Map

Appendix B2. NRCS Soil Survey Map

Appendix B3. USFWS National Wetland Inventory Map

Appendix B4. WDFW Priority Habitats and Species Map

PHS Species/Habitats Overview:

0	ccurence Name	Federal Status	State Status	Generalized Location
Fi	reshwater Forested/Shrub /etland	N/A	N/A	No
С	aves Or Cave-rich Areas	N/A	N/A	Yes

PHS Species/Habitats Details:

Freshwater Forested/Shrub Wetland		
Priority Area	Aquatic Habitat	
Site Name	N/A	
Accuracy	NA	
Notes	Wetland System: Freshwater Forested/Shrub Wetland - NWI Code: PFOA	
Source Dataset	NWIWetlands	
Source Name	Not Given	
Source Entity	US Fish and Wildlife Service	
Federal Status	N/A	
State Status	N/A	
PHS Listing Status	PHS Listed Occurrence	
Sensitive	N	
SGCN	N	
Display Resolution	AS MAPPED	
ManagementRecommendations	http://www.ecv.wa.gov/programs/sea/wetlands/bas/index.html	
Geometry Type	Polygons	

Caves Or Cave-rich Areas		
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.	
Federal Status	N/A	
State Status	N/A	
PHS Listing Status	PHS Listed Occurrence	
Sensitive	Y	
SGCN	N	
Display Resolution	TOWNSHIP	

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW biologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necessary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.

Appendix B6. DNR Stream Typing Map

Appendix B7. WDFW SalmonScape Map

CAMAS - EXISTING CONDITIONS

VICINITY MAP

E 172nd Ave	Mill Plain			anned	NE 28th	SI N	E Dresser.Rr.	
	LE 187th J		Leghtenberg	ANE GOD			5	NE Brunner Rd
NE 18th-St			Fair			Ave dey Rd	249th A	
Fucific Community Park		Harmony Sporta Complex NE-13	th St CA MEA GOLI	MAS DOWS F CLUB		PECE NE ⁴⁰⁰⁵	N NE	NE 14th St
NE 9th St		NE 192nd Av	nberg: Struck St	0,			Dep Ro	Gito ver Field Airpoit
		NE 3rd St SE 1st	st SE 1ST ST	N	SITE	Witnesser		NE 3rd St
E 198th Ave			Meserindre Blo		MarLake	LACAMAS LAKE	Sp.	SEEvera
SE TECH CENt		2ND AV		Parker St	WV Leadbetter D ¹	NW 45th Ave	L eachetter Ro	
	SE 10m St Summet's Walk Park SE 20th St	SE 19	NW 38TH AVE	RKER S	Ave			Everent St
liivras	E 176th Ave		A A Same C	VW PA	gue Rim ^{Of}			Round

SOURCE: CLARK COUNTY GIS (ACCESSED 8/17/2021)

LOCATION

D

THE SE $\frac{1}{4}$ OF SECTION 29, TOWNSHIP 02N, RANGE 03E, WM

APPLICANT/OWNER

PANATTONI DEVELOPMENT COMPANY, INC 1821 DOCK STREET, SUITE 100 TACOMA, WASHINGTON 98402 CONTACT: BJORN BRYNESTAD, DEVELOPMENT MGR. PHONE: (206) 838-1730 PHONE: BJORN@PANATTONI.COM

ENVIRONMENTAL CONSULTANT

SOUNDVIEW CONSULTANTS LLC 2907 HARBORVIEW DRIVE, SUITE D GIG HARBOR, WA 98355 (253) 514-8952

SHEET INDEX

SHEET

UIV.	L
	/

NUMBER SHEET TITLE EXISTING CONDITIONS

Appendix D — Data Forms

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: 1144.0027 E Vancouver E-Commerce	e Center o	City/Count	_{y:} Camas	, Clark	Sampling	g Date: 04/06	6/2021
Applicant/Owner: Panattoni Development Company		State: WA	Sampling	Sampling Point: DP-1u			
Investigator(s): Rachael Hyland			Section, To	wnship, Range: <u>29, 0</u>	2N, 03E, \$	SE	
Landform (hillslope, terrace, etc.): Top of Slope		Local reli	ef (concave,	convex, none): Conc	ave	Slope (%)	<u>:</u> 1%
Subregion (LRR): <u>A2</u>	_ Lat: 45.	.622295		Long: -122.45968	640	Datum: W	GS 84
Soil Map Unit Name: Hesson clay loam, 0 to 8 perce	ent slopes	6		NWI classifi	cation: N/A	١	
Are climatic / hydrologic conditions on the site typical for this	s time of yea	ar?Yes 🗙	No □ (I	f no, explain in Remarks	s.)		
Are Vegetation, Soil, or Hydrology sigr	nificantly dist	turbed?	Are "No	ormal Circumstances" pr	esent? Yes	s 🗶 No 🗌	
Are Vegetation, Soil, or Hydrology natu	rally probler	natic?	(If need	ed, explain any answers	in Remarks	s.)	
SUMMARY OF FINDINGS – Attach site map	showing	samplin	g point le	ocations, transect	s, import	ant feature	es, etc.
Hydrophytic Vegetation Present? Yes ⋈ No □ Hydric Soil Present? Yes ⋈ No □ Wetland Hydrology Present? Yes □ No ⋈ Remarks: Not all three wetland criteria met; only hydrog property near the property line, approximately VEGETATION – Use scientific names of plant	phytic veget v 300 feet no ts.	Is the with with tation and orth of NV	he Sampled hin a Wetlar hydric soile 7 Lake Roa	Area nd? Yes s present. Data collected d.	No 🗙	uthwest corne	er of the
[Absolute	Dominant	Indicator	Dominance Test wor	ksheet:		
Tree Stratum (Plot size: <u>30 ft</u>) 1.	% Cover	Species?	Status	Number of Dominant That Are OBL, FACW	Species , or FAC:	3	(A)
2 3				Total Number of Dom Species Across All St	inant rata:	3	(B)
4 Sapling/Shrub Stratum (Plot size: 15 ft)	0	= Total C	Cover	Percent of Dominant S That Are OBL, FACW	Species , or FAC:	100%	(A/B)
1. Rubus spectabilis	5	Yes	FAC	Prevalence Index wo	vrksheet:		
2				Total % Cover of:		Multiply by:	
3				OBL species	x 1	=	_
4				FACW species	x 2	! =	_

4				Demonst of Deminant Cre			
Sanling/Shruh Stratum (Plot size: 15 ft)	0	_ = Total	Cover	That Are OBL, FACW, or	FAC: <u>100%</u>	(A/B)	
1. Rubus spectabilis	5	Yes	FAC	Prevalence Index worksheet:			
2.				Total % Cover of:	Multiply by	<u>y:</u>	
3				OBL species	x 1 =		
4.				FACW species	x 2 =		
5				FAC species	x 3 =		
	5	= Total	Cover	FACU species	x 4 =		
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species	x 5 =		
1. Schedonorus arundinaceus	50	Yes	FAC	Column Totals:	(A)	(B)	
2. Poa pratensis	50	Yes	FAC				
3				Prevalence Index =	= B/A =	_	
4				Hydrophytic Vegetation	Indicators:		
5				Rapid Test for Hydro	phytic Vegetation		
6				✗ Dominance Test is >	50%		
7				Image: Second Secon	≦3.0¹		
8				Morphological Adapta data in Remarks	ations ¹ (Provide sup or on a separate sh	porting eet)	
9				Wetland Non-Vascula	ar Plants ¹		
10				Problematic Hydroph	ytic Vegetation1 (Ex	(plain)	
11	100	= Total	Cover	¹ Indicators of hydric soil a be present, unless distur	and wetland hydrolo bed or problematic.	ogy must	
Woody Vine Stratum (Plot size: <u>30 ft</u>)					· ·		
1				Hydrophytic			
2				Vegetation			
% Bare Ground in Herb Stratum 0	0	_ = Total	Cover	Present? Yes	🗶 No 🗌		
Remarks: Hydrophytic vegetation criteria n	net through do	minance	test.				

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth Matrix Redox Features										
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-9	10YR 2/2	95	5 YR 3/4	5	С	Μ	SiLo	Silt Loam		
9-16	10 YR 4/3	83	7.5 YR 4/4	С	7	Μ	SiCILo	Silty Clay Loam		
9-16	10YR 3/1	10	-			-	SiCILo	Silty Clay Loam		
17							21			
Hydric Soil	Indicators: (Appli	cable to a	II I RRs. unless othe	s=Cover	ed or Coat	ed Sand G	rains. ² L0	tors for Problematic Hydric Soils ³		
	(A1)		Sandy Redox ((S5)	,ioui,			m Muck (A10)		
Histic Fr	pipedon (A2)		Stripped Matrix (S6)					Red Parent Material (TF2)		
□ Black Hi	stic (A3)			Mineral (F	- 1) (excep	t MLRA 1)		rv Shallow Dark Surface (TF12)		
$\square \text{ Eventy index y initial (F1)} (except mEXAT) \square \text{ Very Shallow Dark Sulface (F12)}$								ner (Explain in Remarks)		
\square Depleted Below Dark Surface (A11) \square Depleted Matrix (F2) \square Other (Explain in Kelliarks)										
Thick Dark Surface (A12)							³ Indica	³ Indicators of hydrophytic vegetation and		
☐ Sandv M	luckv Mineral (S1)	Depleted Dark	Surface (, F7)		wet	land hvdrology must be present.			
Sandy G	Bleyed Matrix (S4)		Redox Depress	sions (F8)	,		unle	ess disturbed or problematic.		
Restrictive	Layer (if present):		· ·	,				·		
Type: No	one									
Depth (in	ches):						Hydric So	il Present? Yes 🗵 No 🗌		
Remarks:							•			
Hydric soil	criteria met thro	ough ind	icator F6.							
,		0								
HYDROLO	GY									
Wetland Hy	drology Indicators	:								
Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required)										
Surface	Water (A1)		Water-Sta	ained Lea	ves (B9) (e	except MLI		Water-Stained Leaves (B9) (MLRA 1, 2,		
🗌 High Wa	ater Table (A2)		1, 2, 4	A, and 4	В)			4A, and 4B)		

Wetland Hydrology Indicators:								
Primary Indicators (minimum of	of one requ	Secondary Indicators (2 or more required)						
Surface Water (A1)		U Water-Stained Leaves (B9) (MLRA 1, 2,						
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)			
Saturation (A3)			Salt Crust (B11)	Drainage Patterns (B10)				
Water Marks (B1)			Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)			
Sediment Deposits (B2)			Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)			Oxidized Rhizospheres along Liv	ing Roots (C3)	Geomorphic Position (D2)			
Algal Mat or Crust (B4)			Presence of Reduced Iron (C4)		Shallow Aquitard (D3)			
Iron Deposits (B5)			Recent Iron Reduction in Tilled S	oils (C6)	FAC-Neutral Test (D5)			
Surface Soil Cracks (B6)			Stunted or Stressed Plants (D1)	(LRR A)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aeria	al Imagery	(B7)	Other (Explain in Remarks)		Frost-Heave Hummocks (D7)			
Sparsely Vegetated Conca	ave Surfac	e (B8)						
Field Observations:								
Surface Water Present? Yes 🗌 No 🕱 Depth (in			Depth (inches): None					
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): None					
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗙	Depth (inches): None	Wetland Hy	drology Present? Yes 🗌 No 🛛			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:								
Remarks:								
No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches. Data was collected early in the growing season when precipitation was within the normal range for the water year and the calendar year.								
Project/Site: 1144.0027 E Vancouver E-Commerc	e Center	City/Co	_{unty:} <u>Camas</u>	, Clark	Sampling Date: 04/06/202	21		
---	-----------------	-----------------------	-------------------------------	-------------------------------------	--	-----		
Applicant/Owner: Panattoni Development Compan	State: WA	Sampling Point: DP-2u						
Investigator(s): Rachael Hyland			Section, To	wnship, Range: 29, 0	2N, 03E, SE			
Landform (hillslope, terrace, etc.): Terrace; swale	relief (concave	convex. none); Conc	ave Slope (%): 0%	6				
Subregion (LRR): A2	07	Lona: -122.4596	5103 _{Datum:} WGS 8	34				
Soil Map Unit Name. Hesson clay loam, 0 to 8 perce	ent slopes	6		NWI classif	ication N/A			
Are climatic / hydrologic conditions on the site typical for this	s time of ver	ar? Yes		f no, explain in Remark	s)			
Are Vegetation Soil or Hydrology sign	nificantly dia	turbod?		armal Circumatanaca" n	recent? Vec 🔽 No 🗆			
Are Vegetation, Soil, or Hydrology sign		turbeu :						
Are vegetation, Soil, or Hydrology hat	Irally probler	natic?	(If need	ed, explain any answers	in Remarks.)			
SUMMARY OF FINDINGS – Attach site map	showing	samp	ling point l	ocations, transect	s, important features, e	tc.		
Hydrophytic Vegetation Present? Ves 🗌 No 🗴								
Hydric Soil Present? Yes X No		le	s the Sampled	Area				
Wetland Hydrology Present? Yes 🗌 No 🗵		v	vithin a Wetlar	nd? Yes	No 🗵			
Remarks:		nt Dat	a collected on	the couthwest portion	of the property peer the prope			
line, approximately 70 feet north of NW Lake	Road.	nt. Data	a confected on	the southwest portion	of the property near the proper	rty		
	10000							
VEGETATION – Use scientific names of plan	ts.							
Trop Stratum (Plat aize: 20 ft)	Absolute	Domin	ant Indicator	Dominance Test wo	rksheet:			
<u>Tree Stratum</u> (Plot size: <u>30 it</u>)	% Cover	Specie	es <u>e</u> Status	Number of Dominant	Species			
2				That Are Obe, I AGM	, 011AO. <u>2</u> (A)			
3				Total Number of Dom	inant rata: 4 (B)			
4.				Opecies Acioss All Of	Tata. <u></u> (D)			
	0	= Tota	al Cover	Percent of Dominant	Species / or FAC: 50% (A/P	3)		
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)			=		, or the (it B	•)		
1. Rubus spectabilis	20	Yes		Prevalence Index we	orksheet:			
2. Symphoricarpos albus	5	Yes	FACU	Total % Cover of	<u>Multiply by:</u>			
3				OBL species	x 1 =			
4				FACW species	x 2 =			
5	25			FAC species	X 3 =			
Herb Stratum (Plot size: 5 ft)	20	= 10ta	al Cover		X 4 =			
1. Poa pratensis	70	Yes	FAC	Column Totals:	X3 = (A) (F	3)		
2. Dactylis glomerata	20	Yes	FACU			,,		
3. Schedonorus arundinaceus	5	No	FAC	Prevalence Inde	ex = B/A =			
4. Jacobaea vulgaris	5	No	FACU	Hydrophytic Vegeta	tion Indicators:			
5				Rapid Test for Hy	drophytic Vegetation			
6				Dominance Test i	s >50%			
7				Prevalence Index	is ≤3.0 ¹			
8				data in Rema	aptations ¹ (Provide supporting			
9				Wetland Non-Vas	scular Plants ¹			
10				Problematic Hvdr	ophytic Vegetation ¹ (Explain)			
11	100	= Tota	al Cover	¹ Indicators of hydric s	oil and wetland hydrology must			

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present?

Yes 🗌 No 🗵

% Bare Ground in Herb Stratum 0

Woody Vine Stratum (Plot size: 30 ft)

Remarks: No hydrophytic vegetation criteria met.

Prevalence Index not warranted due to combined back of hydric soils and wetland hydrology.

0 = Total Cover

2.

1. _

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)											
Depth	Matrix		Red	ox Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-12	10YR 2/2	95	10YR 3/2 10 C M SiCILo Silt Clay Loam								
0-12	_		7.5 YR 3/4	7.5 YR 3/4 10 C M SiCILo Silty Clay Loam							
12-16	10YR 3/1	60	7.5 YR 3/4 10 C M SiCILo Mixed Matrix, Silty Cla								
12-16	10 YR 3/2	30	-			-	-	Mixed Matrix, Silty Clay Loam			
¹ Type: C=C Hydric Soil	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)										
Histosol	(A1)		Sandy Redox (S5)			□ 2 0	cm Muck (A10)			
	pipedon (A2)		Stripped Matrix	(S6)				d Parent Material (TF2)			
Black Hi	stic (A3)		Loamy Mucky	Mineral (F	1) (excep	t MLRA 1)	□ Ve	ry Shallow Dark Surface (TF12)			
Hydroge	en Sulfide (A4)		Loamy Gleved	Matrix (F2	2) ·	,		her (Explain in Remarks)			
	d Below Dark Surfa	ce (A11)	Depleted Matri	x (F3)	/						
Thick Da	ark Surface (A12)	,	Redox Dark Su	urface (F6)		³ Indica	tors of hydrophytic vegetation and			
□ Sandy M	Aucky Mineral (S1)		Depleted Dark	Surface (, F7)		wet	land hydrology must be present.			
Sandy G	Bleved Matrix (S4)		Redox Depres	sions (F8)	,		unle	ess disturbed or problematic.			
Restrictive	Layer (if present):		- ·	()				·			
Type: No	one										
Depth (in	ches):						Hydric So	oil Present? Yes 🗵 No 🗌			
Remarks:											
Hydric soil criteria met through indicator F6.											
HYDROLO	GY										
Wetland Hy	drology Indicator	s:									
Primary Indi	cators (minimum o	f one requi	red; check all that app	oly)			Sec	ondary Indicators (2 or more required)			
Surface	Water (A1)		Water-Sta	ained Leav	/es (B9) (e	except ML	RA 🗌	Water-Stained Leaves (B9) (MLRA 1, 2,			
🗌 High Wa	ater Table (A2)		1, 2, 4	A, and 4	3)	•		4A, and 4B)			
	on (A2)			(P11)	,			Drainago Pattorne (B10)			

Wetland Hydrology Indicato	rs:						
Primary Indicators (minimum of	of one requ		Secondary Indicators (2 or more required)				
Surface Water (A1) Water-Stained Leaves (B9) (except MLRA					Water-Stained Leaves (B9) (MLRA 1, 2,		
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)		
Saturation (A3)					Drainage Patterns (B10)		
Water Marks (B1) Aquatic Invertebrates (B13)					Dry-Season Water Table (C2)		
Sediment Deposits (B2)			Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C				ng Roots (C3)	Geomorphic Position (D2)		
Algal Mat or Crust (B4)				Shallow Aquitard (D3)			
□ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6)				FAC-Neutral Test (D5)			
□ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A)			RR A)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aeria	al Imagery	(B7)	Other (Explain in Remarks)		Frost-Heave Hummocks (D7)		
Sparsely Vegetated Conca	ave Surfac	;e (B8)					
Field Observations:							
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None				
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): <u>None</u>				
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗙	Depth (inches): <u>None</u>	Wetland Hy	drology Present? Yes 🗌 No 🗵		
Describe Recorded Data (stre	am gauge	, monitor	ing well, aerial photos, previous inspec	tions), if availa	able:		
Remarks:							
No hydrologic indicators	observe	d. Soil	pit was excavated to a depth of	f 16 inches.			

Project/Site: 1144.0027 E Vancouver E-Commerce Center City	y/County: Camas, Clark	Sampling Date: 04/06/2021							
Applicant/Owner: Panattoni Development Company, Inc.	State: WA	_ Sampling Point: DP-3w							
Investigator(s): Jacob Layman	Section, Township, Range: 29, 02	2N, 03E, SE							
Landform (hillslope, terrace, etc.): Valley bottom on terrace	ocal relief (concave, convex, none): <u>Conc</u>	ave Slope (%): 2%							
Subregion (LRR): <u>A2</u> Lat: <u>45.62</u>	27118 Long: -122.45771	D61 Datum: WGS 84							
Soil Map Unit Name: Cove silty clay loam, thin solum, 0 to 3 pe	rcent slopes NWI classifi	cation: N/A							
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes 🗵 No 🗌 (If no, explain in Remarks	.)							
Are Vegetation, Soil, or Hydrology significantly distur	bed? Are "Normal Circumstances" pr	esent? Yes 🗵 No 🗌							
Are Vegetation, Soil, or Hydrology naturally problema	tic? (If needed, explain any answers	in Remarks.)							
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Present? Yes X No I Hydric Soil Present? Yes X No I Wetland Hydrology Present? Yes X No I	Is the Sampled Area within a Wetland? Yes 🗵	No 🗌							
Remarks:									

All three wetland criteria met. Data collected on the north-central portion of the property in Wetland A.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft</u>)	% Cover	Species?	Status	Number of Dominant Species
1. Fraxinus latifolia	15	Yes	FACW	That Are OBL, FACW, or FAC: 6 (A)
2.				、,
2				Total Number of Dominant
3				Species Across All Strata: _/ (B)
4	15			Percent of Dominant Species
Copling/Chruh Stratum (Distaires 15 ft)	15	= Total C	over	That Are OBL, FACW, or FAC: <u>86%</u> (A/B)
<u>Saping/Siliub Silauni</u> (Flot size. <u>15 it</u>)	10	Vec	FAC	Dravalance Index warksheet
	<u></u>	<u> </u>		
2. Symphonicarpos albus	<u> </u>	res		Iotal % Cover of:Multiply by:
3. Fraxinus latifolia	5	Yes	FACW	OBL species x 1 =
4	<u> </u>			FACW species x 2 =
5.				FAC species x 3 =
	20	= Total C	over	FACU species x 4 =
Herb Stratum (Plot size: 5 ft)		i olui o		UPL species x 5 =
_{1.} Alopecurus aequalis	25	Yes	OBL	Column Totals: (A) (B)
2. Schedonorus arundinaceus	25	Yes	FAC	
3. Juncus effusus	25	Yes	FACW	Prevalence Index = B/A =
4. Poa pratensis	10	No	FAC	Hydrophytic Vegetation Indicators:
5. Ranunculus repens	5	No	FAC	Rapid Test for Hydrophytic Vegetation
6. Geum macrophyllum	1	No	FAC	☑ Dominance Test is >50%
7.	·		·	□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				
	91	= Total C	over	he present unless disturbed or problematic
Woody Vine Stratum (Plot size: <u>30 ft</u>)				
1	<u> </u>			Unders had a
2				Hydrophytic Vegetation
	0	= Total C	over	Present? Yes X No
% Bare Ground in Herb Stratum 9				
Remarks:				

Depth	ription: (Describe	to the de	pth needed	to docume	nt the in	dicator	or confirm	the abs	ence of indicators.)
	Matrix			Redox F	eatures				
(inches)	Color (moist)	%	Color (mois	st)	%	Type ¹	Loc ²	Texture	Remarks
0-6	7.5 YR 4/1	95	5YR 3/4	5	5	С	M, PL	SiCILo	Silt Clay Loam
6-16	10 YR 4/1	93	7.5 YR 4	/6 7	7	С	Μ	SiCILo	Silty Clay Loam
·							·		
		·							
							·		
¹ Type: C=Co	oncentration, D=Dep	oletion, RN	<u>/I=Reduced N</u>	Aatrix, CS=C	Covered	or Coate	d Sand Gra	ains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soll I	indicators: (Applic	able to a			se note	a.)			Icators for Problematic Hydric Solis":
	(A1) inadan (A2)		Sandy	Redox (S5)	2)				2 cm Muck (A10)
	ipedon (AZ)			d Matrix (50 Mucky Mine) aral (E1)	(avcant			Very Shallow Dark Surface (TE12)
	n Sulfide (A4)			Gleved Mat	rix (F2)	(except			Other (Explain in Remarks)
	Below Dark Surfac	e (A11)	× Deplete	ed Matrix (F:	3)				
☐ Thick Da	rk Surface (A12)	、 ,	Redox	Dark Surfac	, e (F6)			³ Inc	licators of hydrophytic vegetation and
Sandy M	ucky Mineral (S1)		Deplete	ed Dark Surf	face (F7)			wetland hydrology must be present,
🔲 Sandy G	leyed Matrix (S4)		Redox	Depression	s (F8)				unless disturbed or problematic.
Restrictive I	ayer (if present):								
Type: NO	ne								
Depth (ind	ches):							Hydric	Soil Present? Yes 🗵 No 🗌
Remarks:									
Hydric soil	criteria met thro	ugh indi	cator F3.						
HYDROLO	GY								
HYDROLO Wetland Hyd	GY drology Indicators:	1							
HYDROLO Wetland Hyd Primary Indic	GY drology Indicators: cators (minimum of c	: one requir	ed; check all	that apply)					Secondary Indicators (2 or more required)
Wetland Hyd Primary Indic	GY drology Indicators: cators (minimum of o Water (A1)	: one requir	ed; check all	that apply) ater-Stained	d Leaves	s (B9) (e	ccept MLR	<u>\$</u>	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2,
HYDROLO Wetland Hyd Primary Indic Surface V I High Wat	GY drology Indicators: cators (minimum of o Water (A1) ter Table (A2)	: one requir	ed; check all	that apply) ater-Stained 1, 2, 4A, a	d Leaves	s (B9) (e	ccept MLR	<u>{</u>	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
HYDROLO Wetland Hyd Primary Indic Surface V High Wat Saturatio	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) m (A3)	one requir	e <u>d; check all</u> □ W □ Sa	<u>that apply)</u> ater-Stained 1, 2, 4A, a alt Crust (B1	d Leaves and 4B)	s (B9) (e	ccept MLR	<u>\$</u> A [Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10)
HYDROLO Wetland Hyd Primary India Surface N Surface N High Wat Saturatio Water Ma	GY drology Indicators: cators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1)	: one requir	ed; check all W Sa Ac	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert	d Leaves and 4B) 1) rebrates	s (B9) (e (B13)	ccept MLR	A [Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
HYDROLO Wetland Hyd Primary Indic Surface V Surface V High Wat Saturatio Water Ma Sedimen	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2)	one requir	<u>ed; check all</u> □ W □ Sa □ Ao □ Hy	that apply) ater-Staineo 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul	d Leaves and 4B) 1) rebrates fide Odd	s (B9) (e (B13) or (C1)	ccept MLR		Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9)
HYDROLO Wetland Hyo Primary Indic Surface V Surface V High War Saturatio Water Ma Sedimen Drift Dep	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) nn (A3) arks (B1) t Deposits (B2) osits (B3)	: one requir	ed; check all W W Sa Ac Hy O	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert /drogen Sul kidized Rhiz	d Leaves and 4B) 1) rebrates fide Odd	s (B9) (e . (B13) or (C1) s along	ccept MLR	A [[[[[[] [] []	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
HYDROLO Wetland Hyo Primary Indic Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)	: one requir	ed; check all W Sa Ac Hy O Pr	that apply) ater-Staineo 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul kidized Rhiz esence of R	d Leaves and 4B) 1) tebrates fide Odd cosphere Reduced	(B9) (e : (B13) or (C1) s along Iron (C4	ccept MLR _iving Root	A [[[[[[] [] []	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
HYDROLO Wetland Hyo Primary Indic Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Depe	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5)	: one requir	ed; check all W Sa Ac Ac B Pr Re Re	that apply) ater-Staineo 1, 2, 4A, a alt Crust (B1 quatic Invert /drogen Sul /drogen Sul	d Leaves and 4B) 1) rebrates fide Odd cosphere Reduced reductior	(B13) (B13) or (C1) is along Iron (C4 o in Tilleo	ccept MLR _iving Root) I Soils (C6)	A [[[[[] [] [] [] [] [] [] [] [] [] []	 Becondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
HYDROLO Wetland Hyd Primary Indic Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6)	: one requir	ed; check all W Sa Ac Hy O Pr Re St	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul kidized Rhiz esence of R ecent Iron R unted or Str	d Leaves and 4B) 1) rebrates fide Odd cosphere Reduced ressed F	(B9) (e: (B13) or (C1) is along Iron (C4 n in Tilleo lants (D	ccept MLR _iving Root) I Soils (C6) I) (LRR A)	A [[[] [] [] [] [] [] [] [] [] [] []	 Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
HYDROLO Wetland Hyo Primary India Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatio	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I	: one requir magery (E	ed; check all W Sa Ac Ac Hy O Pr Re St 37) O	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul xidized Rhiz esence of R ecent Iron R unted or Str her (Explair	d Leaves and 4B) 1) rebrates fide Odd cosphere Reduced reduction ressed P n in Rem	(B13) or (C1) is along Iron (C4 n in Tilled ants (D iarks)	ccept MLR _iving Root) d Soils (C6) I) (LRR A)	A [[[] [] [] [] [] [] [] [] [] [] [] []	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hyo Primary Indic Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave	<u>one requir</u> one requir one requir	ed; check all W Sa Ac Hy O S Pr Re St 37) O (B8)	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul kidized Rhiz resence of R ecent Iron R unted or Str ther (Explain	d Leaves and 4B) 1) tebrates fide Odd cosphere Reduced reduction ressed P n in Rem	(B13) or (C1) s along Iron (C4 n in Tilleo lants (D aarks)	ccept MLR _iving Root) d Soils (C6) I) (LRR A)	A [[[] [] [] [] [] [] [] []	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hyo Primary Indic Surface V High Wai Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Obser	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave vations:	magery (E	ed; check all	that apply) ater-Staineo 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul xidized Rhiz vesence of R ecent Iron R unted or Str her (Explair	d Leaves and 4B) 1) rebrates fide Odd reduced reduced reduction ressed P n in Rem	(B13) or (C1) or along Iron (C4 o in Tilleo lants (D larks)	ccept MLR _iving Root) I Soils (C6) I) (LRR A)	A [[[] [] [] [] [] [] [] [] [] [] [] []	 Becondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hye Primary Indic Surface N Surface N Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Depe Surface S Inundatic Sparsely Field Observ Surface Wate	GY drology Indicators: cators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave vations: er Present?	magery (E Surface	ed; check all W W Sa Ac Ac Hy O Pr C Re St 37) O (B8) O Dept	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul kidized Rhiz esence of R ecent Iron R unted or Str ther (Explain h (inches): _	d Leaves and 4B) 1) rebrates fide Odo cosphere Reduced ressed P n in Rem None	(B9) (e: (B13) or (C1) os along Iron (C4 o in Tilleo lants (D arks)	ccept MLR _iving Root) I Soils (C6) I) (LRR A)	A [[[] [] [] [] [] [] [] [] []	 Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hyo Primary India Surface V Surface V High War Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Obser Surface Water	GY drology Indicators: cators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave vations: er Present?	magery (E Surface (es 🗌 N (es 🗶 N	ed; check all W Sa Ac Ac Hy C Pr Re St 37) Ot (B8) Vo X Dept Vo Dept	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert ydrogen Sul xidized Rhiz esence of R ecent Iron R unted or Str her (Explain h (inches): _	d Leaves and 4B) 1) rebrates fide Odd cosphere Reduced reduction ressed F n in Rem None 10"	(B13) or (C1) is along Iron (C4 n in Tilleo lants (D aarks)	ccept MLR iving Root) I Soils (C6) I) (LRR A)	A [[[] [] [] [] [] []	 Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hyc Primary Indic Surface V High Wai Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Wate Vater Table Saturation Po	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) nn (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave vations: er Present?	magery (E Surface (es 🗌 N (es 🕅 N (es 🕅 N	ed; check all	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert vdrogen Sul xidized Rhiz esence of R esent Iron R unted or Str her (Explain h (inches): _ h (inches): _	d Leaves and 4B) (1) rebrates fide Odd cosphere Reduced reduction ressed P n in Rem None 10" 7"	(B13) or (C1) s along Iron (C4 n in Tilled lants (D narks)	ccept MLR iving Root) d Soils (C6) I) (LRR A)	A [[[[[] [] [] [] [] [] [] [] [] [] []	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
HYDROLO Wetland Hyo Primary Indic Surface V Surface V Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Water Vater Table Saturation P (includes cap	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial I Vegetated Concave vations: er Present? Present? Present? Soillary fringe) Source (State	magery (E e Surface (es 🗌 N (es 🖾 N (es 🖾 N	ed; check all W Sa Ac Ac Hy C Pr Re St 37) Of (B8) Ao X Dept Ao Dept Ao Dept	that apply) ater-Stained 1, 2, 4A, a alt Crust (B1 quatic Invert /drogen Sul kidized Rhiz resence of R ecent Iron R unted or Str ther (Explain h (inches): _ h (inches): _	d Leaves and 4B) 1) rebrates fide Odd reduced reduction ressed P n in Rem <u>None</u> 10" 7"	(B9) (e: (B13) or (C1) s along Iron (C4 n in Tilleo lants (D parks)	ccept MLR iving Root) I Soils (C6) I) (LRR A) Wetla	A [(A [(C3)] [(Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Remarks:

Hydrologic criteria met through primary indicators A2 & A3.

Project/Site: 1144.0027 E Vancouver	E-Commerce Cente	<u>r City/County:</u> Car	nas, Clark	Sa	ampling Date: 04/06/2021		
Applicant/Owner: Panattoni Developme	ent Company, Inc.		State: <u>N</u>	/A Sa	ampling Point: DP-4U		
Investigator(s): Rachael Hyland, Jacob	Layman	Section	n, Township, Rang	_{ge:} 29,02N,03	3E,SE		
Landform (hillslope, terrace, etc.): Berm		Local relief (conc	ave, convex, non	_{e):} none	Slope (%): 0		
Subregion (LRR): <u>A2</u>	Lat: 45	5.627137	Long: <u>-12</u>	2.45787799	Datum: WGS 84		
Soil Map Unit Name: Cove silty clay loa	m, thin solum, 0 to 3	percent slopes	N	WI classification	n: N/A		
Are climatic / hydrologic conditions on the site	e typical for this time of ye	ear?Yes 🗶 No [] (If no, explain i	n Remarks.)			
Are Vegetation, Soil, or Hydrold	ogy significantly d	isturbed? Are	e "Normal Circums	stances" present	?Yes 🗵 No 🗌		
Are Vegetation, Soil, or Hydrold	ogy naturally probl	ematic? (If n	needed, explain ar	ny answers in Re	emarks.)		
SUMMARY OF FINDINGS – Attac	h site map showing	g sampling poi	nt locations, t	ransects, im	nportant features, etc.		
Hydrophytic Vegetation Present?YHydric Soil Present?YWetland Hydrology Present?Y	es 🗌 No 🗙 es 🗌 No 🕱 es 🔲 No 🕱	Is the Sam within a We	pled Area etland?	Yes 🗌 No 🗵	3		
Remarks: No wetland criteria met. Data collected on the north-central portion of the property in an upland area between Wetlands A and B.							

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>) 1	<u>% Cover</u>	Species?	Status	Number of Dominant Species That Are OBL, FACW, or FAC: <u>2</u>	(A)
2				Total Number of Deminent	
3.				Species Across All Strata: 4	(B)
4.					(-)
	0	= Total C	over	Percent of Dominant Species	(A/D)
Sapling/Shrub Stratum (Plot size: 15 ft)				That Ale OBE, I ACW, OF AC. <u>5070</u>	(А/В)
1. Rubus aremniacus	60	Yes	FAC	Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3.				OBL species x 1 =	
4.				FACW species x 2 =	
5.				FAC species x 3 =	
· ·	60	= Total C	over	FACU species x 4 =	
Herb Stratum (Plot size: <u>5 ft</u>)			0101	UPL species x 5 =	_
1. Poa pratensis	30	Yes	FAC	Column Totals: (A)	(B)
2. Foeniculum vulgare	30	Yes	UPL		_ (=)
3. Carex hoodii	20	Yes	FACU	Prevalence Index = B/A =	
4. Leucanthemum vulgare	2	No	FACU	Hydrophytic Vegetation Indicators:	
5				Rapid Test for Hydrophytic Vegetation	
6.				Dominance Test is >50%	
7.				□ Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide suppor data in Remarks or on a separate sheet)	rting)
9				Wetland Non-Vascular Plants ¹	
10		·	. <u> </u>	Problematic Hydrophytic Vegetation ¹ (Expla	in)
11		·		¹ Indicators of bydric soil and wetland bydrology	must
Woody Vine Stratum (Plot size: <u>30 ft</u>)	82	= Total C	over	be present, unless disturbed or problematic.	muor
1				Hydrophytic	
2				Vegetation	
% Bare Ground in Herb Stratum <u>18</u>	0	= Total C	over	Present? Yes 🗌 No 🗵	
Remarks: No hydrophytic vegetation criteria met.					

Profile Des	cription: (Describe	to the dept	h needed to docu	ument the	indicato	r or confirm	the abs	sence of indicators.)
Depth (inches)	<u>Matrix</u>	%	Rec Color (moist)	lox Feature	<u>es</u> Type ¹	1 oc^2	Toyture	Remarks
<u>0-12</u>	7.5YR 2.5/2	100	-	-	- <u></u>	-	SiLo	Silty Loam
12-16	7.5YR 2.5/2	98	7.5YR 3/3	2	С	Μ	SiCILo	o Silty Clay Loam
		· ·				· ·		
						· ·		
						· ·		
	oncentration D-Der	letion RM-	Reduced Matrix		ad or Coat	ed Sand Gra	aine	² Location: PL-Pore Lining M-Matrix
Hydric Soil	Indicators: (Applic	able to all l	LRRs, unless oth	erwise no	ted.)	leu Sanu Gra	Inc	dicators for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy Redox	(S5)				2 cm Muck (A10)
Histic Ep	oipedon (A2)		Stripped Matrix	x (S6)				Red Parent Material (TF2)
Black Hi	istic (A3)		Loamy Mucky	Mineral (F	1) (excep	t MLRA 1)		Very Shallow Dark Surface (TF12)
Hydroge	en Sulfide (A4)		Loamy Gleyed	Matrix (F2	2)			Other (Explain in Remarks)
Depleted	d Below Dark Surfac	e (A11)	Depleted Matr	ix (F3)			0-	
☐ Thick Da	ark Surface (A12)		Redox Dark S	urface (F6)		³ ln	dicators of hydrophytic vegetation and
☐ Sandy M	Aucky Mineral (S1)		Depleted Dark	Surface (F7)			wetland hydrology must be present,
Sandy G	Bleyed Matrix (S4)		Redox Depres	sions (F8)				unless disturbed or problematic.
Type: No	Difference (in present):							
Depth (in	iches):						Hydrid	c Soil Present? Yes 🗌 No 🗵
Remarks:								
No hydric :	soil indicators me	et.						
-)								
HYDROLO	θGY							
Wetland Hy	drology Indicators:							
Primary Indi	cators (minimum of c	one required	; check all that ap	ply)				Secondary Indicators (2 or more required)
Surface	Water (A1)		Water-Sta	ained Leav	/es (B9) (e	except MLR	A	Water-Stained Leaves (B9) (MLRA 1, 2,
🔲 High Wa	ater Table (A2)		1, 2, 4	4A, and 4E	3)			4A, and 4B)
Saturation	on (A3)		Salt Crus	t (B11)				Drainage Patterns (B10)
Water M	larks (B1)		Aquatic Ir	nvertebrate	es (B13)			Dry-Season Water Table (C2)
Sedimer	nt Deposits (B2)		Hydroger	n Sulfide O	dor (C1)			Saturation Visible on Aerial Imagery (C9)
Drift Dep	oosits (B3)		Oxidized	Rhizosphe	eres along	Living Roots	s (C3)	Geomorphic Position (D2)
Algal Ma	at or Crust (B4)		Presence	of Reduc	ed Iron (C	4)		Shallow Aquitard (D3)
Iron Dep	oosits (B5)		Recent Ir	on Reduct	ion in Tille	ed Soils (C6)		FAC-Neutral Test (D5)
Surface	Soil Cracks (B6)		Stunted o	or Stressed	d Plants (D	01) (LRR A)		Raised Ant Mounds (D6) (LRR A)
🗌 Inundati	on Visible on Aerial I	magery (B7)) 🗌 Other (Ex	plain in Re	emarks)			Frost-Heave Hummocks (D7)
	Wagatatad Canaay	Surface (P	o)					

		()	— • • • • • • • • • • • • • • • • • • •	,	
Sparsely Vegetated Cond	cave Surfac	e (B8)			
Field Observations:					
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None		
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): None	_	
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗙	Depth (inches): None		Wetland Hydrology Present? Yes 🗌 No 🗵
Describe Recorded Data (stre	eam gauge,	, monitor	ing well, aerial photos, previous	inspec	tions), if available:
Remarks:					

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches.

Project/Site: 1144.0027 E Vancouver E-Commerce Center City	//County: Camas, Clark		Sampling Date: 04/06/2021					
Applicant/Owner: Panattoni Development Company, Inc.	State	<u>.</u> WA	Sampling Point: DP-5w					
Investigator(s): Jacob Layman	Section, Township, F	Range: 29, 02N,	03E, SE					
Landform (hillslope, terrace, etc.): Terrace; swale	ocal relief (concave, convex,	none): Concave	Slope (%): 0%					
Subregion (LRR): A2 Lat: 45.62	27088 Long: _	-122.4579709	5 Datum: WGS 84					
Soil Map Unit Name: Cove silty clay loam, thin solum, 0 to 3 per	rcent slopes	_ NWI classification	on: N/A					
Are climatic / hydrologic conditions on the site typical for this time of year? Yes 🗵 No 🗌 (If no, explain in Remarks.)								
Are Vegetation, Soil, or Hydrology significantly disturl	bed? Are "Normal Circ	umstances" prese	nt? Yes 🗵 No 🗌					
Are Vegetation, Soil, or Hydrology naturally problemation	tic? (If needed, explai	n any answers in F	Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present? Yes ⋈ No □ Hydric Soil Present? Yes ⋈ No □ Wetland Hydrology Present? Yes ⋈ No □	Is the Sampled Area within a Wetland?	Yes 🗶 No						

Remarks:

All three wetland criteria met. Data collected on the north-central portion of the property, inside Wetland B.

	Abcoluto	Dominant	Indicator	Dominanco Tost workshoot:	
Tree Stratum (Plot size: 30 ft)	% Cover	Species?	Status	Dominance rest worksheet.	
<u>1100 Ollulum</u> (1100 0120. <u>00 h</u>)	/0 00101	000000	010100	Number of Dominant Species	• >
1			·	I hat Are OBL, FACW, or FAC: <u>5</u> (/	A)
2				Total Number of Dominant	
3				Species Across All Strata: 3 (E	3)
4				· · · · · · · · · · · · · · · · · · ·	,
	0	Tatal C		Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15 ft)	<u> </u>		over	That Are OBL, FACW, or FAC: <u>100%</u> (A	ч∕B)
A Rubus spectabilis	30	Yes	FAC	Brovalonco Indox workshoot:	
	00	100	17.0		
2				Total % Cover of: Multiply by:	
3				OBL species x 1 =	
4.				FACW species x 2 =	
5				FAC species x 3 =	
	30	Total C			
Herb Stratum (Plot size: 5 ft)	00		over		
A Poa pratensis	50	Yes	FAC	UPL species x 5 =	
	25	<u> </u>		Column Totals: (A)	(B)
2. Alopecurus pratensis	35	res	FAC		
3. Holcus lanatus	10	No	FAC	Prevalence Index = B/A =	
4. Taraxacum officinale	2	No	FACU	Hydrophytic Vegetation Indicators:	
5.				Rapid Test for Hydrophytic Vegetation	
6				☑ Dominance Test is >50%	
7				□ Prevalence Index is ≤3.0 ¹	
0				Morphological Adaptations ¹ (Provide supporting	a
8		·		data in Remarks or on a separate sheet)	3
9				Wetland Non-Vascular Plants ¹	
10		·		Problematic Hydrophytic Vegetation ¹ (Explain)	
11	07			¹ Indicators of hydric soil and wetland hydrology mu	ist
	97	= Total C	over	be present, unless disturbed or problematic.	
Woody Vine Stratum (Plot size: <u>30 ft</u>)					
1				I hadron ha dia	
2.				Hydrophytic	
	0	- Total C	over	Present? Yes X No	
% Bare Ground in Herb Stratum 3	-	- 10(010	0101		
Remarks:				1	
Hydrophytic vegetation criteria met thr	ouah dom	ninance te	est.		

Profile Desc	ription: (Describe	to the d	epth nee	ded to docu	ment the i	ndicator	or confirm	the absend	ce of indicators.)
Depth	Matrix			Redo	x Feature	<u>s</u>			
(inches)	Color (moist)	%	Color	(moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 4/1	95	2.5 \	(R 3/6	5	С	M, PL	SiCILo	Silt Clay Loam
6-16	7.5 YR 4/1	90	7.5 ነ	(R 4/6	10	С	Μ	SiCILo	Silty Clay Loam
						·			
						·			
						·			
						·			
		<u> </u>				·			
						·			
17 0.0			- <u></u>					. 21	
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix.									
						eu.)			
HISTOSOI	(A1) ipedon (A2)			indy Redox (a rinned Matrix	(S6)				cm Muck (A10) ad Parent Material (TE2)
Black His	stic (A3)			amv Muckv N	(50) /lineral (F1) (except	MLRA 1)		erv Shallow Dark Surface (TF12)
	n Sulfide (A4)			amy Gleyed I	Matrix (F2)) (☐ Ot	her (Explain in Remarks)
Depleted	Below Dark Surfac	e (A11)	× De	pleted Matrix	(F3)				
Thick Da	rk Surface (A12)		🗌 Re	dox Dark Su	rface (F6)			³ Indica	ators of hydrophytic vegetation and
Sandy Mucky Mineral (S1)						tland hydrology must be present,			
Sandy G	leyed Matrix (S4)		🗌 Re	edox Depress	ions (F8)			unl	ess disturbed or problematic.
Restrictive I	Layer (if present):								
Type: <u>INC</u>									
Depth (in	cnes)							Hydric So	bil Present? Yes 🗵 No 🗌
Remarks:									
Hydric soil	criteria met thro	ough inc	licator F	-3.					
HYDROLO	GY								
Wetland Hy	drology Indicators	:							
Primary India	cators (minimum of	one requi	red; chec	k all that appl	y)			Sec	condary Indicators (2 or more required)
Surface	Water (A1)		Γ] Water-Stai	ned Leave	es (B9) (e	xcept MLR		Water-Stained Leaves (B9) (MLRA 1, 2,
🔲 High Wa	ter Table (A2)			1, 2, 4/	A, and 4B))			4A, and 4B)
Saturatio	on (A3)		C] Salt Crust	(B11)				Drainage Patterns (B10)
U Water M	arks (B1)		Ľ	Aquatic Inv	vertebrates	s (B13)			Dry-Season Water Table (C2)
Sedimen	t Deposits (B2)		E	Hydrogen	Sulfide Od	lor (C1)			Saturation Visible on Aerial Imagery (C9)
Drift Dep	osits (B3)		C	Oxidized R	Rhizospher	es along	Living Root	ts (C3)	Geomorphic Position (D2)
🔲 Algal Ma	t or Crust (B4)		Ľ	Presence	of Reduce	d Iron (C4	4)		Shallow Aquitard (D3)
🔲 Iron Dep	osits (B5)		Ľ	Recent Iro	n Reductio	on in Tille	d Soils (C6))	FAC-Neutral Test (D5)
Surface	Soil Cracks (B6)		Ľ	Stunted or	Stressed	Plants (D	1) (LRR A)		Raised Ant Mounds (D6) (LRR A)
Inundation	on Visible on Aerial	Imagery (B7) [Other (Exp	lain in Rei	marks)			Frost-Heave Hummocks (D7)
Sparsely	Vegetated Concave	e Surface	e (B8)						
Field Obser	vations:								
Surface Wat	er Present?	Yes 🗌	No 🗙	Depth (inches	s): None				
Water Table	Present?	Yes 🗙	No 🗌	Depth (inches	s): <u>12"</u>				
Saturation P	resent?	Yes 🛛	No 🗌	Depth (inches	s): <u>9</u> "		Wetla	and Hydrolo	ogy Present? Yes 🗵 No 🗌
(includes cap	piliary tringe)								

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Hydrologic criteria met through primary indicator A3.

Project/Site: 1144.0027 E Vancouver E-Commerce	_{y:} <u>Camas, Clark</u> sa			mpling Date: 04/06	5/2021			
Applicant/Owner: Panattoni Development Company	, Inc.			State: WA	Sar	mpling Point: DP-6	3U	
Investigator(s): Rachael Hyland, Jacob Layman			Section, To	wnship, Range:	29,02N,03	E,SE		
Landform (hillslope, terrace, etc.): Drainage		Local relief	(concave,	convex, none):	concave	Slope (%)	<u>.</u> 0	
Subregion (LRR): <u>A2</u>	_ Lat: 45.6	623905		Long: <u>-122.4</u>	45889649	Datum: W	GS 84	
Soil Map Unit Name: Cove silty clay loam, thin solur	n, 0 to 3 p	percent		NWI	classification:	N/A		
Are climatic / hydrologic conditions on the site typical for this	time of yea	r?Yes 🗙	No 🗌 (If	no, explain in F	Remarks.)			
Are Vegetation, Soil, or Hydrology sign	ificantly dist	urbed?	Are "No	rmal Circumsta	nces" present?	Yes 🗶 No 🗌		
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present? Yes ⋈ No □ Is the Sampled Area Hydric Soil Present? Yes ⋈ No □ within a Wetland? Yes □ No ⋈ Wetland Hydrology Present? Yes □ No ⋈ No ⋈ No ⋈ Remarks: Not all three wetland criteria met; only hydrophytic vegetation and hydric soils present. Data collected in an upland area on the western portion of the property.								
VEGETATION – Use scientific names of plant	s.							
Tree Stratum (Plot size: 30 ft)	Absolute	Dominant	Indicator Status	Dominance T	est workshee	t:		
1				Number of Do That Are OBL	minant Specie , FACW, or FA	s C: <u>2</u>	(A)	
2 3				Total Number Species Acros	of Dominant s All Strata:	3	(B)	
4 Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)	0	= Total Co	over	Percent of Dor That Are OBL	minant Species , FACW, or FA	s C: <u>67%</u>	(A/B)	
1				Prevalence In	dex workshe	et:		
2				Total % C	over of:	Multiply by:		

Sapling/Shrub Stratum (Plot size: 15 ft)				
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
	0	= Total C	Cover	FACU species x 4 =
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =
_{1.} Poa pratensis	50	Yes	FAC	Column Totals: (A) (B)
2. Schedonorus arundinaceus	20	Yes	FAC	
3. Dactylis glomerata	20	Yes	FACU	Prevalence Index = B/A =
4. Alopecurus pratensis	10	No	FAC	Hydrophytic Vegetation Indicators:
5.				Rapid Test for Hydrophytic Vegetation
6.				☑ Dominance Test is >50%
7.				☐ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9		<u> </u>		Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11	100			¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft)	100	= Total C	Cover	be present, unless disturbed or problematic.
1				Hydrophytic
2		<u> </u>		Vegetation
% Bare Ground in Herb Stratum 0	0	= Total C	Cover	Present? Yes 🗵 No 🗌
Remarks: Hydrophytic vegetation criteria met thr	ough don	ninance t	est.	

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth	Matrix		Rede	ox Featur	es							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	<u>i</u>		
0-4	10YR 2/2	82	7.5YR 2.5/2	10	С	Μ	SiLo	Silt Loan	n			
0-4	-	-	5YR 3/4	8	С	Μ	SiLo	Silt loam	1			
4-16	10YR 2/2	84	5YR 3/4	8	CM		SiLo	Silt Loam;	8% charco	al found in matrix		
		·										
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix.												
Hydric Soil	Indicators: (Applic	able to a	I LRRs, unless othe	rwise no	oted.)		Indicat	ors for Prob	olematic H	ydric Soils ³ :		
Histosol	(A1)		Sandy Redox (S5)			🗌 2 c	m Muck (A10))			
Histic Ep	pipedon (A2)		Stripped Matrix		🗌 Re	d Parent Mat	erial (TF2)					
Black Hi	istic (A3)	Loamy Mucky Mineral (F1) (except MLRA 1)					🗌 Vei	y Shallow Da	ark Surface	e (TF12)		
🗌 Hydroge	Hydrogen Sulfide (A4))					
Depleted Below Dark Surface (A11) Depleted Matrix (F3)												
Thick Date	Thick Dark Surface (A12) Redox Dark Surface (F6)						³ Indicat	"Indicators of hydrophytic vegetation and				
Sandy N	/lucky Mineral (S1)		Depleted Dark	Surface ((F7)		wetl	wetland hydrology must be present,				
Sandy G	Gleyed Matrix (S4)		Redox Depress	ions (F8))		unle	ess disturbed	or problem	natic.		
Restrictive	Layer (if present):											
Type: INC	one											
Depth (ir	nches):						Hydric So	il Present?	Yes 🗵	No 🗌		
Remarks:												
Hydric soil	l criteria met thro	ugh indi	cator F6.									
HYDROLC	OGY											
Wetland Hy	drology Indicators											
Primary Indi	icators (minimum of o	one require	ed; check all that app	lv)			Seco	ondary Indica	ators (2 or r	more required)		
☐ Surface	Water (A1)		☐ Water-Sta	ined Lea	ves (B9) (e	except ML		Vater-Staine	d Leaves (B9) (MLRA 1. 2.		
☐ High Wa	ater Table (A2)		1. 2. 4	A. and 4	B)			4A. and 4	B)	-/(, , ,		
□ Saturatio	on (A3)		□ Salt Crust	(B11)	,			Drainage Pat	, terns (B10))		
□ Water M	larks (B1)	$\square Aquatic Invertebrates (B13) \qquad \square Dry-Season Water Table (C2)$, e (C2)				
Sedimer	nt Deposits (B2)	□ Hydrogen Sulfide Odor (C1) □ Sa					Saturation Vis	sible on Ae	erial Imagery (C9)			

Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2)

Presence of Reduced Iron (C4)

Recent Iron Reduction in Tilled Soils (C6)

Stunted or Stressed Plants (D1) (LRR A)

Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8)

_ Sparsely vegetated Concave Surface (bb)									
Field Observations:									
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None						
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): None						
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗵	Depth (inches): None	Wetland Hydrology Present?	Yes 🗌	No 🗵			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:									

Remarks:

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches. Data was collected early in the growing season when precipitation was within the normal range for the water year and the calendar year. Additionally, no hydrology indicators were observed in the December 2020 reconnaissance investigation, immediately following a heavy rain event.

Drift Deposits (B3) Algal Mat or Crust (B4)

Iron Deposits (B5)

Surface Soil Cracks (B6)

□ Shallow Aquitard (D3)

□ FAC-Neutral Test (D5)

Raised Ant Mounds (D6) (LRR A)

Frost-Heave Hummocks (D7)

Project/Site: 1144.0027 E Vancouver E-Commerce	e Center (City/Co	_{unty:} Camas	, Clark	Samp	oling Date: 04/0	6/2021
Applicant/Owner: Panattoni Development Company	/, Inc.			State: WA	Samp	oling Point: DP	-7u
Investigator(s): Rachael Hyland, Jacob Layman			Section, To	wnship, Range: <u>2</u>	9,02N,03E,	,SE	
Landform (hillslope, terrace, etc.): hillslope		Local ı	relief (concave,	convex, none): <u>Co</u>	oncave	Slope (%	5): <u>1</u>
Subregion (LRR): <u>A2</u>		62402	25	Long: <u>-122.45</u>	970392	Datum: N	/GS 84
Soil Map Unit Name: Hesson clay loam, 8 to 20 perc	cent			NWI cl	assification: <u>N</u>	N/A	
Are climatic / hydrologic conditions on the site typical for this	time of yea	r? Yes	No 🗌 (li	f no, explain in Rer	marks.)		
Are Vegetation, Soil, or Hydrology sigr	ificantly dist	urbed?	Are "No	ormal Circumstance	es" present?	Yes 🗷 No 🗌	
Are Vegetation, Soil, or Hydrology natu	rally problen	natic?	(If neede	ed, explain any ans	swers in Rema	arks.)	
SUMMARY OF FINDINGS – Attach site map	showing	samp	ling point le	ocations, trans	sects, impo	ortant featur	es, etc.
Hydrophylic Vegetation resent?		ls	s the Sampled	Area			
Wetland Hydrology Present? Yes No 🗵		v	vithin a Wetlar	nd? Yes	s 📋 No 🗶		
Remarks:	abutic veget	tation a	and hydric soil	present Data coll	ected in an u	pland area	
approximately 20 feet from the western proper	rty boundar	.ation a v.	ind nyaric son	present. Data con	lected in an uj	pianu area	
Tr	- j	<u> </u>					
VEGETATION – Use scientific names of plant	is.						
Tree Stratum (Plot size: 30 ft)	Absolute % Cover	Domin	ant Indicator es? Status	Dominance Tes	t worksheet:		
1.	<u></u>			Number of Domi That Are OBL. F.	nant Species ACW. or FAC:	2	(A)
2.				Total Number of	Dominant		,
3				Species Across	All Strata:	3	(B)
4				Percent of Domi	nant Species		
Condition (Charles Charles (Distained 45 ft)	0	= Tota	al Cover	That Are OBL, F.	ACW, or FAC:	67%	(A/B)
Sapling/Shrub Stratum (Plot size: 15 ft)				Prevalence Inde	x worksheet		
2				Total % Cov	er of:	Multiplv bv:	
3.				OBL species		x 1 =	
4				FACW species		x 2 =	
5				FAC species		x 3 =	
Hart Orachura (Distrainer 5.4)	0	= Tota	al Cover	FACU species	<u> </u>	x 4 =	
Poa pratensis	40	Yes	FAC	UPL species	<u> </u>	x 5 =	
2. Alopecurus pratensis	30	Yes	FAC	Column Totals:	((A)	(B)
3. Dactylis glomerata	20	Yes	FACU	Prevalence	Index = B/A	=	
4. Schedonorus arundinaceus	5	No	FAC	Hydrophytic Ve	getation Indic	cators:	
5. Juncus effusus	5	No	FACW	Rapid Test fo	or Hydrophytic	Vegetation	
6				Dominance T	Fest is >50%		
7	. <u> </u>				ndex is ≤3.0'	1 (Dravida avera	utin n
8	. <u> </u>			data in R	emarks or on a	a separate shee	t)
9				U Wetland Non	-Vascular Plai	nts ¹	
10	·			Problematic	Hydrophytic V	egetation1 (Expl	ain)
· · · · · · · · · · · · · · · · · · ·	100	= Tota	al Cover	¹ Indicators of hyd	dric soil and we	etland hydrology	v must
Woody Vine Stratum (Plot size: 30 ft)				be present, unles	ss disturbed or	r problematic.	
1				Hydrophytic			
2	0			Vegetation	Vac 🖂 🔹		
% Bare Ground in Herb Stratum 0	0	= Tota	al Cover	Present?	Tes 🗵 🛛		
Remarks:	minonoo	toot		1			
nyurophytic vegetation met through do	minance	iest					

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)											
Depth	Matrix		Redo	x Feature	<u>es</u>						
(inches)	Color (moist)		Color (moist)	%	Type ¹	Loc ²	Texture		Remarks		
0-6	2.5Y 3/1	90	7.5YR 2.5/3	10	С	Μ	SiLo	Silty Loa	m w/ mar	nure	
6-12	2.5Y 3/1	80	5YR 3/4	20	С	Μ	SiLo	SiLo Silty Loam			
12-16	2.5Y 3/1	90	10YR 4/4	10	С	Μ	Cl Clay				
								·			
								·			
<u> </u>											
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains, ² Location: PL=Pore Lining, M=Matrix,											
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ :											
☐ Histosol (A1) ☐ Sandy Redox (S5) ☐ 2 cm Muck (A10)											
Histic Ep	bipedon (A2)		Stripped Matrix	(S6)				Parent Mate	, erial (TF2)		
Black Hi	stic (A3)		Loamy Mucky M	, /ineral (F	1) (excep	t MLRA 1)	□ Ver	y Shallow Da	ark Surface	(TF12)	
☐ Hydroge	n Sulfide (A4)		Loamy Gleyed	Matrix (F2	2)		☐ Oth	er (Explain ir	n Remarks))	
Depleted	d Below Dark Surfac	e (A11)	Depleted Matrix	(F3)							
Thick Da	ark Surface (A12)		Redox Dark Su	rface (F6))		³ Indicators of hydrophytic vegetation and				
Sandy M	lucky Mineral (S1)		Depleted Dark \$	Surface (I	F7)		wetland hydrology must be present.				
Sandy G	Bleyed Matrix (S4)		Redox Depress	ions (F8)	,		unle	ss disturbed	or problem	atic.	
Restrictive	Layer (if present):										
Type: No	one	·									
Depth (in	ches):						Hydric Soi	I Present?	Yes 🗙	No 🗌	
Remarks:											
Hydric soil	s met through in	dicator I	-6.								
HYDROLO	GY										

Wetland Hydrology Indicato	ors:						
Primary Indicators (minimum	of one requ	ired; ch	eck all that apply)		Secondary Indicators (2 or more required)		
Surface Water (A1)			Water-Stained Leaves (B9) (except	ot MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,		
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)		
Saturation (A3)			Salt Crust (B11)		Drainage Patterns (B10)		
Water Marks (B1)			Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)		
Sediment Deposits (B2)			Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Drift Deposits (B3)				Geomorphic Position (D2)		
Algal Mat or Crust (B4)	Algal Mat or Crust (B4) Presence of Reduced Iron (C4)				Shallow Aquitard (D3)		
Iron Deposits (B5)				ils (C6)	☐ FAC-Neutral Test (D5)		
Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A)			.RR A)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aerial Imagery (B7) Dther (Explain in Remarks)				Frost-Heave Hummocks (D7)			
Sparsely Vegetated Conc	ave Surfac	e (B8)					
Field Observations:							
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None				
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): <u>None</u>				
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗵	Depth (inches): None	Wetland Hy	drology Present? Yes 🗌 No 🗵		
Describe Recorded Data (stre	eam gauge,	monitor	ing well, aerial photos, previous inspec	tions), if availa	able:		
Remarks:							
No hydrologic indicators growing season when p	observe recipitatio	d. Soil on was	pit was excavated to a depth o within the normal range for the	f 16 inches water year	. Data was collected early in the and the calendar year.		

Project/Site: 1144.0027 E Vancouver E-Comme	ce Center	City/Co	ounty: Camas	, Clark	_ Sampling Date: 04/06/2021
Applicant/Owner: Panattoni Development Compa	ny, Inc.			State: WA	Sampling Point: DP-8u
Investigator(s): Rachael Hyland, Jacob Layman			Section, To	wnship, Range: <u>29,02</u>	1,03E,SE
Landform (hillslope, terrace, etc.): hillslope		Local	relief (concave	, convex, none): <u>concav</u>	/e Slope (%): 1
Subregion (LRR): A2	_{Lat:} 45.	62362	24	Long: -122.459431	41 Datum: WGS 84
Soil Map Unit Name: Hesson clay loam, 0 to 8 per	cent slopes	S		NWI classifica	ation: N/A
Are climatic / hvdrologic conditions on the site typical for the	nis time of vea	ar? Yes	s⊠ No∏ (I	f no. explain in Remarks.)	
Are Vegetation , Soil , or Hydrology si	gnificantly dis	turbed	? Are "No	ormal Circumstances" pre	sent? Yes 🗵 No 🗌
Are Vegetation , Soil , or Hydrology na	turally proble	matic?	(If need	ed, explain any answers i	n Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing	samp	ling point l	ocations, transects	, important features, etc
·			•••		· · ·
Hydrophytic Vegetation Present? Yes 🗶 No	s the Sampled	l Area			
Wetland Hydrology Present? Yes Ves No]	۱	within a Wetlar	nd? Yes 🗌 N	10 🗙
Remarks:	1				
Not all three wetland criteria met; only hyd	rophytic veg	etation	and hydric soi	ls present. Data collected	l in an upland area
approximately 80 feet east of the western pro-	operty bound	lary.			
VEGETATION – Use scientific names of pla	nts.				
-	Absolute	Domir	nant Indicator	Dominance Test work	sheet:
Tree Stratum (Plot size: <u>30 ft</u>)	% Cover	Speci	ies? Status	Number of Dominant Sp	pecies
1				That Are OBL, FACW, o	or FAC: <u>2</u> (A)
2		·		Total Number of Domin	ant
3				Species Across All Stra	ta: <u>2</u> (B)
4	0		al Covor	Percent of Dominant Sp	becies
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)	<u> </u>	= 101	ai Covei	That Are OBL, FACW, o	or FAC: <u>100%</u> (A/B)
1				Prevalence Index wor	ksheet:
2				Total % Cover of:	Multiply by:
3				OBL species	x 1 =
4				FACW species	x 2 =
5				FAC species	x 3 =
	0	= Tot	al Cover	FACU species	x 4 =
Herb Stratum (Plot size: <u>5 ft</u>)	50	Vac	FAC	UPL species	x 5 =
Poa pratensis	40	- 103 	FAC	Column Totals:	(A) (B)
2 Alopecurus pratensis	10	<u>No</u>	FAC	Prevalence Index	= B/A =
4				Hydrophytic Vegetatio	on Indicators:
5				Rapid Test for Hvdr	ophytic Vegetation
5				Dominance Test is :	>50%
7				Prevalence Index is	i ≤3.0 ¹
8		·		Morphological Adap data in Remarks	otations ¹ (Provide supporting s or on a separate sheet)
9		- <u> </u>		U Wetland Non-Vascu	ular Plants ¹
10				Problematic Hydrop	hytic Vegetation ¹ (Explain)
II					

100 = Total Cover

0 = Total Cover

US Army Corps of Engineers

Woody Vine Stratum (Plot size: <u>30 ft</u>)

% Bare Ground in Herb Stratum 0

1._____

2._____

Remarks: Hydrophytic vegetation met through dominance test. Yes 🗵 No 🗌

¹Indicators of hydric soil and wetland hydrology must

be present, unless disturbed or problematic.

Hydrophytic

Vegetation

Present?

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth	Matrix		Rec	lox Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-10	10YR 3/1	90	5YR 3/4	10	С	Μ	SiLo	Silty Loam		
10-16	10YR 4/2	90	7.5YR 4/4	10	С	Μ	SiLo	Silty Loam		
							_			
		letion R			ed or Coat	ed Sand G	raine ² I			
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ :										
Histosol (A1)							🗌 2 c	2 cm Muck (A10)		
Histic Epi	c Epipedon (A2)							d Parent Material (TF2)		
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12)								ry Shallow Dark Surface (TF12)		
Hydroger	Hydrogen Sulfide (A4)							ner (Explain in Remarks)		
Depleted	Below Dark Surface	e (A11)	Depleted Matr	ix (F3)						
Thick Da	k Surface (A12)		Redox Dark S	urface (F6)		³ Indica	tors of hydrophytic vegetation and		
🔲 Sandy Mi	ucky Mineral (S1)		Depleted Dark	Surface (F7)		wetland hydrology must be present,			
Sandy GI	eyed Matrix (S4)		Redox Depres	sions (F8)			unless disturbed or problematic.			
Restrictive L	ayer (if present):			. ,				·		
Type: NO	ne									
Depth (inc	hes):						Hydric So	il Present? Yes 🗵 No 🗌		
Remarks:										
Hydric soil	criteria met thro	uah ind	icator E6							
Tryunc Soli		ugirinu								
HYDROLO	GY									
Wetland Hyd	Irology Indicators:									
Primary Indic	ators (minimum of c	ne requir	ed; check all that ap	oly)			Seco	ondary Indicators (2 or more required)		
Surface V	Vater (A1)		Water-Star	ained Leav	ves (B9) (e	except ML	RA 🗆 \	Water-Stained Leaves (B9) (MLRA 1, 2,		
High Wat	er Table (A2)		1, 2, 4	4A, and 4I	В)			4A, and 4B)		
	- (40)							Drainana Dattarra (D40)		

Wetland Hydrology Indicators:						
Primary Indicators (minimum of one required; check all that apply)					Secondary Indicators (2 or more required)	
Surface Water (A1) Water-Stained Leaves (B9) (except MLRA			s (B9) (except MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,		
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)	
Saturation (A3)			Salt Crust (B11)		Drainage Patterns (B10)	
Water Marks (B1)			Aquatic Invertebrates	(B13)	Dry-Season Water Table (C2)	
Sediment Deposits (B2)			Hydrogen Sulfide Ode	or (C1)	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)			Oxidized Rhizosphere	es along Living Roots (C3)	Geomorphic Position (D2)	
Algal Mat or Crust (B4)			Presence of Reduced	I Iron (C4)	Shallow Aquitard (D3)	
Iron Deposits (B5)			Recent Iron Reductio	n in Tilled Soils (C6)	FAC-Neutral Test (D5)	
Surface Soil Cracks (B6)			Stunted or Stressed F	Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)	
Inundation Visible on Aerial Imagery (B7)			Other (Explain in Remarks)		Frost-Heave Hummocks (D7)	
Sparsely Vegetated Conc	ave Surfac	;e (B8)				
Field Observations:						
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None			
Water Table Present?	Yes 🗌	No 🗵	Depth (inches): None			
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗙	Depth (inches): None	Wetland H	ydrology Present? Yes 🗌 No 🗵	
Describe Recorded Data (stre	am gauge	, monitoi	ing well, aerial photos, pre	evious inspections), if avai	able:	
Remarks:						
No hydrologic indicators growing season when pr	observe recipitati	ed. Soil on was	pit was excavated to within the normal rar	a depth of 16 inches	b. Data was collected early in the r and the calendar year.	

Project/Site: 1144.0027 E Vancouver E-C	Commerce Center City/	County: Camas, Clark	Samp	ling Date: 04/06/2021
Applicant/Owner: Panattoni Development	Company, Inc.	State:	WA Samp	ling Point: DP-9u
Investigator(s): Rachael Hyland, Jacob La	lyman	Section, Township, Ra	nge: 29,02N,03E,	SE
Landform (hillslope, terrace, etc.): hillslope	Loc	al relief (concave, convex, no	one): none	Slope (%): 1
Subregion (LRR): A2	Lat: 45.627	994 Long: <u>-1</u>	22.45925618	Datum: WGS 84
Soil Map Unit Name: Powell silt loam, 0 to	8 percent slopes		NWI classification: N	I/A
Are climatic / hydrologic conditions on the site ty	bical for this time of year?	res 🗵 No 🗌 (If no, explai	n in Remarks.)	
Are Vegetation, Soil, or Hydrology	significantly disturbe	ed? Are "Normal Circu	mstances" present?	Yes 🗵 No 🗌
Are Vegetation, Soil, or Hydrology	naturally problematic	? (If needed, explain	any answers in Rema	rks.)
SUMMARY OF FINDINGS – Attach s	ite map showing san	npling point locations	, transects, impo	ortant features, etc.
Hydrophytic Vegetation Present? Yes [No 🗌	Is the Sampled Area		
Hydric Soil Present? Yes [🗙 No 🗌	within a Wetland?		
Wetland Hydrology Present? Yes [No 🗵			
Remarks:	1111.	11 11 11 11		1 1 4

Not all three wetland criteria met; only hydrophytic vegetation and hydric soils present. Data collected in an upland area on the northwest portion of the property.

	Abaaluta	Dominont	Indiactor	Dominance Test worksheet
Tree Stratum (Plot size: 30 ft)	% Cover	Species?	Status	Dominance rest worksneet.
Fraxinus latifolia	35	Yes	FACW	Number of Dominant Species
			<u></u>	That Ale OBL, FACW, OF FAC. <u>5</u> (A)
2		·		Total Number of Dominant
3			·	Species Across All Strata: <u>3</u> (B)
4		·		Demonstrat Demoissed Operation
	35	= Total C	over	Percent of Dominant Species 100% (A/B)
Sapling/Shrub Stratum (Plot size: 15 ft)				$\frac{10070}{10070}$
1. Rubus aremiacus	70	Yes	FAC	Prevalence Index worksheet:
2. Lonicera involucrata	5	No	FAC	Total % Cover of:Multiply by:
3. Symphoricarpos albus	5	No	FAC	OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
	80	= Total C	over	FACU species x 4 =
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =
1. Geum macrophyllum	40	Yes	FAC	Column Totals: (A) (B)
2. Carex hoodii	5	No	FACU	(-)
3. Epilobium cilliatum	1	No	FACW	Prevalence Index = B/A =
4. Urtica dioica	1	No	FAC	Hydrophytic Vegetation Indicators:
5. Lotus corniculatus	1	No	FAC	Rapid Test for Hydrophytic Vegetation
6		·		☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8		·		☐ Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10.				Wetland Non-Vascular Plants
11.				Problematic Hydrophytic Vegetation ¹ (Explain)
	48	= Total C	over	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: <u>30 ft</u>)		= 101010	0001	be present, unless disturbed or problematic.
1.				
2.				Hydrophytic Vegetation
	0	= Total C	over	Present? Yes X No
% Bare Ground in Herb Stratum ²			-	
Remarks:	minanca	toot An	provimet	by 50% mass was observed in the
horbaccous stratum	minance	цезі. Ар	proximate	ery 50 % moss was upserved in the

Profile Desc	cription: (Describ	e to the de	epth needed to doc	ument the	indicator	or confiri	n the absenc	e of indicators.)
Depth	Matrix		Re	dox Featur	<u>es</u>			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10YR 3/2	100	-	-		-	SiLo	Silty Loam with roots
12-16	10YR 4/1	30	-	-			SiLo	Silty Loam
12-16	10YR 4/2	65	10YR 3/4	5	С	Μ	SiLo	Silty Loam
	-		-					
	oncontration D-D		A-Poducod Matrix			ad Sand G	raine ²	
Hydric Soil	Indicators: (Appl	icable to a	II LRRs, unless oth	nerwise no	ed of Coal eted.)	eu Sanu G	Indica	tors for Problematic Hydric Soils ³ :
	(A1)		Sandy Redox	(\$5)				m Muck (A10)
	vinedon (A2)		Stripped Matr	(S6)				d Parent Material (TE2)
Black His	stic (A3)			Mineral (F	1) (excep	t MLRA 1)		ry Shallow Dark Surface (TF12)
Hydrogen Sulfide (A4)						ner (Explain in Remarks)		
	Below Dark Surfa	ce (A11)	Depleted Mat	rix (F3)	_,			
Thick Da	ark Surface (A12)	,	Redox Dark S	Surface (F6)		³ Indica	tors of hydrophytic vegetation and
Sandy M	lucky Mineral (S1)		Depleted Dark	< Surface (, F7)		wet	land hydrology must be present,
□ Sandy G	ileyed Matrix (S4)		Redox Depres	ssions (F8)	,		unle	ess disturbed or problematic.
Restrictive	Layer (if present):			,				·
Type: No	one							
Depth (in	ches):						Hydric So	il Present? Yes 🗵 No 🗌
Remarks:								
Hydric soil	criteria met thr	ough ind	icator A11					
		ougninu						
HYDROLO	GY							
Wetland Hy	drology Indicator	s:						
Primary India	cators (minimum of	f one requir	ed; check all that ap	oply)			Sec	ondary Indicators (2 or more required)
	$M_{ator}(\Delta 1)$		□ Water-St	ained Leav	(BQ) (vcent MI		Mater-Stained Leaves (BQ) (MI PA 1 2

Primary Indicators (minimum)	of one required; ch		Secondary Indicators (2 or more required)		
Surface Water (A1)		□ Water-Stained Leaves (B9) (exce	ept MLRA 🛛 Water-Stained Leaves (B9) (MLRA 1, 2,		
High Water Table (A2)		1, 2, 4A, and 4B)		4A, and 4B)	
Saturation (A3)		Salt Crust (B11)		Drainage Patterns (B10)	
Water Marks (B1)		Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)	
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)		Oxidized Rhizospheres along Livi	ng Roots (C3)	Geomorphic Position (D2)	
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)		Shallow Aquitard (D3)	
Iron Deposits (B5)		Recent Iron Reduction in Tilled So	oils (C6)	FAC-Neutral Test (D5)	
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)	
Inundation Visible on Aeria	al Imagery (B7)	Other (Explain in Remarks)		Frost-Heave Hummocks (D7)	
Sparsely Vegetated Conc	ave Surface (B8)				
Field Observations:					
Surface Water Present?	Yes 🗌 No 🗙	Depth (inches): None			
Water Table Present?	Yes 🗌 No 🗵	Depth (inches): None			
Saturation Present? (includes capillary fringe)	Yes 🗌 No 🗵	Depth (inches): None	Wetland Hy	drology Present? Yes 🗌 No 🗵	
Describe Recorded Data (stre	am gauge, monito	ring well, aerial photos, previous inspec	ctions), if availa	able:	
Remarks:					
No hydrologic indicators of	observed. Soil p	it was excavated to a depth of 1	6 inches. Da	ata was collected early in the growing	

season when precipitation was within the normal range for the water year and the calendar year. Additionally, no hydrology indicators were observed in the December 2020 reconnaissance investigation, immediately following a heavy rain event.

Project/Site: 1144.0027 E Vancouver E-Commerce Center City/Coun	ty: Camas, Clark Sampling Date: 04/06/2021
Applicant/Owner: Panattoni Development Company, Inc.	State: WA Sampling Point: DP-10w
Investigator(s): Jacob Layman	Section, Township, Range: 29, 02N, 03E, SE
Landform (hillslope, terrace, etc.): Hillslope Local rel	ief (concave, convex, none): Convex Slope (%): 5%
Subregion (LRR): <u>A2</u> Lat:45.625686	5 Long: -122.45595449 Datum: WGS 84
Soil Map Unit Name: <u>Hesson clay loam, 0 to 8 percent slopes</u>	NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes 🗵	🕙 No 🗌 (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturbed?	Are "Normal Circumstances" present? Yes 🗵 No 🗌
Are Vegetation, Soil, or Hydrology naturally problematic?	(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing samplin	ng point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Is t Hydric Soil Present? Yes X No with Wetland Hydrology Present? Yes X No	he Sampled Area hin a Wetland? Yes ⊠ No □

All three wetland criteria met. Data collected on the eastern portion of the property, inside Wetland C.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size: <u>30 ft</u>)	% Cover	Species?	<u>Status</u>	Number of Dominant Species	
1		·	<u> </u>	That Are OBL, FACW, or FAC: 2 (/	A)
2		·		Total Number of Dominant	
3		·		Species Across All Strata: 2 (E	3)
4				Deveent of Deminent Creation	
	0	= Total C	over	That Are OBL, FACW, or FAC: 100% (A	√B)
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)					,
1				Prevalence Index worksheet:	
2				Total % Cover of:Multiply by:	
3				OBL species x 1 =	
4				FACW species x 2 =	
5				FAC species x 3 =	
	0	= Total C	over	FACU species x 4 =	
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =	
_{1.} Holcus lanatus	35	Yes	FAC	Column Totals: (A)	(B)
2. Juncus effusus	25	Yes	FACW		()
3. Poa pratensis	15	No	FAC	Prevalence Index = B/A =	
4. Alopecurus aequalis	10	No	OBL	Hydrophytic Vegetation Indicators:	
5. Schedonorus arundinaceus	10	No	FAC	Rapid Test for Hydrophytic Vegetation	
6.				☑ Dominance Test is >50%	
7				Prevalence Index is ≤3.0 ¹	
8.				Morphological Adaptations ¹ (Provide supporting	g
9.				data in Remarks or on a separate sheet)	
10				Wetland Non-Vascular Plants ¹	
11		·		Problematic Hydrophytic Vegetation ¹ (Explain)	
	95	– Total C	over	¹ Indicators of hydric soil and wetland hydrology mu	ust
Woody Vine Stratum (Plot size: <u>30 ft</u>)		- 100010	0001	be present, unless disturbed or problematic.	
1.					
2.				Hydrophytic	
	0	= Total C	over	Present? Yes X No	
% Bare Ground in Herb Stratum 5					
Remarks: Hydrophytic vegetation criteria met thr	ouah dom	ninance te	est.		

SOIL	
------	--

Profile Dese	cription: (Describ	e to the de	epth needed to doc	ument the	e indicator	or confirm	n the absence	e of indicators.)
Depth	Matrix		Red	dox Featur	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 2/2	100	-	-	-	-	-	Silt Clay Loam
4-11	7.5 YR 3/2	93	2.5 YR 3/4	7	С	Μ	SiCILo	Clay Loam
11-16	7.5 YR 3/3	98	5 YR 4/4	2	С	С	GrSaCILo	Gravelly, Sandy, Clay Loam
¹ Type: C=C	oncentration, D=De	pletion, RI	M=Reduced Matrix,	CS=Cover	ed or Coat	ed Sand G	rains. ² Loo	cation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appli	cable to a	II LRRs, unless oth	erwise no	oted.)		Indicato	ors for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy Redox	(S5)			🗌 2 cm	n Muck (A10)
Histic Ep	pipedon (A2)		Stripped Matri	x (S6)			🗌 Red	Parent Material (TF2)
Black Hi	stic (A3)		Loamy Mucky	Mineral (F	⁻ 1) (excep	t MLRA 1)	🗌 Very	y Shallow Dark Surface (TF12)
Hydroge	n Sulfide (A4)		Loamy Gleyed	Matrix (F	2)		🗌 Othe	er (Explain in Remarks)
Depleted	d Below Dark Surfa	ce (A11)	Depleted Matr	ix (F3)				
Thick Da	ark Surface (A12)		Redox Dark S	urface (F6	5)		³ Indicato	ors of hydrophytic vegetation and
Sandy M	lucky Mineral (S1)		Depleted Dark	Surface ((F7)		wetla	and hydrology must be present,
Sandy G	leyed Matrix (S4)		Redox Depres	sions (F8))		unles	ss disturbed or problematic.
Restrictive	Layer (if present):							
Type: No	one							
Depth (in	ches):						Hydric Soil	l Present? Yes 🗵 No 🗌
Remarks:								
Hydric soil	criteria met thr	ough ind	icator F6.					
,		0						
Wetland Hy	drology Indicators	5:						
Primary Indi	cators (minimum of	one requir	ed; check all that ap	ply)				ndary Indicators (2 or more required)
└ Surface	Water (A1)		☐ Water-St	ained Lea	ves (B9) (e	except ML	RA 🗌 W	/ater-Stained Leaves (B9) (MLRA 1, 2,
🗙 High Wa	iter Table (A2)		1, 2,	4A, and 4	В)			4A, and 4B)
X Saturatio	on (A3)		Salt Crus	it (B11)			🗆 D	rainage Patterns (B10)
U Water M	arks (B1)		Aquatic I	nvertebrat	es (B13)		🗌 D	ry-Season Water Table (C2)

Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)	[Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)		Oxidized Rhizospheres along Livin	ig Roots (C3)	Geomorphic Position (D2)
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)	[Shallow Aquitard (D3)
Iron Deposits (B5)		Recent Iron Reduction in Tilled So	ils (C6)	FAC-Neutral Test (D5)
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (L	.RR A) [Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)	[Frost-Heave Hummocks (D7)
Sparsely Vegetated Conca	ve Surface (B8)			
Field Observations:				
Surface Water Present?	Yes 🗌 No 🕱	Depth (inches): <u>None</u>		
Water Table Present?	Yes 🗵 No 🗌	Depth (inches): <u>5</u> "		

Depth (inches): 2"

Wetland Hydrology Present? Yes 🗵 No 🗌

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Saturation Present?

Hydrologic criteria observed through primary indicators A2 and A3.

Yes 🗵 No 🗌

Project/Site: <u>1144.0027 E Vancouver E-Commerce Center City/Cou</u>	_{nty:} Camas, Clark	Sampling Date: 04/06/2021			
Applicant/Owner: Panattoni Development Company, Inc.	State: WA	Sampling Point: DP-11u			
Investigator(s): Jacob Layman	Section, Township, Range:	29, 02N, 03E, SE			
Landform (hillslope, terrace, etc.): Hillslope	elief (concave, convex, none):	Convex Slope (%): 5%			
Subregion (LRR): A2 Lat: 45.62570	5 Long: -122.4	5602020 Datum: WGS 84			
Soil Map Unit Name: Hesson clay loam, 0 to 8 percent slopes	NWI	classification: N/A			
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	🗴 No 🗌 (If no, explain in Re	emarks.)			
Are Vegetation . Soil . or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes 🕅 No 🗌					
Are Vegetation, Soil, or Hydrology naturally problematic?	(If needed, explain any ar	nswers in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showing sampli	ing point locations, trar	sects, important features, etc.			
Hydrophytic Vegetation Present? Yes X No I Is Hydric Soil Present? Yes I No X wi Wetland Hydrology Present? Yes I No X No X	the Sampled Area ithin a Wetland? Ye	es 🗌 No 🗵			
Remarks: Not all three wetland criteria not met; only hydrophytic vegetation outside Wetland C.	n present. Data collected on t	he eastern portion of the property			

	Abaaluta	Densinent	Indiantan	Deminence Test werkehest	
Tree Stratum (Plot size: 30 ft)	ADSOIUTE % Cover	Dominant Species?	Status	Dominance Test worksneet:	
<u>1100 Ottatam</u> (1100 5/20: <u>00 11</u>)	70 00101	000000	010100	Number of Dominant Species	(•)
1		·		That Are OBL, FACW, of FAC: 2	(A)
2		·		Total Number of Dominant	
3				Species Across All Strata: 2	(B)
4					
	0	= Total C	over	That Are OBL EACW or EAC: 100%	(Δ / B)
Sapling/Shrub Stratum (Plot size: 15 ft)				That Ale ODE, I AOW, OF AO	(7,0)
1.				Prevalence Index worksheet:	
2.				Total % Cover of:Multiply by:	
3				OBL species x 1 =	
4.				FACW species x 2 =	
5.				FAC species x 3 =	
	0	= Total C	over	FACU species x 4 =	
Herb Stratum (Plot size: 5 ft)				UPL species x 5 =	
_{1.} Holcus lanatus	40	Yes	FAC	Column Totals: (A)	(B)
2. Poa pratensis	30	Yes	FAC		(D)
3. Alopecurus pratensis	10	No	FAC	Prevalence Index = B/A =	
_{4.} Juncus effusus	5	No	FACW	Hydrophytic Vegetation Indicators:	
5.				Rapid Test for Hydrophytic Vegetation	
6.				☑ Dominance Test is >50%	
7.				☐ Prevalence Index is ≤3.0 ¹	
8.				Morphological Adaptations ¹ (Provide suppo	rting
9.				data in Remarks or on a separate sheet	i)
10.				□ Wetland Non-Vascular Plants ¹	
11				Problematic Hydrophytic Vegetation ¹ (Expla	ain)
····	85	- Total C		¹ Indicators of hydric soil and wetland hydrology	must
Woody Vine Stratum (Plot size: <u>30 ft</u>)			Over	be present, unless disturbed or problematic.	
1.					
2		·		Hydrophytic	
2	0			Vegetation	
% Bare Ground in Herb Stratum 15	0	= 1 otal C	over		
Remarks:				1	
Hydrophytic vegetation criteria met thr	ough don	ninance to	est.		

Profile Description: (Describe to the de	pth needed to docur	nent the inc	dicator	or confirm	the absen	ce of indicators.)
Depth Matrix	Redo	x Features				
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16 7.5 YR 3/2 100	-		-	-	-	Clay Loam
				. <u> </u>		
· ·						
				<u> </u>		
¹ Type: C=Concentration, D=Depletion, RN	A=Reduced Matrix, CS	S=Covered of	or Coate	d Sand Gra	ains. ²	Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Applicable to a	II LRRs, unless othe	rwise noted	l.)		Indic	ators for Problematic Hydric Soils ³ :
Histosol (A1)	Sandy Redox (S	\$5) (9.5)				cm Muck (A10)
Histic Epipedon (A2)	Stripped Matrix	(S6) lineral (E1) (avaant			ed Parent Material (TF2)
Black Histic (A3)		Ineral (F1) (Actrix (E2)	except	WILRA 1)		ery Shallow Dark Sufface (TFT2)
Depleted Below Dark Surface (A11)		(F3)				
Thick Dark Surface (A12)	Redox Dark Sur	(F6)			³ Indic	ators of hydrophytic vegetation and
Sandy Mucky Mineral (S1)	Depleted Dark S	Surface (F7)			We	etland hydrology must be present,
Sandy Gleyed Matrix (S4)	Redox Depress	ons (F8)			un	less disturbed or problematic.
Restrictive Layer (if present):						
Type: None						
Depth (inches):					Hydric S	oil Present? Yes 🗌 No 🗵
Remarks:						
No hydric soil indicators met.						
Wetland Hydrology Indicators:		``				
Primary Indicators (minimum of one requir	ed; check all that appl	y)			<u>Se</u>	condary Indicators (2 or more required)
☐ Surface Water (A1)	☐ Water-Stai	ned Leaves	(B9) (e)	cept MLR	A ∐	Water-Stained Leaves (B9) (MLRA 1, 2,
High Water Table (A2)	1, 2, 4/	A, and 4B)			_	4A, and 4B)
Saturation (A3)	Salt Crust	(B11)				Drainage Patterns (B10)
U Water Marks (B1)	Water Marks (B1) Aquatic Invertebrates (B13) Dry-Sea					
Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (CS						Dry-Season Water Table (C2)
Sediment Deposits (B2)	Hydrogen	vertebrates (Sulfide Odor	B13) r (C1)			Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9)
 Sediment Deposits (B2) Drift Deposits (B3) 	Hydrogen	vertebrates (Sulfide Odor hizospheres	B13) r (C1) s along l	_iving Roots	(C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) 	Hydrogen	vertebrates (Sulfide Odor hizospheres of Reduced I	B13) r (C1) s along l Iron (C4	iving Roots.	□ □ s (C3) □	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) 	Hydrogen Oxidized R Presence o Recent Iro	vertebrates (Sulfide Odor hizospheres of Reduced I n Reduction	B13) r (C1) s along l Iron (C4 in Tillec	_iving Roots) I Soils (C6)	□ □ s (C3) □ □	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) 	Hydrogen Oxidized R Presence o Recent Iro	vertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla	B13) r (C1) s along I Iron (C4 in Tillec ants (D1	Living Roots) I Soils (C6) I) (LRR A)	s (C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (E 	Hydrogen Oxidized R Presence o Recent Iro Stunted or 7) Other (Exp	rertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema	B13) r (C1) s along l Iron (C4 in Tillec ants (D1 arks)	Living Roots) Soils (C6) (LRR A)	5 (C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B Sparsely Vegetated Concave Surface 	Hydrogen Oxidized R Presence o Recent Iro Stunted or 7) Other (Exp (B8)	rertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema	B13) r (C1) s along I Iron (C4 in Tillec ants (D1 arks)	Living Roots) Soils (C6)) (LRR A)	s (C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
 Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (E Sparsely Vegetated Concave Surface Field Observations: 	Hydrogen Oxidized R Presence o Recent Iron Stunted or Stother (Exp (B8)	rertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema	B13) r (C1) s along l Iron (C4 in Tillec ants (D1 arks)	Living Roots) I Soils (C6)) (LRR A)	(C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (E Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes N	Hydrogen Oxidized R Presence o Recent Iro Stunted or Stunted or (B8)	ertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema	B13) r (C1) s along I lron (C4 in Tillec ants (D1 arks)	Living Roots) I Soils (C6)) (LRR A)	(C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes Water Table Present? Yes	Hydrogen Hydrogen Oxidized R Presence of Recent Iro Stunted or Stunted or To Depth (inches Depth (inches	ertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema s): <u>None</u>	B13) r (C1) s along I lron (C4 in Tillec ants (D1 arks)	Living Roots) Soils (C6)) (LRR A)	C(C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (E Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes N Water Table Present? Yes N Saturation Present? Yes N Saturation Present? Yes N	 Hydrogen Oxidized R Presence of Recent Iron Stunted or Stunted or Other (Exp (B8) Depth (inchest Depth (inchest 	rertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema s): <u>None</u> b): <u>None</u>	B13) r (C1) s along I lron (C4 in Tillec ants (D1 arks)	Living Roots) I Soils (C6) I) (LRR A) Wetla	s (C3)	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (E Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes N Water Table Present? Yes N Saturation Present? Yes N (includes capillary fringe) Describe Recorded Data (stream gauge, m	Hydrogen Hydrogen Considered Recent Iron Considered Recent Iron Stunted or Stunted or The Stunted or The Stunted or Constructed Recent Iron Constructed Stunted Or Stunted or Constructed Stunted Constructed Stunted Stunted Or Constructed Stunted Constructed Stunted Constructed Stunted Stunted Constructed Stunted Constructed Stunted Stunted Stunted Constructed Stunted Stunted Stunted Constructed Stunted Stundes Stund	rertebrates (Sulfide Odor hizospheres of Reduced I n Reduction Stressed Pla lain in Rema s): <u>None</u> (): <u>None</u> (): <u>16</u> "	B13) r (C1) s along I lron (C4 in Tillec ants (D1 arks)	Living Roots) I Soils (C6)) (LRR A) Wetla pections). if	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Remarks:

No hydrologic criteria met.

Project/Site: 1144.0027 E Vancouver E-Co	mmerce Cent	ter_City/County	: Camas, Clark	Samplir	ng Date: 04/06/2021
Applicant/Owner: Panattoni Development C	ompany, Inc.		State: WA	Samplir	ng Point: DP-12w
Investigator(s): Rachel Hyland, Jacob Layn	nan		Section, Township, Range	29, 02N, 03E,	SE
Landform (hillslope, terrace, etc.): Hillslope		Local relie	f (concave, convex, none):	Convex	Slope (%): <u>1%</u>
Subregion (LRR): <u>A2</u>	Lat:	45.628098	Long: <u>-122</u> .	46040961	Datum: WGS 84
Soil Map Unit Name: Powell silt loam, 0 to 8	percent slope	s	NW	I classification: <u>N/</u>	Α
Are climatic / hydrologic conditions on the site typic	cal for this time of	f year?Yes 🗙	No 🗌 (If no, explain in	Remarks.)	
Are Vegetation, Soil, or Hydrology	significantly	/ disturbed?	Are "Normal Circumsta	ances" present? Ye	es 🗵 No 🗌
Are Vegetation, Soil, or Hydrology	naturally pro	oblematic?	(If needed, explain any	answers in Remark	s.)
SUMMARY OF FINDINGS – Attach sit	e map showi	ng sampling	g point locations, tra	ansects, impor	tant features, etc.
Hydrophytic Vegetation Present?Yes XHydric Soil Present?Yes X	No 🗌 No 🔲	Is the withi	e Sampled Area n a Wetland?	Yes 🛛 No 🗆	
Wetland Hydrology Present? Yes 🗵	No 🗌				

Remarks: All three wetland criteria not met. Data collected on the northwest portion of the property, near the western property boundary, inside Wetland D.

Tree Stratum (Plot size: 30 ft) Species? Status Number of Dominant Species 1. Fraxinus latifolia 30 Yes FAC Number of Dominant Species (A) 2. Crataegus monogyna 10 Yes FAC Total Number of Dominant Species (A) 3. Salix sp.* 10 Yes FAC Total Number of Dominant Species (B) 4. 50 = Total Cover 50 = Total Cover Total Number of Dominant Species Sapling/Shrub Stratum (Plot size: 15 ft) 15 Yes FAC Percent of Dominant Species 1. Fraxinus latifolia 20 Yes FAC Prevalence Index worksheet: 100% (A/B) 2. Rubus armeniacus 15 Yes FAC FAC Multiply by: 0BL species x1 =
1. Fraxinus latifolia 30 Yes FACW That Are OBL, FACW, or FAC: 6 (A) 2. Crataegus monogyna 10 Yes FACW That Are OBL, FACW, or FAC: 6 (A) 3. Salix sp.* 10 Yes FACW Total Number of Dominant Species Across All Strata: 6 (B) 4. 50 = Total Cover 50 = Total Cover Percent of Dominant Species Sapling/Shrub Stratum (Plot size: 15 ft) 15 Yes FACW Prevalence Index worksheet: 2. Rubus armeniacus 15 Yes FAC OBL species x1 = 3. Crataegus monogyna 2 No FAC OBL species x1 = 4. Symphiocarpus alba 1 No FACU FACW species x2 = 5. 38 = Total Cover FAC species x3 = 1. Poa pratensis 1 Yes FAC FAC 2. . . . Yes FAC <td< td=""></td<>
2. Crataegus monogyna 10 Yes FAC 3. Salix sp.* 10 Yes FAC 4. 10 Yes FACW 50 = Total Cover Total Number of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B) 1. Fraxinus latifolia 20 Yes FAC Pervalence Index worksheet: 100% (A/B) 2. Rubus armeniacus 15 Yes FAC Total % Cover of: Multiply by: 00% (A/B) 3. Crataegus monogyna 2 No FAC FAC OBL species x1 =
3. Salix sp.* 10 Yes FACW Total Number of Dominant 3. Salix sp.* 10 Yes FACW Species Across All Strata: 6 (B) 4. 50 = Total Cover 50 = Total Cover Percent of Dominant Species 5. 50 = Total Cover 10 Yes FACW Percent of Dominant Species 2. Rubus armeniacus 15 Yes FAC Total % Cover of: Multiply by: 3. Crataegus monogyna 2 No FAC OBL species x1 = FACW 4. Symphiocarpus alba 1 No FACU FACU species x2 = FACU species x3 = FACU species x4 = EAU 1. Poa pratensis 1 Yes FAC FACU species x5 = Column Totals: (A) (B) 2. . . . Yes FAC Yes FAC Yes FAC . . . Yes FAC Yes Column Totals: (A) (B) Yes
3.
4. 50 = Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B) 1. Fraxinus latifolia 20 Yes FACW 2. Rubus armeniacus 15 Yes FAC 3. Crataegus monogyna 2 No FAC 4. Symphiocarpus alba 1 No FACU 5.
Sapling/Shrub Stratum (Plot size: 15 ft) 1. Fraxinus latifolia 20 Yes FACW That Are OBL, FACW, or FAC: 100% (A/B) 2. Rubus armeniacus 15 Yes FAC Total % Cover of: Multiply by: 3. Crataegus monogyna 2 No FACU OBL species x 1 =
I. Fraxinus latifolia 20 Yes FACW 2. Rubus armeniacus 15 Yes FAC 3. Crataegus monogyna 2 No FAC 4. Symphiocarpus alba 1 No FACU 5.
2. Rubus armeniacus 15 Yes FAC 3. Crataegus monogyna 2 No FAC 4. Symphiocarpus alba 1 No FAC 5. 38 = Total Cover FAC species x 1 = Herb Stratum (Plot size: 5 ft) 1 Yes FAC FAC uptote cover 1. Poa pratensis 1 Yes FAC FAC uptote cover FAC uptote cover 2. 1 Yes FAC FAC uptote cover FAC uptote cover FAC uptote cover 1. Poa pratensis 1 Yes FAC Ves Statum total cover 2. 0 Prevalence Index = B/A = (A) (B)
2. No FAC Intervention Intervention Intervention 3. Crataegus monogyna 2 No FAC OBL species x 1 =
1 No FACU 4. Symphiocarpus alba 1 No FACU 5. 1 No FACU 5. 38 = Total Cover FAC species x 2 =
4. Oymphiloodipus dibd 1 1 1 1 1 1 Yes FAC FAC species x 3 =
5. 38 = Total Cover FAC species x 3 = Herb Stratum (Plot size: 5 ft) 1 Yes FAC 1. Poa pratensis 1 Yes FAC 2.
Herb Stratum (Plot size: 5 ft) 1 Yes FACU species x 4 = 1. Poa pratensis 1 Yes FAC UPL species x 5 = 2.
1. Poa pratensis 1 Yes FAC UPL species x 5 =
1. 1. <td< td=""></td<>
2 3 Prevalence Index = B/A =
3 Intevalence index = D/A =
4 Hydrophytic Vegetation indicators.
6 Dominance Test is >50%
7 Prevalence Index is ≤3.0 ¹
8 Morphological Adaptations ¹ (Provide supporting
9 Wetland Nan Vessular Plantal
10 Wetand Noi-Vascual Plants
= Total Cover Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft)
1
2 Vegetation
$0 = \text{Total Cover} \text{Present?} \text{Yes} \boxtimes \text{No} \square$
% Bare Ground in Herb Stratum 99
Remarks: Hydrophytic vegetation criteria met through dominance test
*Salix species considered FACW for scoring purposes.

Profile Desc	ription: (Descril	be to the	depth n	eeded to docu	ment the	indicator	or confir	rm the ab	sence	of indicators.)
Depth	Matrix	[Red	ox Feature	<u>es</u>				
(inches)	Color (moist)		<u>Colo</u>	or (moist)	<u>%</u>	Type ¹	Loc ²	Textur	e	Remarks
0-11	10 YR 3/2	90	2.5	5 YR 3/6	10	С	Μ	SaCIL	_0	Sandy Clay Loam
11-16	10 YR 4/2	94	7.5	5 YR 4/1	5	D	Μ	SaCI	Lo	Sandy Clay Loam
11-16	-	-	2.5	5 YR 3/6	1	С	Μ	SaCIL	0	Sandy Clay Loam
								. <u> </u>		
								·		
								·		
17 0.0								. <u> </u>	2.	
'Type: C=Co	oncentration, D=D	epletion,		duced Matrix, C	S=Covere	ed or Coat	ed Sand (Grains.	² LO	cation: PL=Pore Lining, M=Matrix.
						ieu.)				
	(A1) inadan (A2)			Sandy Redox ((SS)] 2 cm	Muck (A10)
	npedon (AZ)			Supped Math	(30) Minoral (E		• MI D A 1	、] Keu] Von	Parent Material (TF2)
	n Sulfide (ΔA)			Loamy Gleved	Matrix (F2] very] Otha	r (Evolain in Remarks)
	Below Dark Surf:	ace (A11)		Depleted Matri	v (F3)	-)		L		
Thick Da	rk Surface (A12)			Redox Dark Si	rface (F6)			³ lr	ndicato	ors of hydrophytic vegetation and
Sandy M	uckv Mineral (S1)			Depleted Dark	Surface (F	-7)			wetla	ind hydrology must be present.
☐ Sandy G	leyed Matrix (S4)			Redox Depres	sions (F8)	.,			unles	s disturbed or problematic.
Restrictive I	Layer (if present)	:			. ,					· · · · · ·
Type: No	ne			_						
Depth (inc	ches):			-				Hydri	ic Soil	Present? Yes 🗵 No 🗌
Remarks:										
Hydric soil	criteria throug	h indica	tors Fr	and A11						
i iyane een	ontonia anoug	in maioa								
	<u>~</u> V									
	G f									
		5. 	ما ما ما						0	
Primary India	cators (minimum c	or one requ	uirea; cn	eck all that app	DIY)				Seco	hdary indicators (2 or more required)
☐ Surface \	Water (A1)			☐ Water-Sta	ained Leav	es (B9) (e	except ML	_RA	LW	ater-Stained Leaves (B9) (MLRA 1, 2,
K High Wa	ter Table (A2)			1, 2, 4	A, and 4E	8)			_	4A, and 4B)
Saturatio	on (A3)			Salt Crust	: (B11)				DD	rainage Patterns (B10)
Water Mater Mater	arks (B1)			Aquatic Ir	vertebrate	es (B13)			D	ry-Season Water Table (C2)
Sedimen	t Deposits (B2)			Hydrogen	Sulfide O	dor (C1)			🗆 S	aturation Visible on Aerial Imagery (C9)
Drift Dep	osits (B3)			Oxidized	Rhizosphe	res along	Living Ro	oots (C3)	ΠG	eomorphic Position (D2)
Algal Ma	t or Crust (B4)			Presence	of Reduce	ed Iron (C	4)		🗆 S	hallow Aquitard (D3)
Iron Dep	osits (B5)			Recent Ire	on Reducti	on in Tille	d Soils (C	6)	🗌 F/	AC-Neutral Test (D5)
Surface S	Soil Cracks (B6)			Stunted o	r Stressed	Plants (D	1) (LRR /	A)	🗌 R	aised Ant Mounds (D6) (LRR A)
Inundation	on Visible on Aeria	al Imagery	(B7)	Other (Ex	plain in Re	emarks)			🗌 Fi	rost-Heave Hummocks (D7)
Sparsely	Vegetated Conca	ave Surfac	e (B8)							
Field Obser	vations:									
Surface Wat	er Present?	Yes 🗌	No 🗙	Depth (inche	_{es):} None)				
Water Table	Present?	Yes 🗵	No 🗌	Depth (inche	es): 12"					
				Donth (inche	s). 9"		Wo	tland Hvd	Irolog	y Present? Yes 🗵 No 🗌
Saturation P	resent?	Yes 🛛		Depth (inche	,3)		we			
Saturation P (includes cap	resent? billary fringe) corded Data (stro	Yes 🔀			nhotos n	revious in	spections		hle:	·
Saturation P (includes cap Describe Re	resent? billary fringe) corded Data (strea	Yes 🔀 am gauge	, monito	ring well, aerial	photos, p	revious in	spections), if availal	ble:	
Saturation P (includes cap Describe Rea Remarks:	resent? <u>billary fringe)</u> corded Data (strea	Yes 🗷 am gauge	, monito	ring well, aerial	photos, p	revious in	spections), if availal	ble:	·
Saturation P (includes cap Describe Re Remarks:	resent? billary fringe) corded Data (strea	Yes 🛛	, monito	ring well, aerial	photos, p	revious in	spections), if availal	ble:	

Project/Site: 1144.0027 E Vancouver E-Commerce	e Center o	City/Count	_{ty:} Camas	, Clark	Samplir	ng Date: 04/07	/2021
Applicant/Owner: Panattoni Development Company		State: WA	Samplir	ng Point: DP-	13U		
Investigator(s): Rachael Hyland, Jacob Layman	Section, To	wnship, Range: 29,02	2N,03E,S	E			
Landform (hillslope, terrace, etc.): hillsope		Local reli	ef (concave,	convex, none): none		Slope (%)	<u>.</u> 1
Subregion (LRR): <u>A2</u>	_ Lat: 45.6	628087		Long: -122.46031	821	Datum: W	GS 84
Soil Map Unit Name: Powell silt loam, 0 to 8 percent NWI classification: N/A							
Are climatic / hydrologic conditions on the site typical for this	time of yea	ır?Yes 🛛] No □ (Ii	f no, explain in Remark	s.)		
Are Vegetation, Soil, or Hydrology sigr	nificantly dist	turbed?	Are "No	ormal Circumstances" p	resent? Ye	es 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology natu	rally problen	natic?	(If neede	ed, explain any answers	s in Remark	s.)	
SUMMARY OF FINDINGS – Attach site map	showing	samplir	ng point lo	ocations, transect	ts, impor	tant feature	s, etc.
Hydrophytic Vegetation Present? Yes INO Is the Sampled Area Hydric Soil Present? Yes INO INO No Is Wetland Hydrology Present? Yes INO No Is Remarks: Not all three wetland criteria met, only hydrophytic vegetation present. Data collected on the northwest portion of the subject property, near the western property boundary, outside Wetland D. Data collected on the northwest portion of the subject property.							
VEGETATION – Use scientific names of plant	ts.						
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>) 1. Fraxinus latifolia 2. Crataegus monogyna	Absolute <u>% Cover</u> 20 15	Dominan Species Yes Yes	t Indicator <u>Status</u> FACW FAC	Dominance Test wo Number of Dominant That Are OBL, FACW	rksheet: Species /, or FAC:	4	(A)
3				Species Across All St	trata:	6	(B)
4 Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)	35	= Total (Cover	Percent of Dominant That Are OBL, FACW	Species /, or FAC:	67%	(A/B)
1. Rubus armeniacus	30	Yes	FAC	Prevalence Index we	orksheet:		
2. Rubus laciniatus	10	Yes	FACU	Total % Cover of	:	Multiply by:	

1. Rubus anneniacus	30	165	FAC	Prevalence Index worksheet:
2. Rubus laciniatus	10	Yes	FACU	Total % Cover of: Multiply by:
3. Symphoricarpos albus	10	Yes	FACU	OBL species x 1 =
4.				FACW species x 2 =
5.				FAC species x 3 =
	50	= Total C	Cover	FACU species x 4 =
Herb Stratum (Plot size: 5 ft)		_		UPL species x 5 =
1. Geum macrophyllum	50	Yes	FAC	Column Totals: (A) (B)
2. Geranium molle	3	No	UPL	
3. Epilobium ciliatum	2	No	FACW	Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5.				Rapid Test for Hydrophytic Vegetation
6.				☑ Dominance Test is >50%
7.				Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9	. <u> </u>			Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11	55			¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: <u>30 ft</u>)		= 1 otal (Cover	be present, unless disturbed or problematic.
1				Hydronhytic
2				Vegetation
% Bare Ground in Herb Stratum 45	0	= Total C	Cover	Present? Yes 🗵 No 🗌
Remarks:				
Hydrophytic vegetation criteria met th	rough don	ninance t	est. Appro	oximately 20% moss was observed in the

herbaceous stratum.

Profile D	Description: (Describe	to the de	oth needed to docu	ument the	indicator	or confirn	n the abse	nce of indicators.)
Depth	Matrix	0/	Rec	lox Featur	<u>es</u> Turn a 1	1 2	Tautura	Demeric
(inches)	$\frac{\text{Color}(\text{moist})}{10 \text{VP} 2/2}$	100	Color (moist)	%	Type	LOC	Silo	<u>Remarks</u>
12-14	101R 3/2	78	- 10VR 4/2	- 20	- <u>-</u>	- M	SiLo	Silt Loam
12-14			1011(4/2				0110	
12-14	10YR 3/4	2	-	-	C	M	SILO	Silt Loam
	<u> </u>							
¹ Type: C	C=Concentration, D=Dep	oletion, RM	Reduced Matrix, C	CS=Covere	ed or Coat	ed Sand G	rains.	² Location: PL=Pore Lining, M=Matrix.
Hydric S	Soil Indicators: (Applic	cable to al	LRRs, unless oth	erwise no	ted.)		Indi	cators for Problematic Hydric Soils ³ :
Histo	osol (A1)		Sandy Redox	(S5)				2 cm Muck (A10)
	c Epipedon (A2) (Histic (A3)			x (50) Mineral (F	1) (excent	MIRA 1)		Ked Parent Material (TF2)
	ogen Sulfide (A4)		Loamy Gleved	Matrix (F2	2)			Other (Explain in Remarks)
	eted Below Dark Surfac	e (A11)	Depleted Matr	ix (F3)	,			
Thick	c Dark Surface (A12)		Redox Dark S	urface (F6)		³ Indi	cators of hydrophytic vegetation and
Sandy Mucky Mineral (S1)						vetland hydrology must be present,		
Sandy Gleyed Matrix (S4) Redox Depressions (F8) unless disturbed or problematic.						nless disturbed or problematic.		
Restricti	ive Layer (if present):							
Type. Dooth								
Depti	I (Inches)						Hydric	Soil Present? Yes 🗌 No 🗵
Remarks								
No hydr	ric soil indicators m	et.						
HYDRO	LOGY							
Wetland	Hydrology Indicators							
Primary I	Indicators (minimum of o	one require	ed; check all that ap	ply)			S	econdary Indicators (2 or more required)
🗌 Surfa	ace Water (A1)		Water-Star	ained Leav	ves (B9) (e	xcept MLF] Water-Stained Leaves (B9) (MLRA 1, 2,
🗌 High	Water Table (A2)		1, 2, 4	4A, and 4E	3)			4A, and 4B)
Satur	ration (A3)		Salt Crus	t (B11)] Drainage Patterns (B10)
Wate	er Marks (B1)		Aquatic II	nvertebrate	es (B13)] Dry-Season Water Table (C2)
🗌 Sedir	ment Deposits (B2)		Hydroger	n Sulfide O	dor (C1)			3 Saturation Visible on Aerial Imagery (C9)
Drift	Deposits (B3)		Oxidized	Rhizosphe	eres along	Living Roo	ts (C3)	Geomorphic Position (D2)
Algal	Mat or Crust (B4)			of Reduc	ed Iron (C4	4)] Shallow Aquitard (D3)
Iron I	Deposits (B5)		Recent Ir	on Reduct	ion in Tille	d Soils (C6)	FAC-Neutral Test (D5)
	ace Soil Cracks (B6)		Stunted o	or Stressed	d Plants (D	1) (LRR A)		J Raised Ant Mounds (D6) (LRR A)
	dation Visible on Aerial I	magery (B	 <i>(E)</i> <i>(E)</i> 	cplain in Re	emarks)			J Frost-Heave Hummocks (D7)
	sely Vegetated Concave	e Surface (B8)					
Field Ob	servations:							

Surface Water Present? Water Table Present?	Yes □ Yes □	No 🗙 No 🔀	Depth (inches): <u>None</u> Depth (inches): None			
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗵	Depth (inches): None	Wetland Hydrology Present?	Yes 🗌	No 🗵
Describe Recorded Data (stre	am gauge	, monitor	ing well, aerial photos, previous inspe	ctions), if available:		
Remarks:						

No wetland hydrology criteria met.

Project/Site: 1144.0027 E Vancouv	er E-Commer	_{unty:} Camas, Clark		Sampling Date: 04/07/2021	
Applicant/Owner: Panattoni Develop	ment Compar	State:	WA	Sampling Point: DP-14U	
Investigator(s): Rachael Hyland, Ja	cob Layman		Section, Township, Ra	ange: <u>29,02N</u> ,	03E,SE
Landform (hillslope, terrace, etc.): hillslo	ре	Local	relief (concave, convex, no	one): none	Slope (%): 2
Subregion (LRR): <u>A2</u>		Lat: <u>45.62786</u>	9 Long: <u>- ^</u>	22.4571695	5 Datum: WGS 84
Soil Map Unit Name: Powell silt loam	, 0 to 8 percei	nt		NWI classificati	ion: N/A
Are climatic / hydrologic conditions on the	e site typical for th	is time of year? Yes	🛪 🛛 No 🗌 (If no, explai	n in Remarks.)	
Are Vegetation, Soil, or Hyd	drology sig	nificantly disturbed?	Are "Normal Circu	mstances" prese	ent? Yes 🗵 No 🗌
Are Vegetation, Soil, or Hyd	drology nat	urally problematic?	(If needed, explain	any answers in	Remarks.)
SUMMARY OF FINDINGS - Att	ach site map	showing samp	ling point locations	, transects,	important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	l: V	s the Sampled Area vithin a Wetland?	Yes 🗌 No	×
Remarks:					

Not all three wetland criteria met; only hydrophytic vegetation present. Data collected in an upland area on the northeast portion of the property.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>) 1	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 2	(A)
2				Total Number of Dominant	
3		·		Species Across All Strata: <u>3</u> (1	B)
4 Sapling/Shrub Stratum (Plot size: 15 ft)	0	= Total C	Cover	Percent of Dominant Species That Are OBL, FACW, or FAC: <u>67%</u> (A	A/B)
1.				Prevalence Index worksheet:	
2.		·		Total % Cover of: Multiply by:	
3.				OBL species x 1 =	
4.		·		FACW species x 2 =	
5.				FAC species x 3 =	
	0	= Total C	Cover	FACU species x 4 =	_
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =	
1. Poa pratensis	35	Yes	FAC	Column Totals: (A)	(B)
2. Schedonorus arundinaceus	20	Yes	FAC	()	,
3. Leucantheum vulgare	20	Yes	FACU	Prevalence Index = B/A =	
4. Lupinus sp.	15	No	FAC	Hydrophytic Vegetation Indicators:	
5. Hypochaeris radicata	5	No	FACU	Rapid Test for Hydrophytic Vegetation	
_{6.} Trifolium repens	5	No	FAC	☑ Dominance Test is >50%	
7				□ Prevalence Index is $\leq 3.0^{1}$	
8				Morphological Adaptations ¹ (Provide supportin data in Remarks or on a separate sheet)	ng
9		·		Wetland Non-Vascular Plants ¹	
10		·		Problematic Hydrophytic Vegetation ¹ (Explain))
11	100	= Total C	Cover	¹ Indicators of hydric soil and wetland hydrology m be present, unless disturbed or problematic.	ust
<u>woody vine Stratum</u> (Plot size: <u>30 it</u>)					
1		·		Hydrophytic	
 % Bare Ground in Herb Stratum 0 	0	= Total C	Cover	Vegetation Present? Yes 🗵 No 🗌	
Remarks: Hydrophytic vegetation criteria met thr	ouah dom	ninance t	est	-	
Lupinus species considered facultative	for scori	ng purpo	ses.		

SOIL	
------	--

Profile Desc	cription: (Describe	e to the de	epth needed to doc	ument the	indicator	or confirm	n the absenc	e of indicators.)
Depth	Matrix		Red	dox Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/2	100	-	-	-	-	Lo	Loam
4-8	10YR 3/2	98	2.5YR 5/8	2	С	Μ	Lo	Loam
8-16	7.5YR 3/3	98	5YR 4/6	2	С	Μ	SiCILo	Silty Clay Loam
		_						
¹ Type: C=C	oncentration, D=De	pletion. RI	M=Reduced Matrix	CS=Cover	ed or Coat	ed Sand G	rains. ² l (cation: PI =Pore Lining, M=Matrix,
Hydric Soil	Indicators: (Appli	cable to a	II LRRs, unless oth	erwise no	ted.)		Indicat	ors for Problematic Hydric Soils ³ :
☐ Histosol	(A1)		Sandy Redox	(S5)			□ 2 c	m Muck (A10)
Histic Er	pipedon (A2)		Stripped Matri	(35) x (S6)				d Parent Material (TF2)
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12)						ry Shallow Dark Surface (TF12)		
	n Sulfide (A4)		Loamy Gleved	Matrix (F	2)			ner (Explain in Remarks)
	Below Dark Surfac	e (A11)	Depleted Matr	ix (F3)	,			
Thick Da	ark Surface (A12)		Redox Dark S	urface (F6)		³ Indica	tors of hydrophytic vegetation and
□ Sandv M	luckv Mineral (S1)		Depleted Dark	Surface (, F7)		wet	and hydrology must be present.
Sandy G	ileyed Matrix (S4)		Redox Depres	sions (F8)	,		unle	ess disturbed or problematic.
Restrictive	Layer (if present):							
Type: No	one							
Depth (in	ches):						Hydric So	il Present? Yes 🗌 No 🗵
Remarks:								
No hydric s	soil indicators m	et.						
HYDROLO	GY							
Wetland Hy	drology Indicators	:						
Primary Indi	cators (minimum of	one requir	ed; check all that ap	ply)			Seco	ondary Indicators (2 or more required)
Surface	Water (A1)		☐ Water-St	ained Leav	/es (B9) (e	except ML		Water-Stained Leaves (B9) (MLRA 1, 2,
🔲 High Wa	ter Table (A2)		1, 2,	4A, and 4I	3)			4A, and 4B)
Saturatio	on (A3)		Salt Crus	t (B11)				Drainage Patterns (B10)
U Water M	arks (B1)		Aquatic Invertebrates (B13)					Dry-Season Water Table (C2)

	-		
Dry-Se	ason Water	Tab	le (C2)

Saturation	Vicible on	Aorial	Imagany	(CO)
Saturation	visible or	i Aenai	imagery	(09)

— , ,		—	
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (L	.RR A) Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aeri	ial Imagery (B7)	Other (Explain in Remarks)	Frost-Heave Hummocks (D7)
Sparsely Vegetated Conc	ave Surface (B8)		
Field Observations:			
Surface Water Present?	Yes 🗌 No 🗙	Depth (inches): <u>None</u>	
Water Table Present?	Yes 🗌 No 🗙	Depth (inches): <u>None</u>	
Saturation Present? (includes capillary fringe)	Yes 🗌 No 🗵	Depth (inches): None	Wetland Hydrology Present? Yes 🗌 No 🗵
Describe Recorded Data (stre	eam gauge, monito	ring well, aerial photos, previous inspec	tions), if available:
Remarks:			

Recent Iron Reduction in Tilled Soils (C6)

Oxidized Rhizospheres along Living Roots (C3)

Hydrogen Sulfide Odor (C1)

Presence of Reduced Iron (C4)

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches.

Sediment Deposits (B2)

Algal Mat or Crust (B4)

Drift Deposits (B3)

Iron Deposits (B5)

Project/Site: 1144.0027 E Vancouver E-Co	mmerce Center City/Co	ounty: Camas, Clark		Sampling Date: 04/07/2021
Applicant/Owner: Panattoni Development C	ompany, Inc.	Stat	e: WA	Sampling Point: DP-15U
Investigator(s): Rachael Hyland, Jacob Lay	man	Section, Township,	Range: 29,02N,	,03E,SE
Landform (hillslope, terrace, etc.): Toe of Slope	Local	relief (concave, convex,	none): none	Slope (%): <u>1</u>
Subregion (LRR): A2	Lat: 45.6266	57 Long:	-122.4589376	0 Datum: WGS 84
Soil Map Unit Name: Cove silty clay loam, th	in solum, 0 to 3 perce	nt	NWI classificat	ion: N/A
Are climatic / hydrologic conditions on the site typic	al for this time of year? Ye	s 🕱 No 🗌 (If no, exp	lain in Remarks.)	
Are Vegetation, Soil, or Hydrology	significantly disturbed	? Are "Normal Cir	cumstances" prese	ent? Yes 🗵 No 🗌
Are Vegetation, Soil, or Hydrology	naturally problematic?	(If needed, expla	ain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site	e map showing sam	pling point location	ns, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ⊠ Hydric Soil Present? Yes ⊠ Wetland Hydrology Present? Yes □	No 🗌 No 🗍 No 🗵	Is the Sampled Area within a Wetland?	Yes 🗌 No	
Remarks: Not all three wetland criteria met; on	ly hydrophytic vegetation	and hydric soils presen	t. Data collected	on the west-central portion of

the property, outside Wetland B.

	Abaaluta	Dominant	Indiaatar	Deminance Test werksheet	
Tree Stratum (Plot size: 30 ft)	% Cover	Species?	Status	Dominance Test worksneet:	
<u></u>	/0 00101	000000		Number of Dominant Species	(A)
l		·	·	That Ale OBL, FACW, OF FAC. 2	(A)
2		<u> </u>		Total Number of Dominant	
3				Species Across All Strata: <u>3</u> ((B)
4				Percent of Dominant Species	
	0	= Total C	over	That Are OBL. FACW. or FAC: 67% ((A/B)
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)	_				,
1. Rubus armeniacus	5	Yes	FAC	Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x 1 =	_
4				FACW species x 2 =	_
5				FAC species x 3 =	_
	5	= Total C	over	FACU species x 4 =	-
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =	_
1. Agrostis capillaris	40	Yes	FAC	Column Totals: (A)	(B)
2. Hypochaeris radicata	20	Yes	FACU		- ()
3. Schedonorus arundinaceus	10	No	FAC	Prevalence Index = B/A =	
4. Trifolium repens	10	No	FAC	Hydrophytic Vegetation Indicators:	
5. Leucanthemum vulgare	5	No	FACU	Rapid Test for Hydrophytic Vegetation	
6. Holcus lanatus	5	No	FAC	☑ Dominance Test is >50%	
7. Taraxacum officinale	3	No	FACU	☐ Prevalence Index is ≤3.0 ¹	
8. Ranunculus repens	2	No	FAC	Morphological Adaptations ¹ (Provide supportin data in Remarks or on a separate sheet)	ng
9		<u> </u>		□ Wetland Non-Vascular Plants ¹	
10		·		Problematic Hydrophytic Vegetation ¹ (Explain	n)
11				¹ Indicators of bydric soil and wetland bydrology m	nuet
	95	= Total C	over	be present, unless disturbed or problematic.	lust
Woody Vine Stratum (Plot size: <u>30 ft</u>)					
1				Hydronbytic	
2				Vegetation	
	0	= Total C	over	Present? Yes 🗵 No 🗌	
% Bare Ground in Herb Stratum 5					
Remarks:		inance tr	aet		
	ouyn uon		531.		

Profile Desc	ription: (Describe	e to the de	pth needed to docu	ument the	e indicator	or confirm	n the abse	ence of indicators.)		
Depth	Matrix		Rec	lox Featu	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-6	7.5YR 4/1	98	5YR 3/4	2	С	PL	SiCILo	Silty Clay Loam		
6-11	5YR 4/1	2	-	_	-	-	SiCILo	Silty Clay Loam; Mixed Matrix		
6-11	10YR 5/2	35	7.5YR 4/6	5	С	M/PL	SiCILo	Silty Clay Loam; Mixed Matrix		
11-13	10YR 5/2	90	7.5YR 5/8	10	С	Μ	SiCILo	Silty Clay Loam		
13-16	10YR 4/1	98	5YR 4/6	2	С	PL	SiCILo	Silty Clay Loam		
¹ Type: C=C	oncentration, D=De	pletion, RM	/I=Reduced Matrix, C	CS=Cover	ed or Coat	ed Sand G	rains.	² Location: PL=Pore Lining, M=Matrix.		
Hydric Soil	Indicators: (Appli	cable to a	ll LRRs, unless oth	erwise no	oted.)		Indi	cators for Problematic Hydric Soils ³ :		
Histosol	(A1)		Sandy Redox	(S5)				2 cm Muck (A10)		
Histic Epipedon (A2) Stripped Matrix (S6)							Red Parent Material (TF2)			
Black Hi	Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1)					Very Shallow Dark Surface (TF12)				
Hydroge	Hydrogen Sulfide (A4)						Other (Explain in Remarks)			
Depleted	Below Dark Surfac	ce (A11)	 Depleted Matr 	ix (F3)						
Thick Date	Thick Dark Surface (A12)				³ Ind	³ Indicators of hydrophytic vegetation and				
Sandy M	ucky Mineral (S1)		Depleted Dark	Surface	(F7)		١	wetland hydrology must be present,		
🔲 Sandy G	leyed Matrix (S4)		Redox Depres	sions (F8)		ι	unless disturbed or problematic.		
Restrictive	Layer (if present):									
Type: No	ne									
Depth (in	ches):						Hydric	Hydric Soil Present? Yes 🗵 No 🗌		
Remarks:										
Hydric soil	criteria met thro	ough indi	cator F3.							
,		5								
HYDROLO	GY									
Wetland Hy	drology Indicators									
Primary Indi	cators (minimum of	one requir	ed; check all that ap	oly)				econdary Indicators (2 or more required)		
Surface	Water (A1)		☐ Water-St	ained Lea	ves (B9) (e	xcept ML	RA [Water-Stained Leaves (B9) (MLRA 1, 2,		
				+A, anu 4	D)		г			
	on (A3)			t (B11)			L	Drainage Patterns (B10)		
Water M	arks (B1)		Aquatic II	nvertebrat	ies (B13)		L	J Dry-Season Water Table (C2)		
Sedimer	t Deposits (B2)		Hydroger	n Sulfide (Odor (C1)		L	Saturation Visible on Aerial Imagery (C9)		
Drift Dep	osits (B3)		Oxidized	Rhizosph	eres along	Living Roo	ots (C3)	Geomorphic Position (D2)		
🔲 Algal Ma	t or Crust (B4)		Presence	of Reduc	ced Iron (C4	4)	Ľ] Shallow Aquitard (D3)		
🗌 Iron Dep	osits (B5)		Recent Ir	on Reduc	tion in Tille	d Soils (Ce	5) E	FAC-Neutral Test (D5)		
Surface	Soil Cracks (B6)		Stunted of	or Stresse	d Plants (D	1) (LRR A) [Raised Ant Mounds (D6) (LRR A)		
🗌 Inundatio	on Visible on Aerial	Imagery (E	37) 🗌 Other (Ex	plain in R	(emarks)		Ľ	Frost-Heave Hummocks (D7)		
Sparsely	Vegetated Concav	e Surface	(B8)							
Field Obser	vations:		· /							
Surface Wat	er Present?	Yes 🗌 🛛 🛛	lo 🔀 Depth (inch	_{es):} Non	е					

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Yes 🗌 No 🗙

Yes 🗌 No 🗵

Depth (inches): None

Depth (inches): None

Remarks:

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches. Data was collected early in the growing season when precipitation was within the normal range for the water year and the calendar year. Additionally, no hydrology indicators were observed in the December 2020 reconnaissance investigation, immediately following a heavy rain event.

Water Table Present?

Saturation Present?

Wetland Hydrology Present? Yes 🗌 No 🗵

Project/Site: 1144.0027 E Vancouver E-Comm	merce Center City/Co	unty: Camas, Clark		Sampling Date: 04/07/2021
Applicant/Owner: Panattoni Development Com	npany, Inc.	State	<u>wa</u>	Sampling Point: DP-16U
Investigator(s): Rachael Hyland, Jacob Layma	an	Section, Township,	Range: <u>29,02N</u>	I,03E,SE
Landform (hillslope, terrace, etc.): rolling	Local	elief (concave, convex,	none): none	Slope (%): 1
Subregion (LRR): A2	Lat: 45.62511	7 Long:	-122.4569459	Datum: WGS 84
Soil Map Unit Name: Hesson clay loam, 0 to 8 p	percent slopes		NWI classifica	tion: N/A
Are climatic / hydrologic conditions on the site typical for	or this time of year? Yes	No 🗌 (If no, expl	ain in Remarks.)	
Are Vegetation, Soil, or Hydrology	_ significantly disturbed?	Are "Normal Circ	cumstances" pres	sent? Yes 🗵 No 🗌
Are Vegetation, Soil, or Hydrology	_ naturally problematic?	(If needed, explai	in any answers in	n Remarks.)
SUMMARY OF FINDINGS - Attach site m	nap showing samp	ling point location	is, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ☑ No Hydric Soil Present? Yes □ No Wetland Hydrology Present? Yes □ No		s the Sampled Area vithin a Wetland?	Yes 🗌 N	∘ ⊠

Remarks: Not all three wetland criteria met; only hydrophytic vegetation present. Data collected on the east-central portion of the property.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>) 1	<u>% Cover</u>	Species?	Status	Number of Dominant Species That Are OBL, FACW, or FAC: <u>3</u> (A	()
2				Total Number of Dominant	
3				Species Across All Strata: <u>3</u> (B))
4					
	0	= Total C	over	That Are OBL, FACW, or FAC: 100% (A/	/B)
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)					2)
1				Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x 1 =	
4.				FACW species x 2 =	
5.				FAC species x 3 =	
	0	= Total C	over	FACU species x 4 =	
Herb Stratum (Plot size: 5 ft)				UPL species x 5 =	
1. Trifolium repens	30	Yes	FAC	Column Totals: (A)	(B)
2. Poa pratensis	25	Yes	FAC		(2)
3. Alopecurus pratensis	20	Yes	FAC	Prevalence Index = B/A =	
4. Anthoxanthum odoratum	10	No	FACU	Hydrophytic Vegetation Indicators:	
5 Schedonorus arundinaceus	10	No	FAC	Rapid Test for Hydrophytic Vegetation	
6 Taraxacum officinale	5	No	FACU	➤ Dominance Test is >50%	
7				□ Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)	1
9				Wetland Non-Vascular Plants ¹	
10		·		Problematic Hydrophytic Vegetation ¹ (Explain)	
11	100			¹ Indicators of hydric soil and wetland hydrology mus	st
Woody Vine Stratum (Plot size: <u>30 ft</u>)	100	= Total C	over	be present, unless disturbed or problematic.	
1				Hydrophytic	
2				Vegetation	
2	0	= Total C	over	Present? Yes 🗵 No 🗌	
% Bare Ground in Herb Stratum U					
Remarks: Hydrophytic vegetation criteria met thro	ough dom	ninance te	est.		

Profile Des	cription: (Describ	e to the	depth n	eeded to doc	ument the ir	ndicator	or confirm	the ab	sence	of indicators.)
Depth	 Matrix			Re	dox Features	;				
(inches)	Color (moist)	%	Col	or (moist)	%	Type ¹	Loc ²	Textur	re	Remarks
0-4	7.5YR 2.5/3	100	-					Lo		Loam
4-8	7.5YR 2.5/3	60				-	-	Lo		Loam; mixed matrix
4-8	7.5YR 2.5/1	40						SiCIL	0	Silty Clay Loam; mixed matrix
8-10	7.5YR 2.5/1	100						SiCIL	0	Silty Clay Loam
·										
·										
. <u> </u>										
¹ Type: C=C	concentration, D=De	epletion,	RM=Re	duced Matrix,	CS=Covered	or Coate	ed Sand Gr	ains.	² Loc	cation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appl	icable to	all LRF	ts, unless oth	erwise note	ed.)		In	dicato	ors for Problematic Hydric Soils ³ :
	(A1)			Sandy Redox	(S5)] 2 cm	Muck (A10)
	Dipedon (A2)			Stripped Matr	X (S6) Mineral (E1)	(excent] Ked	Parent Material (TF2)
	en Sulfide (A4)			Loamy Gleve	d Matrix (F2)	except] Othe	er (Explain in Remarks)
Deplete	d Below Dark Surfa	ce (A11)		Depleted Mat	rix (F3)			_		
Thick Da	ark Surface (A12)			Redox Dark S	urface (F6)			³ lı	ndicato	ors of hydrophytic vegetation and
Sandy N	/lucky Mineral (S1)			Depleted Darl	Surface (F7	7)		wetland hydrology must be present,		
Sandy C	Bleyed Matrix (S4)			Redox Depres	sions (F8)			r	unles	s disturbed or problematic.
Restrictive	Layer (if present):									
Depth (in				_						
				-				Hydr	IC SOII	Present? Yes 🗌 No 🗵
Remarks:										
No hydric	soil criteria met	•								
HYDROLC	GY									
Wetland Hy	drology Indicator	s:								
Primary Indi	cators (minimum of	one req	uired; ch	eck all that ap	ply)				Secor	ndary Indicators (2 or more required)
Surface	Water (A1)			□ Water-St	ained Leave	s (B9) (e	cept MLR	A 🗍 Water-Stained Leaves (B9) (MLRA 1, 2,		
🗌 High Wa	ater Table (A2)			1, 2,						(A and (D)
Saturati	(4.0)				4A, and 4B)					4A, and 4D)
	on (A3)			Salt Crus	4A, and 4B) st (B11)					rainage Patterns (B10)
U Water M	on (A3) Iarks (B1)			Salt Crus	4A, and 4B) st (B11) nvertebrates	(B13)				rainage Patterns (B10) ry-Season Water Table (C2)
Water M	on (A3) larks (B1) nt Deposits (B2)			Salt Crus Aquatic I Hydroge	4A, and 4B) st (B11) nvertebrates n Sulfide Ode	(B13) or (C1)				rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9)
Water M	on (A3) larks (B1) nt Deposits (B2) posits (B3)			 Salt Crus Aquatic I Hydroge Oxidized 	4A, and 4B) st (B11) nvertebrates n Sulfide Ode Rhizosphere	(B13) or (C1) es along	Living Root	s (C3)		eomorphic Position (D2)
Water M Sedimer Drift Dep Algal Ma	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)			 Salt Crus Aquatic I Hydroge Oxidized Presence 	4A, and 4B) st (B11) nvertebrates n Sulfide Ode Rhizosphere ⇒ of Reduceo	(B13) or (C1) es along H Iron (C4	Living Root	s (C3)		rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3)
Water M Sedimen Drift Dep Algal Ma	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)			 Salt Crus Aquatic I Hydroge Oxidized Presence Recent I 	4A, and 4B) st (B11) nvertebrates n Sulfide Ode Rhizosphere of Reduced on Reductio	(B13) or (C1) es along I Iron (C4 n in Tille	Living Root .) d Soils (C6)	s (C3)		AA, and AD) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5)
Water M Sedimen Drift Dep Algal Ma Iron Dep Surface	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)	Imarca	(07)	Salt Crus Aquatic I Aquatic I Hydroge Oxidized Presence Recent I Stunted Other (5)	4A, and 4B) st (B11) nvertebrates n Sulfide Od Rhizosphere of Reduced on Reductio or Stressed F	(B13) or (C1) es along I Iron (C4 n in Tille Plants (D	Living Root .) d Soils (C6) 1) (LRR A)	s (C3)		AA, and AD rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Water M Sedimen Drift Dep Algal Ma Iron Dep Surface	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial	Imagery	r (B7)	 Salt Crus Aquatic I Hydroge Oxidized Presence Recent I Stunted Other (E) 	4A, and 4B) st (B11) nvertebrates n Sulfide Ode Rhizosphere ⇒ of Reduced on Reductio or Stressed F kplain in Ren	(B13) or (C1) es along I Iron (C ² n in Tilleo Plants (D narks)	Living Root ·) J Soils (C6) 1) (LRR A)	s (C3)	DI DI DI Si G G SI G F/ R; Fr	A, and 4D) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundati	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial y Vegetated Concar	Imagery ve Surfac	r (B7) ce (B8)	 Salt Crus Aquatic I Hydroge Oxidized Presence Recent II Stunted I Other (E 	4A, and 4B) st (B11) nvertebrates n Sulfide Odi Rhizosphere of Reduced on Reductio or Stressed F xplain in Ren	(B13) or (C1) es along I Iron (C4 n in Tille Plants (D narks)	Living Root .) d Soils (C6) 1) (L RR A)	s (C3)	Di Di Di Si G G Si G Si F/ R; Fr	4A, and 4D) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
Water M Sedimen Sedimen Drift Deg Algal Ma Iron Deg Surface Inundati Sparsely Field Obsen Surface Wa	on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial y Vegetated Concar rvations: ter Present?	Imagery ve Surfac	r (B7) <u>ce (B8)</u>	Salt Crus Aquatic I Aquatic I Hydroge Oxidized Presence Recent II Stunted Other (E	4A, and 4B) st (B11) nvertebrates n Sulfide Ode Rhizosphere e of Reduced on Reductio or Stressed F xplain in Ren	(B13) or (C1) es along d Iron (C ² n in Tiller Plants (D narks)	Living Root .) d Soils (C6) 1) (LRR A)	s (C3)	DI DI DI Si G SI SI F/ R; Fr	4A, and 4D) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Depth (inches): None

Remarks:

Saturation Present?

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches.

Yes 🗌 No 🗵

Wetland Hydrology Present? Yes 🗌 No 🗵

Project/Site: 1144.0027 E Vancouver E-Commerce Center City/	County: Camas, Clark Sampling Date: 04/07/2021						
Applicant/Owner: Panattoni Development Company, Inc.	State: WA Sampling Point: DP-17u						
Investigator(s): Rachel Hyland, Jacob Layman	Section, Township, Range: 29, 02N, 03E, SE						
Landform (hillslope, terrace, etc.): Terrace; Swale	cal relief (concave, convex, none): <u>Concave</u> Slope (%): <u>2%</u>						
Subregion (LRR): <u>A2</u> Lat: <u>45.62</u> 4	4178 Long: <u>-122.45586859</u> Datum: <u>WGS 84</u>						
Soil Map Unit Name: Hesson clay loam, 0 to 8 percent slopes NWI classification: N/A							
Are climatic / hydrologic conditions on the site typical for this time of year? Yes 🗵 No 🗌 (If no, explain in Remarks.)							
Are Vegetation, Soil, or Hydrology significantly disturbe	ed? Are "Normal Circumstances" present? Yes 🗵 No 🗌						
Are Vegetation, Soil, or Hydrology naturally problemation	c? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes X No							
Hydric Soil Present? Yes □ No 🗵	Is the Sampled Area						
Wetland Hydrology Present? Yes 🗌 No 🗵							

Remarks: Not all three wetland criteria met; only hydrophytic vegetation present. Data collected on the eastern portion of the subject property.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>) 1	<u>% Cover</u>	Species?	Status	Number of Dominant Species That Are OBL, FACW, or FAC: <u>2</u> (A	۹)
2				Total Number of Dominant	
3				Species Across All Strata: <u>3</u> (B	3)
4				Percent of Deminant Species	
	0	= Total C	over	That Are OBL, FACW, or FAC: <u>67%</u> (A	/B)
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)					·
1		<u> </u>	<u> </u>	Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x 1 =	
4				FACW species x 2 =	
5.				FAC species x 3 =	
	0	= Total C	over	FACU species x 4 =	
Herb Stratum (Plot size: 5 ft)				UPL species x 5 =	
1. Poa pratensis	40	Yes	FAC	Column Totals: (A)	(B)
2. Trifolium repens	30	Yes	FAC		(-)
3. Hypochaeris radicata	20	Yes	FACU	Prevalence Index = B/A =	
4. Agrostis capillaris	10	No	FAC	Hydrophytic Vegetation Indicators:	
5				Rapid Test for Hydrophytic Vegetation	
6.				☑ Dominance Test is >50%	
7.				☐ Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)	g
9		<u> </u>		Wetland Non-Vascular Plants ¹	
10				Problematic Hydrophytic Vegetation ¹ (Explain)	
11	100	<u> </u>	<u> </u>	¹ Indicators of hydric soil and wetland hydrology mu	ist
Woody Vine Stratum (Plot size: 30 ft)	100	= Total C	over	be present, unless disturbed or problematic.	
1				Hydrophytic	
2				Vegetation	
2	0	= Total C	over	Present? Yes 🗵 No 🗌	
% Bare Ground in Herb Stratum U					
Remarks: Hydrophytic vegetation criteria met thro	ough dom	inance te	est.		

Profile Desc	cription: (Descril	be to the d	epth ne	eded to docu	ment the	indicator	or confirm	the abs	sence of indicators.)
Depth	Matrix	(Rede	ox Feature	S			
(inches)	Color (moist)	%	Colo	r (moist)	%	Type ¹	Loc ²	Texture	e <u>Remarks</u>
0-9	7.5 YR 3/2	100		-	-	-	-	MeLo	Medium Loam
9-15	7.5 YR 3/2	98	7.5	YR 3/4	2	С	Μ	MeLo	Medium Loam
			. <u> </u>						
			·						
			<u> </u>						
									2
Type: C=C	oncentration, D=D	epletion, R	M=Red	uced Matrix, C	S=Covere	d or Coate	ed Sand Gra	ains.	² Location: PL=Pore Lining, M=Matrix.
	indicators: (App	licable to a		s, uniess othe		ea.)			
	(A1) Vinadan (A2)			sandy Redox (55) (SE)				2 cm Muck (A10) Red Derent Meterial (TE2)
Black Hi	stic (A3)			oamy Mucky I	(30) Mineral (F1	I) (excent	MIRA 1)		Very Shallow Dark Surface (TF12)
	n Sulfide (A4)			oamy Gleved	Matrix (F2))			Other (Explain in Remarks)
Depleted	Below Dark Surfa	ace (A11)		Depleted Matrix	k (F3)	/			(
Thick Da	ark Surface (A12)	· · ·	□ F	Redox Dark Su	rface (F6)			³ In	dicators of hydrophytic vegetation and
Sandy M	lucky Mineral (S1)		Depleted Dark Surface (F7) wetland hydrology must be present,					wetland hydrology must be present,	
Sandy G	leyed Matrix (S4)		D F	Redox Depress	sions (F8)				unless disturbed or problematic.
Restrictive	Layer (if present)	:							
Type: NC	one								
Depth (in	ches):							Hydri	c Soil Present? Yes 🗌 No 🗵
Remarks:									
No hydric s	soil criteria me	t.							
HYDROLO	GY								
Wetland Hy	drology Indicator	· · ·							
Primary Indi	cators (minimum c	of one requi	red: che	ock all that ann	lv)				Secondary Indicators (2 or more required)
	$M_{ator}(\Lambda 1)$			□ Water Sta	inod Loov	oc (B0) (o	vcont MI P	^	Water Stained Leaves (BQ) (MLBA 1.2
	valer (AT)				A and AB	es (D9) (e)		A	(WILKA I, 2,
	(A3)				/R11)	,			\square Drainage Patterns (B10)
□ Uater M	arks (B1)				(DTT) vertebrate	s (B13)			$\square Dry-Season Water Table (C2)$
	at Deposite (B2)					$\operatorname{Aor}(C1)$			\square Saturation Visible on Aerial Imageny (C9)
	n Deposits (DZ)				Suillue Ot		Living Root	re (C3)	\square Geomorphic Position (D2)
	at or Crust (B4)				of Reduce	d Iron (C4		.5 (00)	Shallow Aquitard (D3)
	ocite (B5)					on in Tille	r) d Soile (CB)		$\Box = FAC_Neutral Test (D5)$
	Soil Cracks (B6)				r Stressed	Plante (D	1) (I PP A)		$\square \text{ Raised Ant Mounds (D6) (I PR A)}$
	on Visible on Aeria	l Imagery (B7)	Other (Evi	lain in Re	marks)			\square Frost-Heave Hummocks (D7)
	Vegetated Conca	ave Surface	(B8)			marks)			
Field Obser	vations:		(00)						
Surface Wat	er Present?		No 🔽	Denth (inche	s). None	1			
Water Table	Drocont?			Dopth (inche	o). None	<u> </u>			
				Depth (Inche	\sim None		14/		
Saturation P	resent?	r es 🗀	NO 🔼	Deptn (inche	s): <u>none</u>		wetla	and Hyd	rology Present? Yes 📋 NO 🗵

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches.

Project/Site: 1144.0027 E Vancouve	r E-Commerce C	_{ty:} Camas, Clark		Sampling Date: 04/07/2021			
Applicant/Owner: Panattoni Developm	nent Company, In	State	WA	Sampling Point: DP-18u			
Investigator(s): Jacob Layman			Section, Township, F	Range: 29, 02N	I, 03E, SE		
Landform (hillslope, terrace, etc.): Terrac	e; Swale	Local reli	ef (concave, convex,	none): Concav	e Slope (%): 2%		
Subregion (LRR): A2	La	at: 45.622168	Long:	-122.456125	59 Datum: WGS 84		
Soil Map Unit Name: Hesson clay loan	n, 0 to 8 percent :	slopes		NWI classificat	ion: N/A		
Are climatic / hydrologic conditions on the s	site typical for this time	e of year? Yes 🗵	No 🗌 (If no, expl	ain in Remarks.)			
Are Vegetation, Soil, or Hydro	ology significa	ntly disturbed?	Are "Normal Circ	umstances" pres	ent? Yes 🗵 No 🗌		
Are Vegetation, Soil, or Hydro	ology naturally	problematic?	(If needed, explai	n any answers in	Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes 🗶 No 🗌 Yes 🗌 No 🗶 Yes 🗌 No 🗶	ls ti witi	he Sampled Area hin a Wetland?	Yes 🗌 No			
Remarks:							

Not all three wetland criteria not met; only hydrophytic vegetation present. Data collected in an upland area on the southeast portion of the property.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size: <u>30 ft</u>)	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species	
1				That Are OBL, FACW, or FAC: 3	(A)
2				Total Number of Dominant	
3				Species Across All Strata: <u>3</u>	(B)
4				Deveent of Deminent Creation	
	0	= Total C	over	That Are OBL. FACW. or FAC: 100% ((A/B)
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)					
1		. <u> </u>		Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x 1 =	-
4				FACW species x 2 =	-
5.				FAC species x 3 =	_
	0	= Total C	over	FACU species x 4 =	_
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =	-
1. Poa pratensis	40	Yes	FAC	Column Totals: (A)	- (B)
2. Trifolium repens	35	Yes	FAC		_ (=)
3. Agrostis capillaris	20	Yes	FAC	Prevalence Index = B/A =	
4. Hypochaeris radicata	2	No	FACU	Hydrophytic Vegetation Indicators:	
5. Taraxacum officinale	2	No	FACU	Rapid Test for Hydrophytic Vegetation	
6.				☑ Dominance Test is >50%	
7.				Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide supportin	ng
9				Wetland Non Vascular Plants ¹	
10		. <u> </u>		Droblematic Lludrophytic Vegetation ¹ (Evaluit)	
11				Problematic Hydrophytic Vegetation (Explain	I)
	99	= Total C	over	be present unless disturbed or problematic	lust
Woody Vine Stratum (Plot size: <u>30 ft</u>)					
1		. <u> </u>		Hydrophytic	
2				Vegetation	
1	0	= Total C	over	Present? Yes 🗵 No 🗌	
% Bare Ground in Herb Stratum 1					
Remarks: Hydrophytic vegetation criteria met thro	ough dom	ninance te	est.		

Profile Desc	ription: (Describ	be to the	depth n	eeded to docu	nent the i	indicator	or confirn	n the ab	sence o	of indicators.)	
Depth	Matrix			Redo	x Feature	S					
(inches)	Color (moist)		Col	or (moist)	%	Type ¹	Loc ²	Textu	re	Rema	<u>rks</u>
0-10	7.5 YR 3/2	100		-	-		-	MeLo)	Medium Loam	
10-15	7.5 YR 3/2	99	7.5	5 YR 3/4	1	С	Μ	MeLo)	Medium Loam	
									·		
									<u> </u>		
¹ Type: C=Co	oncentration, D=D	epletion, l	RM=Red	duced Matrix, C	S=Covere	d or Coate	ed Sand G	rains.	² Loca	ation: PL=Pore Lir	ning, M=Matrix.
Hydric Soil	ndicators: (App	licable to	all LRF	ts, unless othe	rwise not	ed.)		Ir	ndicator	s for Problematic	: Hydric Soils ³ :
Histosol	(A1)			Sandy Redox (S	S5)			C] 2 cm I	Muck (A10)	
Histic Ep	ipedon (A2)			Stripped Matrix	(S6)				Red P	Parent Material (TF	-2)
Black His	stic (A3)		Ц	Loamy Mucky N	/lineral (F1	l) (except	MLRA 1)	L		Shallow Dark Surfa	ace (TF12)
	n Sulfide (A4) Rolow Dark Surf	200 (111)		Loamy Gleyed I	VIATRIX (F2))		L	_ Other	(Explain in Rema	rks)
	rk Surface (A12)			Redox Dark Su	(F3) face (F6)			3	ndicator	s of hydrophytic ve	egetation and
Sandy M	ucky Mineral (S1)			Depleted Dark S	Surface (F	7)		wetland hydrology must be present.			
Sandy G	leyed Matrix (S4)			Redox Depress	ions (F8)	,			unless	disturbed or prob	lematic.
Restrictive I	_ayer (if present)	:									
Type: <u>No</u>	ne			_							
Depth (ind	ches):			-				Hydr	ic Soil F	Present? Yes	No 🗵
Remarks:											
No hydric s	oil criteria me	t.									
HYDROLO	GY										
Wetland Hyd	drology Indicator	rs:									
Primary Indic	ators (minimum o	of one requ	iired; ch	eck all that appl	y)				Second	dary Indicators (2)	or more required)
Surface \	Vater (A1)			🗌 Water-Stai	ned Leave	es (B9) (e	xcept MLF	RA	🗌 Wa	ter-Stained Leave	s (B9) (MLRA 1, 2,
High Wat	ter Table (A2)			1, 2, 4/	A, and 4B)				4A, and 4B)	
Saturatio	n (A3)			Salt Crust	(B11)				🗌 Dra	iinage Patterns (B	10)
Water Mater Mater	arks (B1)			Aquatic Inv	vertebrate	s (B13)			🗌 Dry	-Season Water Ta	able (C2)
Sedimen	t Deposits (B2)			Hydrogen	Sulfide Oc	dor (C1)			🗌 Sat	uration Visible on	Aerial Imagery (C9)
Drift Dep	osits (B3)			Oxidized R	Rhizosphei	res along	Living Roo	ts (C3)	🗌 Geo	omorphic Position	(D2)
Algal Ma	t or Crust (B4)			Presence of	of Reduce	d Iron (C4	4)		🗌 Sha	allow Aquitard (D3)
Iron Dep	osits (B5)			Recent Iro	n Reductio	on in Tille	d Soils (C6	5)	🗌 FAG	C-Neutral Test (D	5)
Surface S	Soil Cracks (B6)			Stunted or	Stressed	Plants (D	1) (LRR A))	🗌 Rai	sed Ant Mounds (D6) (LRR A)
Inundatio	n Visible on Aeria	al Imagery	(B7)	Other (Exp	lain in Re	marks)			🗌 Fro	st-Heave Hummo	cks (D7)
	Vegetated Conca	ave Surfac	e (B8)								
Field Observ	vations:	. –	–	B	None						
Surface Wate	er Present?	Yes 🗌	No 🗙	Depth (inches	S): Non-						
Water Table	Present?	Yes 🗌	No 🗵	Depth (inches						_	
Saturation Pr	esent?	Yes 🗌	No 🗵	Depth (inches	s): <u>inone</u>		Wetl	and Hy	drology	Present? Yes [No 🗵
Describe Re	corded Data (strea	am gauge.	monito	ring well, aerial	photos, pr	evious in	spections),	if availa	able:		
					•		,.				

Remarks:

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches.

Project/Site: 1144.0027 E Vancouver E-Commerce	e Center	City/Cour	nty: Camas	s, Clark	Sampling Date: 04/	07/2021		
Applicant/Owner: Panattoni Development Company		State: WA	Sampling Point: DF	P-19u				
Investigator(s): Jacob Layman Section, Township, Range: 29, 02N, 03E, SE								
Landform (hillslope, terrace, etc.): Terrace; Swale		Local re	lief (concave	, convex, none): Conc	ave Slope ('	_{%):} 2%		
Subregion (LRR): A2	Lat: 45	62325	3	Long: -122.45761	989 Datum: V	VGS 84		
Soil Map Unit Name: Hesson clay loam, 0 to 8 perce	ent slopes	6		NWI classif	ication: N/A			
Are climatic / hydrologic conditions on the site typical for this	time of vea	r? Yes [f no explain in Remark	s)			
Are Vegetation Soil or Hydrology sign	vificantly dis	turbed?	۱۰۰ ۲۵ (۱ ۸ ۲۵ (۱۰	ormal Circumstances" n	resent? Ves 🕅 No 🗆	1		
Are Vegetation, Soll, or Hydrology sign	rally probler	natio2	(If pood	od ovplain any answork	nin Romarka)	J		
The vegetation, or hydrology naturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map s	showing	sampli	ng point l	ocations, transect	s, important featu	res, etc.		
Hydrophytic Vegetation Present? Yes 🗵 No 🗌			the Compled	4.00				
Hydric Soil Present? Yes 🗵 No 🗌		IS	the Sampled					
Wetland Hydrology Present? Yes 🗌 No 🗙		WI						
Remarks: Not all three wetland criteria not met: only by	dric soils a	nd hydro	nhytic veget:	ation present. Data col	lected in an upland are	a on the		
south-central portion of the site.	une cono u		prijae regen					
VEGETATION – Use scientific names of plant	(S.	Domino	at Indiantar	Dominance Test we	-			
Tree Stratum (Plot size: <u>30 ft</u>)	<u>% Cover</u>	Species	<u>Status</u>	Number of Dominant	Species			
1				That Are OBL, FACW	l, or FAC: <u>2</u>	(A)		
2				Total Number of Dom	ninant			
3	. <u> </u>			Species Across All St	irata: <u>2</u>	(B)		
4				Percent of Dominant	Species			
Sanling/Shruh Stratum (Plot size: 15 ft)	0	= Total	Cover	That Are OBL, FACW	/, or FAC: <u>100%</u>	(A/B)		
1.				Prevalence Index we	orksheet:			
2.				Total % Cover of	: Multiply by	<u>:</u>		
3				OBL species	x 1 =			
4			_	FACW species	x 2 =			
5				FAC species	x 3 =			
	0	= Total	Cover	FACU species	x 4 =			
Herb Stratum (Plot size: 5 ft)	60	Yes	FAC	UPL species	x 5 =			
2 Poa pratensis	40	Yes	FAC	Column Totals:	(A)	(B)		
3		100		Prevalence Inde	ex = B/A =			
4.				Hydrophytic Vegeta	tion Indicators:	_		
5.				Rapid Test for Hy	drophytic Vegetation			
6.	·			Dominance Test i	is >50%			
7				Prevalence Index	is ≤3.0 ¹			
8				Morphological Ad	aptations ¹ (Provide supp	orting		
9					rks or on a separate sne	et)		
10	. <u> </u>				cular Fidilis	lain)		
11	400			¹ Indicators of hydric s	soil and wetland hydroloc	iv must		
Woody Vine Stratum (Plot size: 30 ft)	100	= Total	Cover	be present, unless dis	sturbed or problematic.	,,		
1.								
2				Hydrophytic Vegetation				
	0	= Total	Cover	Present?	íes 🗵 No 🗌			

% Bare Ground in Herb Stratum 0

Remarks: Hydrophytic vegetation criteria met through dominance test.

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth Matrix Redox Features										
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-4	7.5 YR 3/2	60	2.5 YR 3/6	7	С	M, PL	MeLo	Medium Loam; Mixed matrix		
0-4	5Y 3/1	33	-	-		-	MeLo	Medium Loam; Mixed matrix		
4-12	7.5 YR 3/2	100	-	-	-	-	CILo	Clay Loam		
12-18	7.5 YR 3/2	98	7.5 YR 3/4	2	С	Μ	CILO	Clay Loam		
¹ Type: C=C	oncentration, D=De	pletion, RI	M=Reduced Matrix, C	S=Covere	d or Coat	ed Sand G	rains. ² Lo	cation: PL=Pore Lining, M=Matrix.		
Hydric Soil	Indicators: (Appli	cable to a	II LRRs, unless othe	erwise no	ted.)		Indicate	ors for Problematic Hydric Soils ³ :		
Histosol	(A1)		Sandy Redox (S5)			🗌 2 cr	n Muck (A10)		
Histic Ep	pipedon (A2)		Stripped Matrix	(S6)			🗌 Rec	d Parent Material (TF2)		
Black Hi	stic (A3)		Loamy Mucky	Mineral (F	1) (excep	t MLRA 1)	🗌 Ver	y Shallow Dark Surface (TF12)		
Hydroge	n Sulfide (A4)		Loamy Gleved	Matrix (F2	2)		Other (Explain in Remarks)			
	Below Dark Surfac	ce (A11)	Depleted Matri	x (F3)	,			· · · /		
□ □ □ Thick Da	ark Surface (A12)	()	Redox Dark Su	urface (F6)			³ Indicat	ors of hydrophytic vegetation and		
□ Sandv M	lucky Mineral (S1)		Depleted Dark	Surface (F	-7)		wetland hydrology must be present.			
□ Sandy G	leved Matrix (S4)		Redox Depress	sions (F8)	.,		unless disturbed or problematic.			
Restrictive	Laver (if present):			(-)						
Type: No	oné í									
Depth (in	ches):						Hydric Soi	l Present? Yes 🗵 No 🗌		
Remarks:										
Hydric soil criteria met through indicator F6										
. If all e e e l										
HYDROLO	GY									
Wetland Hy	drology Indicators	5:								
.							•			

Primary Indicators (minimum	Secondary Indicators (2 or more required)							
Surface Water (A1) Water-Stained Leaves (B9) (except MLRA					Water-Stained Leaves (B9) (MLRA 1, 2,			
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)			
Saturation (A3)			Salt Crust (B11)		Drainage Patterns (B10)			
Water Marks (B1)			Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)			
Sediment Deposits (B2)			Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)			Oxidized Rhizospheres along Liv	ing Roots (C3)	Geomorphic Position (D2)			
Algal Mat or Crust (B4)			Presence of Reduced Iron (C4)		Shallow Aquitard (D3)			
Iron Deposits (B5)			Recent Iron Reduction in Tilled S	oils (C6)	FAC-Neutral Test (D5)			
Surface Soil Cracks (B6)			Stunted or Stressed Plants (D1)	(LRR A)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aeria	al Imagery	′ (B7)	Other (Explain in Remarks)		Frost-Heave Hummocks (D7)			
Sparsely Vegetated Conce	ave Surfac	ce (B8)						
Field Observations:								
Surface Water Present?	Yes 🗌	No 🗙	Depth (inches): None					
Water Table Present?	Yes 🗌	No 🗙	Depth (inches): None					
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🗵	Depth (inches): None	Wetland Hy	drology Present? Yes 🗌 No 🗵			
Describe Recorded Data (stre	am gauge	, monitor	ring well, aerial photos, previous inspe	ctions), if availa	able:			
Remarks:	Remarks:							
No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches. Data was collected early in the growing								
season when precipitation	ו was wi	thin the	normal range for the water yea	r and the cal	endar year. Additionally, no hydrology			
indicators were observed in the December 2020 reconnaissance investigation, immediately following a heavy rain event.								
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

				-	_	
Project/Site: 1144.0027 E Vancou	ver E-Commer	ce Center _{City}	/County: Camas	, Clark	Sampling Date: 04/07/2021	
Applicant/Owner: Panattoni Develo	pment Compar	ıy, Inc.		State: WA	Sampling Point: DP-20U	
Investigator(s): Rachael Hyland, Ja	icob Layman		Section, To	wnship, Range: 29,0	2N,03E,SE	
Landform (hillslope, terrace, etc.): Roll	ng	Lo	cal relief (concave,	convex, none): none	Slope (%): 1	
Subregion (LRR): A2		Lat: 45.623	3806	Long: -122.45958	3918 Datum: WGS 84	
Soil Map Unit Name: Hesson clay Ic	am 0 to 8 perc	ent slopes		NWI classi	fication: N/A	
Are climatic / hydrologic conditions on th	e site typical for th	is time of year?	Yes 🗶 No 🗌 (II	no, explain in Remark	:s.)	
Are Vegetation, Soil, or Hy	drology sig	nificantly disturb	ed? Are "No	ormal Circumstances" p	present? Yes 🗵 No 🗌	
Are Vegetation, Soil, or Hy	drology nat	urally problemati	ic? (If neede	ed, explain any answer	s in Remarks.)	
SUMMARY OF FINDINGS - A	tach site map	showing sa	mpling point lo	ocations, transec	ts, important features, etc.	
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⋈ No □ Yes ⋈ No □ Yes □ No ⋈		Is the Sampled within a Wetlan	Area d? Yes □	No 🗵	
Remarks: Not all wetland criteria met; only hydrophytic vegetation and hydric soils present. Data collected in an upland area near the western property boundary approximately 845 feet north of NW Lake Road.						
VEGETATION – Use scientific	VEGETATION – Use scientific names of plants.					
Tree Other (Diet since 20 %)		Absolute Do	minant Indicator	Dominance Test wo	orksheet:	
<u>Piot size: 30 ft</u>		<u>% Cover</u> Sp	<u>becies?</u> Status	Number of Dominant	Species	

1. <u> </u>				That Are OBL, FACW, or FAC: 3 (A)	
2.					
3.				Species Across All Strata: 3 (B)	
4.		·			
	0	= Total C	Cover	Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15 ft)				$\begin{bmatrix} \text{Hat Ale OBL, FACW, OFFAC.} \\ \hline \\ $	
1		. <u> </u>		Prevalence Index worksheet:	
2		·		Total % Cover of: Multiply by:	
3		·		OBL species x 1 =	
4				FACW species x 2 =	
5.				FAC species x 3 =	
	0	= Total C	Cover	FACU species x 4 =	
Herb Stratum (Plot size: <u>5 ft</u>)				UPL species x 5 =	
1. Agrostis capillaris	40	Yes	FAC	Column Totals: (A) (B)	,
2. Poa pratensis	30	Yes	FAC	、,	
3. Alopercurus pratensis	20	Yes	FAC	Prevalence Index = B/A =	
4. Alopecurus aequalis	5	No	OBL	Hydrophytic Vegetation Indicators:	
5. Anthoxanthum odoratum	5	No	FACU	Rapid Test for Hydrophytic Vegetation	
6				Dominance Test is >50%	
7.				□ Prevalence Index is ≤3.0 ¹	
8.				Morphological Adaptations ¹ (Provide supporting	
9.		·		data in Remarks or on a separate sheet)	
10		·		Wetland Non-Vascular Plants ¹	
11		·		Problematic Hydrophytic Vegetation ¹ (Explain)	
···	100	- Total (over	¹ Indicators of hydric soil and wetland hydrology must	
Woody Vine Stratum (Plot size: <u>30 ft</u>)		- 101010		be present, unless disturbed or problematic.	
1					
2				Hydrophytic Vegetation	
	0	= Total C	Cover	Present? Yes 🗵 No 🗌	
% Bare Ground in Herb Stratum 0					
Remarks:	ough dog	inonaa t	aat		

Profile Des	cription: (Describe	e to the de	epth needed to doc	ument the	indicator	or confirm	n the abs	ence of indicators.)
Depth	Matrix		Red	dox Featur	es_		_	
(inches)	Color (moist)		Color (moist)	%			Texture	e Remarks
0-9	7.5YR 3/1	75	5YR 3/4	25	<u>C</u>	M/PL	SiCILo	Silty Clay Loam
9-16	7.5YR 3/1	70	7.5YR 3/4	30	С	Μ	CILo	Clay loam
				<u></u>				
				<u></u>				
¹ Type: C=C	Concentration, D=De	pletion, RI	M=Reduced Matrix,	CS=Cover	ed or Coat	ed Sand G	rains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appli	cable to a	all LRRs, unless oth	erwise no	oted.)		Inc	dicators for Problematic Hydric Soils ³ :
Histosol	l (A1)		Sandy Redox	(S5)				2 cm Muck (A10)
Histic Ep	pipedon (A2)		Stripped Matri	x (S6)				Red Parent Material (TF2)
Black Hi	istic (A3)		Loamy Mucky	Mineral (F	⁻ 1) (excep	t MLRA 1)		Very Shallow Dark Surface (TF12)
Hydroge	en Sulfide (A4)		Loamy Gleyed	d Matrix (F	2)			Other (Explain in Remarks)
Deplete	d Below Dark Surfac	e (A11)	Depleted Matr	ix (F3)				
Thick Da	ark Surface (A12)		🗙 Redox Dark S	urface (F6	i)		³ ln	dicators of hydrophytic vegetation and
Sandy N	Mucky Mineral (S1)		Depleted Dark	s Surface (F7)			wetland hydrology must be present,
Sandy G	Gleyed Matrix (S4)		Redox Depres	sions (F8))			unless disturbed or problematic.
Restrictive	Layer (if present):							
Type: No	one							
Depth (ir	nches):						Hydrid	c Soil Present? Yes 🔀 No 🗌
Remarks:								
Hydric soil	I criteria met thro	ough ind	licator F6.					
HYDROLC	DGY							
Wetland Hy	drology Indicators	:						
Primary Indi	icators (minimum of	one requir	red; check all that ap	ply)				Secondary Indicators (2 or more required)
Surface	Water (A1)		Water-St	ained Lea	ves (B9) (e	xcept MLF	RA	Water-Stained Leaves (B9) (MLRA 1, 2,
🔲 High Wa	ater Table (A2)		1, 2,	4A, and 4	В)			4A, and 4B)
Saturati	on (A3)		Salt Crus	st (B11)				Drainage Patterns (B10)
Water N	/arks (B1)		Aquatic I	nvertebrat	es (B13)			Dry-Season Water Table (C2)
Sedimer	nt Deposits (B2)		Hydroger	n Sulfide C	Odor (C1)			Saturation Visible on Aerial Imagery (C9)
Drift Der	posits (B3)			Rhizosph	eres along	Livina Roa	ots (C3)	Geomorphic Position (D2)
	,				5	5	. ,	

fromana riyarorogy maroata					
Primary Indicators (minimum of one required; check all that apply)				Secondary Indicators (2 or more required)	
Surface Water (A1)		Water-Stained Leaves (B9) (exce	pt MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,	
High Water Table (A2)		1, 2, 4A, and 4B)		4A, and 4B)	
Saturation (A3)		Salt Crust (B11)		Drainage Patterns (B10)	
Water Marks (B1)		Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)	
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)		Oxidized Rhizospheres along Livi	ng Roots (C3)	Geomorphic Position (D2)	
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)		Shallow Aquitard (D3)	
Iron Deposits (B5)		Recent Iron Reduction in Tilled So	oils (C6)	FAC-Neutral Test (D5)	
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)	
Inundation Visible on Aeri	al Imagery (B7)	Other (Explain in Remarks)		Frost-Heave Hummocks (D7)	
Sparsely Vegetated Conc	ave Surface (B8)				
Field Observations:					
Surface Water Present?	Yes 🗌 No 🗵	Depth (inches): None			
Water Table Present?	Yes 🗌 No 🗵	Depth (inches): None			
Saturation Present? (includes capillary fringe)	Yes 🗌 No 🗵	Depth (inches): None	Wetland Hyd	drology Present? Yes 🗌 No 🗵	
Describe Recorded Data (stre	eam gauge, monite	oring well, aerial photos, previous inspec	ctions), if availa	ble:	
Remarks:					
No hydrologic indicators	observed. So	il pit was excavated to a depth o	of 16 inches.	Data was collected early in the	
growing season when p	recipitation wa	s within the normal range for the	e water year	and the calendar year.	

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: 1144.0027 E Vancouver E-Comm	erce Center	City/C	ounty: Cama	as, Clark	Sampling Date: 04/07	7/2021
Applicant/Owner: Panattoni Development Comp	any, Inc.			State: WA	Sampling Point: DP-2	21U
Investigator(s): Rachael Hyland, Jacob Layman			Section,	Township, Range: 29,02	2N,03E,SE	
Landform (hillslope, terrace, etc.): Swale		Loca	l relief (concav	ve, convex, none): <u>CONC</u> a	ave Slope (%)	2
Subregion (LRR): A2	Lat: 45.	6218	63	Long: -122.45851	848 Datum: WO	GS 84
Soil Map Unit Name: Hesson clay loam, 0 to 8 pe	ercent slope	s		NWI classifi	cation: N/A	
Are climatic / hvdrologic conditions on the site typical for	this time of ve	ar? Ye	es 🛛 No 🗆	(If no. explain in Remarks	5.)	
Are Vegetation , Soil , or Hydrology	significantly dis	turbed	l? Are "	'Normal Circumstances" pr	resent? Yes 🔀 No 🗌	
Are Vegetation . Soil . or Hydrology r	naturally proble	matic?	(If nee	eded. explain any answers	in Remarks.)	
SUMMARY OF FINDINGS – Attach site ma	ap showing	sam	pling point	locations, transect	s, important feature	s, etc.
	<u> </u>					-,
Hydrophytic Vegetation Present? Yes			Is the Sampl	ed Area		
Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes No			within a Wet	land? Yes 🗌	No 🗵	
Remarks:						
Not all three wetland criteria met; only hydroph	ytic vegetation a	nd hyd	ric soil present.	. Data collected in southern p	portion of property approxim	ately
150 feet northwest of the existing residence and	eway.					
VEGETATION – Use scientific names of pl	ants.					
	Absolute	Dom	inant Indicato	Dominance Test wor	rksheet:	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>)	<u>% Cover</u>	Spec	cies? Status	Number of Dominant	Species	(•)
1				_ That Are OBL, FACW	, or FAC: <u>2</u>	(A)
2				Total Number of Dom	inant atau 2	
۵ ۵				Species Across All St		(B)
- T	0	= To	tal Cover	Percent of Dominant S	Species	(A/R)
Sapling/Shrub Stratum (Plot size: 15 ft)		-			, 011AC. <u>10070</u>	(,,,,,)
1				Prevalence Index wo	orksheet:	
2				Total % Cover of:	Multiply by:	
3				OBL species	x 1 =	_
4				FACW species	x 2 =	_
5		·		FAC species	X 3 =	
Herb Stratum (Plot size: 5 ft)	0	_ = Tc	otal Cover	FACU species	X 4 =	
1. Agrostis capillaris	70	Ye	s FAC	OPL species	= C X	(P)
2. Poa pratensis	20	Ye	s FAC		(A)	(D)
3. Schedonorus arundinaceus	10	No	FAC	Prevalence Inde	ex = B/A =	
4.				Hydrophytic Vegetat	ion Indicators:	
5.				Rapid Test for Hyd	drophytic Vegetation	
6.				Dominance Test is	s >50%	
7.				Prevalence Index	is ≤3.0 ¹	
8				Morphological Ada data in Remar	aptations ¹ (Provide suppor ks or on a separate sheet)	ting
3 10				U Wetland Non-Vas	cular Plants ¹	
10				Problematic Hydro	ophytic Vegetation ¹ (Explai	in)
· · · ·						

100 = Total Cover

= Total Cover

0

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present?

Yes 🗵 No 🗌

% Bare Ground in Herb Stratum 0

2. _____

Woody Vine Stratum (Plot size: <u>30 ft</u>)

Remarks: Hydrophytic vegetation criteria met through dominance test.

1. ____

Profile Description: (Describe to the	e depth needed to d	ocument the	indicator of	or confirm	the absence	of indicators.)
Depth Matrix		Redox Feature	S			
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6 7.5YR 3/1 85	7.5YR 3/3	15	С	M/PL	SiLo	Silty Loam
6-16 7.5YR 3/2 92	7.5YR 3/3	8	С	Μ	SiLo	Silty loam
· · · · ·						
		······································				
					. 21	
Type: C=Concentration, D=Depletion	, RM=Reduced Matri	x, CS=Covere	d or Coate	d Sand Gra	ains. ² Lo Indicato	cation: PL=Pore Lining, M=Matrix.
			eu.)			
\square Histosof (A1) \square Histic Epipedon (A2)		(33)				Parent Material (TE2)
\square Black Histic (A3)		ckv Mineral (F1) (except	MLRA 1)		/ Shallow Dark Surface (TF12)
Hydrogen Sulfide (A4)	Loamy Gle	yed Matrix (F2)	,		er (Explain in Remarks)
Depleted Below Dark Surface (A1	I) Depleted M	latrix (F3)				
Thick Dark Surface (A12)	🗴 Redox Dar	k Surface (F6)			³ Indicate	ors of hydrophytic vegetation and
Sandy Mucky Mineral (S1)	Depleted D	ark Surface (F	7)		wetla	and hydrology must be present,
Sandy Gleyed Matrix (S4)	📙 Redox Dep	oressions (F8)			unles	ss disturbed or problematic.
Restrictive Layer (if present):						
Dopth (inchos):						
					Hydric Soi	Present? Yes 🗵 No 🗌
Remarks:						
Hydric soil criteria met through	indicator F6. Soil	was highly	compact	ted.		
HYDROLOGY						
Wetland Hydrology Indicators:						
Primary Indicators (minimum of one re	quired; check all that	apply)			Seco	ndary Indicators (2 or more required)
Surface Water (A1)	Water	-Stained Leave	es (B9) (ex	cept MLR	A 🗆 W	/ater-Stained Leaves (B9) (MLRA 1, 2,
High Water Table (A2)	1,	2, 4A, and 4B)			4A, and 4B)
Saturation (A3)	Salt C	rust (B11)			🗆 D	rainage Patterns (B10)
Water Marks (B1)	Aquat	ic Invertebrate	s (B13)		🗆 D	ry-Season Water Table (C2)
Sediment Deposits (B2)	Hydro	gen Sulfide Od	dor (C1)		Πs	aturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Oxidiz	ed Rhizospher	res along L	iving Root	s (C3) 🔲 G	eomorphic Position (D2)
Drift Deposits (B3)Algal Mat or Crust (B4)	OxidizPrese	ed Rhizospher	res along L d Iron (C4)	iving Root	s (C3) G	eomorphic Position (D2) hallow Aquitard (D3)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) 	 Oxidiz Prese Recer 	ed Rhizospheince of Reduce	res along L d Iron (C4) on in Tilled	iving Root.) Soils (C6)	s (C3) □ G □ S □ F	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) 	Oxidiz Oxidiz Prese Recer Stunte	ed Rhizospher nce of Reduce nt Iron Reduction ed or Stressed	res along L d Iron (C4) on in Tilled Plants (D1	iving Root) Soils (C6)) (LRR A)	s (C3) G S (C3) G S S S S S S S S S S S S S S S S S S S	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image 	Oxidiz Oxidiz Prese Recer Stunte ry (B7) OX	ed Rhizospher nce of Reduce nt Iron Reduction ed or Stressed (Explain in Re	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root) Soils (C6)) (LRR A)	s (C3) S (eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surface 	Oxidiz Oxidiz Prese Recer Stunte ry (B7) Other ace (B8)	ed Rhizospher nce of Reduce nt Iron Reductio ed or Stressed (Explain in Re	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root) Soils (C6)) (LRR A)	s (C3) G S S S S S S S S S S S S S S S S S S S	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surfative 	Oxidiz Oxidiz Prese Recer Stunte ry (B7) Other ace (B8)	ed Rhizospher nce of Reduce nt Iron Reduction ed or Stressed (Explain in Re	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root) Soils (C6)) (LRR A)	s (C3) S (C3) S	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes 	Oxidiz Prese Recer Stunte ry (B7) Other ace (B8)	ed Rhizospher nce of Reduce nt Iron Reduction ed or Stressed (Explain in Re nches): None	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root) Soils (C6)) (LRR A)	s (C3) S (C3) S S F R F F	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes	Oxidiz Oxidiz Prese Recer Stunte ry (B7) Other ace (B8) No X Depth (ir No X Depth (ir	ed Rhizospher nce of Reduce at Iron Reduction ed or Stressed (Explain in Re nches): <u>None</u> <u>None</u>	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root Soils (C6)) (LRR A)	s (C3) S (C3) S	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surfat Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes 	□ Oxidiz □ Prese □ Recer □ Stunte ry (B7) □ Other ace (B8) □ No ⊠ Depth (ir □ No ⊠ Depth (ir	ed Rhizospher nce of Reduce at Iron Reduction ed or Stressed (Explain in Re aches): <u>None</u> aches): <u>None</u>	res along L d Iron (C4) on in Tilled Plants (D1 marks)	iving Root Soils (C6)) (LRR A) Wetla	s (C3) G S F R F F F	eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) rost-Heave Hummocks (D7)

Remarks:

No hydrologic indicators observed. Soil pit was excavated to a depth of 16 inches. Data was collected early in the growing season when precipitation was within the normal range for the water year and the calendar year. Additionally, no hydrology indicators were observed in the December 2020 reconnaissance investigation, immediately following a heavy rain event.

RATING SUMMARY – Western Washington

Name of wetland (or ID #): <u>A</u>_____ Date of site visit: <u>04/07/21</u>

Rated by Jake Layman _____ Trained by Ecology? Yes _____No Date of training_____

HGM Class used for rating Depressional Wetland has multiple HGM classes?___Y www.wetland.com

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map <u>ESRI ArcGIS</u>

OVERALL WETLAND CATEGORY []] (based on functions \checkmark or special characteristics)

1. Category of wetland based on FUNCTIONS

____Category I – Total score = 23 - 27

_____Category II – Total score = 20 - 22

Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
		Circle the ap	propriate ratings	
Site Potential	М	М	L	
Landscape Potential	М	М	L	
Value	н	М	М	TOTAL
Score Based on Ratings	7	6	4	17

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H

8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY		
Estuarine	Ι	II	
Wetland of High Conservation Value	I		
Bog	I		
Mature Forest		Ι	
Old Growth Forest		Ι	
Coastal Lagoon	Ι	II	
Interdunal	I II	III IV	
None of the above	N/A		

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

🗙 NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO − go to 3 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit meet all of the following criteria?
The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
At least 30% of the open water area is deeper than 6.6 ft (2 m).

XNO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

4. <u>Does the entire wetland unit **meet all** of the following criteria?</u>

The wetland is on a slope (*slope can be very gradual*),

The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,

The water leaves the wetland **without being impounded**.

🗙 NO – go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

The overbank flooding occurs at least once every 2 years.

Wetland name or number <u>A</u>

- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

□ N0 – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to	
being rated	use in rating	
Slope + Riverine	Riverine	
Slope + Depressional	Depressional	
Slope + Lake Fringe	Lake Fringe	
Depressional + Riverine along stream	along stream Depressional	
within boundary of depression		
Depressional + Lake Fringe	Depressional	
Riverine + Lake Fringe	Riverine	
Salt Water Tidal Fringe and any other	Treat as	
class of freshwater wetland	ESTUARINE	

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

DEPRESSIONAL AND FLATS WETLANDS		
Water Quality Functions - Indicators that the site functions to improve water quality		
D 1.0. Does the site have the potential to improve water quality?		
D 1.1. Characteristics of surface water outflows from the wetland:		
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no ou	utlet).	
poi Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing out poi	pints = 3 tlet. pints = 2	2
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowingpoiWetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch.poi	vints = 1 vints = 1	
D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes = 4	No = 0	0
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardir	n classes):	
Wetland has persistent, ungrazed, plants > 95% of area poi	oints = 5	
Wetland has persistent, ungrazed, plants > ½ of area poi	oints = 3	1
Wetland has persistent, ungrazed plants $> 1/10$ of area poi	oints = 1	
Wetland has persistent, ungrazed plants <1/10 of area poi	oints = 0	
D 1.4. Characteristics of seasonal ponding or inundation:		
This is the area that is ponded for at least 2 months. See description in manual.		
Area seasonally ponded is > 1/2 total area of wetland poi	oints = 4	4
Area seasonally ponded is > ¼ total area of wetland poi	oints = 2	
Area seasonally ponded is < ¼ total area of wetland poi	oints = 0	
Total for D 1 Add the points in the boxes	s above	7

Rating of Site Potential If score is: $12-16 = H \times 6-11 = M = 0-5 = L$ Record the rating on the first page

D 2.0. Does the landscape have the potential to support the water quality function of the site?		
D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0		
D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1	
D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0		
D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Source <u>Golf course</u> Yes = 1 No = 0	1	
Total for D 2Add the points in the boxes above	2	

Rating of Landscape Potential If score is: 3 or 4 = H $\times 1$ or 2 = M 0 = L Record the rating on the first page

D 3.0. Is the water quality improvement provided by the site valuable to society?	
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? Yes = 1 No = 0	1
D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality (<i>answer YES if there is a TMDL for the basin in which the unit is found</i>)? Yes = 2 No = 0	
Total for D 3Add the points in the boxes above	
Rating of ValueIf score is: $\times 2-4 = H$ $1 = M$ $0 = L$ Record the rating on the first page	

NOTES and FIELD OBSERVATIONS:

DEPRESSIONAL AND FLATS WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradat	ion
D 4.0. Does the site have the potential to reduce flooding and erosion?	
D 4.1. <u>Characteristics of surface water outflows from the wetland</u> : Wetland is a depression or flat depression with no surface water leaving it (no outlet) points = 4 Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outletpoints = 2 Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch points = 1 Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0	2
D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outletpoints = 7Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet	3
D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.The area of the basin is less than 10 times the area of the unitpoints = 5The area of the basin is 10 to 100 times the area of the unitpoints = 3The area of the basin is more than 100 times the area of the unitpoints = 0Entire wetland is in the Flats classpoints = 5	3
Total for D 4 Add the points in the boxes above	8
Rating of Site Potential If score is: 12-16 = H × 6-11 = M 0-5 = L Record the rating on the	first page
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?	-
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	1
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0	0
Total for D 5Add the points in the boxes above	1
Rating of Landscape Potential If score is: $3 = H \times 1$ or $2 = M = 0 = L$ Record the rating on the	first page
D 6.0. Are the hydrologic functions provided by the site valuable to society?	-
 D 6.1. <u>The unit is in a landscape that has flooding problems</u>. <i>Choose the description that best matches conditions around the wetland unit being rated</i>. <i>Do not add points</i>. <u><i>Choose the highest score if more than one condition is met</i></u>. The wetland captures surface water that would otherwise flow down-gradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): Flooding occurs in a sub-basin that is immediately down-gradient of unit. Surface flooding problems are in a sub-basin farther down-gradient. points = 1 Flooding from groundwater is an issue in the sub-basin. points = 1 The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. <i>Explain why</i> points = 0 There are no problems with flooding downstream of the wetland. 	1
D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan?	0
Yes = 2 No = 0	-
Add the points in the boxes above	1 Current i
Kating of Value IT score is: <u>2-4 = H</u> <u>1 = M</u> <u>0 = L</u> Record the rating on the	jirst page

These questions apply to wetlands of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat	
H 1.0. Does the site have the potential to provide habitat?	
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed A structures or more: points = 4 Emergent 3 structures: points = 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 X Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: X The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover)	1
that each cover 20% within the Forested polygon	
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 Saturated only 1 type present: points = 0 Permanently flowing stream or river in, or adjacent to, the wetland 2 points = 0 Seasonally flowing stream in, or adjacent to, the wetland 2 points Seasonally flowing stream in, or adjacent to, the wetland 2 points	0
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species	1
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	0

Wetland name or number A

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Standing snags (dbh > 4 in) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	3
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i>	
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	
Total for H 1Add the points in the boxes above	5

Rating of Site Potential If score is: ____15-18 = H ____7-14 = M ____70-6 = L

Record the rating on the first page

1

H 2.0. Does the landscape have the potential to support the habitat functions of the site?		
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit). Calculate: 0.00 % undisturbed habitat + [(% moderate and low intensity land uses) 12.35 /	2] = <u>6.175</u> %	
If total accessible habitat is:		
> ¹ / ₃ (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	U U
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
Calculate: 9.1 % undisturbed habitat + [(% moderate and low intensity land uses) 33.73/2	= <u>25.964999999999</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	1
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	1
Undisturbed habitat 10-50% and > 3 patches	points = 1	
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the points in t	he boxes above	-1
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L Rec	ord the rating on t	he first page

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the h	nighest score	
that applies to the wetland being rated.		
Site meets ANY of the following criteria:	points = 2	
 It has 3 or more priority habitats within 100 m (see next page) 		
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or	federal lists)	
 It is mapped as a location for an individual WDFW priority species 		1
 It is a Wetland of High Conservation Value as determined by the Department of Natural Resource 	urces	
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a		
Shoreline Master Plan, or in a watershed plan		
 Site has 1 or 2 priority habitats (listed on next page) within 100 m 	points = 1	
Site does not meet any of the criteria above	points = 0	
Rating of Value If score is: 2 = H × 1 = M 0 = L Recor	d the rating on	the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- ★ Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland name or number A

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
\Box The dominant water regime is tidal	
\square With a salinity greater than 0.5 ppt \square Ves –Go to SC 1.1 \square No- Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
Preserve, State Park of Educational, Environmental, of Scientific Reserve designated under WAC 332-30-151?	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
L The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are <i>Spartina</i> , see page 25)	
At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	
The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands.	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value? \Box Yes – Go to SC 2.2 \boxed{N} No – Go to SC 2.3	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
□Yes = Category I ☑No = Not a WHCV	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
□ Yes – Contact WNHP/WDNR and go to SC 2.4 区No = Not a WHCV	
SC 2.4. Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation Value and listed it on	
their website?	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key	
below. If you answer YES you will still need to rate the wetland based on its functions.	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or	
more of the first 32 in of the soil profile? \Box Yes – Go to SC 3.3 \boxtimes No – Go to SC 3.2	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond? ∐Yes – Go to SC 3.3 ⊠No = Is not a bog	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	
cover of plant species listed in Table 4?	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plain species in Table 4 are present, the weitanu is a bog.	
sc 5.4. is an area with years of mucks forested (> 50% cover) with sitka spruce, subalpine fir, western fed cedar,	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the capony?	
$\Box Ves = Is a Category I hog \Box No = Is not a hog$	

SC 4.0. Forested Wetlands	
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate</i> <i>the wetland based on its functions.</i>	
 Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 	
Yes = Category I ⊠No = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) □Yes – Go to SC 5.1 ⊠No = Not a wetland in a coastal lagoon SC 5.1. Does the wetland meet all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or unmowed grassland. — The wetland is larger than ¹ / ₁₀ ac (4350 ft ²)	
SC 6.0. Interdunal Wetlands Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 □Yes – Go to SC 6.1 Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)? SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? □Yes = Category II □No – Go to SC 6.3 SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? □Yes = Category III □No = Category IV	
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

This page left blank intentionally

RATING SUMMARY – Western Washington

 Name of wetland (or ID #):
 B
 Date of site visit:
 04/07/21

 Rated by Jake Layman
 Trained by Ecology?
 Yes _____No Date of training_____

HGM Class used for rating Slope Wetland has multiple HGM classes? Y V N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map <u>ESRI ArcGIS</u>

OVERALL WETLAND CATEGORY []] (based on functions \checkmark or special characteristics)

1. Category of wetland based on FUNCTIONS

____Category I – Total score = 23 - 27

____Category II – Total score = 20 - 22

Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
	Circle the appropriate ratings			
Site Potential	L	L	L	
Landscape Potential	М	М	L	
Value	Н	М	Н	TOTAL
Score Based on Ratings	6	5	5	16

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,L 5 = H,L,L 5 = M,M,L 4 = M,L,L 3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	I	II
Wetland of High Conservation Value		Ι
Bog		Ι
Mature Forest		Ι
Old Growth Forest		Ι
Coastal Lagoon	Ι	II
Interdunal	ΙΠ	III IV
None of the above	N/A	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

🗙 NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO − go to 3 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit meet all of the following criteria?
The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
At least 30% of the open water area is deeper than 6.6 ft (2 m).

XNO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

4. Does the entire wetland unit **meet all** of the following criteria?

The wetland is on a slope (*slope can be very gradual*), The water flows through the wetland in one direction (unidirectional) and usually comes from

seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,

The water leaves the wetland **without being impounded**.

□NO – go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

5. Does the entire wetland unit **meet all** of the following criteria?

The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

The overbank flooding occurs at least once every 2 years.

Wetland name or number <u>B</u>

NO − go to 6 **YES** − The wetland class is **Riverine NOTE**: The Riverine unit can contain depressions that are filled with water when the river is not flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

□ NO – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS Water Quality Functions - Indicators that the site functions to improve water quality	
S 1.0. Does the site have the potential to improve water quality?	
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every 100 ft of horizontal distance) Slope is 1% or less points = 3 Slope is > 1%-2% points = 2 Slope is > 2%-5% points = 1 Slope is greater than 5% points = 0	2
Since is greater than 5.0 points = 0 S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area points = 6 Dense, uncut, herbaceous plants > ½ of area points = 3 Dense, woody, plants > ½ of area points = 2 Dense, uncut, herbaceous plants > ¼ of area points = 1 Does not meet any of the criteria above for plants points = 0	0
Total for S 1Add the points in the boxes above	2
Rating of Site Potential If score is: $12 = H$ $6-11 = M$ \times $0-5 = L$ Record the rating on	the first page
S 2.0. Does the landscape have the potential to support the water quality function of the site?	
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1? Other sources Yes = 1 No = 0	1

Total for S 2

Rating of Landscape Potential If score is: X 1-2 = M 0 = L

Record the rating on the first page

2

Add the points in the boxes above

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	1
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	1
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	2
Total for S 3Add the points in the boxes above	4

Rating of Value If score is: <u>×</u>**2-4** = H <u>1</u> = M <u>0</u> = L

Record the rating on the first page

SLOPE WETLANDS Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion		
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	-	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. Stems of plants should be thick enough (usually > 1/8 in), or dense enough, to remain erect during surface flows. Dense, uncut, rigid plants cover > 90% of the area of the wetland points = 1 points = 0 Rating of Site Potential If score is: 1 = M × 0 = L Record the rating on	0 the first page	
S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?		
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff? Yes = 1 No = 0	1	
Rating of Landscape Potential If score is: X 1 = M0 = L Record the rating on	the first page	
$S \in \Omega$ Are the hydrologic functions provided by the site valuable to society?		

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems:	
The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds)points = 2Surface flooding problems are in a sub-basin farther down-gradientpoints = 1No flooding problems anywhere downstreampoints = 0	1
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6Add the points in the boxes above	1

Rating of Value If score is: $2-4 = H \times 1 = M = 0 = L$

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands of all HGM classes.		
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat		
H 1.0. Does the site have the potential to provide habitat?		
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 Augustic bed 3 structures: points = 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 Scrub-shrub (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 1	1	
H 1 2 Hydroperiods	<u> </u>	
Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).	1	
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species 5 - 19 species <pre></pre>	1	
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	1	

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Standing snags (dbh > 4 in) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	1
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are	
permanently or seasonally inundated (structures for egg-laying by amphibians)	
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	
Total for H 1Add the points in the boxes above	5

Rating of Site Potential If score is: ____**15-18 = H** ____**7-14 = M** ____**2-6 = L**

Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site?		
H 2.1. Accessible habitat (include <i>only habitat that directly abuts wetland unit</i>). <i>Calculate:</i> 0.00 % undisturbed habitat + [(% moderate and low intensity land uses) 12.35 /2 If total accessible habitat is:] = <u>6.175</u> %	
> 1/3 (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	°,
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
<i>Calculate:</i> 9.17 % undisturbed habitat + [(% moderate and low intensity land uses) 33.73/2]	=%	
Undisturbed habitat > 50% of Polygon	points = 3	1
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	1
Undisturbed habitat 10-50% and > 3 patches	points = 1	
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the points in th	e boxes above	-1
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L	rd the rating on t	he first page

7		
H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1 Does the site provide habitat for species valued in laws regulations or policies? Choose only the	e hiahest score	1
This is been a sub-the manual for species value in laws, regulations, or policies: choose only the	ingriest score	
that applies to the wetland being rated.		
Site meets ANY of the following criteria:	points = 2	
🐣 It has 3 or more priority habitats within 100 m (see next page)		
— It provides habitat for Threatened or Endangered species (any plant or animal on the state of	or federal lists)	
 It is mapped as a location for an individual WDFW priority species 		2
 It is a Wetland of High Conservation Value as determined by the Department of Natural Res 	sources	
— It has been categorized as an important habitat site in a local or regional comprehensive pla	an, in a	
Shoreline Master Plan, or in a watershed plan		
Site has 1 or 2 priority habitats (listed on next page) within 100 m	points = 1	
Site does not meet any of the criteria above	noints – O	
Site does not incertainy of the citeria above	points = 0	I
Rating of Value If score is: X 2 = H 1 = M 0 = L Rec	ord the rating on	the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- X **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- ★ Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015 Wetland name or number <u>B</u>

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
\Box The dominant water regime is tidal.	
Vegetated, and	
□ With a salinity greater than 0.5 ppt □ Yes –Go to SC 1.1 ⊠No= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
$\Box Yes = Category I \Box No - Go to SC 1.2$	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
LIThe wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are <i>Spartina</i> , see page 25)	
At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un- mowed grassland.	
The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands. $\Box Yes = Category I \Box No = Category II$	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value?	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
□Yes = Category I ⊠No = Not a WHCV	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
Yes - Contact WNHP/WDNR and go to SC 2.4 XINO = Not a WHCV	
SC 2.4. Has WDNR identified the wetland within the S/T/R as a wetland of High Conservation value and listed it on	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key	
SC 2.1. Deep an area within the wetland unit have arganic soil herizons, either pasts or mucks, that compose 16 in or	
\Box more of the first 32 in of the soil profile?	
SC 3.2 Does an area within the wetland unit have organic soils either neats or mucks, that are less than 16 in deen	
over bedrock or an impermeable bardnan such as clay or volcanic ash, or that are floating on top of a lake or	
pond? \Box Yes – Go to SC 3.3 \Box No = Is not a bog	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level. AND at least a 30%	
cover of plant species listed in Table 4? \Box Yes = Is a Category I bog \Box No – Go to SC 3.4	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
Yes = Is a Category I bog No = Is not a bog	

SC 4.0. Forested Wetlands	
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate the wetland based on its functions.</i>	
 — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. — Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 	
□Yes = Category I INO = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (<i>needs to be measured near the bottom</i>)	
SC 6.0. Interdunal Wetlands Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 □Yes – Go to SC 6.1 ☑No = not an interdunal wetland for rating SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)? □Yes = Category I □No – Go to SC 6.2 SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? □Yes = Category III □No = Category IV	
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

This page left blank intentionally

RATING SUMMARY – Western Washington

Name of wetland (or ID #):CDate of site visit: $^{04/07/21}$ Rated by Jake LaymanTrained by Ecology? Yes No Date of training

HGM Class used for rating Slope Wetland has multiple HGM classes? Y V N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map <u>ESRI ArcGIS</u>

OVERALL WETLAND CATEGORY <u>IV</u> (based on functions <u>v</u> or special characteristics___)

1. Category of wetland based on FUNCTIONS

____Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

Category III – Total score = 16 - 19

X Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
		Circle the ap	propriate ratings	
Site Potential	L	L	L	
Landscape Potential	М	М	L	
Value	н	М	М	TOTA
Score Based on Ratings	6	5	4	15

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H 8 = H,H,M

7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

'AL

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	I	II
Wetland of High Conservation Value		Ι
Bog		Ι
Mature Forest		Ι
Old Growth Forest		Ι
Coastal Lagoon	Ι	II
Interdunal	I II	III IV
None of the above	N/A	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	Н 1.1, Н 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	Н 1.1, Н 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

🗙 NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO − go to 3 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit meet all of the following criteria?
The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
At least 30% of the open water area is deeper than 6.6 ft (2 m).

XNO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

4. Does the entire wetland unit **meet all** of the following criteria? X The wetland is on a slope (*slope can be very gradual*),

The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,

The water leaves the wetland **without being impounded**.

□NO – go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

5. Does the entire wetland unit **meet all** of the following criteria?

The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

The overbank flooding occurs at least once every 2 years.

Wetland name or number <u>C</u>

NO − go to 6 **YES** − The wetland class is **Riverine NOTE**: The Riverine unit can contain depressions that are filled with water when the river is not flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

□ NO – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WEILANDS		
Water Quality Functions - Indicators that the site functions to improve water quality		
S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every		
100 ft of horizontal distance)		
Slope is 1% or less points = 3	1	
Slope is > 1%-2% points = 2	1	
Slope is > 2%-5% points = 1		
Slope is greater than 5% points = 0		
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0	
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants:		
Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you		
have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher		
than 6 in.		
Dense, uncut, herbaceous plants > 90% of the wetland area points = 6	0	
Dense, uncut, herbaceous plants > ½ of area points = 3		
Dense, woody, plants > ½ of area points = 2		
Dense, uncut, herbaceous plants > ¼ of area points = 1		
Does not meet any of the criteria above for plants points = 0		
Total for S 1 Add the points in the boxes above	1	
Rating of Site Potential If score is: $12 = H$ 6-11 = M0-5 = LRecord the rating on the first page		
S 2.0. Does the landscape have the potential to support the water quality function of the site?		
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants?	1	
Yes = 1 NO = 0		
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1?	0	
Other sources Yes = 1 No = 0		
Total for S 2 Add the points in the boxes above	1	
Rating of Landscape Potential If score is: \times 1-2 = M 0 = L <i>Record the rating on the first page</i>		

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	1
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	1
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	2
Total for S 3Add the points in the boxes above	4

Rating of Value If score is: \times 2-4 = H ___1 = M ___0 = L

Record the rating on the first page

SLOPE WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion		
S 4.0. Does the site have the potential to reduce flooding and stream erosion?		
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. <i>Stems of plants should be thick enough (usually > 1/8 in), or dense enough, to remain erect during surface flows.</i> Dense, uncut, rigid plants cover > 90% of the area of the wetland points = 1 All other conditions points = 0	0	
Rating of Site Potential If score is: $1 = M \times 0 = L$ Record the rating on the first page		
S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?		
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff? Yes = 1 No = 0	1	
Record the rating on the first page Record the rating on the first		

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) points = 2 Surface flooding problems are in a sub-basin farther down-gradient points = 1 No flooding problems anywhere downstream points = 0	1
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6Add the points in the boxes above	1

Rating of Value If score is: $2-4 = H \times 1 = M = 0 = L$

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat	
H 1.0. Does the site have the potential to provide habitat?	
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.	0
that each cover 20% within the Forested polygon	
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 Saturated only 1 type present: points = 0 Permanently flowing stream or river in, or adjacent to, the wetland 2 points = 0 Seasonally flowing stream in, or adjacent to, the wetland 2 points Seasonally flowing stream in, or adjacent to, the wetland 2 points	0
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species	1
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	0
H 1.5. Special habitat features:	
--	---
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Standing snags (dbh > 4 in) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	1
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i>	
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	
Total for H 1Add the points in the boxes above	2

Rating of Site Potential If score is: ____15-18 = H ____7-14 = M ____0-6 = L

Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site?		
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit). Calculate: 0.00 % undisturbed habitat + [(% moderate and low intensity land uses) 12.35 /2	<u>2] = 6.175 %</u>	
If total accessible habitat is:		
> 1/3 (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
<i>Calculate:</i> 9.17 % undisturbed habitat + [(% moderate and low intensity land uses) 33.73/2]	= <u>26.034999999999</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	1
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	1
Undisturbed habitat 10-50% and > 3 patches	points = 1	
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the points in the	ne boxes above	-1
Rating of Landscape Potential If score is:4-6 = H1-3 = M < 1 = L Reco	ord the rating on t	he first page

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the	highest score	
that applies to the wetland being rated.		
Site meets ANY of the following criteria:	points = 2	
 It has 3 or more priority habitats within 100 m (see next page) 		
— It provides habitat for Threatened or Endangered species (any plant or animal on the state of	r federal lists)	
 It is mapped as a location for an individual WDFW priority species 		1
 It is a Wetland of High Conservation Value as determined by the Department of Natural Reso 	ources	
 It has been categorized as an important habitat site in a local or regional comprehensive plar 	n, in a	
Shoreline Master Plan, or in a watershed plan		
 Site has 1 or 2 priority habitats (listed on next page) within 100 m 	points = 1	
Site does not meet any of the criteria above	points = 0	
Rating of Value If score is: 2 = H X 1 = M 0 = L Reco	rd the rating on	the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- ★ Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015 Wetland name or number \underline{C}

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
\Box The dominant water regime is tidal.	
Vegetated, and	
With a salinity greater than 0.5 ppt Yes –Go to SC 1.1 XNo= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge. National Park, National Estuary Reserve. Natural Area	
Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	
□Yes = Category I □No - Go to SC 1.2	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
\Box The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)	
\square At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	
L The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands. Yes = Category I No = Category II	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value?	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
□Yes = Category I	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
$\Box Yes - Contact WNHP/WDNR and go to SC 2.4 \boxed{XINO} = Not a WHCV$	
their website?	
	+
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key	
below. If you answer YES you will still need to rate the wetland based on its functions.	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or	
more of the first 32 in of the soil profile? \Box Yes – Go to SC 3.3 \boxtimes No – Go to SC 3.2	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond?	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	
cover of plant species listed in Table 4? Yes = Is a Category I bog INO – Go to SC 3.4	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	
sc 5.4. is an area with years of mucks forested (> 50% cover) with sitkd spruce, subdiplife fir, western fed cedar,	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
$\Box Yes = Is a Category I bog \Box No = Is not a bog$	

SC 4.0. Forested Wetlands	
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate</i> <i>the wetland based on its functions.</i>	
 Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 	
□Yes = Category I ⊠No = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) □Yes – Go to SC 5.1 ⊠No = Not a wetland in a coastal lagoon SC 5.1. Does the wetland meet all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or unmowed grassland. — The wetland is larger than ¹ / ₁₀ ac (4350 ft ²)	
SC 6.0. Interdunal Wetlands Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 □Yes – Go to SC 6.1 Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)? SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? □Yes = Category II □No – Go to SC 6.3 SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? □Yes = Category III □No = Category IV	
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

This page left blank intentionally

RATING SUMMARY – Western Washington

Name of wetland (or ID #): D Date of site visit: 04/07/21 Rated by Rachael Hyland, Jake Layman Trained by Ecology? Yes No Date of training

HGM Class used for rating Depressional Wetland has multiple HGM classes? Y Y

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map <u>ESRI ArcGIS</u>

OVERALL WETLAND CATEGORY []] (based on functions \checkmark or special characteristics)

1. Category of wetland based on FUNCTIONS

____Category I – Total score = 23 - 27

_____Category II – Total score = 20 - 22

X Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
		Circle the ap	propriate ratings	
Site Potential	М	М	М	
Landscape Potential	М	М	L	
Value	н	М	Н	TOTA
Score Based on Ratings	7	6	6	19

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L 3 = L,L,L

'AL

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	Ι	II
Wetland of High Conservation Value		Ι
Bog		Ι
Mature Forest		Ι
Old Growth Forest		Ι
Coastal Lagoon	Ι	II
Interdunal	ΙΠ	III IV
None of the above	N/A	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

🗙 NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO − go to 3 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit meet all of the following criteria?
The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
At least 30% of the open water area is deeper than 6.6 ft (2 m).

XNO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

4. Does the entire wetland unit **meet all** of the following criteria?

The wetland is on a slope (*slope can be very gradual*),

The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,

The water leaves the wetland **without being impounded**.

🖾 NO – go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

The overbank flooding occurs at least once every 2 years.

Wetland name or number D

- NO − go to 6 NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding
- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

□ N0 – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

DEPRESSIONAL AND FLATS WETLANDS		
Water Quality Functions - Indicators that the site functions to improve wate	er quality	
D 1.0. Does the site have the potential to improve water quality?		
D 1.1. Characteristics of surface water outflows from the wetland:		
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no	o outlet).	
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing o	points = 3 outlet. points = 2	3
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch.	points = 1 points = 1	
D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes	= 4 No = 0	0
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowar	rdin classes):	
Wetland has persistent, ungrazed, plants > 95% of area	points = 5	
Wetland has persistent, ungrazed, plants > $\frac{1}{2}$ of area	points = 3	3
Wetland has persistent, ungrazed plants > $^{1}/_{10}$ of area	points = 1	
Wetland has persistent, ungrazed plants $<^{1}/_{10}$ of area	points = 0	
D 1.4. Characteristics of seasonal ponding or inundation:		
This is the area that is ponded for at least 2 months. See description in manual.		
Area seasonally ponded is > $\frac{1}{2}$ total area of wetland	points = 4	4
Area seasonally ponded is > ¼ total area of wetland	points = 2	
Area seasonally ponded is < ¼ total area of wetland	points = 0	
Total for D 1Add the points in the bo	xes above	10

Rating of Site Potential If score is: $12-16 = H \times 6-11 = M = 0-5 = L$ Record the rating on the first page

D 2.0. Does the landscape have the potential to support the water quality function of the site?	
D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0	1
D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0	0
D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? SourceYes = 1 No = 0	0
Total for D 2Add the points in the boxes above	2

Rating of Landscape Potential If score is: 3 or 4 = H $\times 1$ or 2 = M 0 = L Record the rating on the first page

D 3.0. Is the water quality improvement provided by the site valuable to society?	
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	1
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? Yes = 1 No = 0	1
D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality (<i>answer YES if there is a TMDL for the basin in which the unit is found</i>)? Yes = 2 No = 0	2
Total for D 3Add the points in the boxes above	4
Rating of ValueIf score is: $\times 2-4 = H$ $1 = M$ $0 = L$ Record the rating on the first page	

NOTES and FIELD OBSERVATIONS:

DEPRESSIONAL AND FLATS WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradat	ion
D 4.0. Does the site have the potential to reduce flooding and erosion?	
D 4.1. Characteristics of surface water outflows from the wetland: wetland is a depression or flat depression with no surface water leaving it (no outlet) points = 4 Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outletpoints = 2 Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch points = 1 wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0	4
D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outletpoints = 7Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet	3
D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of the unitpoints = 5The area of the basin is 10 to 100 times the area of the unitpoints = 3The area of the basin is more than 100 times the area of the unitpoints = 0Entire wetland is in the Flats classpoints = 5	3
Total for D 4Add the points in the boxes above	10
Rating of Site Potential If score is: 12-16 = H × 6-11 = M O-5 = L Record the rating on the	first page
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?	-
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	1
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	1
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0	0
Total for D 5Add the points in the boxes above	2
Rating of Landscape Potential If score is:3 = H _ X 1 or 2 = M0 = L Record the rating on the	first page
D 6.0. Are the hydrologic functions provided by the site valuable to society?	-
D 6.1. The unit is in a landscape that has flooding problems. Choose the description that best matches conditions around the wetland unit being rated. Do not add points. Choose the highest score if more than one condition is met. The wetland captures surface water that would otherwise flow down-gradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): • Flooding occurs in a sub-basin that is immediately down-gradient of unit. points = 2 • Surface flooding problems are in a sub-basin farther down-gradient. points = 1 Flooding from groundwater is an issue in the sub-basin. points = 1 The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. Explain why There are no problems with flooding downstream of the wetland. points = 0	1
D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan?	0
Yes = 2 No = 0 Total for D 6 Add the points in the boxes above	1
Bating of Value If score is: $2 \cdot 4 = H \times 1 = M$ $0 = I$	i first nage

These questions apply to wetlands of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat	
H 1.0. Does the site have the potential to provide habitat?	
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 Emergent 3 structures: points = 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 Energent 3 structure: points = 1 Energent 1 structure: points = 0 Energent 1 structure: points = 0	2
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).	1
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species	1
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	2

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Standing snags (dbh > 4 in) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	1
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i>	
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	
Total for H 1Add the points in the boxes above	7

Rating of Site Potential If score is: ___15-18 = H X 7-14 = M ___0-6 = L

Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site?			
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit). Calculate: 0.00 % undisturbed habitat + [(% moderate and low intensity land uses) 12.35	/2] = <u>6.175</u> %		
If total accessible habitat is:			
> ¹ / ₃ (33.3%) of 1 km Polygon	points = 3	0	
20-33% of 1 km Polygon	points = 2	Ũ	
10-19% of 1 km Polygon	points = 1		
< 10% of 1 km Polygon	points = 0		
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.			
Calculate: 9.17 % undisturbed habitat + [(% moderate and low intensity land uses) 33.73/2] = <u></u> %		
Undisturbed habitat > 50% of Polygon	points = 3	1	
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	1	
Undisturbed habitat 10-50% and > 3 patches	points = 1		
Undisturbed habitat < 10% of 1 km Polygon	points = 0		
H 2.3. Land use intensity in 1 km Polygon: If			
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2	
≤ 50% of 1 km Polygon is high intensity	points = 0		
Total for H 2 Add the points in t	he boxes above	-1	
Rating of Landscape Potential If score is: <u>4-6 = H</u> <u>1-3 = M</u> <u>X < 1 = L</u> Rec	cord the rating on t	he first page	

· · · <u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
H 3.0. Is the habitat provided by the site valuable to society?	
 H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? <i>Choose only the highest score that applies to the wetland being rated.</i> Site meets ANY of the following criteria: points = 2 × It has 3 or more priority habitats within 100 m (see next page) It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists) It is mapped as a location for an individual WDFW priority species It is a Wetland of High Conservation Value as determined by the Department of Natural Resources It has been categorized as an important habitat site in a local or regional comprehensive plan, in a Shoreline Master Plan, or in a watershed plan Site has 1 or 2 priority habitats (listed on next page) within 100 m points = 1 Site does not meet any of the criteria above 	2
Rating of Value If score is: $\times 2 = H$ $1 = M$ $0 = L$ Record the rating or	the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- X **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- ★ Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015 Wetland name or number D

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
\Box The dominant water regime is tidal.	
Vegetated, and	
□ With a salinity greater than 0.5 ppt □ Yes –Go to SC 1.1 ⊠No= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
Preserve, state Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
\Box The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)	
At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un- mowed grassland.	
The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands. Yes = Category I No = Category II	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value?	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
□Yes = Category I ⊠No = Not a WHCV	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
Yes - Contact WNHP/WDNR and go to SC 2.4 X N0 = Not a WHCV	
their website?	
SC 3.0. Bogs	
below. If you answer VEC you will still need to rate the wetland based on its functions	
SC 2.1. Does an area within the wetland unit have arganic soil herizons, either pasts or mucks, that compose 16 in or	
set s.t. Does all allea within the wetland unit have organic soli horizons, either peaks of matchs, that compose 10 m of more of the first 32 in of the soil profile?	
SC 3.2 Does an area within the wetland unit have organic soils either neats or mucks, that are less than 16 in deen	
over bedrock or an impermeable bardnan such as clay or volcanic ash, or that are floating on top of a lake or	
pond? \Box Yes – Go to SC 3.3 \Box No = Is not a bog	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level. AND at least a 30%	
cover of plant species listed in Table 4? \Box Yes = Is a Category I bog \Box No – Go to SC 3.4	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
Yes = Is a Category I bog No = Is not a bog	

SC 4.0. Forested Wetlands	
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you answer YES you will still need to rate	
the wetland based on its functions.	
 Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. 	
 Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 	
□Yes = Category I 区No = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons	
 Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) Yes – Go to SC 5.1 No = Not a wetland in a coastal lagoon 	
SC 5.1. Does the wetland meet all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less	
than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un- mowed grassland.	
— The wetland is larger than $1/_{10}$ ac (4350 ft ²) \Box Yes = Category I \Box No = Category II	
SC 6.0. Interdunal Wetlands	
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 — Yes – Go to SC 6.1 ⊠No = not an interdunal wetland for rating	
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)?	
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? ☐Yes = Category II ☐No – Go to SC 6.3	
SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? Yes = Category III INO = Category IV	
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

This page left blank intentionally

CAMAS BUSINESS CENTER - COWARDIN MAP

CAMAS BUSINESS CENTER - HYDROPERIOD MAP

CAMAS BUSINESS CENTER - CONTRIBUTING BASIN MAP

Soundview Consultants LLC Environmental Assessment • Planning • Land Use Solutions 2007 Harborview Dr., Suite D, Gig Harbor, WA 98335

/ Harborview Dr., Suite D, Gig Harbor, WA 983. Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

CLARK COUNTY PARCEL NUMBERS: 176155000 and 176170000

4707 & 4723 NW LAKE ROAD CAMAS, WA 98607

CAMAS BUSINESS CENTER - HABITAT MAP

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

CLARK COUNTY PARCEL NUMBERS: 176155000 and 176170000

DATE: 8/16/2021
ЈОВ: 1144.0027
BY: DDS
SCALE: 1 " = 1,500 "
FIGURE NO. 4 of 5

CAMAS BUSINESS CENTER CENTER - 303D MAP

Appendix G – Qualifications

All field inspections, wetland determinations, habitat assessments, and supporting documentation, including this <u>Wetland and Fish and Wildlife Habitat Assessment Report</u> prepared for the <u>Camas Commerce Center</u> property were prepared by, or under the direction of, Matt DeCaro of SVC. In addition, the site investigations were performed by Rachael Hyland and Jake Layman, and report preparation was completed by Casey Lanier and Kelly Kramer

Matt DeCaro

Associate Principal Professional Experience: 13 years

Matt DeCaro is an Associate Principal and Senior Scientist with a diverse background in environmental planning, wetland science, stream ecology, water quality, site remediation, NEPA compliance, and project management. He manages a wide range of industrial, commercial, and multifamily residential projects throughout Western Washington, providing environmental permitting and regulatory compliance assistance for land use projects from their planning stages through entitlement and construction. His local expertise, diverse professional background, and positive relationships with regulatory personnel are integral components of his successful project outcomes.

Matt earned a Bachelor of Science degree with a focus in Environmental Science from the Evergreen State College in Olympia, Washington, with additional graduate-level coursework and research in aquatic restoration and salmonid ecology. Matt has received 40-hour wetland delineation training (*Western Mountains, Valleys, & Coast and Arid West Regional Supplements*) and regularly performs wetland, stream, and shoreline delineations. Matt has been formally trained in the use of the 2014 Washington State Wetland Rating System and Determination of Ordinary High Water Mark by WSDOE, and he is a Pierce County Qualified Wetland Specialist and Wildlife Biologist. He has attended USFWS survey workshops for multiple threatened and endangered species, and he is a Senior Author of WSDOT Biological Assessments. Matt holds 40-hour HAZWOPER training and has managed Phase I Environmental Site Assessments, subsurface investigations, and contaminant remediation projects throughout the Pacific Northwest. His diverse experience also includes NEPA compliance for federal permitting projects; noxious weed abatement; army ant research in the Costa Rican tropical rainforest; spotted owl surveys on federal and private lands; and salmonid spawning and migration surveys.

Jake Layman

Environmental Scientist Professional Experience: 12+ years

Jake Layman is an Environmental Scientist with a varied background in fisheries, wildlife, and aquatic invertebrate biology and stream and lake ecology. Jakes's expertise includes endangered species monitoring, lake limnology assessments, water chemistry profiles, off-channel habitat characterization, laboratory management, and terrestrial and aquatic amphibian identification with associated habitat assessments. Jake also has experience in fish population assessments, stream typing, spawning escapement, environmental disaster recovery, and amphibian toxicology research. Jake has over 10 years of experience at the federal and state levels conducting ecological monitoring surveys throughout Eastern and Western Washington. He worked with the National Park Service to conduct environmental compliance monitoring on park construction projects, infrastructure maintenance

projects, and federal highways projects. This position also included environmental spill response, fish exclusion surveys in support of construction, and effectiveness monitoring on Engineered Log Jam (ELJ) projects. Jake has worked with the Washington Department of Fish and Wildlife (WDFW) to assess and inventory fish passage barriers and monitor culvert removal projects throughout Western Washington. While working for WDFW, Jake managed the daily operation for the intensive habitat study, on off-channel wetlands, for the Chehalis Aquatic Resources Protection Plan (ASRP).

Jake earned bachelor's degrees in both Biology, with an Ecology specialization, and Geography, with a Natural Resource Management specialization, from Central Washington University. In addition, Jake has a Minor in Environmental Studies and a Certificate in Geographic Information Systems (GIS) and Cartography form Central Washington University. Jake has received a 40-hour wetland delineation training (Western Mtns, Valleys, & Coast and Arid West Regional Supplement) and training from the Washington State Department of Ecology in Environmental Negotiations; Navigating SEPA; Conducting Forage Fish Surveys; Puget Sound Coastal Processes, Shoreline Modifications, and Beach Restoration; Using the Marine Shoreline Design Guidelines for Marine Shoreline Stabilization; How to Determine the Ordinary High Water Mark; and Using the Revised Washington State Wetland Rating System (2014) in Western Washington.

Rachael Hyland

Environmental Scientist & Certified Ecologist Professional Experience: 7 years

Rachael Hyland is a Wetland Professional in Training (WPIT) through the Society of Wetland Scientists and a Certified Ecologist through the Ecological Society of America. Rachael has a background in wetland and ecological habitat assessments in various states, most notably Washington, Connecticut, Massachusetts, Rhode Island, and Ohio. She has experience in assessing tidal, stream, and wetland systems, reporting on biological evaluations, permitting, and site assessments. She also has extensive knowledge of bats and white nose syndrome (*Pseudogymnoascus destructans*), a fungal disease affecting bats which was recently documented in Washington.

Rachael earned a Bachelor of Science degree in Ecology and Evolutionary Biology from the University of Connecticut, with additional ecology studies at the graduate level. Rachael has completed 40-hour wetland delineation training for Western Mountains, Valleys, & Coast and Arid West Regional Supplement, in addition to formal training for the Northcentral and Northeast supplement, and experience with the Eastern Mountains and Piedmont and Atlantic and Gulf Coast supplements. She has also received formal training from the Washington State Department of Ecology in the Using the Revised 2014 Wetland Rating System for Western Washington, How to Determine the Ordinary High Water Mark, Navigating SEPA, and Selecting Wetland Mitigation Sites Using a Watershed Approach. Rachael has also received training from the Washington State Department of Transportation in Biological Assessment Preparation for Transportation Projects and is listed by WSDOT as a junior author for preparing Biological Assessments.