STORMWATER MANAGEMENT REPORT

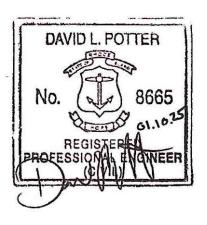
Pare Project No. 23099.01

Mt. Hope High School 199 Chestnut Street Bristol, Rhode Island 02809

Assessors Map 117, Lot 3, 4, 5, 6, & 7

Prepared for:

Bristol Warren Regional School District 235 High Street Bristol, RI 02809


Prepared by:

Pare Corporation 8 Blackstone Valley Place Lincoln, RI 02865

JANUARY 2025

C ENGINEERS 🔆 SCIENTISTS 🗞 PLANNERS

TABLE OF CONTENTS

PROJECT DESCRIPTION

Introduction	1
Methodology	1
Existing Conditions	2
Proposed Conditions	7
Stormwater Management Standards	12
Conclusion	19

APPENDICES

Appendix A	Site Location Map Rainfall IDF Curve for RI FEMA Firmette Soils Map Test Pit Logs
Appendix B	Hydrologic Calculations- Existing and Proposed Conditions Hydraulic Calculations - Pipe Analysis
Appendix C	RIDEM Pre-Application Minutes Appendix A Checklist Water Quality Volume Calculation Worksheet Stormwater Treatment Area Calculation Recharge Calculation Worksheet Bioretention Area Calculations Sand Filter Area Calculations Infiltration Basin Calculations Wet Swale Calculations Channel Protection Calculations Groundwater Mounding Analysis FHWA Riprap Spreader Calculations Diversion Calculations
Appendix D	XBT-1 Existing Hydrology

XBT-2 Proposed Hydrology

PROJECT DESCRIPTION

Bristol Warren Regional School District is proposing the construction of Mt. Hope High School at their existing high school facility located at 199 Chestnut St. The project area encompasses 29.80 acres and is located on the Bristol Assessor's Plat 117, Lot 3, 4, 5, 6, & 7. The parcel is owned by Bristol Warren Regional School District and is approximately 44.40 acres.

The existing site includes the existing high school building and athletic fields. The site also includes auxiliary buildings, parking lots and drive aisles, wetlands, and a portion of Silver Creek. The proposed project includes a new high school building, athletic fields, parking areas and drive aisles, utility connections, and stormwater management areas. With over 10,000 sf of existing impervious area being altered and less than 40% of the site as existing impervious surfaces, the project qualifies as a new development project per Section 3.2.6 of the RISDISM.

METHODOLOGY

Hydrologic calculations for existing and proposed conditions were performed using HydroCAD Version 10.10 software, which uses TR-55 methodology to calculate runoff and TR-20 methodology for storm routing through the stormwater detention facilities. Site hydrology was evaluated for the 1.2" storm event as well as the 1-year, 2-year, 10-year, 25-year and 100-year frequency storms in accordance with the Rhode Island Stormwater Design and Installation Standards Manual (RISDISM) and the Town of Bristol's Code of Ordinances. Existing and Proposed Watershed Maps, indicating the subwatersheds and associated stormwater flow paths may be found in Appendix D.

The hydraulic design calculations were completed using the Rational Method to calculate the accumulated flows to each structure. The stormwater conveyance system was designed using Manning's Equation. Autodesk Hydraflow Storm Sewer software was used to perform the design calculations. The stormwater conveyance system was designed to handle the runoff generated by a 25-year design storm.

The stormwater drainage design was developed in accordance with the State of Rhode Island Stormwater Design and Installations Standards Manual (RISDISM), which was amended March 2015. The Appendix A Checklist, revised September 2020, is applied to this project and included in Appendix C.

EXISTING CONDITIONS

The project area is bound by residential properties to the north, Naomi Street and residential properties to the west, Chestnut Street and an existing cemetery to the south, and a wetland complex and residential properties to the east. The watershed analyzed for the project has a total area of approximately 47.6 acres. The limit of disturbance for the project is 29.80 acres.

A delineation of freshwater wetlands within the vicinity of proposed building was completed on February 12 & 28, 2024 by LEC Environmental. The delineation was completed in accordance with the Rhode Island Fresh Water Wetlands Act (R.I.G.L. 2-1-18 et. Seq.), and consistent with Appendix 2 of the Rhode Island Department of Environmental Management (RIDEM) Rules and Regulations Governing the Administration and Enforcement of the Rhode Island Freshwater Wetlands Act (the Regulations). The wetland complex contains a wet meadow, a pond, and a forested swamp, which receive a 50-foot buffer area and a 100-foot jurisdictional area. Silver Creek East Branch extends from the wetland complex northeast of the existing school, beneath the existing school to a pond. Water from the pond flows over a dam and to a culvert beneath Chestnut Street. There are three dual 48" dia culverts between the pond and northeast wetland. Silver Creek receives a 100-foot buffer zone and a 200-foot jurisdictional area. The wetland areas are depicted on the proposed site plans.

Per available RIDEM mapping, the project site is located within a natural heritage area. Refer to the Freshwater Wetlands Application regarding the natural heritage assessment for the project site.

According to the FEMA Flood Insurance Rate Map for Bristol County, Rhode Island (Community-Panel 44001C0014H, effective date July 7, 2014), Silver Creek and the wetland northeast of the existing school are located within Zone AE. The rest of the site is located within Zone X.

Within the Silver Creek Watershed the project site has contributing drainage areas to both the East Branch and West Branch. The Silver Creek West Branch subwatershed (West subwatershed)

includes runoff that flows to the wetland in the southwest corner of the site. A portion of the stormwater runoff directed to the southwest wetland enters an existing detention basin through a piped drainage system and is discharged through an outlet control structure into the southwest wetland.

The Silver Creek East Branch subwatershed (East subwatershed) includes runoff that flows to Silver Creek and the culvert beneath Chestnut Street. The northeast wetland flows into Silver Creek which flows to an existing pond on campus with a controlled outlet dam and two culverts. Stormwater runoff from the East subwatershed enters the stream through overland flow and a piped drainage system. The effective FIRM established in 2014 is the regulatory floodplain information currently available for the project site. Based on this information, compensatory storage calculations and culvert hydrology were assessed using the available published data.

According to the Soil Survey of Rhode Island (US Department of Agriculture Soil Conservation Service 1981), the soils located at the site are a mix of primarily Udorthents-Urban land complex (UD), Urban Land (Ur) and Stissing silt loam (Se). There are less significant sections of Pittstown silt loam (PmA), and Pittstown silt loam (PmB). The soils on-site are in hydrologic soil group C and D and are generally poorly drained.

Ten test pits were excavated on July 18, 2024 to review below grade conditions at the site. Locations can be found on the plan and test pit logs found in Appendix A. The on-site soils generally consist of fill atop a layer of sandy loam atop a layer of silty loam. Fill material from previous grading and site development operations was observed at depths ranging from 6" to 70" throughout the site. Based upon the classification of soils surrounding the site and soil properties observed during the test pit excavations, the on-site soils are modeled within Hydrologic Group "C" in this analysis. The estimated seasonal high groundwater table varies across the site. Redoximorphic features were observed in all of the test pits with depths ranging from 10" to 38" below grade.

Additional test pits observed by Pare on October 9, 2020 were used as supplemental information for groundwater assessment. A total of six test pits were excavated and observations, including soil strata, redoximorphic features, and groundwater elevations, were logged. Test Pits 20-01, 20-02 and 20-03 have estimated seasonal high ground water tables (ESHGWT) at less than 2 feet

below existing grade. Test pits 20-04, 20-05, and 20-06 showed the ESHGWT between 2 feet and 4 feet below existing grade. Additional test pit information was used as supplemental information for groundwater assessment. Historic test pits were completed on November 17, 2008, and February 22, 2010. Based on the test pit data collected to date, the estimated season high ground water table is influenced by the presence of a poorly draining restrictive soil type that consists of loamy sand and silty loam. Refer to Appendix A for test pit logs and the plan set for test pit locations.

The existing topography of the eastern side of the site generally slopes toward the northeast wetland and Silver Creek. The existing topography of the western side of the site generally slopes west toward Naomi Street and a wetland in the southwest corner of the property.

The existing site contains approximately 10.54 acres of impervious area within the limit of disturbance, which consists of the existing high school, parking lots, drive aisles, sidewalks, track and softball infield mix. The remaining portions of the site are grass, woods, and wetlands. The existing surface covers were modeled as-is in the hydrologic analysis.

Stormwater from the existing site ultimately flows to 6 design points: "DP 1.1 Culvert 1", "DP 1.2 Culvert 2", "DP 1.3 Culvert 3", "DP 1.4 Silver Creek East Branch", "DP 2.1 West Wetland", "DP 2.2 Silver Creek West Branch".

Design point "DP 1.1 Culvert 1" is located to the east of the project area northeast of the existing school upstream of the northernmost culvert. Runoff reaches this design point via overland flow.

Design point "DP 1.2 Culvert 2" is located to the east of the project area within the footprint of the existing school building. The design point is located upstream of the second culvert. Runoff reaches this design point via overland flow.

Design point "DP 1.3 Culvert 3" is located to the center of the project area west of the school. The design point is located upstream of the third culvert. Runoff reaches this design point via a piped network and overland flow. Design point "DP 1.4 Silver Creek East Branch" is located to the south of the project area at the entrance to the culvert beneath Chestnut Street. Runoff reaches this design point via a piped network and overland flow.

Design point "DP 2.1 West Wetland" is located within the wetland west of the project area. Runoff reaches this design point via a piped network and overland flow.

Design point "DP 2.2 Silver Creek West Branch" is located at the southwest corner of the property where the wetland outlets to the public drainage system. Runoff reaches this design point via a pipe network and overland flow.

Under existing conditions, 11 subwatersheds were analyzed, EDA-1.1A, EDA-1.2A, EDA-1.3A, EDA-1.4A, EDA-1.4B, EDA-1.4C, EDA-1.4D, EDA-2.1A, EDA-2.1B, EDA-2.2A, and EDA-2.2B. Sheet XBT-1 included in Appendix D depicts the limits of the existing conditions hydrology.

EDA-1.1A is comprised of grassed and wooded area and a wetland, at the northwest of the property. Runoff flows toward the wetland and Silver Creek. EDA-1.1A contributes to Design Point "DP-1.1 Culvert 1"

EDA-1.2A is comprised of roof cover, grassed area, and a portion of Silver Creek, at the east of the property. Runoff flows north toward the culvert. EDA-1.2A contributes to Design Point "DP-1.2 Culvert 2"

EDA-1.3A is comprised of roof cover, paved parking, grassed area and a portion of Silver Creek, at the center of the property, west of the existing school building. Runoff flows southwest toward the culvert. EDA-1.3A contributes to Design Point "DP-1.3 Culvert 3"

EDA-1.4A is comprised of roof cover, grassed area, and paved parking, at the southeast of the property. Runoff flows toward catch basins where it is piped toward Silver Creek. EDA-1.4A contributes to Design Point "DP-1.4 Silver Creek East Branch"

EDA-1.4 B, C, & D are comprised of roof cover, paved parking, and grass cover, at the center and southern end of the property. Runoff flows overland toward Silver Creek. EDA-1.4 B, C, & D contributes to Design Point "DP-1.4 Silver Creek East Branch"

EDA-2.1A is comprised of grass cover, an asphalt walkway and athletic facilities at the north of the property. Runoff flows are captured in a pipe network or flows overland to an existing detention basin. The detention basin is modeled as Pond1P. The dimensions modeled were based upon recent field survey and the 2015 stormwater report from the "Mt. Hope High School Athletic Fields Drainage Improvement" project, RIDEM application no.10-0119. EDA-2.1A contributes to Design Point "DP-2.1 West Wetland"

EDA-2.1B is comprised of grassed cover and impervious cover from the existing track, at the center of the property. Runoff flows west toward the existing football field where it is captured and piped to the design point. EDA-2.1B contributes to Design Point "DP-2.1 West Wetland"

EDA-2.2A is comprised of grassed area and paved roadway, at the west of the property. Runoff flows overland toward the existing drainage system in the road. EDA-2.2A contributes to Design Point "DP-2.2 Silver Creek West Branch"

EDA-2.2B is comprised of roof cover, paved parking, grassed and wooded area, and an existing wetland, at the southwest of the property. Runoff flows overland toward the design point. EDA-2.2B contributes to Design Point "DP-2.1 West Wetland"

PROPOSED CONDITIONS

The proposed improvements include the construction of a new high school building with a total GFS of approximately 168,364 square feet. Exterior site improvements include parking lots, paved walks, access drives, new athletic fields, utility connections, and stormwater management areas. The proposed condition has approximately 12.54 acres of impervious surface within the limit of disturbance, resulting in a net increase of 2.00 acres of impervious area. These impervious surfaces include the building, parking areas, drive aisles, track, synthetic turf. The project is also proposes softball and athletic fields that include an infield mix and warning tracks which is approximately 1.10 acres of compacted material.

The proposed building is located northwest of Silver Creek outside the 100-yr floodplain per the 2014 effective floodplain limits. The building finished floor elevation is set at elevation 62.9 with a small southern section set at elevation 60.9. These elevations are above the flood elevation depicted on available FEMA mapping.

Parking is located north, west, and east of the building. Athletic fields surround the school building to the north, west, and east. To the south of the building is Silver Creek.

The proposed project will require stormwater management systems to handle the increase in stormwater runoff and pollutant loading to the discharge points. Stormwater best management practices are located throughout the site to treat stormwater as close to the source as practicable. All new stormwater collection, storage, and treatment systems are designed in accordance with the Stormwater Management, Design, and Installation Rules (250-RICR-150-10-8), *State of Rhode Island Storm Water Design and Installation Standards Manual* prepared by the Rhode Island Department of Environmental Management (RIDEM) dated December 2010 and amended March 2015. Pre-development runoff rates will be maintained and released into existing drainage paths downstream of proposed improvements. Runoff from proposed impervious areas will be treated prior to leaving the site.

The grading scheme is designed to shed water as in the existing conditions to the maximum extent possible. Grades generally slope away from the building to protect the building from

stormwater runoff. Stormwater management and grading schemes were also designed to minimize impacts to the floodplain to the maximum extents practicable.

The proposed stormwater management system utilizes a combination of low-impact development (LID) design strategies and stormwater best management practices (BMP's) for conveyance, treatment and recharge of stormwater. The stormwater management system captures overland flow with either yard drains, area drains, or catch basins and conveys runoff through a closed drainage network to BMP's. The stormwater best management practices include sediment forebays, bioretention areas, sand filters, a wet swale, an infiltration basin, an underground infiltration system, and detention basins. Where feasible, sidewalks and athletic site features were designed to sheet flow across grassed areas for treatment as a qualifying pervious area (QPA).

Grading within the 100-year floodplain was minimized and includes construction of a stormwater best management practice, removal of an existing building, and establishment of a natural vegetated area. The 100-year floodplain was assessed to avoid impacts to the floodplain. Compensatory storage volume calculations are depicted in the table below:

Stage Elevation	Existing Available Storage Volume	Proposed Available Storage Volume	Delta
58-59	85 CY	87 CY	+2 CY
59-60	1,343 CY	1,343 CY	0 CY
60-61	2,683 CY	3,677 CY	+994 CY

The application does not include work within wetlands or within Silver Creek to minimize impact to resource areas. Existing culverts along Silver Creek are designated to remain. Site features and portions of the existing building above the culverts will be demolished. Walls forming the bank of Silver Creek will remain. Site improvements over the existing culverts include a paved access drive, guardrail, walks, and fencing. These improvements are designed to avoid impacts on Silver Creek.

The existing upstream culvert will remain following removal of the school. The grades will be lowered slightly to reduce the potential to impact upstream areas. Riprap is proposed over this culvert and the channel sides to reduce the potential for erosion during large storm events.

Several 48" diameter reinforced concrete culvert pipes are proposed upstream of the second and third culverts along Silver Creek. The inlet invert of these pipes is set four feet above the invert of the existing 48" culverts (same elevation as the crown of existing 48" culverts). The proposed pipes are not designed to alter or impact flow through Silver Creek under normal conditions. During large storm events where flow within Silver Creek may exceed the capacity of the existing culverts, the proposed piping will provide a route for water to bypass the downstream culverts and Silver Creek and reduce potential for on-site flooding. The bypass pipes discharge to the pond downstream. Flared end sections and riprap level spreaders are provided to promote sheet flow at the outlets and reduce the potential for erosion. The bypass pipes are proposed to minimize impacts and reduce the potential for flooding over the new roadway and the walk proposed over the existing culverts.

Under proposed conditions, the site was divided into a total of 27 subwatersheds: PDA 1.1A, PDA 1.1B, PDA 1.2A, PDA 1.3A, PDA 1.3C, PDA 1.3D, PDA ROOF 1.3, PDA 1.4A, PDA 1.4B, PDA 1.4C, PDA 1.4D, PDA 1.4E, PDA 1.4F, PDA 1.4G, PDA 1.4H, PDA 1.4I, PDA 1.4J, PDA 1.4K, PDA 1.4L, PDA ROOF 1.4, PDA 2.1A, PDA 2.1B, PDA ROOF 2.1, PDA 2.2A, PDA 2.2B, PDA 2.2C.a, and PDA 2.2C.b. The subwatersheds are depicted in XBT-2 which is included in Appendix D.

PDA-1.1A consists of athletic site features, athletic track material, grass area, woods, wetlands, and a portion of Silver Creek. Runoff from this drainage area flows overland to Design Point "DP 1.1 Culvert 1."

PDA-1.1B consists of athletic track material and grass area. Runoff from this drainage area flows overland to Design Point "DP 1.2 Culvert 2."

PDA-1.2A consists of paved parking, grass cover, and a portion of Silver Creek. Runoff from this drainage area flows overland to Design Point "DP 1.3 Culvert 3."

PDA-1.3A consists of grass area and paved parking. Runoff from this drainage area flows overland to the Wet Swale where it is treated, then is piped to Detention Basin 2. PDA-1.3A contributes to Design Point "DP1.4 Silver Creek East Branch". The emergency riprap spillway for the Wet Swale contributes to Design Point "DP 1.1 Culvert 1."

PDA-1.3C & D consists of paved parking and grass area. Runoff from this drainage area flows overland to Bioretention areas 3 & 4 respectively. PDA-1.3C & D contributes to Design Point "DP1.4 Silver Creek East Branch".

PDA-ROOF 1.3 consists of roof cover. Runoff from this drainage area is piped into Bioretention area 3 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4A consists of athletic site features, sidewalks, athletic track material and grass cover. Runoff from this drainage area flows overland to Sand Filter 4 and contributes to Design Point "DP 1.2 Culvert 2."

PDA-1.4B consists of paved parking and grass cover. Runoff from this drainage area is captured and piped to Diversion structure 2 and then to Sand filter 2. PDA-1.4B contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4C consists of paved parking and grass cover. Runoff from this drainage area flows overland to Bioretention Area 2 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4D consists of paved parking and grass cover. Runoff from this drainage area is captured and piped to Bioretention area 1 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4E consists of paved parking and grass area. Runoff from this drainage area flows overland to Sand Filter 2 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1F, J, & L consists of paved parking and grass cover. Runoff from this drainage area flows overland to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4G consists of paved parking and grass. Runoff from this drainage area flows overland to Sand Filter 3 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4H consists of paved parking and grass cover. Runoff from this drainage area flows overland to Detention Basin 2 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4I and PDA ROOF 1.4 of paved parking, foor cover, and grass area. Runoff from this drainage area is piped to Infiltration Basin 1 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-1.4K consists of paved parking and grass area. Runoff from this drainage area flows overland to Sand Filter 5 and contributes to Design Point "DP1.4 Silver Creek East Branch."

PDA-2.1A & PDA-ROOF 2.1 consists of athletic site features, athletic track materials, paved parking, roof cover, and grass area. Runoff from this drainage area is captured and piped to Sand Filter 1 and overflows toward Detention Basin 1. These PDAs contribute to Design Point "DP2.1 West Wetland."

PDA-2.1B consists of paved parking and grass cover. Runoff from this drainage area is captured and piped toward Detention Basin 1. PDA -2.1B contributes to Design Point "DP2.1 West Wetland."

PDA-2.2A consists of paved parking, grass area, and woods. Runoff from this drainage area flows overland to Design Point "DP2.2 Silver Creek West Branch."

PDA-2.2B consists of paved parking, grass area, and woods. Runoff from this drainage area flows overland to Design Point "DP2.1 West Wetland."

PDA-2.2C.a & PDA-2.2C.b consists of the synthetic turf athletic field and track. Runoff from this drainage area is captured and piped to UGIS-1 and contributes Design Point "DP2.1 West Wetland."

STORMWATER MANAGEMENT STANDARDS

The stormwater management system is designed to meet the 11 Minimum Standards of the RISDISM. The Stormwater Checklist has been completed and is included in Appendix C. The following sections describe the approach to meeting the requirements for each Minimum Standard.

Minimum Standard 1: LID Site Planning and Design Strategies

The use of Low Impact Development (LID) techniques to treat, infiltrate, and reduce the stormwater runoff at the site were incorporated wherever possible. Localized small BMPS such as bioretention areas, sand filters, infiltration basins and wet swales are provided along with QPAs at or as close to the source as practicable to provide recharge, filtration, and water quality treatment.

The QPAs are proposed adjacent to the new impervious areas to treat stormwater runoff. The width of the QPA is equivalent to the width of the contributing impervious area and the slope across the QPA is limited to less than 5%. This area is modeled in the hydrologic model as unconnected pavement.

Minimum Standard 2: Groundwater Recharge

Minimum Standard 2 is met by providing QPAs, two bioretention areas, and four sand filters, an infiltration basin and an underground infiltration system that infiltrate runoff. Refer to Recharge Calculation in Appendix C and description in Minimum Standard 3.

Minimum Standard 3: Water Quality

The proposed bioretention areas, sand filters, infiltration basins, underground infiltration system, wet swale, and QPAs are designed to provide water quality treatment to runoff collected from upstream impervious surfaces to the maximum extents practicable while maintaining existing drainage patterns. The stormwater BMP's were designed in accordance with the RISDISM requirements to remove total suspended solids and other pollutants from the stormwater runoff. See Appendix C for calculations for the stormwater facilities.

Bioretention Area with Underdrain

The bioretention areas have been designed in accordance with RIDEM Standards to promote water quality. The bioretention areas include filter media with a mulch upper layer, vegetated side slopes, a raised outlet, and spillway. Stormwater is piped to the sediment forebay, which provides pretreatment, prior to entering the bioretention area. An impermeable liner with a stone layer and perforated underdrain is placed under the filter media to discharge the treated water for Bioretention Area-02 and Bioretention Area-03. The liner is provided because the minimum separation to groundwater is not provided. The raised outlet is elevated to store the water quality volume for 24-hours while it slowly drains through the underdrain system following the storm event. Any excess stormwater that enters the bioretention area will overflow into the catch basin and discharge into the drainage network.

Bioretention Area with Exfiltration

The bioretention areas have been designed in accordance with RIDEM Standards to promote water quality. The bioretention areas include filter media with a mulch upper layer, vegetated side slopes, a raised catch basin, and spillway. Stormwater is piped to the sediment forebay, which provides pretreatment, prior to entering the bioretention area. The outlet is elevated to exfiltrate the entire water quality volume through the surrounding soils for Bioretention Area-01 and Bioretention Area-04. Excess stormwater that enters Bioretention-04 during larger storm events will overflow into the catch basin and discharge into the drainage network. Bioretention Area-01 is designed offline with diversion structures upstream for larger storm events to bypass the BMP.

Per the RISDISM, exfiltration through the soils observed on-site would be modeled with a Rawls Rate of 1.02 in/hr (C Soils) or 0.27 in/hr (D Soils). In an effort to be conservative, an infiltration rate of 0.27 in/hr was used to model exfiltration from all BMP's that exfiltrate to existing soils.

Sand Filters with Underdrain

The sand filters have been designed in accordance with RIDEM Standards to promote water quality, exfiltration, and recharge. The sand filter includes a vegetated bottom, 36" deep layer of ASTM C-33 sand, vegetated side slopes, a raised catch basin, and spillway. Stormwater is piped to the sediment forebay, which provides pretreatment, prior to entering the sand filter. An impermeable liner with a stone layer and perforated underdrain is placed under the filter media to

discharge the treated water for Sand Filter-04. The liner is provided because the minimum separation to groundwater is not provided. The catch basin outlet is elevated to store the water quality volume for 24-hours while it slowly drains through the underdrain system following the storm event. Any excess stormwater that enters Sand Filter-04 will overflow into the catch basin and discharge into the drainage network.

Sand Filters with Exfiltration

The sand filters have been designed in accordance with RIDEM Standards to promote water quality, exfiltration, and recharge. The sand filter includes a vegetated bottom, 36" deep layer of ASTM C-33 sand, vegetated side slopes, a raised catch basin, and spillway. Stormwater is piped to the sediment forebay, which provides pretreatment, prior to entering the sand filter. The catch basin outlet is elevated to exfiltrate the entire water quality volume through the surrounding soils for Sand Filters 1, 2, 3 and 5. Excess stormwater that enters Sand Filter-03, and Sand Filter-05 during larger storm events will overflow into the catch basin and discharge into the drainage network. Sand Filter-01 and Sand Filter-02 are designed offline with diversion structures upstream for larger storm events to bypass the BMP.

Design infiltration rate for ASTM C-33 sand is 8.27 in/hr. Considering the presence of silt loam in the "C" horizon soils, an infiltration rate of 0.27 in/hr was used for conservative measures.

Infiltration Basin

The infiltration basin has been designed in accordance with RIDEM Standards to promote water quality, exfiltration, and recharge. The infiltration basin is sized to infiltrate the water quality volume from upstream impervious areas. The outlet structure is elevated to exfiltrate the entire water quality volume through the surrounding soils. A 10' long subdrain with valve is provided within Infiltration Basin-01 for maintenance needs only. The valve will remain closed per section 5.3 of the RISDISM. A riprap spillway is provided for large storm events. The bottom of the infiltration basin is set in native soils and a minimum of 36" from the estimated seasonal high groundwater table or limiting layers. With the presence of silty loam soils, an infiltration rate of 0.27 in/hr was used for conservative measures.

Mt. Hope High School

Stormwater Management Report

Underground Infiltration System

The underground infiltration system (UGIS) has been designed in accordance with RIDEM Standards to promote water quality, and recharge. The UGIS is sized to infiltrate the water quality volume based on upstream impervious areas.

The bottom of the underground infiltration system is set in native soils, and a minimum of 36" from the estimated seasonal high groundwater table. Considering the presence of silt loam, an infiltration rate of 0.27 in/hr was used for conservative measures.

UGIS-01 has been designed to infiltrate the synthetic turf field impervious surface to provide water quality treatment. The synthetic turf field profile includes dual 15" HDPE pipes embedded within crushed stone reservoir to provide storage for the athletic field prior to entering the UGIS system. Larger stormwater events will bypass the UGIS system via a diversion structure upstream of the system. A pretreatment row is not provided for the UGIS system due to the UGIS's design intention to treat only the synthetic turf field with no other contributing drainage areas. Due to the infiltration practice being within 50 feet of a slope greater than 15%, a 40 mil PVC liner is proposed to limit potential for horizontal seepage. The liner will be installed along the southern and western boundaries of the underground system to prevent water seepage against the 3:1 slope.

Wet Swale

The wet swale along the east parking lot has been designed in accordance with the RISDISM to treat runoff for water quality requirements. The wet swale includes a 12" deep bioretention soil bed with a crushed stone sump. Soil media shall meet the specifications outlined for bioretention media to include a well-aged leaf compost per the RISDISM section 5.7.4. This wet swale also includes a sediment forebay and check dams along the length of the swale to pretreat runoff from the roadway prior to entering the wet swale. Due to the presence of high groundwater within the northeast portions of the site, a modified wet swale is proposed to allow for limited recharge during the dry seasons while still providing water quality treatment through surface water ponding via overflow structure to the maximum extent practicable.

Minimum Standard 4: Conveyance and Natural Channel Protection

The new stormwater conveyance system has been designed to convey the runoff from the 25-year design storm event in accordance with general engineering practice. Refer to Appendix B Hydraulic Design Calculations.

Extended Detention Basin

The extended detention basins include an outlet control structure within the berm and a riprap spillway. Generally, the riprap spillway will direct runoff from the extended detention basins during events greater than the 100-year design storm. The extended detention basins will be vegetated with a grass mix capable of withstanding temporarily wet environments. The proposed detention basin does not discharge to a watershed draining to a cold-water fishery. Detention Basin -02 is within 20ft of a roadway structure, however a technical justification is requested based on the detention basin being designed with adequate maintenance access and protected via the proposed fence limits.

Detention Basin-01 and Detention Basin-02 are designed to retain the water quality volume and release it over a 24-hour period through a low flow orifice where the inflow in the 1-year design storm is greater than 2 cfs per the RISDISM. The low-flow orifice was designed in accordance with the RISDISM. Refer to the Channel Protection Volume calculations included in Appendix C.

Minimum Standard 5: Overbank Flood Protection

The existing and proposed hydrology was evaluated to determine the distribution of stormwater runoff to the design points. Hydrologic calculations were completed to confirm that the post-development runoff conditions are similar to pre-development conditions and that there are no significant changes to runoff directed to the design points. Hydrologic calculations were also completed to evaluate the performance of the bioretention areas, sand filters, infiltration basins, underground infiltration systems, and wet swales during the design storm events. The hydrologic model shows a decrease in the peak flow rate and volumes discharged to the East and West Branches of the Silver Creek Watersheds for the 1-year, 2-year, 10-year, 25-year and 100-year storms. The table below provides a summary of the peak flow rates for the existing and proposed conditions at each design point.

Table 2: Peak Flow Rate (CFS)											
DESIGN POINTS	1-YEAR	2-YEAR	10-YEAR	25-YEAR	100-YEAR						
DP1.1 Silver Creek East-Culvert 1 Existing	8.83	12.03	23.08	31.76	50.14						
DP1.1 Silver Creek East- Culvert 1 Proposed	7.45	10.49	21.30	29.98	48.60						
Change	-1.38	-1.54	-1.78	-1.78	-1.54						
DP1.2 Silver Creek East-Culvert 2 Existing	9.87	13.32	25.17	34.45	54.13						
DP1.2 Silver Creek East- Culvert 2 Proposed	8.28	11.53	23.10	33.70	55.08						
Change	-1.59	-1.79	-2.07	-0.75	0.95						
DP1.3 Silver Creek East-Culvert 3 Existing	10.22	13.76	25.92	35.43	55.59						
DP1.3 Silver Creek East- Culvert 3 Proposed	8.65	12.03	24.04	34.91	57.19						
Change	-1.57	-1.73	-1.88	-0.52	1.60						
DP1.4 Silver Creek East- Culvert 4 Existing	25.70	33.34	58.84	78.39	119.32						
DP1.4 Silver Creek East- Culvert 4 Proposed	16.61	23.76	50.36	69.22	116.11						
Change	-9.09	-9.58	-8.48	-9.17	-3.21						
DP2.1 Silver Creek West Branch Existing	6.84	10.01	20.21	28.99	60.35						
DP2.1 Silver Creek West Branch Proposed	3.26	7.34	20.08	28.72	59.90						
Change	-3.58	-2.67	-0.13	-0.27	-0.45						
DP2.2 Silver Creek West Branch Existing	10.53	15.28	30.43	43.16	78.59						
DP2.2 Silver Creek West Branch Proposed	4.61	8.94	24.73	35.89	71.29						
Change	-5.92	-6.34	-5.70	-7.27	-7.30						

 Table 2: Peak Flow Rate (CFS)

Table 3: Peak Volumes (CF)

	(-)	
DESIGN POINTS	1-YEAR	10-YEAR
DP1.4 Silver Creek East Branch Total Existing	130,468	300,035
DP1.4 Silver Creek East Branch Total Proposed	91,420	247,820
Change	-39,048	-49,067
Percent Reduction	30%	17%
DP2.2 Silver Creek West Branch Total Existing	68,970	194,326
DP2.2 Silver Creek West Branch Total Proposed	61,638	190,084
Change	-7,332	-4,242
Percent Reduction	10%	2%

While there is a slight increase in the peak flow rates at DP1.2- Silver Creek East -Culvert 2 and DP1.3- Silver Creek East -Culvert 3 for the 100-year storm, the increase in peak flows at this location is negligible due to the upstream and downstream flow rate reductions.

Minimum Standard 6: Redevelopment and Infill Projects

The Water Quality Volume Calculation worksheet provided in Appendix C identifies the project as a new development due to the property being slightly less than<40% for impervious area. Per the RISDISM regulations this project does not qualify as a Redevelopment Project per Section 3.2.6 of the RISDISM. However, the existing condition for the property includes significant impervious surface that is untreated that discharges to the natural resources. This project provides a significant improvement for water quality treatment, ground water recharge and peak flow rate reduction compared to the existing condition while maintaining the existing drainage patterns and providing water quality treatment to the maximum extents practicable for the proposed impervious areas.

Minimum Standard 7: Pollution Prevention

A Long Term Pollution Prevention Plan is included under separate cover.

Minimum Standard 8: Land Uses with a Higher Potential Pollutant Load (LUHPPL)

This minimum standard is not applicable to the project as land use is not considered a LUHPPL.

Minimum Standard 9: Illicit Discharges

There are no illicit discharges proposed to the stormwater management system in accordance with State regulations.

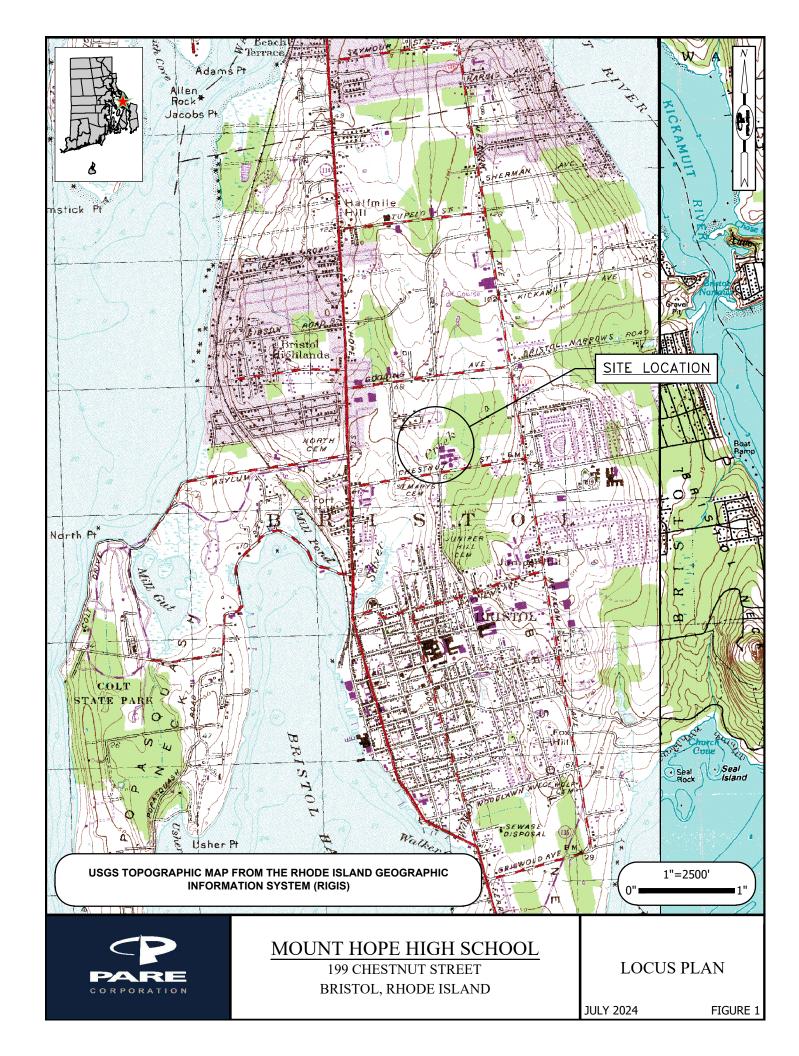
Minimum Standard 10: Construction Erosion and Sedimentation Control

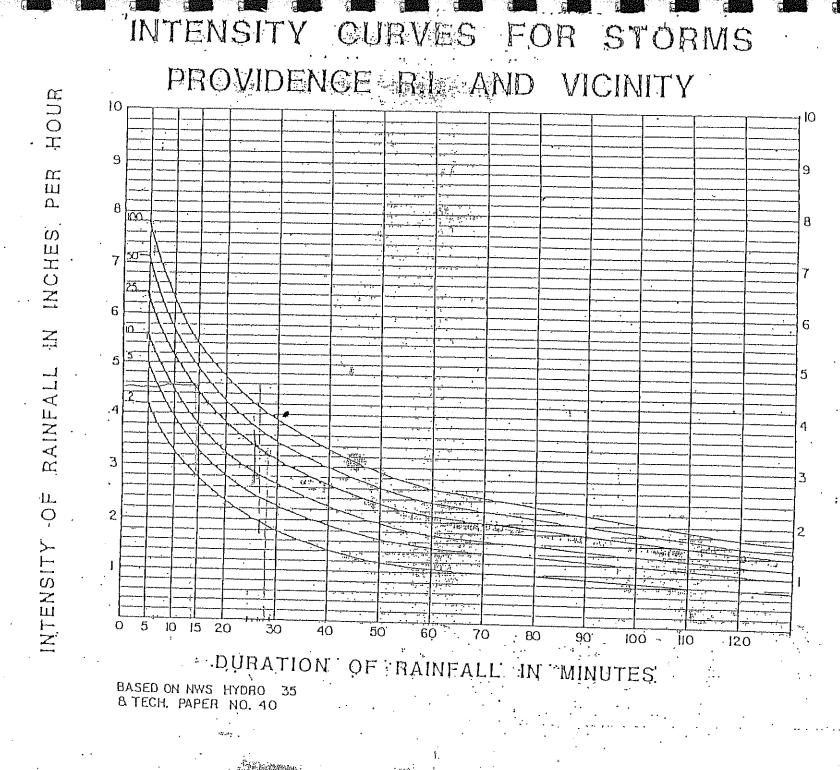
A Soil Erosion and Sediment Control Plan (SESC) plan was prepared to demonstrate which practices will be used to minimize land disturbance and conveyance. This report is included under separate cover.

Minimum Standard 11: Stormwater Management System Operation and Maintenance (O&M)

A Stormwater Management Operation and Maintenance plan was prepared to address routine upkeep tasks for maintaining the stormwater management system per the RISDISM and the Town of Bristol's Code of Ordinances. This report is included under separate cover.

CONCLUSION


In conclusion, the proposed development meets the 11 Minimum Standards as required by RIDEM. The stormwater management system provides reductions in peak runoff rate within the hydrologic analysis area for the design storm events evaluated to improve existing conditions. The stormwater management system has also been designed to provide groundwater recharge and promote total suspended solids removal and to improve the overall water quality to downstream resources and offsite areas.

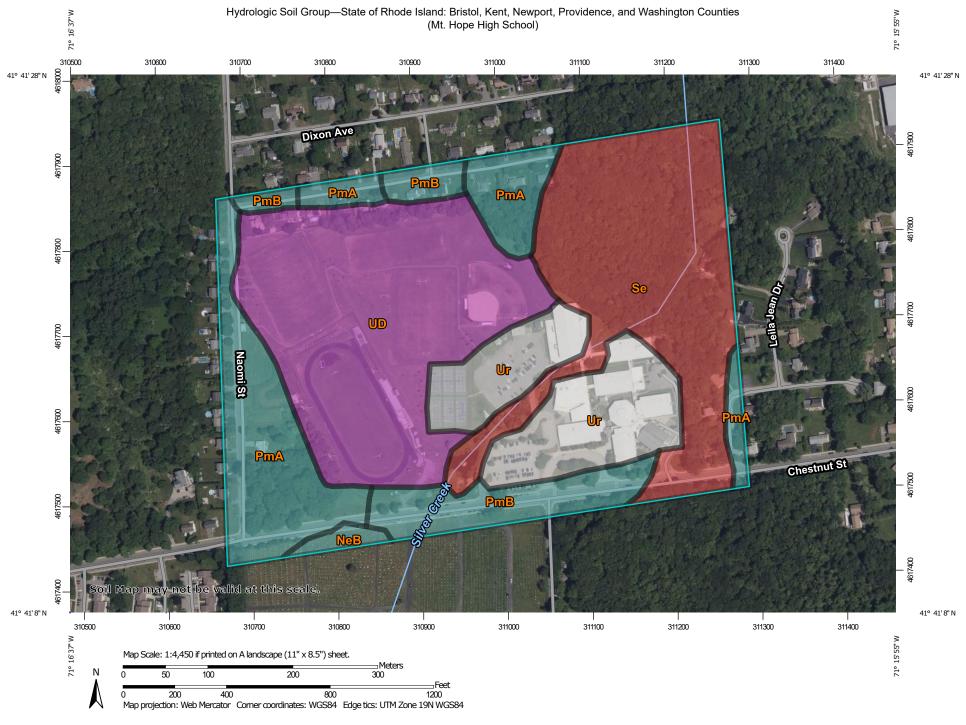

Impact to areas upstream from the removal of the existing school and installation of the new culverts is minimal. The project increases storage volume within the floodplain upstream of the school, provides bypass piping to route flow during large storm events to the pond below. Impact to downstream areas is improved through the reduction in stormwater volume and peak flow rate provided by the proposed stormwater management system.

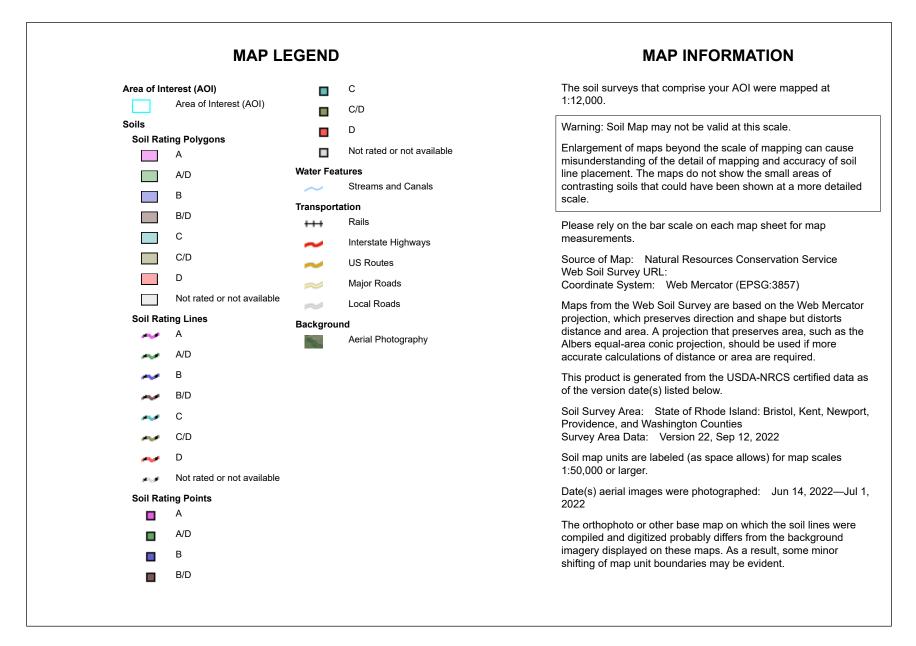
Bristol Warren Regional School District MT. HOPE HIGH SCHOOL

APPENDIX A

Site Location Map Rainfall IDF Curve for RI FEMA Firmette Soils Map Test Pit Logs

National Flood Hazard Layer FIRMette


71°16'35"W 41°41'31"N


Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas 61 FEET of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X C OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D Zone AE NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D 4001C0011 - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 7/2014 60 FEE 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation Town of Bristol **Coastal Transect** Mase Flood Elevation Line (BFE) 445393 Limit of Study AREA OF MINIMAL FLOOD HAZARD Jurisdiction Boundary Zone X **Coastal Transect Baseline** OTHER Profile Baseline FEATURES 37/FEET Hydrographic Feature **Digital Data Available** 35 FEET No Digital Data Available MAP PANELS Unmapped Zone AE A-41.8 FEETET The pin displayed on the map is an approximate point selected by the user and does not represent 4 an authoritative property location. 30 FEET This map complies with FEMA's standards for the use of EET digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap EFT accuracy standards The flood hazard information is derived directly from the 44001C0014H authoritative NFHL web services provided by FEMA. This map was exported on 12/19/2024 at 10:22 PM and does not 201 reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 71°15'57"W 41°41'4"N Feet 1:6,000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

Basemap Imagery Source: USGS National Map 2023

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
NeB	Newport silt loam, 3 to 8 percent slopes	С	0.6	0.9%
PmA	Pittstown silt loam, 0 to 3 percent slopes	С	11.5	17.6%
PmB	Pittstown silt loam, 3 to 8 percent slopes	С	5.4	8.3%
Se	Stissing silt loam	D	17.6	27.0%
UD	Udorthents-Urban land complex	A	20.4	31.3%
Ur	Urban land		9.7	14.9%
Totals for Area of Inter	est		65.3	100.0%

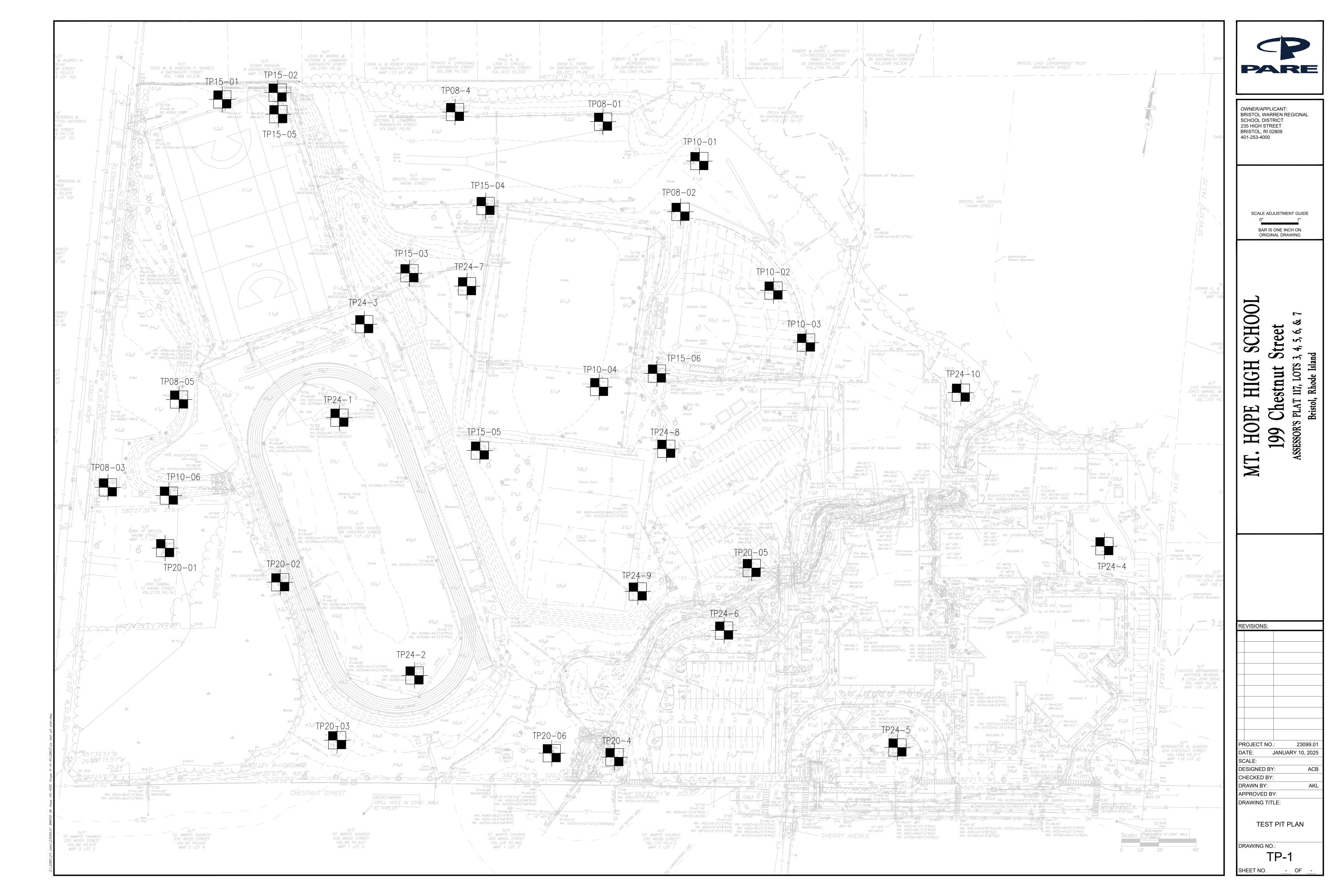
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

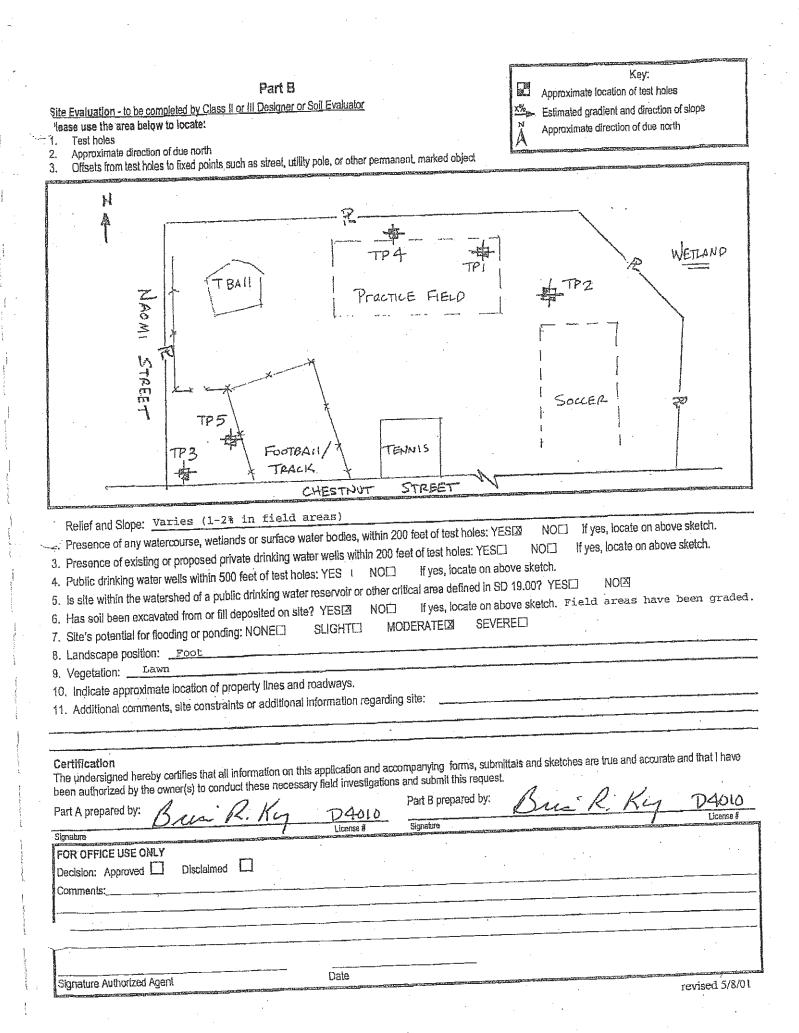
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS

Department of Environmental Management Office of Water Resources



PAGE 1 OF 3

Site Evaluation Form

. O. ... Marshan

			del deb			Profile Description				
Property Ov	vner: <u>Mt</u>	. Hope H	it etra	et. Brist	ol/ RI				-	
		-17-08								
Date of Tes Soll Evaluat		King		······································		······································	License Nu	mber. D4	010	
							_Shaded: Yes	No	Time: 9:00-	12:00
Weather:							THAT THE REAL PROPERTY AND IN THE REAL PROPERTY AND INTERPOPERTY AND INTERPOP			
TH_1_		Horizon Bo	oundaries	Soil C		Re-Dox Description	Tanakuma	Structure	Consistence	Soll Category
Horizon	Depth (inches)	Dist	Торо	Matrix	Re-Dox Features	Ab. S. Con.	Texture	Silucture	building	
7	0-3			10ÝR 3/3			fsl	gr	fr	
Ap C	3-7	с	W	2.5¥			vfsl	Om	fr	. par en tes
HTM Cdl	7-42	c	W	4/3 2.5Y	10YR	cfp	gsil/	Om	fi/vfi	9
Cui		_		4/2	4/6		gvfsl			
Cd2	42-80	с	W	2.5Y 3/1	10YR 4/6	cfp	sil (some st)	Om	vfi	9
· ·			1.	•						
TH_2						Re-Dox Description			1	Soll
		Horizon B	oundaries	Soll	Colors			Cimohum	Consistence	Category
Horizon	Depth	<u>Horizon B</u> Dist	oundaries Topo	Matrix	Re-Dox Features	Ab. S. Con.	Texture	Structure	Consistence	Category
Horizon	Depth (inches)		oundaries Topo	Matrix 10YR	Re-Dox		Texture fsl	Structure	Consistence fr	Category
Horizon Ap	Depth		oundaries Topo	Matrix 10YR 3/3	Re-Dox	Ab. S. Con.			fr	Category
Ap C	Depth (inches)		oundaries Topo	Matrix 10YR	Re-Dox	Ab. S. Con.				Category
Horizon Ap	Depth (inches) 0-3	Dist	Торо	Matrix 10YR 3/3 2.5Y 4/3 2.5Y	Re-Dox Features	Ab. S. Con.	fsl	gr	fr	Category
Horizon Ap C HTM Cdl.	Depth (inches) 0-3 3-14 14-42	Dist	ν	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 sil	gr Om	fr fr	
Horizon Ap C HTM	Depth (inches) 0-3 3-14	Dist C C	Τορο W W	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsil/ gvfs1	gr Om Om	fr fr fi/vfi	9
Horizon Ap C HTM Cdl.	Depth (inches) 0-3 3-14 14-42	Dist C C	Τορο W W	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 sil	gr Om Om	fr fr fi/vfi	9
Horizon Ap C HTM Cdl.	Depth (inches) 0-3 3-14 14-42	Dist C C	Τορο W W	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 sil	gr Om Om	fr fr fi/vfi	9
Horizon Ap C HTM Cdl Cd2	Depth (inches) 0-3 3-14 14-42 42-92	Dist C C	Τορο W W	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y 3/1	Re-Dox Features	Ab. S. Con.	<pre>fs1 vfs1 gsi1/ gvfs1 si1 (some st)</pre>	gr Om Om On	fr fr fi/vfi vfi	9
Horizon Ap C HTM Cdl. Cd2	Depth (inches) 0-3 3-14 14-42 42-92	Dist C C	Τορο W W	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y 3/1	Re-Dox Features 10YR 4/6 10YR 4/6	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 si1 (some st)	gr Om Om Om 80 */5	fr fr fi/vfi vfi.	9
Horizon Ap C HTM Cdl. Cd2	Depth (inches) 0-3 3-14 14-42 42-92	Dist C C	Τορο ₩ ₩ ₩	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y 3/1 0lated)/4	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 si1 (some st)	gr Om Om Om 80 */5	fr fr fi/vfi vfi.	9
Horizon Ap C HTM Cdl. Cd2 Cd2 Soil Class: pth to G	Depth (inches) 0-3 3-14 14-42 42-92 42-92 Lodgeme	Dist C C C C Seepage.	Τορο ₩ ₩ ₩	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y 3/1 0lated)/4	Re-Dox Features	Ab. S. Con.	fs1 vfs1 gsi1/ gvfs1 sil (some st) eachTest Hole: rvious or Limitin	gr Om Om Om 80 */5	fr fr fi/vfi vfi.	9
Horizon Ap C HTM Cdl. Cdl Cd2 Soil Class: .pth to G Estimated	Depth (inches) 0-3 3-14 14-42 42-92 42-92 Lodgeme Groundwater Seasonal Hi	Dist C C C C Seepage: gh Water T	Topo W W W 	Matrix 10YR 3/3 2.5Y 4/3 2.5Y 4/2 2.5Y 3/1 0lated)/4 1"(1)/	Re-Dox Features 10YR 4/6 10YR 4/6 10YR 4/6 	Ab. S. Con.	fs1 vfs1 gsil/ gvfs1 sil (some st) eachTest Hole: rvious or Limitin	gr Om Om Om Om B0"/S gLayer:N	fr fr fi/vfi vfi 02* A / NA	9

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS Department of Environmental Management

Office of Water Resources

PAGE 2 OF 3

Application Number

Site Evaluation Form Part A - Soil Profile Description

Mt. Hope High School Property Owner: 199 Chestnut Street, Bristol, RI Property Location: _ Date of Test Hole: _ 11-17-08 D4010 License Number: Soil Evaluator. B. King Time: 9:00-12:00 Shaded: Yes No 🖾 46° Weather: _ Soll **Re-Dox Description** Soil Colors Horizon Boundaries Category Consistence TH_3 Texture Structure Con. S. Re-Dox Ab. Matrix Торо Dist Horizon Depth Features

	(inches)				reatures		And in case of the local data		1	
. Ар	0-8			10YR 3/1			fsl	gr	fr	
C HTM	8-18	C	W	2.5¥ 4.2	10YR 4/6	cfp	gsil/ gvfsl	Om	fi/fr	· · · ·
Cl.	18-60	C	W	2.5Y	2.5Y 5/2 10YR 5/6	ппр	vfsl	.Om	fr/fi	8
Cd2	60-88	C	W	2.5¥ 3/1	10YR 4/6 ·	cfp	sil (some st)	Om .	vfi	9
		و								
T										
TH_4 Horizon	Depth (inches)	Dist	Boundaries Topo	Soil Matrix	Colors Re-Dox Features	Re-Dox Description Ab. S. Con.	Texture	Structure	Consistence	Soil Category
Ар	0-3			10YR 3/3		L	fsl	gr	fr	
C	3-9	с	w	2.5¥ 4/3			vfsl	Om	fr	
HTM C HTM	9-18	с	W	2.5Y 4/2	10YR 4/6	ffp	gsil/ gvfs	Om	fi	
Cdl	18-60	c	W	2.5¥ 4/3	10YR 4/6	cmp	sil (some st)	Om :	£i	9
Cd2	60-100	с	w	2.5Y 4/2	10YR 4/6	cmp	gsil (some st)	Om	fi	9
	Lodgem)"		Total Depth o	f eachTest Hole ervious or Limiti	e: 88 • / 1 ng Layer: 1	.00* JA / NA	<u></u>

pth to Groundwater Seepage: _____44"/30" Estimated Seasonal High Water Table: 18" (3) / 18" (4)

Comments:

Note: (3) Perched GWF from 8"-18" / (4) Perched GWF from 9"-18" Note: Redox features indicate soil remains wet due to ESHWT and perched condition.

Site Evaluation - to be completed by Class II or III Designer or S	oil Evaluator
please use the area below to locate:	<u>bit avaidatoi</u>
The state of the s	

Test holes Approximate direction of due north 3. Offsets from test holes to fixed points such as street, utility pole, or other permanent, marked object

Key: Approximate location of test holes N

Approximate direction of due north

		-		· · ·	
					· · · ·
		· .			
	FOR.	SKETCH, SEE PAGE	E 1 OF 3, PART	' B_	
					-
	•			н 1	
	с. 				
· · ·					
	an na mangan ng Kabupan na mangan ng Kabupang ng Kabupang na mangang ng Kabupang ng Kabupang ng Kabupang ng Ka Ng Kabupang ng K	an a			
1. Relief and Slope: Varies (1-2%) Presence of any watercourse, wetlands	·····				
 Has soll been excavated from or fill deport. Site's potential for flooding or ponding: N Landscape position: Foot 			on above sketch. □ EVERE⊡		ve been graded
9. Vegetation: Lawn	***************************************				· · · · · · · · · · · · · · · · · · ·
10. Indicate approximate location of proper	the lines and readwave				
 Additional comments, site constraints o 	•	ordina oito:			• • •
The Additional comments, Site Constraints of	a aonnoise naonnaran i cà	aronny site.		······	
······································	· · · · · · · · · · · · · · · · · · ·		•, • •,	· · · · · · · · · · · · · · · · · · ·	
Certification The undersigned hereby certifies that all inform been authorized by the owner(s) to conduct the		tions and submit this requ	iest	es are true and accura	ite and that I have
Part'A prepared by:	Kin DANO	Part B prepared by		0 11 -	
NACA N.	V TUPU		Dru,	K. KLJ	D4010
	License #	Signature	Dru,	K. Kij	DQUL 0 License #
FOR OFFICE USE ONLY	License #		Dru,	K. Kij	DAul o License#
FOR OFFICE USE ONLY	License #		Dru,	R. Kij	DAulo License#
FOR OFFICE USE ONLY C Decision: Approved Disclaimed	License #		Dru,	R. Kij	DAUL o License#
FOR OFFICE USE ONLY C Decision: Approved Disclaimed	License #		Dru,	R. Kij	DAul o License #
FOR OFFICE USE ONLY C Decision: Approved Disclaimed	License #		Dru,	R. Kij	DAUL o License#
FOR OFFICE USE ONLY	License #		Dru,	K. Kij	DAUL o License #
Signature FOR OFFICE USE ONLY Decision: Approved Disclaimed			Dru,	K. Kij	DAUL o License #

revised 5/8/01

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS

Department of Environmental Management

Office of Water Resources

PAGE 3 OF 3

				P		aluation Form Profile Descriptic	n App	lication Nun	nber	
Property O	wner:	Mt. Hop	e High So	chool						
					stol, RI					1
Date of Tes	st Hole:	11-17-0	8							
Soil Evalua	itor:	<u>B. King</u>					License I	lumber:	4010	
Weather: _		46°		<u> </u>		· · _ , , , , , , , , , , , , , , , , ,			Time: 9:00-	12:00
TH_5		Horizon	Boundaries	Soil Colors		Re-Dox Description		Manan Kanan dan Bangar Sana Angel		Soil
Horizon	Depth (inches	Dist	Торо	Matrix	Re-Dox Features	Ab. S. Con.	Texture	Structure	Consistence	Category
Ap	0-5			10YR 3/1			st fsl	gr	fr	
C HTM	5-9	с	W	2.5¥ 4/3		·	gvfsl	Om	fr	
Cl	9-31	с	W	2.5¥ 5/4	2.5¥ 5/2 10¥R 5/6	mmp	vfsl/ sil	Om	fr/fi	8
Cd2	31-88	C	W	2,5¥ 4/1	10YR 4/6	ffp	gvfs1 gsi1	Om	fi	9
										-
						,				<u></u>
TH Horizon	Depth	<u>Horizon E</u> Dist	Soundarles Topo	Soll Matrix	Colors Re-Dox Features	Re-Dox Description Ab. S. Con.	Texture	Structure	Consistence	Soll Category
										•
								· ·		
		****							·	
	· ·									
	· ·									· · · · · · · · · · · · · · · · · · ·

Note: Redox features indicate soil remains wet due to ESHWT and perched condition.

	Part B	Key:
Site Evaluation - to be completed by Class II or III D Please use the area below to locate:	lesigner or Soil Evaluator	Approximate location of test holes <u>*%</u> Estimated gradient and direction of slope
Test holes		$\frac{N}{\Lambda}$ Approximate direction of due north
 Approximate direction of due north Offsets from test holes to fixed points such as s 	treet, utility pole, or other permanent, marked object	A
		,
	FOR SKETCH, SEE PAGE 1 OF 3, PART B.	
	· · · · · · · · · · · · · · · · · · ·	
<u>.</u>		
las soil been excavated from or fill deposited Site's potential for flooding or ponding: NONEI		e sketch. Field areas have been grade
andscape position: Foot	· · · · · · · · · · · · · · · · · · ·	
/egetation: <u>Lawn</u> Indicate approximate location of property line	and madulaw	
Additional comments, site constraints or addit		
lification	on this application and accompanying former automatic	and declahor and the set of the set of the set
authorized by the owner(s) to conduct these ne	on this application and accompanying forms, submittais cessary field investigations and submit this request.	and sketches are true and accurate and that I have
A prepared by: R · O //	Part 8 prepared by:	C. OK DAN
Une Druch.K	License # Signature	Stur PC, Ky 12010 License #
OFFICE USE ONLY	LOOK BENERALING TO SUMMER STORAGE STOR	
sion: Approved 🔲 Disclaimed 🛄		
ments;		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
ature Authorized Agent	Date	

revised 5/8/01

ZE

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS Department of Environmental Management Office of Water Resources

Site Evaluation Form Part A - Soil Profile Description

Application Number N/A

Property Own Property Loca	er: <u>To</u> ation: Mo	<u>wn of I</u> ount <u>Ho</u>	<u>Bristol,</u> pe High	<u>Rhode Is</u> <u>School</u>	<u>Chestnul</u>	t Stre	et &	e Na	omi Stree	t Bristol,	RI	
Data of Toot 1	-Inlo: Fe	bruarv	22. 20	10							77	
Soll Evaluato				- NODIII					_ Shaded: Yes		Time: <u>9:00ar</u>	<u>m</u>
	<u></u>	Horizon Bo		Soil C		Re-Dox			THE OFFICE OF STREET	and the second		Soil
7H <u>-01</u> Horizon	Depth	Dist	Topo	Matrix	Re-Dox Features	Ab.		Con.	Texture	Structure	Consistence	Category
A	4"	g	S	10yr3/2					sl	0-m	fr	6
B	9"	с	S	10yr4/2					sl	0-m	fi	8
Cd1	27"	a.	S	10yr4/2	10yr7/8 5y7/2	с	2	d	cbsil	0m	fi	9
Cd2	44"	a	s	N2.5/	10yr7/8 5y7/2	f	1.	f	gsil	0m	fi	9
Cd3	65"			5y3/2	10yr7/8 5y7/2	с	2	f	cbsil	0-m	vfi	9
												and the second
77 <u>102</u> Horizon	Depth	Horizon f Dist	<u>Boundaries</u> Topo	Soil Matrix	Colors Re-Dox Features	Re-Dx Ab.	<u>x Desc</u> S.	Con.	Texture	Structure	Consistence	Soll Category
A	8"	g	S	2.5y3/3	· ·				sl	0m	fr	6
B	16"	с	s	10yr5/3	10yr6/8 2.5y7/1	с	2	d	sl	0-m	fi	8
Cd1	40"	a	S	10yr4/4	10yr5/6 2.5y7/2	с	2	f	cbsil	0-m	fi	9.
Cd2	74"			10yr4/4	10yr5/6 2.5y7/2	с	1	f	gsil	0m	fi	9
Depth to (Groundwate	سيسقسكية لافا	: <u>TH-01</u>		-02 57" 'TH-02 lownward	27" mov	Depth Comr	to Imp nents: <u>F</u>	ervious or Limi Redox fea	ling laver NC	65" TH—02 it encount arent in be	2 74" ered etween 8" రి

Part B	Key: Approximate location of test holes
	Estimated gradient and direction of slope
<u>e Evaluation - to be completed by Class II or III Designer or Spil Evaluator</u> ease use the area below to locate:	
Test holes	Approximate direction of due north
Approximate direction of due north. Offsets from test holes to fixed points such as street, utility pole, or other permanent, marked ob	lect
Offsets from test holes to tixed points such as a vos card, Per	
	A
68 STONEWAIT	曲 赴 WETLAND
79-71-	
	to the second se
ASSILAWN	盘盘
GRASS/LAWN	(A)
	WETLAND EDGE WETLAND (SERIES B)
	SEWER 地 赴 1.1% MANHOLE 战步 战士
	1112 RIM 61.34 LINV 56.44 (2011) 位 此故
	TP-02 🖫
1000 2000	GRASSILAWN
	5" PVC (TYP)
SCALE: 1"=1,000'	
	1 /1
Relief and Slope: TH-01 Slope=0.006'/' TH-02 Slope=0.011	Thdes: YESM NOD If yes, locate on above sketch.
 Drosence of existing or proposed private drinking water wears within 200 rector cost and 	dimonstration
is taken to a set of a public drinking water reservoir or other childs area a	enned in SD 19.007 r LOLP (toll
F Has soil been excavated from or fill deposited oil site of Local (Note 1999)	
Site's potential for flooding or ponding: NONEL SLIGHTLI MODERATE	J SEVERED
3. Landscape position: <u>Athletic field</u>	
Nonotation: Grass	
 Vegetation: <u>Oracle</u> Indicate approximate location of property lines and roadways. 	turbungertion of the site adjacent to
10. Indicate approximate location of property lines and roadways. 11. Additional comments, site constraints or additional information regarding site: The second state of the second s	the algorithms established.
11. Additional comments, site constraints or additional information regarding sites 11. the existing wetlands falls within a Flood Zone AE wi	in elevations conditions.
Ponding occurs within the soli as a result of the po	
Certification The undersigned hereby certifies that all information on this application and accompanying The undersigned hereby certifies that all information on this application and submit	forme, submittals and sketches are true and accurate and that I have
The undersigned hereby certifies that all information on this application and accompanying been authorized by the owner(s) to conduct these necessary field investigations and submit been authorized by the owner(s) to conduct these necessary field investigations and submit Device the second se	this request.
Been authorized by the owner(s) to conduct these necessary neutrinosagements Part B pre	
Part A prepared by:	License #
Signeture Signeture	
FOR OFFICE USE ONLY	
Decision: Approved D Disclaimed	
Comments:	
Signature Authorized Agent Date	
Configuration of the second	revised 5/8/0

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS Department of Environmental Management Office of Water Resources

Site Evaluation Form	
Part A - Soil Profile Description	β

Application Number

Property Own	ier: <u>To</u>	wn of l	<u>Bristol,</u> ppe Hial	<u>Rhode Is</u> n School	<u>Chestnu</u>	t Stre	eet	& Na	omi Stree	t Bristol.	RI	
Property Loca Date of Test		المتعادية والمسالية	22 20	10							D3077	
Soll Evaluato	r: <u>Si</u>	<u>te Evalı</u>	uation -	- Robin	<u>E Dyer</u>				License Nu _ Shaded: Yes		Time: 10: 30c	ım
Weather:	SL	<u>inny 45</u>	<u>5°F</u>						Jildueu, 103		1	
<i>TH</i> <u>-03</u> Horizon	Depth	Horizon Bo	oundaries Topo	Soil C Matrix	Colors Re-Dox Features	Re-Dox Ab.	CDesc S.	ription Con.	Texture	Structure	Consistence	Soil Category
A	4"	g .	S	10yr4/3					sl	0m	fr	6
B	23"	С	s	10yr6/3	10yr6/8 2.5y7/2	С	2	d	S	0-m	fi	8
Ċd1	33"	a	S	10yr4/1	10yr6/8 2.5y7/2	С	2	d	cbsil	0—m	fi	9
Cd2	67"			N2.5/	10yr6/8 2.5y7/2	f	1	f	gsil	0-m	vfi	9
All Control of the second s						-			-			
											,	
77 <u>404</u> Horizon	Depth	Horízon I Dist	Boundaries Topo	<u>Soil</u> Matrix	Colors Re-Dox Features	Re-D:	<u>ox Des</u> S.	con.	Texture	Structure	Consistence	Soil Category
	4"	g	S	10yr4/3	5				sl	0m	fr	6
B	12"	с	s	10yr6/3					sl	0-m	fi	8
Cd	69"			10yr6/1	10yr6/8 2.5y7/2	С	2	ŕ	cbsl	0-m	vfi	9
							. <u> </u>					
								<u> </u>				
m the bar of	: <u>Pittst</u> Groundwate		: <u>TH-0</u>		1-04 52" " TH-04		Dep	th to Imp	ervious or Limi Redox feat	ting Layer: 1 <u>H-</u> ures appa	67"TH-04 -04 Rippable rent in bet isting pipe	ween 16"

te Evaluation - to be completed by Class II or III De ease use the area below to locate:	art B. esigner or Soil Evaluator		Key: Approximate location of tes	t holes ection of slope
Test holes Approximate direction of due north Offsets from test holes to fixed points such as s	treet, utility pole, or other perman	ent, marked object	Approximate direction of d	
500 1000 2000 SCALE: 1"=1,000 GRASS/LAWN 0.4% TP-04 DH SET IN PLSS 0.428 BENCHA SS DH SET IN PLSS 0.428 BENCHA N 200 SCALE: 1"=1,000 SCALE: 1"=1,0	ARRK VOCK VOEN	59 59 59 59 59 59 59 59 59 59 59 59 59 5	۲ DF	HIGH SORIOC BUILDING BIT PATH SHED
TENNIS COURTS	-*		a demonstry from the product of the state of	and the many of the many the
 Relief and Slope: <u>TH-03 Slope=0</u> Presence of any watercourse, wetlands or Presence of existing or proposed private dr Public drinking water wells within 500 feet dr Is site within the watershed of a public drin Has soil been excavated from or fill deposi Site's potential for flooding or ponding: NO Landscape position: <u>Athletic field</u> Vegetation: <u>Grass</u> Indicate approximate location of property Additional comments, site constraints or the existing wetlands falls 	sufface water bodies, within 200 inking water wells within 200 of test holes: YES□ NO⊠ king water reservoir or other o ted on site? YES□ NO⊠ NE□ SLIGHT□ M ines and roadways additional information regardly within a Flood Zor	feet of test holes. Holes: YESE If yes, locate on a initical area defined in S If yes, locate on a ODERATE⊠I SEVE og site: <u>The west</u> ne AE with elev	□ NO⊠ Ifyes, locate on bove sketch. D 19.007 YES□ NO⊠ bove sketch. RE□ terly portion of the s rations established.	
Certification The undersigned hereby certifies that all inform been authorized by the owner(s) to conduct the	stants the configation and ac	companying forms, subi s and submit this reques	nittals and sketches are true and a	courate and that I have
Parl A prepared by:	`` <u>`</u>	Part B prepared by: Signalure	C token	D3077
Signature FOR OFFICE USE ONLY Decision: Approved D Disclaimed D Comments:	License #			
		· · · · · · · · · · · · · · · · · · ·		
Signature Authorized Agent	Date			

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS Department of Environmental Management Office of Water Resources

Site Evaluation Form Part A - Soil Profile Description

Application Number N/A

Evaluator	; <u>Sit</u>	<u>e Eval</u> ı		- Robin	E Dyer			······································	License Nu Shaded: Yes	mber: <u>D30</u> □ No⊠	Time: <u>11:15a</u>	m
iher:	<u>Su</u> Depth	horizon Bo Dist	COLUMN ST. TAXABLE ST.	Soil C Matrix	-	Re-Dox I	Descri	Contraction of the local data	Texture	Structure	Consistence	Soil Category
	12"	g	S	10yr4/2	1 ((((()()))))		· · · · · · · · · · · · · · · · · · ·		sl	0m	fr	6
}	24"	с С			10yr6/8 2.5y7/2	С	2	d	sl	0-m	fi	8
, Cd	67"	-	energi tana kata ang kata ng ka	2.5y4/3	10yr5/6 2.5y7/1	С	2	d	gsl	0m	vfi	9
ي من المراجع ال	201 201 201 201 201 201 201 201 201 201			Y or a second								
							tow what may be seen as					Soil
4 <u>—06</u> Horizon	Depth	Horizon Dist	Boundaries Topo	<u>Soi</u> Matrix	l Colors Re-Dox Features	Re-Do Ab.	s.	cription Con.	Texture	Structure	Consistence	Categoi
A	5"	g	S	N2.5/				-	sl	0-m	fr	6
B	13"	c	s	10yr4/	10yr4/3 1 2.5y7/2	3 2 c	1	f	s	0-m	fri	6
c	38"	a	Ŝ	10yr7/	10yr6/8 3 2.5y7/2	3 2 c	2	d	sil	0-m	fri	7
Cd1	57"			2.5y4/	10yr6/8 12.5y7/2	в 2 с	2	d	gsl	0-m	vfi	9
ر بر این												
a gigan gina ang san gina ang sa								<u></u>				De un orme of mour van
Color of States	s: <u>Pittst</u> Groundwat		l It Loam				Tota	l Depth	of eachTest H	ole: <u>TH-05</u>	67" TH-0 ot encoun	6 57"

	Key.
Part B	Approximate location of test holes
Site Evaluation - to be completed by Class II or III Designer or Soil Ev	Liuator. Approximate rooment of electron of slope.
Please use the area below to locate:	N Approximate direction of due hoth
1. Test hales	
 Approximate direction of due north, Offsets from test holes to fixed points such as street, utility pole, 	other permanent, marked object
3. Offsets from test holes to TKep points such as a cest, during points	page 2
6.5%	
TP-05	HILL NUMBER
	0.4% I 0.4%
I T T T T T T T T T T T T T T T T T T T	ТР-06
Service Servic	
OMT ON PRUPER CONTON PRUPER Castoria Castoria FERONA FERONA FERONA Castoria FERONA FER	
	Bobg I
terrer t	NAOMI STREET
5.2	
	06 Slope=0.004'/
1. Relief and Slope: TH-05 Slope=0.065'/' Th	dies' within 200 feet of test Indes: YES⊠ NO□ If yes, locate on above sketch.
a Duration of any untercourse wellands of sufface water c	dies, within 200 leet of togratory. The
- 3. Presence of existing or proposed private drinking water w	IS WITHIN ZOU REEL OF REST HORES, I LOLL COM
and an	
5 Is site within the watershed of a public drinking water rese	VOIL OL OUTEL CHITCH HER REPUBLIC THE OF 10:001 1 TTTT
6. Has soil been excavated from or fill deposited on site 2 m	
7. Site's potential for flooding or ponding: NONEL SLI	HTCI MODERATEXI SEVERECI
8. Landscape position: <u>Athletic field</u>	
9. Vegetation: Grass	
in industorsportsympte location of property lines and road	ays.
Ponding occurs within the soil as a	result of the poor surface soil conditions.
0.000-000	a structure of a characteristic and that I have
The undersided hereby certifies that all information on this app	cation and accompanying forms, submittals and sketches are true and accurate and that I have I investigations and submit this request.
The undersigned hereby certifies that all information on this app been authorized by the owner(s) to conduct these necessary fie	
Part A prepared by:	Part B prepared by D3077
	License # Signature
Signature	
FOR OFFICE USE ONLY	
Decision: Abbioicit	
Comments:	
Signature Authorized Agent	revised 5/8/01
	Tey ISED D40/01

				PAI	RE CORI	PORA		N		TEST HOLE NO.	TP15-01	
	EN	8 IGINEI		STONE VA	LLEY PLAC		COLN,		ISLAND ONSULTANTS		SHEET <u>1</u> (DF <u>1</u>
Property			of Brist	ol								
Project:					Hope Ath	etic Fi	elds		Contract	or: Bristol D	PW	
Property	Location:	199 C	Chestnu	t Street, B	ristol, RI				Excavato)E	_	
Date of T	est Hole:	July 2	23, 2015	5								_
Soil Evalu			/kes				-		Date of Exam:	MA 6/23/15		_
Weather:	Sunny 8	85F					_	Shaded:	Yes	No		-
	_							IPTION				-
Horizon	Depth	Horizon B		Soil	Colors	Re-	Re-Dox Description		Texture	Structure	Consistence	Percent Gravel
	Doput	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Toward	Childolais		Cobbles Stone
												2-5% Gravel <2% Cobbles
A _p	0"-12"	-	-	10YR 3/2					Sandy Loam	Weak Granular	Friable	<2% Cobbles <2% Stone
					Redox @ 26	5"						2-5% Gravel <2% Cobbles
B _w	12"-28"	-	-	2.5Y 3/3	7.5YR 5/6	1			Sandy Loam	Massive	Firm	<2% Stone
C _d	28"-92"	-	-	5Y 3/1					Sandy Loam	Massive	Very Firm	5-10% Gravel 2-5% Cobbles <2% Stone
6	00" 405"			EX 2/4					Cittlesom	Maasiya	Vor / Firm	<2% Gravel <2% Cobbles
C _{d2}	92"-105"	-	-	5Y 3/1					Silt Loam	Massive	Very Firm	<2% Stone
								1				
Soil Class:							-	Depth of T		105"		_
Depth to Gr or Seepage	:		No Seep	age Observ	ed			to Imperv iting Layer		N/A		_
Estimated S Water Table		gh	Redox a	t 26"								
							-					
COMMENT	S:											
	st Pit located	at toe of	slope, Red	lox observed fi	om 15" to 26" -	Domina	nt at 26"	- C Horizon	is very dense and Rec	lox is present from slo	w downward	
										TEST H	ULE NO.	TP15-01

				PAF	RE CORI	PORA		N			TEST HOLE NO.	TP15-02			
	EN	8 IGINEI		STONE VAI	LLEY PLAC		COLN, ***		ISLAND		SHEET <u>1</u> 0	F <u>1</u>			
Property (Owner:	Town	of Brist	ol								_			
Project:		14234	4.00 BW	/RSD - Mt	Hope Athl	etic Fi	elds		Contracto	r: Bristol D	PW	_			
Property L	_ocation:	199 C	hestnut	Street, B	ristol, RI				Excavator: CAT 430E						
Date of Te	est Hole:	July 2	3, 2015									_			
Soil Evalu	ator: <u>Ro</u> t	oert Sy	/kes				_	State /	Date of Exam:	<u>MA 6/23/15</u>		_			
Weather:	Sunny 8	5F					-	Shaded	: Yes	No 🗸		-			
								IPTION			-	1			
Horizon	Dooth	Horizon	Boundaries	Soil (Colors	Re-	Dox Desc	ription	Tautura	Structure	Consistence	Percent Gravel			
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Cobbles Stone			
											Firm in Place	<2% Gravel <2% Cobbles			
A _p	0"-9"	-	-	10YR 3/2					Sandy Loam	Ganular	Friable in Hand	<2% Stone 2-5% Gravel			
					Redox @ 20)"						<2% Cobbles			
B _w	9"-31"	-	-	2.5Y 4/2	7.5YR 5/6				Sandy Loam	Massive	Firm	<2% Stone 5-10% Gravel			
C _d	31"-53"	-	-	5Y 4/1					Coarse Sandy Loam	Massive	Firm	2-5% Cobbles <2% Stone			
C _{d2}	53"-110"	_	-	5Y 3/1					Coarse Sandy Loam	Massive	Very Firm	5-10% Gravel 2-5% Cobbles <2% Stone			
C _{d3}	110"-130"	_	-	5Y 3/1					Silt Loam	Massive	Very Firm	<2% Gravel <2% Cobbles <2% Stone			
		•										•			
Soil Class: Depth to Gro							-	Depth of to Imper	rest Hole: vious	130"		_			
or Seepage:			Seepage	85"				iting Laye		N/A		-			
Estimated S Water Table	-	jh	Redox at	20"			_								
COMMENTS	S:														
dov									npacted from use as athle same parent material bu						
										TEST H	OLE NO.	TP15-02			
										120111	01L NO.	11 10-02			

				PAF		PORA		N			TEST HOLE NO.	TP15-03	
	ENG	8 GINEE		STONE VA	LLEY PLAC PLANNE		COLN,		E ISLAND CONSULTANTS		SHEET <u>1</u> O	F 1	
Property Owner			of Brist	ol							<u> </u> -	· <u></u>	
Project:	-				Hope Athl	etic Fi	elds		Contracto	r: Bristol D	PW		
Property Location	-								Excavator				
Date of Test Ho	_												
Soil Evaluator:							_	State /	Date of Exam:	M <u>A 6/23</u> /15			
Weather: Sunr	1y 85	δF					;	Shadec	l: Yes	No			
					SAM	PLE D	ESCR	IPTION	I				
	_	Horizon Boundaries Soil Colors Re-Dox Description											
Horizon Dep	th	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone	
Fill 0"-2	: 1											<2% Gravel	
A _p 21"-2	27"	-	-	10YR 3/2	Redox @ 23 10YR 3/2	8"			Sandy Loam	Massive	Firm	<2% Cobbles <2% Stone	
C 27"-{	52"	-	-	10YR 4/4					Very Fine Sand	Single Grain	Firm in Place Loose in Hand	<2% Gravel <2% Cobbles <2% Stone	
C _d 52"-1	14"	-	-	5Y 4/1					Coarse Sandy Loam	Massive	Very Firm	10-15% Gravel 2-5% Cobbles <2% Stone	
Soil Class: N/A							Total [Depth of ⁻	Test Hole:	114"			
Depth to Groundwa	iter		_				_ Depth	to Imper	vious				
or Seepage: Estimated Seasona	ıl High		Seepage	98"			or Lim	iting Laye	er:	N/A			
Water Table:			Redox at	23"			-						
COMMENTS:													
Burried Ap layers abov		present,	, Very Dens	se Till Materia	l in Cd - most re	estrictive	layer slo	wing dowr	ward movement of ground	dwater creating Red	ox in Sand and Ap		
										TEST H		TP15-03	

				PAF	RE CORF	°OR/		N			TEST HOLE NO.	TP15-04
	FN	8 IGINEI		STONE VAI	LLEY PLAC PLANNE		COLN, ***		E ISLAND CONSULTANTS		SHEET <u>1</u> O	F 1
Property C			of Brist	ol								
Project:					Hope Athle	etic Fi	elds		Contracto	r: Bristol D	PW	•
Property L	ocation:								Excavator		DE	•
Date of Te												•
Soil Evalu								State /	Date of Exam:	MA 6/23/15		•
Weather:	Sunny 8	85F						Shaded	l: Yes 🗌	No		
												_
					SAMF	LE D	ESCR		1			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desci	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
A _p	0"-12"	-	-	2.5Y 3/2					Sandy Loam	Granular	Very Friable	2-5% Gravel <2% Cobbles <2% Stone
Bw	12"-18"	_	-	2.5Y 4/2					Coarse Sandy Loam	Massive	Friable	5-10% Gravel <2% Cobbles <2% Stone
C	18"-31"	_	-	10YR 4/4	Redox @ 18 7.5YR 5/8				Very Fine Sand	Single Grain	Firm in Place Loose in Hand	<2% Gravel <2% Cobbles <2% Stone
2C _d	31"-65"	-	-	2.5Y 4/2					Coarse Sandy Loam	Massive	Very Firm	5-10% Gravel 2-5% Cobbles 2-5% Stone
2C _{d2}	65"-137"	-	-	5Y 4/1					Silt Loam	Massive	Very Firm	2-5% Gravel <2% Cobbles <2% Stone
	N//A			1	<u> </u>		Tetel		T	407		
Depth to Gro							Depth	to Imper		137"		-
or Seepage: Estimated Se	easonal Hig	gh	Seepage				or Limi	iting Laye	er:	N/A		-
Water Table:	:		Redox at	t 18"			•					
COMMENTS	6:											
Rec	dox very dom	ninant in S	Sand Layer	above dense	till from slow do	wnward	moveme	nt through	restrictive layer			
										TEST H	OLE NO.	TP15-04

				PAF	RE CORF	PORA		N			TEST HOLE NO.	TP15-05
	EN	8 IGINEI		STONE VA	LLEY PLAC PLANNE		COLN, ***		ISLAND		SHEET <u>1</u> O	F <u>1</u>
Property C	Owner:	Town	of Brist	ol								_
Project:		14234	4.00 BW	/RSD - Mt	Hope Athl	etic Fi	elds		Contracto	r: Bristol D	PW	-
Property L	ocation:	199 C	Chestnut	t Street, B	ristol, RI				Excavator	DE	_	
Date of Te	est Hole:	July 2	23, 2015	5								
Soil Evalu			/kes				-			<u>MA 6/23/15</u>		
Weather:	Sunny 8	85F					-	Shaded	: Yes	No		
	•				SAM	PLE D	ESCR	IPTION	l 			
Horizon	Dooth	Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription	Texture	Structure	Consistence	Percent Gravel
Honzon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Cobbles Stone
A _p	0"-12"	-	-	2.5Y 3/2					Sandy Loam	Granular	Very Friable	<2% Gravel <2% Cobbles <2% Stone
												<2% Gravel <2% Cobbles
B _w	12"-20"	-	-	2.5Y 5/6					Sandy Loam	Massive	Friable	<2% Stone
C _d	20"-114"	-	-	5Y 4/1	Redox @ 35 7.5YR 5/8	;"	I	l	Coarse Sandy Loam	Massive	Firm	20-30% Gravel <2% Cobbles <2% Stone
Soil Class:							-		Fest Hole:	114"		-
Depth to Gro or Seepage:			No Seep	age Observe	ed			to Imper iting Laye		N/A		
Estimated Se Water Table		gh	Redox at	t 35"			-					
COMMENTS	6:											
				nse till from slo d in Bw Horizo		novement	t, Redox	observed	uniformly at 35" in dense	till layer		
										TEST H	OLE NO.	TP15-05

											TEST HOLE NO.	TP15-06
	EN	8 IGINE		STONE VA	LLEY PLAC		COLN,		E ISLAND CONSULTANTS		SHEET <u>1</u> O	F <u>1</u>
Property (Owner:	Town	of Brist	ol								-
Project:		1423	4.00 BW	/RSD - Mt	Hope Ath	letic Fi	elds		Contracto	r: Bristol D	PW	-
Property L	_ocation:	199 0	Chestnut	t Street, B	ristol, RI				Excavator	r: CAT 430	DE	-
Date of Te	est Hole:	July 2	23, 2015	5								_
Soil Evalu			ykes				_			MA 6/23/15		-
Weather:	Sunny 8	85F					_	Shadeo	l: Yes	No 🗸		-
									۱ 		1	
Horizon	Depth		Boundaries		Colors Re-Dox		Dox Desc		Texture	Structure	Consistence	Percent Gravel Cobbles Stone
		Dist	Торо	Matrix	Features	Ab.	S.	Con.				
A _p	0"-11"	-	-	10YR 3/3					Sandy Loam	Granular	Very Friable	<2% Gravel <2% Cobbles <2% Stone
					Redox @ 4 ⁻	1"			Very Coarse Sandy			10-20% Gravel 5-10% Cobbles
C _d	11"-82"	-	-	5Y 4/1	10Y 4/4		1		Loam	Massive	Very Firm	5-10% Stone
C _{d2}	82"-113"	-	-	5Y 4/3					Coarse Sandy Loam	Massive	Very Firm	10-20% Gravel 2-5% Cobbles <2% Stone
Soil Class:	N/A						Total I	Depth of	Test Hole:	113"		_
Depth to Gro or Seepage:			Seepage	e at 110"				to Imper		N/A		
Estimated So Water Table	easonal Hig	gh	Redox a				-					-
COMMENTS	5:											
Ree	dox observed	d at 11" ir	n Ap on top	of dense till fro	om slow down	ward mov	ement, F	Redox obs	erved uniformly at 41" in d	ense till layer		
										TESTH	OLE NO.	TP15-06

	EN	8 IGINEI			RE COR LLEY PLAC PLANNE	E, LIN		RHOD	E ISLAND CONSULTANTS		TEST HOLE NO. SHEET <u>1</u> 0	тр- F <u>1</u>
Property	Owner:	Town	of Brist	ol							4.	
Project:		Mt Ho	ope HS	Master Pl	an				Contract	or: Bistol D	PW	
Property I	Location:	199 0	Chestnu						Excavat	or:		
Date of T	est Hole:	Octob	20, 9 rec	020 '	8:30 AM							
Soil Evalu		Webbe	ər				-		Date of Exam:	MA		
Weather:	Sunny				· ·		-	Shadeo	l: Yes 🗌	No		
					SAM	PLE D	ESCR		4			
		Horizon	Boundaries	Soil	Colors	Re	Dox Desc	viption				
Hortzon	Depth	Dist	Торо	Mairix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ap	0-15"			10 71 94					lowry sand	WHASIVY	Firm in place	090
BN	15-35"			10 yr 7/4	10yr 6 6 10yr 7/20				lomy sing	massne	Firm in place Frinkle in hard	5 10 5
CD	20 35-9' D/5 1/2								stony silt barn	Massive	firmin place Fristeindann	01 OS
												· ·
		<u></u>										
						ļ						
Soil Class:	Qha	(1) 11 1					Total	Denth of	Test Hole:	9´	I	<u> </u>
Depth to Gr or Seepage	oundwater						- Depth or Lim	to Imper iting Lay	vious er:	N/A		
Estimated S Water Table		gn	40	.6>*	R			e Elevat ximate):	ion of Test Pit	~42.S'	····	-
COMMENT	s: • 5	01 X	iery d	ey: • :	Redox I	∘ ट्त†ंड	ર્ગ હ	ລ ະ້.	ounsistant the	pit toolog	degn te n	ed horizon
										TESTH	OLE NO.	TP- /

	EN	8 IGINEE			RE CORF LEY PLAC PLANNE	E, LINO		RHODE	ISLAND CONSULTANTS		TEST HOLE NO. SHEET <u>1</u> 0	ТР- Ә F <u>1</u>
Property C	Owner:	Town	of Brist	ol								
Project:		Mt Ho	pe HS	Master Pla	an				Contract	or: Bistol D	PW	8:11;
Property L	ocation:	<u>199 C</u>	hestnu	Street Br	istol RI				Excavato	or:		
Date of Te	est Hole:	Octob	er 9 ,20	020								· · ·
Soil Evalu		Webbe	er				-	/ State Shaded	Date of Exam: : Yes ∏	<u>MA</u> No 🗍		2
Weather:	Sunny							Shaueu			100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
					SAMF	PLE DI	ESCR	IPTION				
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Malrix	Re-Dox Features	Ab,	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ap/Fill	0-22"			10 ye 5/2					Lonny Sand	massive	verRenable Frisble	10 50
С	27-63		CX5	10 15 /4	E: 10/10/1/2				sandy lonm	massive	Friddle	550
62	63-9'			10 ys 3/1					sitt lown	Mussive	Friable	550
-												
										:		
									1040			

Soil Class:	Qh	~ G	acial	<u>Tr))</u>			Total	Depth of	Test Hole:	9'		_
Depth to Groot Seepage	:		<u>_N/A</u>				_or Lim	to Imper liting Lay	er:	N/A		_
Estimated/S Water Table		igh	<u> </u>	a'				ce Elevat (); (); (); (); (); (); (); (); (); ();	ion of Test Pit	44,0'		
COMMENT	s: , { ,]	Redox rue	s loc ruotz		25", co '*0" (*n	S istañ ens 4.	<i>Г -Ни</i> . sI-	zynt	pit walls a		IOLE NO.	TP- &

	EN	8 IGINEE			RE CORF LLEY PLAC PLANNE	e, ling		RHODE	ISLAND CONSULTANTS		TEST HOLE NO. SHEET <u>1</u> 0	тр-з
Property (Owner:	Town	of Brist	ol								
Project:		Mt Ho	pe HS	Master Pla	an				Contracte	or: Bistol DI	PW	
Property I	Location:	<u>199 C</u>	hestnut	Street Br	istol RI				Excavato	or:		••••
Date of T	est Hole:	Octob	0er 9 ,20	20	10:15							
Soil Evalu		Webbe	er						Date of Exam:			
Weather:	Sunny	***						Shaded	: Yes 🗌	No [_]		· · · · · · · · · · · · · · · · · · ·
					SAMF	PLE DI	ESCR	IPTION	1		·	With the second s
		Harizon	Boundaries	Soit	Colors	Re-I	Dox Desc	ription				
Ногізол	Depth	Dist	Торо	Mairix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Storie
Ap	0-8"		j	りとうな	/				lomy sul	Massuc	Friddle	500
Bw	8-16"			10 yr 5/3	/				loning sand	Massiva	Friable	S _{OO}
C	16 - 56			10 yr 5/4	(°20" 1045 5/2 1040 7/2				Samely lagn	Massive	Firm by place Fridle in pand	15100
Cz									Silt Joan	massive	Friable	550
										-		
			a									
Soil Class:	Rkn	L A	4 cihl	 T.11			Total I	Depth of	Test Hole:	7.5'		-
Depth to Gr	oundwater	<u>, v.</u>		1		•	- Depth	to Imper iting Lay	vious	N/A 43.25		
Estimated S Water Table		igh	42	N/A .08				e Elevat ximate):	ion of Test Pit	43.25		-
COMMENT	s: • minr • Som	7€% € 6	n Fr	hros " 5 @ ~	, B Imr • C-cz	iæn horj	• /i+ com	gjer bisind	nedor stating a-y			
										TEST	IOLE NO.	TP3

	EN	8 IGINEE			RE CORF LLEY PLAC PLANNE	E, LINO	o-faile and a state	RHODE	ISLAND CONSULTANTS		TEST HOLE NO. SHEET <u>1</u> OF	TP-۵۷ F <u>1</u>
Property (Owner:	Town	of Brist	ol								
Project:				Master Pla					Contracto	A		
Property L	Location:	<u>199 C</u>	hestnut						Excavato	or: Milee 3	ツ	
Date of Te)20 \\ <u>!</u>	:25							
Soil Evalu Weather:		Webbe	ər 			·····	-	State / Shaded:	Date of Exam: : Yes 🗌	<u>MA</u> No 🗌		
					SAMI	PLE DI	ESCR					
/		Horizon	Boundaries	Soil	Colors		Dox Desc					
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
KII	0-46"			10 ys 3/2	/				Saudy Joam	Wassive	Very Trigble	505
	_		<u>.</u>									
		<u> </u>										
			 				<u> </u>	<u> </u>			<u> </u>	
		<u> </u>					_		1			
		<u> </u>										
					1				<u></u>			
Soil Class:			T				_	-	Test Hole:	48"	<u></u>	-
Depth to Gr or Seepage) :		<u>48</u> "	· · · · · ·			or Lim	n to Imper niting Laye	er:	- 48"		-
Estimated S Water Table		igh	42.	5' (wrtri	r table, n	- mha)	Surfa (appro	ce Elevat oximate):	ion of Test Pit	146.5'	<u></u>	-
COMMENT	s: • tr. • tr. • st	یں مھ جب ن ریادہ (กเองะโซ เกเติงระระ อัญชาวา	y @ へう .] @ ~~ 45	2´(preci 1´(prec wel thr	e of i eo F ZOMO	<u>いわ</u> たかい オ) 19 ⁷)	• water ir	(مۇنە)	side)	5idewn)) TP- 4

	EN	8 B GINEEF			RE CORF	E, LINO		RHODE	ISLAND ONSULTANTS		TEST HOLE NO.	тр-5 г <u>1</u>
Property C		Town o		ol	ು ಕ್ರಾಯಾಗಿ ಸ್ಥಾನಿ ಸ್ಥಾನಿ ಕ್ರೌನಿ ಕ್ರೌನಿ ಕ್ರಿ ಕ್ರ							
Project:				Master Pl	an				Contract	or: Bistol D)PW	
Property L									Excavato	or: Mike		
Date of Te					2:15						·······	
Soil Evalu		Webber					-		Date of Exam:	MA		
Weather:	Sunny							Shaded	: Yes 🗌	No		
					SAMF		ESCR	IPTION		- 100 <u>100 - 100</u>		
		Horizon Bo	undaries	Soil	Colors	Para 1997 (1997) (1997) (1997)	Dox Desci					
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	-S.	Con.	Texture	Siructure	Consistence	Percent Gravel Cobbles Stone
Ap	17-6"			р <i>үс</i> 6/3		, , , , , , , , , , , , , , , , ,			Sandy loam	MASTAR	Vertenable	S OG
Bro	6"-25"			Dyr E/3	/				story sarly loan	Mussil	Ver	३० २० ।०
C	25"-6"			19/5/1	250" C: 1070 % D' 107- 5/2				story sandy loan	14-5517	firm in place very fridbly in j	30 X0
1												
			4.1								***	
							<u> </u>					
	 			<u></u>								
					-							
							Í					
Soil Class: Depth to Gro	<u>_Qkr</u> oundwater		1014				-	Depth of to Imper	Test Hole: vious	6-0"	<u> </u>	-
or Seepage: Estimated S Water Table	: Seasonal Hi	_	6-3 49	.83′			Surfac	iting Lay e Elevat iximate):	er: on of Test Pit	N/A 54'	Biskerteko sere	-
COMMENT	s: • Væry • Fedoy	stun r Feg	e He fires	nybost © 50°	• layer	710g • 55	atyp ieperse	ka∕ Fs @bat	ion rest of . ion of pit (6	sites Possib 6)	ie fin	
											HOLE NO.	TP- 5

				STONE VA		E, LINC	Contena de Carlo ante	RHODE			TEST HOLE NO.	TP- € = 1
		IGINE			PLANNE	RS		(ONSULTANTS			
Property (Owner:		of Brist						Contracto	or: Bistol D		
Project:				Master Pla					Excavato	84.40		
Property l					•				Excavalo	n. jejnov		
Date of To				120	<u> :00 p</u>	(*)		State /	Date of Exam:	MA		
Soil Evalı Weather:		vvenne	<u>, , , , , , , , , , , , , , , , , , , </u>					Shaded				
							.					
					SAM		ESCR	IPTION		10 (1990) (1990) 		
		Horizon	Boundaries	Sol	Colors	Re-	Dox Desc	iption				5
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Åe	D-6"			1070	Contractory of the second second				Sulphan	Vassive	ver Frielle	5
C	6-46			107 C 6/3	¥ see betw				Sandy Isan	wassive	Frable	1050
Ca	Ca 46"-qu" 101 978" pyrik								Saingy	WASSIVE	Friable	10 5.
C.B							ļ		silt loan	Massive	from in place those in hand	550
Soil Class:	Qkn		acrul			~	-		Test Hole:	<u>q'</u>		-
Depth to Gr or Seepage			H/A	\			or Lim	to Imper iting Lay	vious er:	NA		_
Estimated S Water Tabl		igh	<u> </u>	.01				ce Elevat (): (): (): (): (): (): (): (): (): ():	ion of Test Pit	W/A 45'		-
COMMENT	S: * • 71 • W	inoc njet	Reilox (éd	< (<10 ∞x @4	i) <i>Fe</i> cto 8', con	res sistinf	cHoa] f}	r to wzyshi	be prevent s at pit	therting & r	90" inconsistin	t in pit
										TEST	HOLE NO.	TP- 6

				DAD				1				TD 4
		81			LEY PLAC	-	-				TEST HOLE NO.	TP-1
	EN	GINEE		***	PLANNE		/OLIN, ***		ONSULTANTS		SHEET 1 OF	10
Property C	Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS						Contracto	or: Bristol D	PW	
Property L	ocation:	199 C	Chestnut	Street, B	ristol, RI				Excavato	r: Backhoe	e	
Date of Te	est Hole:	July 1	18, 2024									
Soil Evalu	lator:	Spen	cer Lynd	ls SE#142	275		_	State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn	у					Shaded	: Yes 🗌	No 🗌		
	1		- · · ·	0.1								
Horizon	Depth	Dist	Boundaries Topo	Matrix	Colors Re-Dox Features	Re-	Dox Desc S.	ription Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill	0 - 16											
C1	16 - 33				28"				FSL	Massive	Firm in Place	15%
C2	33 - 70								SiL	Massive	Firm in Place	15%
R												
Soil Class: Depth to Gro or Seepage: Estimated S Table:	oundwater easonal Hig		N/A	DRY 9 (OW	TS)	·	Depth or Lim Surfac	to Imperviting Laye		<u>70"</u> 70" -		- -
	/as a light br				very commor highly restrici							
RI Stormw	/ater Manua	l Rawls	Rate = 0.2	?7 in./hr.						TEST H	OLE NO.	TP-1

				PAR		PORA					TEST HOLE NO.	TP-2
	EN	8 E GINEE		TONE VAL	LEY PLAC PLANNE		COLN, ***		ISLAND ONSULTANTS		SHEET 2 OF	10
Property (Owner:	Town	of Brist	ol							-	
Project:		Mt. H	ope HS						Contract	or: Bristol D	PW	
Property L	ocation:	199 C	hestnut	Street, B	ristol, RI				Excavato	or: Backhoe)	
Date of Te	est Hole:	July 1	8, 2024									
Soil Evalu	ator:			ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn	y				;	Shaded		No 🗌		
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 16											
Fill B	16 - 48				32"							
Fill C	48 - 72											
C1	72 96								SiL	Massive	Firm in Place	15%
R												
Soil Class:	CLAS	S A (RI)	/ CATEG	ORY 9 (OW	TS)		Total [Depth of	Fest Hole:	96"		
Depth to Gro or Seepage: Estimated S		h Water	N/A				or Lim	to Imperviting Laye		96"		
Table:			32"					oximate):				
COMMENTS	S:											
No bedroo	k encounter	ed, refu	sal consid	ered to be h	highly restrici	tive natu	ral soil	layer			organic fill also seen i	
	nsidered to h vater Manual				of common b	orrow. P	rior dep	oletions ir	Fill B layer were no		ed redox showed clea	ar SHGW elev. TP-2
IN STOLLA	ater wanua	i Nawis I	Nate - 0.2	.7 111./111.						1201 11		11-2

				PAF		PORA		1			TEST HOLE NO.	TP-3
	EN	8 E GINEE		TONE VAL	LEY PLAC		OLN, ***		ISLAND ONSULTANTS		SHEET 3 OF	10
Property (of Brist	al		110		0	ONSOLIANTS			10
Project:	Jwner.		ope HS	51					Contracto	or: Bristol D		
Property L	ocation:			Street B	ristol RI				Excavato			
Date of Te			8, 2024						Excavato	I. DACKIOC	2	
Soil Evalu				ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn			210		-	Shaded			.0	
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 10											
Fill B	10 - 27				22"							
C1	27 46								SiL	Massive	Firm in Place	15%
R												
Soil Class: Depth to Gro	oundwater	S A (RI)		ORY 9 (OW	TS)		Depth	to Imperv		46"		-
or Seepage: Estimated S		h Water	N/A					iting Laye æ Elevatio	er: on of Test Pit	46"		
Table:			22"					oximate):		-		
COMMENTS	5:											
Fill A stand No bedroc	dard light br k encounter	ed, refu	sal consid	ered to be h	highly restricit	ive natu	ral soil	layer	rs (mixed C1/C2 type			
					of common b	orrow. P	rior dep	oletions in	Fill B layer were not		ed redox showed clea	ar SHGW elev. TP-3
KI Stormw	/ater Manua	r Rawis I	rate = 0.2	.7 10./06.						1591 H	OLE NO.	17-3

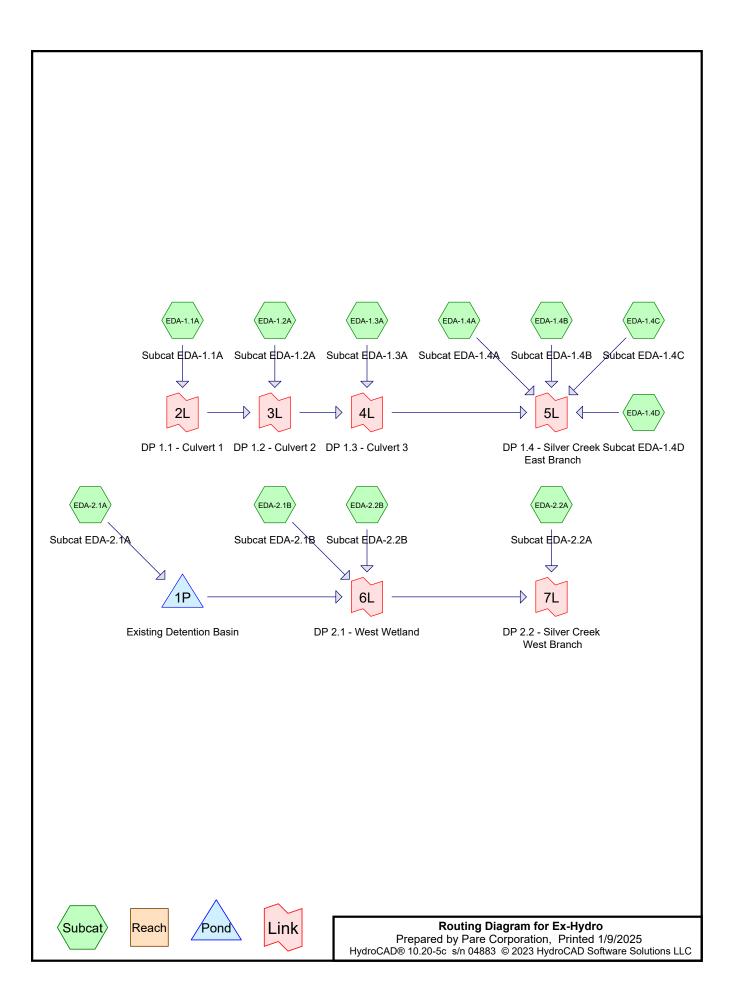
				PAR		PORΔ		J			TEST HOLE NO.	TP-4
		8 8	BLACKS [.]		LEY PLAC	-	-		ISLAND		TEOT HOLE NO.	
	EN	GINEE		***	PLANNE		***		ONSULTANTS		SHEET 4 OF	10
Property 0	Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS						Contracto	or: Bristol D	PW	
Property L	_ocation:	199 C	Chestnut	Street, B	ristol, RI				Excavato	r: Backhoe	9	
Date of Te	est Hole:	July 1	8, 2024									
Soil Evalu	lator:	Spen	cer Lynd	ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	5	
Weather:		Sunn	у					Shaded	Yes 🗌	No 🗌		
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 6											
C1	6 - 32				24"				FSL	Massive	Firm in Place	15%
C2	32 66								SiL	Massive	Firm in Place	15%
R												
Soil Class: Depth to Gro or Seepage: Estimated S Table:	oundwater		N/A	ORY 9 (OW	TS)		Depth or Lim Surfac	to Imperviting Laye		<u>66"</u> 		-
	dard light br				er ighly restrici	tive natu	ral soil	layer				
RI Stormy	/ater Manua	Rawls	Rate = 0 2	27 in /hr						TEST H	OLE NO.	TP-4
TT OLOHIW		11(0)/13	rate = 0.2	.,								

				PAR		PORA		J			TEST HOLE NO.	TP-5
				TONE VAL	LEY PLAC	E, LINC	COLN,	RHODE				
	EN	GINEE	RS	***	PLANNE	RS	***	С	ONSULTANTS		SHEET 5 OF	10
Property C	Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS						Contracto	or: Bristol D	PW	
Property L	_ocation:	199 C	Chestnut	Street, B	ristol, RI				Excavato	r: Backhoe	9	
Date of Te	est Hole:	July 1	18, 2024									
Soil Evalu	lator:	Spen	cer Lynd	ds SE#142	275		_	State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn	у				-	Shaded	: Yes 🗌	No 🗌		
					SAM	PLE D	ESCR		l			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 32											
C1	32 - 39				35"				FSL	Massive	Firm in Place	15%
C2	39 54								SiL	Massive	Firm in Place	15%
R												
Soil Class: Depth to Gro or Seepage: Estimated S Table:	oundwater		N/A	ORY 9 (OW	TS)		Depth or Lim Surfac	to Imperviting Laye		<u>5</u> 4" 54"		- - -
	dard light br				ver nighly restrici	tive natu	ıral soil	layer				
RI Stormw	/ater Manua	l Rawls	Rate = 0.2	27 in./hr.						TEST H	OLE NO.	TP-5

								1				TP-6
		8 F			LEY PLAC	-	-				TEST HOLE NO.	19-6
	EN	GINEE		***	PLANNE		***		ONSULTANTS		SHEET 6 OF	10
Property C	Owner:	Town	of Brist	ol								
Project:		Mt. He	ope HS						Contracto	or: Bristol D	PW	
Property L	ocation:	199 C	hestnut	Street, B	ristol, RI				Excavato	r: Backhoe	9	
Date of Te	est Hole:	July 1	8, 2024									
Soil Evalu	ator:	Spend	cer Lynd	ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunny	/				;	Shaded	Yes 🗌	No 🗌		
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 18											
C1	18 - 42				38"				FSL	Massive	Firm in Place	15%
C2	42 - 68								SiL	Massive	Firm in Place	15%
R												
Soil Class: Depth to Gro or Seepage: Estimated So Table:	oundwater easonal Hig	h Water	N/A	DRY 9 (OW	TS)	I	Depth or Lim Surfac	to Imperviting Laye		68" 68" -		
	dard light bro				er iighly restricit	tive natu	iral soil	layer				
RI Stormw	vater Manua	Rawls I	Rate = 0.2	27 in./hr.						TEST H	OLE NO.	TP-6

				PAR		PORA	TION	1			TEST HOLE NO.	TP-7
	EN	8 E GINEE		TONE VAL	LEY PLAC		OLN, ***		ISLAND ONSULTANTS		SHEET 7 OF	10
Property (Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS						Contracto	or: Bristol D	PW	
Property I	_ocation:	199 C	hestnut	Street, B	ristol, RI				Excavato	r: Backhoe	9	
Date of Test Hole: July 18, 2024												
Soil Evaluator: Spencer Lynds SE#14275 State / SE Expiration: MA / 6/30/2									MA / 6/30/202	25		
Weather:		Sunn	/				_ :	Shaded	: Yes 🗌	No 🗌		
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 12				10"							
C1	12 - 52								LS	Massive	Friable	0%
C2	52 - 108								SiL	Massive	Firm in Place	15%
Soil Class: Depth to Gro or Seepage: Estimated S Table:	oundwater	n Water	CATEGC 104" 10"	DRY 9 (OW ⁻	rs)		Depth or Lim Surfac	to Imperviiting Laye	/ious	<u>108"</u> - -		-
		-	-	d topsoil lay	er, containec	l signific	ant rede	ox feature	es, TP downgradient a		-	
RI Stormw	vater Manual	Rawls F	Rate = 0.2	7 in./hr.						TEST H	OLE NO.	TP-7

							TION	1				
		Q I			LEY PLAC	-	-				TEST HOLE NO.	TP-8
	EN	GINEE		***	PLANNE		***		ONSULTANTS		SHEET 8 OF	10
Property 0	Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS						Contracto	or: Bristol D	PW	
Property L	ocation:	199 C	Chestnut	Street, B	ristol, RI				Excavato	r: Backhoe)	
Date of Te	est Hole:	July 1	8, 2024									
Soil Evalu				ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	5	
Weather:		Sunn					-	Shaded		No 🗌	-	
			-				-					
					SAM	PLE D	ESCR					
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 12											
C1	12 - 18				14"				FSL	Massive	Firm in Place	15%
C2	18 - 42								SiL	Massive	Firm in Place	15%
R												
	I	1				l	<u> </u>	I		1	I	
Soil Class:		S A (RI)	/ CATEG	ORY 9 (OW	TS)		-		est Hole:	42"		-
Depth to Gro or Seepage:			N/A					to Imperviting Laye		42"		
Estimated S		h Water					Surfac	e Elevati	on of Test Pit	72		-
Table:			14"				(appro	ximate):		-		-
COMMENTS	3 [.]											
Fill A stand	dard light br				er ighly restrici	tive natu	iral soil	layer				
RI Stormw	/ater Manua	Rawls	Rate = 0 2	27 in./hr						TEST H	OLE NO.	TP-8
										. 201 11		


				PAR		PORA		1			TEST HOLE NO.	TP-9
					LEY PLAC							
		GINEE		***	PLANNE	RS	***	С	ONSULTANTS		SHEET 9 OF	10
Property (Owner:		of Brist	ol								
Project:		Mt. H	ope HS				Contractor: Bristol DPW					
Property I	_ocation:	199 C	Chestnut	Street, B	ristol, RI				Excavato	r: Backhoe	9	
Date of Te	est Hole:	July 1	8, 2024									
Soil Evalu	lator:	Spend	cer Lync	ls SE#142	275		_	State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn	у				-	Shaded	: Yes 🗌	No 🗌		
					SAM	PLE D	ESCR		l			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 29											
Fill B	29 - 70				29"							
C1	70 - 90								FSL	Massive	Firm in Place	15%
C2	90 - 96								SiL	Massive	Firm in Place	15%
Soil Class: Depth to Gro or Seepage: Estimated S Table:	oundwater easonal Hig		N/A	DRY 9 (OW	TS)	L	Depth or Lim Surfac	to Imperviting Laye		<u>96"</u> -		-
COMMENTS			ding fill Ei		anic fill aloo	soon in '	трэ					
No bedroo	ck encounter	ed, refu	sal consid	ered to be h	anic fill also highly restricito f Fill B; displ	tive natu	ıral soil		en Fill A/B horizon			
RI Stormw	vater Manua	I Rawls I	Rate = 0.2	?7 in./hr.						TEST H	OLE NO.	TP-9

				PAR		PORA		1			TEST HOLE NO.	TP-10
	EN	8 E GINEE		TONE VAL	LEY PLAC PLANNE		OLN, ***		ISLAND CONSULTANTS		SHEET 10 OF	10
Property (Owner:	Town	of Brist	ol								
Project:		Mt. H	ope HS				Contractor: Bristol DPW					
Property I	Property Location: <u>199 Chestnut Street, Bristol, RI</u>								Excavato	or: Backhoe	e	
Date of T	est Hole:	July 1	8, 2024									
Soil Evalu	lator:	Spen	cer Lync	ls SE#142	275			State /	SE Expiration:	MA / 6/30/202	25	
Weather:		Sunn	y					Shaded	: Yes 🗌	No 🗌		
					SA	MPLE	DESC	RIPTIC	N			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill A	0 - 16											
Fill B	16 - 39				16"							
C1	39 - 64								LS	Massive	Friable	0%
C2	64 - 108								SiL	Massive	Firm in Place	15%
Soil Class: Depth to Gr or Seepage Estimated S Table:	oundwater		N/A	ORY 9 (OW	TS)	L	Depth or Lim Surfac	to Imper iting Lay		<u>108"</u> - -	L	- - -
	dard light br								ers (mixed C1/C2 typ in Fill B layer were n		med redox showed clear	SHGW elev.
RI Stormv	vater Manua	l Rawls I	Rate = 0.2	?7 in./hr.						TEST H	OLE NO.	TP-10

Bristol Warren Regional School District MT. HOPE HIGH SCHOOL

APPENDIX B

Hydrologic Calculations – Existing and Proposed Conditions Hydraulic Calculations – Pipe Analysis

Ex-Hydro Prepared by Pare Corporation <u>HydroCAD® 10.20-5b_s/n 04883_© 2023 HydroCAD S</u>	23099.01 Existing Conditions 1-year Storm <i>Type III 24-hr 1-year Rainfall=2.80"</i> Printed 1/9/2025 Software Solutions LLC Page 2
Runoff by SCS TR-20 me	s, dt=0.05 hrs, 1441 points x 2 ethod, UH=SCS, Weighted-CN od - Pond routing by Dyn-Stor-Ind method
	Area=499,398 sf 17.06% Impervious Runoff Depth=1.10" gth=407' Tc=25.0 min CN=80 Runoff=8.83 cfs 45,865 cf
Subcatchment EDA-1.2A: Subcat EDA-1.2A Runo	ff Area=57,549 sf 67.99% Impervious Runoff Depth=1.89" Tc=6.0 min CN=91 Runoff=2.83 cfs 9,043 cf
Subcatchment EDA-1.3A: Subcat EDA-1.3A Runo	ff Area=21,734 sf 37.77% Impervious Runoff Depth=1.49" Tc=6.0 min CN=86 Runoff=0.86 cfs 2,703 cf
	ff Area=72,753 sf 71.19% Impervious Runoff Depth=1.89" gth=178' Tc=10.3 min CN=91 Runoff=3.13 cfs 11,432 cf
	ff Area=91,355 sf 66.94% Impervious Runoff Depth=1.89" ngth=247' Tc=7.7 min CN=91 Runoff=4.28 cfs 14,355 cf
	Area=281,058 sf 45.82% Impervious Runoff Depth=1.49" gth=509' Tc=16.3 min CN=86 Runoff=8.21 cfs 34,957 cf
	ff Area=88,558 sf 57.37% Impervious Runoff Depth=1.64" gth=361' Tc=12.7 min CN=88 Runoff=3.11 cfs 12,114 cf
	ff Area=398,430 sf 2.13% Impervious Runoff Depth=0.83" gth=317' Tc=13.4 min CN=75 Runoff=6.46 cfs 27,642 cf
	Area=218,209 sf 21.82% Impervious Runoff Depth=1.04" gth=274' Tc=13.3 min CN=79 Runoff=4.66 cfs 18,992 cf
Subcatchment EDA-2.2A: Subcat Runoff	Area=182,415 sf 21.34% Impervious Runoff Depth=1.04" 0.0125 '/' Tc=12.9 min CN=79 Runoff=3.93 cfs 15,877 cf
Subcatchment EDA-2.2B: Subcat EDA-2.2B Runo	ff Area=164,751 sf 1.20% Impervious Runoff Depth=0.69" 0.0120 '/' Tc=40.0 min CN=72 Runoff=1.33 cfs 9,498 cf
Pond 1P: Existing Detention Basin Pea	k Elev=44.74' Storage=6,547 cf Inflow=6.46 cfs 27,642 cf f Primary=2.98 cfs 24,604 cf Outflow=3.06 cfs 27,642 cf
Link 2L: DP 1.1 - Culvert 1	Inflow=8.83 cfs 45,865 cf Primary=8.83 cfs 45,865 cf
Link 3L: DP 1.2 - Culvert 2	Inflow=9.87 cfs 54,907 cf Primary=9.87 cfs 54,907 cf
Link 4L: DP 1.3 - Culvert 3	Inflow=10.22 cfs 57,611 cf Primary=10.22 cfs 57,611 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Inflow=25.70 cfs 130,468 cf Primary=25.70 cfs 130,468 cf

Link 6L: DP 2.1 - West Wetland

Inflow=6.84 cfs 53,094 cf Primary=6.84 cfs 53,094 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=10.53 cfs 68,970 cf Primary=10.53 cfs 68,970 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 202,476 cf Average Runoff Depth = 1.17" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf

Summary for Subcatchment EDA-1.1A: Subcat EDA-1.1A

Runoff = 8.83 cfs @ 12.37 hrs, Volume= 45,865 cf, Depth= 1.10" Routed to Link 2L : DP 1.1 - Culvert 1

A	rea (sf)	CN I	Description		
	51,477	74 :	>75% Gras	s cover, Go	bod, HSG C
	30,751	80 ;	>75% Gras	s cover, Go	ood, HSG D
	26,444	98 I	Paved park	ing, HSG C	
	18,622	98 I	Paved park	ing, HSG D	
	35,980	98 I	Roofs, HSG	GC	
	4,167		Roofs, HSO		
	33,738	70	Woods, Go	od, HSG C	
2	98,218	77 \	Noods, Go	od, HSG D	
4	99,398	80 \	Neighted A	verage	
4	14,184	76 8	32.94% Per	rvious Area	
	85,213	98	17.06% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.8	100	0.0050	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
8.2	307	0.0080	0.63		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
25.0	407	Total			

Summary for Subcatchment EDA-1.2A: Subcat EDA-1.2A

Runoff = 2.83 cfs @ 12.09 hrs, Volume= 9,043 cf, Depth= 1.89" Routed to Link 3L : DP 1.2 - Culvert 2

Area (sf)	CN	Description	_
13,576	74	>75% Grass cover, Good, HSG C	_
4,847	80	>75% Grass cover, Good, HSG D	
37,725	98	Roofs, HSG C	
1,401	98	Roofs, HSG D	_
57,549	91	Weighted Average	_
18,422	76	32.01% Pervious Area	
39,126	98	67.99% Impervious Area	
Tc Length (min) (feet		pe Velocity Capacity Description /ft) (ft/sec) (cfs)	_
6.0		Direct Entry,	

Summary for Subcatchment EDA-1.3A: Subcat EDA-1.3A

Runoff	=	0.86 cfs @	12.09 hrs,	Volume=	2,703 cf,	Depth= 1	.49"
Routed	to Link	4L : DP 1.3 -	Culvert 3				

Area (sf) CN	Description
3,120	0 74	>75% Grass cover, Good, HSG C
10,40	5 80	>75% Grass cover, Good, HSG D
3,378	8 98	Paved parking, HSG C
2,800) 98	Paved parking, HSG D
1,460) 98	Roofs, HSG C
572	2 98	Roofs, HSG D
21,734	4 86	Weighted Average
13,52	5 79	62.23% Pervious Area
8,210	98 0	37.77% Impervious Area
Tc Leng (min) (fee		pe Velocity Capacity Description /ft) (ft/sec) (cfs)
6.0		Direct Entry,

	23099.01 Existing Conditions 1-year Storm
Ex-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 7

Summary for Subcatchment EDA-1.4A: Subcat EDA-1.4A

Runoff	=	3.13 cfs @	12.14 hrs, Vo	olume=	11,432 cf,	Depth= 1.89"
Routed	l to Link	5L : DP 1.4 -	Silver Creek E	ast Branch		

A	rea (sf)	CN	Description			
	20,150	74				
	811	80	>75% Gras	s cover, Go	ood, HSG D	
	18,737	98	Paved park	ing, HSG C	;	
	138		1 07			
	32,700	98	,			
	217	98	Roofs, HSC	G D		
	72,753		Weighted A			
	20,961	74	28.81% Per	vious Area		
	51,792	98	71.19% Imp	pervious Ar	ea	
_						
Тс	Length	Slope	•		Description	
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description	
	-		(ft/sec)		Description Sheet Flow,	
<u>(min)</u> 9.5	(feet) 78	(ft/ft) 0.0128	(ft/sec) 0.14			
(min)	(feet)	(ft/ft)	(ft/sec) 0.14		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow,	
(min) 9.5 0.4	(feet) 78	(ft/ft) 0.0128 0.0200	(ft/sec) 0.14 1.06		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.30"	
<u>(min)</u> 9.5	(feet) 78	(ft/ft) 0.0128	(ft/sec) 0.14 1.06		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.30" Shallow Concentrated Flow,	
(min) 9.5 0.4	(feet) 78 25	(ft/ft) 0.0128 0.0200	(ft/sec) 0.14 1.06		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.30"	

	23099.01 Existing Conditions 1-year Storm
Ex-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 8

Summary for Subcatchment EDA-1.4B: Subcat EDA-1.4B

Runoff	=	4.28 cfs @	12.11 hrs,	Volume=	14,355 cf,	Depth= 1.89"
Routed	to Link	5L : DP 1.4 -	Silver Cree	k East Branch		-

A	rea (sf)	CN	Description		
	15,693	74	>75% Gras	s cover, Go	bod, HSG C
	14,511	80	>75% Gras	s cover, Go	bod, HSG D
	50,003		Paved park		
	1,562	98	Paved park	ing, HSG D	
	9,586	98	Roofs, HSC	G C	
	91,355	91	Weighted A	verage	
	30,204	77	33.06% Per	vious Area	
	61,151	98	66.94% Imp	pervious Are	ea
Тс	Length	Slope			Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.5	100	0.0530	0.26		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
0.8	66	0.0379) 1.36		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.3	56	0.0268	3.32		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.1	25	0.2800) 3.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
7.7	247	Total			

	23099.01 Existing Conditions 1-year Storm
Ex-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 9

Summary for Subcatchment EDA-1.4C: Subcat EDA-1.4C

Runoff	=	8.21 cfs @	12.23 hrs,	Volume=	34,957 cf,	Depth= 1.49"
Routed	to Link	5L : DP 1.4 -	Silver Cree	k East Branch		

A	rea (sf)	CN	Description					
1	22,034	74	>75% Grass cover, Good, HSG C					
	17,778	80	>75% Gras	s cover, Go	bod, HSG D			
	12,467	87	Dirt roads, l	HSG C				
1	103,345	98	Paved park	ing, HSG C				
	1,864		Paved park	•)			
	23,487		Roofs, HSC					
	83	98	Roofs, HSC	G D				
	281,058		Weighted A	verage				
	152,278	-	54.18% Per					
1	28,779	98	45.82% Imp	pervious Ar	ea			
_								
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft		(cfs)				
11.8	100	0.0120	0.14		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.30"			
2.8	150	0.0167	0.90		Shallow Concentrated Flow,			
	004		0.05		Short Grass Pasture Kv= 7.0 fps			
1.2	204	0.0211	2.95		Shallow Concentrated Flow,			
0.5	50	0.0500	A 67		Paved Kv= 20.3 fps			
0.5	50	0.0500) 1.57		Shallow Concentrated Flow,			
0.0	F	0 0000			Short Grass Pasture Kv= 7.0 fps			
0.0	5	0.8000	6.26		Shallow Concentrated Flow,			
40.0		Tatal			Short Grass Pasture Kv= 7.0 fps			
16.3	509	Total						

	23099.01 Existing Conditions 1-year Storm
Ex-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 10

Summary for Subcatchment EDA-1.4D: Subcat EDA-1.4D

Runoff	=	3.11 cfs @	12.18 hrs,	Volume=	12,114 cf,	Depth= 1.64"
Routed	I to Link	5L : DP 1.4 -	Silver Cree	k East Branch		-

A	rea (sf)	CN E	escription				
	37,570	74 >	>75% Grass cover, Good, HSG C				
	178	80 >	>75% Grass cover, Good, HSG D				
	44,298			ing, HSG C			
	4,723			ing, HSG D			
	1,789	98 F	loofs, HSC	G C			
	88,558		Weighted Average				
	37,748			vious Area			
	50,810	98 5	7.37% Imp	pervious Ar	ea		
		<u> </u>					
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	Length (feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description		
					Sheet Flow,		
<u>(min)</u> 10.8	(feet) 100	(ft/ft) 0.0150	(ft/sec) 0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Shallow Concentrated Flow,		
(min) 10.8 0.8	(feet) 100 59	(ft/ft) 0.0150 0.0339	(ft/sec) 0.15 1.29		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
<u>(min)</u> 10.8	(feet) 100	(ft/ft) 0.0150	(ft/sec) 0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,		
(min) 10.8 0.8	(feet) 100 59	(ft/ft) 0.0150 0.0339	(ft/sec) 0.15 1.29		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		

Summary for Subcatchment EDA-2.1A: Subcat EDA-2.1A

Runoff = 6.46 cfs @ 12.21 hrs, Volume= 2 Routed to Pond 1P : Existing Detention Basin

27,642 cf, Depth= 0.83"

A	rea (sf)	CN E	Description					
3	89,936	74 >	>75% Grass cover, Good, HSG C					
	8,494	98 F	Paved parking, HSG C					
3	98,430		Veighted A					
3	89,936	-	-	vious Area				
	8,494	98 2	2.13% Impe	ervious Area	а			
-				.				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.3	100	0.0170	0.16		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.30"			
0.8	46	0.0170	0.91		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
0.0	5	0.0200	2.87		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
1.2	56	0.0125	0.78		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
1.1	110	0.0545	1.63		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
13.4	317	Total						

Summary for Subcatchment EDA-2.1B: Subcat EDA-2.1B

Runoff = 4.66 cfs @ 12.20 hrs, Volume= Routed to Link 6L : DP 2.1 - West Wetland

18,992 cf, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.80"

A	vrea (sf)	CN [Description					
	170,595	74 >	>75% Grass cover, Good, HSG C					
	47,223			ing, HSG C				
	391	98 F	Roofs, HSC	G C				
	218,209		Neighted A	0				
	170,595			rvious Area				
	47,614	98 2	21.82% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)		(cfs)	Description			
11.8	100	0.0120	0.14	· · · ·	Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.30"			
0.5	60	0.0717	1.87		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
0.1	27	0.1852	3.01		Shallow Concentrated Flow,			
0.4	00	0 0000	4.0.4		Short Grass Pasture Kv= 7.0 fps			
0.1	30	0.3333	4.04		Shallow Concentrated Flow,			
0.4	22	0.0200	0.99		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,			
0.4	22	0.0200	0.99		Short Grass Pasture Kv= 7.0 fps			
0.4	35	0.0350	1.31		Shallow Concentrated Flow,			
0.7	00	0.0000	1.01		Short Grass Pasture Kv= 7.0 fps			
12.2	274	Total						

13.3 274 Total

	23099.01 Existing Conditions 1-year Storm
Ex-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 13

Summary for Subcatchment EDA-2.2A: Subcat EDA-2.2A

Runoff = 3.93 cfs @ 12.19 hrs, Volume= 15,877 cf, Depth= 1.04" Routed to Link 7L : DP 2.2 - Silver Creek West Branch

	Area (sf)	CN E	Description		
	143,212	74 >	75% Gras	s cover, Go	bod, HSG C
	38,924	98 F	Paved park	ing, HSG C	
	279	70 V	Voods, Go	od, HSG C	
	182,415	79 V	Veighted A	verage	
	143,491	74 7	8.66% Per	vious Area	
	38,924	98 2	21.34% Imp	pervious Are	ea
_		~		•	— • • •
Tc	5	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.6	100	0.0125	0.14		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
1.3	60	0.0125	0.78		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
12.9	160	Total			

Summary for Subcatchment EDA-2.2B: Subcat EDA-2.2B

Runoff = 1.33 cfs @ 12.63 hrs, Volume= 9,498 Routed to Link 6L : DP 2.1 - West Wetland

9,498 cf, Depth= 0.69"

A	rea (sf)	CN E	Description		
	64,326	74 >	75% Gras	s cover, Go	ood, HSG C
	1,982	98 F	aved park	ing, HSG C	;
	98,443	70 V	Voods, Go	od, HSG C	
1	64,751	72 V	Veighted A	verage	
1	62,769	72 9	8.80% Per	vious Area	
	1,982	98 1	.20% Impe	ervious Area	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
25.9	100	0.0120	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.30"
14.1	465	0.0120	0.55		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
40.0	565	Total			

Summary for Pond 1P: Existing Detention Basin

Inflow Area =	398,430 sf, 2.13% Impervious,	Inflow Depth = 0.83" for 1-year event
Inflow =	6.46 cfs @ 12.21 hrs, Volume=	27,642 cf
Outflow =	3.06 cfs @ 12.55 hrs, Volume=	27,642 cf, Atten= 53%, Lag= 20.7 min
Discarded =	0.08 cfs @ 12.55 hrs, Volume=	3,038 cf
Primary =	2.98 cfs @ 12.55 hrs, Volume=	24,604 cf
Routed to Link	6L : DP 2.1 - West Wetland	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 44.74' @ 12.55 hrs Surf.Area= 9,725 sf Storage= 6,547 cf

Plug-Flow detention time= 48.1 min calculated for 27,623 cf (100% of inflow) Center-of-Mass det. time= 48.2 min (922.4 - 874.2)

Volume	Invert	Avail.Stor	rage Storage D	escription		
#1	44.00'	41,39	97 cf Custom S	Stage Data (Pri	smatic) Listed below	(Recalc)
Elevatio		f.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
44.0	00	7,932	0	0		
45.0)0 1	0,350	9,141	9,141		
47.5	50 1	5,455	32,256	41,397		
Device	Routing	Invert	Outlet Devices			
#1	Discarded	44.00'	0.270 in/hr Exf	iltration over S	Surface area	
#2	Primary	44.00'		H Vert. Orifice	/Grate C= 0.600	Phase-In= 0.02'
#3	Primary	45.20'			rested Rectangular \	Neir
	,		2 End Contract			
#4	Primary	46.25'	•		rested Rectangular \	Neir
			2 End Contract	()		
#5	Primary	47.00'	10.0' long Shai	rp-Crested Red	ctangular Weir 2 En	d Contraction(s)
Discarded OutFlow Max=0.08 cfs @ 12.55 hrs HW=44.74' (Free Discharge) 1=Exfiltration (Controls 0.08 cfs)						

Primary OutFlow Max=2.98 cfs @ 12.55 hrs HW=44.74' TW=0.00' (Dynamic Tailwater) -2=Orifice/Grate (Orifice Controls 2.98 cfs @ 2.98 fps) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs) -4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs) -5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs) **Ex-Hydro** Prepared by Pare Corporation

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 1P: Existing Detention Basin

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
44.00	0.00	0.00	0.00	46.55	12.00	0.16	11.83
44.05	0.11	0.05	0.05	46.60	12.46	0.17	12.29
44.10	0.21	0.05	0.15	46.65	12.94	0.17	12.77
44.15	0.21	0.05	0.13	46.70	13.42	0.17	13.25
44.20	0.49	0.06	0.43	46.75	13.92	0.17	13.75
44.25	0.66	0.06	0.60	46.80	14.43	0.18	14.25
44.30	0.85	0.06	0.79	46.85	14.94	0.18	14.76
44.35	1.06	0.06	1.00	46.90	15.47	0.18	15.29
44.40	1.28	0.07	1.22	46.95	16.00	0.18	15.81
44.45	1.52	0.07	1.45	47.00	16.53	0.19	16.35
44.50	1.77	0.07	1.70	47.05	17.44	0.19	17.25
44.55	2.04	0.07	1.96	47.10	18.66	0.19	18.47
44.60	2.31	0.07	2.24	47.15	20.07	0.19	19.88
44.65					20.07		
	2.60	0.08	2.52	47.20		0.20	21.42
44.70	2.87	0.08	2.79	47.25	23.25	0.20	23.05
44.75	3.09	0.08	3.01	47.30	24.97	0.20	24.77
44.80	3.29	0.08	3.21	47.35	26.78	0.20	26.58
44.85	3.48	0.09	3.40	47.40	28.68	0.21	28.47
44.90	3.66	0.09	3.57	47.45	30.66	0.21	30.45
44.95	3.82	0.09	3.73	47.50	32.71	0.21	32.50
45.00	3.98	0.09	3.89				
45.05	4.13	0.09	4.04				
45.10	4.28	0.10	4.18				
45.15	4.42	0.10	4.32				
45.20	4.56	0.10	4.45				
45.25	4.72	0.10	4.62				
45.30	4.92	0.11	4.81				
45.35	5.13	0.11	5.02				
45.40	5.34	0.11	5.23				
45.45	5.57	0.11	5.46				
45.50	5.80	0.11	5.69				
45.55	6.04	0.12	5.92				
45.60	6.28	0.12	6.16				
45.65	6.53	0.12	6.41				
45.70	6.78	0.12	6.66				
45.75	7.03	0.13	6.90				
45.80	7.28	0.13	7.16				
45.85	7.54	0.13	7.41				
45.90	7.80	0.13	7.66				
45.95	8.05	0.14	7.92				
46.00	8.31	0.14	8.17				
46.05	8.57	0.14	8.43				
			8.68				
46.10	8.82	0.14					
46.15	9.08	0.15	8.93				
46.20	9.33	0.15	9.19				
46.25	9.59	0.15	9.44				
46.30	9.92	0.15	9.77				
46.35	10.29	0.15	10.14				
46.40	10.69	0.16	10.53				
46.45	11.11	0.16	10.95				
46.50	11.55	0.16	11.38				

Stage-Area-Storage for Pond 1P: Existing Detention Basin

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
44.00	7,932	0	46.55	13,515	27,636
44.05	8,053	400	46.60	13,617	28,315
44.10	8,174	805	46.65	13,719	28,998
44.15	8,295	1,217	46.70	13,821	29,687
44.20	8,416	1,635	46.75	13,924	30,380
44.25	8,537	2,059	46.80	14,026	31,079
44.30	8,657	2,488	46.85	14,128	31,783
44.35	8,778	2,924	46.90	14,230	32,492
44.40	8,899	3,366	46.95	14,332	33,206
44.45	9,020	3,814	47.00	14,434	33,925
44.50	9,141	4,268	47.05	14,536	34,649
44.55	9,262	4,728	47.10	14,638	35,379
44.60	9,383	5,194	47.15	14,030	36,113
44.65	9,504	5,667	47.20	14,842	36,853
44.70	9,625	6,145	47.25	14,945	37,597
44.75	9,746	6,629	47.30	15,047	38,347
44.80	9,866	7,119	47.35	15,149	39,102
44.85	9,987	7,616	47.40	15,251	39,862
44.90	10,108	8,118	47.45	15,353	40,627
44.95	10,229	8,627	47.50	15,455	41,397
45.00	10,350	9,141			
45.05	10,452	9,661			
45.10	10,554	10,186			
45.15	10,656	10,716			
45.20	10,758	11,252			
45.25	10,861	11,792			
45.30	10,963	12,338			
45.35	11,065	12,889			
45.40	11,167	13,444			
45.45	11,269	14,005			
45.50	11,371	14,571			
45.55	11,473	15,142			
45.60	11,575	15,719			
45.65	11,677	16,300			
45.70	11,779	16,886			
45.75	11,882	17,478			
45.80	11,984	18,074			
45.85	12,086	18,676			
45.90	12,188	19,283			
45.95	12,290	19,895			
46.00	12,392	20,512			
46.05	12,494	21,134			
46.10	12,596	21,761			
46.15	12,698	22,394			
46.20	12,800	23,031			
46.25	12,903	23,674			
46.30	13,005	24,321			
46.35	13,107	24,974			
46.40	13,209	25,632			
46.45	13,311	26,295			
46.50	13,413	26,963			
	,	_0,000			

Summary for Link 2L: DP 1.1 - Culvert 1

 Inflow Area =
 499,398 sf, 17.06% Impervious, Inflow Depth =
 1.10" for 1-year event

 Inflow =
 8.83 cfs @
 12.37 hrs, Volume=
 45,865 cf

 Primary =
 8.83 cfs @
 12.37 hrs, Volume=
 45,865 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 3L : DP 1.2 - Culvert 2
 12.37 hrs, Volume=
 45,865 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 3L: DP 1.2 - Culvert 2

 Inflow Area =
 556,947 sf, 22.33% Impervious, Inflow Depth =
 1.18" for 1-year event

 Inflow =
 9.87 cfs @
 12.35 hrs, Volume=
 54,907 cf

 Primary =
 9.87 cfs @
 12.35 hrs, Volume=
 54,907 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 4L : DP 1.3 - Culvert 3
 1.18
 54,907 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 4L: DP 1.3 - Culvert 3

Inflow Area = 578,681 sf, 22.91% Impervious, Inflow Depth = 1.19" for 1-year event Inflow = 10.22 cfs @ 12.34 hrs, Volume= 57,611 cf Primary = 10.22 cfs @ 12.34 hrs, Volume= 57,611 cf, Atten= 0%, Lag= 0.0 min Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Summary for Link 5L: DP 1.4 - Silver Creek East Branch

Inflow Area = 1,112,405 sf, 38.21% Impervious, Inflow Depth = 1.41" for 1-year event Inflow = 25.70 cfs @ 12.19 hrs, Volume= 130,468 cf Primary = 25.70 cfs @ 12.19 hrs, Volume= 130,468 cf, Atten= 0%, Lag= 0.0 min Routed to nonexistent node 8L

Summary for Link 6L: DP 2.1 - West Wetland

Inflow Area = 781,390 sf, 7.43% Impervious, Inflow Depth = 0.82" for 1-year event Inflow = 6.84 cfs @ 12.35 hrs, Volume= 53,094 cf Primary = 6.84 cfs @ 12.35 hrs, Volume= 53,094 cf, Atten= 0%, Lag= 0.0 min Routed to Link 7L : DP 2.2 - Silver Creek West Branch

Summary for Link 7L: DP 2.2 - Silver Creek West Branch

Inflow Area = 963,805 sf, 10.07% Impervious, Inflow Depth = 0.86" for 1-year event Inflow = 10.53 cfs @ 12.22 hrs, Volume= 68,970 cf Primary = 10.53 cfs @ 12.22 hrs, Volume= 68,970 cf, Atten= 0%, Lag= 0.0 min Routed to nonexistent node 8L

Ex-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023		1 Existing Conditions WQv 1.2" Storm <i>Type III 24-hr WQv Rainfall=1.20"</i> Printed 1/9/2025 <u>LC Page 1</u>
Runoff by SCS TR-20 m	0.00-72.00 hrs, dt=0.05 hrs, 144 ethod, UH=SCS, Split Pervious cor-Ind method - Pond routing	/Imperv. UI as Pervious
Subcatchment EDA-1.1A: Subcat		17.06% Impervious Runoff Depth=0.24" n CN=76/98 Runoff=1.42 cfs 9,992 cf
Subcatchment EDA-1.2A: Subcat ED		7.99% Impervious Runoff Depth=0.70" n CN=76/98 Runoff=0.96 cfs 3,347 cf
Subcatchment EDA-1.3A: Subcat ED		87.77% Impervious Runoff Depth=0.46" nin CN=79/98 Runoff=0.22 cfs 826 cf
Subcatchment EDA-1.4A: Subcat ED		71.19% Impervious Runoff Depth=0.72" n CN=74/98 Runoff=1.12 cfs 4,362 cf
Subcatchment EDA-1.4B: Subcat ED		6.94% Impervious Runoff Depth=0.69" n CN=77/98 Runoff=1.44 cfs 5,277 cf
Subcatchment EDA-1.4C: Subcat		5.82% Impervious Runoff Depth=0.50" CN=76/98 Runoff=2.41 cfs 11,678 cf
Subcatchment EDA-1.4D: Subcat ED		57.37% Impervious Runoff Depth=0.59" n CN=74/98 Runoff=1.03 cfs 4,367 cf
Subcatchment EDA-2.1A: Subcat ED		2.13% Impervious Runoff Depth=0.08" n CN=74/98 Runoff=0.21 cfs 2,701 cf
Subcatchment EDA-2.1B: Subcat		21.82% Impervious Runoff Depth=0.26" n CN=74/98 Runoff=0.94 cfs 4,787 cf
Subcatchment EDA-2.2A: Subcat Flow Length=16		21.34% Impervious Runoff Depth=0.26" n CN=74/98 Runoff=0.78 cfs 3,934 cf
Subcatchment EDA-2.2B: Subcat ED Flow Length=		1.20% Impervious Runoff Depth=0.05" nin CN=72/98 Runoff=0.03 cfs 724 cf
Pond 1P: Existing Detention Basin Discarded		torage=370 cf Inflow=0.21 cfs 2,701 cf 5 cfs 827 cf Outflow=0.10 cfs 2,701 cf
Link 2L: DP 1.1 - Culvert 1		Inflow=1.42 cfs 9,992 cf Primary=1.42 cfs 9,992 cf
Link 3L: DP 1.2 - Culvert 2		Inflow=1.79 cfs 13,339 cf Primary=1.79 cfs 13,339 cf
Link 4L: DP 1.3 - Culvert 3		Inflow=1.94 cfs 14,165 cf Primary=1.94 cfs 14,165 cf
Link 5L: DP 1.4 - Silver Creek East B	ranch	Inflow=7.48 cfs 39,849 cf Primary=7.48 cfs 39,849 cf

Inflow=0.97 cfs 6,338 cf Primary=0.97 cfs 6,338 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=1.75 cfs 10,272 cf Primary=1.75 cfs 10,272 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 51,996 cf Average Runoff Depth = 0.30" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf

Ex-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD		s 2, 10, 25, 100-year Storm <i>1-hr 2-year Rainfall=3.30"</i> Printed 1/9/2025 Page 1
	nrs, dt=0.05 hrs, 1441 points x nethod, UH=SCS, Weighted-C od - Pond routing by Dyn-Sto	Ν
	f Area=499,398 sf 17.06% Imp gth=407' Tc=25.0 min CN=80	•
Subcatchment EDA-1.2A: Subcat EDA-1.2A Rund		ervious Runoff Depth=2.35" 1 Runoff=3.50 cfs 11,281 cf
Subcatchment EDA-1.3A: Subcat EDA-1.3A Rund		vervious Runoff Depth=1.92" 86 Runoff=1.10 cfs 3,482 cf
Subcatchment EDA-1.4A: Subcat EDA-1.4A Rund Flow Ler	off Area=72,753 sf 71.19% Imp ngth=178' Tc=10.3 min CN=91	
Subcatchment EDA-1.4B: Subcat EDA-1.4B Rund Flow Le	off Area=91,355 sf 66.94% Imp ength=247' Tc=7.7 min CN=91	
	f Area=281,058 sf 45.82% Imp gth=509' Tc=16.3 min CN=86	•
Subcatchment EDA-1.4D: Subcat EDA-1.4D Rune Flow Ler	off Area=88,558 sf 57.37% Imp ngth=361' Tc=12.7 min CN=88	
Subcatchment EDA-2.1A: Subcat EDA-2.1A Rune Flow Ler	off Area=398,430 sf 2.13%	
	f Area=218,209 sf 21.82% Imp ngth=274' Tc=13.3 min CN=7§	•
	f Area=182,415 sf 21.34% Imp 0.0125 '/' Tc=12.9 min CN=79	
Subcatchment EDA-2.2B: Subcat EDA-2.2B Rund Flow Length=565' Slope=	off Area=164,751 sf 1.20% Imp 0.0120 '/' Tc=40.0 min CN=72	
	ak Elev=45.05' Storage=9,643 cf Primary=4.03 cfs 35,287 cf	
Link 2L: DP 1.1 - Culvert 1		Inflow=12.03 cfs 61,561 cf Primary=12.03 cfs 61,561 cf
Link 3L: DP 1.2 - Culvert 2		Inflow=13.32 cfs 72,842 cf Primary=13.32 cfs 72,842 cf
Link 4L: DP 1.3 - Culvert 3		Inflow=13.76 cfs 76,324 cf Primary=13.76 cfs 76,324 cf
Link 5L: DP 1.4 - Silver Creek East Branch	F	Inflow=33.34 cfs 168,919 cf Primary=33.34 cfs 168,919 cf

Inflow=10.01 cfs 74,591 cf Primary=10.01 cfs 74,591 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=15.28 cfs 96,059 cf Primary=15.28 cfs 96,059 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 268,279 cf Average Runoff Depth = 1.55" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf

Ex-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b_s/n 04883_© 2023 HydroCAD		10, 25, 100-year Storm <i>10-year Rainfall=4.90"</i> Printed 1/9/2025 Page 3
	nrs, dt=0.05 hrs, 1441 points x 2 nethod, UH=SCS, Weighted-CN nod - Pond routing by Dyn-Stor-Ir	nd method
	ff Area=499,398 sf 17.06% Impervi th=407' Tc=25.0 min CN=80 Run	•
Subcatchment EDA-1.2A: Subcat EDA-1.2A Run		ous Runoff Depth=3.89" Runoff=5.64 cfs 18,632 cf
Subcatchment EDA-1.3A: Subcat EDA-1.3A Run		ous Runoff Depth=3.37" Runoff=1.91 cfs 6,111 cf
Subcatchment EDA-1.4A: Subcat EDA-1.4A Run Flow Le	off Area=72,753 sf 71.19% Impervi ngth=178' Tc=10.3 min CN=91 R	
Subcatchment EDA-1.4B: Subcat EDA-1.4B Run Flow L	off Area=91,355 sf 66.94% Impervi ength=247' Tc=7.7 min CN=91 R	
	ff Area=281,058 sf 45.82% Impervi gth=509' Tc=16.3 min CN=86 Ru	•
Subcatchment EDA-1.4D: Subcat EDA-1.4D Run Flow Le	off Area=88,558 sf 57.37% Impervi ngth=361' Tc=12.7 min CN=88 R	
Subcatchment EDA-2.1A: Subcat EDA-2.1A Run Flow Len	off Area=398,430 sf 2.13% Impervi gth=317' Tc=13.4 min CN=75 Ru	
	ff Area=218,209 sf 21.82% Impervi gth=274' Tc=13.3 min CN=79 Ru	•
	ff Area=182,415 sf 21.34% Impervi 0.0125 '/' Tc=12.9 min CN=79 Ru	
Subcatchment EDA-2.2B: Subcat EDA-2.2B Run Flow Length=565' Slope=	off Area=164,751 sf 1.20% Impervi =0.0120 '/' Tc=40.0 min CN=72 R	
	k Elev=46.06' Storage=21,202 cf	
Link 2L: DP 1.1 - Culvert 1		low=23.08 cfs 116,767 cf ary=23.08 cfs 116,767 cf
Link 3L: DP 1.2 - Culvert 2		low=25.17 cfs 135,399 cf ary=25.17 cfs 135,399 cf
Link 4L: DP 1.3 - Culvert 3		low=25.92 cfs 141,510 cf ary=25.92 cfs 141,510 cf
Link 5L: DP 1.4 - Silver Creek East Branch		low=58.84 cfs 300,035 cf ary=58.84 cfs 300,035 cf

Inflow=20.21 cfs 153,043 cf Primary=20.21 cfs 153,043 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=30.43 cfs 194,326 cf Primary=30.43 cfs 194,326 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 498,461 cf Average Runoff Depth = 2.88" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf

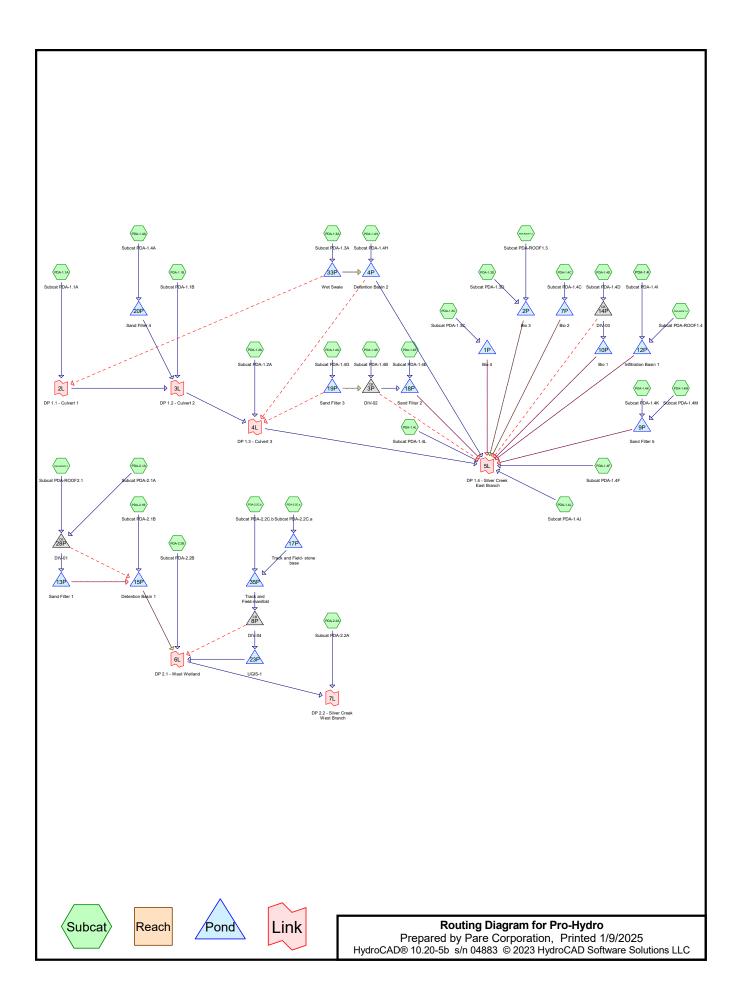
Ex-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b_s/n 04883_© 2023 HydroCAD		s 2, 10, 25, 100-year Storm hr 25-year Rainfall=6.10" Printed 1/9/2025 Page 5
	nrs, dt=0.05 hrs, 1441 points x nethod, UH=SCS, Weighted-CI nod - Pond routing by Dyn-Sto	Ν
	ff Area=499,398 sf 17.06% Imp th=407' Tc=25.0 min CN=80 I	
Subcatchment EDA-1.2A: Subcat EDA-1.2A Run		ervious Runoff Depth=5.06" I Runoff=7.23 cfs 24,243 cf
Subcatchment EDA-1.3A: Subcat EDA-1.3A Run		ervious Runoff Depth=4.50" 36 Runoff=2.51 cfs 8,159 cf
Subcatchment EDA-1.4A: Subcat EDA-1.4A Run Flow Le	off Area=72,753 sf 71.19% Imp ngth=178' Tc=10.3 min CN=91	
Subcatchment EDA-1.4B: Subcat EDA-1.4B Run Flow Le	off Area=91,355 sf 66.94% Imp ngth=247' Tc=7.7 min CN=91	
	ff Area=281,058 sf 45.82% Imp th=509' Tc=16.3 min CN=86 I	•
Subcatchment EDA-1.4D: Subcat EDA-1.4D Run Flow Le	off Area=88,558 sf 57.37% Imp ngth=361' Tc=12.7 min CN=88	
Subcatchment EDA-2.1A: Subcat EDA-2.1A Run Flow Leng	off Area=398,430 sf 2.13% Imp th=317' Tc=13.4 min CN=75 I	
	ff Area=218,209 sf 21.82% Imp gth=274' Tc=13.3 min CN=79	
	ff Area=182,415 sf 21.34% Imp 0.0125 '/' Tc=12.9 min CN=79	
Subcatchment EDA-2.2B: Subcat EDA-2.2B Run Flow Length=565' Slope=	off Area=164,751 sf 1.20% Imp =0.0120 '/' Tc=40.0 min CN=72	
	Elev=46.70' Storage=29,661 cf Primary=13.23 cfs 107,189 cf C	
Link 2L: DP 1.1 - Culvert 1	Ρ	Inflow=31.76 cfs 161,123 cf Primary=31.76 cfs 161,123 cf
Link 3L: DP 1.2 - Culvert 2	Ρ	Inflow=34.45 cfs 185,366 cf Primary=34.45 cfs 185,366 cf
Link 4L: DP 1.3 - Culvert 3	Ρ	Inflow=35.43 cfs 193,524 cf Primary=35.43 cfs 193,524 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Ρ	Inflow=78.39 cfs 403,008 cf Primary=78.39 cfs 403,008 cf

Inflow=28.99 cfs 217,946 cf Primary=28.99 cfs 217,946 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=43.16 cfs 275,241 cf Primary=43.16 cfs 275,241 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 682,867 cf Average Runoff Depth = 3.95" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf


Ex-Hydro Prepared by Pare Corporation <u>HydroCAD® 10.20-5b</u> s/n 04883 © 2023 HydroCAD	23099.01 Existing Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 100-year Rainfall=8.60"</i> Printed 1/9/2025 Software Solutions LLC Page 7
Runoff by SCS TR-20 m	nrs, dt=0.05 hrs, 1441 points x 2 nethod, UH=SCS, Weighted-CN od - Pond routing by Dyn-Stor-Ind method
	ff Area=499,398 sf 17.06% Impervious Runoff Depth=6.19" h=407' Tc=25.0 min CN=80 Runoff=50.14 cfs 257,590 cf
Subcatchment EDA-1.2A: Subcat EDA-1.2A Rund	off Area=57,549 sf 67.99% Impervious Runoff Depth=7.52" Tc=6.0 min CN=91 Runoff=10.50 cfs 36,051 cf
Subcatchment EDA-1.3A: Subcat EDA-1.3A Rund	off Area=21,734 sf 37.77% Impervious Runoff Depth=6.91" Tc=6.0 min CN=86 Runoff=3.77 cfs 12,523 cf
	off Area=72,753 sf 71.19% Impervious Runoff Depth=7.52" gth=178' Tc=10.3 min CN=91 Runoff=11.67 cfs 45,576 cf
	off Area=91,355 sf 66.94% Impervious Runoff Depth=7.52" ngth=247' Tc=7.7 min CN=91 Runoff=15.92 cfs 57,229 cf
	ff Area=281,058 sf 45.82% Impervious Runoff Depth=6.91" h=509' Tc=16.3 min CN=86 Runoff=36.71 cfs 161,939 cf
	off Area=88,558 sf 57.37% Impervious Runoff Depth=7.16" gth=361' Tc=12.7 min CN=88 Runoff=12.94 cfs 52,807 cf
	off Area=398,430 sf 2.13% Impervious Runoff Depth=5.59" h=317' Tc=13.4 min CN=75 Runoff=46.65 cfs 185,476 cf
	ff Area=218,209 sf 21.82% Impervious Runoff Depth=6.07" h=274' Tc=13.3 min CN=79 Runoff=27.57 cfs 110,357 cf
	ff Area=182,415 sf 21.34% Impervious Runoff Depth=6.07" 0.0125 '/' Tc=12.9 min CN=79 Runoff=23.39 cfs 92,255 cf
	off Area=164,751 sf 1.20% Impervious Runoff Depth=5.22" 0.0120 '/' Tc=40.0 min CN=72 Runoff=11.39 cfs 71,732 cf
	Elev=47.49' Storage=41,230 cf Inflow=46.65 cfs 185,476 cf Primary=32.04 cfs 179,993 cf Outflow=32.26 cfs 185,476 cf
Link 2L: DP 1.1 - Culvert 1	Inflow=50.14 cfs 257,590 cf Primary=50.14 cfs 257,590 cf
Link 3L: DP 1.2 - Culvert 2	Inflow=54.13 cfs 293,642 cf Primary=54.13 cfs 293,642 cf
Link 4L: DP 1.3 - Culvert 3	Inflow=55.59 cfs 306,165 cf Primary=55.59 cfs 306,165 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Inflow=119.32 cfs 623,715 cf Primary=119.32 cfs 623,715 cf

Inflow=60.35 cfs 362,081 cf Primary=60.35 cfs 362,081 cf

Link 7L: DP 2.2 - Silver Creek West Branch

Inflow=78.59 cfs 454,336 cf Primary=78.59 cfs 454,336 cf

Total Runoff Area = 2,076,210 sf Runoff Volume = 1,083,533 cf Average Runoff Depth = 6.26" 74.85% Pervious = 1,554,114 sf 25.15% Impervious = 522,096 sf

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 1.72% Impervious Runoff Depth=0.93" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77 Runoff=7.45 cfs 37,004 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.06% Impervious Runoff Depth=0.93" Flow Length=126' Tc=13.1 min CN=77 Runoff=0.62 cfs 2,570 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 15.00% Impervious Runoff Depth=1.10" Flow Length=73' Tc=7.3 min UI Adjusted CN=80 Runoff=0.71 cfs 2,375 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.89% Impervious Runoff Depth=1.97" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=92 Runoff=2.89 cfs 9,419 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 41.68% Impervious Runoff Depth=1.35" Flow Length=49' Tc=6.8 min CN=84 Runoff=0.59 cfs 1,900 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=1.35" Tc=6.0 min CN=84 Runoff=0.24 cfs 773 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.95% Impervious Runoff Depth=1.29" Flow Length=144' Tc=13.4 min CN=83 Runoff=0.83 cfs 3,326 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 38.51% Impervious Runoff Depth=1.42" Flow Length=98' Tc=13.9 min CN=85 Runoff=1.49 cfs 5,984 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=1.80" Tc=6.0 min CN=90 Runoff=1.27 cfs 4,024 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=1.64" Tc=6.0 min CN=88 Runoff=1.84 cfs 5,816 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=1.72" Tc=6.0 min CN=89 Runoff=1.77 cfs 5,625 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=1.57" Flow Length=346' Tc=14.5 min CN=87 Runoff=2.37 cfs 9,637 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=1.72" Tc=6.0 min CN=89 Runoff=1.01 cfs 3,194 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=0.83" Tc=6.0 min CN=75 Runoff=0.22 cfs 745 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=1.16" Tc=6.0 min CN=81 Runoff=0.30 cfs 951 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 8.43% Impervious Runoff Depth=1.04" Tc=6.0 min CN=79 Runoff=1.60 cfs 5,176 cf

Pro-Hydro Prepared by Pare Corporation <u>HydroCAD® 10.20-5b_s/n 04883_© 2023 HydroCAD Software Solu</u>	23099.01 Proposed Conditions 1-year Storm <i>Type III 24-hr 1-year Rainfall=2.80"</i> Printed 1/9/2025 utions LLC Page 3
Subcatchment PDA-1.4K: Subcat PDA-1.4K Runoff Area=18,8	76 sf 80.13% Impervious Runoff Depth=2.06" Tc=6.0 min CN=93 Runoff=1.00 cfs 3,246 cf
Subcatchment PDA-1.4L: Subcat PDA-1.4L Runoff Area=11,9 Flow Length=75'	78 sf 23.00% Impervious Runoff Depth=1.10" Tc=8.5 min CN=80 Runoff=0.31 cfs 1,100 cf
Subcatchment PDA-1.4M: Subcat PDA-1.4M Runoff Area=4, Flow Length=166' Slope=0.0100 '/'	734 sf 3.38% Impervious Runoff Depth=0.83" Tc=14.3 min CN=75 Runoff=0.08 cfs 328 cf
	45 sf 26.49% Impervious Runoff Depth=1.16" c=16.3 min CN=81 Runoff=6.88 cfs 29,880 cf
Subcatchment PDA-2.1B: Subcat PDA-2.1B Runoff Area=188, Flow Length=123' Tc=17.0 min	298 sf 8.27% Impervious Runoff Depth=0.88" UI Adjusted CN=76 Runoff=3.00 cfs 13,852 cf
	83 sf 25.22% Impervious Runoff Depth=1.10" c=12.9 min CN=80 Runoff=3.65 cfs 14,629 cf
Subcatchment PDA-2.2B: Subcat PDA-2.2B Runoff Area=152, Flow Length=565' Slope=0.0120 '/' T	260 sf 1.56% Impervious Runoff Depth=0.69" ⁻ c=40.0 min CN=72 Runoff=1.23 cfs 8,778 cf
	1 sf 100.00% Impervious Runoff Depth=2.57" Fc=6.0 min CN=98 Runoff=5.50 cfs 19,412 cf
	86 sf 99.99% Impervious Runoff Depth=2.57" Fc=6.0 min CN=98 Runoff=3.71 cfs 13,100 cf
	2 sf 100.00% Impervious Runoff Depth=2.57" Tc=6.0 min CN=98 Runoff=0.59 cfs 2,094 cf
	0 sf 100.00% Impervious Runoff Depth=2.57" Fc=6.0 min CN=98 Runoff=3.53 cfs 12,462 cf
	7 sf 100.00% Impervious Runoff Depth=2.57" Tc=6.0 min CN=98 Runoff=1.89 cfs 6,656 cf
	31' Storage=1,151 cf Inflow=0.59 cfs 1,900 cf ary=0.04 cfs 455 cf Outflow=0.05 cfs 1,594 cf
Pond 2P: Bio 3 Peak Elev=59. Primary=0.50 cfs 738 cf Secondary=0.00 cfs 0 cf Tertiar	77' Storage=1,126 cf Inflow=0.84 cfs 2,867 cf y=0.02 cfs 2,129 cf Outflow=0.52 cfs 2,867 cf
Pond 3P: DIV-02 Primary=0.86 cfs 5,447 cf Seconda	Peak Elev=56.90' Inflow=1.49 cfs 5,984 cf ary=0.63 cfs 537 cf Outflow=1.49 cfs 5,984 cf
	91' Storage=3,230 cf Inflow=1.44 cfs 5,314 cf ndary=0.00 cfs 0 cf Outflow=0.07 cfs 5,292 cf
Pond 7P: Bio 2 Peak Elev=56. Primary=0.11 cfs 612 cf Secondary=0.00 cfs 0 cf Tertiar	51' Storage=2,119 cf Inflow=1.27 cfs 4,024 cf y=0.03 cfs 3,413 cf Outflow=0.14 cfs 4,024 cf

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	Solutions LLC Page 4

Pond 8P: DIV-04 Peak Elev=48.47' Inflow=4.72 cfs 12,676 cfs Primary=4.72 cfs 11,744 cf Secondary=0.35 cfs 932 cf Outflow=4.72 cfs 12,677 cfs	
Pond 9P: Sand Filter 5 Peak Elev=49.80' Storage=1,425 cf Inflow=1.05 cfs 3,574 cf Discarded=0.01 cfs 1,278 cf Primary=0.89 cfs 1,821 cf Secondary=0.00 cfs 0 cf Outflow=0.90 cfs 3,099 cf	
Pond 10P: Bio 1 Peak Elev=44.51' Storage=1,721 cf Inflow=1.17 cfs 5,506 cf Discarded=0.00 cfs 1,045 cf Primary=1.05 cfs 3,667 cf Secondary=0.00 cfs 0 cf Outflow=1.05 cfs 4,711 cf	
Pond 12P: Infiltration Basin 1Peak Elev=57.91' Storage=5,960 cf Inflow=3.83 cfs 13,414 cfDiscarded=0.02 cfs 3,773 cfPrimary=2.53 cfs 7,092 cfSecondary=0.00 cfs 0 cfOutflow=2.55 cfs 10,865 cf	
Pond 13P: Sand Filter 1Peak Elev=47.06' Storage=11,811 cf Inflow=1.95 cfs 13,096 cfDiscarded=0.03 cfs 6,385 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cfs 6,385 cf	
Pond 14P: DIV-03 Peak Elev=44.96' Inflow=1.84 cfs 5,816 c Primary=1.17 cfs 5,506 cf Secondary=0.67 cfs 310 cf Outflow=1.84 cfs 5,816 c	
Pond 15P: Detention Basin 1 Peak Elev=45.01' Storage=13,290 cf Inflow=8.84 cfs 37,293 cf Primary=2.04 cfs 37,003 cf Secondary=0.00 cfs 0 cf Tertiary=0.00 cfs 0 cf Outflow=2.04 cfs 37,003 cf	
Pond 17P: Track and Field- stone base Peak Elev=50.60' Storage=3,057 cf Inflow=5.50 cfs 19,412 cf Discarded=0.59 cfs 13,451 cf Primary=3.02 cfs 5,962 cf Outflow=3.62 cfs 19,412 cf	
Pond 18P: Sand Filter 2 Peak Elev=55.62' Storage=6,215 cf Inflow=2.59 cfs 11,072 cf Discarded=0.01 cfs 3,117 cf Primary=0.37 cfs 4,167 cf Secondary=0.00 cfs 0 cf Outflow=0.38 cfs 7,284 cf	
Pond 19P: Sand Filter 3 Peak Elev=60.19' Storage=2,500 cf Inflow=1.01 cfs 3,194 cf Discarded=0.01 cfs 2,853 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cfs 2,853 cf	
Pond 20P: Sand Filter 4Peak Elev=59.87' Storage=512 cfInflow=0.83 cfs3,326 cOutflow=0.34 cfs3,326 c	
Pond 23P: UGIS-1 Peak Elev=48.47' Storage=10,125 cf Inflow=4.72 cfs 11,744 cf Discarded=0.07 cfs 11,449 cf Primary=0.11 cfs 296 cf Outflow=0.19 cfs 11,744 cf	
Pond 28P: DIV-01 Peak Elev=47.40' Inflow=7.86 cfs 36,536 cfs Primary=1.95 cfs 13,096 cf Secondary=5.91 cfs 23,440 cf Outflow=7.86 cfs 36,536 cfs	
Pond 33P: Wet Swale Peak Elev=59.79' Storage=4,443 cf Inflow=2.89 cfs 9,419 cf Discarded=0.01 cfs 2,229 cf Primary=1.33 cfs 4,568 cf Secondary=0.00 cfs 0 cf Outflow=1.34 cfs 6,797 cf	
Pond 35P: Track and Field-manifold Peak Elev=49.31' Storage=2,280 cf Inflow=6.18 cfs 19,061 cf Discarded=0.47 cfs 6,385 cf Primary=4.72 cfs 12,676 cf Outflow=5.19 cfs 19,061 cf	
Link 2L: DP 1.1 - Culvert 1 Inflow=7.45 cfs 37,004 c Primary=7.45 cfs 37,004 c	
Link 3L: DP 1.2 - Culvert 2 Inflow=8.28 cfs 42,901 c Primary=8.28 cfs 42,901 c	

Pro-Hydro	23099.01 Proposed Conditions 1-year Storm <i>Type III 24-hr 1-year Rainfall=2.80</i> "
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software So	blutions LLC Page 5
Link 4L: DP 1.3 - Culvert 3	Inflow=8.65 cfs 45,276 cf
	Primary=8.65 cfs 45,276 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Inflow=16.61 cfs 91,420 cf
	Primary=16.61 cfs 91,420 cf
Link 6L: DP 2.1 - West Wetland	Inflow=3.26 cfs 47,009 cf
	Primary=3.26 cfs 47,009 cf
Link 71 - DD 0.0 - Silver Greek West Brench	Inflow-4.61 efc. 61.629 ef
Link 7L: DP 2.2 - Silver Creek West Branch	Inflow=4.61 cfs 61,638 cf
	Primary=4.61 cfs 61,638 cf

Total Runoff Area = 2,076,121 sf Runoff Volume = 224,058 cf Average Runoff Depth = 1.30" 69.74% Pervious = 1,447,959 sf 30.26% Impervious = 628,161 sf

Summary for Subcatchment PDA-1.1A: Subcat PDA-1.1A

Runoff = 7.45 cfs @ 12.32 hrs, Volume= 37,004 cf, Depth= 0.93" Routed to Link 2L : DP 1.1 - Culvert 1

A	rea (sf)	CN [Description		
	90,334	74 >	75% Gras	s cover, Go	bod, HSG C
	38,424	80 >	75% Gras	s cover, Go	bod, HSG D
	4,538	87 E	Dirt roads, l	HSG C	
	1,510	89 E	Dirt roads, I	HSG D	
	1,040			ing, HSG D	
	6,366			ed pavemer	
	776			ed pavemer	
	33,631			od, HSG C	
2	98,387	77 V	Voods, Go	od, HSG D	
4	75,005		Veighted A	•	
4	66,824			rvious Area	
	8,181			ervious Are	а
	7,142	8	87.29% Un	connected	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
8.4	351	0.0100	0.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
21.1	451	Total			

Summary for Subcatchment PDA-1.1B: Subcat PDA-1.1B

Runoff = 0.62 cfs @ 12.20 hrs, Volume= 2,570 cf, Depth= 0.93" Routed to Link 3L : DP 1.2 - Culvert 2

A	rea (sf)	CN	Description		
	21,264	74	>75% Gras	s cover, Go	bod, HSG C
	5,415	80	>75% Gras	s cover, Go	bod, HSG D
	6,295	87	Dirt roads,	HSG C	
	8	98	Paved park	ing, HSG C	
	7	98	Paved park	ing, HSG D	
	6	98	Unconnecte	ed pavemer	nt, HSG C
	32,995	77	Weighted A	verage	
	32,974	77	99.94% Pe	rvious Area	
	21	98	0.06% Impe	ervious Area	а
	6		28.24% Un	connected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
0.4	26	0.0270	1.15		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
13.1	126	Total			

Summary for Subcatchment PDA-1.2A: Subcat PDA-1.2A

Runoff = 0.71 cfs @ 12.11 hrs, Volume= 2,375 cf, Depth= 1.10" Routed to Link 4L : DP 1.3 - Culvert 3

A	rea (sf)	CN A	Adj Desc	ription					
	8,928	74	>75%	>75% Grass cover, Good, HSG C					
	13,051	80	>75%	•75% Grass cover, Good, HSG D					
	1,541	98	Pave	d parking,	HSG C				
	1,771	98	Pave	d parking,	HSG D				
	0	98	Roof	s, HSG C					
	567	98	Unco	onnected pa	avement, HSG C				
	25,858	81	80 Weig	hted Avera	age, UI Adjusted				
	21,979	78	78 85.0	0% Perviou	is Area				
	3,879	98	98 15.00	0% Impervi	ous Area				
	567		14.63	3% Unconr	nected				
_									
Tc	Length	Slope	Volocity	Conocity	Description				
	-	•	Velocity		Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
<u>(min)</u> 5.9	-	•			Sheet Flow,				
5.9	(feet) 54	(ft/ft) 0.0200	(ft/sec) 0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.30"				
/	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow,				
5.9 0.3	(feet) 54 6	(ft/ft) 0.0200 0.3300	(ft/sec) 0.15 0.30		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, r= 0.150 P2= 3.30"				
5.9	(feet) 54	(ft/ft) 0.0200	(ft/sec) 0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Sheet Flow, P2= 3.30"				
5.9 0.3 0.3	(feet) 54 6 5	(ft/ft) 0.0200 0.3300 0.2000	(ft/sec) 0.15 0.30 0.24		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Grass: Short n= 0.150 P2= 3.30"				
5.9 0.3	(feet) 54 6	(ft/ft) 0.0200 0.3300	(ft/sec) 0.15 0.30		Sheet Flow, Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Flow, Grass: Short n= 0.150 P2= 3.30"				
5.9 0.3 0.3	(feet) 54 6 5	(ft/ft) 0.0200 0.3300 0.2000	(ft/sec) 0.15 0.30 0.24		Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Sheet Flow, Grass: Short n= 0.150 P2= 3.30"				

Summary for Subcatchment PDA-1.3A: Subcat PDA-1.3A

Runoff = 2.89 cfs @ 12.10 hrs, Volume= 9,4 Routed to Pond 33P : Wet Swale

9,419 cf, Depth= 1.97"

A	rea (sf)	CN I	Description		
	10,911	74 >	>75% Gras	s cover, Go	bod, HSG C
	5,194	80 >	>75% Gras	s cover, Go	bod, HSG D
	41,056			ing, HSG C	
	40			ing, HSG D	
	0		Roofs, HSG		
	94	98 I	Jnconnecte	ed pavemer	nt, HSG C
	57,295		Neighted A		
	16,106	76 2	28.11% Pei	vious Area	
	41,189	98	71.89% Imp	pervious Are	ea
	94	(0.23% Unco	onnected	
_				_	
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.5	27	0.0100	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
1.2	73	0.0100	0.99		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.30"
0.8	98	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
6.5	198	Total			

Summary for Subcatchment PDA-1.3C: Subcat PDA-1.3C

Runoff	=	0.59 cfs @	12.10 hrs,	Volume=	1,900 cf,	Depth= 1.35"
Routed	to Pond	l 1P : Bio 4				

9,827 74 >75% Grass cover, Good, HSG C 6,906 98 Paved parking, HSG C 0 98 Roofs, HSG C 117 98 Unconnected pavement, HSG C 16,850 84 Weighted Average 9,827 74 58.32% Pervious Area 7,023 98 41.68% Impervious Area 117 1.66% Unconnected Tc Length (ft/ft) (ft/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"	A	rea (sf)	CN I	Description					
0 98 Roofs, HSG C 117 98 Unconnected pavement, HSG C 16,850 84 Weighted Average 9,827 74 58.32% Pervious Area 7,023 98 41.68% Impervious Area 117 1.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 39 0.100 0.11 Sheet Flow, Grass: Short n= 0.150 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		9,827	74 :	>75% Gras	s cover, Go	ood, HSG C			
117 98 Unconnected pavement, HSG C 16,850 84 Weighted Average 9,827 74 58.32% Pervious Area 7,023 98 41.68% Impervious Area 117 1.66% Unconnected Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		6,906	98	Paved park	ing, HSG C	,			
16,850 84 Weighted Average 9,827 74 58.32% Pervious Area 7,023 98 41.68% Impervious Area 117 1.66% Unconnected Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		0	98	Roofs, HSO	G C				
9,827 74 58.32% Pervious Area 7,023 98 41.68% Impervious Area 117 1.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		117	98	Unconnecte	ed pavemer	nt, HSG C			
7,023 117 98 41.68% Impervious Area 1.66% Unconnected Tc Length (min) Slope (ft/ft) Velocity (ft/sec) Capacity (cfs) Description 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		16,850	84	Weighted A	verage				
1171.66% UnconnectedTcLengthSlopeVelocityCapacity (ft/ft)Description (min) $(feet)$ (ff/ft) (ff/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short $n = 0.150$ 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short $n = 0.150$ $P2 = 3.30"$		9,827	74	58.32% Per	vious Area				
Tc Length (min) Slope (ft/ft) Velocity (ft/sec) Capacity (cfs) Description 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		7,023	98 4	41.68% Imp	pervious Are	ea			
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"		117		1.66% Unco	onnected				
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 39 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"									
6.0 39 0.0100 0.11 Sheet Flow, 0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30" Grass: Short n= 0.150 P2= 3.30"	Tc	Length	Slope	Velocity	Capacity	Description			
0.8 10 0.1000 0.21 Grass: Short n= 0.150 P2= 3.30" Grass: Short n= 0.150 P2= 3.30"	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.8 10 0.1000 0.21 Sheet Flow, Grass: Short n= 0.150 P2= 3.30"	6.0	39	0.0100	0.11		Sheet Flow,			
Grass: Short n= 0.150 P2= 3.30"						Grass: Short	n= 0.150	P2= 3.30"	
	0.8	10	0.1000	0.21		Sheet Flow,			
6.8 49 Total						Grass: Short	n= 0.150	P2= 3.30"	
	6.8	49	Total						

Summary for Subcatchment PDA-1.3D: Subcat PDA-1.3D

Runoff = 0.24 cfs @ 12.09 hrs, Volume= 773 cf, Depth= 1.35" Routed to Pond 2P : Bio 3

A	rea (sf)	CN	Description				
	4,059	74	>75% Gras	s cover, Go	Good, HSG C		
	2,792	98	Paved park	ing, HSG C	C		
	0	98	Roofs, HSC	G C			
	6,850	84	Weighted A	verage			
	4,059	74	59.25% Pervious Area				
	2,792	98	40.75% Imp	rea			
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)			
6.0					Direct Entry,		

Summary for Subcatchment PDA-1.4A: Subcat PDA-1.4A

Runoff 0.83 cfs @ 12.19 hrs, Volume= = Routed to Pond 20P : Sand Filter 4

3,326 cf, Depth= 1.29"

A	rea (sf)	CN	Description		
	14,884	74	>75% Gras	s cover, Go	ood, HSG C
	2,931	80	>75% Gras	s cover, Go	bod, HSG D
	5,758		Dirt roads,		
	6		Dirt roads,		
	2,675		Paved park	U /	
	4,570		Paved park		
	183	98	Unconnecte	ed pavemer	nt, HSG C
	31,007	83	Weighted A	verage	
	23,579	-	76.05% Pe		
	7,428		23.95% lmp		ea
	183		2.46% Unc	onnected	
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)		(cfs)	l
12.7	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
0.7	44	0.0250) 1.11		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
13.4	144	Total			

Summary for Subcatchment PDA-1.4B: Subcat PDA-1.4B

Runoff = 1.49 cfs @ 12.20 hrs, Volume= 5,984 cf, Depth= 1.42" Routed to Pond 3P : DIV-02

A	Area (sf)	CN	Description					
	24,049	74	>75% Gras	s cover, Go	ood, HSG C			
	7,006	87	Dirt roads, l	HSG C				
	17,014	98	Paved park	ing, HSG C	;			
	2,437	98	Unconnecte	ed pavemer	nt, HSG C			
	50,506	85	Weighted A	verage				
	31,055	77	61.49% Pei	vious Area				
	19,451	98	38.51% Imp	pervious Are	ea			
	2,437		12.53% Un	connected				
Tc	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.2	58	0.0100	0.12		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.30"	
5.7	40	0.0120	0.12		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.30"	
13.9	98	Total						

Summary for Subcatchment PDA-1.4C: Subcat PDA-1.4C

Runoff = 1.27 cfs @ 12.09 hrs, Volume= 4,024 cf, Depth= 1.80" Routed to Pond 7P : Bio 2

A	rea (sf)	CN	Description			
	9,346	74	>75% Gras	s cover, Go	bod, HSG C	
	17,464	98	Paved park	ing, HSG C		
	26,810	90 Weighted Average				
	9,346 74 34.86% Pervious Area				l de la constante de	
	17,464 98 65.14% Impervious Are				ea	
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment PDA-1.4D: Subcat PDA-1.4D

Runoff = 1.84 cfs @ 12.09 hrs, Volume= 5,816 cf, Depth= 1.64" Routed to Pond 14P : DIV-03

Area	a(sf) C	N	Description			
15	5,475 7	74	>75% Grass	cover, Go	Good, HSG C	
2	2,143 8	80	>75% Grass	cover, Go	Good, HSG D	
24	l,896 §	98	Paved parkin	g, HSG C	С	
42	2,514 8	88	Weighted Av	erage		
17	7,618 7	75	41.44% Pervious Area			
24	l,896 §	98	58.56% Impervious Area			
Tc L (min)	ength (feet)	Slope (ft/ft		Capacity (cfs)	1	
6.0					Direct Entry,	

Summary for Subcatchment PDA-1.4E: Subcat PDA-1.4E

Runoff = 1.77 cfs @ 12.09 hrs, Volume= 5,625 cf, Depth= 1.72" Routed to Pond 18P : Sand Filter 2

Area (sf)	CN	Description			
15,030	74	>75% Grass cover, Good, HSG C			
7	80	>75% Grass cover, Good, HSG D			
24,208	98	Paved parking, HSG C			
39,245	89	Weighted Average			
15,038	74	38.32% Pervious Area			
24,208	98	61.68% Impervious Area			
Tc Lengtl (min) (feet					
6.0		Direct Entry,			

Summary for Subcatchment PDA-1.4F: Subcat PDA-1.4F

Runoff	=	2.37 cfs @	12.20 hrs,	Volume=	9,637 cf,	Depth= 1.57"
Routed	I to Link	5L : DP 1.4 -	Silver Cree	k East Branch		-

_	A	rea (sf)	CN	Description		
		33,264	74	>75% Gras	s cover, Go	bod, HSG C
		3	80	>75% Gras	s cover, Go	bod, HSG D
		36,167	98	Paved park	ing, HSG C	
_		4,425	98	Paved park	ing, HSG D	
		73,858	87	Weighted A	verage	
		33,267	74	45.04% Pei	vious Area	
		40,591	98	54.96% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	()	(cfs)	
	12.5	100	0.0105	0.13		Sheet Flow,
						Grass: Short
	0.2	42	0.3300	4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.8	204	0.0090	1.93		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	14.5	346	Total			

Summary for Subcatchment PDA-1.4G: Subcat PDA-1.4G

Runoff = 1.01 cfs @ 12.09 hrs, Volume= 3,194 cf, Depth= 1.72" Routed to Pond 19P : Sand Filter 3

Area (sf)	CN	Description			
8,221	74	>75% Grass cover, Good, HSG C			
160	80	>75% Grass cover, Good, HSG D			
13,903	98	Paved parking, HSG C			
22,284	89	Weighted Average			
8,381	74	37.61% Pervious Area			
13,903	98	62.39% Impervious Area			
Tc Length (min) (feet)	Sloj (ft/				
6.0		Direct Entry,			

Summary for Subcatchment PDA-1.4H: Subcat PDA-1.4H

Runoff = 0.22 cfs @ 12.10 hrs, Volume= Routed to Pond 4P : Detention Basin 2 745 cf, Depth= 0.83"

Ar	ea (sf)	CN	Description				
	9,974	74	>75% Gras	s cover, Go	ood, HSG C		
	169	80	>75% Gras	s cover, Go	ood, HSG D		
	600	98	Paved park	ing, HSG C			
	10,744	75	Weighted A	Weighted Average			
-	10,143	74	94.41% Pervious Area				
	600	98	5.59% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment PDA-1.4I: Subcat PDA-1.4I

Runoff = 0.30 cfs @ 12.10 hrs, Volume= 951 cf, Depth= 1.16" Routed to Pond 12P : Infiltration Basin 1

A	rea (sf)	CN	Description					
	6,972	74	>75% Gras	s cover, Go	Good, HSG C			
	194	80	>75% Gras	s cover, Go	Good, HSG D			
	2,658	98	Paved park	ing, HSG C	С			
	0	98	Roofs, HSC	S Č				
	9,824	81	Weighted Average					
	7,166	74	72.94% Per	72.94% Pervious Area				
	2,658	98	27.06% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	•			
6.0					Direct Entry,			

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	olutions LLC Page 21

Summary for Subcatchment PDA-1.4J: Subcat PDA-1.4J

Runoff	=	1.60 cfs @	12.10 hrs,	Volume=	5,176 cf,	Depth= 1.04"
Routed	l to Link	5L : DP 1.4 -	Silver Cree	k East Branch		

Area (sf)	CN	Description					
22,085	74	>75% Grass cover, Good, HSG C					
32,367	80	>75% Grass cover, Good, HSG D					
4,308	98	Paved parking, HSG C					
392	98	Paved parking, HSG D					
314	98	Unconnected pavement, HSG D					
59,466	79	Weighted Average					
54,452	78	91.57% Pervious Area					
5,014	98	8.43% Impervious Area					
314		6.27% Unconnected					
Tc Length	Slop	be Velocity Capacity Description					
(min) (feet)	(ft/	ft) (ft/sec) (cfs)					
6.0		Direct Entry,					

Summary for Subcatchment PDA-1.4K: Subcat PDA-1.4K

Runoff = 1.00 cfs @ 12.09 hrs, Volume= 3,246 cf, Depth= 2.06" Routed to Pond 9P : Sand Filter 5

Area	(sf) CN	Description				
3,	577 74	>75% Grass cover, Go	ood, HSG C			
	173 80	>75% Grass cover, Go	ood, HSG D			
15,	126 98	Paved parking, HSG C	;			
18,	876 93	Weighted Average				
3,	751 74	19.87% Pervious Area	19.87% Pervious Area			
15,	126 98	80.13% Impervious Area				
	ength Slo feet) (ft/	pe Velocity Capacity (ft) (ft/sec) (cfs)	Description			
6.0			Direct Entry,			

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	olutions LLC Page 23

Summary for Subcatchment PDA-1.4L: Subcat PDA-1.4L

Runoff	=	0.31 cfs @	12.13 hrs,	Volume=	1,100 cf,	Depth= 1.10"
Routed	l to Link	5L : DP 1.4 -	Silver Cree	k East Branch		

A	rea (sf)	CN E	CN Description						
	9,223	74 >	>75% Grass cover, Good, HSG C						
	2,754	98 F	Paved park	ing, HSG C	;				
	1	98 F	Roofs, HSC	S Č					
	11,978	80 V	Veighted A	verage					
	9,223	74 7	7.00% Per	vious Area					
	2,755	98 2	.3.00% Imp	pervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.8	32	0.0120	0.11		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.30"		
3.7	43	0.0400	0.19		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.30"		
8.5	75	Total							

Summary for Subcatchment PDA-1.4M: Subcat PDA-1.4M

Runoff = 0.08 cfs @ 12.22 hrs, Volume= Routed to Pond 9P : Sand Filter 5 328 cf, Depth= 0.83"

A	rea (sf)	CN	Description					
	4,574	74	>75% Grass cover, Good, HSG C					
	160	98	Paved parking, HSG C					
	4,734	75	Weighted Average					
	4,574	74	96.62% Pervious Area					
	160	98	3.38% Impe	ervious Area	a			
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
12.7	100	0.0100	0.13		Sheet Flow,			
1.6	66	0.0100	0.70		Grass: Short n= 0.150 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
14.3	166	Total						

Summary for Subcatchment PDA-2.1A: Subcat PDA-2.1A

Runoff = 6.88 cfs @ 12.24 hrs, Volume= 29,880 cf, Depth= 1.16" Routed to Pond 28P : DIV-01

A	rea (sf)	CN [Description					
2	19,117	74 >	74 >75% Grass cover, Good, HSG C					
	65	80 >	>75% Gras	s cover, Go	ood, HSG D			
	7,583		Dirt roads, l					
	79,397			ing, HSG C				
	2,376			ed pavemer				
	107	70 \	Voods, Go	od, HSG C				
	08,645		Veighted A					
	26,872		73.51% Per	vious Area				
	81,772	98 2	26.49% Imp	pervious Ar	ea			
	2,376	2	2.91% Unco	onnected				
_		~		• •	-			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.7	100	0.0100	0.13		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.30"			
2.5	103	0.0100	0.70		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
1.1	66	0.0189	0.96		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
16.3	269	Total						

Summary for Subcatchment PDA-2.1B: Subcat PDA-2.1B

Runoff = 3.00 cfs @ 12.26 hrs, Volume= 13,852 cf, Depth= 0.88" Routed to Pond 15P : Detention Basin 1

A	rea (sf)	CN /	Adj Desc	cription	
1	63,174	74	>75%	% Grass co	ver, Good, HSG C
	9,554	87	Dirt ı	roads, HSG	G C
	11,969	98	Pave	ed parking,	HSG C
	3,601	98	Unco	onnected pa	avement, HSG C
1	88,298	77	76 Weig	ghted Avera	age, UI Adjusted
1	72,728	75	75 91.7	3% Perviou	is Area
	15,570	98	98 8.27	% Impervio	us Area
	3,601		23.1	3% Unconr	nected
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.8	100	0.0050	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.30"
0.2	23	0.0500	1.57		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
17.0	123	Total			

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	colutions LLC Page 27

Summary for Subcatchment PDA-2.2A: Subcat PDA-2.2A

Runoff = 3.65 cfs @ 12.19 hrs, Volume= 14,629 cf, Depth= 1.10" Routed to Link 7L : DP 2.2 - Silver Creek West Branch

Are	ea (sf)	CN I	Description					
11	8,833	74 :	>75% Gras	s cover, Go	ood, HSG C			
3	36,719	98	Paved park	ing, HSG C				
	3,452	98	Unconnected pavement, HSG C					
	279	70	Woods, Good, HSG C					
15	59,283	80	80 Weighted Average					
11	9,112	74	74 74.78% Pervious Area					
4	10,171	98 2	25.22% Imp	pervious Are	rea			
	3,452	ł	8.59% Unconnected					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
12.9					Direct Entry, PER EDA-2.2A			

Summary for Subcatchment PDA-2.2B: Subcat PDA-2.2B

Runoff = 1.23 cfs @ 12.63 hrs, Volume= 8,778 cf, Depth= 0.69" Routed to Link 6L : DP 2.1 - West Wetland

A	rea (sf)	CN E	Description		
	51,438	74 >	75% Gras	s cover, Go	ood, HSG C
	2,379	98 F	aved park	ing, HSG C	
	98,443	70 V	Voods, Go	od, HSG C	
1	52,260	72 V	Veighted A	verage	
1	49,881	71 9	8.44% Per	vious Area	
	2,379	98 1	.56% Impe	ervious Area	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
25.9	100	0.0120	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.30"
14.1	465	0.0120	0.55		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
40.0	565	Total			

Summary for Subcatchment PDA-2.2C.a: Subcat PDA-2.2C.a

Runoff	=	5.50 cfs @ 12.09 hrs, Volume=	19,412 cf, Depth= 2.57"
Routed	l to Ponc	17P : Track and Field- stone base	

A	rea (sf)	CN	Description		
	0	74	>75% Gras	s cover, Go	ood, HSG C
	90,671	98	Paved park	ing, HSG C	
	90,671	98	Weighted A	verage	
	0	74	0.00% Perv	ious Area	
	90,671	98	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment PDA-2.2C.b: Subcat PDA-2.2C.b

Runoff	=	3.71 cfs @ 12.09 hrs, Volume=	13,100 cf, Depth= 2.57"
Routed	l to Ponc	35P : Track and Field-manifold	

A	rea (sf)	CN	Description		
	4	74	>75% Gras	s cover, Go	ood, HSG C
	61,181	98	Paved park	ing, HSG C	
	61,186	98	Weighted A	verage	
	4	74	0.01% Perv	ious Area	
	61,181	98	99.99% Imp	pervious Are	rea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment PDA-ROOF1.3: Subcat PDA-ROOF1.3

Runoff = 0.59 cfs @ 12.09 hrs, Volume= 2,094 cf, Depth= 2.57" Routed to Pond 2P : Bio 3

A	rea (sf)	CN	Description		
	0	74	>75% Gras	s cover, Go	ood, HSG C
	0	98	Paved park	ing, HSG C	C
	9,782	98	Roofs, HSC	S C	
	9,782	98	Weighted A	verage	
	0	74	0.00% Perv	ious Ārea	
	9,782	98	100.00% In	npervious A	Area
_				• •	_
Tc	Length	Slop	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment PDA-ROOF1.4: Subcat PDA-ROOF1.4

Runoff = 3.53 cfs @ 12.09 hrs, Volume= 12 Routed to Pond 12P : Infiltration Basin 1

12,462 cf, Depth= 2.57"

Area (sf)	CN	Description
0	74	>75% Grass cover, Good, HSG C
1	98	Paved parking, HSG C
58,209	98	Roofs, HSG C
58,210	98	Weighted Average
0	74	0.00% Pervious Area
58,210	98	100.00% Impervious Area
Tc Length (min) (feet)	Sloµ (ft/	pe Velocity Capacity Description /ft) (ft/sec) (cfs)
6.0		Direct Entry,

Summary for Subcatchment PDA-ROOF2.1: Subcat PDA-ROOF2.1

Runoff = 1.89 cfs @ 12.09 hrs, Volume= Routed to Pond 28P : DIV-01

6,656 cf, Depth= 2.57"

A	rea (sf)	CN	Description		
	0	74	>75% Gras	s cover, Go	ood, HSG C
	31,087	98	Roofs, HSG	G C	
	31,087	98	Weighted A	verage	
	0	74	0.00% Perv	ious Area	
	31,087	98	100.00% Im	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry,

23099.01 Proposed Conditions 1-year Storm Type III 24-hr 1-year Rainfall=2.80" **Pro-Hydro** Printed 1/9/2025 Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC Page 34

Summary for Pond 1P: Bio 4

16,850 sf, 41.68% Impervious, Inflow Depth = 1.35" for 1-year event Inflow Area = 0.59 cfs @ 12.10 hrs, Volume= Inflow = 1.900 cf 1,594 cf, Atten= 92%, Lag= 86.8 min Outflow = 0.05 cfs @ 13.55 hrs, Volume= Discarded = 0.01 cfs @ 13.55 hrs, Volume= 1,140 cf Primary = 0.04 cfs @ 13.55 hrs, Volume= 455 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 60.31' @ 13.55 hrs Surf.Area= 974 sf Storage= 1,151 cf

Plug-Flow detention time= 1,185.3 min calculated for 1,594 cf (84% of inflow) Center-of-Mass det. time= 1,116.5 min (1,953.1 - 836.6)

Volume	Invert	Avai	I.Storage	Storage Descrip	tion	
#1	56.79'		3,573 cf	Custom Stage	Data (Prismatic) └	isted below (Recalc)
Elevation (feet		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
56.7	9	724	0.0	0	0	
56.8	0	724	33.0	2	2	
59.7	9	724	33.0	714	717	
59.8	0	724	100.0	7	724	
60.0	0	809	100.0	153	877	
61.0	0	1,346	100.0	1,078	1,955	
62.0	0	1,891	100.0	1,619	3,573	
Device #1 #2	Routing Discarded Primary	56	.79' 0.27 .30' 2.0''			rea Phase-In= 0.02' columns X 6 rows C= 0.600

Discarded OutFlow Max=0.01 cfs @ 13.55 hrs HW=60.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.04 cfs @ 13.55 hrs HW=60.31' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Weir Controls 0.04 cfs @ 0.27 fps)

Pro-Hydro

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 1P: Bio 4

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)	E
56.79	0.00		0.00	
56.89	0.00	0.00 0.00		
			0.00	
56.99	0.00	0.00	0.00	
57.09	0.00	0.00	0.00	
57.19	0.00	0.00	0.00	
57.29	0.00	0.00	0.00	
57.39	0.00	0.00	0.00	
57.49	0.00	0.00	0.00	
57.59	0.00	0.00	0.00	
57.69	0.00	0.00	0.00	
57.79	0.00	0.00	0.00	
57.89	0.00	0.00	0.00	
57.99	0.00	0.00	0.00	
58.09	0.00	0.00	0.00	
58.19	0.00	0.00	0.00	
58.29	0.00	0.00	0.00	
58.39	0.00	0.00	0.00	
58.49	0.00	0.00	0.00	
58.59	0.00	0.00	0.00	
58.69	0.00	0.00	0.00	
58.79	0.00	0.00	0.00	
58.89	0.00	0.00	0.00	
58.99	0.00	0.00	0.00	
59.09	0.00	0.00	0.00	
59.19	0.00	0.00	0.00	
59.29	0.00	0.00	0.00	
59.39	0.00	0.00	0.00	
59.49	0.00	0.00	0.00	
59.59	0.00	0.00	0.00	
59.69	0.00	0.00	0.00	
59.79	0.00	0.00	0.00	
59.89	0.00	0.00	0.00	
59.99	0.00	0.01	0.00	
60.09	0.01	0.01	0.00	
60.19	0.01	0.01	0.00	
60.29	0.01	0.01	0.00	
60.39	1.45	0.01	1.44	
60.39	2.11	0.01	2.10	
60.49 60.59	2.11	0.01	2.10	
60.69	3.01	0.01	3.01	
60.79	3.38	0.01	3.37	
60.89	3.71	0.01	3.70	
60.99	4.01	0.01	4.00	
61.09	4.29	0.01	4.28	
61.19	4.55	0.01	4.54	
61.29	4.80	0.01	4.79	
61.39	5.04	0.01	5.03	
61.49	5.26	0.01	5.25	
61.59	5.48	0.01	5.47	
61.69	5.69	0.01	5.68	
61.79	5.89	0.01	5.88	
				I

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
61.89	6.08	0.01	6.07
61.99	6.27	0.01	6.26

Pro-Hydro

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: Bio 4

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
56.79	724	0	61.89	1,831	3,369
56.89	724	24	61.99	1,886	3,554
56.99	724	48	01.99	1,000	3,334
57.09	724	40 72			
	724				
57.19		96			
57.29	724	119			
57.39	724	143			
57.49	724	167			
57.59	724	191			
57.69 57.70	724	215			
57.79	724	239			
57.89	724	263			
57.99	724	287			
58.09	724	311			
58.19	724	334			
58.29	724	358			
58.39	724	382			
58.49 58.59	724	406 430			
	724 724	430 454			
58.69					
58.79	724	478			
58.89	724	502			
58.99	724	526			
59.09 50.10	724 724	550 573			
59.19 59.29	724	597			
59.39	724	621			
59.49	724	645			
59.59	724	669			
59.69	724	693			
59.79	724	717			
59.89	762	791			
59.99	805	869			
60.09	857	952			
60.19	911	1,041			
60.29	965	1,134			
60.39	1,018	1,234			
60.49	1,072	1,338			
60.59	1,126	1,448			
60.69	1,180	1,563			
60.79	1,233	1,684			
60.89	1,287	1,810			
60.99	1,341	1,941			
61.09	1,395	2,078			
61.19	1,450	2,220			
61.29	1,504	2,220			
61.39	1,559	2,500			
61.49	1,613	2,680			
61.59	1,668	2,844			
61.69	1,722	3,013			
61.79	1,777	3,188			
01.10	.,	0,100			
			•		

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 37

Summary for Pond 2P: Bio 3

Inflow Area =	16,632 sf, 75.60% Impervious, Inflo	ow Depth = 2.07" for 1-year event			
Inflow =	0.84 cfs @ 12.09 hrs, Volume=	2,867 cf			
Outflow =	0.52 cfs @ 12.26 hrs, Volume=	2,867 cf, Atten= 38%, Lag= 10.3 min			
		738 cf			
Routed to Link 5L : DP 1.4 - Silver Creek East Branch					
	0.00 cfs @ 0.00 hrs, Volume=	0 cf			
Routed to Link	5L : DP 1.4 - Silver Creek East Branch				
Tertiary =	0.02 cfs @ 12.25 hrs, Volume=	2,129 cf			
Routed to Link	5L : DP 1.4 - Silver Creek East Branch				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 59.77' @ 12.25 hrs Surf.Area= 872 sf Storage= 1,126 cf

Plug-Flow detention time= 437.2 min calculated for 2,865 cf (100% of inflow) Center-of-Mass det. time= 437.6 min (1,217.5 - 779.9)

Volume	Invert	Avai	I.Storage	e Storage Descri	iption	
#1	56.24'		3,220 c	f Custom Stage	Data (Prismatic)	Listed below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
56.2	24	606	0.0	0	0	
56.2	25	606	33.0	2	2	
58.9	99	606	33.0	548	550	
59.0	00	606	100.0	6	556	
60.0		951	100.0	779	1,335	
61.0		1,354	100.0	1,153	2,487	
61.5	50	1,576	100.0	733	3,220	
Device	Routing	In	vert Ou	utlet Devices		
#1	Device 4	56	.24' 1.0)20 in/hr Exfiltrati	ion over Surface a	area Phase-In= 0.02'
#2	Primary	59	.75' 2.0)" x 2.0" Horiz. O	rifice/Grate X 12.0	0 columns X 6 rows C= 0.600
			Lir	nited to weir flow	at low heads	
#3	Secondary	61	.40' 5.0)' long Sharp-Cre	sted Rectangular	Weir 2 End Contraction(s)
#4	Tertiary	55)" Round 6" SUE		
					ecting, no headwa	
Inlet / Outlet Invert= 55.50' / 55.20' S= 0.0086 '/' Cc= 0.900						
			n=	0.010 PVC, smo	oth interior, Flow	Area= 0.20 sf

Primary OutFlow Max=0.44 cfs @ 12.26 hrs HW=59.77' TW=0.00' (Dynamic Tailwater) —2=Orifice/Grate (Weir Controls 0.44 cfs @ 0.46 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=56.24' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Tertiary OutFlow Max=0.02 cfs @ 12.25 hrs HW=59.77' TW=0.00' (Dynamic Tailwater) 4=6" SUBDRAIN (Passes 0.02 cfs of 1.50 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Pro-Hydro

Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 38

Stage-Discharge for Pond 2P: Bio 3

Elevation	Discharge	Primary	Secondary	Tertiary
(feet)	(cfs)	(cfs)	(cfs)	(cfs)
56.24	0.00	0.00	0.00	0.00
56.44	0.01	0.00	0.00	0.01
56.64	0.01	0.00	0.00	0.01
56.84	0.01	0.00	0.00	0.01
57.04	0.01	0.00	0.00	0.01
57.24	0.01	0.00	0.00	0.01
57.44	0.01	0.00	0.00	0.01
57.64	0.01	0.00	0.00	0.01
57.84	0.01	0.00	0.00	0.01
58.04	0.01	0.00	0.00	0.01
58.24	0.01	0.00	0.00	0.01
58.44	0.01	0.00	0.00	0.01
58.64	0.01	0.00	0.00	0.01
58.84	0.01	0.00	0.00	0.01
59.04	0.01	0.00	0.00	0.01
59.24	0.02	0.00	0.00	0.02
59.44	0.02	0.00	0.00	0.02
59.64	0.02	0.00	0.00	0.02
59.84	2.91	2.89	0.00	0.02
60.04	5.21	5.19	0.00	0.02
60.24	6.77	6.74	0.00	0.02
60.44	8.03	8.00	0.00	0.03
60.64	9.11	9.08	0.00	0.03
60.84	10.08	10.05	0.00	0.03
61.04	10.97	10.94	0.00	0.03
61.24	11.79	11.75	0.00	0.03
61.44	12.69	12.52	0.13	0.04

Pro-Hydro

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2P: Bio 3

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
56.24	606	0	61.34	1,505	2,973
56.34	606	20	61.44	1,549	3,126
56.44	606	40			
56.54	606	60			
56.64	606	80			
56.74	606	100			
56.84	606	120			
56.94	606	140			
57.04	606	160			
57.14	606	180			
57.24	606	200			
57.34	606	220			
57.44	606	240			
57.54	606	260			
57.64	606	280			
57.74	606	300			
57.84	606	320			
57.94	606	340			
58.04	606	360			
58.14	606	380			
58.24	606	400			
58.34	606	420			
58.44	606	440			
58.54	606	460			
58.64	606	480			
58.74	606	500			
58.84	606	520			
58.94	606	540			
59.04	620	581			
59.14	654	644			
59.24	689	711			
59.34	723	782			
59.44	758	856			
59.54	792	934			
59.64	827	1,015			
59.74	861	1,099			
59.84	896	1,187			
59.94	930	1,278			
60.04	967	1,373			
60.14	1,007	1,472			
60.24	1,048	1,574			
60.34	1,088	1,681			
60.44	1,128	1,792			
60.54	1,169	1,907			
60.64	1,209	2,026			
60.74	1,249	2,149			
60.84	1,290	2,276			
60.94	1,330	2,406			
61.04	1,372	2,542			
61.14	1,416	2,681			
61.24	1,461	2,825			
01121	.,	2,020			
			•		

Pro-Hydro23099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 40

Summary for Pond 3P: DIV-02

72,790 sf, 45.82% Impervious, Inflow Depth = 0.99" for 1-year event Inflow Area = 1.49 cfs @ 12.20 hrs, Volume= Inflow = 5.984 cf 5,984 cf, Atten= 0%, Lag= 0.0 min Outflow = 1.49 cfs @ 12.20 hrs, Volume= 0.86 cfs @ 12.20 hrs, Volume= 5,447 cf Primary = Routed to Pond 18P : Sand Filter 2 0.63 cfs @ 12.20 hrs, Volume= Secondarv = 537 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 56.90' @ 12.20 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	56.15'	8.0" Round Culvert L= 13.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 56.15' / 54.85' S= 0.1000 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 0.35 sf
#2 #3	Device 3 Secondary	56.80' 56.15'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 15.0" Round Culvert L= 19.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 56.15' / 55.00' S= 0.0605 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf

Secondary OutFlow Max=0.63 cfs @ 12.20 hrs HW=56.90' TW=0.00' (Dynamic Tailwater) -3=Culvert (Passes 0.63 cfs of 1.79 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 0.63 cfs @ 1.04 fps)

Pro-Hydro

Prepared by Pare Corporatio	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 3P: DIV-02

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
56.15	0.00	0.00	0.00	57.17	4.01	1.10	2.91
56.17	0.00	0.00	0.00	57.19	4.11	1.12	2.99
56.19	0.00	0.00	0.00	57.21	4.20	1.13	3.07
56.21	0.01	0.01	0.00	57.23	4.29	1.15	3.15
56.23	0.02	0.02	0.00	57.25	4.39	1.16	3.22
56.25	0.03	0.03	0.00	57.27	4.48	1.18	3.30
56.27	0.04	0.04	0.00	57.29	4.56	1.19	3.37
56.29	0.05	0.05	0.00	57.31	4.65	1.21	3.44
56.31	0.07	0.07	0.00	57.33	4.72	1.22	3.50
56.33	0.09	0.09	0.00	57.35	4.80	1.24	3.56
56.35	0.11	0.11	0.00	57.37	4.87	1.25	3.62
56.37	0.13	0.13	0.00	57.39	4.93	1.26	3.67
56.39 56.41	0.15 0.17	0.15 0.17	0.00 0.00				
56.43	0.17	0.17	0.00				
56.45	0.20	0.20	0.00				
56.45	0.22	0.22	0.00				
56.49	0.28	0.23	0.00				
56.51	0.31	0.31	0.00				
56.53	0.34	0.34	0.00				
56.55	0.37	0.37	0.00				
56.57	0.40	0.40	0.00				
56.59	0.44	0.44	0.00				
56.61	0.47	0.47	0.00				
56.63	0.50	0.50	0.00				
56.65	0.53	0.53	0.00				
56.67	0.57	0.57	0.00				
56.69	0.60	0.60	0.00				
56.71	0.63	0.63	0.00				
56.73	0.66	0.66	0.00				
56.75	0.69	0.69	0.00				
56.77	0.72	0.72	0.00				
56.79	0.74	0.74	0.00				
56.81	0.78	0.76	0.02				
56.83	0.88	0.78	0.10				
56.85	1.02	0.80	0.22				
56.87	1.19	0.83	0.36				
56.89	1.37	0.85	0.53				
56.91 56.93	1.58 1.80	0.87 0.89	0.71 0.92				
56.95	2.04	0.89	1.13				
56.97	2.29	0.91	1.13				
56.99	2.56	0.93	1.61				
57.01	2.84	0.96	1.87				
57.03	3.13	0.98	2.15				
57.05	3.41	1.00	2.41				
57.07	3.51	1.02	2.50				
57.09	3.61	1.03	2.58				
57.11	3.71	1.05	2.66				
57.13	3.81	1.07	2.75				
57.15	3.91	1.08	2.83				
				l			

Pro-Hydro

110119410	.) /
Prepared by Pare Corporation	1
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3P: DIV-02

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
56.15	0	56.66	0	57.17	0
56.16	0	56.67	0	57.18	0
56.17	0	56.68	0	57.19	0
56.18	0	56.69	0	57.20	0
56.19	0	56.70	0	57.21	0
56.20	0	56.71	0	57.22	0
56.21	0	56.72	0	57.23	0
56.22	0	56.73	0	57.24	0
56.23	0	56.74	0	57.25	0
56.24	0	56.75	0	57.26	0
56.25	0	56.76	0	57.27	0
56.26	0	56.77	0	57.28	0
56.27	0	56.78	0	57.29	0
56.28	0	56.79	0	57.30	0
56.29	0	56.80	0	57.31	0
56.30	0	56.81	0	57.32	0
56.31	0	56.82	0	57.33	0
56.32	0	56.83	0	57.34	0
56.33	0	56.84	0	57.35	0
56.34	0	56.85	0	57.36	0
56.35	0 0	56.86	0 0	57.37	0
56.36	Ő	56.87	Ő	57.38	0 0
56.37	0	56.88	0	57.39	0
56.38	0	56.89	0	57.40	0
56.39	0	56.90	0	07.40	Ū
56.40	0	56.91	0		
56.41	0	56.92	0		
56.42	0	56.93	0		
56.43	0	56.94	0		
56.44	0	56.95	0		
56.45	0	56.96	0		
56.46	0	56.97	0		
56.47	0	56.98	0		
56.48	0	56.99	0		
56.49	0	57.00	0		
56.50	0	57.00	0		
56.51	0	57.02	0		
56.52	0	57.02	0		
56.53	0	57.04	0		
56.54	0	57.05	0		
56.55	0	57.06	0		
56.56	0	57.00	0		
56.57	0	57.08	0		
56.58	0	57.09	0		
56.59	0	57.10	0		
56.60	0	57.10	0		
56.61	0	57.12	0		
56.62	0	57.12	0		
56.62 56.63	0	57.13	0		
56.63 56.64	0	57.14	0		
56.65	0	57.15	0		
50.05	U	57.10	U		
	I			I	

Summary for Pond 4P: Detention Basin 2

Inflow Area = 68,038 sf, 61.42% Impervious, Inflow Depth = 0.94" for 1-year event 1.44 cfs @ 12.32 hrs, Volume= Inflow = 5.314 cf 5,292 cf, Atten= 95%, Lag= 308.9 min Outflow = 0.07 cfs @ 17.47 hrs, Volume= 0.07 cfs @ 17.47 hrs, Volume= Primary = 5,292 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 4L : DP 1.3 - Culvert 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 56.91' @ 17.47 hrs Surf.Area= 2,957 sf Storage= 3,230 cf

Plug-Flow detention time= 632.7 min calculated for 5,292 cf (100% of inflow) Center-of-Mass det. time= 630.4 min (1,520.5 - 890.1)

Volume	Inver	t Avail.Stor	age Storage	Description	
#1	55.60	' 88,52	6 cf Custom	I Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
55.6	1	1,952	0	0	
56.0	00	2,295	849	849	
57.0	00	3,025	2,660	3,509	
58.0		3,843	3,434	6,943	
59.0		4,717	4,280	11,223	
60.0	00	55,662	30,190	41,413	
61.5	50	7,155	47,113	88,526	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	55.60'	24.0" Round	Culvert	
#2 #3 #4 #5	Device 1 Device 1 Device 1 Secondary	55.60' 57.50' 58.25' 60.10'	L= 12.0' CPF Inlet / Outlet In n= 0.013 Cor 1.5" Vert. Orit 1.0' long Sha 5.0' long Sha	P, projecting, no headwall, Ke= 0.900 Invert= 55.60' / 52.60' S= 0.2500 '/' Cc= 0.900 Increte pipe, bends & connections, Flow Area= 3.14 sf ifice/Grate C= 0.600 Limited to weir flow at low heads inp-Crested Rectangular Weir 2 End Contraction(s) inp-Crested Rectangular Weir 2 End Contraction(s) inp-Crested Rectangular Weir 2 End Contraction(s)	i

Primary OutFlow Max=0.07 cfs @ 17.47 hrs HW=56.91' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 0.07 cfs of 6.68 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.07 cfs @ 5.37 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=55.60' TW=0.00' (Dynamic Tailwater) 5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pro-Hydro

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 4P: Detention Basin 2

Flouration	Diacharra	Drive er i	Secondary -		Diack are -	Drime err	Coorder
Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)	Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
55.60	0.00	0.00	0.00	60.70	39.20	24.18	15.02
55.70	0.01	0.00	0.00	60.80	43.36	24.47	18.88
55.80	0.02	0.02	0.00	60.90	47.79	24.76	23.02
55.90	0.03	0.03	0.00	61.00	52.47	25.05	27.42
56.00	0.03	0.03	0.00	61.10	57.38	25.33	32.05
56.10	0.04	0.04	0.00	61.20	62.51	25.61	36.90
56.20	0.04	0.04	0.00	61.30	67.84	25.89	41.95
56.30	0.05	0.05	0.00	61.40	73.37	26.16	47.21
56.40	0.05	0.05	0.00	61.50	79.09	26.44	52.65
56.50	0.05	0.05	0.00				
56.60	0.06	0.06	0.00				
56.70	0.06	0.06	0.00				
56.80	0.06	0.06	0.00				
56.90	0.07	0.07	0.00				
57.00	0.07	0.07	0.00				
57.10	0.07	0.07	0.00				
57.20	0.07	0.07	0.00				
57.30	0.08	0.08	0.00				
57.40	0.08	0.08	0.00				
57.50	0.08	0.08	0.00				
57.60	0.18	0.18	0.00				
57.70	0.37	0.37	0.00				
57.80	0.59	0.59	0.00				
57.90 58.00	0.85 1.13	0.85 1.13	0.00 0.00				
58.00	1.13	1.13	0.00				
58.20	1.43	1.43	0.00				
58.30	2.24	2.24	0.00				
58.40	3.33	3.33	0.00				
58.50	4.74	4.74	0.00				
58.60	6.38	6.38	0.00				
58.70	8.22	8.22	0.00				
58.80	10.21	10.21	0.00				
58.90	12.35	12.35	0.00				
59.00	14.61	14.61	0.00				
59.10	16.99	16.99	0.00				
59.20	19.26	19.26	0.00				
59.30	19.62	19.62	0.00				
59.40	19.98	19.98	0.00				
59.50	20.34	20.34	0.00				
59.60	20.68	20.68	0.00				
59.70	21.03	21.03	0.00				
59.80	21.36	21.36	0.00				
59.90	21.69	21.69	0.00				
60.00	22.02	22.02	0.00				
60.10	22.34	22.34	0.00				
60.20 60.30	23.69	22.66 22.97	1.03 2.91				
60.30 60.40	25.88 28.62	22.97	2.91 5.34				
60.40 60.50	20.02 31.79	23.20	5.34 8.21				
60.60	35.33	23.88	11.45				
00.00	00.00	20.00	11.40				
				•			

Prepared by Pare Corporatio	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions I

Stage-Area-Storage for Pond 4P: Detention Basin 2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
55.60	1,952	0	60.70	33,025	72,453
55.70	2,038	199	60.80	29,792	75,594
55.80	2,124	408	60.90	26,558	78,412
55.90	2,209	624	61.00	23,324	80,906
56.00	2,295	849	61.10	20,090	83,077
56.10	2,368	1,083	61.20	16,856	84,924
56.20	2,441	1,323	61.30	13,623	86,448
56.30	2,514	1,571	61.40	10,389	87,648
56.40	2,587	1,826	61.50	7,155	88,526
56.50	2,660	2,088			
56.60	2,733	2,358			
56.70	2,806	2,635			
56.80	2,879	2,919			
56.90	2,952	3,211			
57.00	3,025	3,509			
57.10	3,107	3,816			
57.20	3,189	4,131			
57.30	3,270	4,454			
57.40	3,352	4,785			
57.50	3,434	5,124			
57.60	3,516	5,472			
57.70	3,598	5,827			
57.80	3,679	6,191			
57.90	3,761	6,563			
58.00	3,843	6,943			
58.10	3,930	7,332			
58.20	4,018	7,729			
58.30	4,105	8,136			
58.40	4,193	8,551			
58.50	4,280	8,974			
58.60	4,367	9,407			
58.70	4,455	9,848			
58.80	4,542	10,297			
58.90	4,630	10,756			
59.00	4,717	11,223			
59.10	9,812	11,950			
59.20	14,906	13,186			
59.30	20,001	14,931			
59.40	25,095	17,186			
59.50	30,190	19,950			
59.60	35,284	23,224			
59.70	40,379	27,007			
59.80	45,473	31,299			
59.90	50,567	36,101			
60.00	55,662	41,413			
60.10	52,428	46,817			
60.20	49,194	51,899			
60.30	45,961	56,656			
60.40	42,727	61,091			
60.50	39,493	65,202			
60.60	36,259	68,989			
		-			

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 46

Summary for Pond 7P: Bio 2

Inflow Area =	26,810 sf, 65.14% Impervious, Inflo	w Depth = 1.80" for 1-year event				
Inflow =	1.27 cfs @ 12.09 hrs, Volume=	4,024 cf				
Outflow =	0.14 cfs @ 12.92 hrs, Volume=	4,024 cf, Atten= 89%, Lag= 49.6 min				
Primary =	0.11 cfs @ 12.92 hrs, Volume=	612 cf				
Routed to Link 5L : DP 1.4 - Silver Creek East Branch						
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf				
Routed to Link 5L : DP 1.4 - Silver Creek East Branch						
	0.03 cfs @ 10.40 hrs, Volume=	3,413 cf				
Routed to Link 5L : DP 1.4 - Silver Creek East Branch						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 56.51' @ 12.92 hrs Surf.Area= 2,146 sf Storage= 2,119 cf

Plug-Flow detention time= 663.2 min calculated for 4,024 cf (100% of inflow) Center-of-Mass det. time= 663.2 min (1,475.4 - 812.2)

Volume	Invert	: Avai	il.Stora	age Storage Desci	ription			
#1	52.99'	I	8,23	0 cf Custom Stage	e Data (Prismatic)	Listed below (Recalc)		
	0	E A						
Elevatio	on Si	urf.Area	Void		Cum.Store			
(fee	et)	(sq-ft)	(%	b) (cubic-feet)	(cubic-feet)			
52.9	99	1,128	0.	0 0	0			
53.0	00	1,128	33.	0 4	4			
55.9	99	1,128	33.	0 1,113	1,117			
56.0	00	1,742	100.	0 14	1,131			
57.0	00	2,537	100.	0 2,140	3,271			
58.0	00	3,569	100.	0 3,053	6,324			
58.5	50	4,058	100.	0 1,907	8,230			
Device	Routing	In	vert	Outlet Devices				
#1	Primary	56	56.50' 2.0" x 2.0" Horiz. Orifice/Grate X 12.00 columns X 6 rows C= 0.600					
	,			Limited to weir flow	at low heads			
#2	Device 3	52	.99'	9' 1.020 in/hr Exfiltration over Surface area from 52.98' - 55.99'				
	Excluded Surface area = 0 sf Phase-In= 0.02'							
#3	Tertiary	52	2.25'					
#4	Secondary		.60'	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
	,			· · · · · · · · · · · · · · · · · · ·				

Primary OutFlow Max=0.11 cfs @ 12.92 hrs HW=56.51' TW=0.00' (Dynamic Tailwater) -1=Orifice/Grate (Weir Controls 0.11 cfs @ 0.29 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=52.99' TW=0.00' (Dynamic Tailwater) 4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Tertiary OutFlow Max=0.03 cfs @ 10.40 hrs HW=53.05' TW=0.00' (Dynamic Tailwater)

-3=subdrain (Passes 0.03 cfs of 0.70 cfs potential flow)

1–**2=Exfiltration** (Exfiltration Controls 0.03 cfs)

 Prepared by Pare Corporation
 Printed 1/9/2025

 HydroCAD® 10.20-5b
 s/n 04883 © 2023 HydroCAD Software Solutions LLC
 Page 47

Stage-Discharge for Pond 7P: Bio 2

Elevation	Discharge	Primary	Secondary	Tertiary
(feet)	(cfs)	(cfs)	<u>(cfs)</u>	(cfs)
52.99	0.00	0.00	0.00	0.00
53.19	0.03	0.00	0.00	0.03
53.39	0.03	0.00	0.00	0.03
53.59	0.03	0.00	0.00	0.03
53.79	0.03	0.00	0.00	0.03
53.99	0.03	0.00	0.00	0.03
54.19	0.03	0.00	0.00	0.03
54.39	0.03	0.00	0.00	0.03
54.59	0.03	0.00	0.00	0.03
54.79	0.03	0.00	0.00	0.03
54.99	0.03	0.00	0.00	0.03
55.19	0.03	0.00	0.00	0.03
55.39	0.03	0.00	0.00	0.03
55.59	0.03	0.00	0.00	0.03
55.79	0.03	0.00	0.00	0.03
55.99	0.03	0.00	0.00	0.03
56.19	0.03	0.00	0.00	0.03
56.39	0.03	0.00	0.00	0.03
56.59	2.92	2.89	0.00	0.03
56.79	5.21	5.19	0.00	0.03
56.99	6.77	6.74	0.00	0.03
57.19	8.03	8.00	0.00	0.03
57.39	9.11	9.08	0.00	0.03
57.59	10.08	10.05	0.00	0.03
57.79	13.66	10.94	2.70	0.03
57.99	19.68	11.75	7.90	0.03
58.19	27.19	12.52	14.64	0.03
58.39	35.86	13.24	22.60	0.03

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 7P: Bio 2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
52.99	1,128	0	58.09	3,657	6,649
53.09	1,128	37	58.19	3,755	7,019
53.19	1,128	74	58.29	3,853	7,400
53.29	1,128	112	58.39	3,950	7,790
53.39	1,128	149	58.49	4,048	8,190
53.49	1,128	186		.,• .•	0,100
53.59	1,128	223			
53.69	1,128	261			
53.79	1,128	298			
53.89	1,128	335			
53.99	1,128	372			
54.09	1,128	409			
54.19	1,128	447			
54.29	1,128	484			
54.39	1,128	521			
54.49	1,128	558			
54.59	1,128	596			
54.69	1,128	633			
54.79	1,128	670			
54.89	1,128	707			
54.99	1,128	744			
55.09	1,128	782			
55.19	1,128	819			
55.29	1,128	856			
55.39	1,128	893			
55.49	1,128	931			
55.59	1,128	968			
55.69	1,128	1,005			
55.79	1,128	1,003			
55.89	1,128	1,072			
55.99	1,128	1,117			
56.09	1,814	1,291			
56.19	1,893	1,476			
56.29	1,973	1,670			
56.39	2,052	1,871			
56.49	2,002	2,080			
56.59	2,211	2,000			
56.69	2,291	2,522			
56.79	2,231	2,755			
56.89	2,450	2,996			
56.99	2,529	3,245			
57.09	2,630	3,503			
57.19	2,733	3,771			
57.29	2,836	4,050			
57.39	2,939	4,338			
57.49	3,043	4,638			
57.59	3,146	4,947			
57.69	3,249	5,267			
57.79	3,352	5,597			
57.89	3,455	5,937			
57.99	3,559	6,288			
07.00	0,000	0,200			
			I		

Pro-Hydro23099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 49

Summary for Pond 8P: DIV-04

Inflow Area =	151,857 sf,100.00% Impervious,	Inflow Depth = 1.00" for 1-year event				
Inflow =	4.72 cfs @ 12.21 hrs, Volume=	12,676 cf				
Outflow =	4.72 cfs @ 12.21 hrs, Volume=	12,677 cf, Atten= 0%, Lag= 0.0 min				
Primary =	4.72 cfs @ 12.21 hrs, Volume=	11,744 cf				
Routed to Pone	d 23P : UGIS-1					
Secondary =	0.35 cfs @ 13.02 hrs, Volume=	932 cf				
Routed to Link 6L : DP 2.1 - West Wetland						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 48.47' @ 13.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	46.90'	L= 10.0' CMP, projecting, no headwall, Ke= 0.900
#2	Device 3	49 40'	Inlet / Outlet Invert= 46.90' / 46.80' S= 0.0100 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf
#2 #3	Secondary	48.40' 46.90'	6.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s) 24.0" Round Culvert
			L= 30.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 46.90' / 46.70' S= 0.0067 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf

Primary OutFlow Max=4.70 cfs @ 12.21 hrs HW=48.25' TW=47.31' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 4.70 cfs @ 3.71 fps)

Secondary OutFlow Max=0.35 cfs @ 13.02 hrs HW=48.47' TW=0.00' (Dynamic Tailwater) -3=Culvert (Passes 0.35 cfs of 7.94 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 0.35 cfs @ 0.85 fps)

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 8P: DIV-04

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
46.90	0.00	0.00	0.00	47.92	3.00	3.00	0.00
46.92	0.00	0.00	0.00	47.94	3.10	3.10	0.00
46.94	0.01	0.01	0.00	47.96	3.20	3.20	0.00
46.96	0.02	0.02	0.00	47.98	3.30	3.30	0.00
46.98	0.03	0.03	0.00	48.00	3.40	3.40	0.00
47.00	0.04	0.04	0.00	48.02	3.50	3.50	0.00
47.02	0.06	0.06	0.00	48.04	3.61	3.61	0.00
47.04	0.08	0.08	0.00	48.06 48.08	3.71	3.71	0.00
47.06	0.11	0.11	0.00		3.81	3.81	0.00
47.08	0.13	0.13	0.00	48.10	3.92	3.92	0.00
47.10	0.16	0.16	0.00	48.12	4.02	4.02	0.00
47.12	0.20 0.23	0.20 0.23	0.00	48.14	4.12 4.23	4.12	0.00
47.14	0.23	0.23	0.00	48.16	4.23 4.34	4.23 4.34	0.00
47.16 47.18	0.27		0.00 0.00	48.18	4.34 4.44	4.34 4.44	0.00
47.18		0.31 0.35	0.00	48.20 48.22	4.44	4.44	0.00 0.00
47.20	0.35 0.39	0.35	0.00	46.22	4.55 4.65	4.55	0.00
47.22	0.39	0.39	0.00	46.24 48.26	4.05	4.05	0.00
47.24	0.44	0.44	0.00	48.20	4.70	4.70	0.00
47.20	0.48	0.48	0.00	48.30	4.87 4.97	4.07 4.97	0.00
47.20	0.58	0.53	0.00	48.30	5.08	5.08	0.00
47.30	0.58	0.58	0.00	48.32	5.19	5.08	0.00
47.32	0.69	0.69	0.00	48.34	5.29	5.29	0.00
47.34	0.09	0.09	0.00	48.38	5.40	5.29	0.00
47.38	0.81	0.73	0.00	48.40	5.50	5.50	0.00
47.40	0.87	0.87	0.00	48.42	5.66	5.61	0.06
47.40	0.94	0.87	0.00	48.44	5.87	5.71	0.00
47.44	1.00	1.00	0.00	48.46	6.10	5.81	0.10
47.46	1.00	1.00	0.00	48.48	6.36	5.92	0.44
47.48	1.14	1.14	0.00	48.50	6.64	6.02	0.62
47.50	1.21	1.21	0.00	48.52	6.93	6.12	0.81
47.52	1.28	1.28	0.00	48.54	7.24	6.22	1.02
47.54	1.35	1.35	0.00	48.56	7.57	6.32	1.25
47.56	1.42	1.42	0.00	48.58	7.91	6.42	1.49
47.58	1.50	1.50	0.00	48.60	8.26	6.52	1.74
47.60	1.58	1.58	0.00	48.62	8.62	6.61	2.01
47.62	1.66	1.66	0.00	48.64	8.97	6.68	2.29
47.64	1.74	1.74	0.00	48.66	9.33	6.75	2.58
47.66	1.82	1.82	0.00	48.68	9.70	6.82	2.88
47.68	1.91	1.91	0.00	48.70	10.07	6.88	3.19
47.70	1.99	1.99	0.00	48.72	10.46	6.95	3.51
47.72	2.08	2.08	0.00	48.74	10.86	7.01	3.85
47.74	2.16	2.16	0.00	48.76	11.26	7.08	4.19
47.76	2.25	2.25	0.00	48.78	11.68	7.14	4.54
47.78	2.34	2.34	0.00	48.80	12.10	7.20	4.90
47.80	2.43	2.43	0.00	48.82	12.53	7.27	5.27
47.82	2.53	2.53	0.00	48.84	12.97	7.33	5.64
47.84	2.62	2.62	0.00	48.86	13.42	7.39	6.03
47.86	2.71	2.71	0.00	48.88	13.87	7.45	6.42
47.88	2.81	2.81	0.00	48.90	14.33	7.51	6.82
47.90	2.91	2.91	0.00				
				1			

Stage-Area-Storage for Pond 8P: DIV-04

F 1	01		01
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
46.90	0	47.92	0
46.92	0	47.94	0
46.94	0	47.96	0
46.96	0	47.98	0
46.98	0	48.00	0
47.00	0	48.02	0
47.02	0	48.04	0
47.04	0	48.06	0
47.06	0	48.08	0
47.08	0	48.10	0
47.10	0	48.12	0
47.12	0	48.14	0
47.14	0	48.16	0
47.16	0	48.18	0
47.18	0	48.20	0
47.20	0	48.22	0
47.22	0	48.24	0
47.24	0	48.26	0
47.26	0	48.28	0
47.28	0	48.30	0
47.30	0	48.32	0
47.32	0	48.34	0
47.34	0	48.36	0
47.36	0	48.38	0
47.38	0	48.40	0
47.40	0	48.42	0
47.42	0	48.44	0
47.44	0	48.46	0
47.46	0	48.48	0
47.48	0	48.50	0
47.50	0	48.52	0
47.52	0	48.54	0
47.54	0	48.56	0
47.56	0	48.58	0
47.58	0	48.60	0
47.60	0	48.62	0
47.62	0	48.64	0
47.64	0	48.66	0
47.66	0	48.68	0
47.68	0	48.70	0
47.70	0	48.72	0
47.72	0	48.74	0
47.74	0	48.76	0
47.76	0	48.78	0
47.78	0	48.80	0
47.80	0	48.82	0
47.82	0	48.84	0
47.84	0	48.86	0
47.86	0	48.88	0
47.88	0	48.90	0
47.90	0		
		l	

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 52

Summary for Pond 9P: Sand Filter 5

Inflow Area = 23,611 sf, 64.74% Impervious, Inflow Depth = 1.82" for 1-year event 1.05 cfs @ 12.09 hrs, Volume= Inflow = 3.574 cf Outflow = 0.90 cfs @ 12.21 hrs, Volume= 3,099 cf, Atten= 14%, Lag= 7.1 min Discarded = 0.01 cfs @ 12.21 hrs, Volume= 1,278 cf Primary = 0.89 cfs @ 12.21 hrs, Volume= 1,821 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 49.80' @ 12.21 hrs Surf.Area= 1,089 sf Storage= 1,425 cf

Plug-Flow detention time= 677.5 min calculated for 3,097 cf (87% of inflow) Center-of-Mass det. time= 619.6 min (1,424.1 - 804.5)

Volume	Invert	Avai	il.Storage	Storage Descrip	otion	
#1	45.99'		4,039 cf	Custom Stage	Data (Prismatic) Lis	ted below (Recalc)
Elevatio (fee		ırf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
45.9	99	705	0.0	0	0	
46.0	00	705	33.0	2	2	
48.9	99	705	33.0	696	698	
49.0	00	705	100.0	7	705	
50.0	00	1,184	100.0	945	1,649	
51.0	00	1,725	100.0	1,455	3,104	
51.5	50	2,016	100.0	935	4,039	
Device	Routing	In	vert Ou	Itlet Devices		
#1	Discarded	45	5.99' 0.2	270 in/hr Exfiltratio	on over Surface area	a Phase-In= 0.02'
#2	Primary	49				lumns X 6 rows C= 0.600
#3	Secondary	50		nited to weir flow a .0' long Sharp-Cre		leir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 12.21 hrs HW=49.80' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.79 cfs @ 12.21 hrs HW=49.80' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Weir Controls 0.79 cfs @ 0.71 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=45.99' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Discharge for Pond 9P: Sand Filter 5

Elevation	Discharge	Discarded	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(cfs)
45.99	0.00	0.00	0.00	0.00
46.19	0.00	0.00	0.00	0.00
46.39	0.00	0.00	0.00	0.00
46.59	0.00	0.00	0.00	0.00
46.79	0.00	0.00	0.00	0.00
46.99	0.00	0.00	0.00	0.00
47.19	0.00	0.00	0.00	0.00
47.39	0.00	0.00	0.00	0.00
47.59	0.00	0.00	0.00	0.00
47.79	0.00	0.00	0.00	0.00
47.99	0.00	0.00	0.00	0.00
48.19	0.00	0.00	0.00	0.00
48.39	0.00	0.00	0.00	0.00
48.59	0.00	0.00	0.00	0.00
48.79	0.00	0.00	0.00	0.00
48.99	0.00	0.00	0.00	0.00
49.19	0.00	0.00	0.00	0.00
49.39	0.01	0.01	0.00	0.00
49.59	0.01	0.01	0.00	0.00
49.79	0.63	0.01	0.63	0.00
49.99	2.37	0.01	2.36	0.00
50.19	3.20	0.01	3.19	0.00
50.39	6.56	0.01	3.85	2.70
50.59	12.32	0.01	4.41	7.90
50.79	19.56	0.01	4.91	14.64
50.99	27.97	0.01	5.36	22.60
51.19	37.36	0.01	5.78	31.57
51.39	47.62	0.01	6.17	41.44

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9P: Sand Filter 5

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
45.99	705	0	51.09	1,777	3,262
46.09	705	23	51.19	1,836	3,442
46.19	705	47	51.29	1,894	3,629
46.29	705	70	51.39	1,952	3,821
46.39	705	93	51.49	2,010	4,019
46.49	705	116			
46.59	705	140			
46.69	705	163			
46.79	705	186			
46.89	705	209			
46.99	705	233			
47.09	705	256			
47.19	705	279			
47.29	705	302			
47.39	705	326			
47.49	705	349			
47.59	705	372			
47.69	705	396			
47.79	705	419			
47.89	705	442			
47.99	705	465			
48.09	705	489			
48.19	705	512			
48.29	705	535			
48.39	705	558			
48.49	705	582			
48.59	705	605			
48.69	705	628			
48.79	705	651			
48.89	705	675			
48.99	705	698			
49.09	748	770			
49.19	796	848			
49.29	844	930			
49.39	892	1,016			
49.49	940	1,108			
49.59	988	1,204			
49.69	1,036	1,305			
49.79	1,083	1,411			
49.89	1,131	1,522			
49.99	1,179	1,638			
50.09	1,233	1,758			
50.19	1,287	1,884			
50.29	1,341	2,016			
50.39	1,395	2,152			
50.49	1,449	2,295			
50.59	1,503	2,442			
50.69	1,557	2,595			
50.79	1,611	2,754			
50.89	1,665	2,918			
50.99	1,720	3,087			
			I		

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 55

Summary for Pond 10P: Bio 1

Inflow Area = 42,514 sf, 58.56% Impervious, Inflow Depth = 1.55" for 1-year event 1.17 cfs @ 12.09 hrs, Volume= Inflow = 5.506 cf Outflow = 1.05 cfs @ 12.20 hrs, Volume= 4,711 cf, Atten= 10%, Lag= 6.6 min Discarded = 0.00 cfs @ 8.75 hrs, Volume= 1,045 cf Primary = 1.05 cfs @ 12.20 hrs, Volume= 3,667 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 44.51' @ 12.20 hrs Surf.Area= 2,683 sf Storage= 1,721 cf

Plug-Flow detention time= 451.7 min calculated for 4,708 cf (86% of inflow) Center-of-Mass det. time= 389.8 min (1,215.7 - 826.0)

Volume	Invert	Avail	I.Storage	ge Storage Description			
#1	41.99'		6,712 cf	Custom Stage I	Data (Prismatic)	Listed below (Recalc)	
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store		
(fee	•••	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)		
41.9	-	725	0.0	0	0		
42.0	-	725	33.0	2	2		
43.9	-	725	33.0	476	479		
44.0		2,167	100.0	14	493		
45.0	00	3,187	100.0	2,677	3,170		
46.0	00	3,897	100.0	3,542	6,712		
Device	Routing	Inv	vert Out	let Devices			
#1	Primary	44	.45' 2.0'	' x 2.0" Horiz. Ori	fice/Grate X 6.00	columns X 6 rows C= 0.600	
			Lim	ited to weir flow at	t low heads		
#2	Discarded	41	.99' 0.2	70 in/hr Exfiltratio	on over Surface a	irea from 41.98' - 43.99'	
				luded Surface are	-	n= 0.02'	
#3	Secondary	45		mmetrical Weir,			
			Offs	set (feet) 0.00 0.0	01 5.00 5.01 5.5	50 6.00 6.01 10.00 10.01	
			Hei	ght (feet) 1.00 0.	00 0.25 1.00 1.0	00 1.00 0.30 0.50 1.00	

Discarded OutFlow Max=0.00 cfs @ 8.75 hrs HW=42.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.00 cfs)

Primary OutFlow Max=1.04 cfs @ 12.20 hrs HW=44.51' TW=0.00' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 1.04 cfs @ 0.77 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=41.99' TW=0.00' (Dynamic Tailwater) —3=Asymmetrical Weir (Controls 0.00 cfs)

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 10P: Bio 1

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)	Secondary (cfs)
41.99	0.00	0.00	0.00	0.00
42.09	0.00	0.00	0.00	0.00
42.19	0.00	0.00	0.00	0.00
42.29	0.00	0.00	0.00	0.00
42.39	0.00	0.00	0.00	0.00
42.49	0.00	0.00	0.00	0.00
42.59	0.00	0.00	0.00	0.00
42.69	0.00	0.00	0.00	0.00
42.79	0.00	0.00	0.00	0.00
42.89	0.00	0.00	0.00	0.00
42.09	0.00	0.00	0.00	0.00
43.09	0.00	0.00	0.00	0.00
43.09	0.00	0.00	0.00	0.00
43.19	0.00	0.00	0.00	0.00
43.29	0.00	0.00	0.00	0.00
43.39	0.00	0.00		0.00
	0.00		0.00	
43.59		0.00	0.00	0.00
43.69	0.00	0.00	0.00	0.00
43.79	0.00	0.00	0.00	0.00 0.00
43.89	0.00	0.00	0.00	
43.99	0.00	0.00	0.00	0.00
44.09	0.00	0.00	0.00	0.00
44.19	0.00	0.00	0.00	0.00
44.29	0.00	0.00	0.00	0.00
44.39	0.00	0.00	0.00	0.00
44.49	0.63	0.00	0.63	0.00
44.59	1.81	0.00	1.80	0.00
44.69	2.36	0.00	2.36	0.00
44.79	2.81	0.00	2.81	0.00
44.89	3.20	0.00	3.19	0.00
44.99	3.54	0.00	3.54	0.00
45.09	3.86	0.00	3.85	0.00
45.19	4.15	0.00	4.14	0.00
45.29	4.42	0.00	4.41	0.00
45.39	4.67	0.00	4.67	0.00
45.49	4.91	0.00	4.91	0.00
45.59	5.15	0.00	5.14	0.00
45.69	5.37	0.00	5.36	0.00
45.79	5.59	0.00	5.57	0.01
45.89	5.97	0.00	5.78	0.19
45.99	6.72	0.00	5.98	0.74
46.09	7.88	0.00	6.17	1.71
46.19	9.49	0.00	6.35	3.14
46.29	11.68	0.00	6.53	5.14
46.39	14.36	0.00	6.71	7.65
46.49	17.42	0.00	6.88	10.54
46.59	20.80	0.00	7.04	13.75
46.69	24.48	0.00	7.21	17.27

Prepared by Pare C	Corporatio	n			
HvdroCAD® 10.20-5b	s/n 04883	© 2023	HvdroCAD	Software	Solutions

Stage-Area-Storage for Pond 10P: Bio 1

	0 (01		0 (01
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
41.99	725	0	44.54	2,718	1,812
42.04	725	12	44.59	2,769	1,949
42.09	725	24	44.64	2,820	2,089
42.14	725	36	44.69	2,871	2,231
42.19	725	48	44.74	2,922	2,376
42.24	725	60	44.79	2,973	2,523
42.29	725	72	44.84	3,024	2,673
42.34	725	84	44.89	3,075	2,826
42.39	725	96	44.94	3,126	2,981
42.44	725	108	44.99	3,177	3,138
42.49	725	120	45.04	3,215	3,298
42.54	725	132	45.09	3,251	3,460
42.59	725	144	45.14	3,286	3,623
42.64	725	156	45.19	3,322	3,788
42.69	725	167	45.24	3,357	3,955
42.74	725	179	45.29	3,393	4,124
42.79	725	191	45.34	3,428	4,295
42.84	725	203	45.39	3,464	4,467
42.89	725	215	45.44	3,499	4,641
42.94	725	227	45.49	3,535	4,817
42.99	725	239	45.54	3,570	4,994
43.04	725	251	45.59	3,606	5,174
43.09	725	263	45.64	3,641	5,355
43.14	725	275	45.69	3,677	5,538
43.19	725	287	45.74	3,712	5,723
43.24	725	299	45.79	3,748	5,909
43.29	725	311	45.84	3,783	6,098
43.34	725	323	45.89	3,819	6,288
43.39	725	335	45.94	3,854	6,479
43.44	725	347	45.99	3,890	6,673
43.49	725	359	46.04	3,897	6,712
43.54	725	371	46.09	3,897	6,712
43.59	725	383	46.14	3,897	6,712
43.64	725	395	46.19	3,897	6,712
43.69	725	407	46.24	3,897	6,712
43.74	725	419	46.29	3,897	6,712
43.79	725	431	46.34	3,897	6,712
43.84	725	443	46.39	3,897	6,712
43.89	725	455	46.44	3,897	6,712
43.94	725	467	46.49	3,897	6,712
43.99	725	479	46.54	3,897	6,712
44.04	2,208	580	46.59	3,897	6,712
44.09	2,259	692	46.64	3,897	6,712
44.14	2,310	806	46.69	3,897	6,712
44.19	2,361	923	46.74	3,897	6,712
44.24	2,412	1,042		-,	-,
44.29	2,463	1,164			
44.34	2,514	1,289			
44.39	2,565	1,416			
44.44	2,616	1,545			
44.49	2,667	1,677			
	_,	.,			
			•		

Summary for Pond 12P: Infiltration Basin 1

Inflow Area =	68,033 sf	, 89.47% Impervious,	Inflow Depth = 2.37"	for 1-year event
Inflow =	3.83 cfs @	12.09 hrs, Volume=	13,414 cf	-
Outflow =	2.55 cfs @	12.19 hrs, Volume=	10,865 cf, Atter	n= 33%, Lag= 6.0 min
Discarded =	0.02 cfs @	12.19 hrs, Volume=	3,773 cf	
Primary =	2.53 cfs @	12.19 hrs, Volume=	7,092 cf	
Routed to Link	5L : DP 1.4 -	Silver Creek East Bran	nch	
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Routed to Link	5L : DP 1.4 -	Silver Creek East Bran	nch	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 57.91' @ 12.19 hrs Surf.Area= 3,038 sf Storage= 5,960 cf

Plug-Flow detention time= 647.4 min calculated for 10,865 cf (81% of inflow) Center-of-Mass det. time= 572.7 min (1,338.2 - 765.5)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	55.00	' 10,93	31 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)	
55.0		1,125	0	0	
56.0	00	1,739	1,432	1,432	
57.0	00	2,393	2,066	3,498	
58.0	00	3,104	2,749	6,247	
59.0	00	3,870	3,487	9,734	
59.3	30	4,111	1,197	10,931	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	51.75'	Inlet / Outlet	P, projecting, no Invert= 51.75' / 5	headwall, Ke= 0.900 51.55' S= 0.0222 '/' Cc= 0.900 ds & connections, Flow Area= 3.14 sf
#2 #3 #4	Discarded Secondary Device 1		0.270 in/hr E 10.0' long Sh	xfiltration over a narp-Crested Re	· · · · · · · · · · · · · · · · · · ·

Discarded OutFlow Max=0.02 cfs @ 12.19 hrs HW=57.90' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=2.49 cfs @ 12.19 hrs HW=57.90' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 2.49 cfs of 27.11 cfs potential flow) 4=Sharp-Crested Rectangular Weir (Weir Controls 2.49 cfs @ 1.65 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=55.00' TW=0.00' (Dynamic Tailwater) —3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Discharge for Pond 12P: Infiltration Basin 1

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)	Secondary (cfs)
55.00	0.00	0.00	0.00	0.00
55.00	0.00	0.00	0.00	0.00
55.20	0.01	0.01	0.00	0.00
55.20	0.01	0.01	0.00	
				0.00
55.40	0.01	0.01	0.00	0.00
55.50	0.01	0.01	0.00	0.00
55.60	0.01	0.01	0.00	0.00
55.70	0.01	0.01	0.00	0.00
55.80	0.01	0.01	0.00	0.00
55.90	0.01	0.01	0.00	0.00
56.00	0.01	0.01	0.00	0.00
56.10	0.01	0.01	0.00	0.00
56.20	0.01	0.01	0.00	0.00
56.30	0.01	0.01	0.00	0.00
56.40	0.01	0.01	0.00	0.00
56.50	0.01	0.01	0.00	0.00
56.60	0.01	0.01	0.00	0.00
56.70	0.01	0.01	0.00	0.00
56.80	0.01	0.01	0.00	0.00
56.90	0.01	0.01	0.00	0.00
57.00	0.01	0.01	0.00	0.00
57.10	0.02	0.02	0.00	0.00
57.20	0.02	0.02	0.00	0.00
57.30	0.02	0.02	0.00	0.00
57.40	0.02	0.02	0.00	0.00
57.50	0.02	0.02	0.00	0.00
57.60	0.02	0.02	0.00	0.00
57.70	0.24	0.02	0.22	0.00
57.80	1.15	0.02	1.13	0.00
57.90	2.45	0.02	2.43	0.00
58.00	4.03	0.02	4.02	0.00
58.10	5.85	0.02	5.83	0.00
58.20	7.88	0.02	7.86	0.00
58.30	10.08	0.02	10.06	0.00
58.40	12.45	0.02	12.42	0.00
58.50	12.43	0.02	14.94	1.03
58.60	20.53	0.02	17.59	2.91
58.70	20.55	0.02	20.37	5.34
58.80	31.50	0.02	20.37	8.21
58.90	37.75	0.02	26.28	11.45
	44.43	0.02	20.20	15.02
59.00				
59.10	49.00	0.02	30.09	18.88
59.20	53.38	0.03	30.33	23.02
59.30	58.01	0.03	30.56	27.42

Prepared by Pare Corporation
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions

Stage-Area-Storage for Pond 12P: Infiltration Basin 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
55.00	1,125	0	57.55	2,784	4,922
55.05	1,156	57	57.60	2,820	5,062
55.10	1,186	116	57.65	2,855	5,204
55.15	1,217	176	57.70	2,891	5,347
55.20	1,248	237	57.75	2,926	5,493
55.25	1,279	300	57.80	2,962	5,640
55.30	1,309	365	57.85	2,997	5,789
55.35	1,340	431	57.90	3,033	5,940
55.40	1,371	499	57.95	3,068	6,092
55.45	1,401	568	58.00	3,104	6,247
55.50	1,432	639	58.05	3,142	6,403
55.55	1,463	712	58.10	3,181	6,561
55.60	1,493	786	58.15	3,219	6,721
55.65	1,524	861	58.20	3,257	6,883
55.70	1,555	938	58.25	3,296	7,046
55.75	1,586	1,016	58.30	3,334	7,212
55.80	1,616	1,096	58.35	3,372	7,380
55.85	1,647	1,178	58.40	3,410	7,549
55.90	1,678	1,261	58.45	3,449	7,721
55.95	1,708	1,346	58.50	3,487	7,894
56.00	1,739	1,432	58.55	3,525	8,070
56.05	1,772	1,520	58.60	3,564	8,247
56.10	1,804	1,609	58.65	3,602	8,426
56.15	1,837	1,700	58.70	3,640	8,607
56.20	1,870	1,793	58.75	3,679	8,790
56.25	1,903	1,887	58.80	3,717	8,975
56.30	1,935	1,983	58.85	3,755	9,162
56.35	1,968	2,081	58.90	3,793	9,350
56.40	2,001	2,180	58.95	3,832	9,541
56.45	2,033	2,281	59.00	3,870	9,734
56.50	2,066	2,383	59.05	3,910	9,928
56.55	2,099	2,487	59.10	3,950	10,125
56.60	2,131	2,593	59.15	3,991	10,323
56.65	2,164	2,701	59.20	4,031	10,524
56.70	2,197	2,810	59.25	4,071	10,726
56.75	2,230	2,920	59.30	4,111	10,931
56.80	2,262	3,032			
56.85	2,295	3,146			
56.90	2,328	3,262			
56.95	2,360	3,379			
57.00	2,393	3,498			
57.05	2,429	3,619			
57.10	2,464	3,741			
57.15	2,500	3,865			
57.20	2,535	3,991			
57.25	2,571	4,118			
57.30	2,606	4,248			
57.35	2,642	4,379			
57.40	2,677	4,512			
57.45	2,713	4,647			
57.50	2,749	4,783			
			l		

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Sector	olutions LLC Page 61

Summary for Pond 13P: Sand Filter 1

Inflow Area =	339,731 sf,	33.22% Impervious,	Inflow Depth = 0.46"	for 1-year event
Inflow =	1.95 cfs @	12.22 hrs, Volume=	13,096 cf	-
Outflow =	0.03 cfs @	8.25 hrs, Volume=	6,385 cf, Atter	n= 99%, Lag= 0.0 min
Discarded =	0.03 cfs @	8.25 hrs, Volume=	6,385 cf	-
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Routed to Pond	15P : Detent	ion Basin 1		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 47.06' @ 14.58 hrs Surf.Area= 7,987 sf Storage= 11,811 cf

Plug-Flow detention time= 1,624.4 min calculated for 6,380 cf (49% of inflow) Center-of-Mass det. time= 1,557.7 min (2,293.6 - 735.9)

Volume	Invert	Ava	il.Storag	je Storage Descr	iption	
#1	42.99'		30,005	cf Custom Stage	e Data (Prismatic)	Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.9	99	4,200	0.0	0	0	
43.0	00	4,200	33.0	14	14	
45.9	99	4,200	33.0	4,144	4,158	
46.0	00	6,399	100.0	53	4,211	
48.0	00	9,404	100.0	15,803	20,014	
49.0	00	10,578	100.0	9,991	30,005	
Device	Routing	In	vert C	Outlet Devices		
#1	Discarded	42	2.99' 0	.270 in/hr Exfiltrat	ion over Surface	area from 42.98' - 45.99'
#2	Secondary	48		xcluded Surface an 0.0' long Sharp-Cr	-	In= 0.02' ar Weir 2 End Contraction(s)
#2	Secondary	48	8.10' 1	0.0' long Sharp-Cr	ested Rectangul	ar Weir 2 End Contraction(s)

Discarded OutFlow Max=0.03 cfs @ 8.25 hrs HW=43.05' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=42.99' TW=44.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 13P: Sand Filter 1

	D ¹	D ²	0		D ¹	D ¹	0
Elevation	Discharge	Discarded	Secondary	Elevation	Discharge	Discarded	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
42.99	0.00	0.00	0.00	48.09	0.03	0.03	0.00
43.09	0.03	0.03	0.00	48.19	0.91	0.03	0.88
43.19	0.03	0.03	0.00	48.29	2.72	0.03	2.70
43.29	0.03	0.03	0.00	48.39	5.10	0.03	5.08
43.39	0.03	0.03	0.00	48.49	7.93	0.03	7.90
43.49	0.03	0.03	0.00	48.59	11.13	0.03	11.11
43.59	0.03	0.03	0.00	48.69	14.67	0.03	14.64
43.69	0.03	0.03	0.00	48.79	18.51	0.03	18.48
43.79	0.03	0.03	0.00	48.89	22.62	0.03	22.60
43.89	0.03	0.03	0.00	48.99	26.99	0.03	26.97
43.99	0.03	0.03	0.00				
44.09	0.03	0.03	0.00				
44.19	0.03	0.03	0.00				
44.29	0.03	0.03	0.00				
44.39	0.03	0.03	0.00				
44.49	0.03	0.03	0.00				
44.59	0.03	0.03	0.00				
44.69	0.03	0.03	0.00				
44.79	0.03	0.03	0.00				
44.89	0.03	0.03	0.00				
44.99	0.03	0.03	0.00				
45.09	0.03	0.03	0.00				
45.19	0.03	0.03	0.00				
45.29	0.03	0.03	0.00				
45.39	0.03	0.03	0.00				
45.49	0.03	0.03	0.00				
45.59	0.03	0.03	0.00				
45.69	0.03	0.03	0.00				
45.79	0.03	0.03	0.00				
45.89	0.03	0.03	0.00				
45.99	0.03	0.03	0.00				
46.09	0.03	0.03	0.00				
46.19	0.03	0.03	0.00				
46.29	0.03	0.03	0.00				
46.39	0.03	0.03	0.00				
46.49	0.03	0.03	0.00				
46.59	0.03	0.03	0.00				
46.69	0.03	0.03	0.00				
46.79	0.03	0.03	0.00				
46.89	0.03	0.03	0.00				
46.99	0.03	0.03	0.00				
47.09	0.03	0.03	0.00				
47.19	0.03	0.03	0.00				
47.29	0.03	0.00	0.00				
47.39	0.03	0.03	0.00				
47.49	0.03	0.03	0.00				
47.59	0.03	0.03	0.00				
47.69	0.03	0.03	0.00				
47.09	0.03	0.03	0.00				
47.89	0.03	0.03	0.00				
47.99	0.03	0.03	0.00				
47.39	0.03	0.05	0.00				
				I			

Prepared by Pare Corporation	1
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions I

Stage-Area-Storage for Pond 13P: Sand Filter 1

$ \begin{array}{ c c c } \hline (feet) & (sq.ft) & (cubic-feet) \\ \hline 42.99 & 4.200 & 0 & 48.09 & 9.510 & 20.665 \\ \hline 43.09 & 4.200 & 139 & 48.19 & 9.627 & 21.822 \\ \hline 43.19 & 4.200 & 277 & 42.29 & 9.744 & 22.791 \\ \hline 43.29 & 4.200 & 554 & 48.49 & 9.979 & 24.763 \\ \hline 43.59 & 4.200 & 633 & 48.59 & 10.027 & 25.767 \\ \hline 43.59 & 4.200 & 832 & 48.69 & 10.214 & 26.782 \\ \hline 43.69 & 4.200 & 1.109 & 48.79 & 10.331 & 27.810 \\ \hline 43.79 & 4.200 & 1.663 \\ \hline 44.99 & 4.200 & 2.772 \\ \hline 45.99 & 4.200 & 2.495 \\ \hline 44.89 & 4.200 & 2.495 \\ \hline 44.89 & 4.200 & 3.465 \\ \hline 45.99 & 4.200 & 3.465 \\ \hline 45.99 & 4.200 & 3.465 \\ \hline 45.99 & 4.200 & 3.665 \\ \hline 45.99 & 4.200 & 3.664 \\ \hline 45.69 & 7.285 & 6.130 \\ \hline 46.19 & 6.684 & 5.454 \\ \hline 46.19 & 6.684 & 5.454 \\ \hline 46.99 & 7.36 & 0.501 \\ \hline 46.99 & 7.86 & 0.735 \\ \hline 7.36 & 0.501 \\ \hline 46.99 & 7.868 & 11.282 \\ \hline 47.09 & 8.037 & 12.078 \\ \hline 47.19 & 8.187 & 12.890 \\ \hline 47.29 & 8.337 & 13.716 \\ \hline 47.39 & 8.487 & 14.557 \\ \hline 47.49 & 8.638 & 15.413 \\ \hline 47.59 & 8.788 & 16.285 \\ \hline 47.99 & 8.938 & 17.171 \\ \hline 47.99 & 9.088 & 18.072 \\ \hline 47.99 & 9.339 & 19.920 \\ \hline \end{array}$	Elevation	Surface	Storage	Elevation	Surface	Storage
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.99	4,200	0	48.09	9,510	20,865
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.09	4,200	139	48.19	9,627	21,822
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.19	4,200	277	48.29		
43.334.20055448.499.97924.76343.494.20069348.5910.09725.76743.594.20097048.7910.33127.81043.794.2001.10948.8910.44928.84943.894.2001.24748.9910.56629.89943.994.2001.66344.094.2001.66344.094.2001.66344.994.2001.66344.194.2001.66344.994.2002.35644.394.2002.35644.794.2002.46344.894.2002.35644.794.2002.63344.894.2002.35644.994.2002.77245.094.2002.7723.04945.294.20045.594.2003.04945.294.2003.46545.394.2003.66445.694.2003.64445.694.2003.66445.694.2003.66445.694.2003.66445.694.2003.66445.894.2003.66446.997.8656.82146.497.1357.52746.597.2858.24846.697.4368.98446.797.5869.73546.897.73610.50146.897.73610.50146.897.73610.50146.897.73610.50147.998.93817.17147.799.088 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.59 4.200 832 48.69 10.214 26.782 43.69 4.200 $1,109$ 48.79 10.331 27.810 43.79 4.200 $1,247$ 48.99 10.449 28.849 43.89 4.200 $1,525$ 44.19 4.200 $1,663$ 44.29 4.200 $1,663$ 44.99 4.200 2.782 44.39 4.200 $1,940$ 4.439 4.200 2.781 44.49 4.200 2.781 48.89 $10,566$ 29.899 44.59 4.200 2.722 45.09 4.200 2.712 45.09 4.200 2.772 45.09 4.200 3.049 45.59 4.200 2.911 45.99 4.200 3.049 45.59 4.200 3.742 45.69 4.200 3.742 45.69 4.200 3.742 45.79 4.200 3.881 45.89 4.200 3.742 45.79 4.200 3.861 46.99 6.835 6.130 6.684 5.454 46.99 7.866 9.735 46.89 7.736 10.501 46.99 7.886 1.282 47.09 8.037 12.078 47.29 8.337 12.078 47.29 8.338 15.413 47.59 8.788 16.285 47.69 8.938 17.171 47.79 9.088 18.072 47.89 9.239 18.989						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.79 4.200 1.109 48.89 10.449 28.849 43.89 4.200 1.247 48.99 $10,566$ $29,899$ 44.09 4.200 1.525 44.19 4.200 1.663 44.29 4.200 1.602 44.39 4.200 1.940 44.49 4.200 2.079 44.59 4.200 2.079 44.59 4.200 2.633 44.89 4.200 2.633 44.89 4.200 2.633 44.89 4.200 2.772 45.09 4.200 2.772 45.09 4.200 2.772 45.09 4.200 3.049 45.59 4.200 3.049 45.59 4.200 3.664 45.59 4.200 3.742 45.69 4.200 3.742 45.69 4.200 3.742 45.89 4.200 4.158 46.09 6.534 4.793 46.19 6.684 5.454 46.69 7.436 8.984 46.69 7.436 8.984 46.69 7.736 10.501 46.99 7.886 11.282 47.09 8.037 12.078 47.19 8.187 12.890 47.29 8.338 17.171 47.39 8.487 14.557 47.49 8.638 15.413 47.59 8.788 16.285 47.69 8.938 17.171						
43.89 4.200 1.247 48.99 $10,566$ $29,899$ 43.99 $4,200$ $1,525$ 44.19 $4,200$ $1,663$ 44.29 $4,200$ $1,603$ 44.39 $4,200$ $1,940$ 44.39 $4,200$ $2,079$ 44.59 $4,200$ $2,218$ 44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,772$ 45.99 $4,200$ $2,772$ 45.99 $4,200$ $2,772$ 45.99 $4,200$ $2,772$ 45.99 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $4,019$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 46.19 $6,684$ $5,454$ 46.69 $7,356$ $6,821$ 46.69 $7,366$ $9,735$ 46.89 $7,736$ $10,501$ 46.89 $7,736$ $10,501$ 47.99 $8,837$ $12,078$ 47.99 $8,838$ $15,413$ 47.99 $8,838$ $15,413$ 47.59 $8,788$ $16,225$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ 1						
43.99 4.200 $1,386$ 44.09 4.200 $1,525$ 44.19 4.200 $1,663$ 44.29 4.200 $1,940$ 44.39 4.200 2.079 44.59 4.200 2.386 44.79 4.200 2.366 44.79 4.200 2.772 45.99 4.200 2.772 45.09 4.200 2.911 45.19 4.200 3.049 45.29 4.200 3.642 45.39 4.200 3.642 45.59 4.200 3.642 45.59 4.200 3.642 45.69 4.200 3.642 45.69 4.200 3.642 45.99 4.200 3.645 45.99 4.200 3.642 45.99 4.200 3.642 45.99 4.200 3.642 45.99 4.200 3.642 45.99 4.200 3.642 45.99 4.200 3.642 45.99 4.200 4.019 45.99 4.200 4.019 45.99 4.200 4.019 46.99 6.835 6.821 46.99 7.356 7.527 46.59 7.285 8.248 46.69 7.366 1.202 47.09 8.037 12.078 47.19 8.187 12.890 47.29 8.338 17.171 47.59 8.938 17.2189 47.69 8.938 <						
44.09 4.200 $1,525$ 44.19 $4,200$ $1,602$ 44.39 $4,200$ $1,940$ 44.39 $4,200$ $2,079$ 44.59 $4,200$ $2,279$ 44.59 $4,200$ $2,366$ 44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.99 $4,200$ $4,158$ 46.19 $6,634$ $4,793$ 46.19 $6,634$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,985$ $6,821$ 46.49 $7,736$ $10,501$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $9,7351$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,388$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$				10.00	,	_0,000
44.19 $4,200$ $1,663$ 44.29 $4,200$ $1,940$ 44.49 $4,200$ $2,079$ 44.59 $4,200$ $2,218$ 44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,326$ 45.49 $4,200$ $3,326$ 45.59 $4,200$ $3,742$ 45.69 $4,200$ $3,742$ 45.99 $4,200$ $3,742$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,885$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.69 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
44.29 $4,200$ $1,802$ 44.39 $4,200$ $1,940$ 44.49 $4,200$ $2,079$ 44.59 $4,200$ $2,218$ 44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,266$ 45.49 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $3,742$ 45.79 $4,200$ $4,158$ 46.19 $6,684$ $5,454$ 46.9 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
44.39 $4,200$ $1,940$ 44.49 $4,200$ $2,079$ 44.59 $4,200$ $2,356$ 44.69 $4,200$ $2,356$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,672$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,604$ 45.49 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
44.49 $4,200$ $2,079$ 44.59 $4,200$ $2,218$ 44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,266$ 45.49 $4,200$ $3,266$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,604$ 45.89 $4,200$ $4,019$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 46.39 $6,985$ $6,821$ 46.19 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,366$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,089$						
44.59 $4,200$ $2,218$ 44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,266$ 45.49 $4,200$ $3,326$ 45.59 $4,200$ $3,664$ 45.59 $4,200$ $3,664$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.69 $7,336$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
44.69 $4,200$ $2,356$ 44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,664$ 45.69 $4,200$ $3,664$ 45.69 $4,200$ $3,664$ 45.69 $4,200$ $3,664$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.69 $7,285$ $8,248$ 46.69 $7,736$ $10,501$ 46.99 $7,386$ $1,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,089$						
44.79 $4,200$ $2,495$ 44.89 $4,200$ $2,772$ 45.09 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,326$ 45.49 $4,200$ $3,465$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,664$ 45.89 $4,200$ $3,742$ 45.79 $4,200$ $3,645$ 45.89 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
44.89 $4,200$ $2,633$ 44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,326$ 45.49 $4,200$ $3,465$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,604$ 45.89 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.69 $7,436$ $8,984$ 46.69 $7,736$ $10,501$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $3,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
44.99 $4,200$ $2,772$ 45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,326$ 45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,465$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 46.99 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.99 $7,866$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
45.09 $4,200$ $2,911$ 45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,326$ 45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.69 $4,200$ $3,604$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
45.19 $4,200$ $3,049$ 45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
45.29 $4,200$ $3,188$ 45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,465$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.69 $7,736$ $10,501$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
45.39 $4,200$ $3,326$ 45.49 $4,200$ $3,604$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.69 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,736$ $10,501$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.69 $8,938$ $17,171$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.89 $9,239$ $18,989$						
45.49 $4,200$ $3,465$ 45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
45.59 $4,200$ $3,604$ 45.69 $4,200$ $3,742$ 45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.69 $8,938$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
45.79 $4,200$ $3,881$ 45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
45.89 $4,200$ $4,019$ 45.99 $4,200$ $4,158$ 46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
46.09 $6,534$ $4,793$ 46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.19 $6,684$ $5,454$ 46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.29 $6,835$ $6,130$ 46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.39 $6,985$ $6,821$ 46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.49 $7,135$ $7,527$ 46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.59 $7,285$ $8,248$ 46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
46.69 $7,436$ $8,984$ 46.79 $7,586$ $9,735$ 46.89 $7,736$ $10,501$ 46.99 $7,886$ $11,282$ 47.09 $8,037$ $12,078$ 47.19 $8,187$ $12,890$ 47.29 $8,337$ $13,716$ 47.39 $8,487$ $14,557$ 47.49 $8,638$ $15,413$ 47.59 $8,788$ $16,285$ 47.69 $8,938$ $17,171$ 47.79 $9,088$ $18,072$ 47.89 $9,239$ $18,989$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
46.897,73610,50146.997,88611,28247.098,03712,07847.198,18712,89047.298,33713,71647.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
46.997,88611,28247.098,03712,07847.198,18712,89047.298,33713,71647.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.098,03712,07847.198,18712,89047.298,33713,71647.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.198,18712,89047.298,33713,71647.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.298,33713,71647.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.398,48714,55747.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.498,63815,41347.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.598,78816,28547.698,93817,17147.799,08818,07247.899,23918,989						
47.698,93817,17147.799,08818,07247.899,23918,989						
47.799,08818,07247.899,23918,989						
47.89 9,239 18,989						
47.99 9,389 19,920						
	47.99	9,389	19,920			
			l			

Pro-Hydro23099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 64

Summary for Pond 14P: DIV-03

Inflow Area =		42,514 sf	, 58.56% Impervious,	Inflow Depth = 1.64"	for 1-year event		
Inflow	=	1.84 cfs @	12.09 hrs, Volume=	5,816 cf			
Outflow	=	1.84 cfs @	12.09 hrs, Volume=	5,816 cf, Atter	n= 0%, Lag= 0.0 min		
Primary	=	1.17 cfs @	12.09 hrs, Volume=	5,506 cf			
Routed	Routed to Pond 10P : Bio 1						
Secondary	=	0.67 cfs @	12.09 hrs, Volume=	310 cf			
Routed	Routed to Link 5L : DP 1.4 - Silver Creek East Branch						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 44.96' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	44.10'	9.0" Round Culvert L= 10.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 44.10' / 44.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.44 sf
#2 #3	Device 3 Secondary	44.85' 44.10'	6.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s) 15.0" Round Culvert L= 55.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 44.10' / 42.25' S= 0.0336 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.16 cfs @ 12.09 hrs HW=44.95' TW=44.45' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.16 cfs @ 2.62 fps)

Secondary OutFlow Max=0.65 cfs @ 12.09 hrs HW=44.95' TW=0.00' (Dynamic Tailwater) -3=Culvert (Passes 0.65 cfs of 2.22 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 0.65 cfs @ 1.05 fps)

Prepared by Pare Corporation	
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC	

Stage-Discharge for Pond 14P: DIV-03

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
44.10	0.00	0.00	0.00	45.12	4.08	1.35	2.73
44.12	0.00	0.00	0.00	45.14	4.36	1.37	2.99
44.14	0.00	0.00	0.00	45.16	4.46	1.39	3.07
44.16	0.01	0.01	0.00	45.18	4.56	1.41	3.15
44.18	0.02	0.02	0.00	45.20	4.65	1.43	3.22
44.20	0.03	0.03	0.00	45.22	4.75	1.45	3.30
44.22	0.04	0.04	0.00	45.24	4.84	1.47	3.37
44.24	0.06	0.06	0.00	45.26	4.93	1.49	3.44
44.26	0.07	0.07	0.00	45.28	5.01	1.51	3.50
44.28	0.09	0.09	0.00	45.30	5.09	1.53	3.56
44.30	0.11	0.11	0.00	45.32	5.16	1.54	3.62
44.32	0.13	0.13	0.00	45.34	5.23	1.56	3.67
44.34	0.15	0.15	0.00				
44.36	0.18	0.18	0.00				
44.38	0.20	0.20	0.00				
44.40	0.23	0.23	0.00				
44.42	0.26	0.26	0.00				
44.44	0.29	0.29	0.00				
44.46	0.31	0.31	0.00				
44.48	0.35	0.35	0.00				
44.50	0.38	0.38	0.00				
44.52	0.41	0.41	0.00				
44.54	0.44	0.44	0.00				
44.56	0.48	0.48	0.00				
44.58	0.51	0.51	0.00				
44.60	0.55	0.55	0.00				
44.62	0.58	0.58	0.00				
44.64	0.62	0.62	0.00				
44.66	0.66	0.66	0.00				
44.68	0.69	0.69	0.00				
44.70	0.73	0.73	0.00				
44.72	0.77	0.77	0.00				
44.74	0.81	0.81	0.00				
44.76	0.85	0.85	0.00				
44.78	0.88	0.88	0.00				
44.80	0.92	0.92	0.00				
44.82	0.96	0.96	0.00				
44.84	1.00	1.00	0.00				
44.86 44.88	1.06 1.17	1.04 1.07	0.02 0.10				
44.00 44.90	1.31	1.07	0.10				
44.90 44.92	1.48	1.09	0.22				
44.92	1.67	1.12	0.53				
44.96	1.88	1.13	0.55				
44.90	2.11	1.17	0.92				
45.00	2.35	1.13	1.13				
45.02	2.61	1.24	1.13				
45.04	2.88	1.24	1.61				
45.06	3.16	1.28	1.87				
45.08	3.45	1.31	2.15				
45.10	3.76	1.33	2.43				
			-				

Prepared by Pare Corporatio	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions LL

Stage-Area-Storage for Pond 14P: DIV-03

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
44.10	0	44.61	0	45.12	0
44.11	0	44.62	0	45.13	0
44.12	0	44.63	0	45.14	0
44.13	0	44.64	0	45.15	0
44.14	0	44.65	0	45.16	0
44.15	0	44.66	0	45.17	0
44.16	0	44.67	0	45.18	0
44.17	0	44.68	0	45.19	0
44.18	0	44.69	0	45.20	0
44.19	0	44.70	0	45.21	0
44.20	0	44.71	0	45.22	0
44.21	0	44.72	0	45.23	0
44.22	0	44.73	0	45.24	0
44.23	0	44.74	0	45.25	0
44.24	0	44.75	0	45.26	0
44.25	0	44.76	0	45.27	0
44.26	Ő	44.77	0 0	45.28	0 0
44.27	Ő	44.78	0 0	45.29	Ő
44.28	0 0	44.79	0	45.30	0 0
44.29	0 0	44.80	ů 0	45.31	0 0
44.30	0 0	44.81	0	45.32	0
44.31	0	44.82	0	45.33	0
44.32	0	44.83	0	45.34	0
44.33	0	44.84	0	45.35	0
44.34	0	44.85	0	40.00	0
44.35	0	44.86	0		
44.35	0	44.80	0		
44.30	0	44.88	0		
44.37	0	44.80	0		
44.39	0	44.90	0		
44.40	0	44.91	0		
44.41	0	44.92	0		
44.42	0	44.93	0		
44.43	0	44.94	0		
44.44	0	44.95	0		
44.45	0	44.96	0		
44.46	0	44.97	0		
44.47	0	44.98	0		
44.48	0	44.99	0		
44.49	0	45.00	0		
44.50	0	45.01	0		
44.51	0	45.02	0		
44.52	0	45.03	0		
44.53	0	45.04	0		
44.54	0	45.05	0		
44.55	0	45.06	0		
44.56	0	45.07	0		
44.57	0	45.08	0		
44.58	0	45.09	0		
44.59	0	45.10	0		
44.60	0	45.11	0		
		I		I	

Summary for Pond 15P: Detention Basin 1

Inflow Area =	528,030 sf, 24.32% Impervious,	Inflow Depth = 0.85" for 1-year event
Inflow =	8.84 cfs @ 12.23 hrs, Volume=	37,293 cf
Outflow =	2.04 cfs @ 12.72 hrs, Volume=	37,003 cf, Atten= 77%, Lag= 29.0 min
Primary =	2.04 cfs @ 12.72 hrs, Volume=	37,003 cf
Routed to Link	6L : DP 2.1 - West Wetland	
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Routed to Link	6L : DP 2.1 - West Wetland	
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Routed to Link	6L : DP 2.1 - West Wetland	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 45.01' @ 12.72 hrs Surf.Area= 14,294 sf Storage= 13,290 cf

Plug-Flow detention time= 220.1 min calculated for 37,003 cf (99% of inflow) Center-of-Mass det. time= 215.7 min (1,103.3 - 887.6)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	44.00'	89,71	12 cf Custom	Stage Data (Pris	matic) Listed below (Recalc)
Elevatio		ırf.Area	Inc.Store	Cum.Store	
			(cubic-feet)	(cubic-feet)	
(fee	1	(sq-ft)	1 1		
44.0		11,920	0	0	
45.0		14,261	13,091	13,091	
46.0		16,659	15,460	28,551	
47.0		19,113	17,886	46,437	
48.0		21,623	20,368	66,805	
49.0	00	24,191	22,907	89,712	
Davias	Douting	Invert	Outlet Devices		
Device	Routing				
#1	Primary	44.00'	24.0" Round		
					neadwall, Ke= 0.900
					.40' S= 0.0400 '/' Cc= 0.900
					& connections, Flow Area= 3.14 sf
#2	Device 1	44.00'			.600 Limited to weir flow at low heads
#3	Device 1	44.55'			ngular Weir 2 End Contraction(s)
#4	Device 1	47.30'			ngular Weir 2 End Contraction(s)
#5	Tertiary	48.10'			angular Weir 2 End Contraction(s)
#6	Secondary	45.10'	24.0" Round		
					headwall, Ke= 0.900
					.70' S= 0.0066 '/' Cc= 0.900
					& connections, Flow Area= 3.14 sf
#7	Device 6	47.15'	6.0' long Shar	p-Crested Recta	ngular Weir 2 End Contraction(s)

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software So	olutions LLC Page 68

Primary OutFlow Max=2.04 cfs @ 12.72 hrs HW=45.01' TW=0.00' (Dynamic Tailwater) -**1=Culvert** (Passes 2.04 cfs of 4.32 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.59 cfs @ 4.32 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.45 cfs @ 2.23 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.00' TW=0.00' (Dynamic Tailwater) -6=Culvert (Controls 0.00 cfs) -7=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.00' TW=0.00' (Dynamic Tailwater) **5=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Stage-Discharge for Pond 15P: Detention Basin 1

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)	Tertiary (cfs)
44.00	0.00	0.00	0.00	0.00
44.00	0.03	0.00	0.00	0.00
44.20	0.00	0.00	0.00	0.00
44.30	0.20	0.10	0.00	0.00
44.40	0.20	0.20	0.00	0.00
44.50	0.35	0.35	0.00	0.00
44.60	0.47	0.47	0.00	0.00
44.70	0.74	0.74	0.00	0.00
44.80	1.10	1.10	0.00	0.00
44.90	1.51	1.51	0.00	0.00
45.00	1.98	1.98	0.00	0.00
45.10	2.47	2.47	0.00	0.00
45.20	3.00	3.00	0.00	0.00
45.30	3.55	3.55	0.00	0.00
45.40	4.12	4.12	0.00	0.00
45.50	4.71	4.71	0.00	0.00
45.60	5.31	5.31	0.00	0.00
45.70	5.92	5.92	0.00	0.00
45.80	6.54	6.54	0.00	0.00
45.90	7.16	7.16	0.00	0.00
46.00	7.79	7.79	0.00	0.00
46.10	8.41	8.41	0.00	0.00
46.20	9.04	9.04	0.00	0.00
46.30	9.66	9.66	0.00	0.00
46.40	10.27	10.27	0.00	0.00
46.50	10.88	10.88	0.00	0.00
46.60	11.48 12.07	11.48	0.00	0.00
46.70 46.80	12.07	12.07 12.65	0.00 0.00	0.00 0.00
46.90	13.21	13.21	0.00	0.00
40.90	13.76	13.21	0.00	0.00
47.10	14.30	14.30	0.00	0.00
47.20	15.04	14.82	0.22	0.00
47.30	16.46	15.32	1.13	0.00
47.40	18.91	16.47	2.43	0.00
47.50	22.17	18.16	4.02	0.00
47.60	25.09	19.26	5.83	0.00
47.70	27.48	19.62	7.86	0.00
47.80	30.04	19.98	10.06	0.00
47.90	32.76	20.34	12.42	0.00
48.00	35.62	20.68	14.94	0.00
48.10	37.92	21.03	16.89	0.00
48.20	39.70	21.36	17.31	1.03
48.30	42.32	21.69	17.71	2.91
48.40	45.47	22.02	18.11	5.34
48.50	49.05	22.34	18.50	8.21
48.60	52.99	22.66	18.88	11.45
48.70	57.24	22.97	19.26	15.02
48.80 48.90	61.79	23.28	19.62	18.88
48.90 49.00	66.59 71.64	23.58 23.88	19.98 20.34	23.02 27.42
49.00	/ 1.04	23.00	20.34	21.42

Prepared by Pare Corporation	
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions	s

Stage-Area-Storage for Pond 15P: Detention Basin 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
44.00	11,920	0	46.55	18,009	38,084
44.05	12,037	599	46.60	18,131	38,988
44.10	12,154	1,204	46.65	18,254	39,897
44.15	12,271	1,814	46.70	18,377	40,813
44.20	12,388	2,431	46.75	18,500	41,735
44.25	12,505	3,053	46.80	18,622	42,663
44.30	12,622	3,681	46.85	18,745	43,597
44.35	12,739	4,315	46.90	18,868	44,537
44.40	12,856	4,955	46.95	18,990	45,484
44.45	12,973	5,601	47.00	19,113	46,437
44.50	13,091	6,253	47.05	19,238	47,395
44.55	13,208	6,910	47.10	19,364	48,360
44.60	13,325	7,573	47.15	19,489	49,332
44.65	13,442	8,243	47.20	19,615	50,309
44.70	13,559	8,918	47.25	19,741	51,293
44.75	13,676	9,598	47.30	19,866	52,283
44.80	13,793	10,285	47.35	19,992	53,280
44.85 44.90	13,910	10,978	47.40	20,117	54,282 55,291
	14,027 14,144	11,676	47.45	20,243	
44.95 45.00	14,144	12,380 13,091	47.50 47.55	20,368 20,493	56,307 57,328
45.00	14,201	13,807	47.60	20,493	58,356
45.10	14,501	14,529	47.65	20,019	59,390
45.15	14,621	15,257	47.00	20,744	60,431
45.20	14,741	15,991	47.75	20,996	61,477
45.25	14,861	16,731	47.80	21,121	62,530
45.30	14,980	17,477	47.85	21,247	63,589
45.35	15,100	18,229	47.90	21,372	64,655
45.40	15,220	18,987	47.95	21,498	65,726
45.45	15,340	19,751	48.00	21,623	66,805
45.50	15,460	20,521	48.05	21,751	67,889
45.55	15,580	21,297	48.10	21,880	68,980
45.60	15,700	22,079	48.15	22,008	70,077
45.65	15,820	22,867	48.20	22,137	71,180
45.70	15,940	23,661	48.25	22,265	72,291
45.75	16,060	24,461	48.30	22,393	73,407
45.80	16,179	25,267	48.35	22,522	74,530
45.85	16,299	26,079	48.40	22,650	75,659
45.90	16,419	26,897	48.45	22,779	76,795
45.95	16,539	27,721	48.50	22,907	77,937
46.00	16,659	28,551	48.55	23,035	79,086
46.05	16,782	29,387	48.60	23,164	80,241
46.10	16,904	30,229	48.65	23,292	81,402
46.15	17,027	31,077	48.70	23,421	82,570
46.20	17,150	31,931	48.75	23,549	83,744
46.25	17,273	32,792	48.80	23,677	84,925
46.30	17,395	33,659	48.85	23,806	86,112
46.35	17,518	34,531	48.90	23,934	87,305
46.40	17,641	35,410	48.95	24,063	88,505
46.45	17,763	36,296	49.00	24,191	89,712
46.50	17,886	37,187			
			I		

Summary for Pond 17P: Track and Field- stone base

Inflow Area =	90,671 sf,100.00% Impervious,	Inflow Depth = 2.57" for 1-year event		
Inflow =	5.50 cfs @ 12.09 hrs, Volume=	19,412 cf		
Outflow =	3.62 cfs @ 12.18 hrs, Volume=	19,412 cf, Atten= 34%, Lag= 5.9 min		
Discarded =	0.59 cfs @ 12.18 hrs, Volume=	13,451 cf		
Primary =	3.02 cfs @ 12.18 hrs, Volume=	5,962 cf		
Routed to Pond 35P : Track and Field-manifold				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 50.60' @ 12.18 hrs Surf.Area= 90,671 sf Storage= 3,057 cf

Plug-Flow detention time= 17.3 min calculated for 19,399 cf (100% of inflow) Center-of-Mass det. time= 17.4 min (776.7 - 759.3)

Volume	Invert	Avail.Stor	age	Storage	e Description		
#1	50.50'	37,27	1 cf				
		07	4.5			97 cf Embedded = 112,942 cf x 33.0% Voids	
#2	50.52'	27	4 cf	12.0" V L= 95.2		pse 1" flat drains x 44 Inside #1	
						Vall Thickness = 274 cf	
		27.54	5 of				
		57,54	5 01	TOTAL A	vailable Storag	je	
Elevatio	on Su	urf.Area	Inc	.Store	Cum.Stor	e	
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-fee	t)	
50.5	50	90,671		0		0	
51.5	58	90,671	g	97,925	97,92	5	
51.5	59	90,671		907	98,83	1	
51.7	75	90,671	1	4,507	113,33	9	
Device	Routing	Invert	Outle	et Devic	es		
#1	Discarded	50.50'	0.27	0 in/hr E	Exfiltration over	er Surface area	
						er Elevation = 48.40' Phase-In= 0.02'	
#2	Primary	50.52'	-			ice/Grate X 44.00 C= 0.600	
			Limit	ted to we	eir flow at low h	neads	
		Max=0.59 cfs Controls 0.59 c	<u> </u>	2.18 hrs	HW=50.60'	(Free Discharge)	

Primary OutFlow Max=2.99 cfs @ 12.18 hrs HW=50.60' TW=49.30' (Dynamic Tailwater) ←2=Orifice/Grate (Orifice Controls 2.99 cfs @ 0.89 fps)

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 17P: Track and Field- stone base

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
50.50	0.00	0.00	0.00	51.52	18.12	0.84	17.28
50.52	0.57	0.57	0.00	51.54	18.31	0.85	17.46
50.54	0.98	0.58	0.40	51.56	18.49	0.85	17.64
50.56	1.71	0.58	1.13	51.58	18.67	0.86	17.81
50.58	2.66	0.59	2.08	51.60	18.85	0.86	17.99
50.60	3.79	0.59	3.20	51.62	19.03	0.87	18.16
50.62	4.76	0.60	4.16	51.64	19.21	0.87	18.33
50.64	5.48	0.60	4.88	51.66	19.38	0.88	18.50
50.66	6.10	0.61	5.49	51.68	19.55	0.89	18.67 18.84
50.68 50.70	6.66 7.16	0.62 0.62	6.04 6.54	51.70 51.72	19.73 19.90	0.89 0.90	10.04
50.70	7.63	0.62	7.00	51.72	20.06	0.90 0.90	19.00
50.72	8.07	0.63	7.00	51.74	20.00	0.30	13.10
50.76	8.48	0.64	7.85				
50.78	8.88	0.64	8.24				
50.80	9.26	0.65	8.61				
50.82	9.62	0.65	8.96				
50.84	9.96	0.66	9.31				
50.86	10.30	0.66	9.64				
50.88	10.62	0.67	9.95				
50.90	10.94	0.67	10.26				
50.92	11.24	0.68	10.56				
50.94	11.54	0.69	10.85				
50.96	11.83	0.69	11.14				
50.98	12.11	0.70	11.41				
51.00	12.39	0.70	11.68				
51.02 51.04	12.66 12.92	0.71 0.71	11.95 12.21				
51.04	12.92	0.71	12.21				
51.08	13.43	0.72	12.71				
51.10	13.68	0.72	12.95				
51.12	13.92	0.73	13.19				
51.14	14.16	0.74	13.42				
51.16	14.40	0.74	13.65				
51.18	14.63	0.75	13.88				
51.20	14.86	0.76	14.10				
51.22	15.08	0.76	14.32				
51.24	15.30	0.77	14.54				
51.26	15.52	0.77	14.75				
51.28	15.74	0.78	14.96				
51.30 51.32	15.95 16.16	0.78 0.79	15.17 15.37				
51.32	16.37	0.79	15.57				
51.36	16.57	0.80	15.77				
51.38	16.77	0.80	15.97				
51.40	16.97	0.81	16.16				
51.42	17.17	0.81	16.36				
51.44	17.36	0.82	16.54				
51.46	17.56	0.83	16.73				
51.48	17.75	0.83	16.92				
51.50	17.94	0.84	17.10				
				l			

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 17P: Track and Field- stone base

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
50.50	90,671	0	51.52	90,671	30,663
50.52	90,671	587	51.54	90,671	31,262
50.54	90,671	1,212	51.56	90,671	31,860
50.56	90,671	1,862	51.58	90,671	32,458
50.58	90,671	2,514	51.60	90,671	33,057
50.60	90,671	3,147	51.62	90,671	33,655
50.62	90,671	3,734	51.64	90,671	34,254
50.64	90,671	4,332	51.66	90,671	34,852
50.66	90,671	4,931	51.68	90,671	35,451
50.68	90,671	5,529	51.70	90,671	36,049
50.70	90,671	6,128	51.72	90,671	36,647
50.72	90,671	6,726	51.74	90,671	37,246
50.74 50.76	90,671 90,671	7,324 7,923			
50.78	90,671	8,521			
50.80	90,671	9,120			
50.82	90,671	9,718			
50.84	90,671	10,317			
50.86	90,671	10,915			
50.88	90,671	11,513			
50.90	90,671	12,112			
50.92	90,671	12,710			
50.94	90,671	13,309			
50.96	90,671	13,907			
50.98	90,671	14,506			
51.00	90,671	15,104			
51.02	90,671	15,702			
51.04	90,671	16,301			
51.06	90,671	16,899			
51.08	90,671	17,498			
51.10	90,671	18,096			
51.12 51.14	90,671 90,671	18,695 19,293			
51.14	90,671	19,293			
51.18	90,671	20,490			
51.20	90,671	21,088			
51.22	90,671	21,687			
51.24	90,671	22,285			
51.26	90,671	22,884			
51.28	90,671	23,482			
51.30	90,671	24,080			
51.32	90,671	24,679			
51.34	90,671	25,277			
51.36	90,671	25,876			
51.38	90,671	26,474			
51.40	90,671	27,073			
51.42	90,671	27,671			
51.44	90,671	28,269			
51.46 51.48	90,671 90,671	28,868			
51.40	90,671	29,466 30,065			
51.50	30,071	50,005			
			I		

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 74

Summary for Pond 18P: Sand Filter 2

Inflow Area = 112,035 sf, 51.38% Impervious, Inflow Depth = 1.19" for 1-year event 2.59 cfs @ 12.10 hrs, Volume= Inflow = 11,072 cf Outflow = 0.38 cfs @ 13.06 hrs, Volume= 7,284 cf, Atten= 85%, Lag= 58.0 min Discarded = 0.01 cfs @ 9.35 hrs, Volume= 3,117 cf Primary = 0.37 cfs @ 13.06 hrs, Volume= 4,167 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 5L : DP 1.4 - Silver Creek East Branch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 55.62' @ 13.06 hrs Surf.Area= 5,784 sf Storage= 6,215 cf

Plug-Flow detention time= 860.6 min calculated for 7,284 cf (66% of inflow) Center-of-Mass det. time= 755.3 min (1,588.3 - 833.0)

Volume	Invert	Avail.	.Storage	Storage Descript	tion	
#1	51.84'	1	5,389 cf	Custom Stage D	Data (Prismatic) Lis	sted below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
51.8	34	2,171	0.0	0	0	
51.8	35	2,171	33.0	7	7	
54.8	34	2,171	33.0	2,142	2,149	
54.8	35	4,561	100.0	34	2,183	
55.0	00	4,959	100.0	714	2,897	
56.0	00	6,294	100.0	5,627	8,523	
57.0	00	7,438	100.0	6,866	15,389	
Device	Routing	Inv	vert Outl	et Devices		
#1	Discarded	51.8				ea from 51.83' - 54.84'
#2	Primary	55.0	60' 2.0''	xcluded Surface area = 0 sf Phase-In= 0.02' 0" x 2.0" Horiz. Orifice/Grate X 12.00 columns X 6 rows C= 0.600 mited to weir flow at low heads		
#3	Secondary	56.0	00' 10.0	' long Sharp-Cres	sted Rectangular \	Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 9.35 hrs HW=51.89' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.37 cfs @ 13.06 hrs HW=55.62' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Weir Controls 0.37 cfs @ 0.43 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=51.84' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Discharge for Pond 18P: Sand Filter 2

Elevation	Discharge	Discarded	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(cfs)
51.84	0.00	0.00	0.00	0.00
52.04	0.01	0.01	0.00	0.00
52.24	0.01	0.01	0.00	0.00
52.44	0.01	0.01	0.00	0.00
52.64	0.01	0.01	0.00	0.00
52.84	0.01	0.01	0.00	0.00
53.04	0.01	0.01	0.00	0.00
53.24	0.01	0.01	0.00	0.00
53.44	0.01	0.01	0.00	0.00
53.64	0.01	0.01	0.00	0.00
53.84	0.01	0.01	0.00	0.00
54.04	0.01	0.01	0.00	0.00
54.24	0.01	0.01	0.00	0.00
54.44	0.01	0.01	0.00	0.00
54.64	0.01	0.01	0.00	0.00
54.84	0.01	0.01	0.00	0.00
55.04	0.01	0.01	0.00	0.00
55.24	0.01	0.01	0.00	0.00
55.44	0.01	0.01	0.00	0.00
55.64	1.27	0.01	1.26	0.00
55.84	4.73	0.01	4.72	0.00
56.04	6.66	0.01	6.39	0.26
56.24	11.54	0.01	7.70	3.83
56.44	18.30	0.01	8.83	9.46
56.64	26.36	0.01	9.82	16.53
56.84	35.49	0.01	10.72	24.75

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 18P: Sand Filter 2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
51.84	2,171	0	56.94	7,369	14,945
51.94	2,171	72		,	,• .•
52.04	2,171	143			
52.14	2,171	215			
52.24	2,171	287			
52.34	2,171	358			
52.44	2,171	430			
52.54	2,171	502			
52.64	2,171	573			
52.74	2,171	645			
52.84	2,171	716			
52.94	2,171	788			
53.04	2,171	860			
53.14	2,171	931			
53.24	2,171	1,003			
53.34	2,171	1,075			
53.44	2,171	1,146			
53.54	2,171	1,218			
53.64	2,171	1,290			
53.74	2,171	1,361			
53.84	2,171	1,433			
53.94	2,171	1,505			
54.04	2,171	1,576			
54.14	2,171	1,648			
54.24	2,171	1,719			
54.34	2,171	1,791			
54.44 54.54	2,171	1,863			
54.54 54.64	2,171 2,171	1,934 2,006			
54.74	2,171	2,000			
54.84	2,171	2,078			
54.94	4,800	2,604			
55.04	5,012	3,096			
55.14	5,146	3,604			
55.24	5,279	4,126			
55.34	5,413	4,660			
55.44	5,546	5,208			
55.54	5,680	5,769			
55.64	5,813	6,344			
55.74	5,947	6,932			
55.84	6,080	7,533			
55.94	6,214	8,148			
56.04	6,340	8,776			
56.14	6,454	9,416			
56.24	6,569	10,067			
56.34	6,683	10,730			
56.44	6,797	11,404			
56.54	6,912	12,089			
56.64	7,026	12,786			
56.74	7,141	13,494			
56.84	7,255	14,214			
			l		

Pro-Hydro23099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 77

Summary for Pond 19P: Sand Filter 3

Inflow Area = 22,284 sf, 62.39% Impervious, Inflow Depth = 1.72" for 1-year event 1.01 cfs @ 12.09 hrs, Volume= Inflow = 3.194 cf 2,853 cf, Atten= 99%, Lag= 0.0 min Outflow = 0.01 cfs @ 10.20 hrs, Volume= Discarded = 0.01 cfs @ 10.20 hrs, Volume= 2,853 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Pond 3P : DIV-02 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 4L : DP 1.3 - Culvert 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 60.19' @ 23.03 hrs Surf.Area= 2,773 sf Storage= 2,500 cf

Plug-Flow detention time= 1,651.7 min calculated for 2,851 cf (89% of inflow) Center-of-Mass det. time= 1,601.8 min (2,418.3 - 816.5)

Volume	Invert	Avail.S	Storage	Storage Descrip	tion	
#1	56.99'	10	,312 cf	Custom Stage	Data (Prismatic) List	ted below (Recalc)
Elevatio	on Su	rf.Area V	/oids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
56.9	99	1,999	0.0	0	0	
57.0	00	1,999	33.0	7	7	
59.9	99	1,999	33.0	1,972	1,979	
60.0	00	2,449 1	00.0	22	2,001	
61.0	00	4,147 1	00.0	3,298	5,299	
62.0	00	5,878 1	00.0	5,013	10,312	
Device	Routing	Inve	rt Outl	et Devices		
#1	Discarded	56.99	9' 0.27	0 in/hr Exfiltratio	n over Surface area	a from 56.98' - 59.99'
			Excl	uded Surface are	a = 0 sf Phase-In=	0.02'
#2	Primary	60.7	5' 2.0"	x 2.0" Horiz. Orif	fice/Grate X 6.00 co	lumns X 6 rows C= 0.600
	-		Limi	ted to weir flow at	low heads	
#3	Secondary	61.10	0' 10.0	' long Sharp-Cre	sted Rectangular W	leir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 10.20 hrs HW=57.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=56.99' TW=56.15' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=56.99' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Discharge for Pond 19P: Sand Filter 3

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)	Secondary (cfs)
56.99	0.00	0.00	0.00	0.00
57.09	0.01	0.01	0.00	0.00
57.19	0.01	0.01	0.00	0.00
57.29	0.01	0.01	0.00	0.00
57.39	0.01	0.01	0.00	0.00
57.49	0.01	0.01	0.00	0.00
57.59	0.01	0.01	0.00	0.00
57.69	0.01	0.01	0.00	0.00
57.79	0.01	0.01	0.00	0.00
57.89	0.01	0.01	0.00	0.00
57.99	0.01	0.01	0.00	0.00
58.09 58.19	0.01 0.01	0.01 0.01	0.00 0.00	0.00 0.00
58.29	0.01	0.01	0.00	0.00
58.39	0.01	0.01	0.00	0.00
58.49	0.01	0.01	0.00	0.00
58.59	0.01	0.01	0.00	0.00
58.69	0.01	0.01	0.00	0.00
58.79	0.01	0.01	0.00	0.00
58.89	0.01	0.01	0.00	0.00
58.99	0.01	0.01	0.00	0.00
59.09	0.01	0.01	0.00	0.00
59.19	0.01	0.01	0.00	0.00
59.29	0.01	0.01	0.00	0.00
59.39	0.01	0.01	0.00	0.00
59.49	0.01	0.01	0.00	0.00
59.59 59.69	0.01 0.01	0.01 0.01	0.00 0.00	0.00 0.00
59.09	0.01	0.01	0.00	0.00
59.89	0.01	0.01	0.00	0.00
59.99	0.01	0.01	0.00	0.00
60.09	0.01	0.01	0.00	0.00
60.19	0.01	0.01	0.00	0.00
60.29	0.01	0.01	0.00	0.00
60.39	0.01	0.01	0.00	0.00
60.49	0.01	0.01	0.00	0.00
60.59	0.01	0.01	0.00	0.00
60.69	0.01	0.01	0.00	0.00
60.79	0.64	0.01	0.63	0.00
60.89 60.99	1.81 2.37	0.01 0.01	1.80 2.36	0.00 0.00
61.09	2.37	0.01	2.30	0.00
61.19	4.09	0.01	3.19	0.88
61.29	6.25	0.01	3.54	2.70
61.39	8.94	0.01	3.85	5.08
61.49	12.06	0.01	4.14	7.90
61.59	15.53	0.01	4.41	11.11
61.69	19.33	0.01	4.67	14.64
61.79	23.41	0.01	4.91	18.48
61.89	27.75	0.01	5.14	22.60
61.99	32.34	0.01	5.36	26.97

Prepared by Pare Corporatio	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions L

Stage-Area-Storage for Pond 19P: Sand Filter 3

	o (01		o (01
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
56.99	1,999	0	59.54	1,999	1,682
57.04	1,999	33	59.59	1,999	1,715
57.09	1,999	66	59.64	1,999	1,748
57.14	1,999	99	59.69	1,999	1,781
57.19	1,999	132	59.74	1,999	1,814
57.24	1,999	165	59.79	1,999	1,847
57.29	1,999	198	59.84	1,999	1,880
57.34	1,999	231	59.89	1,999	1,913
57.39	1,999	264	59.94	1,999	1,946
57.44	1,999	297	59.99	1,999	1,979
57.49	1,999	330	60.04	2,517	2,101
57.54	1,999	363	60.09	2,602	2,229
57.59	1,999	396	60.14	2,687	2,223
57.64	1,999	429	60.19	2,007	2,497
57.69	1,999	462	60.24	2,857	2,638
57.74	1,999	495	60.29	2,941	2,000
57.79	1,999	528	60.34	3,026	2,785
57.84	1,999	561	60.39	3,111	3,085
57.89		594	60.44		3,243
57.94	1,999 1,999	627	60.49	3,196 3,281	
			60.54		3,405 3,571
57.99	1,999	660		3,366	
58.04	1,999	693 700	60.59	3,451	3,742
58.09	1,999	726	60.64	3,536	3,916
58.14	1,999	759	60.69	3,621	4,095
58.19	1,999	792	60.74	3,706	4,278
58.24	1,999	825	60.79	3,790	4,466
58.29	1,999	858	60.84	3,875	4,657
58.34	1,999	891	60.89	3,960	4,853
58.39	1,999	924	60.94	4,045	5,053
58.44	1,999	957	60.99	4,130	5,258
58.49	1,999	990	61.04	4,216	5,467
58.54	1,999	1,022	61.09	4,303	5,679
58.59	1,999	1,055	61.14	4,389	5,897
58.64	1,999	1,088	61.19	4,476	6,118
58.69	1,999	1,121	61.24	4,562	6,344
58.74	1,999	1,154	61.29	4,649	6,575
58.79	1,999	1,187	61.34	4,736	6,809
58.84	1,999	1,220	61.39	4,822	7,048
58.89	1,999	1,253	61.44	4,909	7,291
58.94	1,999	1,286	61.49	4,995	7,539
58.99	1,999	1,319	61.54	5,082	7,791
59.04	1,999	1,352	61.59	5,168	8,047
59.09	1,999	1,385	61.64	5,255	8,308
59.14	1,999	1,418	61.69	5,341	8,573
59.19	1,999	1,451	61.74	5,428	8,842
59.24	1,999	1,484	61.79	5,514	9,116
59.29	1,999	1,517	61.84	5,601	9,393
59.34	1,999	1,550	61.89	5,688	9,676
59.39	1,999	1,583	61.94	5,774	9,962
59.44	1,999	1,616	61.99	5,861	10,253
59.49	1,999	1,649			

	23099.01 Proposed Conditions 1-year Storm
Pro-Hydro	Type III 24-hr 1-year Rainfall=2.80"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software S	olutions LLC Page 80

Summary for Pond 20P: Sand Filter 4

Inflow Area =	31,007 sf, 23.95% Impervious,	Inflow Depth = 1.29" for 1-year event
Inflow =	0.83 cfs @ 12.19 hrs, Volume=	3,326 cf
Outflow =	0.34 cfs @ 12.05 hrs, Volume=	3,326 cf, Atten= 59%, Lag= 0.0 min
Primary =	0.34 cfs @ 12.05 hrs, Volume=	3,326 cf
Routed to	Link 3L : DP 1.2 - Culvert 2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 59.87' @ 12.56 hrs Surf.Area= 1,767 sf Storage= 512 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 7.5 min (853.8 - 846.3)

Volume	Invert	: Avail.S	torage	Storage Descrip	otion		
#1	58.99'	3	395 cf	Custom Stage	Data (Prismatic) Lis	sted below (Recalc)	
Elevatio (fee 58.9 59.0 60.9 61.0 62.0	et) 99 00 99 00	(sq-ft) 1,767 1,767 1,767 1,767	oids (%) 0.0 33.0 33.0 00.0 00.0	Inc.Store (cubic-feet) 0 6 1,160 18 2,212	Cum.Store (cubic-feet) 0 6 1,166 1,184 3,395		
Device	Routing	Inve	_	et Devices	- ,		
#1	Primary	61.50				olumns X 6 rows C= 0.600	
#2 #3	Device 3 Primary	58.99 58.29	9' 8.27 5' 6.0'' L= 5 Inlet				

Primary OutFlow Max=0.34 cfs @ 12.05 hrs HW=59.03' TW=0.00' (Dynamic Tailwater) **1=Orifice/Grate** (Controls 0.00 cfs)

3=subdrain (Passes 0.34 cfs of 0.54 cfs potential flow) **2=Exfiltration** (Exfiltration Controls 0.34 cfs)

Prepared by Pare Corporation	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions L

Stage-Discharge for Pond 20P: Sand Filter 4

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
58.99	0.00	60.01	0.34	61.03	0.34
59.01	0.34	60.03	0.34	61.05	0.35
59.03	0.34	60.05	0.34	61.07	0.35
59.05	0.34	60.07	0.34	61.09	0.35
59.07	0.34	60.09	0.34	61.11	0.36
59.09	0.34	60.11	0.34	61.13	0.36
59.11	0.34	60.13	0.34	61.15	0.36
59.13	0.34	60.15	0.34	61.17	0.37
59.15	0.34	60.17	0.34	61.19	0.37
59.17	0.34	60.19	0.34	61.21	0.37
59.19	0.34	60.21	0.34	61.23	0.38
59.21	0.34	60.23	0.34	61.25	0.38
59.23	0.34	60.25	0.34	61.27	0.38
59.25	0.34	60.27	0.34	61.29	0.39
59.27	0.34	60.29	0.34	61.31	0.39
59.29	0.34	60.31	0.34	61.33	0.39
59.31	0.34	60.33	0.34	61.35	0.40
59.33	0.34	60.35	0.34	61.37	0.40
59.35	0.34	60.37	0.34	61.39	0.40
59.37	0.34	60.39	0.34	61.41	0.41
59.39	0.34	60.41	0.34	61.43	0.41
59.41	0.34	60.43	0.34	61.45	0.41
59.43	0.34	60.45	0.34	61.47	0.42
59.45	0.34	60.47	0.34	61.49	0.42
59.47	0.34	60.49	0.34	61.51	0.50
59.49	0.34	60.51	0.34	61.53	0.84
59.51	0.34	60.53	0.34	61.55	1.31
59.53	0.34	60.55	0.34	61.57	1.71
59.55	0.34	60.57	0.34	61.59	1.88
59.57	0.34	60.59	0.34	61.61	2.04
59.59	0.34	60.61	0.34	61.63	2.18
59.61	0.34	60.63	0.34	61.65	2.31
59.63	0.34	60.65	0.34	61.67	2.44
59.65	0.34	60.67	0.34	61.69	2.55
59.67	0.34	60.69	0.34	61.71	2.67
59.69	0.34	60.71	0.34	61.73	2.77
59.71	0.34	60.73	0.34	61.75	2.87
59.73	0.34	60.75	0.34	61.77	2.97
59.75	0.34	60.77	0.34	61.79	3.07
59.77	0.34	60.79	0.34	61.81	3.16
59.79	0.34	60.81	0.34	61.83	3.25
59.81	0.34	60.83	0.34	61.85	3.33
59.83	0.34	60.85	0.34	61.87	3.42
59.85	0.34	60.87	0.34	61.89	3.50
59.87	0.34	60.89	0.34	61.91	3.58
59.89	0.34	60.91	0.34	61.93	3.65
59.91	0.34	60.93	0.34	61.95	3.73
59.93	0.34	60.95	0.34	61.97	3.80
59.95	0.34	60.97	0.34	61.99	3.88
59.97	0.34	60.99	0.34		
59.99	0.34	61.01	0.34		
				I	

Prepared by Pare Corporation	'n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions I

Stage-Area-Storage for Pond 20P: Sand Filter 4

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
58.99	1,767	0	61.54	2,247	2,268
59.04	1,767	29	61.59	2,292	2,381
59.09	1,767	58	61.64	2,336	2,497
59.14	1,767	87	61.69	2,380	2,615
59.19	1,767	117	61.74	2,425	2,735
59.24	1,767	146	61.79	2,469	2,857
59.29	1,767	175	61.84	2,514	2,982
59.34	1,767	204	61.89	2,558	3,109
59.39	1,767	233	61.94	2,603	3,238
59.44	1,767	262	61.99	2,647	3,369
59.49	1,767	292			
59.54	1,767	321			
59.59	1,767	350			
59.64	1,767	379			
59.69	1,767	408			
59.74	1,767	437			
59.79	1,767	466			
59.84	1,767	496			
59.89	1,767	525			
59.94	1,767	554			
59.99	1,767	583			
60.04	1,767	612			
60.09	1,767	641			
60.14	1,767	671			
60.19	1,767	700			
60.24	1,767	729			
60.29	1,767	758			
60.34	1,767	787			
60.39	1,767	816			
60.44	1,767	846			
60.49	1,767	875			
60.54	1,767	904			
60.59	1,767	933			
60.64	1,767	962			
60.69	1,767	991			
60.74	1,767	1,020			
60.79	1,767	1,050			
60.84	1,767	1,079			
60.89	1,767	1,108			
60.94	1,767	1,137			
60.99	1,767	1,166			
61.04	1,803	1,255			
61.09	1,847	1,347			
61.14	1,891	1,440			
61.19	1,936	1,536			
61.24	1,980	1,634			
61.29	2,025	1,734			
61.34	2,020	1,836			
61.39	2,003	1,941			
61.44	2,158	2,047			
61.49	2,203	2,156			
01.40	2,200	2,100			
		· · · · ·			

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 83

Summary for Pond 23P: UGIS-1

Inflow Area =	151,857 sf,100.00% Impervious,	Inflow Depth = 0.93" for 1-year event
Inflow =	4.72 cfs @ 12.21 hrs, Volume=	11,744 cf
Outflow =	0.19 cfs @ 13.04 hrs, Volume=	11,744 cf, Atten= 96%, Lag= 50.0 min
Discarded =	0.07 cfs @ 13.04 hrs, Volume=	11,449 cf
Primary =	0.11 cfs @ 13.04 hrs, Volume=	296 cf
Routed to Link	6L : DP 2.1 - West Wetland	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 48.47' @ 13.04 hrs Surf.Area= 6,719 sf Storage= 10,125 cf

Plug-Flow detention time= 1,323.3 min calculated for 11,736 cf (100% of inflow) Center-of-Mass det. time= 1,324.1 min (2,066.1 - 742.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	46.30'	3,295 cf	66.58'W x 80.00'L x 3.21'H Field A
			17,090 cf Overall - 7,104 cf Embedded = 9,986 cf x 33.0% Voids
#2A	46.80'	7,104 cf	Cultec R-280HD x 165 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 15 rows
#3B	46.30'	893 cf	44.92'W x 31.00'L x 3.21'H Field B
			4,467 cf Overall - 1,761 cf Embedded = 2,707 cf x 33.0% Voids
#4B	46.80'	1,761 cf	Cultec R-280HD x 40 Inside #3
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 10 rows
		13,053 cf	Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	46.80'	24.0" Round Culvert
	-		L= 60.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.80' / 43.50' S= 0.0550 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf
#2	Primary	48.40'	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 1	49.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#4	Discarded	46.30'	0.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 43.30' Phase-In= 0.02'

Discarded OutFlow Max=0.07 cfs @ 13.04 hrs HW=48.47' (Free Discharge) **4=Exfiltration** (Controls 0.07 cfs)

Primary OutFlow Max=0.11 cfs @ 13.04 hrs HW=48.47' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 0.00 cfs of 9.71 cfs potential flow)

1-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

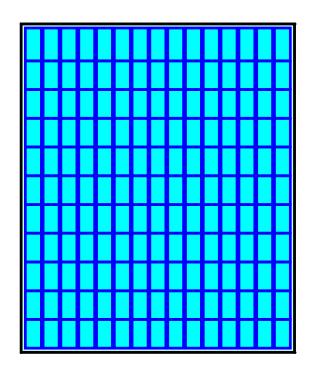
-2=Sharp-Crested Rectangular Weir (Weir Controls 0.11 cfs @ 0.85 fps)

Pond 23P: UGIS-1 - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 15 rows

47.0" Wide + 5.0" Spacing = 52.0" C-C Row Spacing


11 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 78.00' Row Length +12.0" End Stone x 2 = 80.00' Base Length 15 Rows x 47.0" Wide + 5.0" Spacing x 14 + 12.0" Side Stone x 2 = 66.58' Base Width 6.0" Stone Base + 26.5" Chamber Height + 6.0" Stone Cover = 3.21' Field Height

165 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 15 Rows = 7,103.9 cf Chamber Storage

17,089.7 cf Field - 7,103.9 cf Chambers = 9,985.8 cf Stone x 33.0% Voids = 3,295.3 cf Stone Storage

Chamber Storage + Stone Storage = 10,399.3 cf = 0.239 af Overall Storage Efficiency = 60.9% Overall System Size = 80.00' x 66.58' x 3.21'

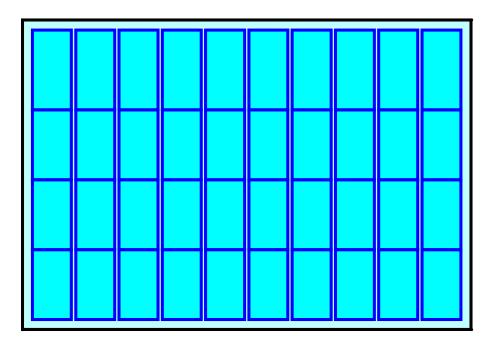
165 Chambers 633.0 cy Field 369.8 cy Stone

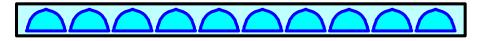
Pond 23P: UGIS-1 - Chamber Wizard Field B

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 10 rows

47.0" Wide + 5.0" Spacing = 52.0" C-C Row Spacing


4 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 29.00' Row Length +12.0" End Stone x 2 = 31.00' Base Length 10 Rows x 47.0" Wide + 5.0" Spacing x 9 + 12.0" Side Stone x 2 = 44.92' Base Width 6.0" Stone Base + 26.5" Chamber Height + 6.0" Stone Cover = 3.21' Field Height


40 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 10 Rows = 1,760.8 cf Chamber Storage

4,467.3 cf Field - 1,760.8 cf Chambers = 2,706.5 cf Stone x 33.0% Voids = 893.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,654.0 cf = 0.061 afOverall Storage Efficiency = 59.4%Overall System Size = $31.00' \times 44.92' \times 3.21'$

40 Chambers 165.5 cy Field 100.2 cy Stone

Pro-Hydro

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 23P: UGIS-1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
46.30	0.00	0.00	0.00	48.85	1.96	0.08	1.89
46.35	0.04	0.04	0.00	48.90	2.28	0.08	2.20
46.40	0.04	0.04	0.00	48.95	2.60	0.08	2.52
46.45	0.04	0.04	0.00	49.00	2.94	0.08	2.86
46.50	0.04	0.04	0.00	49.05	3.43	0.08	3.35
46.55	0.05 0.05	0.05	0.00	49.10	4.05	0.08	3.97 4.68
46.60 46.65	0.05	0.05	0.00 0.00	49.15 49.20	4.77 5.55	0.08 0.08	
46.05	0.05	0.05 0.05	0.00	49.20	6.39	0.08	5.46 6.30
46.70	0.05		0.00	49.25	7.28	0.08	7.20
46.80	0.05	0.05 0.05	0.00	49.30	8.23	0.08	8.14
46.85	0.05	0.05	0.00	49.35	0.23 9.21	0.08	9.14 9.13
46.85	0.05	0.05	0.00	49.40	9.21 10.24	0.09	10.16
46.90	0.05	0.05	0.00	49.43	10.24 11.31	0.09 0.09	11.22
40.95	0.05	0.05	0.00	49.50	11.31	0.09	11.22
47.00	0.05	0.05	0.00				
47.05	0.05	0.05	0.00				
47.10	0.05	0.05	0.00				
47.13	0.05	0.05	0.00				
47.20	0.05	0.05	0.00				
47.30	0.00	0.00	0.00				
47.35	0.00	0.00	0.00				
47.40	0.00	0.00	0.00				
47.40	0.00	0.06	0.00				
47.50	0.00	0.06	0.00				
47.55	0.06	0.06	0.00				
47.60	0.06	0.06	0.00				
47.65	0.06	0.06	0.00				
47.70	0.06	0.06	0.00				
47.75	0.06	0.06	0.00				
47.80	0.06	0.06	0.00				
47.85	0.06	0.06	0.00				
47.90	0.06	0.06	0.00				
47.95	0.07	0.07	0.00				
48.00	0.07	0.07	0.00				
48.05	0.07	0.07	0.00				
48.10	0.07	0.07	0.00				
48.15	0.07	0.07	0.00				
48.20	0.07	0.07	0.00				
48.25	0.07	0.07	0.00				
48.30	0.07	0.07	0.00				
48.35	0.07	0.07	0.00				
48.40	0.07	0.07	0.00				
48.45	0.14	0.07	0.07				
48.50	0.28	0.07	0.20				
48.55	0.45	0.07	0.37				
48.60	0.65	0.07	0.57				
48.65	0.87	0.07	0.80				
48.70	1.12	0.08	1.04				
48.75	1.38	0.08	1.31				
48.80	1.67	0.08	1.59				
				I			

Pro-Hydro

Prepared by Pare Corporation	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions L

Stage-Area-Storage for Pond 23P: UGIS-1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
46.30	6,719	0	48.85	6,719	11,560
46.35	6,719	111	48.90	6,719	11,693
46.40	6,719	222	48.95	6,719	11,814
46.45	6,719	333	49.00	6,719	11,926
46.50	6,719	443	49.05	6,719	12,037
46.55	6,719	554	49.10	6,719	12,148
46.60	6,719	665	49.15	6,719	12,259
46.65	6,719	776	49.20	6,719	12,370
46.70	6,719	887	49.25	6,719	12,480
46.75	6,719	998	49.30	6,719	12,591
46.80	6,719	1,109	49.35	6,719	12,702
46.85	6,719	1,410	49.40	6,719	12,813
46.90	6,719	1,708	49.45	6,719	12,924
46.95	6,719	2,004	49.50	6,719	13,035
47.00	6,719	2,297			
47.05	6,719	2,590			
47.10	6,719	2,882			
47.15	6,719	3,173			
47.20	6,719	3,463			
47.25	6,719	3,753			
47.30	6,719	4,041			
47.35	6,719	4,326			
47.40	6,719	4,610			
47.45	6,719	4,891			
47.50	6,719	5,172			
47.55	6,719	5,450			
47.60	6,719	5,726			
47.65	6,719	6,000			
47.70	6,719	6,272			
47.75	6,719	6,543			
47.80	6,719	6,812			
47.85	6,719	7,080			
47.90	6,719	7,347			
47.95	6,719	7,611			
48.00	6,719	7,871			
48.05	6,719	8,128			
48.10	6,719	8,381			
48.15	6,719	8,631			
48.20	6,719	8,878			
48.25	6,719	9,121			
48.30	6,719	9,360			
48.35	6,719	9,595			
48.40	6,719	9,825			
48.45	6,719	10,050			
48.50	6,719	10,269			
48.55	6,719	10,482			
48.60	6,719	10,689			
48.65	6,719	10,887			
48.70	6,719	11,075			
48.75	6,719	11,252			
48.80	6,719	11,413			
		·			

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 88

Summary for Pond 28P: DIV-01

339,731 sf, 33.22% Impervious, Inflow Depth = 1.29" for 1-year event Inflow Area = 7.86 cfs @ 12.22 hrs, Volume= Inflow = 36,536 cf 36,536 cf, Atten= 0%, Lag= 0.0 min Outflow = 7.86 cfs @ 12.22 hrs, Volume= 1.95 cfs @ 12.22 hrs, Volume= Primary = 13,096 cf Routed to Pond 13P : Sand Filter 1 5.91 cfs @ 12.22 hrs, Volume= Secondarv = 23.440 cf Routed to Pond 15P : Detention Basin 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 47.40' @ 12.22 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	46.10'	10.0" Round Culvert L= 14.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.10' / 46.00' S= 0.0071 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 0.55 sf
#2	Device 3	46.95'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Secondary	46.10'	
			L= 56.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.10' / 44.00' S= 0.0375 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 7.07 sf
			••

Primary OutFlow Max=1.95 cfs @ 12.22 hrs HW=47.40' TW=46.16' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.95 cfs @ 3.57 fps)

Secondary OutFlow Max=5.84 cfs @ 12.22 hrs HW=47.40' TW=44.49' (Dynamic Tailwater) -3=Culvert (Passes 5.84 cfs of 9.00 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 5.84 cfs @ 2.19 fps)

Pro-Hydro

Prepared by Pare Corporatio	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 28P: DIV-01

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
46.10	0.00	0.00	0.00	48.65	30.51	3.03	27.49
46.15	0.01	0.01	0.00	48.70	31.27	3.06	28.21
46.20	0.03	0.03	0.00	48.75	32.01	3.10	28.91
46.25	0.06	0.06	0.00	48.80	32.73	3.13	29.60
46.30	0.11	0.11	0.00	48.85	33.42	3.17	30.25
46.35	0.17	0.17	0.00	48.90	34.08	3.20	30.88
46.40	0.23	0.23	0.00	48.95	34.71	3.23	31.48
46.45	0.31	0.31	0.00	49.00	35.29	3.27	32.02
46.50	0.39	0.39	0.00	49.05	35.81	3.30	32.51
46.55	0.48	0.48	0.00	49.10	36.24	3.33	32.91
46.60 46.65	0.57 0.67	0.57 0.67	0.00 0.00				
46.70	0.07	0.07	0.00				
46.75	0.77	0.88	0.00				
46.80	0.88	0.88	0.00				
46.85	1.10	1.10	0.00				
46.90	1.10	1.10	0.00				
46.95	1.31	1.31	0.00				
47.00	1.64	1.42	0.22				
47.05	2.13	1.51	0.62				
47.10	2.72	1.58	1.13				
47.15	3.39	1.65	1.74				
47.20	4.15	1.71	2.43				
47.25	4.97	1.78	3.19				
47.30	5.85	1.83	4.02				
47.35	6.79	1.89	4.90				
47.40	7.78	1.95	5.83				
47.45	8.82	2.00	6.82				
47.50	9.91	2.06	7.86				
47.55	11.04	2.11	8.94				
47.60	12.22	2.16	10.06				
47.65	13.43	2.21	11.22				
47.70	14.68	2.26	12.42				
47.75	15.97	2.30	13.66				
47.80	16.83	2.35	14.48				
47.85	17.62	2.39	15.22				
47.90 47.95	18.41	2.44	15.97				
47.95	19.21 20.01	2.48 2.53	16.72 17.49				
48.00	20.01	2.53	18.26				
48.10	21.64	2.61	19.03				
48.15	22.46	2.65	19.81				
48.20	23.28	2.69	20.59				
48.25	24.10	2.73	21.37				
48.30	24.92	2.77	22.15				
48.35	25.74	2.81	22.93				
48.40	26.55	2.85	23.70				
48.45	27.36	2.88	24.48				
48.50	28.16	2.92	25.24				
48.55	28.96	2.96	26.00				
48.60	29.74	2.99	26.75				
				I			

Pro-Hydro

Prepared by Pare Corporation	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions L

Stage-Area-Storage for Pond 28P: DIV-01

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.10	0	47.12	0	48.14	0
46.12	0	47.12	0	48.16	0
46.12	0	47.14	0	48.18	0
46.14	0	47.18	0	48.20	0
46.18	0	47.18	0	48.20	0
46.20	0	47.20	0	48.24	0
46.20	0		0	48.24	0
46.22	0	47.24 47.26	0	48.28	0
46.24	0	47.20	0	48.30	0
46.28	0	47.28	0	48.30	0
46.30	0	47.30	0	48.34	0
46.32	0	47.32	0	48.36	0
46.34	0	47.34	0	48.38	0
46.36	0	47.38	0	48.40	0
46.38	0	47.38	0	48.40	0
46.40	0	47.40	0	48.44	0
46.40	0	47.42	0	48.46	0
46.42	0	47.44	0	48.48	0
46.46	0	47.48	0	48.50	0
46.48	0	47.50	0	48.52	0
46.50	0	47.50	0	48.54	0
46.52	0	47.52	0	48.56	0
46.54	0	47.56	0	48.58	0
46.56	0	47.58	0	48.60	0
46.58	0	47.60	0	48.62	0
46.60	0	47.62	0	48.64	0
46.62	0	47.64	0	48.66	0
46.64	0	47.66	0	48.68	0
46.66	0	47.68	0	48.70	0
46.68	0	47.00	0	48.72	0
46.70	0	47.70	0	48.72	0
46.72	0	47.74	0	48.76	0
46.72	0	47.76	0	48.78	0
46.76	0	47.78	0	48.80	0
46.78	0	47.80	0	48.82	0
46.80	0	47.82	0	48.84	0
46.82	0	47.84	0	48.86	0
46.84	ů 0	47.86	ů 0	48.88	0 0
46.86	0	47.88	0	48.90	0 0
46.88	0 0	47.90	ů 0	48.92	Ő
46.90	0 0	47.92	0	48.94	0 0
46.92	0 0	47.94	0 0	48.96	0
46.94	0	47.96	0	48.98	0
46.96	0	47.98	0	49.00	0
46.98	0	48.00	0	49.02	0
47.00	0	48.02	0	49.04	0
47.02	0 0	48.04	0 0	49.06	0 0
47.04	0	48.06	0	49.08	0
47.06	0 0	48.08	0 0	49.10	0 0
47.08	0	48.10	0		-
47.10	0	48.12	0		

Pro-HydroZ3099.01 Proposed Conditions 1-year Storm
Type III 24-hr 1-year Rainfall=2.80"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 91

Summary for Pond 33P: Wet Swale

Inflow Area =	57,295 sf, 71.89% Impervious,	Inflow Depth = 1.97" for 1-year event			
Inflow =	2.89 cfs @ 12.10 hrs, Volume=	9,419 cf			
Outflow =	1.34 cfs @ 12.32 hrs, Volume=	6,797 cf, Atten= 54%, Lag= 13.5 min			
Discarded =	0.01 cfs @ 7.45 hrs, Volume=	2,229 cf			
Primary =	1.33 cfs @ 12.32 hrs, Volume=	4,568 cf			
Routed to Pond	d 4P : Detention Basin 2				
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf			
Routed to Link 2L : DP 1.1 - Culvert 1					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 59.79' @ 12.32 hrs Surf.Area= 4,809 sf Storage= 4,443 cf

Plug-Flow detention time= 657.7 min calculated for 6,792 cf (72% of inflow) Center-of-Mass det. time= 569.7 min (1,372.8 - 803.1)

Volume	Invert	Avai	il.Storag	ge Storage Descri	ption	
#1	57.69'		11,649	cf Custom Stage	Data (Prismatic) Liste	d below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
57.6	1	1,511	0.0	0	0	
57.7	70	1,511	33.0	5	5	
58.6	69	1,511	33.0	494	499	
58.7	70	1,801	100.0	17	515	
59.0	00	3,213	100.0	752	1,267	
60.0	00	5,228	100.0	4,221	5,488	
61.0	00	7,094	100.0	6,161	11,649	
Device	Routing	In	vert C	Outlet Devices		
#1	Discarded	57	.69' 0	.270 in/hr Exfiltrati	ion over Surface area	from 57.68' - 58.69'
			E	xcluded Surface ar	rea = 0 sf Phase-In= 0.	.02'
#2	Primary	56		18.0" Round Culvert		
					ecting, no headwall, Ke	
					56.20' / 55.60' S= 0.0	
				n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf		
#3	Device 2	59				
	• •			Limited to weir flow at low heads		
#4	Secondary	60).50' 1	U.U. long Sharp-Cr	ested Rectangular We	ir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 7.45 hrs HW=57.72' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=1.24 cfs @ 12.32 hrs HW=59.79' TW=55.86' (Dynamic Tailwater) -2=Culvert (Passes 1.24 cfs of 11.32 cfs potential flow) -3=Orifice/Grate (Weir Controls 1.24 cfs @ 0.65 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=57.69' TW=0.00' (Dynamic Tailwater) 4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Discharge for Pond 33P: Wet Swale

Elevation	Discharge	Discarded	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(cfs)
57.69	0.00	0.00	0.00	0.00
57.79	0.01	0.01	0.00	0.00
57.89	0.01	0.01	0.00	0.00
57.99	0.01	0.01	0.00	0.00
58.09	0.01	0.01	0.00	0.00
58.19	0.01	0.01	0.00	0.00
58.29	0.01	0.01	0.00	0.00
58.39	0.01	0.01	0.00	0.00
58.49	0.01	0.01	0.00	0.00
58.59	0.01	0.01	0.00	0.00
58.69	0.01	0.01	0.00	0.00
58.79	0.01	0.01	0.00	0.00
58.89	0.01	0.01	0.00	0.00
58.99	0.01	0.01	0.00	0.00
59.09	0.01	0.01	0.00	0.00
59.19	0.01	0.01	0.00	0.00
59.29	0.01	0.01	0.00	0.00
59.39	0.01	0.01	0.00	0.00
59.49	0.01	0.01	0.00	0.00
59.59	0.01	0.01	0.00	0.00
59.69	0.01	0.01	0.00	0.00
59.79	1.27	0.01	1.26	0.00
59.89	3.61	0.01	3.60	0.00
59.99	4.73	0.01	4.72	0.00
60.09	5.62	0.01	5.62	0.00
60.19	6.40	0.01	6.39	0.00
60.29	7.09	0.01	7.08	0.00
60.39	7.71	0.01	7.70	0.00
60.49	8.29	0.01	8.28	0.00
60.59	9.72	0.01	8.83	0.88
60.69	12.04	0.01	9.34	2.70
60.79	14.91	0.01	9.82	5.08
60.89	18.19	0.01	10.28	7.90
60.99	21.84	0.01	10.72	11.11

Pro-Hydro

Prepared by Pare Corporation	n
HydroCAD® 10.20-5b s/n 04883	© 2023 HydroCAD Software Solutions I

Stage-Area-Storage for Pond 33P: Wet Swale

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
57.69	1,511	0	60.24	5,676	6,796
57.74	1,511	25	60.29	5,769	7,082
57.79	1,511	50	60.34	5,862	7,373
57.84	1,511	75	60.39	5,956	7,669
57.89	1,511	100	60.44	6,049	7,969
57.94	1,511	125	60.49	6,142	8,274
57.99	1,511	150	60.54	6,236	8,583
58.04	1,511	175	60.59	6,329	8,897
58.09	1,511	199	60.64	6,422	9,216
58.14	1,511	224	60.69	6,516	9,539
58.19	1,511	249	60.74	6,609	9,867
58.24	1,511	274	60.79	6,702	10,200
58.29	1,511	299	60.84	6,795	10,538
58.34	1,511	324	60.89	6,889	10,880
58.39	1,511	349 374	60.94	6,982 7 075	11,227
58.44 58.49	1,511 1,511	374 399	60.99	7,075	11,578
58.54	1,511	424			
58.59	1,511	424 449			
58.64	1,511	449			
58.69	1,511	499			
58.74	1,989	591			
58.79	2,225	696			
58.84	2,223	813			
58.89	2,695	942			
58.94	2,000	1,083			
58.99	3,166	1,235			
59.04	3,294	1,397			
59.09	3,394	1,565			
59.14	3,495	1,737			
59.19	3,596	1,914			
59.24	3,697	2,096			
59.29	3,797	2,284			
59.34	3,898	2,476			
59.39	3,999	2,674			
59.44	4,100	2,876			
59.49	4,200	3,084			
59.54	4,301	3,296			
59.59	4,402	3,514			
59.64	4,503	3,736			
59.69	4,603	3,964			
59.74	4,704	4,197			
59.79	4,805	4,434			
59.84	4,906	4,677			
59.89	5,006	4,925			
59.94	5,107	5,178			
59.99	5,208	5,436			
60.04	5,303	5,698			
60.09	5,396	5,966			
60.14	5,489	6,238			
60.19	5,583	6,515			

Summary for Pond 35P: Track and Field-manifold

Inflow Area =	151,857 sf,100.00% Imper	vious, Inflow Depth = 1.51" for 1-year event	
Inflow =	6.18 cfs @ 12.11 hrs, Volu	ume= 19,061 cf	
Outflow =	5.19 cfs @ 12.21 hrs, Volu	ume= 19,061 cf, Atten= 16%, Lag= 5.4 mir	า
Discarded =	0.47 cfs @ 12.21 hrs, Volu	ume= 6,385 cf	
Primary =	4.72 cfs @ 12.21 hrs, Volu	ume= 12,676 cf	
Routed to Pond	d 8P : DIV-04		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 49.31' @ 12.21 hrs Surf.Area= 8,273 sf Storage= 2,280 cf

Plug-Flow detention time= 14.3 min calculated for 19,061 cf (100% of inflow) Center-of-Mass det. time= 14.2 min (767.4 - 753.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	48.50'	4,898 cf	7.00'W x 1,182.00'L x 2.25'H Field A
			18,608 cf Overall - 3,767 cf Embedded = 14,841 cf x 33.0% Voids
#2A	49.00'	2,832 cf	ADS N-12 15" x 118 Inside #1
			Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf
			Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf
			118 Chambers in 2 Rows
		7,730 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	48.50'	0.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 48.40' Phase-In= 0.02'
#2	Primary	48.50'	18.0" Round Culvert X 2.00
			L= 54.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 48.50' / 46.80' S= 0.0315 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Discarded OutFlow Max=0.47 cfs @ 12.21 hrs HW=49.31' (Free Discharge) **1=Exfiltration** (Controls 0.47 cfs)

Primary OutFlow Max=4.70 cfs @ 12.21 hrs HW=49.31' TW=48.25' (Dynamic Tailwater) ←2=Culvert (Inlet Controls 4.70 cfs @ 2.42 fps)

Pond 35P: Track and Field-manifold - Chamber Wizard Field A

Chamber Model = ADS N-12 15" (ADS N-12® Pipe)

Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf

18.0" Wide + 24.0" Spacing = 42.0" C-C Row Spacing

59 Chambers/Row x 20.00' Long = 1,180.00' Row Length +12.0" End Stone x 2 = 1,182.00' Base Length 2 Rows x 18.0" Wide + 24.0" Spacing x 1 + 12.0" Side Stone x 2 = 7.00' Base Width 6.0" Stone Base + 18.0" Chamber Height + 3.0" Stone Cover = 2.25' Field Height

118 Chambers x 24.0 cf = 2,832.0 cf Chamber Storage 118 Chambers x 31.9 cf = 3,767.1 cf Displacement

18,608.5 cf Field - 3,767.1 cf Chambers = 14,841.3 cf Stone x 33.0% Voids = 4,897.6 cf Stone Storage

Chamber Storage + Stone Storage = 7,729.6 cf = 0.177 af Overall Storage Efficiency = 41.5%Overall System Size = $1,182.00' \times 7.00' \times 2.25'$

118 Chambers 689.2 cy Field 549.7 cy Stone

Stage-Discharge for Pond 35P: Track and Field-manifold

ElevationDischargeDiscardedPrimary (cfs) $(feet)$ (cfs)(cfs)(cfs) 48.50 0.000.000.00 48.55 0.100.080.02 48.60 0.190.100.09 48.65 0.320.130.19 48.70 0.490.160.34 48.75 0.700.180.52 48.80 0.950.210.74 48.85 1.230.231.00 48.90 1.540.261.29 48.95 1.890.281.61 49.00 2.270.311.96 49.05 2.680.342.34 49.10 3.110.362.75 49.15 3.570.393.18 49.20 4.050.413.64 49.25 4.550.444.11 49.35 5.610.495.12 49.40 6.160.525.65 49.45 6.730.576.73 49.55 7.870.597.28 49.60 8.450.627.83 49.65 9.030.658.38 49.70 9.600.678.92 49.75 10.160.709.46 49.80 10.700.729.97 49.85 11.210.7510.46 49.90 11.690.7810.92 49.75 10.160.709.46 49.90 11.690.7810.92 49.75				
48.50 0.00 0.00 0.00 48.55 0.10 0.08 0.02 48.60 0.19 0.10 0.09 48.65 0.32 0.13 0.19 48.70 0.49 0.16 0.34 48.75 0.70 0.18 0.52 48.80 0.95 0.21 0.74 48.85 1.23 0.23 1.00 48.90 1.54 0.26 1.29 48.95 1.89 0.28 1.61 49.05 2.68 0.34 2.34 49.10 3.11 0.36 2.75 49.15 3.57 0.39 3.18 49.20 4.05 0.41 3.64 49.25 4.55 0.44 4.11 49.30 5.07 0.47 4.61 49.35 5.61 0.49 5.12 49.40 6.16 0.52 5.65 49.45 6.73 0.54 6.18 49.50 7.30 0.57 6.73 49.65 9.03 0.65 8.38 49.70 9.60 0.67 8.92 49.75 10.16 0.70 9.46 49.90 11.69 0.78 10.92 49.95 12.21 0.80 11.32 50.00 12.46 0.83 11.63 50.05 12.87 0.85 12.02 50.15 12.87 0.85 12.02 50.15 13.27 0.98 13.77 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
48.70 0.49 0.16 0.34 48.75 0.70 0.18 0.52 48.80 0.95 0.21 0.74 48.85 1.23 0.23 1.00 48.90 1.54 0.26 1.29 48.95 1.89 0.28 1.61 49.00 2.27 0.31 1.96 49.05 2.68 0.34 2.34 49.10 3.11 0.36 2.75 49.15 3.57 0.39 3.18 49.20 4.05 0.41 3.64 49.25 4.55 0.44 4.11 49.30 5.07 0.47 4.61 49.35 5.61 0.49 5.12 49.40 6.16 0.52 5.65 49.45 6.73 0.54 6.18 49.50 7.30 0.57 6.73 49.55 7.87 0.59 7.28 49.60 8.45 0.62 7.83 49.65 9.03 0.65 8.38 49.70 9.60 0.67 8.92 49.75 10.16 0.70 9.46 49.80 10.70 0.72 9.97 49.85 11.21 0.75 10.46 49.90 11.69 0.78 10.92 49.95 12.12 0.80 11.32 50.05 12.87 0.85 12.02 50.10 13.27 0.88 12.39 50.25 14.39 0.96 13.43 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
48.80 0.95 0.21 0.74 48.85 1.23 0.23 1.00 48.90 1.54 0.26 1.29 48.95 1.89 0.28 1.61 49.00 2.27 0.31 1.96 49.05 2.68 0.34 2.34 49.05 2.68 0.34 2.34 49.10 3.11 0.36 2.75 49.15 3.57 0.39 3.18 49.20 4.05 0.41 3.64 49.25 4.55 0.44 4.11 49.30 5.07 0.47 4.61 49.35 5.61 0.49 5.12 49.40 6.16 0.52 5.65 49.45 6.73 0.54 6.18 49.50 7.30 0.57 6.73 49.55 7.87 0.59 7.28 49.60 8.45 0.62 7.83 49.65 9.03 0.65 8.38 49.70 9.60 0.67 8.92 49.80 10.70 0.72 9.97 49.85 11.21 0.75 10.46 49.90 11.69 0.78 10.92 49.95 12.12 0.80 11.32 50.05 12.87 0.85 12.02 50.10 13.27 0.88 12.39 50.15 13.65 0.90 12.75 50.20 14.03 0.93 13.09 50.25 14.39 0.96 13.43				
48.85 1.23 0.23 1.00 48.90 1.54 0.26 1.29 48.95 1.89 0.28 1.61 49.00 2.27 0.31 1.96 49.05 2.68 0.34 2.34 49.10 3.11 0.36 2.75 49.15 3.57 0.39 3.18 49.20 4.05 0.41 3.64 49.25 4.55 0.44 4.11 49.30 5.07 0.47 4.61 49.35 5.61 0.49 5.12 49.40 6.16 0.52 5.65 49.45 6.73 0.54 6.18 49.50 7.30 0.57 6.73 49.55 7.87 0.59 7.28 49.60 8.45 0.62 7.83 49.65 9.03 0.65 8.38 49.70 9.60 0.67 8.92 49.75 10.16 0.70 9.46 49.80 10.70 0.72 9.97 49.85 11.21 0.75 10.46 49.90 11.69 0.78 10.92 49.95 12.12 0.80 11.32 50.05 12.87 0.85 12.02 50.10 13.27 0.88 12.39 50.15 13.65 0.90 12.75 50.20 14.03 0.93 13.09 50.25 14.39 0.96 13.43 50.30 14.75 0.98 $13.$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.90			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.95	12.12	0.80	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.00	12.46	0.83	11.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12.87	0.85	12.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.93	13.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14.39	0.96	13.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.30	14.75	0.98	13.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.35	15.10	1.01	14.09
50.5016.111.0915.0250.5516.431.1115.3250.6016.751.1415.6150.6517.061.1615.9050.7017.371.1916.18	50.40	15.44	1.03	14.41
50.5516.431.1115.3250.6016.751.1415.6150.6517.061.1615.9050.7017.371.1916.18		15.78		
50.6016.751.1415.6150.6517.061.1615.9050.7017.371.1916.18				
50.6517.061.1615.9050.7017.371.1916.18				
50.70 17.37 1.19 16.18				
50.75 17.67 1.22 16.45				
	50.75	17.67	1.22	16.45

Stage-Area-Storage for Pond 35P: Track and Field-manifold

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
48.50	8,273	0
48.55	8,273	136
48.60	8,273	273
48.65	8,273	409
48.70	8,273	546
48.75	8,273	682
48.80	8,273	819
48.85	8,273	955
48.90	8,273	1,092
48.95	8,273	1,228
49.00	8,273	1,365
49.05	8,273	1,489
49.10	8,273	1,602
49.15	8,273	1,718
49.20	8,273	1,874
49.25	8,273	2,049
49.30	8,273	2,238
49.35	8,273	2,437
49.40	8,273	2,644
49.45 49.50	8,273	2,857 3,075
49.55	8,273 8,273	3,297
49.60	8,273	3,522
49.65	8,273	3,749
49.70	8,273	3,978
49.75	8,273	4,207
49.80	8,273	4,437
49.85	8,273	4,666
49.90	8,273	4,893
49.95	8,273	5,118
50.00	8,273	5,340
50.05	8,273	5,558
50.10	8,273	5,771
50.15	8,273	5,977
50.20	8,273	6,176
50.25	8,273	6,365
50.30	8,273	6,540
50.35	8,273	6,695
50.40	8,273	6,811
50.45	8,273	6,925
50.50	8,273	7,049
50.55	8,273	7,185
50.60	8,273	7,322
50.65	8,273	7,458
50.70	8,273	7,595
50.75	8,273	7,730

Summary for Link 2L: DP 1.1 - Culvert 1

 Inflow Area =
 475,005 sf, 1.72% Impervious, Inflow Depth =
 0.93" for 1-year event

 Inflow =
 7.45 cfs @
 12.32 hrs, Volume=
 37,004 cf

 Primary =
 7.45 cfs @
 12.32 hrs, Volume=
 37,004 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 3L : DP 1.2 - Culvert 2
 2

Summary for Link 3L: DP 1.2 - Culvert 2

 Inflow Area =
 539,007 sf,
 2.90% Impervious, Inflow Depth =
 0.96" for
 1-year event

 Inflow =
 8.28 cfs @
 12.31 hrs, Volume=
 42,901 cf

 Primary =
 8.28 cfs @
 12.31 hrs, Volume=
 42,901 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 4L : DP 1.3 - Culvert 3

Summary for Link 4L: DP 1.3 - Culvert 3

 Inflow Area =
 564,865 sf,
 3.45% Impervious, Inflow Depth =
 0.96"
 for 1-year event

 Inflow =
 8.65 cfs @
 12.30 hrs, Volume=
 45,276 cf

 Primary =
 8.65 cfs @
 12.30 hrs, Volume=
 45,276 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 5L : DP 1.4 - Silver Creek East Branch
 56,276 cf, Atten= 0%, Lag= 0.0 min
 56,276 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 5L: DP 1.4 - Silver Creek East Branch

Inflow Area = 1,084,691 sf, 28.15% Impervious, Inflow Depth = 1.01" for 1-year event Inflow = 16.61 cfs @ 12.23 hrs, Volume= 91,420 cf Primary = 16.61 cfs @ 12.23 hrs, Volume= 91,420 cf, Atten= 0%, Lag= 0.0 min Routed to nonexistent node 1L

Summary for Link 6L: DP 2.1 - West Wetland

 Inflow Area =
 832,147 sf, 33.97% Impervious, Inflow Depth >
 0.68" for 1-year event

 Inflow =
 3.26 cfs @
 12.88 hrs, Volume=
 47,009 cf

 Primary =
 3.26 cfs @
 12.88 hrs, Volume=
 47,009 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link 7L : DP 2.2 - Silver Creek West Branch
 5100 cf, Atten= 0%, Lag= 0.0 min
 5100 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 7L: DP 2.2 - Silver Creek West Branch

Inflow Area = 991,430 sf, 32.56% Impervious, Inflow Depth > 0.75" for 1-year event Inflow = 4.61 cfs @ 12.50 hrs, Volume= 61,638 cf Primary = 4.61 cfs @ 12.50 hrs, Volume= 61,638 cf, Atten= 0%, Lag= 0.0 min Routed to nonexistent node 1L

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 0.22% Impervious Runoff Depth=0.10" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77/98 Runoff=0.41 cfs 4,081 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.05% Impervious Runoff Depth=0.10" Flow Length=126' Tc=13.1 min CN=77/98 Runoff=0.03 cfs 279 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 12.81% Impervious Runoff Depth=0.23" Flow Length=73' Tc=7.3 min CN=78/98 Runoff=0.10 cfs 492 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.73% Impervious Runoff Depth=0.73" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=76/98 Runoff=1.00 cfs 3,493 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 40.99% Impervious Runoff Depth=0.44" Flow Length=49' Tc=6.8 min CN=74/98 Runoff=0.17 cfs 618 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=0.44" Tc=6.0 min CN=74/98 Runoff=0.07 cfs 250 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.36% Impervious Runoff Depth=0.32" Flow Length=144' Tc=13.4 min CN=78/98 Runoff=0.16 cfs 827 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 33.69% Impervious Runoff Depth=0.41" Flow Length=98' Tc=13.9 min CN=78/98 Runoff=0.36 cfs 1,724 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=0.66" Tc=6.0 min CN=74/98 Runoff=0.43 cfs 1,482 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=0.61" Tc=6.0 min CN=75/98 Runoff=0.61 cfs 2,153 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=0.63" Tc=6.0 min CN=74/98 Runoff=0.59 cfs 2,066 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=0.57" Flow Length=346' Tc=14.5 min CN=74/98 Runoff=0.78 cfs 3,505 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=0.64" Tc=6.0 min CN=74/98 Runoff=0.34 cfs 1,185 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=0.11" Tc=6.0 min CN=74/98 Runoff=0.01 cfs 101 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=0.31" Tc=6.0 min CN=74/98 Runoff=0.07 cfs 255 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 7.90% Impervious Runoff Depth=0.19" Tc=6.0 min CN=78/98 Runoff=0.17 cfs 920 cf

Pro-HydroZ3099.01 Proposed Conditions WQv 1.2" Storm Type III 24-hr WQv Rainfall=1.20"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 2
Subcatchment PDA-1.4K: Subcat PDA-1.4K Runoff Area=18,876 sf 80.13% Impervious Runoff Depth=0.80" Tc=6.0 min CN=74/98 Runoff=0.37 cfs 1,262 cf
Subcatchment PDA-1.4L: Subcat PDA-1.4L Runoff Area=11,978 sf 23.00% Impervious Runoff Depth=0.27" Flow Length=75' Tc=8.5 min CN=74/98 Runoff=0.06 cfs 274 cf
Subcatchment PDA-1.4M: Subcat PDA-1.4M Runoff Area=4,734 sf 3.38% Impervious Runoff Depth=0.09" Flow Length=166' Slope=0.0100 '/' Tc=14.3 min CN=74/98 Runoff=0.00 cfs 37 cf
Subcatchment PDA-2.1A: Subcat Runoff Area=308,645 sf 25.72% Impervious Runoff Depth=0.31" Flow Length=269' Tc=16.3 min CN=75/98 Runoff=1.48 cfs 7,927 cf
Subcatchment PDA-2.1B: Subcat PDA-2.1B Runoff Area=188,298 sf 6.36% Impervious Runoff Depth=0.13" Flow Length=123' Tc=17.0 min CN=75/98 Runoff=0.23 cfs 2,064 cf
Subcatchment PDA-2.2A: SubcatRunoff Area=159,283 sf23.05% ImperviousRunoff Depth=0.28"Tc=12.9 minCN=75/98Runoff=0.74 cfs3,767 cf
Subcatchment PDA-2.2B: Subcat PDA-2.2B Runoff Area=152,260 sf 1.56% Impervious Runoff Depth=0.05" Flow Length=565' Slope=0.0120 '/' Tc=40.0 min CN=71/98 Runoff=0.03 cfs 606 cf
Subcatchment PDA-2.2C.a: SubcatRunoff Area=90,671 sf100.00% ImperviousRunoff Depth=0.99"Tc=6.0 minCN=74/98Runoff=2.23 cfs7,448 cf
Subcatchment PDA-2.2C.b: SubcatRunoff Area=61,186 sf99.99% ImperviousRunoff Depth=0.99"Tc=6.0 minCN=74/98Runoff=1.50 cfs5,025 cf
Subcatchment PDA-ROOF1.3: SubcatRunoff Area=9,782 sf100.00% ImperviousRunoff Depth=0.99"Tc=6.0 minCN=74/98Runoff=0.24 cfs803 cf
Subcatchment PDA-ROOF1.4: Subcat Runoff Area=58,210 sf 100.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=74/98 Runoff=1.43 cfs 4,781 cf
Subcatchment PDA-ROOF2.1: Subcat Runoff Area=31,087 sf 100.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=74/98 Runoff=0.76 cfs 2,553 cf
Pond 1P: Bio 4Peak Elev=58.39' Storage=382 cf Inflow=0.17 cfs 618 cfDiscarded=0.00 cfs 618 cf Primary=0.00 cfs 0 cf Outflow=0.00 cfs 618 cf
Pond 2P: Bio 3 Peak Elev=58.83' Storage=518 cf Inflow=0.31 cfs 1,054 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Tertiary=0.01 cfs 1,054 cf 0utflow=0.01 cfs 1,054 cf
Pond 3P: DIV-02 Peak Elev=56.54' Inflow=0.36 cfs 1,724 cf Primary=0.36 cfs 1,724 cf Secondary=0.00 cfs 0 cf Outflow=0.36 cfs 1,724 cf
Pond 4P: Detention Basin 2Peak Elev=55.63' Storage=59 cfInflow=0.01 cfs101 cfPrimary=0.00 cfs90 cfSecondary=0.00 cfs0 cfOutflow=0.00 cfs90 cf
Pond 7P: Bio 2 Peak Elev=54.70' Storage=638 cf Inflow=0.43 cfs 1,482 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Tertiary=0.03 cfs 1,482 cf

Pro-Hydro

Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5bs/n 04883© 2023 HydroCAD Software Solutions LLCPage 3

ond 8P: DIV-04 Peak Elev=47.46' Inflow=1.08 cf Primary=1.08 cfs 2,788 cf Secondary=0.00 cfs 0 cf Outflow=1.08 cf	,
ond 9P: Sand Filter 5Peak Elev=49.35' Storage=982 cf Inflow=0.37 cfDiscarded=0.01 cfs 1,112 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cf	,
ond 10P: Bio 1Peak Elev=44.45' Storage=1,583 cf Inflow=0.61 cfDiscarded=0.00 cfs 1,088 cf Primary=0.02 cfs 273 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cf	
ond 12P: Infiltration Basin 1Peak Elev=57.27' Storage=4,168 cf Inflow=1.50 cfDiscarded=0.02 cfs 3,263 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.02 cf	
ond 13P: Sand Filter 1Peak Elev=46.60' Storage=8,356 cf Inflow=1.48 cfsDiscarded=0.03 cfs 6,255 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cf	
ond 14P: DIV-03 Peak Elev=44.64' Inflow=0.61 cf Primary=0.61 cfs 2,153 cf Secondary=0.00 cfs 0 cf Outflow=0.61 cf	
ond 15P: Detention Basin 1Peak Elev=44.12'Storage=1,404 cfInflow=0.66 cfPrimary=0.04 cfs2,213 cfSecondary=0.00 cfs0 cfTertiary=0.00 cfs0 cfOutflow=0.04 cf	,
ond 17P: Track and Field- stone base Discarded=0.58 cfs 6,543 cf Primary=0.57 cfs 904 cf Outflow=1.15 cf	
ond 18P: Sand Filter 2Peak Elev=55.00' Storage=2,918 cf Inflow=0.87 cfDiscarded=0.01 cfs 3,211 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cf	
ond 19P: Sand Filter 3Peak Elev=57.98' Storage=652 cf Inflow=0.34 cfDiscarded=0.01 cfs 1,185 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cf	
ond 20P: Sand Filter 4 Peak Elev=59.00' Storage=6 cf Inflow=0.16 Outflow=0.16	
ond 23P: UGIS-1Peak Elev=46.99' Storage=2,250 cf Inflow=1.08 cfDiscarded=0.05 cfs 2,788 cf Primary=0.00 cfs 0 cf Outflow=0.05 cf	
ond 28P: DIV-01Peak Elev=47.03'Inflow=1.94 cfsPrimary=1.48 cfs10,099 cfSecondary=0.46 cfs381 cfOutflow=1.94 cfs	
ond 33P: Wet SwalePeak Elev=59.44' Storage=2,866 cf Inflow=1.00 cfDiscarded=0.01 cfs 2,256 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cf	
ond 35P: Track and Field-manifold Peak Elev=48.86' Storage=995 cf Inflow=1.81 cf Discarded=0.24 cfs 3,142 cf Primary=1.08 cfs 2,788 cf Outflow=1.32 cf	
ink 2L: DP 1.1 - Culvert 1Inflow=0.41 cfPrimary=0.41 cf	,
ink 3L: DP 1.2 - Culvert 2Inflow=0.52 cfPrimary=0.52 cf	

	23099.01 Proposed Conditions WQv 1.2" Storm
Pro-Hydro	Type III 24-hr WQv Rainfall=1.20"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software	e Solutions LLC Page 4

Link 4L: DP 1.3 - Culvert 3	Inflow=0.57 cfs 5,679 cf Primary=0.57 cfs 5,679 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Inflow=1.35 cfs 13,277 cf Primary=1.35 cfs 13,277 cf
Link 6L: DP 2.1 - West Wetland	Inflow=0.05 cfs 2,818 cf Primary=0.05 cfs 2,818 cf
Link 7L: DP 2.2 - Silver Creek West Branch	Inflow=0.76 cfs 6,586 cf Primary=0.76 cfs 6,586 cf

Total Runoff Area = 2,076,121 sf Runoff Volume = 59,978 cf Average Runoff Depth = 0.35" 70.72% Pervious = 1,468,248 sf 29.28% Impervious = 607,873 sf Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 1.72% Impervious Runoff Depth=1.28" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77 Runoff=10.49 cfs 50,816 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.06% Impervious Runoff Depth=1.28" Flow Length=126' Tc=13.1 min CN=77 Runoff=0.87 cfs 3,530 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 15.00% Impervious Runoff Depth=1.48" Flow Length=73' Tc=7.3 min UI Adjusted CN=80 Runoff=0.96 cfs 3,188 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.89% Impervious Runoff Depth=2.45" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=92 Runoff=3.55 cfs 11,677 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 41.68% Impervious Runoff Depth=1.77" Flow Length=49' Tc=6.8 min CN=84 Runoff=0.77 cfs 2,480 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=1.77" Tc=6.0 min CN=84 Runoff=0.32 cfs 1,008 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.95% Impervious Runoff Depth=1.69" Flow Length=144' Tc=13.4 min CN=83 Runoff=1.10 cfs 4,371 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 38.51% Impervious Runoff Depth=1.84" Flow Length=98' Tc=13.9 min CN=85 Runoff=1.94 cfs 7,758 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=2.26" Tc=6.0 min CN=90 Runoff=1.58 cfs 5,052 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=2.09" Tc=6.0 min CN=88 Runoff=2.33 cfs 7,394 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=2.17" Tc=6.0 min CN=89 Runoff=2.23 cfs 7,107 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=2.00" Flow Length=346' Tc=14.5 min CN=87 Runoff=3.03 cfs 12,332 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=2.17" Tc=6.0 min CN=89 Runoff=1.27 cfs 4,035 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=1.16" Tc=6.0 min CN=75 Runoff=0.32 cfs 1,041 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=1.55" Tc=6.0 min CN=81 Runoff=0.40 cfs 1,267 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 8.43% Impervious Runoff Depth=1.41" Tc=6.0 min CN=79 Runoff=2.19 cfs 6,998 cf

Pro-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 Hydro	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 2-year Rainfall=3.30"</i> Printed 1/9/2025 droCAD Software Solutions LLC Page 2
Subcatchment PDA-1.4K: Subcat PDA-1.	4K Runoff Area=18,876 sf 80.13% Impervious Runoff Depth=2.54" Tc=6.0 min CN=93 Runoff=1.22 cfs 3,999 cf
Subcatchment PDA-1.4L: Subcat PDA-1.	4L Runoff Area=11,978 sf 23.00% Impervious Runoff Depth=1.48" Flow Length=75' Tc=8.5 min CN=80 Runoff=0.42 cfs 1,476 cf
	.4M Runoff Area=4,734 sf 3.38% Impervious Runoff Depth=1.16" 66' Slope=0.0100 '/' Tc=14.3 min CN=75 Runoff=0.11 cfs 459 cf
Subcatchment PDA-2.1A: Subcat	Runoff Area=308,645 sf 26.49% Impervious Runoff Depth=1.55" Flow Length=269' Tc=16.3 min CN=81 Runoff=9.28 cfs 39,818 cf
	1B Runoff Area=188,298 sf 8.27% Impervious Runoff Depth=1.22" =123' Tc=17.0 min UI Adjusted CN=76 Runoff=4.28 cfs 19,177 cf
Subcatchment PDA-2.2A: Subcat	Runoff Area=159,283 sf 25.22% Impervious Runoff Depth=1.48" Tc=12.9 min CN=80 Runoff=4.97 cfs 19,635 cf
	2B Runoff Area=152,260 sf 1.56% Impervious Runoff Depth=0.99" Slope=0.0120 '/' Tc=40.0 min CN=72 Runoff=1.86 cfs 12,590 cf
Subcatchment PDA-2.2C.a: Subcat	Runoff Area=90,671 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=6.52 cfs 23,175 cf
Subcatchment PDA-2.2C.b: Subcat	Runoff Area=61,186 sf 99.99% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=4.40 cfs 15,639 cf
Subcatchment PDA-ROOF1.3: Subcat	Runoff Area=9,782 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.70 cfs 2,500 cf
Subcatchment PDA-ROOF1.4: Subcat	Runoff Area=58,210 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=4.18 cfs 14,878 cf
Subcatchment PDA-ROOF2.1: Subcat	Runoff Area=31,087 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=2.23 cfs 7,946 cf
Pond 1P: Bio 4 Discarded=0.01	Peak Elev=60.32' Storage=1,168 cf Inflow=0.77 cfs 2,480 cf cfs 1,153 cf Primary=0.29 cfs 1,021 cf Outflow=0.30 cfs 2,174 cf
Pond 2P: Bio 3 Primary=1.37 cfs 1,282 cf Secondary=	Peak Elev=59.79' Storage=1,145 cf Inflow=1.02 cfs 3,509 cf 0.00 cfs 0 cf Tertiary=0.02 cfs 2,227 cf Outflow=1.39 cfs 3,509 cf
Pond 3P: DIV-02 Primary=0.90 cfs	Peak Elev=56.94' Inflow=1.94 cfs 7,758 cf s 6,692 cf Secondary=1.04 cfs 1,066 cf Outflow=1.94 cfs 7,758 cf
Pond 4P: Detention Basin 2 Primary=0.0	Peak Elev=57.52' Storage=5,180 cf Inflow=3.16 cfs 7,842 cf 9 cfs 7,813 cf Secondary=0.00 cfs 0 cf Outflow=0.09 cfs 7,813 cf
Pond 7P: Bio 2 Primary=0.65 cfs 1,503 cf Secondary=	Peak Elev=56.53' Storage=2,157 cf Inflow=1.58 cfs 5,052 cf 0.00 cfs 0 cf Tertiary=0.03 cfs 3,550 cf Outflow=0.68 cfs 5,052 cf

	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm
Pro-Hydro	Type III 24-hr 2-year Rainfall=3.30"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCA	D Software Solutions LLC Page 3

Pond 8P: DIV-04 Peak Elev=48.56' Inflow=5.82 cfs 16,220 c Primary=5.69 cfs 12,621 cf Secondary=1.27 cfs 3,598 cf Outflow=5.82 cfs 16,218 c	
Pond 9P: Sand Filter 5Peak Elev=49.83' Storage=1,453 cf Inflow=1.29 cfs 4,457 cDiscarded=0.01 cfs 1,291 cf Primary=1.39 cfs 2,691 cf Secondary=0.00 cfs 0 cf Outflow=1.40 cfs 3,982 c	
Pond 10P: Bio 1 Peak Elev=44.51' Storage=1,732 cf Inflow=1.18 cfs 6,744 c Discarded=0.00 cfs 1,056 cf Primary=1.17 cfs 4,893 cf Secondary=0.00 cfs 0 cf Outflow=1.17 cfs 5,949 c	
Pond 12P: Infiltration Basin 1Peak Elev=57.99' Storage=6,225 cf Inflow=4.58 cfs 16,145 cDiscarded=0.02 cfs 3,803 cf Primary=3.90 cfs 9,792 cf Secondary=0.00 cfs 0 cf Outflow=3.91 cfs 13,595 c	
Pond 13P: Sand Filter 1Peak Elev=47.09' Storage=12,082 cfInflow=2.08 cfs13,214 cDiscarded=0.03 cfs6,453 cfSecondary=0.00 cfs0 cfOutflow=0.03 cfs6,453 cf	
Pond 14P: DIV-03 Peak Elev=45.00' Inflow=2.33 cfs 7,394 c Primary=1.18 cfs 6,744 cf Secondary=1.15 cfs 651 cf Outflow=2.33 cfs 7,394 c	
Pond 15P: Detention Basin 1Peak Elev=45.36' Storage=18,313 cfInflow=12.58 cfs53,726 cPrimary=3.87 cfs53,432 cfSecondary=0.00 cfs0 cfTertiary=0.00 cfs0 cfOutflow=3.87 cfs53,432 cf	
Pond 17P: Track and Field- stone basePeak Elev=50.61' Storage=3,486 cf Inflow=6.52 cfs 23,175 cDiscarded=0.60 cfs 15,388 cf Primary=3.81 cfs 7,787 cf Outflow=4.41 cfs 23,175 c	
Pond 18P: Sand Filter 2 Peak Elev=55.64' Storage=6,350 cf Inflow=3.08 cfs 13,799 c Discarded=0.01 cfs 3,151 cf Primary=1.30 cfs 6,859 cf Secondary=0.00 cfs 0 cf Outflow=1.31 cfs 10,010 c	
Pond 19P: Sand Filter 3Peak Elev=60.46' Storage=3,309 cf Inflow=1.27 cfs 4,035 cDiscarded=0.01 cfs 2,882 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.01 cfs 2,882 cf	
Pond 20P: Sand Filter 4 Peak Elev=60.56' Storage=914 cf Inflow=1.10 cfs 4,371 c Outflow=0.34 cfs 4,371 c	
Pond 23P: UGIS-1 Peak Elev=48.55' Storage=10,490 cf Inflow=5.69 cfs 12,621 c Discarded=0.07 cfs 11,706 cf Primary=0.38 cfs 914 cf Outflow=0.45 cfs 12,621 c	
Pond 28P: DIV-01 Peak Elev=47.52' Inflow=10.46 cfs 47,763 c Primary=2.08 cfs 13,214 cf Secondary=8.38 cfs 34,549 cf Outflow=10.46 cfs 47,763 c	
Pond 33P: Wet Swale Peak Elev=59.83' Storage=4,637 cf Inflow=3.55 cfs 11,677 c Discarded=0.01 cfs 2,253 cf Primary=2.92 cfs 6,801 cf Secondary=0.00 cfs 0 cf Outflow=2.93 cfs 9,055 cf	
Pond 35P: Track and Field-manifoldPeak Elev=49.42'Storage=2,712 cfInflow=7.64 cfs23,426 cDiscarded=0.53 cfs7,205 cfPrimary=5.82 cfs16,220 cfOutflow=6.34 cfs23,426 c	
Link 2L: DP 1.1 - Culvert 1 Inflow=10.49 cfs 50,816 c Primary=10.49 cfs 50,816 c	
Link 3L: DP 1.2 - Culvert 2 Inflow=11.53 cfs 58,716 c Primary=11.53 cfs 58,716 c	

Total Runoff Area = 2,076,121 sf Runoff Volume = 291,346 cf Average Runoff Depth = 1.68" 69.74% Pervious = 1,447,959 sf 30.26% Impervious = 628,161 sf Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 1.72% Impervious Runoff Depth=2.54" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77 Runoff=21.30 cfs 100,525 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.06% Impervious Runoff Depth=2.54" Flow Length=126' Tc=13.1 min CN=77 Runoff=1.78 cfs 6,983 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 15.00% Impervious Runoff Depth=2.81" Flow Length=73' Tc=7.3 min UI Adjusted CN=80 Runoff=1.84 cfs 6,046 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.89% Impervious Runoff Depth=3.99" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=92 Runoff=5.65 cfs 19,058 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 41.68% Impervious Runoff Depth=3.18" Flow Length=49' Tc=6.8 min CN=84 Runoff=1.37 cfs 4,464 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=3.18" Tc=6.0 min CN=84 Runoff=0.57 cfs 1,815 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.95% Impervious Runoff Depth=3.08" Flow Length=144' Tc=13.4 min CN=83 Runoff=2.01 cfs 7,968 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 38.51% Impervious Runoff Depth=3.28" Flow Length=98' Tc=13.9 min CN=85 Runoff=3.42 cfs 13,787 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=3.78" Tc=6.0 min CN=90 Runoff=2.58 cfs 8,445 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=3.57" Tc=6.0 min CN=88 Runoff=3.91 cfs 12,662 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=3.68" Tc=6.0 min CN=89 Runoff=3.69 cfs 12,023 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=3.47" Flow Length=346' Tc=14.5 min CN=87 Runoff=5.19 cfs 21,377 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=3.68" Tc=6.0 min CN=89 Runoff=2.10 cfs 6,827 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=2.37" Tc=6.0 min CN=75 Runoff=0.67 cfs 2,120 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=2.90" Tc=6.0 min CN=81 Runoff=0.75 cfs 2,372 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 8.43% Impervious Runoff Depth=2.72" Tc=6.0 min CN=79 Runoff=4.26 cfs 13,458 cf

23099.01 Proposed Conditions 2, 10, 25, 100-year StormPro-HydroType III 24-hr 10-year Rainfall=4.90"Prepared by Pare CorporationPrinted 1/9/2025HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPage 6
Subcatchment PDA-1.4K: Subcat PDA-1.4K Runoff Area=18,876 sf 80.13% Impervious Runoff Depth=4.10" Tc=6.0 min CN=93 Runoff=1.92 cfs 6,449 cf
Subcatchment PDA-1.4L: Subcat PDA-1.4L Runoff Area=11,978 sf 23.00% Impervious Runoff Depth=2.81" Flow Length=75' Tc=8.5 min CN=80 Runoff=0.82 cfs 2,801 cf
Subcatchment PDA-1.4M: Subcat PDA-1.4M Runoff Area=4,734 sf 3.38% Impervious Runoff Depth=2.37" Flow Length=166' Slope=0.0100 '/' Tc=14.3 min CN=75 Runoff=0.23 cfs 934 cf
Subcatchment PDA-2.1A: SubcatRunoff Area=308,645 sf26.49% ImperviousRunoff Depth=2.90"Flow Length=269'Tc=16.3 minCN=81Runoff=17.58 cfs74,515 cf
Subcatchment PDA-2.1B: Subcat PDA-2.1B Runoff Area=188,298 sf 8.27% Impervious Runoff Depth=2.45" Flow Length=123' Tc=17.0 min UI Adjusted CN=76 Runoff=8.88 cfs 38,497 cf
Subcatchment PDA-2.2A: SubcatRunoff Area=159,283 sf25.22% ImperviousRunoff Depth=2.81"Tc=12.9 minCN=80Runoff=9.52 cfs37,243 cf
Subcatchment PDA-2.2B: Subcat PDA-2.2B Runoff Area=152,260 sf 1.56% Impervious Runoff Depth=2.12" Flow Length=565' Slope=0.0120 '/' Tc=40.0 min CN=72 Runoff=4.21 cfs 26,914 cf
Subcatchment PDA-2.2C.a: Subcat Runoff Area=90,671 sf 100.00% Impervious Runoff Depth=4.66" Tc=6.0 min CN=98 Runoff=9.74 cfs 35,236 cf
Subcatchment PDA-2.2C.b: Subcat Runoff Area=61,186 sf 99.99% Impervious Runoff Depth=4.66" Tc=6.0 min CN=98 Runoff=6.57 cfs 23,777 cf
Subcatchment PDA-ROOF1.3: Subcat Runoff Area=9,782 sf 100.00% Impervious Runoff Depth=4.66" Tc=6.0 min CN=98 Runoff=1.05 cfs 3,801 cf
Subcatchment PDA-ROOF1.4: Subcat Runoff Area=58,210 sf 100.00% Impervious Runoff Depth=4.66" Tc=6.0 min CN=98 Runoff=6.25 cfs 22,621 cf
Subcatchment PDA-ROOF2.1: Subcat Runoff Area=31,087 sf 100.00% Impervious Runoff Depth=4.66" Tc=6.0 min CN=98 Runoff=3.34 cfs 12,081 cf
Pond 1P: Bio 4 Peak Elev=60.40' Storage=1,240 cf Inflow=1.37 cfs 4,464 cf Discarded=0.01 cfs 1,182 cf Primary=1.56 cfs 2,975 cf Outflow=1.57 cfs 4,157 cf
Pond 2P: Bio 3 Peak Elev=59.80' Storage=1,149 cf Inflow=1.62 cfs 5,616 cf Primary=1.63 cfs 3,177 cf Secondary=0.00 cfs 0 cf Tertiary=0.02 cfs 2,440 cf Outflow=1.66 cfs 5,616 cf
Pond 3P: DIV-02 Peak Elev=57.05' Inflow=3.42 cfs 15,489 cf Primary=1.00 cfs 12,206 cf Secondary=2.42 cfs 3,283 cf Outflow=3.42 cfs 15,489 cf
Pond 4P: Detention Basin 2 Peak Elev=58.09' Storage=7,295 cf Inflow=4.97 cfs 16,248 cf Primary=1.40 cfs 16,217 cf Secondary=0.00 cfs 0 cf Outflow=1.40 cfs 16,217 cf
Pond 7P: Bio 2 Peak Elev=56.57' Storage=2,245 cf Inflow=2.58 cfs 8,445 cf Primary=2.48 cfs 4,648 cf Secondary=0.00 cfs 0 cf Tertiary=0.03 cfs 3,797 cf Outflow=2.51 cfs 8,445 cf

230	99.01 Proposed Conditions 2, 10, 25, 100-year Storm
Pro-Hydro	Type III 24-hr 10-year Rainfall=4.90"
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Soft	ware Solutions LLC Page 7

Pond 8P: DIV-04 Peak Elev=48.81' Inflow=8.84 cfs 28.730 cf Primary=5.84 cfs 15,464 cf Secondary=5.06 cfs 13,262 cf Outflow=8.84 cfs 28,726 cf Peak Elev=49.90' Storage=1,538 cf Inflow=2.08 cfs 7,383 cf Pond 9P: Sand Filter 5 Discarded=0.01 cfs 1,322 cf Primary=1.89 cfs 5,586 cf Secondary=0.00 cfs 0 cf Outflow=1.90 cfs 6,908 cf Peak Elev=44.52' Storage=1,752 cf Inflow=1.30 cfs 10,430 cf Pond 10P: Bio 1 Discarded=0.00 cfs 1,084 cf Primary=1.25 cfs 8,550 cf Secondary=0.00 cfs 0 cf Outflow=1.26 cfs 9,635 cf Pond 12P: Infiltration Basin 1 Peak Elev=58.12' Storage=6,634 cf Inflow=7.00 cfs 24,993 cf Discarded=0.02 cfs 3,881 cf Primary=6.27 cfs 18,557 cf Secondary=0.00 cfs 0 cf Outflow=6.29 cfs 22,438 cf Peak Elev=47.33' Storage=14,090 cf Inflow=2.00 cfs 15,079 cf Pond 13P: Sand Filter 1 Discarded=0.03 cfs 6,586 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cfs 6,586 cf Pond 14P: DIV-03 Peak Elev=45.11' Inflow=3.91 cfs 12,662 cf Primary=1.30 cfs 10,430 cf Secondary=2.61 cfs 2,232 cf Outflow=3.91 cfs 12,662 cf Peak Elev=46.44' Storage=36,115 cf Inflow=26.16 cfs 110,014 cf Pond 15P: Detention Basin 1 Primary=10.51 cfs 109,713 cf Secondary=0.00 cfs 0 cf Tertiary=0.00 cfs 0 cf Outflow=10.51 cfs 109,713 cf Pond 17P: Track and Field- stone base Peak Elev=50.66' Storage=5,025 cf Inflow=9.74 cfs 35,236 cf Discarded=0.61 cfs 20,879 cf Primary=5.58 cfs 14,357 cf Outflow=6.19 cfs 35,236 cf Pond 18P: Sand Filter 2 Peak Elev=55.74' Storage=6,931 cf Inflow=4.64 cfs 24,229 cf Discarded=0.01 cfs 3,235 cf Primary=3.60 cfs 17,202 cf Secondary=0.00 cfs 0 cf Outflow=3.62 cfs 20,437 cf Peak Elev=60.77' Storage=4,373 cf Inflow=2.10 cfs 6,827 cf Pond 19P: Sand Filter 3 Discarded=0.01 cfs 2,958 cf Primary=0.15 cfs 1,702 cf Secondary=0.00 cfs 0 cf Outflow=0.16 cfs 4,660 cf Pond 20P: Sand Filter 4 Peak Elev=61.53' Storage=2,240 cf Inflow=2.01 cfs 7,968 cf Outflow=0.78 cfs 7,968 cf Pond 23P: UGIS-1 Peak Elev=48.74' Storage=11,219 cf Inflow=5.84 cfs 15,464 cf Discarded=0.08 cfs 12,512 cf Primary=1.25 cfs 2,952 cf Outflow=1.33 cfs 15,464 cf Pond 28P: DIV-01 Peak Elev=47.99' Inflow=19.32 cfs 86,596 cf Primary=2.00 cfs 15,079 cf Secondary=17.33 cfs 71,517 cf Outflow=19.32 cfs 86,596 cf Peak Elev=59.96' Storage=5,292 cf Inflow=5.65 cfs 19,058 cf Pond 33P: Wet Swale Discarded=0.01 cfs 2,307 cf Primary=4.44 cfs 14,127 cf Secondary=0.00 cfs 0 cf Outflow=4.45 cfs 16,434 cf Pond 35P: Track and Field-manifold Peak Elev=49.69' Storage=3,941 cf Inflow=11.52 cfs 38,134 cf Discarded=0.67 cfs 9,404 cf Primary=8.84 cfs 28,730 cf Outflow=9.51 cfs 38,134 cf Link 2L: DP 1.1 - Culvert 1 Inflow=21.30 cfs 100,525 cf Primary=21.30 cfs 100,525 cf Link 3L: DP 1.2 - Culvert 2 Inflow=23.10 cfs 115,476 cf

Primary=23.10 cfs 115,476 cf

Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPrinted 1/9/2025 Page 8Link 4L: DP 1.3 - Culvert 3Inflow=24.04 cfs 121,522 cf Primary=24.04 cfs 121,522 cfLink 5L: DP 1.4 - Silver Creek East BranchInflow=50.36 cfs 247,820 cf Primary=50.36 cfs 247,820 cfLink 6L: DP 2.1 - West WetlandInflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf	Pro-Hydro	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 10-year Rainfall=4.90</i> "
Link 4L: DP 1.3 - Culvert 3 Inflow=24.04 cfs 121,522 cf Primary=24.04 cfs 121,522 cf Link 5L: DP 1.4 - Silver Creek East Branch Inflow=50.36 cfs 247,820 cf Link 6L: DP 2.1 - West Wetland Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf		
Link 5L: DP 1.4 - Silver Creek East Branch Inflow=50.36 cfs 247,820 cf Link 6L: DP 2.1 - West Wetland Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf	HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCA	D Software Solutions LLC Page 8
Link 5L: DP 1.4 - Silver Creek East Branch Inflow=50.36 cfs 247,820 cf Link 6L: DP 2.1 - West Wetland Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf		
Link 5L: DP 1.4 - Silver Creek East Branch Inflow=50.36 cfs 247,820 cf Link 6L: DP 2.1 - West Wetland Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf	Link 4L: DP 1.3 - Culvert 3	Inflow=24.04 cfs 121,522 cf
Link 6L: DP 2.1 - West Wetland Primary=50.36 cfs 247,820 cf Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf		Primary=24.04 cfs 121,522 cf
Link 6L: DP 2.1 - West Wetland Primary=50.36 cfs 247,820 cf Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf		
Link 6L: DP 2.1 - West Wetland Inflow=20.08 cfs 152,841 cf Primary=20.08 cfs 152,841 cf	Link 5L: DP 1.4 - Silver Creek East Branch	,,
Primary=20.08 cfs 152,841 cf		Primary=50.36 cts 247,820 ct
	Link 6L: DP 2.1 - West Wetland	Inflow=20.08 cfs 152,841 cf
		Primary=20.08 cfs 152,841 cf
	Link 7L: DP 2.2 - Silver Creek West Branch	Inflow=24.73 cfs 190,084 cf
Primary=24.73 cfs 190,084 cf		Primary=24.73 cfs 190,084 cf

Total Runoff Area = 2,076,121 sf Runoff Volume = 524,799 cf Average Runoff Depth = 3.03" 69.74% Pervious = 1,447,959 sf 30.26% Impervious = 628,161 sf Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 1.72% Impervious Runoff Depth=3.57" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77 Runoff=29.98 cfs 141,177 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.06% Impervious Runoff Depth=3.57" Flow Length=126' Tc=13.1 min CN=77 Runoff=2.50 cfs 9,807 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 15.00% Impervious Runoff Depth=3.87" Flow Length=73' Tc=7.3 min UI Adjusted CN=80 Runoff=2.53 cfs 8,343 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.89% Impervious Runoff Depth=5.17" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=92 Runoff=7.21 cfs 24,674 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 41.68% Impervious Runoff Depth=4.29" Flow Length=49' Tc=6.8 min CN=84 Runoff=1.84 cfs 6,024 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=4.29" Tc=6.0 min CN=84 Runoff=0.76 cfs 2,449 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.95% Impervious Runoff Depth=4.18" Flow Length=144' Tc=13.4 min CN=83 Runoff=2.70 cfs 10,812 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 38.51% Impervious Runoff Depth=4.40" Flow Length=98' Tc=13.9 min CN=85 Runoff=4.55 cfs 18,506 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=4.94" Tc=6.0 min CN=90 Runoff=3.32 cfs 11,044 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=4.72" Tc=6.0 min CN=88 Runoff=5.10 cfs 16,730 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=4.83" Tc=6.0 min CN=89 Runoff=4.78 cfs 15,804 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=4.61" Flow Length=346' Tc=14.5 min CN=87 Runoff=6.82 cfs 28,392 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=4.83" Tc=6.0 min CN=89 Runoff=2.72 cfs 8,974 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=3.37" Tc=6.0 min CN=75 Runoff=0.95 cfs 3,015 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=3.97" Tc=6.0 min CN=81 Runoff=1.02 cfs 3,254 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 8.43% Impervious Runoff Depth=3.77" Tc=6.0 min CN=79 Runoff=5.89 cfs 18,678 cf

23099.01 Proposed Conditions 2, 10, 25, 100-year Storm Type III 24-hr 25-year Rainfall=6.10"Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD Software Solutions LLCPrinted 1/9/2025 Page 10
Subcatchment PDA-1.4K: Subcat PDA-1.4K Runoff Area=18,876 sf 80.13% Impervious Runoff Depth=5.28" Tc=6.0 min CN=93 Runoff=2.43 cfs 8,308 cf
Subcatchment PDA-1.4L: Subcat PDA-1.4L Runoff Area=11,978 sf 23.00% Impervious Runoff Depth=3.87" Flow Length=75' Tc=8.5 min CN=80 Runoff=1.13 cfs 3,864 cf
Subcatchment PDA-1.4M: Subcat PDA-1.4M Runoff Area=4,734 sf 3.38% Impervious Runoff Depth=3.37" Flow Length=166' Slope=0.0100 '/' Tc=14.3 min CN=75 Runoff=0.33 cfs 1,329 cf
Subcatchment PDA-2.1A: SubcatRunoff Area=308,645 sf26.49% ImperviousRunoff Depth=3.97"Flow Length=269'Tc=16.3 minCN=81Runoff=24.01 cfs102,238 cf
Subcatchment PDA-2.1B: Subcat PDA-2.1B Runoff Area=188,298 sf 8.27% Impervious Runoff Depth=3.47" Flow Length=123' Tc=17.0 min UI Adjusted CN=76 Runoff=12.59 cfs 54,396 cf
Subcatchment PDA-2.2A: SubcatRunoff Area=159,283 sf25.22% ImperviousRunoff Depth=3.87"Tc=12.9 minCN=80Runoff=13.10 cfs51,390 cf
Subcatchment PDA-2.2B: Subcat PDA-2.2B Runoff Area=152,260 sf 1.56% Impervious Runoff Depth=3.08" Flow Length=565' Slope=0.0120 '/' Tc=40.0 min CN=72 Runoff=6.18 cfs 39,019 cf
Subcatchment PDA-2.2C.a: SubcatRunoff Area=90,671 sf100.00% ImperviousRunoff Depth=5.86"Tc=6.0 minCN=98Runoff=12.15 cfs44,291 cf
Subcatchment PDA-2.2C.b: SubcatRunoff Area=61,186 sf99.99% ImperviousRunoff Depth=5.86"Tc=6.0 minCN=98Runoff=8.20 cfs29,888 cf
Subcatchment PDA-ROOF1.3: SubcatRunoff Area=9,782 sf100.00% ImperviousRunoff Depth=5.86"Tc=6.0 minCN=98Runoff=1.31 cfs4,778 cf
Subcatchment PDA-ROOF1.4: SubcatRunoff Area=58,210 sf100.00% ImperviousRunoff Depth=5.86"Tc=6.0 minCN=98Runoff=7.80 cfs28,434 cf
Subcatchment PDA-ROOF2.1: SubcatRunoff Area=31,087 sf100.00% ImperviousRunoff Depth=5.86"Tc=6.0 minCN=98Runoff=4.17 cfs15,185 cf
Pond 1P: Bio 4 Peak Elev=60.42' Storage=1,269 cf Inflow=1.84 cfs 6,024 cf Discarded=0.01 cfs 1,199 cf Primary=1.70 cfs 4,518 cf Outflow=1.71 cfs 5,717 cf
Pond 2P: Bio 3 Peak Elev=59.81' Storage=1,156 cf Inflow=2.07 cfs 7,227 cf Primary=2.06 cfs 4,710 cf Secondary=0.00 cfs 0 cf Tertiary=0.02 cfs 2,518 cf Outflow=2.08 cfs 7,227 cf
Pond 3P: DIV-02 Peak Elev=57.28' Inflow=4.53 cfs 22,310 cf Primary=1.19 cfs 15,908 cf Secondary=3.35 cfs 6,401 cf Outflow=4.53 cfs 22,310 cf
Pond 4P: Detention Basin 2Peak Elev=58.45' Storage=8,743 cfInflow=6.12 cfs22,733 cfPrimary=3.94 cfs22,701 cfSecondary=0.00 cfs0 cfOutflow=3.94 cfs22,701 cf
Pond 7P: Bio 2 Peak Elev=56.60' Storage=2,322 cf Inflow=3.32 cfs 11,044 cf Primary=3.07 cfs 7,152 cf Secondary=0.00 cfs 0 cf Tertiary=0.03 cfs 3,892 cf Outflow=3.10 cfs 11,044 cf

Pro-Hydro	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 25-year Rainfall=6.10</i> "
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCA	AD Software Solutions LLC Page 11
Pond 8P: DIV-04	Peak Elev=48.94' Inflow=10.79 cfs 39,057 cf
Primary=4.97 cfs 18,058 c	of Secondary=7.74 cfs 20,998 cf Outflow=10.79 cfs 39,057 cf
Pond 9P: Sand Filter 5 Discarded=0.01 cfs_1.340 cf_Primary=2.37 cfs	Peak Elev=49.99' Storage=1,640 cf Inflow=2.67 cfs 9,636 cf 7,820 cf Secondary=0.00 cfs 0 cf Outflow=2.38 cfs 9,160 cf
Pond 10P: Bio 1	Peak Elev=44.53' Storage=1,784 cf Inflow=1.49 cfs 13,067 cf
Discarded=0.00 cfs 1,099 cf Primary=1.36 cfs 1	1,173 cf Secondary=0.00 cfs 0 cf Outflow=1.36 cfs 12,271 cf
	Peak Elev=58.21' Storage=6,907 cf Inflow=8.82 cfs 31,688 cf
Discarded=0.02 cfs 3,926 cf Primary=8.01 cfs 2	5,206 cf Secondary=0.00 cfs 0 cf Outflow=8.03 cfs 29,132 cf
	Peak Elev=47.60' Storage=16,399 cf Inflow=2.15 cfs 17,430 cf
Discarded=0.03 cfs	6,639 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cfs 6,639 cf
Pond 14P: DIV-03	Peak Elev=45.31' Inflow=5.10 cfs 16.730 cf
	7 cf Secondary=3.61 cfs 3,663 cf Outflow=5.10 cfs 16,730 cf
1 hindi y=1.45 013 10,00	
Pond 15P: Detention Basin 1 Pea	ak Elev=47.23' Storage=50,894 cf Inflow=36.61 cfs 154,388 cf
	s 263 cf Tertiary=0.00 cfs 0 cf Outflow=15.41 cfs 154,085 cf
Bond 17D: Trook and Field stone base	Poak Elov-50 71' Storago-6 315 of Inflow-12 15 of 14 201 of

 Pond 17P: Track and Field- stone base
 Peak Elev=50.71'
 Storage=6,315 cf
 Inflow=12.15 cfs
 44,291 cf

 Discarded=0.62 cfs
 24,299 cf
 Primary=6.69 cfs
 19,992 cf
 Outflow=7.31 cfs
 44,291 cf

 Pond 18P: Sand Filter 2
 Peak Elev=55.82'
 Storage=7,420 cf
 Inflow=5.80 cfs
 31,712 cf

 Discarded=0.01 cfs
 3,280 cf
 Primary=4.53 cfs
 24,638 cf
 Secondary=0.00 cfs
 0 cf
 Outflow=4.55 cfs
 27,918 cf

Pond 19P: Sand Filter 3 Peak Elev=60.81' Storage=4,523 cf Inflow=2.72 cfs 8,974 cf Discarded=0.01 cfs 3,001 cf Primary=1.01 cfs 3,804 cf Secondary=0.00 cfs 0 cf Outflow=1.03 cfs 6,805 cf

 Pond 20P: Sand Filter 4
 Peak Elev=61.59' Storage=2,380 cf Inflow=2.70 cfs 10,812 cf

 Outflow=1.88 cfs 10,812 cf

 Pond 23P: UGIS-1
 Peak Elev=48.84' Storage=11,524 cf
 Inflow=4.97 cfs
 18,058 cf

 Discarded=0.08 cfs
 13,090 cf
 Primary=1.81 cfs
 4,968 cf
 Outflow=1.89 cfs
 18,058 cf

 Pond 28P: DIV-01
 Peak Elev=48.42'
 Inflow=26.21 cfs
 117,423 cf

 Primary=2.15 cfs
 17,430 cf
 Secondary=24.07 cfs
 99,993 cf
 Outflow=26.21 cfs
 117,423 cf

 Pond 33P: Wet Swale
 Peak Elev=60.06' Storage=5,815 cf
 Inflow=7.21 cfs
 24,674 cf

 Discarded=0.01 cfs
 2,331 cf
 Primary=5.38 cfs
 19,718 cf
 Secondary=0.00 cfs
 0 cf
 Outflow=5.39 cfs
 22,049 cf

 Pond 35P: Track and Field-manifold
 Peak Elev=49.88' Storage=4,825 cf
 Inflow=14.09 cfs
 49,880 cf

 Discarded=0.77 cfs
 10,824 cf
 Primary=10.79 cfs
 39,057 cf
 Outflow=11.55 cfs
 49,880 cf

Link 2L: DP 1.1 - Culvert 1

Inflow=29.98 cfs 141,177 cf Primary=29.98 cfs 141,177 cf

Inflow=33.70 cfs 161,796 cf Primary=33.70 cfs 161,796 cf

Link 3L: DP 1.2 - Culvert 2

Pro-Hydro	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 25-year Rainfall=6.10</i> "
Prepared by Pare Corporation	Printed 1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCA	D Software Solutions LLC Page 12
Link 4L: DP 1.3 - Culvert 3	Inflow=34.91 cfs 170,138 cf
	Primary=34.91 cfs 170,138 cf
Link 5L: DP 1.4 - Silver Creek East Branch	Inflow=69.22 cfs 345,464 cf
	Primary=69.22 cfs 345,464 cf
Link 6L: DP 2.1 - West Wetland	Inflow=28.72 cfs 219,071 cf
	Primary=28.72 cfs 219,071 cf
Link 7L: DP 2.2 - Silver Creek West Branch	Inflow=35.89 cfs 270,462 cf
	Primary=35.89 cfs 270,462 cf

Total Runoff Area = 2,076,121 sf Runoff Volume = 710,802 cf Average Runoff Depth = 4.11" 69.74% Pervious = 1,447,959 sf 30.26% Impervious = 628,161 sf Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1.1A: Subcat PDA-1.1A Runoff Area=475,005 sf 1.72% Impervious Runoff Depth=5.83" Flow Length=451' Slope=0.0100 '/' Tc=21.1 min CN=77 Runoff=48.60 cfs 230,673 cf

Subcatchment PDA-1.1B: Subcat PDA-1.1B Runoff Area=32,995 sf 0.06% Impervious Runoff Depth=5.83" Flow Length=126' Tc=13.1 min CN=77 Runoff=4.04 cfs 16,023 cf

Subcatchment PDA-1.2A: Subcat PDA-1.2A Runoff Area=25,858 sf 15.00% Impervious Runoff Depth=6.19" Flow Length=73' Tc=7.3 min UI Adjusted CN=80 Runoff=3.99 cfs 13,338 cf

Subcatchment PDA-1.3A: Subcat PDA-1.3A Runoff Area=57,295 sf 71.89% Impervious Runoff Depth=7.64" Flow Length=198' Slope=0.0100 '/' Tc=6.5 min CN=92 Runoff=10.42 cfs 36,468 cf

Subcatchment PDA-1.3C: Subcat PDA-1.3C Runoff Area=16,850 sf 41.68% Impervious Runoff Depth=6.67" Flow Length=49' Tc=6.8 min CN=84 Runoff=2.80 cfs 9,370 cf

Subcatchment PDA-1.3D: Subcat PDA-1.3D Runoff Area=6,850 sf 40.75% Impervious Runoff Depth=6.67" Tc=6.0 min CN=84 Runoff=1.16 cfs 3,809 cf

Subcatchment PDA-1.4A: Subcat PDA-1.4A Runoff Area=31,007 sf 23.95% Impervious Runoff Depth=6.55" Flow Length=144' Tc=13.4 min CN=83 Runoff=4.16 cfs 16,930 cf

Subcatchment PDA-1.4B: Subcat PDA-1.4B Runoff Area=50,506 sf 38.51% Impervious Runoff Depth=6.79" Flow Length=98' Tc=13.9 min CN=85 Runoff=6.89 cfs 28,592 cf

Subcatchment PDA-1.4C: Subcat PDA-1.4C Runoff Area=26,810 sf 65.14% Impervious Runoff Depth=7.40" Tc=6.0 min CN=90 Runoff=4.85 cfs 16,525 cf

Subcatchment PDA-1.4D: Subcat PDA-1.4D Runoff Area=42,514 sf 58.56% Impervious Runoff Depth=7.16" Tc=6.0 min CN=88 Runoff=7.55 cfs 25,351 cf

Subcatchment PDA-1.4E: Subcat PDA-1.4E Runoff Area=39,245 sf 61.68% Impervious Runoff Depth=7.28" Tc=6.0 min CN=89 Runoff=7.04 cfs 23,796 cf

Subcatchment PDA-1.4F: Subcat PDA-1.4F Runoff Area=73,858 sf 54.96% Impervious Runoff Depth=7.03" Flow Length=346' Tc=14.5 min CN=87 Runoff=10.18 cfs 43,298 cf

Subcatchment PDA-1.4G: Subcat PDA-1.4GRunoff Area=22,284 sf 62.39% Impervious Runoff Depth=7.28" Tc=6.0 min CN=89 Runoff=4.00 cfs 13,512 cf

Subcatchment PDA-1.4H: Subcat PDA-1.4H Runoff Area=10,744 sf 5.59% Impervious Runoff Depth=5.59" Tc=6.0 min CN=75 Runoff=1.57 cfs 5,001 cf

Subcatchment PDA-1.4I: Subcat PDA-1.4I Runoff Area=9,824 sf 27.06% Impervious Runoff Depth=6.31" Tc=6.0 min CN=81 Runoff=1.59 cfs 5,166 cf

Subcatchment PDA-1.4J: Subcat PDA-1.4J Runoff Area=59,466 sf 8.43% Impervious Runoff Depth=6.07" Tc=6.0 min CN=79 Runoff=9.35 cfs 30,074 cf

2 Pro-Hydro Prepared by Pare Corporation HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCAD S	3099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 100-year Rainfall=8.60"</i> Printed 1/9/2025 Software Solutions LLC Page 14
Subcatchment PDA-1.4K: Subcat PDA-1.4K Runof	f Area=18,876 sf 80.13% Impervious Runoff Depth=7.76" Tc=6.0 min CN=93 Runoff=3.50 cfs 12,204 cf
	f Area=11,978 sf 23.00% Impervious Runoff Depth=6.19" ength=75' Tc=8.5 min CN=80 Runoff=1.77 cfs 6,178 cf
	noff Area=4,734 sf 3.38% Impervious Runoff Depth=5.59" 0.0100 '/' Tc=14.3 min CN=75 Runoff=0.54 cfs 2,204 cf
	Area=308,645 sf 26.49% Impervious Runoff Depth=6.31" =269' Tc=16.3 min CN=81 Runoff=37.58 cfs 162,305 cf
	f Area=188,298 sf 8.27% Impervious Runoff Depth=5.71" 17.0 min UI Adjusted CN=76 Runoff=20.59 cfs 89,549 cf
Subcatchment PDA-2.2A: Subcat Runoff	Area=159,283 sf 25.22% Impervious Runoff Depth=6.19" Tc=12.9 min CN=80 Runoff=20.77 cfs 82,159 cf
	f Area=152,260 sf 1.56% Impervious Runoff Depth=5.22" 0120 '/' Tc=40.0 min CN=72 Runoff=10.52 cfs 66,293 cf
Subcatchment PDA-2.2C.a: Subcat Runoff	Area=90,671 sf 100.00% Impervious Runoff Depth=8.36" Tc=6.0 min CN=98 Runoff=17.17 cfs 63,166 cf
Subcatchment PDA-2.2C.b: Subcat Runof	f Area=61,186 sf 99.99% Impervious Runoff Depth=8.36" Tc=6.0 min CN=98 Runoff=11.58 cfs 42,625 cf
Subcatchment PDA-ROOF1.3: Subcat Runof	f Area=9,782 sf 100.00% Impervious Runoff Depth=8.36" Tc=6.0 min CN=98 Runoff=1.85 cfs 6,815 cf
Subcatchment PDA-ROOF1.4: Subcat Runoff	Area=58,210 sf 100.00% Impervious Runoff Depth=8.36" Tc=6.0 min CN=98 Runoff=11.02 cfs 40,552 cf
Subcatchment PDA-ROOF2.1: Subcat Runoff	Area=31,087 sf 100.00% Impervious Runoff Depth=8.36" Tc=6.0 min CN=98 Runoff=5.89 cfs 21,657 cf
	ak Elev=60.57' Storage=1,420 cf Inflow=2.80 cfs 9,370 cf 9 cf Primary=2.48 cfs 7,833 cf Outflow=2.49 cfs 9,062 cf
	k Elev=59.84' Storage=1,189 cf Inflow=3.01 cfs 10,624 cf cf Tertiary=0.02 cfs 2,599 cf Outflow=2.95 cfs 10,624 cf
Pond 3P: DIV-02 Primary=2.16 cfs 23,180 cf	Peak Elev=59.14' Inflow=9.34 cfs 36,870 cf Secondary=7.18 cfs 13,690 cf Outflow=9.34 cfs 36,870 cf
	k Elev=58.67' Storage=9,716 cf Inflow=8.27 cfs 36,480 cf 8 cf Secondary=0.00 cfs 0 cf Outflow=7.65 cfs 36,448 cf
	k Elev=56.70' Storage=2,547 cf Inflow=4.85 cfs 16,525 cf cf Tertiary=0.03 cfs 4,036 cf Outflow=4.35 cfs 16,525 cf

Pro-Hydro Prepared by Pare Corporation <u>HydroCAD® 10.20-5b_s/n 04883_© 2023 HydroCAD</u>	23099.01 Proposed Conditions 2, 10, 25, 100-year Storm <i>Type III 24-hr 100-year Rainfall=8.60"</i> Printed 1/9/2025 Software Solutions LLC Page 15
Pond 8P: DIV-04 Primary=3.11 cfs 23,765 cf S	Peak Elev=49.11' Inflow=14.35 cfs 62,243 cf secondary=11.57 cfs 38,479 cf Outflow=14.35 cfs 62,243 cf
	eak Elev=50.21' Storage=1,913 cf Inflow=3.90 cfs 14,408 cf 58 cf Secondary=0.04 cfs 8 cf Outflow=3.32 cfs 13,931 cf
	eak Elev=44.58' Storage=1,922 cf Inflow=2.08 cfs 18,573 cf 60 cf Secondary=0.00 cfs 0 cf Outflow=1.74 cfs 17,777 cf
	ak Elev=58.37' Storage=7,433 cf Inflow=12.61 cfs 45,718 cf 5 cf Secondary=0.00 cfs 0 cf Outflow=11.61 cfs 43,158 cf
	k Elev=48.01' Storage=20,147 cf Inflow=2.89 cfs 21,241 cf 698 cf Secondary=0.00 cfs 0 cf Outflow=0.03 cfs 6,698 cf
Pond 14P: DIV-03 Primary=2.08 cfs 18,573 c	Peak Elev=46.09' Inflow=7.55 cfs 25,351 cf f Secondary=5.47 cfs 6,777 cf Outflow=7.55 cfs 25,351 cf
	Elev=48.08' Storage=68,454 cf Inflow=58.37 cfs 252,270 cf 065 cf Tertiary=0.00 cfs 0 cf Outflow=37.82 cfs 251,964 cf
	k Elev=50.81' Storage=9,321 cf Inflow=17.17 cfs 63,166 cf cf Primary=8.73 cfs 33,209 cf Outflow=9.38 cfs 63,166 cf
	eak Elev=56.02' Storage=8,642 cf Inflow=8.80 cfs 46,977 cf 2 cf Secondary=0.08 cfs 18 cf Outflow=6.33 cfs 43,181 cf
	eak Elev=61.01' Storage=5,343 cf Inflow=4.00 cfs 13,512 cf 78 cf Secondary=0.00 cfs 0 cf Outflow=2.47 cfs 11,341 cf
Pond 20P: Sand Filter 4	eak Elev=61.83' Storage=2,958 cf Inflow=4.16 cfs 16,930 cf Outflow=3.25 cfs 16,930 cf
	k Elev=48.95' Storage=11,811 cf Inflow=3.11 cfs 23,765 cf 4 cf Primary=2.51 cfs 9,710 cf Outflow=2.59 cfs 23,764 cf
Pond 28P: DIV-01 Primary=2.89 cfs 21,241 cf Sec	Peak Elev=49.60' Inflow=40.71 cfs 183,962 cf condary=37.82 cfs 162,721 cf Outflow=40.71 cfs 183,962 cf
	ak Elev=60.29' Storage=7,104 cf Inflow=10.42 cfs 36,468 cf 79 cf Secondary=0.00 cfs 0 cf Outflow=7.11 cfs 33,842 cf
	k Elev=50.39' Storage=6,792 cf Inflow=19.17 cfs 75,834 cf Primary=14.35 cfs 62,243 cf Outflow=15.38 cfs 75,834 cf
Link 2L: DP 1.1 - Culvert 1	Inflow=48.60 cfs 230,673 cf Primary=48.60 cfs 230,673 cf
Link 3L: DP 1.2 - Culvert 2	Inflow=55.08 cfs 263,626 cf Primary=55.08 cfs 263,626 cf

Pro-Hydro	23099.01 Proposed Conditio Type III 24-	ons 2, 10, 25, 100-y -hr 100-year Rain	
Prepared by Pare Corporation		Printec	1/9/2025
HydroCAD® 10.20-5b s/n 04883 © 2023 HydroCA	D Software Solutions LLC		<u>Page 16</u>
Link 4L: DP 1.3 - Culvert 3		Inflow=57.19 cfs	276,963 cf
		Primary=57.19 cfs	276,963 cf
Link 5L: DP 1.4 - Silver Creek East Branch		Inflow=116.11 cfs	, -
		Primary=116.11 cfs	556,642 cf
Link 6L: DP 2.1 - West Wetland		Inflow=59.90 cfs	366 116 cf
LINK OL. DF 2.1 - West Welland		Primary=59.90 cfs	,
		1 minary=09.90 cis	500,440 Cl
Link 7L: DP 2.2 - Silver Creek West Branch		Inflow=71.29 cfs	448,605 cf
		Primary=71.29 cfs	448,605 cf
		-	

Total Runoff Area = 2,076,121 sfRunoff Volume = 1,113,633 cfAverage Runoff Depth = 6.44"69.74% Pervious = 1,447,959 sf30.26% Impervious = 628,161 sf

	Hydraulic D	esigr	n Table	e (25-ye	ear Do	esign	Storm)			Date Initials	1/9/2025 AJM	
From (Inlet)	To (Outlet)	Length	Inlet	Outlet	Total	Average	Pipe	Manning's	Peak	Max	Design	Max Flow /
Node	Node		Invert	Invert	Drop	Slope	Diameter	Roughness	Flow	Flow	Flow	Design Flow
			Elevation	Elevation			or Height			Velocity	Capacity	Ratio
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18
ROOF-3	DMH-102	5.00	56.50	56.25	0.25	5.0000	18.000	0.0120	1.24	3.43	25.45	0.05
ROOF-2	DMH-406	11.67	57.75	57.60	0.15	1.2900	12.000	0.0120	1.13	2.75	4.38	0.26
ROOF-1	DMH-401	51.64	58.75	57.50	1.25	2.4200	12.000	0.0120	3.78	6.47	6.01	0.63
ROOF-4	Bio-03	12.16	59.40	59.00	0.40	3.2900	12.000	0.0120	1.19	5.22	7.00	0.17
TrenchDrainLoading	DMH-301(OWS)	6.00	54.30	54.15	0.15	2.5000	12.000	0.0150	0.60	2.69	4.88	0.12
AD-208	SF-05	103.00	49.70	49.00	0.70	0.6800	12.000	0.0120	0.21	2.23	3.18	0.07
TrenchDrainWest	SandFilter-02	48.00	55.35	54.85	0.50	1.0400	12.000	0.0150	2.61	4.05	3.15	0.83
DMH-104	DMH-102	132.00	57.35	56.25	1.10	0.8300	12.000	0.0150	1.08	2.75	2.82	0.38
DIV-04	DMH-106	31.00	46.90	46.60	0.30	0.9700	24.000	0.0150	10.14	5.30	19.29	0.53
DIV-03	DMH-101	57.00	42.75	42.40	0.35	0.6100	15.000	0.0120	3.22	3.07	5.48	0.59
AD-101	AD-104	116.00	49.00	48.40	0.60	0.5200	12.000	0.0120	1.30	3.40	2.78	0.47
CB-406	CB-402	52.00	57.40	57.10	0.30	0.5800	12.000	0.0120	0.46	1.64	2.93	0.16
TrenchDrainEast	Sandfilter-05	24.00	50.00	49.00	1.00	4.1700	12.000	0.0120	1.94	6.90	7.88	0.25
AD-207	WetlandEast_DP1.4.4	25.00	47.25	47.10	0.15	0.6000	12.000	0.0120	2.21	3.60	2.99	0.74
ROOF-5	IB-1.1	40.00	55.25	55.00	0.25	0.6300	15.000	0.0120	4.77	4.38	5.53	0.86
DMH-308	DMH-309	65.00	51.25	50.90	0.35	0.5400	30.000	0.0130	16.58	5.24	30.10	0.55
DMH-309	DMH-108	77.00	50.90	50.50	0.40	0.5200	30.000	0.0130	16.57	6.02	29.56	0.56
DMH-108	CB-107	98.00	50.50	50.00	0.50	0.5100	30.000	0.0130	16.57	4.87	29.30	0.57
DMH-402	DMH-403	181.00	48.30	47.25	1.05	0.5800	24.000	0.0120	14.80	6.06	18.67	0.79
DIV-01	EX-DMH	33.60	46.10	44.10	2.00	5.9500	36.000	0.0130	41.04	8.35	162.73	0.25
EX-DMH	DB-01	18.00	44.10	44.00	0.10	0.5600	36.000	0.0130	41.04	6.43	49.71	0.83
DMH-107	WESTWETLAND1	25.00	44.20	44.05	0.15	0.6000	24.000	0.0130	7.82	4.31	17.52	0.45
AD-302	DMH-310	29.00	53.80	53.65	0.15	0.5200	15.000	0.0120	2.92	3.16	5.03	0.58
DMH-302	DMH-310	36.00	53.85	53.65	0.20	0.5600	15.000	0.0120	1.20	1.92	5.22	0.23
DMH-310	CB-302	55.00	53.65	53.35	0.30	0.5500	15.000	0.0120	3.28	4.07	5.17	0.64
AD-103	DMH-101	7.00	42.45	42.40	0.05	0.7100	12.000	0.0120	2.06	5.63	3.26	0.63
64	AD-204	83.43	58.45	58.00	0.45	0.5400	12.000	0.0120	0.32	2.37	2.83	0.11
AD-209	SF-5	160.00	50.60	49.00	1.60	1.0000	12.000	0.0120	0.00	0.00	3.86	0.00
AD-306	DMH-305	84.01	54.80	54.35	0.45	0.5400	12.000	0.0120	2.16	3.59	2.82	0.76

	Hydraulic D	esigr	n Table	e (25-ye	ar Do	esign	Storm)			Date Initials	1/9/2025 AJM	
From (Inlet)	To (Outlet)	Length	Inlet	Outlet	Total	Average	Pipe	Manning's	Peak	Max	Design	Max Flow /
Node	Node		Invert	Invert	Drop	Slope	Diameter	Roughness	Flow	Flow	Flow	Design Flow
			Elevation	Elevation			or Height			Velocity	Capacity	Ratio
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18
CB-102	CB-103	59.00	47.75	45.50	2.25	3.8100	12.000	0.0120	1.57	6.39	7.54	0.21
Synthetic-Turf	DIV-04	54.00	47.20	46.90	0.30	0.5600	18.000	0.0120	13.98	5.57	16.96	0.82
AD-205	CB-201	86.75	57.95	57.40	0.55	0.6300	12.000	0.0120	0.17	0.45	3.07	0.05
AD-204	CB-201	34.54	58.00	57.10	0.90	2.6100	12.000	0.0120	0.99	3.30	5.09	0.19
AD-203	64	37.52	58.65	58.45	0.20	0.5300	12.000	0.0120	0.97	2.83	2.82	0.35
AD-202	AD-203	80.97	59.05	58.60	0.45	0.5600	12.000	0.0120	0.48	1.59	2.88	0.17
AD-201	DMH-201	188.45	57.90	56.90	1.00	0.5300	12.000	0.0120	2.22	4.77	2.81	0.79
CB-201	CB-202	60.00	57.40	57.10	0.30	0.5000	15.000	0.0120	2.02	2.63	4.95	0.41
DIV-2	WetlandEast_DP1.4.1	23.00	56.15	55.00	1.15	5.0000	15.000	0.0120	3.67	8.18	15.65	0.23
DMH-201	DMH-202	187.50	56.90	55.95	0.95	0.5100	12.000	0.0120	2.04	4.02	2.75	0.74
DMH-203	WetlandEast_DP1.2.1	28.00	55.60	55.45	0.15	0.5400	15.000	0.0120	2.04	3.41	5.12	0.40
DMH-202	DMH-203	51.00	55.95	55.60	0.35	0.6900	15.000	0.0120	2.04	3.13	5.80	0.35
CB-202	AD-206	49.00	57.10	56.85	0.25	0.5100	15.000	0.0120	3.68	3.34	5.00	0.74
AD-206	DIV-2	35.60	56.85	56.65	0.20	0.5600	15.000	0.0120	3.67	3.86	5.25	0.70
CB-306	DMH-304	41.00	55.20	54.95	0.25	0.6100	12.000	0.0120	2.78	4.80	3.01	0.92
OCS-2	DMH-307	18.62	54.35	53.95	0.40	2.1500	24.000	0.0120	4.07	5.49	35.92	0.11
AD-304	DMH-306	22.66	53.20	53.00	0.20	0.8800	12.000	0.0120	0.33	1.22	3.63	0.09
DMH-305	DMH-306	22.82	52.85	52.65	0.20	0.8800	15.000	0.0120	3.90	4.27	6.55	0.60
CB-307	DMH-303	34.44	56.20	55.90	0.30	0.8700	18.000	0.0120	5.67	5.04	10.62	0.53
DMH-303	DB-02	33.63	55.80	55.60	0.20	0.5900	24.000	0.0120	10.99	5.21	18.90	0.58
AD-303	DMH-305	152.02	53.65	52.85	0.80	0.5300	12.000	0.0120	1.90	4.09	2.80	0.68
AD-305	AD-303	33.73	53.85	53.65	0.20	0.5900	12.000	0.0120	0.49	1.51	2.97	0.17
DMH-306	DMH-307	68.19	52.40	52.05	0.35	0.5100	18.000	0.0130	4.17	2.80	7.53	0.55
DMH-307	DMH-308	148.00	52.05	51.25	0.80	0.5400	24.000	0.0130	8.09	2.94	16.63	0.49
DMH-304	AD-306	24.95	54.95	54.80	0.15	0.6000	12.000	0.0120	2.53	4.86	2.99	0.85
CB-106	CB-104	48.02	44.50	44.25	0.25	0.5200	12.000	0.0120	1.13	1.98	2.79	0.40
CB-105	CB-106	39.00	44.70	44.50	0.20	0.5100	12.000	0.0120	0.76	1.87	2.76	0.28
CB-303	CB-304	70.64	56.85	56.50	0.35	0.5000	12.000	0.0120	2.31	2.94	2.72	0.85
CB-304	CB-305	56.15	56.50	56.20	0.30	0.5300	15.000	0.0120	3.88	3.16	5.12	0.76

	Hydraulic D	-				-	-			Date Initials	1/9/2025 AJM	.
From (Inlet)	To (Outlet)	Length	Inlet	Outlet		Average	Pipe	Manning's	Peak	Max	Design	Max Flow /
Node	Node		Invert	Invert	Drop	Slope	Diameter	Roughness	Flow	Flow	Flow	Design Flow
			Elevation	Elevation			or Height			Velocity	Capacity	Ratio
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18
CB-305	DMH-303	74.33	56.20	55.80	0.40	0.5400	18.000	0.0120	5.67	3.26	8.35	0.68
DMH-301(OWS)	DMH-302	52.22	54.15	53.85	0.30	0.5700	12.000	0.0120	0.55	1.72	2.93	0.19
CB-301	DMH-302	30.43	55.00	53.85	1.15	3.7800	12.000	0.0120	0.76	3.84	7.50	0.10
CB-302	CB-401	198.28	53.35	52.35	1.00	0.5000	18.000	0.0120	4.04	3.06	8.08	0.50
AD-301	AD-302	200.27	54.80	53.80	1.00	0.5000	12.000	0.0120	1.10	2.31	2.73	0.40
CB-104	DIV-03	22.00	44.25	44.10	0.15	0.6800	15.000	0.0120	3.23	4.01	5.78	0.56
CB-403	CB-404	55.49	57.00	56.30	0.70	1.2600	12.000	0.0120	0.80	3.07	4.33	0.19
CB-404	CB-405	100.14	56.30	51.50	4.80	4.7900	15.000	0.0120	3.64	5.85	15.32	0.24
CB-402	CB-404	155.39	57.10	56.30	0.80	0.5100	15.000	0.0120	1.49	3.66	5.02	0.30
AD-102	AD-404	110.00	49.50	48.95	0.55	0.5000	12.000	0.0120	0.19	1.17	2.73	0.07
AD-404	DMH-405	151.00	48.95	48.20	0.75	0.5000	12.000	0.0120	0.64	2.95	2.72	0.23
CB-101	CB-402	74.04	57.50	57.10	0.40	0.5400	12.000	0.0120	0.53	1.82	2.84	0.19
CB-405	DMH-402	70.00	51.50	48.30	3.20	4.5700	24.000	0.0120	14.89	7.29	52.40	0.28
DMH-405	DMH-403	181.55	48.20	47.25	0.95	0.5200	15.000	0.0130	0.70	0.82	4.67	0.15
CB-401	DMH-401	75.40	52.35	51.95	0.40	0.5300	24.000	0.0120	9.01	3.86	17.85	0.50
AD-403	CB-401	61.70	52.70	52.35	0.35	0.5700	18.000	0.0120	4.65	2.87	8.57	0.54
AD-402	AD-403	194.53	53.70	52.70	1.00	0.5100	12.000	0.0120	2.41	3.23	2.77	0.87
AD-401	AD-402	51.65	54.00	53.70	0.30	0.5800	12.000	0.0120	1.33	2.37	2.94	0.45
DMH-404	DMH-401	96.75	52.50	52.00	0.50	0.5200	18.000	0.0120	0.51	0.84	8.18	0.06
DMH-401	CB-405	85.49	51.95	51.50	0.45	0.5300	24.000	0.0120	11.35	6.14	17.78	0.64
DMH-403	DIV-01	139.00	47.25	46.10	1.15	0.8300	30.000	0.0130	14.86	4.34	37.31	0.40
DMH-106	WESTWETLAND2	49.00	45.50	44.00	1.50	3.0600	24.000	0.0120	10.28	9.28	42.88	0.24
DMH-406	DMH-104	40.00	57.60	57.35	0.25	0.6300	12.000	0.0120	1.12	3.16	3.05	0.37
OCS-4	DMH-308	9.00	51.75	51.55	0.20	2.2200	24.000	0.0120	8.64	6.12	36.53	0.24
CB-107	WetlandEast_DP1.4.3	78.00	50.00	49.00	1.00	1.2800	30.000	0.0130	19.62	7.32	46.44	0.42
AD-104	CB-102	47.00	48.40	47.75	0.65	1.3800	12.000	0.0120	1.37	4.62	4.54	0.30
DMH-101	WetlandEast_DP1.4.5	27.00	42.40	42.25	0.15	0.5600	18.000	0.0130	4.59	3.96	7.83	0.59
DMH-102	DMH-103	45.72	56.25	55.80	0.45	0.9800	18.000	0.0120	2.24	3.63	11.29	0.20
DMH-103	IB-1.2	151.88	55.80	55.00	0.80	0.5300	18.000	0.0120	2.23	3.77	8.26	0.27

Hydraulic Design Table (25-year Design Storm)										Date Initials	1/9/2025 AJM	
From (Inlet) Node	To (Outlet) Node	Length	Invert	Outlet Invert Elevation	Total Drop	Average Slope	Pipe Diameter or Height	Manning's Roughness	Peak Flow	Max Flow Velocity	Design Flow Capacity	Max Flow / Design Flow Ratio
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18
CB-103	CB-104	34.00	45.50	44.25	1.25	3.6800	12.000	0.0120	1.86	3.60	7.40	0.25
CB-203	WetlandEast_DP1.4.2	35.74	51.85	51.45	0.40	1.1200	15.000	0.0120	5.01	5.56	7.40	0.68
OCS-1	DMH-107	163.00	45.10	44.20	0.90	0.5500	24.000	0.0130	9.72	5.87	16.81	0.58

Bristol Warren Regional School District MT. HOPE HIGH SCHOOL

APPENDIX C

RIDEM Pre-Application Minutes Appendix A Checklist Water Quality Volume Calculation Worksheet Stormwater Treatment Area Calculation Recharge Calculation Worksheet Bioretention Area Calculations Sand Filter Area Calculations Infiltration Basin Calculations Wet Swale Calculations Channel Protection Calculations Groundwater Mounding Analysis FHWA Riprap Spreader Calculations

RHODE ISLAND Department of Environmental Management

235 Promenade Street, Providence, RI 02908-5767 401-222-4700

Meeting Minutes – Mt. Hope High School, Bristol

September 29, 2023

Meeting held via Teams on July 18, 2023

Meeting Participants

Claire Hoogeboom, LEC Environmental Jenna Rioux, Pare Corp. Nel Daws, Perkins Eastman Lisa Pecora, Perkins Eastman Mark McCarthy, Perkins Eastman Joe Drown, Perkins Eastman Robert Santos, Perkins Eastman Joseph Antonio, DEM/OCTA Martin Wencek, DEM/Freshwater Wetlands <u>Nicholas Pisani, DEM/Stormwater Mgmt.</u> Ed Tanner, Town of Bristol Kris Bradner, Traverse Chad Crittenden, Walter Hartley, Nicholas Hull, PMA

Purpose of the Meeting

Per the consultant, the purpose of this meeting was "to discuss a project at Mt. Hope High School associated with a Necessity of School Construction Evaluation for the Bristol Warren Regional School District. The project team is working through some conceptual designs, and as RIDEM staff may be aware, the school is unique in that a stream flows through the network of buildings. We'd like to review a preferred conceptual design with permitting staff to gain an understanding of the buffer zone standards that will apply and the appropriate permitting pathway. We'd also appreciate if someone from engineering could join so we can discuss the stormwater components to consider in the design/permitting." (*Note: Silver Creek flows through the school, and there are 2 corridor crossings and one driveway crossing over the Creek. It was mentioned that one of the building corridors may be converted to a driveway. It was also mentioned that the river daylights south to a nearby cemetery*).

Athletic fields are also being proposed as part of this project.

The consultant informed the Department that the schedule submissions to the RI Department of Education for this project are as follows: Sept 15, 2023 Stage II Submission; January 2024 Final SD Submission; May 2024 Design Development Submission, and; September 2024 Construction Document Submission.

Below are notes from this meeting.

- The school is in a National Heritage area and a floodplain area. As such, the consultant asked what level of survey the Department is looking for, and conversely, the Department strongly advised that the consultant avoid the Natural Heritage area.
- 2. There appears to be a 100' buffer zone associated with Silver Creek. It was stated that a pond that the stream flows into and out of likely has a 50' buffer zone. Water flows from the pond to a culvert. In addition, there is likely a 50' buffer zone and likely a 75' buffer zone associated with a swamp at the site. Rip rap and stone line the bank of the stream channel. An area subject to storm flowage (ASSF) is located in the school courtyard.
- 3. The Department recommended that the consultants move the impervious area away from the stream channels and away from the buffer zone, as well as use the existing impervious area(s) currently within the buffer zones. Also, the Department will want the consultants to model the floodwaters.

In addition, the Department recommended a setback distance for primary and secondary structures (typically 20' minimum), as well as for buffers and buffer zones. Also, the Department advised that parking and pavement setbacks be checked.

The designer should evaluate the area below the 60' contour elevation in the area that is located to the northwest of the school. The concern is that given the 60' elevation of the floodplain up-gradient of the culvert, the field area may act as a secondary spillover floodplain area, accommodating flow that does not pass through the culvert but may bypass north of it. This reviewer questions whether this area within the existing athletic field may also need to be considered as floodplain.

- 4. The Department advised that whatever is to be proposed should not encroach into the buffer. The consultants informed the Department that the whole site is developed and that there is no buffer.
- 5. The Department advised the consultants not to disturb the stream. Based on a checking of the RIGIS map of the stream at the site, it does not have impairments. The consultants informed the Department that the watercourse is staying the same. It was mentioned that any culvert and crossing improvements could trigger a variance application.

Also, the Department recommended that the consultant check Freshwater Wetland Rule 3.7.1 B. 4, "Creation of New Buffer on Existing Disturbed Property" to see how the Rule can be applied. The Department advised that the consultant not re-route or work in the stream.

6. The Department informed the consultant that daylighting the stream within the building is at the option of the School Department, as the stream may offer an educational

component for the students. In addition, the consultant informed the Department that a new structure along the water's edge is planned for educational purposes, and that no fill is being brought in for the structure. The Department advised that the consultant keep the structure out of the floodway.

- 7. As of this meeting, it was mentioned that the consultant may file a "Request to Verify Freshwater Wetland Edges." The Department indicated that this submittal is not required and would be totally up to the project proponents.
- 8. If drainage swales are to be used, the Department will want the consultant to address where the water is draining to. Also, since storms are getting larger, the consultant asked if they could open the culverts up. The Department expressed concern that this could exacerbate downstream flow.
- 9. It was mentioned that there are two sub watersheds associated with this site. In addition, it was mentioned that soils at the site are not ideal for infiltration, due to high groundwater. Low impact development, sand filters, and bio-retention areas were mentioned as part of stormwater management. The consultants were advised to include water quality improvements as part of their stormwater design for this project. Nitrogenenhanced bio-retention systems were mentioned, along with underground anaerobic treatment when infiltration is not possible due to bacteria.
- 10. Lastly, it was mentioned that It appears that the design will need to meet the Stormwater Rules pertaining to new development.

This concludes the Department's understanding of the issues raised during the meeting. Please be aware that this letter is not to be construed as a permit or an approval to undertake work or any indication that any permit for this project will ultimately be granted. This meeting summary does not relieve the property owner form his/her obligation to obtain any local, state, or federal approvals or permits required by ordinance or law.

APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST AND LID PLANNING REPORT – STORMWATER DESIGN SUMMARY

PROJECT NAME	(RIDEM USE ONLY)
Mt. Hope High School	
TOWN	STW/WQC File #:
Bristol	
BRIEF PROJECT DESCRIPTION:	Date Received:
The project includes the demolition of the existing Mt. Hope High School and the	
construction of a new high school at 199 Chestnut Street in Bristol, RI. The project	
will include a new building, site improvements, new utility connections, and new	
stormwater management systems.	
Stormwater Management Plan (SMP) Elements – M	inimum Standards

When submitting a SMP,¹ submit four separately bound documents: Appendix A Checklist; Stormwater Site Planning, Analysis and Design Report with Plan Set/Drawings; Soil Erosion and Sediment Control (SESC) Plan, and Post Construction Operations and Maintenance (O&M) Plan. Please refer to Suggestions to Promote Brevity.

Note: All stormwater construction projects must create a Stormwater Management Plan (SMP). However, not every element listed below is required per the RIDEM Stormwater Rules and the RIPDES Construction General Permit (CGP). This checklist will help identify the required elements to be submitted with an Application for Stormwater Construction Permit & Water Quality Certification.

PART 1. PROJECT AND SITE INFORMATION							
PROJECT TYPE (Check all that apply)							
□ Residential	□ Commercial	□ Federal	□ Retrofit	□ Restoration			
□ Road □ Utility □ Fill □ Dredge □ Mine							
Other (specify): Institu	utional: High School						

☑ Other (specify): Institutional: High School

SITE INFORMATION

☑ Vicinity Map: Appendix A

INITIAL DISCHARGE LOCATION(S): The WQv discharges to: (You may choose more than one answer if several discharge points are associated with the project.) ⊠ Surface Water ⊠ Groundwater \boxtimes MS4 \Box GAA □ Isolated Wetland □ RIDOT \boxtimes Named Waterbody □ RIDOT Alteration Permit is Approved 🖾 GA \Box GB □ Unnamed Waterbody Connected to Named 🛛 Town Waterbody \Box Other (specify):

ULTIMATE RECEIVING WATERBODY LOCATION(S): Include pertinent information that applies to both WQv and flow								
from larger storm events including overflows. Choose all that apply, and repeat table for each waterbody.								
□ Groundwater or Disconnected Wetland	□ SRWP							
☑ Waterbody Name: Silver Creek	□ Coldwater	⊠ Warmwater	□ Unassessed					
⊠ Waterbody ID: RI0007026R-01	\Box 4 th order stream	n of pond 50 acres of	or more					
\Box TMDL for:	\Box Watershed of f	lood prone river (e.	.g., Pocasset River)					
□ Contributes to a priority outfall listed in the TMDL □ Contributes stormwater to a public beach								
303(d) list – Impairment(s) for: Contributes to shellfishing grounds								

¹ Applications for a Construction General Permit that do not require any other permits from RIDEM and will disturb less than 5 acres over the entire course of the project do not need to submit a SMP. The Appendix A checklist must still be submitted. APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST

Stormwater Management, Design, and Installation Rules (250-RICR-150-10-8)

PROJECT HISTORY							
☑ RIDEM Pre- Application Meeting	Meeting Date: 7-18-23, 01-07-2025	Minutes Attached					
🛛 Municipal Master Plan Approval	Approval Date: 10-10-2024	□ Minutes Attached					
□ Subdivision Suitability Required	Approval #:						
□ Previous Enforcement Action has been taken on the property	Enforcement #:						
FLOODPLAIN & FLOODWAY See Guidance Pertaining to Floodplain and Floodways							
Riverine 100-year floodplain: FEMA FLOODPLAIN FIRMETTE has been reviewed and the 100-year floodplain is on site							
☑ Delineated from FEMA Maps: See Appendix A	Delineated from FEMA Maps: See Appendix A						
<u>NOTE</u> : Per Rule 250-RICR-150-10-8-1.1(B)(5)(d)(3), provide volu fill/displacement calculated by qualified professional	metric floodplain compensation calcula	tions for cut and					
☑ Calculated by Professional Engineer							
☑ Calculations are provided for cut vs. fill/displacement volumes	Amount of Fill (CY): 0						
proposed within the 100-year floodplain Amount of Cut (CY): 996							
□ Restrictions or modifications are proposed to the flow path or velocities in a floodway							
□ Floodplain storage capacity is impacted							
Project area is not within 100-year floodplain as defined by RIDEM							

CRMC JURISDICTION

CRMC Assent required

- □ Property subject to a Special Area Management Plan (SAMP). If so, specify which SAMP:
- \Box Sea level rise mitigation has been designed into this project

LUHPP	PL IDENTIFICATION - MINIMUM STANDARD 8:	
1.	OFFICE OF Land Revitalization and Sustainable Materials Management (OLRSMM)	
	□ Known or suspected releases of HAZARDOUS MATERIAL are present at the site (Hazardous Material is defined in Rule 1.4(A)(33) of 250-140-30-1 of the RIDEM Rules and Regulations for Investigation and Remediation of Hazardous Materials (the Remediation Regulations))	RIDEM CONTACT:
	□ Known or suspected releases of PETROLEUM PRODUCT are present at the site (Petroleum Product as defined in Rule 1.5(A)(84) of 250-140-25-1 of the RIDEM Rules and Regulations for Underground Storage Facilities Used for Regulated Substances and Hazardous Materials)	
	☐ This site is identified on the <u>RIDEM Environmental Resources Map</u> as one of the following regulated facilities	SITE ID#:
	CERCLIS/Superfund (NPL)	
	□ State Hazardous Waste Site (SHWS)	
	Environmental Land Usage Restriction (ELUR)	
	□ Leaking Underground Storage Tank (LUST)	
	Closed Landfill	
Note:	If any boxes in 1 above are checked, the applicant must contact the RIDEM OLRSMM Project Site to determine if subsurface infiltration of stormwater is allowable for the project. Indicate to "Red," "Yellow" or "Green" as described in Section 3.2.8 of the RISDISM Guidance Guidance). Also, note and reference approval in PART 3, Minimum Standard 2: Groundwater	e if the infiltration corresponds e (Subsurface Contamination
2.	PER MINIMUM STANDARD 8 of RICR 8.14.C.1-6 "LUHPPLS," THE SITE IS/HAS:	
	☐ Industrial Site with RIPDES MSGP, except where No Exposure Certification exists. <u>http://www.dem.ri.gov/programs/water/permits/ripdes/stormwater/status.php</u>	
	□ Auto Fueling Facility (e.g., gas station)	
	Exterior Vehicles Service, Maintenance, or Equipment Cleaning Area	

	□ Road Salt Storage and Loading Areas (exposed to rainwater)	
	□ Outdoor Storage and Loading/Unloading of Hazardous Substances	
3.	STORMWATER INDUSTRIAL PERMITTING	
	\Box The site is associated with existing or proposed activities that are considered Land	Activities:
	Uses with Higher Potential Pollutant Loads (LUHPPLS) (see RICR 8.14.C)	Sector:
	□ Construction is proposed on a site that is subject to <u>THE MULTI-SECTOR</u>	MSGP permit #
	GENERAL PERMIT (MSGP) UNDER RULE 31(B)15 OF THE RIPDES	
	<u>REGULATIONS.</u>	
	□ Additional stormwater treatment is required by the MSGP	
	Explain:	

REDEV	REDEVELOPMENT STANDARD – MINIMUM STANDARD 6				
🛛 Pre	☑ Pre Construction Impervious Area				
10.54	Total Pre-Construction Impervious Area (TIA)				
44.41	Total Site Area (TSA)	Total Site Area (TSA)			
18.63	☑ Jurisdictional Wetlands (JW)				
0.00	Conservation Land (CL)	Conservation Land (CL)			
🖾 Calc	culate the Site Size (defined as contiguous properties under same ov	wnership)			
28.74	\boxtimes Site Size (SS) = (TSA) – (JW) – (CL)				
	\square (TIA) / (SS) = 0.37	(TIA) / (SS) > 0.4?			
\Box YES	□ YES, Redevelopment				

PART 2. LOW IMPACT DEVELOPMENT ASSESSMENT – MINIMUM STANDARD 1 (NOT REQUIRED FOR REDEVELOPMENT OR RETROFITS) This section may be deleted if not required.

Note: A written description must be provided specifying why each method is not being used or is not applicable at the Site. Appropriate answers may include:

- Town requires ... (state the specific local requirement)
- Meets Town's dimensional requirement of ...
- Not practical for site because ...
- Applying for waiver/variance to achieve this (pending/approved/denied)
- Applying for wavier/variance to seek relief from this (pending/approved/denied)

A)	PR	ESERVATION OF UNDISTURBED AREAS, BUFFERS, AND FLOODPLAINS	IF NOT IMPLEMENTED,
	\boxtimes	Sensitive resource areas and site constraints are identified (required)	EXPLAIN HERE
	\boxtimes	Local development regulations have been reviewed (required)	
		All vegetated buffers and coastal and freshwater wetlands will be protected during and after	Vegetated buffers are
		construction	protected to the maximum
	\times	Conservation Development or another site design technique has been incorporated to protect	extent practicable
		open space and pre-development hydrology. <u>Note</u> : If Conservation Development has been used, check box and skip to Subpart C	
	\boxtimes	As much natural vegetation and pre-development hydrology as possible has been maintained	

B)		CATE DEVELOPMENT IN LESS SENSITIVE AREAS AND WORK WITH THE TURAL LANDSCAPE CONDITIONS, HYDROLOGY, AND SOILS	
		Development sites and building envelopes have been appropriately distanced from wetlands and waterbodies Development and stormwater systems have been located in areas with greatest infiltration capacity (e.g., soil groups A and B)	No class A or B soils are on-site, infiltration is proposed in C soils and to the maximum extent
		Plans show measures to prevent soil compaction in areas designated as Qualified Pervious Areas (QPA's)	practicable.
	\boxtimes	Development sites and building envelopes have been positioned outside of floodplains Site design positions buildings, roadways and parking areas in a manner that avoids impacts to surface water features	Site features have been move outside of the flood plain to the maximum
		Development sites and building envelopes have been located to minimize impacts to steep slopes ($\geq 15\%$) Other (describe):	extent practicable.
(\mathbf{C})		VIMIZE CLEARING AND GRADING	
()	\mathbb{X}	Site clearing has been restricted to <u>minimum area needed</u> for building footprints, development activities, construction access, and safety. Site has been designed to position buildings, roadways, and parking areas in a manner that minimizes grading (cut and fill quantities) Protection for stands of trees and individual trees and their root zones to be preserved has been specified, and such protection extends at least to the tree canopy drip line(s) Plan notes specify that public trees removed or damaged during construction shall be replaced with equivalent	The Site has been graded to avoid fill within the floodplain.
D)	RE	DUCE IMPERVIOUS COVER	Building footprint is the
		Reduced roadway widths (≤ 22 feet for ADT ≤ 400 ; ≤ 26 feet for ADT 400 - 2,000) Reduced driveway areas (length minimized via reduced ROW width (≤ 45 ft.) and/or reduced (or absolute minimum) front yard setback; width minimized to ≤ 9 ft. wide one lane; ≤ 18 ft. wide two lanes; shared driveways; pervious surface) Reduced building footprint: Explain approach:	minimum possible to facilitate the required number of students. Parking has been minimized to limit impacts to resource areas.
		Reduced sidewalk area (≤ 4 ft. wide; one side of the street; unpaved path; pervious surface) Reduced cul-de-sacs (radius < 45 ft; vegetated island; alternative turn-around) Reduced parking lot area: Explain approach Use of pervious surfaces for driveways, sidewalks, parking areas/overflow parking areas, etc. Minimized impervious surfaces (project meets or is less than maximum specified by Zoning Ordinance) Other (describe):	Drive aisles have been reduced to 20' where possible and compact spaces have been used to reduce impervious surface.
E)	DIS	CONNECT IMPERVIOUS AREA	
		Impervious surfaces have been disconnected, and runoff has been diverted to QPAs to the maximum extent possible Residential street edges allow side-of-the-road drainage into vegetated open swales Parking lot landscaping breaks up impervious expanse AND accepts runoff Other (describe):	
F)	MĽ	TIGATE RUNOFF AT THE POINT OF GENERATION	
	\boxtimes	Small-scale BMPs have been designated to treat runoff as close as possible to the source	

G)	G) PROVIDE LOW-MAINTENANCE NATIVE VEGETATION						
	\boxtimes	Low-maintenance landscaping has been proposed using native species and cultivars Plantings of native trees and shrubs in areas previously cleared of native vegetation are shown on site plan					
	\boxtimes	Lawn areas have been limited/minimized, and yards have been kept undisturbed to the maximum extent practicable on residential lots					
H)		STORE STREAMS/WETLANDS Historic drainage patterns have been restored by removing closed drainage systems, daylighting buried streams, and/or restoring degraded stream channels and/or wetlands Removal of invasive species Other					

PART 3. SUMMARY OF REMAINING STANDARDS

GROU	GROUNDWATER RECHARGE – MINIMUM STANDARD 2					
YES	NO					
\boxtimes		The project has been designed to meet the groundwater recharge standard.				
		If "No," the justification for groundwater recharge criterion waiver has been explained in the Narrative (e.g., threat of groundwater contamination or physical limitation), if applicable (see RICR 8.8.D);				
		Your waiver request has been explained in the Narrative, if applicable.				
	\boxtimes	Is this site identified as a Regulated Facility in Part 1, Minimum Standard 8: LUHPPL Identification?				
		If "Yes," has approval for infiltration by the OLRSMM Site Project Manager, per Part 1, Minimum Standard 8, been requested?				

TABLE 2-1: Summary of Recharge (see RISDISM Section 3.3.2) (Add or Subtract Rows as Necessary)						
Design PointImpervious Area Treated (sq ft)Total Rev Required (cu ft)LID Stormwater Credits (see RISDISM Section 4.6.1)Recharge Required by Remaining BMPs (cu ft)Recharge Provided b BMPs (cu ft)						
Silver Creek	543,156	11,316	241	11,075	41,522	

Notes:

1. Only BMPs listed in RISDISM Table 3-5 "List of BMPs Acceptable for Recharge" may be used to meet the recharge requirement.

2. Recharge requirement must be satisfied for each waterbody ID.

Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.): See appendix C

WATE	R QUA	LITY – MINIMUM STANDARD 3
YES	NO	
	\boxtimes	Does this project meet or exceed the required water quality volume WQv (see RICR 8.9.E-I)?
\boxtimes		Is the proposed final impervious cover greater than 20% of the disturbed area (see RICR 8.9.E-I)?
\boxtimes		If "Yes," either the Modified Curve Number Method or the Split Pervious/Impervious method in Hydro-CAD was used to calculate WQv; or,
		If "Yes," either TR-55 or TR-20 was used to calculate WQv; and,
		If "No," the project meets the minimum WQv of 0.2 watershed inches over the entire disturbed area.
		Not Applicable
\boxtimes		Does this project meet or exceed the ability to treat required water quality flow WQf (see RICR 8.9.I.1-3)?
	\boxtimes	Does this project propose an increase of impervious cover to a receiving water body with impairments?
		If "Yes," please indicate below the method that was used to address the water quality requirements of no further degradation to a low-quality water.
	\boxtimes	RICR 8.36. A Pollutant Loading Analysis is needed and has been completed.
		The Water Quality Guidance Document (<u>Water Quality Goals and Pollutant Loading Analysis Guidance for</u> <u>Discharges to Impaired Waters</u>) has been followed as applicable.
		BMPs are proposed that are on the <u>approved technology list</u> . If "Yes," please provide all required worksheets from the manufacturer.
	\boxtimes	Additional pollutant-specific requirements and/or pollutant removal efficiencies are applicable to the site as the result of a TMDL, SAMP, or other watershed-specific requirements. If "Yes," please describe:

TABLE 3-1: Summary of Water Quality (see RICR 8.9)							
Design Point and WB ID	Impervious area treated (sq ft)	Total WQv Required (cu ft)	LID Stormwater Credits (see RICR 8.18) WQv directed to a QPA (cu ft)	Water Quality Treatment Remaining (cu ft)	Water Quality Provided by BMPs (cu ft)		
Silver Creek	Silver Creek 543,156 45,263 964 44,299 42,219						
 <u>Notes:</u> Only BMPs listed in RICR 8.20 and 8.25 or the Approved Technologies List of BMPs is Acceptable for Water Quality treatment. For each Design Point, the Water Quality Volume Standard must be met for each Waterbody ID. 							
YES This project has met the setback requirements for each BMP.							
NO If "No," please explain: Please see the Stormwater narrative for technical justifications requested.							
Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.): Water quality treatment is provided to the maximum extents practicable with significant water							

quality improvements compared to the existing condition. Refer to appendix C for BMP calculations.

CONV	CONVEYANCE AND NATURAL CHANNEL PROTECTION (RICR 8.10) – MINIMUM STANDARD 4					
YES	NO					
	\boxtimes	Is this standard waived? If "Yes," please indicate one or more of the reasons below:				
		The project directs discharge to a large river (i.e., 4th-order stream or larger. See RISDISM Appendix I for State-wide list and map of stream orders), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters.				
		☐ The project is a small facility with impervious cover of less than or equal to 1 acre.				
		The project has a post-development peak discharge rate from the facility that is less than 2 cfs for the 1- year, 24-hour Type III design storm event (prior to any attenuation). (<u>Note</u> : LID design strategies can greatly reduce the peak discharge rate).				
\boxtimes		Conveyance and natural channel protection for the site have been met.				
		If "No,' explain why:				

TABLE 4-1: Summary of Channel Protection Volumes (see RICR 8.10)							
Design Point	Receiving Water Body Name	Coldwater Fishery? (Y/N)	Total CPv Required (cu ft)	Total CPv Provided (cu ft)	Average Release Rate Modeled in the 1-yr storm (cfs)		
Silver Creek	Silver Creek	Ν	93,529	102,351	21.05		
Note: The Channel F	Protection Volume Standard must be met in ea	ch waterbody II	D.				
 YES NO Do additional design restrictions apply resulting from any discharge to cold-water fisheries; If "Yes," please indicate restrictions and solutions below. 							
Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.). Refer to appendix C for channel protection calculations.							

OVERBANK FLOOD PROTECTION (RICR 8.11) AND OTHER POTENTIAL HIGH FLOWS – MINIMUM STANDARD 5

YES	NO						
	\boxtimes	Is this standard waived? If yes, please indicate one or more of the reasons below:					
		The project directs discharge to a large river (i.e., 4th-order stream or larger. See Appendix I for state- wide list and map of stream orders), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters.					
		A Downstream Analysis (see RICR 8.11.D and E) indicates that peak discharge control would not be beneficial or would exacerbate peak flows in a downstream tributary of a particular site (e.g., through coincident peaks).					

Stormwater Management, Design, and Installation Rules (250-RICR-150-10-8)

\boxtimes		Does the project flow to an MS4 system or subject to other stormwater requirements?
		If "Yes," indicate as follows:
		□ RIDOT
		Other (specify): Town MS4, no other requirements
Note:	volum	oject could be approved by RIDEM but not meet RIDOT or Town standards. RIDOT's regulations indicate that post- es must be less than pre-volumes for the 10-yr storm at the design point entering the RIDOT system. If you have not y received approval for the discharge to an MS4, please explain below your strategy to comply with RIDEM and the
		Indicate below which model was used for your analysis.
		\Box TR-55 \Box TR-20 \boxtimes HydroCAD \Box Bentley/Haestad \Box Intellisolve
		\Box Other (Specify):
YES	NO	
		Does the drainage design demonstrate that flows from the 100-year storm event through a BMP will safely manage and convey the 100-year storm? If "No," please explain briefly below and reference where in the application further documentation can be found (i.e., name of report/document, page numbers, appendices, etc.):
\boxtimes		Do off-site areas contribute to the sub-watersheds and design points? If "Yes,"
\boxtimes		Are the areas modeled as "present condition" for both pre- and post-development analysis?
\boxtimes		Are the off-site areas shown on the subwatershed maps?
\boxtimes		Does the drainage design confirm safe passage of the 100-year flow through the site for off-site runoff?
	\boxtimes	Is a Downstream Analysis required (see RICR 8.11.E.1)?
		Calculate the following:
		Area of disturbance within the sub-watershed (areas): 29.80
		□ Impervious cover (%) 30.26%
	\boxtimes	Is a dam breach analysis required (earthen embankments over six (6) feet in height, or a capacity of 15 acre-feet or
		more, and contributes to a significant or high hazard dam)?
\boxtimes		Does this project meet the overbank flood protection standard?

Table 5-1 Hydraulic Analysis Summary									
Subwatershed	1.2" Peak Flow (cfs) **		·	ak Flow fs)	e e	e ak Flow fs)	100-yr Peak Flow (cfs)		
(Design Point)	Pre (cfs)	Post (cfs)	Pre (cfs)	Post (cfs)	Pre (cfs)	Post (cfs)	Pre (cfs)	Post (cfs)	
DP-1.1: Culvert 1	1.42	0.41	8.83	7.45	23.08	21.30	50.14	48.60	
DP-1.2: Culvert 2	1.79	0.52	9.87	8.28	25.17	23.10	54.13	55.08	
DP-1.3: Culvert 3	1.94	0.57	10.22	8.65	25.92	24.04	55.59	57.19	
DP-1.4: Silver Creek East Branch	7.48	1.35	25.70	16.61	58.84	50.36	119.32	116.11	
DP-2.1: West Wetland	0.97	0.05	6.84	3.26	20.21	20.08	60.35	59.90	
DP-2.2: Silver Creek West Branch	1.75	0.76	10.53	4.61	30.43	24.73	78.59	71.29	

** Utilize modified curve number method or split pervious /impervious method in HydroCAD.

<u>Note</u>: The hydraulic analysis must demonstrate no impact to each individual subwatershed DP unless each DP discharges to the same wetland or water resource.

Indicate as follows where the pertinent calculations and/or information for the items above are provided	Name of report/document, page numbers, appendices, etc.
Existing conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, and water surface elevations showing methodologies used and supporting calculations.	See appendix B and D
Proposed conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, water surface elevations, and routing showing the methodologies used and supporting calculations.	See appendix B and D
Final sizing calculations for structural stormwater BMPs, including contributing drainage area, storage, and outlet configuration.	See appendix B and C
Stage-storage, inflow and outflow hydrographs for storage facilities (e.g., detention, retention, or infiltration facilities).	See appendix B

	Table 5-2 Summary of Best Management Practices											
	DP #	ВМР Туре	BMP Functions					Bypass Type	m	Horizontal Setback Criteria are met per RICR 8.21.B.10, 8.22.D.11, and 8.35.B.4		
BMP ID		(e.g., bioretention, tree filter)	Pre- Treatm ent (Y/N/ NA)	Rev	WQv	CP _v (Y/N/ NA)	Overbank Flood Reduction (Y/N/NA)	External (E) Internal (I) or NA	Yes/ No	Technical Justification (Design Report page number)	Distance Provided	
Bio-1	DP1.4	Bioretention Area	Y	Y	Y	Y	Ν	Е	Y			
Bio-2	DP1.4	Bioretention Area	Y	Y	Y	Y	Ν	Ι	Y			
Bio-3	DP1.4	Bioretention Area	Ν	Y	Y	Y	Ν	Ι	Y			
Bio-4	DP1.4	Bioretention Area	Ν	Y	Y	Y	Ν	Ι	Y			
SF-1	DP2.1	Sand Filter	Y	Y	Y	Y	Ν	E	Y			

	Table 5-2 Summary of Best Management Practices										
		ВМР Туре	BMP Functions					Bypass Type	m	ontal Setback (et per RICR 8.2 .22.D.11, and 8	21.B.10,
BMP ID	DP #	(e.g., bioretention, tree filter)	Pre- Treatm ent (Y/N/ NA)	Rev	WQv	CP _v (Y/N/ NA)	Overbank Flood Reduction (Y/N/NA)	External (E) Internal (I) or NA	Yes/ No	Technical Justification (Design Report page number)	Distance Provided
SF-2	DP1.4	Sand Filter	Y	Y	Y	Y	Ν	Е	Y		
SF-3	DP1.4	Sand Filter	Y	Ν	Y	Y	Ν	Ι	Y		
SF-4	DP1.2	Sand Filter	Ν	Ν	Y	Y	Ν	Ι	Y		
IB-1	DP1.4	Infiltration Basin	Ν	Y	Y	Y	Y	Ι	Y		
WS-1	DP1.4	Wet Swale	Y	Y	Y	Ν	Ν	Ι	Y		
UGIS-1	DP2.2	Underground Infiltration	N	Y	Y	Y	Y	Ι	N	See page 15 of the Stormwater Report Narrative	6 FT
		TOTALS:									

Table 5.3 Summary of Soils to Evaluate Each BMP										
			Soils Analysis for Each BMP							
DP #	BMP ID	BMP Type (e.g., bioretention,	Test Pit ID# and Ground Elevation		SHWT Elevation	Bottom of Practice	Separation Distance	Hydrologic Soil Group	Exfiltration Rate	
		tree filter)	Primary	Secondary	(ft)	Elevation* (ft)	Provided (ft)	(A, B, C, D)	Applied (in/hr)	
DP1.2	SF-4	Sand Filter	TP 24-5	TP 24-4	63.40	61.00	-3.00	С	N/A	
DP1.4	Bio-1	Bioretention	TP 20-6	TP 20-3	41.00	44.00	3.00	С	0.27	
DP1.4	Bio-2	Bioretention	TP 24-9	TP 20-5	54.58	56.50	1.92	С	N/A	
DP1.4	Bio-3	Bioretention	TP 24-8	TP 15-6	56.37	59.00	2.63	С	N/A	
DP1.4	Bio-4	Bioretention	TP 10-3	TP 15-6	56.68	59.80	3.12	С	0.27	
DP1.4	SF-2	Sand Filter	TP 24-6	TP 24-5	51.83	54.85	3.02	С	0.27	
DP1.4	SF-3	Sand Filter	B24-2	TP 24-5	53.30	60.00	6.70	С	N/A	
DP1.4	Inf-1	Infiltration Basin	TP 20-5	TP 24-9	50.72	55.00	4.28	С	0.27	
DP1.4	WS-1	Wet Swale	TP 24-10	TP 10-3	57.70	56.70	-1.00	С	N/A	
DP2.1	SF-1	Sand Filter	TP 08-5	TP 10-6	42.50	46.00	3.50	С	0.27	
DP2.2	UGIS-1	Underground Infiltration	TP 20-3	N/A	43.30	46.30	3.00	С	0.27	

* For underground infiltration systems (UICs) bottom equals bottom of stone, for surface infiltration basins bottom equals bottom of basin, for filters bottom equals interface of storage and top of filter layer

LANI) USES	WITH	I HIGHER POTENTIAL POLLUTANTS LOADS (LUHPPLs) – MINIMUM STANDARD 8
YES	NO	N/A	
			Describe any LUHPPLs identified in Part 1, Minimum Standard 8, Section 2. If not applicable, continue to Minimum Standard 9.
			Are these activities already covered under an MSGP? If "No," please explain if you have applied for an MSGP or intend to do so?
			List the specific BMPs that are proposed for this project that receive stormwater from LUHPPL drainage areas. These BMP types must be listed in RISDISM Table 3-3, "Acceptable BMPs for Use at LUHPPLs." Please list BMPs:
			Additional BMPs, or additional pretreatment BMP's if any, that meet RIPDES MSGP requirements; Please list BMPs:
			Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).

ILLIC	ILLICIT DISCHARGES – MINIMUM STANDARD 9								
	Illicit discharges are defined as unpermitted discharges to Waters of the State that do not consist entirely of stormwater or uncontaminated groundwater, except for certain discharges identified in the RIPDES Phase II Stormwater General Permit.								
YES	NO	N/A							
\boxtimes			Have you checked for illicit discharges?						
	\boxtimes		Have any been found and/or corrected? If "Yes," please identify.						
		\boxtimes	Does your report explain preventative measures that keep non-stormwater discharges out of the Waters of the State (during and after construction)?						

SOIL	SOIL EROSION AND SEDIMENT CONTROL (SESC) – MINIMUM STANDARD 10									
YES	NO	N/A								
\boxtimes			Have you included a Soil Erosion and Sediment Control Plan Set and/or Complete Construction Plan Set?							
\boxtimes			Have you provided a separately-bound document based upon the <u>SESC Template</u> ? If yes, proceed to Minimum Standard 11 (the following items can be assumed to be addressed).							
			If "No," include a document with your submittal that addresses the following elements of an SESC Plan:							
			Soil Erosion and Sediment Control Plan Project Narrative, including a description of how the fifteen (15) Performance Criteria have been met:							
			Provide Natural Buffers and Maintain Existing Vegetation							
			□ Minimize Area of Disturbance							
			□ Minimize the Disturbance of Steep Slopes							
			□ Preserve Topsoil							
			□ Stabilize Soils							
			Protect Storm Drain Inlets							
			Protect Storm Drain Outlets							
			Establish Temporary Controls for the Protection of Post-Construction Stormwater Control Measures							
			Establish Perimeter Controls and Sediment Barriers							
			Divert or Manage Run-On from Up-Gradient Areas							

	Properly Design Constructed Stormwater Conveyance Channels
	Retain Sediment On-Site
	Control Temporary Increases in Stormwater Velocity, Volume, and Peak Flows
	Apply Construction Activity Pollution Prevention Control Measures
	Install, Inspect, and Maintain Control Measures and Take Corrective Actions
	Qualified SESC Plan Preparer's Information and Certification
	Operator's Information and Certification; if not known at the time of application, the Operator must certify the SESC Plan upon selection and prior to initiating site activities
	Description of Control Measures, such as Temporary Sediment Trapping and Conveyance Practices, including design calculations and supporting documentation, as required

STORMWATER MANAGEMENT SYSTEM OPERATION, MAINTENANCE, AND POLLUTION PREVENTION PLAN – MINIMUM STANDARDS 7 AND 9

Opera	tion a	nd Maintenance Section
YES	NO	
\boxtimes		Have you minimized all sources of pollutant contact with stormwater runoff, to the maximum extent practicable?
\boxtimes		Have you provided a separately-bound Operation and Maintenance Plan for the site and for all of the BMPs, and does it address each element of RICR 8.17 and RISDISM Appendix C and E?
		Lawn, Garden, and Landscape Management meet the requirements of RISDISM Section G.7? If "No," why not?
		Is the property owner or homeowner's association responsible for the stormwater maintenance of all BMP's? If "No," you must provide a legally binding and enforceable maintenance agreement (see RISDISM Appendix E, page 26) that identifies the entity that will be responsible for maintenance of the stormwater. Indicate where this agreement can be found in your report (i.e., name of report/document, page numbers, appendices, etc.).
	\boxtimes	Do you anticipate that you will need legal agreements related to the stormwater structures? (e.g. off-site easements, deed restrictions, covenants, or ELUR per the Remediation Regulations). If "Yes," have you obtained them? Or please explain your plan to obtain them:
	\boxtimes	Is stormwater being directed from public areas to private property? If "Yes," note the following: <u>Note</u> : This is not allowed unless a funding mechanism is in place to provide the finances for the long-term maintenance of the BMP and drainage, or a funding mechanism is demonstrated that can guarantee the long- term maintenance of a stormwater BMP by an individual homeowner.
Pollut	ion Pr	evention Section
\boxtimes		Designated snow stockpile locations?
	\boxtimes	Trash racks to prevent floatables, trash, and debris from discharging to Waters of the State?
\boxtimes		Asphalt-only based sealants?
	\boxtimes	Pet waste stations? (<u>Note</u> : If a receiving water has a bacterial impairment, and the project involves housing units, then this could be an important part of your pollution prevention plan).
\boxtimes		Regular sweeping? Please describe:
		De-icing specifications, in accordance with RISDISM Appendix G. (NOTE: If the groundwater is GAA, or this area contributes to a drinking water supply, then this could be an important part of your pollution prevention plan).
\boxtimes		A prohibition of phosphate-based fertilizers? (<u>Note</u> : If the site discharges to a phosphorus impaired waterbody, then this could be an important part of your pollution prevention plan).

PART 4. SUBWATERSHED MAPPING AND SITE-PLAN DETAILS

Existing	Existing and Proposed Subwatershed Mapping (REQUIRED)					
YES	NO					
\boxtimes		Existing and proposed drainage area delineations				
\boxtimes		Locations of all streams and drainage swales				
\boxtimes		Drainage flow paths, mapped according to the DEM <i>Guidance for Preparation of Drainage Area Maps</i> (included in RISDISM Appendix K)				
\boxtimes		Complete drainage area boundaries; include off-site areas in both mapping and analyses, as applicable				
\boxtimes		Logs of borings and/or test pit investigations along with supporting soils/geotechnical report				
\boxtimes		Mapped seasonal high-water-table test pit locations				
\boxtimes		Mapped locations of the site-specific borings and/or test pits and soils information from the test pits at the locations of the BMPs				
\boxtimes		Mapped locations of the BMPs, with the BMPs consistently identified on the Site Construction Plans				
\boxtimes		Mapped bedrock outcrops adjacent to any infiltration BMP				
\boxtimes		Soils were logged by a:				
		DEM-licensed Class IV soil evaluator Name: Spencer Lynds SE# 14275				
		RI-registered P.E. Name:				

Subwatershed and Impervious Area Summary							
Subwatershed (area to each design point)	First Receiving Water ID or MS4	Area Disturbed (units)	Existing Impervious (units)	Proposed Impervious (units)			
DP-1.4: Silver Creek East Branch	RI0007026R-01	1,112,405 SF	424,049 SF	305,340 SF			
DP-2.2: Silver Creek West Branch	RI0007026R-01	963,805 SF	97, 055 SF	322,809 SF			
TOTALS:		2,076,210 SF	521,104 SF	628,149 SF			

Site C	onstru	ction Plans (Indicate that the following applicable specifications are provided)
YES	NO	
\boxtimes		Existing and proposed plans (scale not greater than 1" = 40') with North arrow
\boxtimes		Existing and proposed site topography (with 1 or 2-foot contours); 10-foot contours accepted for off-site areas
\boxtimes		Boundaries of existing predominant vegetation and proposed limits of clearing
\boxtimes		Site Location clarification
\boxtimes		 Location and field-verified boundaries of resource protection areas such as: freshwater and coastal wetlands, including lakes and ponds coastal shoreline features Perennial and intermittent streams, in addition to Areas Subject to Storm Flowage (ASSFs)
\boxtimes		All required setbacks (e.g., buffers, water-supply wells, septic systems)
		 Representative cross-section and profile drawings, and notes and details of structural stormwater management practices and conveyances (i.e., storm drains, open channels, swales, etc.), which include: Location and size of the stormwater treatment practices (type of practice, depth, area). Stormwater treatment practices (BMPs) must have labels that correspond to RISDISM Table 5-2; Design water surface elevations (applicable storms); Structural details of outlet structures, embankments, spillways, stilling basins, grade-control structures, conveyance channels, etc.; Existing and proposed structural elevations (e.g., inverts of pipes, manholes, etc.); Location of floodplain and, if applicable, floodway limits and relationship of site to upstream and downstream properties or drainage that could be affected by work in the floodplain; Planting plans for structural stormwater BMPs, including species, size, planting methods, and maintenance requirements of proposed planting
\boxtimes		Logs of borings and/or test pit investigations along with supporting soils/geotechnical report and corresponding water tables
	\boxtimes	Mapping of any OLRSMM-approved remedial actions/systems (including ELURs)
		 Location of existing and proposed roads, buildings, and other structures including limits of disturbance; Existing and proposed utilities (e.g., water, sewer, gas, electric) and easements; Location of existing and proposed conveyance systems, such as grass channels, swales, and storm drains, and location(s) of final discharge point(s) (wetland, waterbody, etc.); Cross sections of roadways, with edge details such as curbs and sidewalks; Location and dimensions of channel modifications, such as bridge or culvert crossings
	\boxtimes	Locations, cross sections, and profiles of all stream or wetland crossings and their method of stabilization

Mt. Hope High School Version: 4/2015 Project Name Date 1/8/2025 Water Quality Volume Calculation WorkSheet This worksheet is designed to assist the project engineer with a determination of the required water quality treatment area. The worksheet leads the designer through redevelopment applicability first and then receiving water requirements. This tool is intended to compliment to the Redevelopment Criteria Guidance and the Water Quality Guidance and assist both the designer and the permit application reviewer towards consistent results. Enter information into only the YELLOW Boxes. Redevelopment Criteria Guidance Water Quality Goals "Stormwater Compensation Method" Step 1 - Determine which office in OWR you are applying to: **Application Guidance** Step 2 - Site Information value/calculation units Total Site Area (total area of project parcels) TS 44.41 acres Total Jurisdictional Wetlands and/or floodplain within the above TSA IW1 18.63 acres Existing impervious also within the Jurisdictonal Wetlands -JW 2.96 acres Conservation Land within the TSA 0.00 acres Site Size = (TSA)-(JW1-JW2)-CL SS= 28.74 acres Step 3 - Redevelopment Applicability Total Impervious Area (pre-construction) TIA= 10.54 acres % Impervious (if ≥40% - redevelopment standard 3.2.6 applies) 0.37 REPEAT IF NECESSARY Steps 4, 5 and 6 for EACH Waterbody ID (RIVER-ID as found in the GIS Map Server) Step 4 - Receiving waterbody information Waterbody ID or RIVER ID from GIS Map Server Waterbody Name from GIS Map Server Name the sub-watersheds (design-points) contributing to this Waterbody ID Is this Waterbody Impaired/TMDL for any Phosphorus, Metals or Bacteria? NO Is this Waterbody Impaired for Nitrogen? NO Step 5 - Pre-Post Construction Conditions to the Waterbody Total Pre-Construction Impervious Surface to this Waterbody ID 10.54 acres Total Disturbed Existing Impervious (DI) 10.47 acres Total Post-Construction Impervious to this Waterbody ID 12.54 acres 2.00 Net Increased Impervious (NII) acres Step 6 - Infiltration and BMP information - Note: Increasing infiltration will likely decrease stormwater treatment area for Metals, Bacteria and Phosporus I am proposing to infiltrate this percentage WQv to this WBID 75% % I am proposing this number of BMP's 12 # **RESULTS - Select the Larger Number of the 2 numbers provided** Min Treatment Min Water Quality w/o WO **Treatment Area** consideration **Applicable Condition** No Impairement or TMDL - New Development 12.47 12.47 No Impairment or TMDL - Redevelopment Only Phosphorus, Metals or Bacteria Impairment - New Development Only Phosphorus, Metals or Bacteria Impairment - Redevelopment Nitrogen Impairment - New Development Nitrogen Impairment - Redevelopment REQUIRED STORMWATER TREATMENT AREA 12.5 acres

* Enter the name of the STP (both type and label) which has been designed to treat this particular Rev or Rea.

PROJECT Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT Stormwater Treatment Area		
COMPUTATIONS BY AJM	DATE	1/8/2025
	REVISED	
CHECK BY	DATE	

Stormwater Treatment Area(STA)

Existing Impervious area	45	9,128 SF	
Disturbed Impervious Area (DI)	45	6,119 SF	
Proposed Impervious area			
Site Impervious Area	38	7,952 SF	
Athletic Impervious Area			
Synthetic Turf Are	a 15	8,213 SF	
Infield Mix/Warning Trac	k 4	9,394 SF	
Total Impervious Surface	59	5,559 SF	
Total Impervious Surface Requiring Water			
Quality Treatment	54	6,165 SF	
Net Impervious Are	a 9	0,046 SF	
STA required	= 54	3,156 SF	
		12.47 acres	
Impervious Areas Treated			
Bio-0	1 24,896	SF	
Bio-0	2 17,464	SF	
Bio-0	3 12,574	SF	
Bio-0	4 7,023	SF	
IB-0	1 60,869	SF	
SF-0	1 110,484	SF SF	
SF-0	2 43,659	SF	
SF-0	3 13,903	SF	
SF-0	4 7,428	SF	
SF-0	5 15,286	SF	
Wet Swale-0	1 41,189	SF	
UGIS-0	1 151,857	' SF	
QP	A 11,570	SF	
Tota	al 51	8,202 SF	< 543,156 SF
		11.90 Acres	< 12.47 Acres

	PROJECT NUMBER	23099.01
ACB	DATE	1/8/2025
	DATE	
	ACB	ACB DATE

Required Recharge Volume

The Required Recharge Volume equals the depth of runoff, corresponding to the soil type, times the impervious areas covering that soil type at the post-development site per the Rhode Island Stormwater Design and Installation Standards Manual.

Required Recharge Volume = Target Depth Factor (F) x Impervious Area

Impervious Area within Hydrologic Group " C " Soils =	543,156	SF	
F (from RISDISM) =	0.25	inches	
Recharge Volume Required for Hydrologic Group "C" Soils =	11,316	CF	
Required Recharge Volume Required = QPA Volume =	11,316 241	CF	
Required Recharge Volume Required =	11,075	CF	
Required Recharge Volume Required =	0.254	ac-ft	

Proposed BMP's

The site design incorporates bioretention areas, sand filters, infiltration basins and a underground infiltration system.

BMP's Area Volume

	WQV Volume (cf)	
Bio-01	1571	
Bio-04	1144	
IB-01	4922	
SF-01	9433	
SF-02	6113	
SF-03	4316	
SF-05	1368	
UGIS-01	12,655	
	41,522	
Total Provided Recharge Volume = Total Provided Recharge Volume =	41,522 0.953	CF ac-ft
Required Recharge Volume =	0.254	ac-ft

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Bioretention Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Bioretention Area Calculations

Refer to the RI Stormwater & Installation Standards Manual **Bioretention Area (BIO-1)**

Total Area to BIO-1 =42,514SFTotal Impervious Area =24,896SF

Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	24,896	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	519	CF
Nater Quality Volume (WQ _v)		
WQ _v = Impervious Area x 1.0 inches =	2,075	CF
75% WQ_v (including pretreatment) =	1,556	CF
Required WQ _v Volume =	1,556	CF
Volume provided in Bioretention Media =	480	CF in filter media with a 0.33 Void Ratio
Volume provided in Bioretention (above filter media) =	581	CF from HydroCAD Model
Volume provided in Sediment Forebay =	520	CF
Total WQ _v Volume Provided =	1,571	CF
Area		
$Af=WQ_{V} (d_{f})/[(k)(h_{f}+d_{f})(t_{f})]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	2.00	ft, Filter bed depth
. k =	1.00	ft/day, Coefficient of permeability of filter media
h _f =	0.23	ft, Average height of water above surface of practice
t _f =	2	days, Design filter bed drain time
Area Required =	706	SF, Surface Area of filter bed
Area Provided =	725	SF
Pretreatment (Sediment Forebay)		
Required Pretreatment Volume = 25% WQV =	519	CF
Volume Provided =	520	CF
Drawdown within 48 hours		
Drawdown Time = (Provided Volume) / (K x Bottom Area)		
Provided Volume =	1,571	CF
K = saturated hydraulic conductivity =	1.00	FT/DAY (from Section 5.5.4)
Bottom Area (Average) =	725	SF
Drawdown Time =	47	HRS < 48 hrs

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Bioretention Area Calculations

 COMPUTATIONS BY:
 acb
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Bioretention Area Calculations

Refer to the RI Stormwater & Installation Standards Manual **Bioretention Area (BIO-2)**

Total Area to BIO-2 =	26,810	SF
Total Impervious Area =	17,464	SF

Drawdown Time =	40	HRS < 48 hrs
Bottom Area (Average) =	1,128	SF
K = saturated hydraulic conductivity =	1.00	FT/DAY (from Section 5.5.4)
Provided Volume =	2,031	CF
Drawdown Time = (Provided Volume) / (K x Bottom Area)		
rawdown within 48 hours		
Volume Provided =	460	CF
Required Pretreatment Volume = 25% WQV =	364	CF
Pretreatment (Sediment Forebay)		
Area Provided =	1,128	SF
Area Required =	937	SF. Surface Area of filter bed
t _f =	2	days, Design filter bed drain time
h _f =	0.25	ft, Average height of water above surface of practice
k =	1.00	ft/day, Coefficient of permeability of filter media
d _f =	3.00	ft, Filter bed depth
$Af=WQ_V (d_f)/[(k)(h_f+d_f)(t_f)]$	(From 5.5.4)	SF, Surface area of filter bed
rea		
Total WQ _v Volume Provided =	2,031	CF
Volume provided in Sediment Forebay =	460	CF
Volume provided in Bioretention (above filter media) =	440	CF from HydroCAD Model
Volume provided in Bioretention Media =	1,131	CF in filter media with a 0.33 Void Ratio
	·	
Required WQ _v Volume =	1,092	CF
75% WQ_V (including pretreatment) =	1,092	CF
WQ _V = Impervious Area x 1.0 inches =	1,455	CF
Nater Quality Volume (WQ _v)		
Required Re _v Volume =	364	CF
Recharge Factor (From Table 3-4) =	0.25	Inches
Impervious Area within HSG =	17,464	SF
Hydrologic Soil Group (HSG) =	С	

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Bioretention Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Bioretention Area Calculations

Refer to the RI Stormwater & Installation Standards Manual **Bioretention Area (BIO-3)**

Total Area to BIO-3 =	16,632	SF
Total Impervious Area =	12,574	SF

Recharge Volume (Re _v)		
Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	12,574	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	262	CF
/ater Quality Volume (WQ _v)		
WQ _V = Impervious Area x 1.0 inches =	1,048	CF
Required WQ _v Volume =	1,048	CF
Volume provided in Bioretention Media =	556	CF in filter media with a 0.33 Void Ratio
Volume provided in Bioretention (above filter media) =	552	CF from HydroCAD Model
Total WQ _v Volume Provided =	1,108	CF
rea		
$Af=WQ_{V} (d_{f})/[(k)(h_{f}+d_{f})(t_{f})]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	2.75	ft, Filter bed depth
k =	1.00	ft/day, Coefficient of permeability of filter media
h _f =	0.38	ft, Average height of water above surface of practice
t _f =	2	days, Design filter bed drain time
	488	SF, Surface Area of filter bed
Area Required =	400	

Drawdown within 48 hours			
Drawdown Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	1,108	CF	
K = saturated hydraulic conductivity =	1.00	FT/DAY (from Section 5.5.4)
Bottom Area (Average) =	606	SF	
Drawdown Time =	39	HRS	< 48 hrs

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Bioretention Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Bioretention Area Calculations

Refer to the RI Stormwater & Installation Standards Manual	1
Bioretention Area (BIO-4)	

Total Area to BIO-4 =	16,850	SF
Total Impervious Area =	7,023	SF

Recharge Volume (Re _v)		
Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	7,023	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	146	CF
Vater Quality Volume (WQ _v)		
WQ _V = Impervious Area x 1.0 inches =	585	CF
Required WQ _v Volume =	585	CF
Volume provided in Bioretention Media =	724	CF in filter media with a 0.33 Void Ratio
Volume provided in Bioretention (above filter media) =	420	CF from HydroCAD Model
Total WQ _v Volume Provided =	1,144	CF
rea		
$Af=WQ_V (d_f)/[(k)(h_f+d_f)(t_f)]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	3.00	ft, Filter bed depth
k =	1.00	ft/day, Coefficient of permeability of filter media
h _f =	0.25	ft, Average height of water above surface of practice
t _f =	2	days, Design filter bed drain time
	528	SF, Surface Area of filter bed
Area Required =	520	

Drawdown Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	1,144	CF	
K = saturated hydraulic conductivity =	1.00	FT/DAY	(from Section 5.5.4)
Bottom Area (Average) =	601	SF	
Drawdown Time =	42	HRS	< 48 hrs

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Sand Filter Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Sand Filter Calculations

Refer to the RI Stormwater & Installation Standards Manual Sand Filter (SF-1)

Total Area to SF-1 =	339,731	SF
Total Impervious Area =	110,484	SF
Pavement areas	76,199	SF

Recharge Volume (Rev) Hydrologic Soil Group (HSG) =	С		
Impervious Area within HSG =	110,484	SF	
Recharge Factor (From Table 3-4) =	0.25	Inches	
Required Rev Volume =	2,302	CF	
	2,002	01	
Water Quality Volume (WQ _v)			
WQ _V = Impervious Area x 1.0 inches =	9,207	CF	
75% WQ_V (including pretreatment) =	6,905	CF	
Required WQ _v Volume =	6,905	CF	
Volume provided in Sand Filter Media =	4,158	CF in filter	media with a 0.33 Void Ratio
Volume provided in Sand Filter (above filter media) =	3,625	CF from H	ydroCAD Model
Volume provided in Sediment Forebay =	1,650	CF	
Total WQ _v Volume Provided =	9,433	CF	
Area			
$Af=WQ_{V}(d_{f})/[(k)(h_{f}+d_{f})(t_{f})]$	(From 5.5.4)	,	e area of filter bed
d _f =	3.00	ft, Filter be	
k =	3.50		efficient of permeability of filter media
h _f =	0.38	, U	e height of water above surface of practice
t _f =	2	days, Desi	gn filter bed drain time
Area Required =	1,198	SF, Surfac	e Area of filter bed
Area Provided =	4,200	SF	
Pretreatment (Sediment Forebay)			
Required Pretreatment Volume = 25% WQV =	1,587	CF*	*Pretreatment is for pavement areas only
Volume Provided =	1,650	CF	Does not icluded pretreatment for roof runoff or athletic infield mix
Drawdown within 48 hours			
Drawdown Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	9,433	CF	
K = saturated hydraulic conductivity =	3.50	FT/DAY (fr	rom Section 5.5.4)
	4,200	SF	
Bottom Area (Average) =	.,		

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Sand Filter Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Sand Filter Calculations

Refer to the RI Stormwater & Installation Standards Manual Sand Filter (SF-2)

Total Area to SF-2 =	89,751	SF
Total Impervious Area =	43,659	SF

Hydrologic Soil Group (HSG) =	С		
Impervious Area within HSG =	43,659	SF	
Recharge Factor (From Table 3-4) =	0.25	Inches	
Required Rev Volume =	910	CF	
	310	61	
Vater Quality Volume (WQ _v)			
WQ _V = Impervious Area x 1.0 inches =	3,638	CF	
75% WQ_V (including pretreatment) =	2,729	CF	
Required WQ _v Volume =	2,729	CF	
Volume provided in Sand Filter Media =	2,149	CF in filter media with a 0.33 Void Ratio	
Volume provided in Sand Filter (above filter media) =	2,172	CF from HydroCAD Model	
Volume provided in Sediment Forebay =	1,792	CF	
Total WQ _v Volume Provided =	6,113	CF	
Area			
$Af=WQ_V (d_f)/[(k)(h_f+d_f)(t_f)]$	(From 5.5.4)	SF, Surface area of filter bed	
d _f =	3.00	ft, Filter bed depth	
k =	3.50	ft/day, Coefficient of permeability of filter media	
h _f =	0.38	ft, Average height of water above surface of pra-	
t _f =	2	days, Design filter bed drain time	
Area Required =	776	SF, Surface Area of filter bed	
Area Provided =	2,171	SF	
Pretreatment (Sediment Forebay)			
Required Pretreatment Volume = 25% WQV =	910	CF	
Volume Provided =	1,792	CF	
Drawdown within 48 hours			
Drawdown Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	6,113	CF	
K = saturated hydraulic conductivity =	3.50	FT/DAY (from Section 5.5.4)	
Bottom Area (Average) =	2,171	SF	

PAGE 1 OF 1

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Sand Filter Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Sand Filter Calculations		
Refer to the RI Stormwater & Installation Standards Manual		
Sand Filter (SF-3)		
	00.004	05
Total Area to SF-3 =	22,284	SF SF
Total Impervious Area =	13,903	SF
Cell Volume shall be larger of Recharge Volume and Water Quali	ty Volume	
Recharge Volume (Re _v)		
Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	13,903	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	290	CF
Water Quality Volume (WQ _v)		
WQ_V = Impervious Area x 1.0 inches =	1,159	CF
75% WQ_V (including pretreatment) =	869	CF
Required WQ _v Volume =	869	CF
Volume provided in Sand Filter Media =	1,979	CF in filter media with a 0.33 Void Ratio
Volume provided in Sand Filter (above filter media) =	1,999	CF from HydroCAD Model
Volume provided in Sand I me (above inter media) =	338	CF
Total WQ _v Volume Provided =	4,316	CF
	.,	
Area		
$Af=WQ_{V} (d_{f})/[(k)(h_{f}+d_{f})(t_{f})]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	3.00	ft, Filter bed depth
k =	3.50	ft/day, Coefficient of permeability of filter media
h _f =	0.38	ft, Average height of water above surface of practice
t _f =	2	days, Design filter bed drain time
Area Required =	547	SF, Surface Area of filter bed
Area Provided =	2,011	SF
Pretreatment (Sediment Forebay)		
Required Pretreatment Volume = 25% WQV =	290	CF
Volume Provided =	338	CF
Drawdown within 48 hours		
Drawdown Time = (Provided Volume) / (K x Bottom Area)		
Provided Volume =	4,316	CF
K = saturated hydraulic conductivity =	3.50	FT/DAY (from Section 5.5.4)
Bottom Area (Average) =	2,011	SF
Drawdown Time =	13	HRS < 48 hrs

PAGE 1 OF 1

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Sand Filter Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Sand Filter Calculations

Refer to the RI Stormwater & Installation Standards Manual Sand Filter (SF-4)		
	04.007	
Total Area to SF-4 = Total Impervious Area =	31,007 7,428	SF SF
Cell Volume shall be larger of Recharge Volume and Water Qualit	y Volume	
Recharge Volume (Re _v)		
Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	7,428	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	155	CF
Vater Quality Volume (WQ _v)		
WQ_V = Impervious Area x 1.0 inches =	619	CF
Required WQ _v Volume =	619	CF
Volume provided in Sand Filter Media =	1,166	CF in filter media with a 0.33 Void Ratio
Volume provided in Sand Filter (above filter media) =	1,013	CF from HydroCAD Model
Total WQ _v Volume Provided =	2,179	CF
Area		
$Af=WQ_V (d_f)/[(k)(h_f+d_f)(t_f)]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	2.00	ft, Filter bed depth
k =	3.50	ft/day, Coefficient of permeability of filter media
h _f =	0.25	ft, Average height of water above surface of practice
t _f =	2	days, Design filter bed drain time
Area Required =	277	SF, Surface Area of filter bed
Area Provided =	1,767	SF

own within 48 hours rawdown Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	2,179	CF	
K = saturated hydraulic conductivity =	3.50	FT/DAY (from Section 5.5.4)
Bottom Area (Average) =	1,767	SF	
Drawdown Time =	8	HRS	< 48 hrs

 PROJECT NAME: Mt. Hope High School
 PROJECT NUMBER:
 23099.01

 SUBJECT: Sand Filter Area Calculations

 COMPUTATIONS BY:
 ACB
 DATE:
 1/8/2025

 CHECK BY:
 DATE:
 DATE:

Sand Filter Calculations

Refer to the RI Stormwater & Installation Standards Manual Sand Filter (SF-5) Tennis court - West			
Total Area to SF-5 =	23,611	SF	
Total Impervious Area =	15,286	SF	
· · · · · · · · · · · · · · · · · · ·			

Cell Volume shall be larger of Recharge Volume and Water Quality Volume

Recharge Volume (Re _v)		
Hydrologic Soil Group (HSG) =	С	
Impervious Area within HSG =	15,286	SF
Recharge Factor (From Table 3-4) =	0.25	Inches
Required Re _v Volume =	318	CF
Water Quality Volume (WQ _v)		
WQ _V = Impervious Area x 1.0 inches =	1,274	CF
Required WQ _v Volume =	1,274	CF
Volume provided in Sand Filter Media =	705	CF in filter media with a 0.33 Void Ratio
Volume provided in Sand Filter (above filter media) =	663	CF from HydroCAD Model
Total WQ _v Volume Provided =	1,368	CF
Area		
$Af=WQ_{V} (d_{f})/[(k)(h_{f}+d_{f})(t_{f})]$	(From 5.5.4)	SF, Surface area of filter bed
d _f =	3.00	ft, Filter bed depth
k =	3.50	ft/day, Coefficient of permeability of filter media
h _f =	0.38	ft, Average height of water above surface of practice
$t_f =$	2	days, Design filter bed drain time
Area Required =	174	SF, Surface Area of filter bed
Area Provided =	705	SF
Drawdown within 48 hours		
Drawdown Time = (Provided Volume) / (K x Bottom Area)		
Provided Volume =	1,368	CF
K = saturated hydraulic conductivity =	3.50	FT/DAY (from Section 5.5.4)
Bottom Area (Average) =	705	SF

			PAGE 1 OF 1
	PROJECT Mt. Hop	e High School	PROJECT NUMBER 23099.01
	SUBJECT Infiltrati	-	
PARE	COMPUTATIONS E	ay ACB	DATE 1/8/2025
CORPORATION			
	CHECK BY		DATE
Infiltration Basin Calculations			
Infiltration Basin -01			
Total Area to Infiltration Basin =	= 68,033	SF	
Total Impervious Area	,	SF	
Cell Volume shall be larger of Recharge Volume and Water Q	uality Volume		
Recharge Volume			
Impervious Area within Hydrologic Group "C" Soils = F (from RISDISM Table 3-4) =		SF inches	
Recharge Volume Required for Hydrologic Group "C" Soils =		CF	
Water Quality Volume (WQV)			
WQV = Impervious Area x 1.0 inches =	= 5,072	CF	
Required WQV Volume (including pretreatment)	= 5,072	CF	
WQ Volume Infiltrated in 1.2" Storm = Surface Area Provided =	- , -	CF @ elevation 57.65 from HydroCAD SF	
Drawdown within 48 hours			
Time = (Provided Volume) / (K x Bottom Area Provided Volume = K = saturated hydraulic conductivity = Bottom Area (Average) =	5,204 = 3.50	CF FT/DAY (from Section 5.5.4 of the RISDISM) SF	
Time (hrs) =	= 32	hrs < 48 hrs	

			PAGE 1 OF 1
	PROJECT Mt. Hop	e High School	PROJECT NUMBER 23099.01
	SUBJECT Wet Sw	vale	
PARE	COMPUTATIONS I	BY ACB	DATE 1/8/2025
CORPORATION			DATE NO/2020
	CHECK BY		DATE
Wet Swale Calculations			
Wet Swale -01			
Total Area to Wet Swale =	57,295	SF	
Total Area to Wet Swale = Total Impervious Area =		SF SF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu	41,189		
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu Water Quality Volume (WQV)	41,189 ality Volume	SF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu	41,189		
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu Water Quality Volume (WQV)	41,189 ality Volume 3,432	SF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu <u>Water Quality Volume (WQV)</u> WQV = Impervious Area x 1.0 inches = Required WQV Volume (including pretreatment) =	41,189 ality Volume 3,432 3,432	SF CF CF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu Nater Quality Volume (WQV) WQV = Impervious Area x 1.0 inches =	41,189 ality Volume 3,432	SF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu Water Quality Volume (WQV) WQV = Impervious Area x 1.0 inches = Required WQV Volume (including pretreatment) = WQ Volume Infiltrated in 1.2" Storm = Pretreatment	41,189 ality Volume 3,432 3,432 4,244	SF CF CF	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu <u>Water Quality Volume (WQV)</u> WQV = Impervious Area x 1.0 inches = Required WQV Volume (including pretreatment) = WQ Volume Infiltrated in 1.2" Storm = Pretreatment Sediment Forebay	41,189 ality Volume 3,432 3,432 4,244	SF CF CF CF @ elevation 59.75 from HydroCAD	
Total Impervious Area = Cell Volume shall be larger of Recharge Volume and Water Qu Water Quality Volume (WQV) WQV = Impervious Area x 1.0 inches = Required WQV Volume (including pretreatment) = WQ Volume Infiltrated in 1.2" Storm = Pretreatment	41,189 ality Volume 3,432 3,432 4,244 343	SF CF CF	

PAGE	1	OF	

PROJECT	Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT	Channel Protection Volume		
COMPUTATIONS BY	ACB	DATE	1/8/2025
CHECK BY		DATE	

CHANNEL PROTECTION VOLUME (CPv)

Runoff Volume for the 1-year storm proposed condition Silver Creek (Vr)=	CF From 143,890 HydroCAD
Method 1 CPv = 0.65 x Runoff Volume from 1-year storm(Vr)	
CPv Required MIN =	93,529 CF
CPv Provided	
CPv Provided Bio-01	1,045 CF (recharge for the 1-year Storm)
Bio-02	3,413 CF (Subdrain for the 1-year Storm)
Bio-03	2,129 CF (subdrain for the 1-year Storm)
Bio-04	1,140 CF (recharge for the 1-year Storm)
SF-01	6,385 CF (recharge for the 1-year Storm)
SF-02 SF-03	3,117 CF (recharge for the 1-year Storm) 2,853 CF (recharge for the 1-year Storm)
SF-03 SF-04	3,326 CF (Subdrain for the 1-year Storm)
SF-05	1,278 CF (recharge for the 1-year Storm)
IB-01	3,773 CF (recharge for the 1-year Storm)
UGIS	11,449 CF (recharge for the 1-year Storm)
Synthetic Field Manifold	19,836 CF (recharge for the 1-year Storm)
Total CPv Provided =	59,744 CF
Total CPv Remaining =	33,785 CF
Detention Basin-01	
Average Release Flow Rate over 24 hours Vr Detention Basin 1= Qcpv =	37293 CF (1 yr volume entering detention basin-01) 0.432 CFS
Area of Orifice A = Qcpv / [Cx(2xgxh)^(1/2)]; A = pi() x r^2	
C = 0.60 g = 32.2 ft/s^2 h = average height above orifice =	0.275 ft
A =	0.1709 sf
Therefore Diameter is:	
D =	0.47 ft
D =	5.60 inches
D provided = Detention Basin -02	5.00 inches
Average Release Flow Rate over 24 hours	
Vr DB-02= Qcpv =	5314 CF (1 yr volume entering detention basin-02 0.062 CFS
Area of Orifice A = Qcpv / [Cx(2xgxh)^(1/2)]; A = pi() x r^2	
C = 0.60 g = 32.2 ft/s^2	
h = average height above orifice =	0.95 ft
A =	0.013 sf
Therefore Diameter is:	
D =	0.13 ft
D = D provided =	1.55 inches 1.50 inches

<u>10-yr Mounding Analysis for Underground Infiltration System -01</u> Date: 01/08/2025 Reviewer: DLP

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

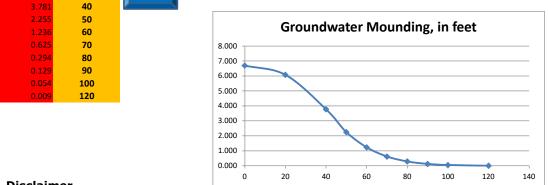
The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Conversion Ta	able
Input Values			inch/hour	feet/day
0.9400	R	Recharge (infiltration) rate (feet/day)	0.67	1.33
0.240	Sy	Specific yield, Sy (dimensionless, between 0 and 1)		
5.40	к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00 In the report accompanying this spreadsheet
40.000	х	1/2 length of basin (x direction, in feet)		(USGS SIR 2010-5102), vertical soil permeability
55.000	У	1/2 width of basin (y direction, in feet)	hours	days (ft/d) is assumed to be one-tenth horizontal
2.000	t	duration of infiltration period (days)	36	1.50 hydraulic conductivity (ft/d).
10.600	hi(0)	initial thickness of saturated zone (feet)		

maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

maximum groundwater mounding (beneath center of basin at end of infiltration period)


0

20

Ground- Distance from water center of basin Mounding, in in x direction, in

feet feet

Re-Calculate Now

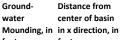
Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

<u>10-yr Mounding Analysis for Infiltration Basin -01</u> Date: 01/08/2025 Reviewer: DLP

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.


Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

			use consistent units (e.g. feet & days or inches & hours)	Conversion	Table	
h	nput Values			inch/hour	feet/da	у
	1.6800	R	Recharge (infiltration) rate (feet/day)	0.6	7	1.33
	0.160	Sy	Specific yield, Sy (dimensionless, between 0 and 1)			
	5.40	к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.0	0	4.00 In the report accompanying this spreadsheet
	40.000	x	1/2 length of basin (x direction, in feet)			(USGS SIR 2010-5102), vertical soil permeability
	7.500	У	1/2 width of basin (y direction, in feet)	hours	days	(ft/d) is assumed to be one-tenth horizontal
	2.000	t	duration of infiltration period (days)	3	6	1.50 hydraulic conductivity (ft/d).
	13.700	hi(0)	initial thickness of saturated zone (feet)			

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)

140

feet feet 0 **Re-Calculate Now** 20 2.487 40 50 Groundwater Mounding, in feet 60 70 4.500 80 4.000 90 3.500 100 3.000 120 2.500 2.000 1.500 1.000 0 500 0.000 0 20 40 60 100 120 80

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

PROJECT Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT Riprap Apron		
COMPUTATIONS BY AJM	DATE	1/8/2025
CHECK BY	DATE	

(10.4)

RIPRAP APRON CALCULATIONS

A. Resources:

Based on Section 10.2 Riprap Apron of the FHWA HEC-14 (Publication No. FHWA-NIH-06-086).

B. Equations:

$$\mathsf{D}_{50} = 0.2 \, \mathsf{D} \left(\frac{\mathsf{Q}}{\sqrt{\mathsf{g}} \mathsf{D}^{2.5}} \right)^{4/3} \left(\frac{\mathsf{D}}{\mathsf{TW}} \right)$$

Where,

 $\begin{array}{l} \mathsf{D}_{50} = \mbox{riprap size, ft} \\ \mathsf{Q} = \mbox{design discharge, cfs} \\ \mathsf{D} = \mbox{culvert diameter, ft} \\ \mathsf{TW} = \mbox{tailwater depth, ft} \\ \mathsf{g} = \mbox{acceleration due to gravity, 32.2 ft/s}^2 \end{array}$

Note:

Tailwater depth should be limited to between 0.4D and 1.0D. If tailwater is unknown, use 0.4D. Based on rock specific gravity of 2.65.

Table	10.1 Ripr	ap Classes	s and Ap	ron Dime	ensions
FH\	NA	RIDOT M.	.10.03.2	Ар	ron
Class	D ₅₀ (in)	NSA No.	D ₅₀ (in)	Length ¹	Depth
1	5	R-3	4	4*D	3.5*D ₅₀
2	6	R-4	7	4*D	3.3*D ₅₀
3	10	R-5	10	5*D	2.4*D ₅₀
4	14	R-6	13	6*D	2.2*D ₅₀
5	20	R-7	18	7*D	2.0*D ₅₀
6	22	R-8	24	8*D	2.0*D ₅₀

¹D is the culvert rise.

Width (at apron end) = 3*D + (2/3)*Length Width based on 1:3 flare

C. Calculations:

Dina				T\A/ (#)	Calc	ulated	Sel	ect	Length	\\/;	Depth
Pipe	D (in)	D (ft)	Q25 (cfs)	TW (ft)	D ₅₀ (ft)	D ₅₀ (in)	FHWA	D ₅₀ (in)	(ft)	Width (ft)	(in)
UGIS -> FES	24	2.00	9.55	0.80	0.20	2.38	1.00	5	8.0	11.3	18
BIO-01 -> FES	12	1.00	1.49	0.40	0.08	1.01	1.00	5	4.0	5.7	18
DMH-101 -> FES	18	1.50	4.97	0.60	0.16	1.95	1.00	5	6.0	8.5	18
DMH-103 -> FES	18	1.50	7.80	0.60	0.30	3.56	1.00	5	6.0	8.5	18
DIV-02 -> SF-2	12	1.00	1.19	0.40	0.06	0.75	1.00	5	4.0	5.7	18
DIV-02 -> FES	18	1.50	3.35	0.60	0.10	1.15	1.00	5	6.0	8.5	18
Trench Drain at East Tennis	12	1.00	4.78	0.40	0.40	4.77	1.00	5	4.0	5.7	18
court - RRA	12	1.00	4.70	0.40	0.40	4.77	1.00	5	4.0	5.7	10
DIV-01 -> DB-01	36	3.00	24.07	1.20	0.26	3.17	1.00	5	12.0	17.0	18
DIV-01 -> SF-01	12	1.00	2.15	0.40	0.14	1.64	1.00	5	4.0	5.7	18
DMH-303 -> FES	24	2.00	6.12	0.80	0.11	1.32	1.00	5	8.0	11.3	18
Bio-03 -> FES	12	1.00	2.07	0.40	0.13	1.56	1.00	5	4.0	5.7	18
DMH-107 -> FES	24	2.00	15.41	0.80	0.38	4.51	1.00	5	8.0	11.3	18
DMH-203 -> FES	15	1.25	1.88	0.50	0.07	0.82	1.00	5	5.0	7.1	18
CB-107 -> FES	24	2.00	18.78	0.80	0.49	5.87	2.00	6	8.0	11.3	20
Trench Drain at West Tennis	12	1 00	2.42	0.40	0.16	1.04	1.00	5	4.0	5.7	18
Court -> RRA	12	1.00	2.43	0.40	0.16	1.94	1.00	э	4.0	J./	18
SF-05 -> FES	12	1.00	2.37	0.40	0.16	1.87	1.00	5	4.0	5.7	18

<u>Note:</u> Level spreaders entering the Sedient Forebays and Infiltration System were sized using **Figure 6. Minimum Dimensions for** Level Spreaders in Section Five: Runoff Control Measures in the Rhode Island Soil Erosion & Sediment Control Handbook.

PROJECT	Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT	Flow Diversion Design		
COMPUTATION	S BY ACB	DATE	1/8/2025
CHECK BY		DATE	

1

OF

1

FLOW DIVERSION DESIGN (DIV-1)

DIV-1 directs the WQF to the sand filter area

Contributing Area

Total Area in Contributing Watershed =

339,731 Square Feet 7.80 Acres

Impervious Area

		Area (SF)	Area (acres)
Ī	ROOF2.1 and PDA 2.1A	112,859	2.591
Water Qua	lity Volume		
Water Qual	ity Volume (WQV) = 1" x Impervious Area =	9,405	CF
Water Qua	lity Flow (WQF)		
Q = Q =	WQV / Total Contributing Area =	0.028 0.33	FT INCHES
P =		1.2	INCHES
CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxF	P)^(1/2)]	
CN =	8	7	
la = 2	200/CN - 2		
la =	0.30	4 INCHES	
Time of Cor	ncentration (Tc) =		
Tc = Tc =		3 minutes 7 hours	From HydroCAD
la / P =	0.25	3	
Using TR-5	5 Exhibit 4-III		
qu =	42	5 CSM / INCH	
WQF = d	qu (CSM/INCH) x A (sq. miles) x Q (INCH)		
WQF =	1.7	2 CFS]
Area of Ori	fice		
A = WQF /	[Cx(2xgxh)^(1/2)]; A = pi() x r^2		
C = 0.60 g = 32.2 ft/s h = average	s^2 e height above orifice		
h=	0.4		
A =	0.54	0 51	
Therefore D			
D = D min. =	0.8	4 ft 0 inches	7
Provided [0 inches	L

References:

PROJECT	Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT	Flow Diversion Design		
COMPUTATION	IS BY ACB	DATE	1/8/2025
CHECK BY		DATE	

1

OF

1

FLOW DIVERSION DESIGN (DIV-2)

DIV-2 directs the WQF to the sand filter area

Contributing Area

Total Area in Contributing Watershed =

72,790 Square Feet 1.67 Acres

Impervious Area

PDA 1.4B 33,352 Water Quality Volume Water Quality Volume (WQV) = 1" x Impervious Area = 2,779 CF Water Quality Flow (WQF) Vater Quality Flow (WQF) 0.038 FT Q = WQV / Total Contributing Area = 0.038 FT Q = 0.46 INCH P = 1.2 INC CN = 90 Ia = 200/CN - 2	
Water Quality Volume (WQV) = 1" x Impervious Area = 2,779 CF Water Quality Flow (WQF) (WQF) Q = WQV / Total Contributing Area = 0.038 FT Q = 0.46 INCH P = 1.2 INCH CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^{(1/2)]} 90	
Water Quality Flow (WQF) Q = 0.038 FT 0.46 INCH Q = 0.46 INCH 0.46 INCH 0.46 INCH P = 1.2 INCH 1.2 INCH CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^{(1/2)] 90	
Q = WQV / Total Contributing Area = 0.038 FT Q = 0.46 INCH P = 1.2 INC CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^(1/2)] CN = 90	
Q = 0.46 INCH P = 1.2 INC CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^(1/2)] CN = 90	
CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^(1/2)] CN = 90	CHES
CN = 90	
la = 200/CN - 2	
la = 0.222 INCHES	
Time of Concentration (Tc) =	
Tc =13.9 minutesFromTc =0.23 hours	m HydroCAD
la / P = 0.185	
Using TR-55 Exhibit 4-III	
qu = 525 CSM / INCH	
WQF = qu (CSM/INCH) x A (sq. miles) x Q (INCH)	
WQF = 0.63 CFS	
Area of Orifice	
A = WQF / [Cx(2xgxh)^(1/2)]; A = pi() x r^2	
C = 0.60 g = 32.2 ft/s^2 h = average height above orifice	
h= 0.25	
A = 0.261 sf	
Therefore Diameter is:	
D = 0.58 ft D min. = 7 inches	
Provided [8 inches	

References:

PROJECT	Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT	Flow Diversion Design		
COMPUTATION	IS BY ACB	DATE	12/24/2024
CHECK BY		DATE	

1

OF

1

FLOW DIVERSION DESIGN (DIV-3)

DIV-3 directs the WQF to the sand filter area

Contributing Area

Total Area in Contributing Watershed =

42,514 Square Feet 0.98 Acres

Impervious Area

	Area (SF) Area (acres)
PDA 1.4D	24,896 0.57
Water Quality Volume	
Water Quality Volume (WQV) = 1" x Impervious Are	ea = 2,075 CF
Water Quality Flow (WQF)	
Q = WQV / Total Contributing Area = Q =	= 0.049 FT 0.59 INCHES
P =	1.2 INCHES
CN = [1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.2	.25xQxP)^(1/2)]
CN =	93
la = 200/CN - 2	
la =	0.161 INCHES
Time of Concentration (Tc) =	
Tc = Tc =	6 minutes From HydroCAD 0.10 hours
la / P =	0.134
Using TR-55 Exhibit 4-III	
qu =	625 CSM / INCH
WQF = qu (CSM/INCH) x A (sq. miles) x Q (INCH	SH)
WQF =	0.56 CFS
Area of Orifice	
A = WQF / [Cx(2xgxh)^(1/2)]; A = pi() x r^2	
C = 0.60	
g = 32.2 ft/s^2 h = average height above orifice	
h=	0.38
A =	0.189 sf
Therefore Diameter is:	
D =	0.49 ft
D min. =	6 inches
Provided [9 inches

References:

PROJECT	Mt. Hope High School	PROJECT NUMBER	23099.01
SUBJECT	Flow Diversion Design		
COMPUTATIONS BY	ACB	DATE	1/8/2025
CHECK BY		DATE	

1

OF

1

FLOW DIVERSION DESIGN (DIV-4)

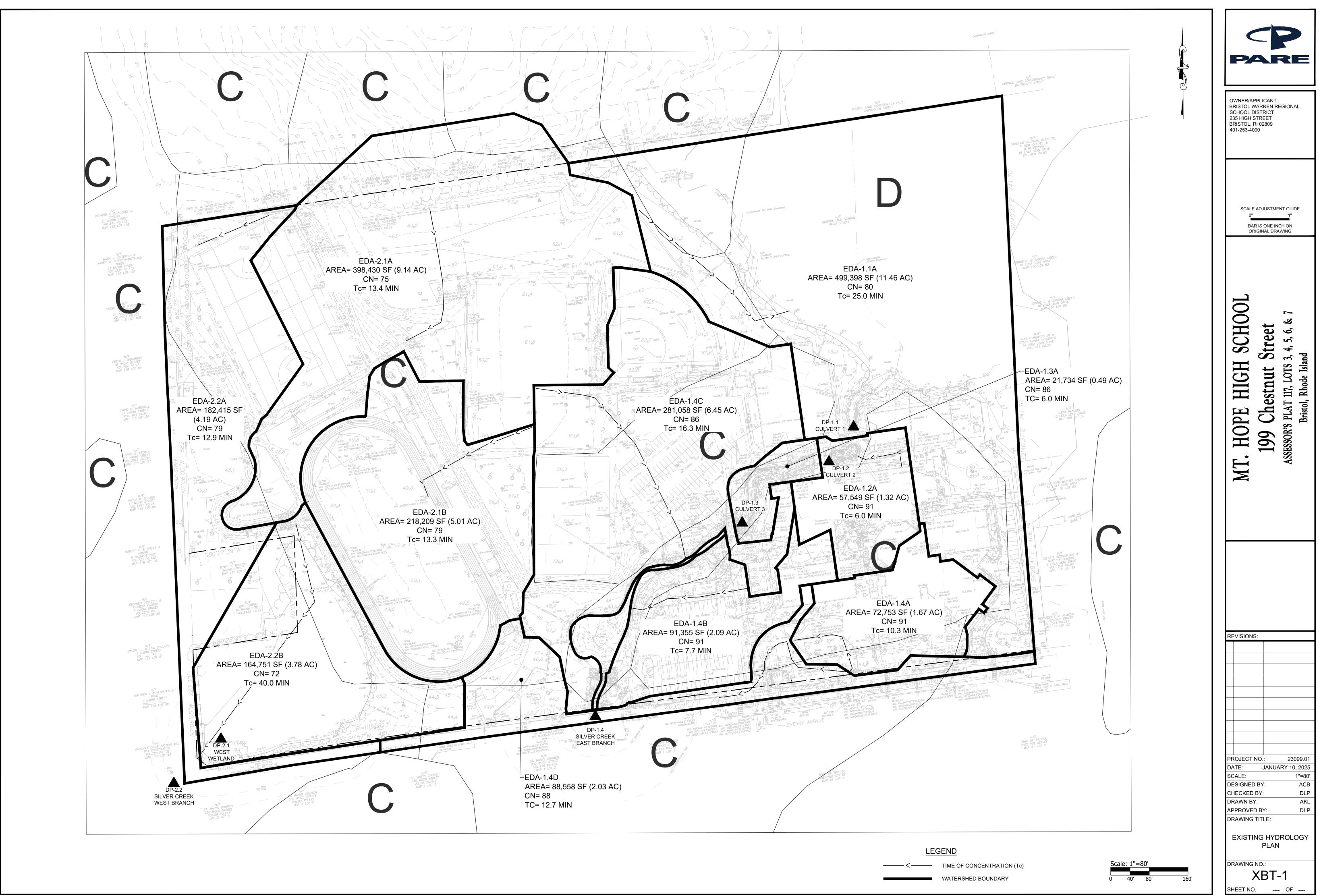
DIV-4 directs the WQF to the sand filter area

Contributing Area

Total Area in Contributing Watershed =

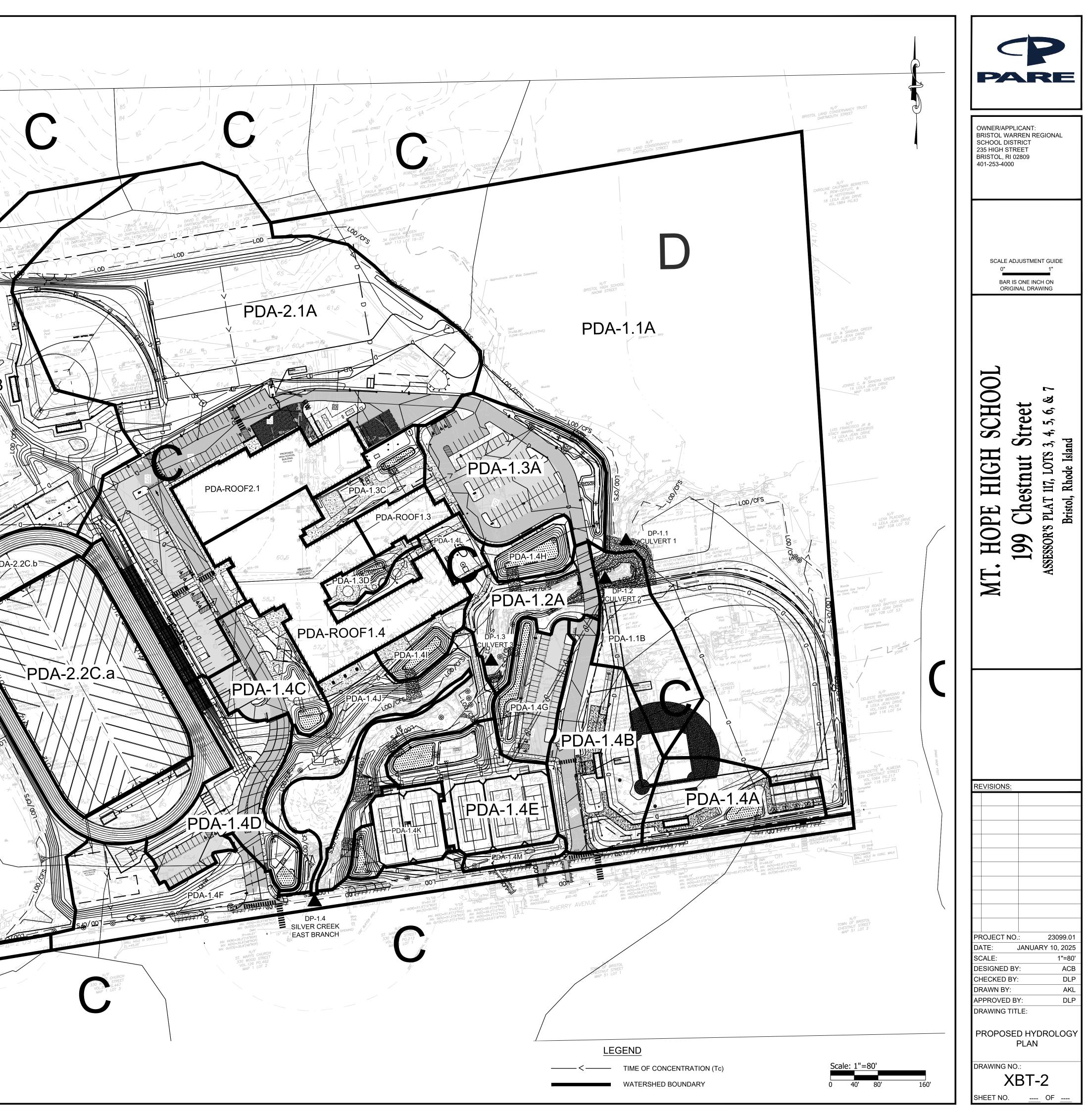
151,857 Square Feet 3.49 Acres

Impervious Area


		Area (SF)	Area (acres)
	PDA 2.2C.a and PDA2.2C.b	151,857	3.486
Water Qu	ality Volume		
Water Qua	ality Volume (WQV) = 1" x Impervious Area =	12,655	CF
Water Qu	ality Flow (WQF)		
Q = Q =	5	0.083 1.00	FT INCHES
P =		1.2	INCHES
CN =	[1000] / [10 + 5xP + 10xQ - 10x(Q^2 + 1.25xQxP)^(1/2)]	
CN =	98		
la =	200/CN - 2		
la =	0.038	INCHES	
Time of Co	oncentration (Tc) =		
Tc = Tc =		minutes hours	From HydroCAD
la / P =	0.031		
Using TR-	55 Exhibit 4-III		
qu =	700	CSM / INCH	
WQF =	qu (CSM/INCH) x A (sq. miles) x Q (INCH)		
WQF =	3.81	CFS	
Area of O	rifice / [Cx(2xgxh)^(1/2)]; A = pi() x r^2		
C = 0.60 g = 32.2 ft h = averag	/s^2 ge height above orifice		
h= A =	0.63 1.002		
Therefore	Diameter is:		
D =	1.13		7
D min. =		inches]
Provided [- 18	inches	

References:

Bristol Warren Regional School District MT. HOPE HIGH SCHOOL


APPENDIX D

XBT-1 Existing Hydrology XBT-2 Proposed Hydrology

PDA-1.1A	AREA (SF)	CN	TC (MINUTES)	'	(('		
•	475,005	77	21.1				
PDA-1.1B	32,995	77	13.1		\ .		
PDA-1.2A PDA-1.3A	25,858 57,295	80 92	7.3 6.5				
PDA-1.3C	16,850	84	6.8				
PDA-1.3D	6,850	84	6.0				
PDA-1.4A	31,007	83	13.4		Ì	(()) ()) ()))))))))))))
PDA-1.4B PDA-1.4C	50,506 26,810	85 90	13.9 6.0		\sim		
PDA-1.4D	42,514	88	6.0				OD DET MOUTH STREET
PDA-1.4E	39,245	89	6.0				
PDA-1.4F PDA-1.4G	73,858 22,284	87 89	14.5 6.0		55		
PDA-1.48	10,744	75	6.0				I I N
PDA-1.4I	9,824	81	6.0	54.			N/F SQUALS
PDA-1.4J	59,466	79	6.0	-	N/F SOA	RES SUSA	VOUTH STREET
PDA-1.4K PDA-1.4L	18,876 11,978	93 80	6.0 8.5	JJ Iron Pipe	GO M. & DARTMOUTH SIREET C 4 DARTMOUTH SIREET C 4 DARTMOUTH SIREET C 4 DARTMOUTH SIREET C		10-02-57 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PDA-1.4M	4,734	75	14.3	Find.	57x6	2	P15-02 P15-02 P15-05 P1
PDA-2.1A	308,645	81	16.3	157 6	5 TCL"CB TF=49.76' NO VISIONE PIPES	L TW=54.3', -7	W = 54.8, $BW = 57.3BW = 55.3^{\circ}, BW = 57.4D > 4^{\circ}, C = 10^{\circ}, C $
PDA-2.1B PDA-2.2A	188,298	76	17.0	24	51	-8×0	Carlos All
PDA-2.2A PDA-2.2B	159,283 152,260	80 72	12.9 40.0		DMH TF=5),18' TF=5,18' 10' / 10''/N)=46.1'(12"CR		XTYN
PDA-2.2C.a	90,671	98	6.0	0565 C	INV. OUTRE CO		
PDA-2.2C.b	61,186	98	6.0	50-18	\$ ¹⁰ '\ 50,5 ²		51x9 PDA
PDA-ROOF 1.3 PDA-ROOF 1.4	9,782 58,210	98 98	6.0 6.0	STREE		X	
PDA-ROOF 2.1	31,087	98	6.0	682.			
			DAVID B. 15 NAOMI VOL.2044 MAP 118	RSHALL STREET PG.91 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.198 PG.197 PG.2010 PG			
			ROBERT 9 N VOL MAF	N/F SEGALA STREET PG.198 LOT 97 LOT 97 M. STREET 1661 PG.24 118 LOT 96 122 N/F C. & SHEILA A. AMARAL ADMI STREET L720 PG.132 P 118 LOT 95 N/F SHEILA A. AMARAL L720 PG.132 P 118 LOT 95		A CONTRACTOR AND A CONT	

'OBS\23 Jobs\23099.01 BWRSD Mt Hope HS-RIDE Stage III-IV-RI\DWGS\zz pro-hydro.

