## May River Project Assessing Change After 20 Years

Andrew Tweel, Ph.D.
Pamela Marcum, Denise Sanger,
Ph.D.,
Gary Sundin, Peter KingsleySmith, Ph.D.
Marine Resources Research

Institute



## Rationale

- In 2002, with several large developments planned, the Town of Bluffton commissioned a study to characterize the environmental condition of the May River and its contributing tidal creek habitats.
- This Baseline Study leveraged existing statewide monitoring programs and research to allow for comparison to other areas
  - SCECAP
  - Tidal Creek Project
  - State-wide oyster research

## The watershed has changedot



2982



#### **Forested Watershed**

# Some outcomes of development and BMPs

- Net result of increased impervious cover:
  - Increased volume of water conveyed to coastal system
  - Often increased <u>concentration</u> of contaminants in stormwater
  - Increased contaminant load conveyed to coastal system
  - Often occurs in tandem with loss of natural buffers such as wetlands and vegetated areas
- Other changes, such as increases in precipitation magnitude may further exacerbate this
- Stormwater ponds are designed as a BMP to these changes
  - Rain event/storage requirements
  - Detain/retain stormwater, slow flow to coast
  - Allow for particle settling





Prohibited shellfish harvesting

Restricted shellfish harvesting

## Goals of current study

- Assess changes that have occurred since 2002 Baseline Study
  - Land use/watershed
  - Variety of coastal waters ranging from small to large
  - Oyster demographics, disease, contaminants and stressors
- Assess current state of May River watershed
- Provide recommendations for management

## Definitions

 Small tidal creeks: Tidal Creek Project refers to as headwater tidal creeks, primary interface with upland areas. Intertidally-dominated, < 30 ft wide. Typically 10-15 ft.

 <u>Tidal channels</u>: Larger tidal rivers, secondarily connected to uplands. Subtidallydominated, > 30 ft wide





## Timeline

- Small tidal creek and tidal channel sampling: summer 2023
- Oyster sampling: collection summer 2023, retrieval of trays spring 2024















## Land Use Assessment

#### • Land use data:

- Impervious cover
- Wetland and vegetated cover
- Development types (high, medium, low density)
- 2001 to 2021 (9 time points)
- Town-provided basins
- Small tidal creek subwatersheds

## Results: Land Use

• Developed land cover classes increased rapidly between 2001 and 2021



## Results: Land Use

• Along with development, impervious cover increased similarly



## Results: Land Use

- Vegetated land cover classes decreased
  - Vegetated uplands (fields, forests)
  - Wetlands (forested or woody wetlands, emergent wetlands or fresh marsh)



Vegetated cover excl. forested wetlands (3019 a

Forested wetlands (513 ac

## Results: Small Tidal

- Stoney and Rose Dhu Creek subwatersheds contain a large proportion of this development
- Still contain most of the remaining forested wetlands
- Heyward Cove developed earliest



2,500





## Small Tidal Creek

- Primary interface between and coastal systems
- Sentinel ecosystem
  - Shows impact before larger sy
- Leverage SCDNR long-term T Creek Project, 1994-
- Six creeks
- Variety of parameters



## Small tidal creeks <30 ft, intertidal



500 site 500 m downstream

Water qual. Continuous WQ

## Heyward Cove

COM



## Measures of habitat quality

| Water Quality       | Sediment Quality               | Biological                      |
|---------------------|--------------------------------|---------------------------------|
| Nutrients (5)       | Contaminants (20+)             | Benthic community               |
| Fecal Coliform      | legacy sources<br>(e.g., DDT)  | <pre>% poll. sens.</pre>        |
| Chlorophyll a       | ongoing<br>sources (e.g., PAH) | <pre>% poll.<br/>tolerant</pre> |
| Dissolved<br>Oxygen | Grain size                     |                                 |
| Salinity            | Total Org. Carbon              |                                 |
| рH                  | Toxicity                       |                                 |

#### Results: Small Tidal Creek Water Quality

- One-time sampling events, may include natural variability
- Most parameters decreased except nitrate/nitrite.
- Surrounding land use may explain high nitrate/nitrite



#### Results: Small Tidal C Sediment Contaminants

- Mixed results- some higher, some lower.
  - Legacy contaminants DDT, PCB
  - PAH, Pesticides, Metals
- Heyward Cove had high PAH in 2001 and had even higher PAH in 2023
  - ERL (11) and ERM (7) exceedances in 2023, EPA classifies as 'poor'
- Aside from PAH in Heyward Cove, levels generally within





#### Results: Small Tidal Cre Benthic Community

- Paired t-test, no significant change in pollutionindicative or sensitive species
- Overall, across all creeks studied, impervious cover is significantly correlated to an increase in pollution-





## Tidal Channel Study

- Represents most of the coastal h by area
- Leverages large SCDNR SCECAP dat 1999-present
- Indices to evaluate ecosystem holistically
- Ten sites
- Variety of parameters



## Tidal channels > 30 ft wide, subtidal





## Measures of habitat quality

| Water Quality       | Sediment Quality               | Biological          |
|---------------------|--------------------------------|---------------------|
| Nutrients (5)       | Contaminants (20+)             | Benthic community   |
| Fecal Coliform      | legacy sources<br>(e.g., DDT)  | <mark>B-IBI</mark>  |
| Chlorophyll a       | ongoing<br>sources (e.g., PAH) | <mark>Nekton</mark> |
| Dissolved<br>Oxygen | Grain size                     |                     |
| Salinity            | Total Org. Carbon              |                     |
| рН                  | Toxicity                       |                     |

## Results: Tidal ChanedtStudy Water Quality SCECAP Same Year

- One-time sampling events, may include natural variability
- Total N, P, Ortho-P higher in upper watershed
- Chlorophyll a significantly increased, ammonia significantly



#### Results: Tidal Channels Fecal Coliform

- SCDES Shellfish Sanitation data
  - 3000+ observations
  - Restricted harvest
- Uppermost long-term sites both increased most
- Lower sites decreased



Baseline Study Results: Tidal Channeltsdy SCECAP Sediment Quality

Same

- ERMQ: biologicallyrelevant concentrations
- Large increase in PAH all sites, PCB decrease
- Overall ERMQ driven by metals, 2002-2023 patterns
- ERL or ERM • No exceedances, levels are  $\sim 1_{r}$



#### Results: Tidal Channels Indices



## Oyster Study

- Demographics, disease, and stressor
  - Ecosystem engineer
    - Creates or maintains habitat for other spec
  - Sessile
    - Good indicator to represent a loca
  - Culturally and economically imp
  - Six sites (2 upper, 2 mid, 2 lo





## Measures of oyster quality

| Demographics        | Disease and Stress         | Contamination                  |
|---------------------|----------------------------|--------------------------------|
| Density             | Dermo<br>(preval./intens.) | Contaminants (20+)             |
| Size                | MSX<br>(preval./intens.)   | legacy sources<br>(e.g., DDT)  |
| Recruitment         | Stress metabolites<br>(2)  | ongoing<br>sources (e.g., PAH) |
| Mortality           | Genetic markers<br>(3)     |                                |
| Associated<br>fauna |                            |                                |

#### Results: Oyster Demographics

- Quadrats: smaller mean shell height & higher density
  - More small oysters
- Trays: similar or larger recruit height
- Low mortality
  - Consistent with statewide average (2023-24 lowest in last 9 years)



Results: Oyster Demographics Higher density of recruits and sub-legal oysters in upper section

• Larger average size of recruits in upper section

• Upper section closed to harvest since 2009

 Part of lower section (L-02) opened to increased harvest



Results: Oyster Study Health and Disease • Dermo (*Perkinsus* 

*marinus*)

- Ubiquitous
- Prevalence slightly higher
- MSX (Haplosporidium nelsoni)
  - Mid and lower sites only
  - Consistent with previous study
- Consistent with



#### Results: Oyster Study Tissue Contaminants

- Values generally low compared to urbanized watersheds
- Values decreased for pesticides, PCB between 2002 and 2023

- PAH is mixed. Consistent increase at lower sites
- Uiahar than adiacont



## Key Results

- The May River watershed has developed substantially since 2002, converting a forested and agricultural watershed to a suburban landscape
- Despite these changes, marine habitats in the May River watershed are still healthy in many regards, relative to SCDNR long-term datasets
- But there are also several indicators of degradation...

## Key Results

- In small tidal creeks:
  - Chlorophyll
  - Nitrate/nitrite
  - Fecal coliform
  - Heyward Cove PAH in sediments
- In *tidal channels*, especially upper reach and smaller branches:
  - Chlorophyll
  - Total phosphorus
  - Fecal coliform
- Oyster populations and health are consistent with other areas of the coast and primarily reflect changes in management rather than urbanization

## Recommendations

- Continued monitoring and synthesis of data
  - Especially for metrics that indicate degradation trend
  - Identify focus areas (i.e. spatially targeted sampling)
  - Distinguish natural variability from urbanization impacts

- Potential management priorities, consistent with Blueprint Bluffton
  - Improvements to stormwater and wastewater infrastructure (public and private)
  - Conservation of remaining natural landscape features

## Thank you tweela@dnr.sc.gov

Thank you to SCDNR staff, Town of Bluffton, NOAA, SCDNR support



## Supplemental Information



|              |    |       | Imperviou | Impervio |       |       | VP and P |  |
|--------------|----|-------|-----------|----------|-------|-------|----------|--|
| Small Tidal  |    |       | s Cover   | us Cover | Ponds | Ponds | Draining |  |
| Creek        |    | Area  | 2001      | 2021     | 1999  | 2021  | Soils    |  |
| Subwatershed |    | acres | 010       | 010      | acres | acres | 010      |  |
| Stoney Creek | SC | 4830  | 1.1       | 10.9     | 58.6  | 321.9 | 0.33     |  |
| Rose Dhu     |    |       |           |          |       |       |          |  |
| Creek        | RD | 2431  | 3.1       | 13.8     | 0.6   | 125.2 | 0.31     |  |
| Palmetto     |    |       |           |          |       |       |          |  |
| Bluff        | PB | 990   | 0.6       | 3.4      | 0.0   | 41.7  | 0.40     |  |
| Heyward Cove | HW | 466   | 15.7      | 27.5     | 4.9   | 12.5  | 0.39     |  |
| Brighton     |    |       |           |          |       |       |          |  |
| Beach        | BB | 365   | 1.5       | 1.6      | 4.4   | 5.1   | 0.14     |  |
| Bass Creek   | BC | 124   | 28.4      | 30.4     | 1.2   | 2.1   | 0.13     |  |

|      |      |      |        |         | Water Quality  |                  |               |                 |                  |    |                | 1                   | Sedime   | ent Qual     | lity         | Biologic               | Habitat                  |                       |
|------|------|------|--------|---------|----------------|------------------|---------------|-----------------|------------------|----|----------------|---------------------|----------|--------------|--------------|------------------------|--------------------------|-----------------------|
| Туре | Site | Year | Lat    | Long    | Total Nitrogen | Total Phosphorus | Chlorophyll-a | Eutrophic Index | Dissolved Oxygen | рН | Fecal Coliform | Water Quality Index | Toxicity | Sediment TOC | Contaminants | Sediment Quality Index | Biological Index (B-IBI) | Habitat Quality Index |
| TC   | U-01 | 2002 | 32.224 | -80.926 |                |                  |               | 0               |                  |    |                | 3                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | U-02 | 2002 | 32.224 | -80.901 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| OW   | U-03 | 2002 | 32.227 | -80.904 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | M-01 | 2002 | 32.232 | -80.941 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | M-02 | 2002 | 32.208 | -80.868 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | M-03 | 2002 | 32.184 | -80.883 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | L-01 | 2002 | 32.205 | -80.822 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | L-02 | 2002 | 32.205 | -80.010 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| TC   | L-03 | 2002 | 32.211 | -80.815 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| TC   | L-04 | 2002 | 32.223 | -80.808 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| TC   | U-01 | 2023 | 32.224 | -80.901 |                |                  |               | 0               |                  |    |                | 3                   |          |              |              | 5                      | 5                        | 5                     |
| OW   | U-02 | 2023 | 32.227 | -80.903 |                |                  |               | 0               |                  |    |                | 3                   |          |              |              | 5                      | 3                        | 3                     |
| OW   | U-03 | 2023 | 32.223 | -80.860 |                |                  |               | 0               |                  |    |                | 3                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | M-01 | 2023 | 32.208 | -80.866 |                |                  |               | 3               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| OW   | M-02 | 2023 | 32.184 | -80.883 |                |                  |               | 3               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| OW   | M-03 | 2023 | 32.205 | -80.822 |                |                  |               | 3               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | L-01 | 2023 | 32.205 | -80.801 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| ow   | L-02 | 2023 | 32.224 | -80.925 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |
| тс   | L-03 | 2023 | 32.211 | -80.815 |                |                  |               | 3               |                  |    |                | 3                   |          |              |              | 5                      | 5                        | 5                     |
| TC   | L-04 | 2023 | 32.223 | -80.808 |                |                  |               | 5               |                  |    |                | 5                   |          |              |              | 5                      | 5                        | 5                     |

| Index  | / Par | rameter                     | Criteria |                      |            |  |  |  |  |  |
|--------|-------|-----------------------------|----------|----------------------|------------|--|--|--|--|--|
|        |       |                             | Poor     | Fair                 | Good       |  |  |  |  |  |
| WATER  | QUALI | TY                          |          |                      |            |  |  |  |  |  |
|        | Wate  | er Quality Index            | < 3      | $3 \leq x < 4$       | ≥ 4        |  |  |  |  |  |
|        | D     | issolved Oxygen (mg/L)      | < 3      | $3 \leq x < 4$       | ≥ 4        |  |  |  |  |  |
|        | p     | H (salinity corrected)      | ≤ 7.22   | 7.22 < x ≤<br>7.35   | > 7.35     |  |  |  |  |  |
|        | F (   | ecal Coliform<br>cfu/100mL) | > 400    | 43 < x ≤<br>400      | ≤ 43       |  |  |  |  |  |
|        | E     | utrophic Index              | < 3      | $3 \leq x < 4$       | ≥ 4        |  |  |  |  |  |
|        |       | Total Nitrogen (mg/L)       | > 1.05   | 0.81 < x ≤<br>1.05   | ≤ 0.81     |  |  |  |  |  |
|        |       | Total Phosphorus<br>(mg/L)  | > 0.12   | 0.10 < x ≤<br>0.12   | ≤ 0.10     |  |  |  |  |  |
|        |       | Chlorophyll a (µg/L)        | > 16.4   | 11.5 < x ≤<br>16.4   | ≤ 11.5     |  |  |  |  |  |
|        |       |                             |          |                      |            |  |  |  |  |  |
| SEDIME | NT QU | JALITY                      |          |                      |            |  |  |  |  |  |
|        | Sedi  | ment Quality Index          | < 3      | $3 \leq x \leq 4$    | > 4        |  |  |  |  |  |
|        | C     | ontaminants (ERM-Q)         | > 0.058  | 0.020 < x ≤<br>0.058 | ≤<br>0.020 |  |  |  |  |  |
|        | Т     | oxicity                     | ≥ 2      | 1 ≤ x < 2            | < 1        |  |  |  |  |  |
|        | S     | ediment TOC (%)             | > 5      | $3 \le x \le 5$      | < 3        |  |  |  |  |  |
|        |       |                             |          |                      |            |  |  |  |  |  |
| BIOLOG | ICAL  | CONDITION                   |          |                      |            |  |  |  |  |  |
|        | Bent  | hic-IBI                     | < 2      | 2 ≤ x < 3            | ≥ 3        |  |  |  |  |  |
|        |       |                             |          |                      |            |  |  |  |  |  |
| HABITA | T QUA | LITY                        |          |                      |            |  |  |  |  |  |
|        | Habi  | tat Quality Index           | ≤ 2      | 1.5 < x ≤<br>2.5     | > 2.5      |  |  |  |  |  |

|                     | U-03               |     | U-01             |            | M-03              |       | M-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-03              |         | L-02              |         |
|---------------------|--------------------|-----|------------------|------------|-------------------|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-------------------|---------|
|                     |                    | 202 |                  |            |                   |       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |         |                   | 1       |
| Row Labels          | 2002               | 3   | 2002             | 2023       | 2002              | 2023  | 2002              | 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2002              | 2023    | 2002              | 2023    |
| 2,4'-DDD            | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| 2,4'-DDE            | 0.294              | 0   | 0.301            | 0          | 0                 | 0     | 0.312             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.322             | 0       | 0                 | 0       |
| 2,4'-DDT            | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| 4,4'-DDD            | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
|                     |                    | 1.3 |                  | 1.204      |                   | 0.965 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 0.70423 |                   | 0.74143 |
| 4,4'-DDE            | 1.13               | 1   | 1.3              | 2          | 0.7               | 1     | 1.57              | 1.086855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.179             | 9       | 0.733             | 1       |
| 4,4'-DDT            | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| Aldrin              | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| Chlorpyrifos        | 1.37               | 0   | 0.678            | 0          | 0.972             | 0     | <mark>13</mark>   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.586             | 0       | <mark>7.7</mark>  | 0       |
|                     |                    | 0.7 |                  | 0.823      |                   | 0.772 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 0.82851 |                   | 0.74143 |
| cis-Chlordane       | 0.149              | 9   | 0.23             | 9          | 0.0983            | 1     | 0.192             | 0.865057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                 | 7       | 0.121             | 1       |
|                     | 1 424              | 1.3 | 1 601            | 1.204      | 0 7               | 0.965 | 1 000             | 1 006055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 501             | 0.70423 | 0 722             | 0.74143 |
| DDT_TOLAT           | 1.424              | T   | 1.001            | ∠<br>5 323 | 0.7               | T     | 1.002             | 1.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.301             | 2       | 0.755             | T       |
| Dieldrin            | 0                  | 0   | 0                | 9.525      | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0.249             | 0       |
|                     | 0.412              |     |                  |            |                   |       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |         |                   |         |
| Endosulfan I        | 5                  | 0   | 0.528            | 0          | 1.79              | 0     | 0.136             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.423             | 0       | 1.88              | 0       |
| Endosulfan II       | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| Endosulfan sulfate  | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| Gamma-HCH (g-BHC,   |                    |     |                  |            |                   |       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |         |                   |         |
| lindane)            | <mark>3.295</mark> | 0   | 12.2             | 0          | <mark>11.5</mark> | 0     | <mark>4.28</mark> | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mark>4.91</mark> | 0       | <mark>21.7</mark> | 0       |
| Heptachlor          | 0                  | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
|                     | 1.133              | 0   | <b>•</b> • • • • | 0          | 0                 | 0     |                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 4             | 0       | 0.005             | 0       |
| Heptachlor epoxide  | 5                  | U   | 0.445            | 0          | 0                 | 0     | 0.986             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.14              | 0       | 0.685             | 0       |
| Vevachlorohenzene   | 0.031              | 0   | 0                | 0          | 0                 | 0     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |
| llexaciitoropenzene | 0.677              | 0.3 | Ū                | 0.253      |                   | 0.135 | Ū                 | , in the second s | J.                | Ū       | Ū                 | ~       |
| Mirex               | 5                  | 3   | 0.737            | 5          | 0                 | 1     | 0.301             | 0.088722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.28              | 0       | 0                 | 0       |
|                     | 8.655              | 2.4 |                  | 7.605      |                   | 1.872 | 20.99             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 1.53275 |                   | 1.48286 |
| Total_Pest          | 4                  | 2   | 16.552           | 5          | 15.0603           | 3     | 6                 | 2.040634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.84              | 6       | 33.068            | 2       |
| Trans-nonachlor     | 0.162              | 0   | 0.133            | 0          | 0                 | 0     | 0.219             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0       | 0                 | 0       |