

May River Action Plan Implementation Status Report

Presentation to May River Watershed Action Plan Committee (WAPAC)

January 23, 2025

Department of Projects & Watershed Resilience Dan Rybak, Project Manager

Septic to Sewer Projects

Stoney Creek/Palmetto Bluff Sewer Partnership:

- BJWSA's 2022 updated cost-estimate for the project from BJWSA increased to \$7.2 million + contingencies.
- BJWSA is the Project Manager as the awardee of the Rural Infrastructure Authority - South Carolina Infrastructure Investment Program (RIA-SCIIP) grant.

Next Steps

• BJWSA updates can be found at: https://bjwsa.org/251/Go2Sewer-for-a-Cleaner-Stoney-Creek.

Background:

Within the 2020 May River Watershed Action Plan Update & Modeling Report (MRWAP), eleven (11) project sites (incorporating various individual BMPs) were selected in consultation with the Town (prioritizing subcatchments with fecal coliform (FC) bacteria hotspot and/or large impervious areas). These sites were evaluated in terms of the potential benefits gained by retrofitting to meet the 95th percentile storm retention, to the maximum extent possible, under the proposed Impervious Area Restoration/Stormwater Retrofit Program.

Proposed project sites Rose Dhu Creek (6 projects) and Stoney Creek (5 projects):

- Bluffton Early Learning Center (BELC). Participating in preliminary design development phase.
- Boys and Girls Club of Bluffton (BGC). Participating in preliminary design development phase.
- Benton House (BH). Participating in preliminary design development phase.
- Bluffton High School (BHS). Participating in preliminary design development phase.
- Buckwalter Recreation Center (BRC). Participating in preliminary design development phase.
- Lowcountry Community Church (LCC). Declined to Participate.
- McCracken Middle School. Participating in preliminary design development phase.
- Bluffton Elementary School (MMSBES). Participating in preliminary design development phase.
- May River High School. Participating in preliminary design development phase.
- One Hampton Lake Apartments (OHLA). Declined to Participate
- Pritchardville Elementary School (PES). Participating in preliminary design development phase.
- Palmetto Pointe Townes (PPT). Declined to Participate.

Task 1: MRWAP Update 11 Site Locations

- Evaluate 11 sites and proposed BMPs. Complete.
- Update concept plans for 11 sites based on site evaluations, recommendations and discussions. Complete.
- Perform geotechnical evaluations at each site at locations related to BMP locations of updated concept plans. All geotechnical work and reports completed.
- Refine updated concepts and use for presentations to Property Owner to discuss Impervious Restoration Program goals, objectives and gain support for Program and their participation. **Complete.**
 - Develop list of "incentives" to secure Property Owner participation (see Policy Document Formulation below).
- Based on geotechnical information and Property Owner feedback further refine concept plans to Preliminary Design: Complete
 - Determine BMP types and location to maximize SWRv/WQ treatment in cost effective approach.
 - Determine estimated pollutant load reductions.
 - Develop site specific BMP details.
 - Develop preliminary BMP maintenance schedule and cost for each site.
- Preliminary Design development plans will be presented to the Property Owner for review and discussion. Other Restoration Program details (maintenance responsibilities, easements, incentives, etc.) developed as part of the Program (see Policy Document Formulation below) will also be discussed in hopes of establishing a commitment from the Property Owner to participate in the Program. Once a "commitment" is secured from the Property Owner, the project site will be moved to Final design, permitting, and ultimately construction. **Complete.**

Initial Site Investigations

- Initial site evaluations, geotechnical investigations reports are complete for 9 of the 11 participating project sites.
 - Boys and Girls Club
 - Bluffton Early Learning Center
 - Benton House
 - Bluffton High School
 - Buckwalter Recreation Complex
 - May River High School
 - H.E. McCracken Middle School
 - Pritchardville Elementary School
 - Bluffton Elementary School

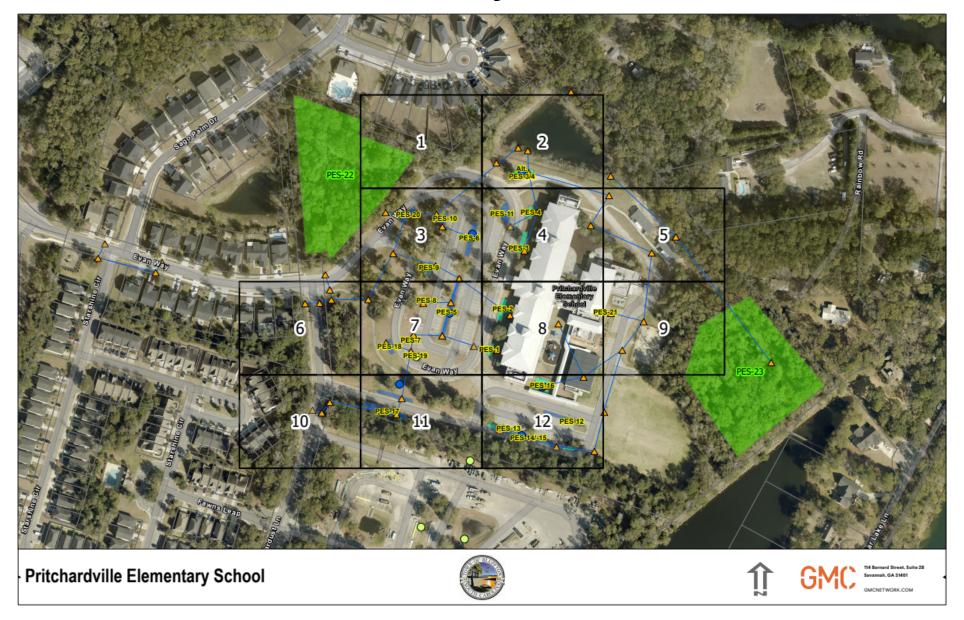
Fiscal Year 2026 (FY26) CIP MRWAP Projects

- Proposing funding for planning, design and construction for three (3) MRWAP Imperious Restoration Projects in FY26
 - H.E. McCracken Middle School
 - Pritchardville Elementary School
 - Bluffton Elementary School

Impervious Restoration Projects Proposed for Fiscal Year 2026

H.E. McCracken Middle School

H.E. McCracken Middle School


								H.E. McCrac	ken Middle Schoo	ol										
		Overall	Numerical	Drainage Area / Location	Impervious		Construction							Media	Gravel	Ponding		Pipe	Pipe	Infilration
Site ID	BMP Type	Ranking	Score		Area	SWRv	Cost	Cost/SWRV	Constructability	Infil Rate	BMP Area	Length	Width	Depth	Depth	Depth	Underdrain ¹	Length	Diameter	Chamber Notes
		Kalikilig	Score		acres	CF		\$/SWRv		in/hr	SF	ft	ft	ft	ft	ft	Credit	ft	in	
HEMMS-1	Bioretention	High	40	Parking Lot/Detention	0.41	3,388	\$103,000	\$30.40	High	0.42	2,400	213	10	2	1	1	75%	300	6	
HEMMS-2	Bioretention	Medium	39	Driveway	0.25	2,190	\$64,000	\$29.23	High	0.35	1,550	110	14	2	1	1	75%	100	6	
HEMMS-3	Bioretention	High	40	Front Parking Lot	0.42	3,739	\$108,000	\$28.88	High	0.35	2,650	121	22	2	1	1	75%	140	6	
HEMMS-4	Bioretention	High	48		0.19	1,459	\$45,000	\$30.85	High	3.67	1,050	43	24	2	1	1	75%	120	6	
HEMMS-5	Bioretention	High	54		0.40	3,187	\$66,000	\$20.71	High	5.97	1,700	54	36	2	1	1	100%			
HEMMS-6	Bioretention	High	55	Roof Runoff from Wings	0.42	3,314	\$68,000	\$20.52	High	5.97	1,750	58	35	2	1	1	100%			
HEMMS-7	Bioretention	High	55		0.41	3,299	\$68,000	\$20.61	High	5.97	1,750	55	40	2	1	1	100%			
HEMMS-8	Infil. Chamber	Low	27		0.36	2,737	\$110,000	\$40.20	Mod-Low	0.35	1,550	58	27		4		75%	350	30	7 rows of 50'
HEMMS-9	Infil. Chamber	Medium	29	Northern Building	0.23	1,544	\$60,000	\$38.87	Mod-Low	0.35	875	47	19		4		75%	180	30	4 rows of 45'
HEMMS-10	Bioretention	High	45	Bus Dropoff Wings	0.10	855	\$17,000	\$19.89	Moderate	3.67	450	34	14	2	1	1	100%			
HEMMS-11	Bioretention	High	45	Bus Dropoil Wings	0.11	899	\$19,000	\$21.12	Moderate	3.67	500	34	15	2	1	1	100%			
HEMMS-12	Bioretention	High	56	Bus Parking Lot	1.41	10,652	\$303,000	\$28.45	High	3.67	7,500	145	76	2	1	1	75%	350	8	
HEMMS-13	Infil. Chamber	Low	23	Northern Building	0.18	1,189	\$49,000	\$41.22	Low	0.35	700	52	14		4		75%	150	30	3 rows of 50'
HEMMS-14	Bioretention	High	50	Northern Parking Lot	0.37	2,769	\$65,000	\$23.47	Moderate	10.65	1,700	185	9	2	1	0.75	100%			
Total					5.26	41,220	\$1,145,000				26,125									

^{175% =} Internal Water Storage (IWS); 100% = No Underdrain

Site ID	ВМР Туре	Other Design & Flow Routing/Implementation Notes
HEMMS-1	Bioretention	Construct a berm along northern edge of detention pond to create a bioretention cell that will intercept runoff from parking lot before entering pond (pre-treatment), add a low point on berm to discharge overflow into pond
HEMMS-2	Bioretention	Retrofit bioretention cell in grassed area around storm inlet and utilize it for overflow
HEMMS-3		Retrofit bioretention cell in grassed area around storm inlets and utilize them for overflow
HEMMS-4	Bioretention	Add gutter or regrade swale for western roof to flow to the north, retrofit bioretention cell in grassed area away from fire lane and construct overflow swale away from school
HEMMS-5	Bioretention	Retrofit bioretention cell immediately upstream of storm inlet and construct an earthen berm for overflow to pass through into nearby storm inlet, no underdrain
HEMMS-6	Bioretention	Retrofit bioretention cell in grassed area around storm inlet and utilize it for overflow, no underdrain
HEMMS-7	Bioretention	Retrofit bioretention cell in grassed area around storm inlet and utilize it for overflow, no underdrain
HEMMS-8	Infil. Chamber	Route/pipe rooftop runoff into infiltration chamber in grassed area near school entrance, utilize existing structure for outflow
HEMMS-9	Infil. Chamber	Route/pipe rooftop runoff into infiltration chamber in grassed area near school entrance, utilize existing structure for outflow
HEMMS-10	Bioretention	Retrofit bioretention cell in grassed area around storm inlet and utilize it for overflow, no underdrain
HEMMS-11	Bioretention	Retrofit bioretention cell in grassed area around storm inlet and utilize it for overflow, no underdrain
HEMMS-12	Bioretention	Retrofit large bioretention cell in grassed area next to bus circle, just upstream of driveway culvert, and create an earthern berm for overflow to pass into existing culvert
HEMMS-13	Infil. Chamber	Route/pipe rooftop runoff into infiltration chamber in grassed area next to building, avoid utilities, and utilize existing structure for outflow
HEMMS-14	Bioretention	Rehabilitate existing bioswale into a bioretention cell, utilize existing storm inlet for overflow, no underdrain

Pritchardville Elementary School

Pritchardville Elementary School

								Dritchardrilla	Elementary Schoo											
								Pritchardville	Elementary School	1					l	I- "		1		
	IBMP Type	Overall	Numerical			SWRv	Construction	Cost/SWRV	Constructability	Infil Rate	BMP Area	Length	Width	Media	ı	Ponding	Underdrain ¹	Pipe	Pipe	Infilration
Site ID		Ranking	Score	Drainage Area / Location	Area		Cost	4.60						Depth	Depth	Depth		Length	Diameter	Chamber Notes
			ļ		acres	CF		\$/SWRv		in/hr	SF	ft	ft	ft	ft	ft	Credit	ft	in	
PES-1	Infilration Chamber	Low	24	4	0.08	605			Mod-Low	0.81	450				3		75%			3 rows of 30'
PES-2	Infilration Chamber	Low	25	Front Roof	0.15	1,126			Mod-Low	0.81	850				3		75%			3 rows of 55'
PES-3	Infilration Chamber	Low	25		0.15	1,124	1 1		Mod-Low	0.84	850				3		75%	165		3 rows of 55'
PES-4	Infilration Chamber	Low	24		0.08	596	\$27,000	\$45.34	Mod-Low	0.84	450	33	14		3	3	75%	90	30	3 rows of 30'
PES-5		High	41	Front Parking Lot Median	0.48	3,650	\$76,000	\$20.82	-	0.81	1,950	170	11.5	2	1	. 1	100%			
PES-6	Bioretention	High	48	Tront Parking Lot Median	0.33	2,536	\$52,000	\$20.51	High	2.08	1,350	92	14.5	2	1	. 1	100%			
PES-7	Bioretention	Medium	38	Western Pervious Concrete	0.05	401	\$10,000	\$24.91	High	0.81	250	29	8	2	1	1	100%			
PES-8	Bioretention	Medium	38		0.04	286	\$6,000	\$21.01	High	0.81	150	18	9	2	1	1	100%			
PES-9	Bioretention	High	46	Parking Row, Front Parking	0.10	702	\$16,000	\$22.78	High	2.08	400	39	10	2	1	. 1	100%			
PES-10	Bioretention	High	42	Lot	0.09	633	\$14,000	\$22.12	Moderate	2.08	350	34	10	2	1	. 1	100%			
PES-11	Bioretention	Medium	36	Main Driveway, North	0.29	2,138	\$45,000	\$21.05	Moderate	0.84	1,150	55	21	2	1	. 1	100%			
PES-12	Bioretention	High	42		0.21	1,567	\$36,000	\$22.98	High	1.58	950	115	8	2	1	0.75	100%			
PES-13	Bioretention		30	Southern Parking Lot	0.65 4,569 \$125,000 \$27.36 Moderate 1.58 2,650 240		6435.000	627.26	Madanta	4.50		240		2	1	0.75	100%			
PES-14/15	Infilration Chamber	Medium	39			11	11	3		100%	240	30	1 row of 240'							
PES-16	Infilration Chamber	Low	20	Playground	0.36	2,549	\$108,000	\$42.37	Low	0.12	1,450	44	33		4		75%	360	30	9 rows of 40'
PES-17	Bioretention	Medium		Southern Driveway	0.50	3,744	\$110,000	\$29.38	High	0.31	2,650	118/97	14 / 10	2	1	1	75%	200	6	
PES-18	Bioretention	Medium	39		0.14	1,027	\$21,000	\$20.46	High	0.81	550	_		2	1	1	100%			
PES-19	Bioretention	Medium	39	Main Driveway, South	0.11	841	\$17,000	\$20.21		0.81	450			2	1	1	100%			
PES-20	Bioretention	High	43	Main Driveway, Front	0.17	1,250	\$27,000		Moderate	2.08	700				1	1	100%			
PES-21		High	1	Rear of Building	0.07	t.b.d	+2.,500		High	2.00							13070			
PES-22	Conservation Area	High		Northwest Corner	0.00	t.b.d			High		1.84-ac									
PES-23	Conservation Area	High		Southeast Corner	0.00	t.b.d			High		2.07-ac									
Total	CONSCITUTORI FILED			Southeast corner	4.06	29,343	\$817,000				17,600									

^{175% =} Internal Water Storage (IWS); 100% = No Underdrain

Site ID	ВМР Туре	Other Design & Flow Routing/Implementation Notes
PES-1	Infilration Chamber	Route roof drains to infiltration chamber, utilize IWS to return flow to storm system, configured closer to sidewalk due to proximity to school structure
PES-2	Infilration Chamber	Route roof drains to infiltration chamber, utilize IWS to return flow to storm system, configured closer to sidewalk due to proximity to school structure
PES-3	Infilration Chamber	Route roof drains to infiltration chamber, utilize IWS to return flow to storm system, configured closer to sidewalk due to proximity to school structure; consider Alt. PES-3/4 if desired to be farther from school building
PES-4	Infilration Chamber	Route roof drains to infiltration chamber, utilize IWS to return flow to storm system, configured closer to sidewalk due to proximity to school structure; consider Alt. PES-3/4 if desired to be farther from school building
PES-5	Bioretention	Utilize existing storm inlets as overflow structures, runoff already flows to this low point
PES-6	Bioretention	Utilize existing storm inlet as overflow structure, runoff already flows to this low point
PES-7	Bioretention	Utilize existing storm inlet as a curb cut/flume to route flow into bioretention cell
PES-8	Bioretention	Utilize existing storm inlet as a curb cut/flume to route flow into bioretention cell
PES-9	Bioretention	Utilize existing storm inlet as a curb cut/flume to route flow into bioretention cell
PES-10	Bioretention	Utilize existing storm inlet as a curb cut/flume to route flow into bioretention cell
PES-11	Bioretention	Utilize existing storm inlet as a curb cut/flume to route flow into bioretention cell
PES-12	Bioretention	Install curb cut along curb and gutter to route flow into bioretention cells (grassed median), and route overflow as sheetflow into parking lot to the east
PES-13	Bioretention	Bioretention combined with Infiltration Chamber; bioretention cell to receive sheet flow from parking lot and infiltration chamber will receive runoff from two storm inlets along driveway
PES-14/15	Infilration Chamber	biolecericon combined with minitration chamber, biolecention centro receive sheet now from parking location minitration chamber with receive runon from two storm miles along driveway
PES-16	Infilration Chamber	Route roof drains and runoff from playground to infiltration chamber, configured system as subsurface due to proximity to school/playground
PES-17	Bioretention	Two linear bioretention cells; based on drainage areas, it is split as ~2/3 on southern side of driveway and ~1/3 on northern side of driveway; consider hybrid infiltration chamber system if more storage is needed and elevations warrant it
PES-18	Bioretention	Utilize existing storm inlet as overflow structure, runoff already flows to this low point
PES-19	Bioretention	Utilize existing storm inlet as overflow structure, runoff already flows to this low point
PES-20	Bioretention	Utilize existing storm inlet as overflow structure, runoff already flows to this low point
PES-21	Cistern	Connect up to two downspouts to route 3,200 SF of rooftop for capture and reuse for adjacent raised beds/gardens
PES-22	Conservation Area	Proposed Conservation Area for 1.84 acre (80,200 SF) wooded area
PES-23	Conservation Area	Proposed Conservation Area for 2.07 acre (90,000 SF) wooded area

Bluffton Elementary School

Bluffton Elementary School

								Bluffton E	lementary School											
				Drainage Area / Location	Impervious		Construction							Media	Gravel	Ponding		Pipe	Pipe	Infilration
Site ID	BMP Type	Overall Ranking	Numerical Score		Area	SWRv	Cost	Cost/SWRV	Constructability	Infil Rate	BMP Area	Length	Width	Depth	Depth	Depth	Underdrain ¹	Length	Diameter	Chamber Notes
		Kanking	Score		acres	CF		\$/SWRv		in/hr	SF	ft	ft	ft	ft	ft	Credit	ft	in	
BES-1	Bioretention	High	41		0.30	2,766	\$80,000	\$28.93	High	0.52	1,950	133	14	2	1	1	75%	120	6	5
BES-2	Bioretention	High	41	Front Parking Lot Median	0.34	2,681	\$78,000	\$29.09	High	0.52	1,900	140	13	2	1	1	75%	120	6	5
BES-3	Bioretention	High	41		0.25	1,953	\$58,000	\$29.69	High	0.52	1,400	125	11	2	1	1	75%	120	6	5
BES-4	Bioretention	Medium	35	Southern Playground / Roof	0.52	3,974	\$113,000	\$28.44	Moderate	0.06	2,800	126	22	2	1	1	75%	120	8	1
BES-5	Infil. Trench	Medium	39	Gravel Parking Lot	0.23	1,729	\$52,000	\$30.08	Moderate	1.76	1,200	174	7		3	0.75	75%	180	6	5
BES-6	Bioretention	Medium	36	Graver Parking Lot	0.25	1,945	\$66,000	\$33.93	Moderate	1.76	1,600	150	10	2	1	0.75	75%	160	6	5
BES-7	Bioretention	High	43	Southern Driveway	0.22	1,629	\$47,000	\$28.86	High	1.76	1,150	64	18	2	1	1	75%	60	6	5
BES-8	Bioretention	High	43	30dthern Driveway	0.22	1,629	\$47,000	\$28.86	High	1.76	1,150	67	16	2	1	1	75%	60	6	5
BES-9	Bioretention	Low	27	Eastern Building	0.18	1,335	\$38,000	\$28.46	Low	0.05	950	35	26	2	1	1	75%	40	6	5
BES-10	Bioretention	Medium	38	Loop Between BELC/BES	0.22	1,714	\$47,000	\$27.43	High	0.05	1,300	68	19	1.5	1	1	75%	70	6	5
BES-13	Infil. Trench	High	40	Driveway Entrance	0.17	1,335	\$40,000	\$29.95	High	0.52	1,150	220	5		2	0.75	0.75	180	6	5
BES-14	Cistern	High		NW Corner of Building	0.06	t.b.d			High											
Total					2.95	22,690	\$666,000				16,550									

^{175% =} Internal Water Storage (IWS); 100% = No Underdrain

Site ID	ВМР Туре	Other Design & Flow Routing/Implementation Notes
BES-1	Bioretention	Retrofit bioretention cell in grassed area between parking rows and build up an earthen berm on the downstream end to create surface ponding, overflow from this BMP can flow into existing storm inlet
BES-2	Bioretention	Retrofit bioretention cell in grassed area between parking rows and build up an earthen berm on the downstream end to create surface ponding, overflow from this BMP can flow into existing storm inlet
BES-3	Bioretention	Retrofit bioretention cell in grassed area between parking rows and build up an earthen berm on the downstream end to create surface ponding, overflow from this BMP can flow into existing storm inlet
BES-4	Bioretention	Route roof drains through a combination of disconnection and shallow pipes to grassed area south of sidewalk, utilize nearby storm inlet for outflow
BES-5	Infil. Trench	Install infiltration trench on edge of parking lot to treat southern half of lot, construct a weir or berm on downstream end to discharge overflow into existing swale and storm inlet
BES-6	Bioretention	Retrofit bioretention cell in grassed area between parking rows to treat northern half of parking lot, allow overflow to sheetflow towards BES-5
BES-7	Bioretention	Retrofit bioretention cell in grassed area between driveway and parking lot to intercept runoff before entering existing storm inlet
BES-8	Bioretention	Retrofit bioretention cell in grassed area between driveway and parking lot to intercept runoff before entering existing storm inlet
BES-9	Bioretention	Route roof drains to grassed area next to driveway to intercept runoff, utilize nearby storm inlet for outflow
BES-10	Bioretention	Route runoff into grassed area adjacent to driveway to intercept runoff and create a berm to discharge overflow towards the pond
BES-13	Infil. Trench	Construct an infiltration trench along eastern edge of driveway and add an IWS underdrain that is connected to adjacent pond
BES-14	Cistern	Connect up to two downspouts to route 2,400 SF of rooftop for capture and reuse for adjacent raised beds/gardens

Proposed Motion

"I move to recommend that Town Council fund the proposed May River Watershed Action Plan Impervious Restoration Projects as part of the Town's Fiscal Year 2026 Capital Improvement Program (CIP) budget as presented."

- <u>Task 2: Identify 15 new project sites for Town of Bluffton Impervious Restoration/BMP</u>
 <u>Retrofit Projects.</u>
 - Concept design development for the sites identified below ongoing:
 - Dominion Energy Engineering Office
 - Rose Dhu Equestrian Center
 - St. Gregory Catholic Church/School
 - River Ridge Academy
 - MC Riley Early Childhood Center
 - MC Riley Elementary School
 - MC Riley Sports Complex
 - Bluffton Middle School
 - Red Cedar Elementary School
 - Seagrass Station Road Site Determined to be not feasible, low cost/benefit.
 - Bluffton Pkwy West (170 to Buckwalter)
 - Buckwalter Pkwy (Hampton Hall to May River Road)
 - Persimmon St/Sheridan Park Cir/Pennington Dr
 - Vaden Nissan Hilton Head
 - NHC Healthcare/Bluffton (Healthcare, Rehab, Assisted Living) Declined to participate

Task 3: Policy Document Formulation

- TOB Fee-in-Lieu Program Policy Document completed and associated Fee-in-Lieu (FIL) cost matrix finalized and to be presented on January 28, 2025, Town Council Workshop meeting.
- When a development project cannot accommodate the required stormwater retention volume (SWRv) due to on-site constraints identified in the approved Maximum Extent Practicable (MEP) analysis, the developer could opt to pay FIL to the Town of Bluffton for the shortfall according to the FIL fee schedule to be adopted as part of the FY26 budget Master Fee Schedule. Funds collected through FIL payments would then be used by the Town to fund other qualified uses that protect water quality within the same watershed as the original project including:
 - The construction and maintenance of impervious restoration program water quality BMPs;
 - Purchase of land for increased conservation areas, application of Better Site Design to the approved Master Plan, buffers, undisturbed open space, and natural resource of significance areas, and
 - Purchase of development rights.

As Currently Drafted and Pending Town Council Approval:

• As part of the SoLoCo Stormwater Design Manual, developers may submit for MEP when the proposed development site has constraints or limitations to which-prevent-SoLoCo Stormwater Design Manual requirements from being met, specifically SWRv requirements. SWRv is the volume of stormwater runoff that a stormwater management system can store and treat to improve water quality. The MEP submittal must provide documentable evidence of the process the applicant has performed that demonstrates the restrictions to the use and implementation of the Best Management Practices (BMPs) to meet the SWRv requirements.

Task 3: Policy Document Formulation (Cont.)

- FIL payment would be based and equal to a unit of SWRv in cubic feet or designating a conservation area/easement area that protects a qualified natural resource that would otherwise require the same SWRv treatment if developed. The monetary value for a unit of SWRv would be based on the current and typical costs for land as well as associated costs for design, construction, construction management, Town program management, post-construction inspection, and ongoing maintenance of water quality BMPs. The SWRv FIL rate would be found as part of the Town's Master Fee Schedule, under Section VII "Stormwater Management Fees,", allowing for annual review and updates as needed based on the Consumer Price Index (CPI) or based on updated information regarding the cost of water quality BMP construction and maintenance, changes in the construction industry, availability of supplies, etc. If the developer and/or private property owner take responsibility for maintaining the BMP or provide land, then the associated cost for a unit of SWRv could be lessened accordingly.
- Proposed FIL \$151.92/ cubic foot of SWrv.
- Other Policy Document Development Status:
 - ToB CIP Project Impervious Restoration Program & Incentives Draft document in process.
 - ToB SWrv Credit Trading Program (under evaluation)

Other, Related MRWAP Update Recommendations

- Adopt proposed regional Southern Lowcountry Post-Construction Stormwater Ordinance and Design Manual - complete September 2021.
- The Town should incorporate volume reduction BMPs (those that encourage infiltration) within existing and future CIP projects to the maximum extent practical, especially for project locations with well-drained soils (HSG A or B) in progress, see below.
 - Bridge Street Streetscape Project
 - Project work and WQ monitoring complete.
 - Pritchard Street Drainage Improvement Project
 - 319 Grant Funding \$124,577.00
 - Project is in Bid Ready design development.
 - Projected anticipated to be advertised for construction in Spring 2025.

May River Action Plan Update & Modeling Report 5.0 Recommendations

5.1.1. In-House Microbial Source Tracking

- Dr. Pettay, USCB MST Laboratory lead, presented on the development of new markers to track fecal contamination in the May River to WAPAC at the 08/22/24 meeting.
- In November 2024, samples from several SC Department of Environmental Services (SC DES) Shellfish Harvesting Stations in the May River had elevated fecal coliform concentrations.
 - The human genetic marker was not detected in any of the MST samples collected.
 - New MST markers for deer, dog, horse, and avian were analyzed in preserved samples.
 - All samples resulted in non-detects for human, deer, dog, horse, and avian.
- Town staff are reviewing the Town's MST Monitoring Program and data historical SCDES Shellfish Harvesting samples (preserved at the USCB MST Lab).
- Staff will be implementing new markers in the May River Watershed in 2025.

May River Action Plan Update & Modeling Report 5.0 Recommendations

- 5.1.2. Future (new) Bacteria Monitoring Locations &
- 5.1.3. Future (new) Water Flow Monitoring Locations
 - Water Environmental Consultants (WEC) removed the water elevation meter from the Duck Pond subwatershed (it was located on the Palmetto Bluff overpass). This monitor was installed to provide 6 months of water elevation data for stormwater model calibration, as there is no channelized flow into the Duck Pond.
 - A final report from WEC for this work will be forthcoming.
 - Town staff have finalized all bacteria and flow monitoring data collection efforts recommended in sections 5.1.2 and 5.13 of the May River Watershed Action Plan Model Report. These efforts aim to improve/calibrate the Town's stormwater model with a comprehensive dataset.
 - Town staff are working with the original Project Team that developed the Town's May River headwaters stormwater model in 2020.
 - The scope of work to update/calibrate the Town's May River headwaters stormwater model is currently in progress.
 - The Town has Fiscal Year 2025 (FY25) funding for this work.

Supporting Documents

Attachment 1. MRWAP Implementation Summary

 Summary document outlining updates to the May River Watershed Action Plan Project Implementation

Attachment 2. MRWAP IRP Maps and Summary Tables

Initial site evaluations and summary tables completed for 9 of the May River
 Watershed Action Plan impervious restoration projects

Attachment 3. CIP Fund Project Data Sheets

 Fiscal Year 2026 Capital Improvement Program's proposed cost data sheets for the three proposed May River Watershed Action Plan impervious restoration projects

QUESTIONS & DISCUSSION