

May 29, 2024

Mr. Jim Benage City of Bel Aire 7651 E. Central Park Bel Aire, Kansas 67226

Subject: Report for Geotechnical Engineering Services Bel Aire - Woodlawn Monitoring Wells PEC Project No.: 237363-003

Dear Mr. Benage:

Professional Engineering Consultants, PA (PEC) has completed the geotechnical engineering services for the above referenced project. The purpose of the geotechnical engineering services was to explore the subsurface conditions at the project site and provide laboratory testing results with subsurface water elevations.

The attached report presents the results of our field exploration, and our engineering interpretations with respect to the project characteristics as presented in the report. We recommend that all individuals read the entire report along with all the appendices.

This report completes our current scope of services for this project. We appreciated the opportunity to provide geotechnical engineering services for this project.

Respectfully, FIELD SERVICES: GEOTECHNICAL ENGINEERING DIVISION A Department of Professional Engineering Consultants, P.A.

Prepared By:

+ offand

Robert W. Henthorne, PG VP Geotechnical Engineering

Reviewed By:

A ANSAS Britt D. Clubb, PE SVP Field Engineering

Geotechnical Engineering Services Report

Bel Aire - Woodlawn Monitoring Wells

East 37th St. N. to East 45th St. N. on Woodlawn Avenue Bel Aire, Kansas

> PREPARED FOR City of Bel Aire. Bel Aire, Kansas

PEC PROJECT NO. 237363-003

PREPARED BY Robert W. Henthorne, PG

> REVIEWED BY Britt D. Clubb, PE License No. 24123

> > DATE May 29, 2024

TABLE OF CONTENTS

1.	INTRODUCTION
1.1	General
1.2	Project Description
2.	SITE CONDITIONS
2.1	Site Description
2.2	Site Description
3.	GEOTECHNICAL RECOMMENDATIONS
3.1	General
3.2	Monitoring Wells
3.3	CONCLUSIONS
4.	GENERAL NOTES AND LIMITATIONS
FIG	URES: Site and Well Locations
APF	PENDIX A: Monitoring Well Data and Graphs7
APF	PENDIX B: Laboratory Testing Program

1. INTRODUCTION

1.1 GENERAL

PEC has completed the monitoring well installation and data collection for the above referenced project. All services were performed either directly by or under the direction of professional engineers or geologists licensed in the State of Kansas. This report summarizes the results of our field explorations, our conclusions and recommendations related to the geotechnical aspects of the project design and construction.

The conclusions and recommendations were based on the project information available at the time of this report and the subsurface conditions encountered in the borings at the locations and time indicated. It is possible that subsurface conditions could vary between or beyond the explored locations. If subsurface condition changes during construction, construction activity shall be ceased and PEC should be notified immediately to review and make any supplementary recommendations, if necessary.

1.2 PROJECT DESCRIPTION

The city of Bel Aire had undertaken a reconstruction project on Woodlawn Avenue from 37th Street to 45th street. The roadway has experienced failures with new pavement prior to the completion of the project. The Kansas Department of Transportation's Geotechnical and Geology Sections have done a preliminary investigation at this site. At the request of the city of Bel Aire, PEC's geotechnical group installed 12 monitoring wells and conducted lab testing of the soils along Woodlawn Avenue The wells were drilled and slotted PVC monitoring well casings were installed. The groundwater elevations were monitored on a weekly basis or within 24 hours of a rainfall event. The recorded data and graphs are shown in Appendix A.

2. SITE CONDITIONS

2.1 SITE DESCRIPTION

The general vicinity of the project site is shown on Figure 1, Site Location Map. The monitoring well locations are shown on Figure 2, Monitoring Well Location Map. All wells were installed through the existing pavement or directly behind the curb and gutter on Woodlawn Avenue

2.2 GEOLOGIC SETTING

The project soils are residual and are derived by the direct in-place weathering of the underlying Wellington Shale Formation. The soil is brown to gray-brown in color and very clay rich. Based on test results from the Kansas Department of Transportation investigation the clays have high liquid limits. Underlying the soil mantle is gray to green-gray clay rich shale of the Wellington Formation. This shale is soft in the upper 5 feet becoming firmer with depth. The shale is within a foot of the base of the pavement in several locations along Woodlawn Avenue and isolated gypsum crystals were present in borings closest to 45th street. The depth to the top of the Wellington Shale increases from north to south along Woodlawn Avenue

3. GEOTECHNICAL RECOMMENDATIONS

3.1 GENERAL

Twelve monitoring wells were installed based on the depth to shale and groundwater elevations at the time of drilling and location within the project area. The wells were monitored from March 11, 2024 through May 2, 2024. Ten depth to water measurements were taken in that period of time. The data and graphs are included in Appendix A of this report.

3.2 MONITORING WELLS

The monitoring wells showed that the groundwater elevation can be found at or above the top of the roadway in several locations. The soils along the project are residual clays that can retain moisture for extended periods of time. Several monitoring wells remained nearly full for a week or more after rainfall events. Wells that were installed along the east side of the roadway exhibited this most as the recharge area is most likely to the north and east of Woodlawn. The wells along the west side of the roadway had a shorter discharge time frame or showed little to no increase in hydrostatic elevation. The well placed near the fire station had groundwater fluctuations with each rainfall event. Monitoring wells 7 and 8 were installed south of the railroad crossing. Well 7 indicates that groundwater is still an issue south of the railroad as groundwater was found to be near the base of the roadway after each rainfall event. Well 8 was drilled near the south end of the project and groundwater stayed at an acceptable level beneath the roadway.

3.3 CONCLUSIONS

Groundwater can cause roadway problems typically when it is within 4 feet of the base of the pavement. The monitoring wells provided data that groundwater elevations are within a depth that can be detrimental to structure of a roadway. Groundwater on this project is moving along the top of the Wellington Shale. The shale was found to be within 1-foot of the base of the pavement in several locations. This shallow depth allows the groundwater elevations to be at or above the roadway. The roadway issues after construction are most likely due to the cyclic wetting and drying of the subgrade soils beneath the pavement.

Based on the findings of this study, to stabilize the roadway, the shale should be overexcavated a minimum of 24 inches below the base of the pavement section. Additionally, an underdrain system should be designed and installed to remove groundwater from beneath the roadway.

4. GENERAL NOTES AND LIMITATIONS

This report has been prepared in general accordance with widely accepted geotechnical engineering practices for the purpose of this project. The conclusions and recommendations presented in this report were based upon applicable standards of care in the project geographic area at the time this report was prepared. No warrantees or guarantees are intended.

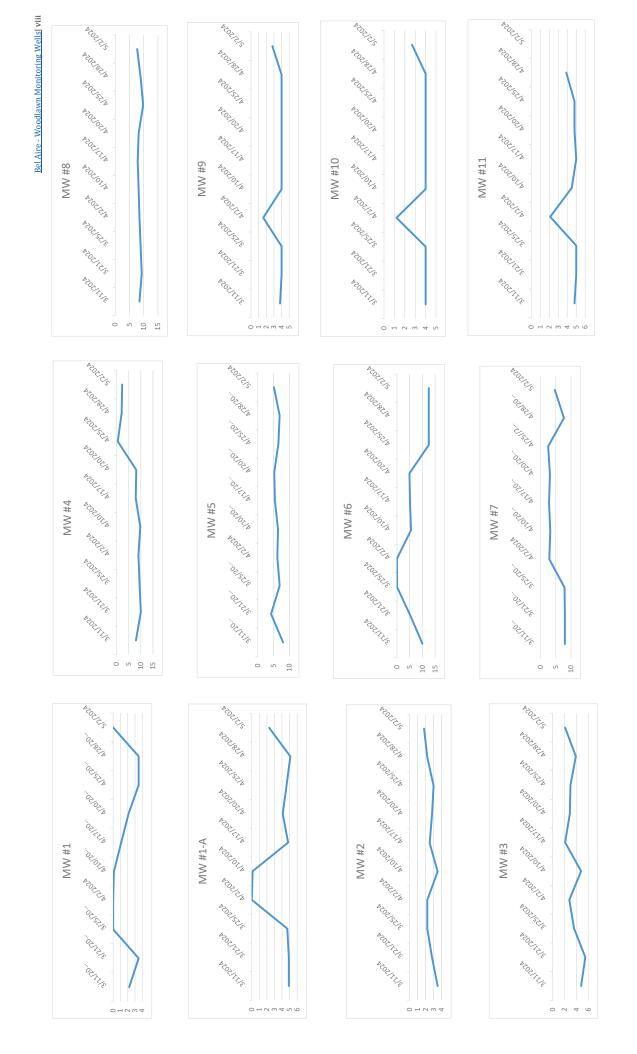
We depended on project information provided to us to develop our conclusions and recommendations. If the project information described in this report is not accurate, or if it changes during course of project development, we should be notified of the changes so that we can modify our recommendations based on the additional information, if necessary.

Our conclusions were based on limited subsurface information obtained from our field explorations which consisted of periodic sampling in widely spaced, small diameter borings. Subsurface conditions may vary from those encountered in the borings and the variations may not become evident until construction. Our scope of services was intended to evaluate the soil conditions within the zone of soil influenced by the foundation system. If conditions are encountered which appear different than those described in our report, we should be notified, and our conclusion may need to be re-evaluated and adjusted.

Our Scope of Services does not address geologic conditions, such as sinkholes or soil conditions existing below the depth of the soil borings. In addition, this report should not be construed to represent subsurface conditions for the entire site.

FIGURES: Site and Well Locations

Figure 1. Site Location Map Figure 2. Well Location Plan


Figure 1

APPENDIX A: Monitoring Well Data and Graphs

PEC

					I	BO	RIN	IGN	101	MBE		SB · age 1	
		ENGINEERING CONSULTANTS City of Bel Aire	PROJE		Woo	dlav	vn Mo	nitorir	וg We	ell Proj			
		NUMBER 237363-003 ADTED 03/11/2024			_								
		ARTED 03/11/2024 COMPLETED 03/11/2024 CTOR -		ND ELEVAT ND WATER					SIZE				
ME	THOD		$\underline{\nabla}$	INITIALL									
		BY BH CHECKED BY Bob Henthorne											
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
		Asphalt				-						A	
		Aggregate Base with Geotextile		0.6	_								
_		Weathered Shale, Olive Green, Free Moisture				-							
_													
-						_							
-					1380								

			I	BO	RII	NG	NUI	MB	ER:		- 1 -	
CLI PR DA CO ME LO	ENT _ DJECT TE ST/ NTRA THOD GGED	ENGINEERING CONSULTANTS City of Bel Aire T NUMBER 237363-003 ARTED 03/11/2024 COMPLETED 03/11/2024 CTOR - - BY BH CHECKED BY Bob Henthorne	PROJECT LOCATI GROUND ELEVATI GROUND WATER	ION _ ION _ LEVE Y EN(37th 138 LS: COL	n to 4 7.84' I JNTEF	5th st HOLE	reet, SIZE	Bel Ai	iect re Ka	nsas	
Depth (Ft)	Graphic Log	Visual Classification and Remarks		Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
- - - - - - - -		Asphalt Aggregate Base with Geotextile Silty Clay, with Weathered Shale Coarse Gravel, Free Water Weathered Shale, Soft, Free Moisture	<u>0.6</u> 1.0 3.0 6.0	- - - - - - - - - - - - - - - - - - -	-							

6		PEC			E	30	RIN	IGN	IUI	MBE			
PROF	ESSIONAI	LENGINEERING CONSULTANTS										ige 1	ot i
	_	City of Bel Aire											
		TNUMBER 237363-003		CT LOCATI	-								
		ARTED 03/11/2024 COMPLETED 03/11/2024						IOLE	SIZE	-			
		CTOR		ND WATER									
				INITIALL									
		BY BH CHECKED BY Bob Henthorne											_
NO	TES _		HAMN	IER WEIGH	r / Dr	OP	_ / _						
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
-		Asphalt Aggregate Base plus Geotextile		0.6		-							
		Weathered Shale, Olive Green, Free Moisture			1380								

						BC	RIN	IG I	1UI	MBE		SB age 1	
		LENGINEERING CONSULTANTS City of Bel Aire	PRO.IF		- Woo	odlav	vn Mo	nitorii	na W	ell Pro	iect		
		TNUMBER 237363-003		ECT LOCA								nsas	
		ARTED _03/11/2024 _ COMPLETED _03/11/2024		ND ELEVA									
		CTOR -		ND WATE									
				INITIAL					1.8'				
		BY BH CHECKED BY Bob Henthorne	_	AFTER 15									
				IER WEIG									_
<u> </u>	-							1				(
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
		Asphalt				1							
				0.6									
.	00.00 00.00 × × × ×	Aggregate Base with Geotextile		1.0	138	0							
∑		Silty Clay, Tan-green Weathered Shale, Olive Green, Becoming Frimer at 4 ft.		2.8	137	5							
	-					_							

PROF		PEC ENGINEERING CONSULTANTS			E	30	RIN	IG N	١UI	MBE		SB age 1	
		City of Bel Aire	PROJE	CT NAME	Wood	dlaw	vn Mo	nitorii	ng W	ell Pro	iect		
		NUMBER 237363-003		CT LOCATI								nsas	
		ARTED 03/11/2024 COMPLETED 03/11/2024		ND ELEVATI									
		CTOR		ND WATER I									
	THOD								יא				
		BY BH CHECKED BY Bob Henthorne											
				ER WEIGHT									_
					, , ,								
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
	× × × × × × × × × × × ×	Silty Clay, Dark Brown		0.6	-								
	× × × × × × × × × × × ×	Silty Clay, Light Brown, Free Moisture, Very Soft, Weight of I	Rod	0.0	-								
	x x x x x x x x x x x x x x x x x x x				1380								
	× × × × × × × × × × × × × × × × × × ×												
	* <u>*</u> *** *****				-								
	× × × × × × × ×												
	× × × × × × × × × × × × × × × × × × ×				-	1							
	<u></u>												
	× × × × × × × × × × × × × × × × × × ×				-	1							
5-	× × × × × × × × × × × × × × × × × × ×												
	× × × × × × × × × × × × × × × × ×				-								
	* * × × × ×				1375								
	x x x x x x x x x x x x x x x x x x x x					1							
	× × × × × ×												
	× × × × × × × × × × × × × × × × × × ×				-								
$\mathbf{\nabla}$					_								
	× × × × × × × × × × × × × × × × × × ×												
					_								
	* <u>*</u> *** * <u>*</u> ***												
10 -	××××××××××××××××××××××××××××××××××××××				-								
	x x x x x x x x x												
					1370	-							
	× × × × × × × × × × × × × × × × × × ×												
	× × × × ×				-	$\left \right $							
	× × × × × × × × × × × × × × × × × × ×												
	× × × ×				-	$\left \right $							
	× × × × × × × × ×			13.7	-								
		Weathered Shale, Gray, Free Water			-	$\left \right $							

PROF	ESSIONA	PEC L ENGINEERING CONSULTANTS			E	30	RIN	IGN	IUI	MBE		SB age 1	
		City of Bel Aire	PROJE	CT NAME	Wood	dlav	vn Mo	nitorir	na W	ell Proi	iect		
	-	T NUMBER 237363-003		CT LOCATI								nsas	
		ARTED 03/11/2024 COMPLETED 03/11/2024											
		LCTOR -		ID WATER									
			$\underline{\nabla}$					RED 8	3'				
		BY BH CHECKED BY Bob Henthorne											
	TES												_
<u> </u>	-				1				1			<u> </u>	
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
5-		Silty Clay, Small Sand Pebbles			1370 	-							

	PEC NAL ENGINEERING CONSULTANTS			E	30	RIN	IG N	IUI	MBE		SB · age 1	
	T City of Bel Aire	PRO.JF		Wood	llaw	/n Mo	nitorir	na W	ell Proi	iect		
	CT NUMBER 237363-003										nsas	
	STARTED 03/11/2024 COMPLETED 03/11/2024											
	RACTOR -		ND WATER I	_								
			INITIALLY				RED 1	0'				
	ED BY BH CHECKED BY Bob Henthorne											
	3 -											
							1	1	I	1		
Depth (Ft)	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
	Asphalt		0.6	-							~	
	Silty Clay, Brown, Weathered Shale, Olive Green-Gray, Free Moisture		11.5	- 1370 - 1365 - 1365 - - - - - - - - - - - - - - - - - - -	-					20.8	58-41-17	

		PEC				B	ORIN	IG I	NU	MBE			
PRO	FESSIONA	L ENGINEERING CONSULTANTS									Pa	age 1	of 1
СІ	IENT	City of Bel Aire	PROJ	ECT NAN	ME Wo	odla	wn Mc	nitori	ng W	ell Pro	ject		
PF	OJEC	T NUMBER 237363-003	PROJ	ECT LOC		I _37	th to 4	5th st	reet,	Bel Ai	re Ka	nsas	
DA	ATE ST	ARTED COMPLETED	GROU	IND ELEV		1 3	74.38'	HOLE	SIZE	-			
C	ONTRA	ACTOR	GROU	IND WAT	ER LE	/ELS	5:						
М	ЕТНО	0	$\bar{\Sigma}$	INITIAL	LY ENG	cou	NTERE	D					
LC	GGED	BY BH CHECKED BY Bob Henthorne	Ţ	AFTER	15 MIN	I. <u>N</u>	/A						
N			HAM		GHT /	DRO	P / -						
										_		Ē	
Depth (Ft)	Graphic Log	Visual Classification and Remarks				Samala Cranhia	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
5		Fill Material, Silty Clay with Glass and other Debris Weathered Shale, Olive Green to Gray		6	5.0	- - - - - - - - - - - - - - -							
					13	65							

6		PEC			I	BO	RIN	IG N	101	MBE		SB age 1	
		ENGINEERING CONSULTANTS										- <u>J</u>	
	-	City of Bel Aire			-				-				
		TNUMBER 237363-003		CT LOCA	_								
		ARTED 03/11/2024 COMPLETED 03/11/2024						HOLE	SIZE	-			
		CTOR											
				INITIAL									
LO	GGED	BY BH CHECKED BY Bob Henthorne	T	AFTER 15	MIN.	N/A	4						_
NO	TES _		HAMM	IER WEIGH	HT / DF	ROP	- / -						
										_		(Id	
Depth (Ft)	Graphic Log	Visual Classification and Remarks			Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
		Silty Clay, Brown		1.4	1370	-						A	
- - 5- - -		Clay, Light Brown, Sandy, Soft		7.6		-							

E		PEC		E	30	RIN	IG N	101	MBE		SB age 1	
		LENGINEERING CONSULTANTS		Moor	dlou	un Ma	nitorir				0	
	_	City of Bel Aire TNUMBER 237363-003	ECT NAME ECT LOCATI								neae	
		ARTED _03/12/2024 _ COMPLETED		-								
							IOLE					
		CTOR										
		BY BH CHECKED BY Bob Henthorne										
		• •										
			 				1	1	1	1		
Depth (Ft)	Graphic Log	Visual Classification and Remarks		Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
		Silty Clay, Brown Weathered Shale, Tan to Olive Green, Soft	1.8	-	-							
⊻.				- - 1380	-					17.3	44-19-28	57

		B	OF	RING) NI	JM	BER		B - ' age 1	
PROFESSIONAL ENGINEERING CONSULTANTS		14/							.90 .	01 1
CLIENT City of Bel Aire										
PROJECT NUMBER 237363-003	PROJECT LOCA	-								
DATE STARTED 03/12/2024 COMPLETED -										
METHOD LOGGED BY _BH CHECKED BY _Bob Henthorne										
NOTES										
				/	1		1	1		
(1-1) O Eby U Eby I Classification and Remarks		Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
Silty Clay, Brown, Soft Weathered Shale, Olive Green	2.0	1385								

				B	OR	RING) NI	JM	BER	_	B - ′ age 1	
		L ENGINEERING CONSULTANTS City of Bel Aire	PROJECT NAME	Woo	dlav	vn Mo	nitorir	na W	ell Pro	iect		
	-	City of Bel Aire TNUMBER 237363-003	PROJECT LOCAT								insas	
		ARTED 03/16/2024 COMPLETED 03/16/2024		-								
				_			IOLL					
		ACTOR										
		BY BH CHECKED BY Bob Henthorne	HAMMER WEIGH									
	123											
Depth (Ft)	Graphic Log	Visual Classification and Remarks		Elevation (Ft)	Sample Graphic	Sample Number	REC / RQD	Blow Counts	Compressive Strength (Tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines
		Concrete Pavement Aggregate Base	0.8		_							
-		Silty Clay, Brown-Gray	1.4	1390	-							
-		Sity Clay, Brown-Gray								20.3	19-19-30	77
-		Weathered Shale, Olive Green	3.2		-							
<u></u>												

S	OIL CLAS	SIFICATIO			AS	TM D 2488				GRAII	N SIZE			
DDI		SIONS		SECON	DAR	Y DIVISIONS						APPROXIMAT		
FN		510145	GROUP SYMBOL		OL	L GROUP NAME		DESCRIPTION		SIEVE SIZE	GRAIN SIZE	SIZE		
		CLEAN GRAVEL	0,00 0,00 0,00 0,00	GW well-graded GRAVEL										
		less than 5% fines	less than 5% fines	less than 5% fines		GP		poorly-graded GRAVEL	1	Bou	ders	> 12"	> 12"	Larger than basketball-sized
			0,00,0 0,00,0 1,00,0	GW-GM	w	vell-graded GRAVEL with silt]					Fist-sized to basketball-sized		
	GRAVEL more than 50% of	GRAVEL with DUAL		GP-GM	ро	orly-graded GRAVEL with silt	1	Cob	Cobbles	3 - 12"	3 - 12"			
	coarse fraction	CLASSIFICATIONS 5% to 12% fines		GW-GC	W	ell-graded GRAVEL with clay								
	retained on No. 4 sieve			GP-GC	рос	orly-graded GRAVEL with clay	1		Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized		
				GM		silty GRAVEL	1	Gravel						
COARSE- GRAINED SOILS more than 50% retained on No. 200 sieve		GRAVEL with FINES more than 12% fines		GC		clayey GRAVEL	1	Fine #4 - 3/4"		#4 - 3/4"	0.19 - 0.75"	Pea-sized to thumb-sized		
		1270 111105		GC-GM		silty, clayey GRAVEL	1					<u> </u>		
		CLEAN SAND less		SW		well-graded SAND	1		Coarse	#10 - #4	0.079 - 0.19"	Rock-salt-sized to pea-sized		
		than 5% fines		SP		poorly-graded SAND	1							
				SW-SM	,	well-graded SAND with silt	1	Sand Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to rock-salt-sized			
	SAND 50% or more of	SAND with DUAL CLASSIFICATIONS		SP-SM	р	oorly-graded SAND with silt	1							
	coarse fraction	5% to 12% fines				SW-SC	v	vell-graded SAND with clay			Fine	#200 - #40	0.0029 - 0.017"	Flour-sized to sugar-sized
	retained on No. 4 sieve			SP-SC	рс	porly-graded SAND with clay								
				SM		silty SAND		Fir	ies	Passing #200	< 0.0029"	Flour-sized and smaller		
		SAND with FINES more than 12% fines		SC		clayey SAND				_		smaner		
				SC-SM		silty, clayey SAND		PLASTI			TY CHART			
				CL		lean CLAY		70 г	I					
	SILT and	INORGANIC		ML		SILT		60 -						
	CLAY liquid limit less than			CL-ML		silty CLAY								
FINE-	50%	ORGANIC	N, N, N, N, N, N N, N, N, N	OL (PI > 4)		organic CLAY		% ⁵⁰			CH or OH			
GRAINED SOILS			N, N, N, N, N, N N, N, N, N, N N, N, N, N, N N, N, N, N, N N, N, N, N, N	OL (PI < 4)		organic CLAY		40 -						
50% or more passes No.		INORGANIC		СН		fat CLAY		00 CITYI		CL or O		MH or OH		
200 sieve	SILT and CLAY liquid			МН		elastic SILT		PLASTICITY INDEX (Pl), 20 %, 10 70 70 70 70 70		\times	1+			
	limit 50% or more	ORGANIC		OH (plots on or above 'A'-line)		organic CLAY		10	CL-N	AL ML or O				
		URGAINIC		OH (plots below 'A'-line)		organic SILT		0						
	Highly C	Organic Soils		PT		Peat	1	0	10	20 30 40 LIQUIE	50 60 70 D LIMIT (LL), %	80 90 1		

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CAB	LE OR CATHEAD	AUTOMATIC TRIP HAMMER			
APPARENT DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤ 4	≤ 8	≤ 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CAB	AUTOMATIC TRIP HAMMER				
CONSISTENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

APPENDIX B: Laboratory Testing Program

Laboratory tests were performed on selected representative samples to evaluate pertinent engineering properties of the subsurface materials obtained from our borings. The results of these laboratory tests are presented on the respective boring logs in Appendix A, and are summarized in the Summary of Laboratory Results in Appendix B. The laboratory tests were performed in general accordance with the following ASTM standards:

- Visual Classification, ASTM D2488, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
- **Moisture Content**, ASTM D2216, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
- Atterberg Limits, ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
- **Percent finer the #200 sieve**, ASTM D1140, Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing.

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

PROJECT NAME Bel Aire - Woodlawn Monitoring Wells

PROJECT NUMBER	PROJECT NUMBER 237363-003 PROJECT LOCATION										
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Unit Weight (pcf)	Satur- ation (%)	Void Ratio
MW-9	2.0	44	19	25	0.075	57	CL	17.3			
MW-9	6.0	58	41	17				20.8			
MW-11	1.0	49	19	30	0.075	77	CL	20.3			

350 South Washington Phone 316-262-6457

www.pec1.com

Michita, Ks 67202 Fax 316-262-6592 email: FieldServices@pec1.com

Unconfined Compressive Strength Report

Bel Aire

Woodlawn Monitoring Wells

Bel Aire, Kansas

Project No. : 237363-003

20

Sample D	Stress vs. Stra	
Source	MW-9	1.8
Sample ID	2.0 - 4.0	
Sampling Method	3-inch Shelby	4.1 (ft) 4.1 (ft) 4.1 (ft) 5.1 (f
Date Tested	4/1/2024	
Material Type	CL	.≥ 0.8 S 2 0.6
Unconfined Strength, tsf	1.695	G 0.4
Undrained Shear Strength, tsf	0.848	0.2
Failure Strain, %	10.28	0 5 10 0 5 Axial Strain (%)
Strain Rate, in./min.	2.234	Sample Photogra
Wet Density, pcf	128.36	
Dry Density, pcf	109.40	
Void Ratio	0.5400	
Specimen Diameter, in.	2.87	
Speciment Height, in.	3.16	
Height/Diameter ratio	1.10	

Checked By: P. Younkin

Tested By: D. Riley

350 South Washington Phone 316-262-6457

www.pec1.com

Michita, Ks 67202 Fax 316-262-6592 email: FieldServices@pec1.com

Unconfined Compressive Strength Report

Bel Aire

Woodlawn Monitoring Wells

Bel Aire, Kansas

Project No. : 237363-003

Sample I		Stress vs. Strain	
Source	MW-9	0.8	
Sample ID	6.0 - 9.0		
Sampling Method	3-inch Shelby	Compressive Strength (tsf)	
Date Tested	4/1/2024	e Stre	
Material Type	Shale	E.0 Lessi	
Unconfined Strength, tsf	0.747	0.2	
Undrained Shear Strength, tsf	0.373	0.1	
Failure Strain, %	6.96	0	0 1 2 3 4 5 6 7 Axial Strain (%)
Strain Rate, in./min.	1.228		Sample Photograph
Net Density, pcf	119.22		
Dry Density, pcf	98.69		
/oid Ratio	0.7072		
Specimen Diameter, in.	2.87		
Speciment Height, in.	5.75		
Height/Diameter ratio	2.00		

Tested By: D. Riley

Checked By: P. Younkin

8 9 10

wichita, Ks 67202 Fax 316-262-6592 email: FieldServices@pec1.com

350 South Washington Phone 316-262-6457 www.pec1.com e

Unconfined Compressive Strength Report

Bel Aire

Woodlawn Monitoring Wells

Bel Aire, Kansas

Project No. : 237363-003

Sample De	etails	Stress vs. Strain
Source	MW-11	3
Sample ID	1.0 - 3.0	2.5
Sampling Method	3-inch Shelby	Compressive Strength (tsf)
Date Tested	4/1/2024	
Material Type	CL	
Unconfined Strength, tsf	2.572	L C C C C C C C C C C C C C C C C C C C
Undrained Shear Strength, tsf	1.286	0.5
Failure Strain, %	9.98	0 0 5 _{Axial Strain (%)} 10 15
Strain Rate, in./min.	1.225	Sample Photograph
Wet Density, pcf	128.19	
Dry Density, pcf	106.58	
Void Ratio	0.5808	
Specimen Diameter, in.	2.86	
Speciment Height, in.	5.76	
Height/Diameter ratio	2.01	
Comments: - none -		

Tested By: _____ D. Riley

Checked By: P. Younkin

GENERAL GEOTECHNICAL NOTES

SOIL CLASSIFICATION TERMINOLOGY

Soil classification is based on ASTM D-2487 "Soil Classification for Engineering Purposes" which is based on the Unified Soil Classification System. Fine grained soils have less than 50 percent of their particles retained on the No. 200 sieve. These soils are classified as silts if they are non-plastic to slightly plastic and as clays if they classify as plastic. Coarse grained soils have more than 50 percent of their particles retained on the No. 200 sieve and are classified as sands, gravels, cobbles and boulders depending on the grain size. Minor and major constituents may be added as modifiers depending on the proportions of the soil types. Additionally, fine grained soils are described based on their consistency and coarse grained soils are delineated by their relative density. Examples: Fat clay with sand (CH) and Silty sand (SM).

WATER LEVEL MEASUREMENTS

Water level measurements presented on the test boring logs are for the times indicated. These measurements may not necessarily represent the actual groundwater levels at the site. Fine grained soils of low permeability may require measurements for extended periods to accurately reflect free water levels. Coarse grained soils will generally reflect true groundwater levels after short periods. Groundwater levels and seepage water can vary depending on time of year, climatic conditions and other factors beyond the scope of normal geotechnical explorations. Typical water level abbreviations follows:

WD - Water level during drilling W24 - Water level 24 hours after drilling CW - Depth to wet cave of boring WA - Water level after drilling W48 - Water level 48 hours after drilling CD - Depth to dry cave of boring

SAMPLING AND DRILLING OBSERVATIONS

Drilling and sampling procedures are typically performed in accordance with ASTM standards unless otherwise noted. Typical sampling and drilling abbreviations follows:

- P Standard Penetration sampler
- (1-3/8 in. ID split-spoon)
- S 3 in. diameter thin walled Shelby Tube
- D Denison Barrel Sampler
- B Bulk/grab sample

SB - Sawtooth bit barrel sampler CF4 - 4 in. diameter continuous flight auger CF6 - 6 in. diameter continuous flight auger HS - 7-1/4 in. diameter hollow stem auger NX - Diamond bit coring