

Drainage Calculations

For

Old Hydes Ferry Pike

January 15, 2021

Michael Dewey, PE Dewey Engineering 2925 Berry Hill Drive Nashville, TN 37204 (615) 401-9956 mdewey@dewey-engineering.com

Project Description

This project consists of a single commercial lot located along Old Hydes Ferry Pike at the intersection with Harper Lane. The site boundary contains 1.60 acres, and construction of this project will ultimately disturb 1.57 acres. Upon completion of this project, this development will include a gas station, a restaurant, parking, stormwater infrastructure, and private utilities.

Summaries for the following are included below along with associated calculations: Existing Conditions and Erosion Control Summary, Stormwater Infrastructure Summary, Water Quality Summary, and Water Quantity Summary.

Existing Conditions and Erosion Control Summary

This site contains a single outfall near the western corner of the property. A tributary of Marrowbone Creek, which is exceptional waters of the state, drains through this outfall. Soil types for this development were identified using the USGS Web Soil Survey printout attached in Appendix A. Since the site ultimately drains to exceptional waters, erosion control measures have been designed to control runoff generated from the 5-year, 24-hour storm event and include wire-backed silt fence and a construction exit.

Stormwater Infrastructure Summary

All catch basins and pipes were sized to pass at least the 10 year storm event. Attached in Appendix B are drain area maps, storm profiles, and printouts from Autodesk Storm and Sanitary Analysis 2019. The software was used to calculate hydraulic grade lines, velocities, inlet spreads and all other required design parameters.

Water Quality

The 80% TSS removal requirement for this site will be accomplished using a bioretention area. The bioretention area was sized using Version 9 of Metro Nashville Stormwater's LID Site Design Tool. Additionally, TNRAT was used to verify the design meets state requirements set in the Tennessee Permanent Stormwater Management & Design Guidance Manual. The required water quality volume for the bioretention area was obtained using the following attachments located in Appendix C: LID Drain Area Maps, Forebay Sizing Worksheets, LID worksheet, and TNRAT report. The volume sizing for the bioretention area is summarized in Table 1 below:

	Bioretention Area
Required WQ Volume	4,388 cf
Surface Area	3,598 sf
Depth of Ponding	0.5 ft
Depth of Storage Media	3 ft
Depth of Gravel	3 ft
Equivalent Depth	2.45 ft
Proposed WQ Volume (cf)	8,815
Tv Provided/Tv Required (%)	201%

Table 1: Water Quality Sizing Calculations

Water Quantity

Water Quantity for this site will also be accomplished using the bioretention area. Using USDA's Web Soil Survey, the soils for this site were determined to be Ennis Gravelly Silt Loam. Web Soil Survey list the capacity of the most limiting layer of Ennis Gravelly Silt Loam to transmit water as high with infiltration rates of 2 to 6 in/hr. Since the bioretention area will be managed through infiltration and an overflow weir, the infiltration rate in Hydraflow was set to the minimum 2 in/hr. The predeveloped and post-developed conditions for the site are summarized in the table below:

Table 1. Fle-Developed & Fost-Developed Basilis							
	Existing	Prop. to					
	Basin	Bio					
Total Acres	1.11	1.11					
Weighted Curve Numbers	69	93					
Time of Concentration (min)	16.1	2.1					

Table 1: Pre-Developed & Post-Developed Basins

All pre-post development requirements for the 2-100 year events have been met. The tables below summarize the pre vs. post developed release rates. Refer to the Water Quantity Section in Appendix D for detailed information including Maps, Calculations, Summaries, Hydrographs, and other pertinent information.

	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Existing Basin (Pre-Developed Flow)	1.166	2.229	2.999	4.044	4.848	5.658
From Bioretention (Post-Developed Flow)	0.000	0.000	0.000	0.497	2.013	5.208
Flow Reduction (= Pre – Post)	1.166	2.229	2.999	3.547	2.835	0.450

Appendix: Table of Contents

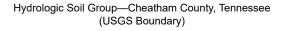
Appendix A: Existing Conditions and Erosion Control

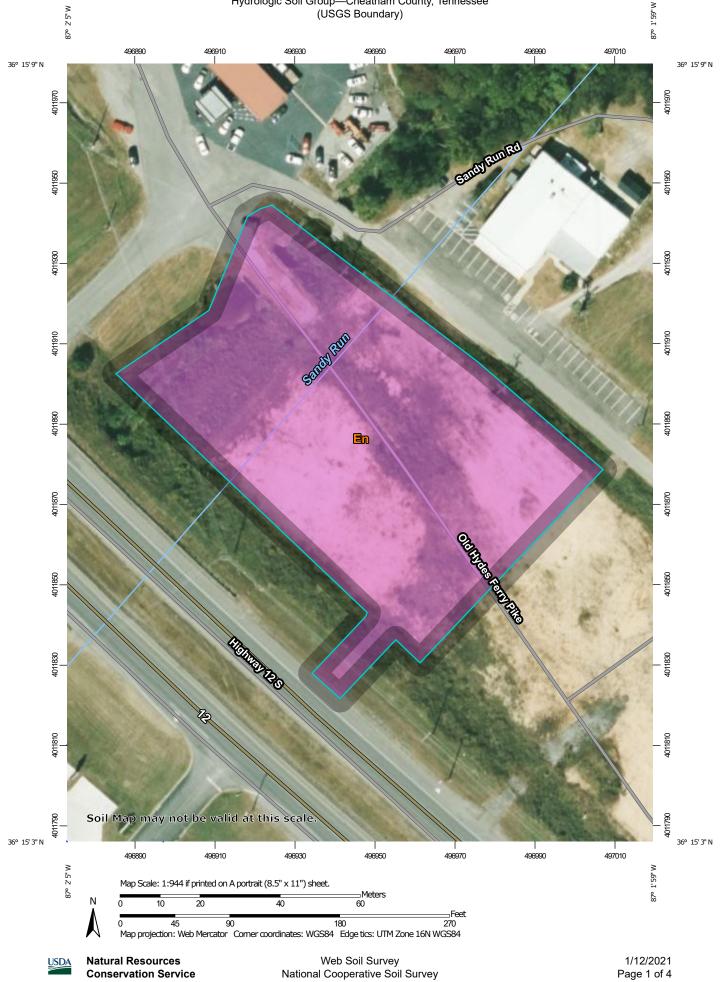
- USGS Web Soil Survey Printout
- FEMA FIRM

Appendix B: Stormwater Infrastructure Calculations

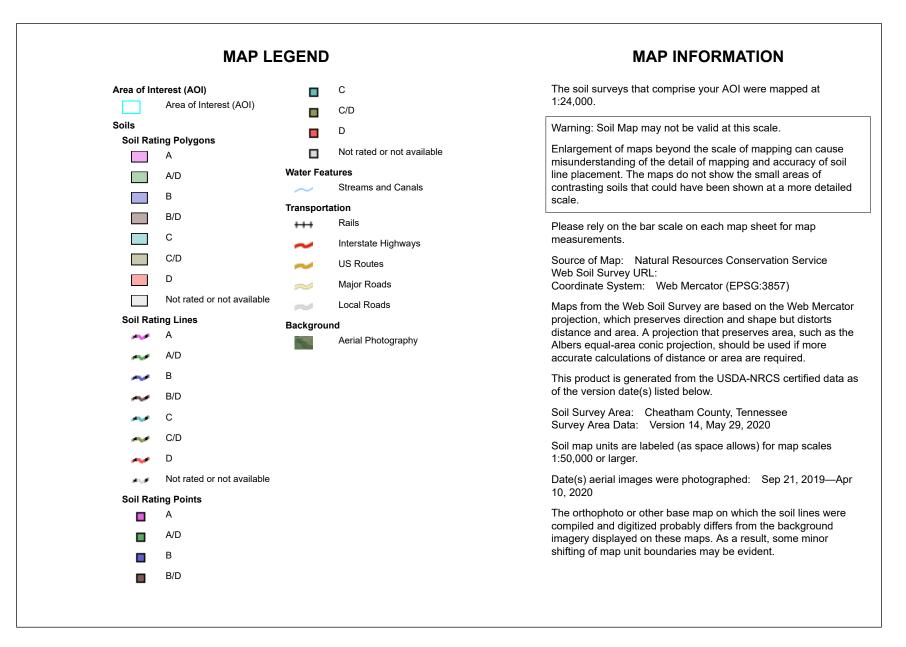
- Drain Area Map
- 100 Year Storm Calculations Pipe Printout

Appendix C: Water Quality Calculations


- Drain Area Map Proposed
- Metro Nashville LID Worksheet
- TNRAT Report
- Forebay Sizing Calculations


Appendix D: Pond Calculations

- Drain Area Map Existing for Detention
- Drain Area Map Proposed for Detention
- Contour Area Calculations (Input for Pond Calculations)
- Curve Number Calculations (Input for Pond Calculations)
- Pond Calculations


Appendix A: Existing Conditions and Erosion Control

- USGS Web Soil Survey Printout
- FEMA FIRM

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
En	Ennis gravelly silt loam, occasionally flooded	A	1.6	100.0%		
Totals for Area of Intere	st		1.6	100.0%		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

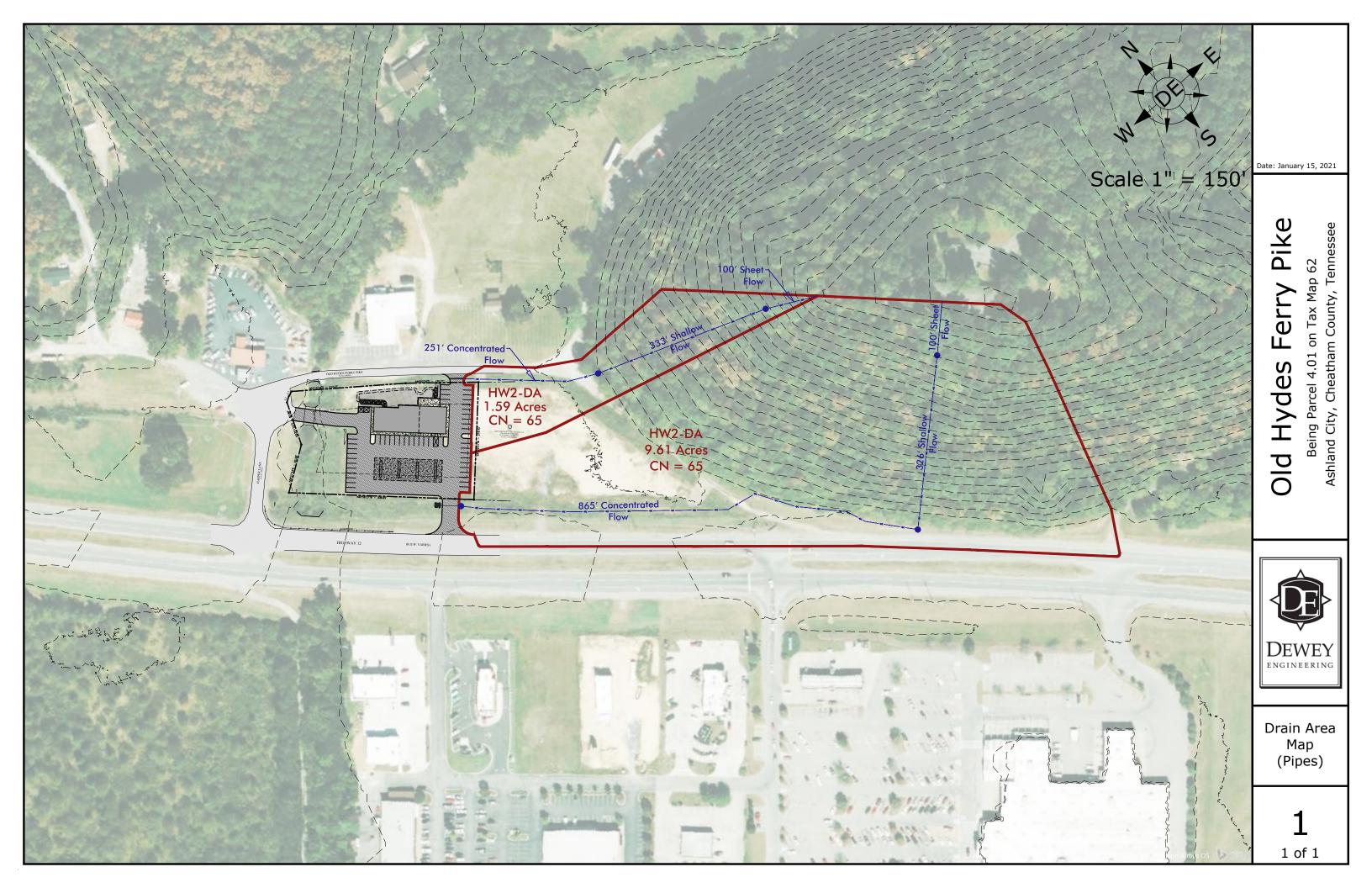
Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

National Flood Hazard Layer FIRMette


Legend

87°2'21"W 36°15'21"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Cheatham County Area with Reduced Flood Risk due to Levee. See Notes. Zone X 470026 OTHER AREAS OF જ FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall A02AFEE1 Zone AE AREA OF MINIMAL FLOOD HAZARD 47021C0170D 20.2 Cross Sections with 1% Annual Chance Zone eff. 9/17/2010 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** TOWN OF ASHLAND CITY OTHER **Profile Baseline** 470027 FEATURES Hydrographic Feature **Digital Data Available** FLOODWAY No Digital Data Available Zone AE MAP PANELS Unmapped The pin displayed on the map is an approximate C) point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/13/2021 at 4:35 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map Zone AE elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 87°1'44"W 36°14'52"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Appendix B: Stormwater Infrastructure Calculations

- Drain Area Map
- 100 Year Storm Calculations Pipe Printout

Project Description

File Name 20053.SPF

Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	SCS TR-55
Time of Concentration (TOC) Method	SCS TR-55
Link Routing Method	Kinematic Wave
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	NO

Rainfall Details

	SN	Rain Gage ID	Data Source	Data Source ID	Rainfall Type	Rain Units	State	County	Period	Rainfall Depth (inches)	Rainfall Distribution
-	1	Rain Gage-01	Time Series	TS-01	Cumulative	inches	Tennessee	Cheatham	10	4.90	SCS Type II 24-hr

Subbasin Summary

	SN Subbasin	Area	Weighted	Total	Total	Total	Peak	Time of
	ID		Curve	Rainfall	Runoff	Runoff	Runoff	Concentration
			Number			Volume		
		(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
	1 HW02-DA	9.61	65.00	4.90	1.59	15.25	19.97	0 00:11:30
	2 Sub-02	1.59	65.00	4.90	1.59	2.52	3.52	0 00:08:16

Node Summary

SN	Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
	ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
				Elevation	Elevation				Attained	Depth	Attained	Flooding	Volume	
										Attained		Occurrence		
_			(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1	HW02	Junction	406.00	411.00	0.00	0.00	0.00	19.58	407.63	0.00	3.37	0 00:00	0.00	0.00
2	HW04	Junction	407.00	409.00	0.00	0.00	0.00	3.51	407.68	0.00	1.32	0 00:00	0.00	0.00
3	HW01	Outfall	405.80					19.48	407.42					
4	HW03	Outfall	406.70					3.50	407.38					

Subbasin Hydrology

Subbasin : HW02-DA

Input Data

Area (ac)	9.61
Weighted Curve Number	65.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

	Area	Soil	Curve	
Soil/Surface Description	(acres)	Group	Number	
2 acre lots, 12% impervious	9.61	В	65.00	
Composite Area & Weighted CN	9.61		65.00	

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))

Where :

Tc = Time of Concentration (hr)n = Manning's roughness Lf = Flow Length (ft) P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

SI = SIOPE (II/II)

Shallow Concentrated Flow Equation :

 $\begin{array}{l} \mathsf{V} = 16.1345 * (\mathsf{Sf} 0.5) (unpaved surface) \\ \mathsf{V} = 20.3282 * (\mathsf{Sf} 0.5) (paved surface) \\ \mathsf{V} = 15.0 * (\mathsf{Sf} 0.5) (grassed waterway surface) \\ \mathsf{V} = 10.0 * (\mathsf{Sf} 0.5) (nearly bare & untilled surface) \\ \mathsf{V} = 9.0 * (\mathsf{Sf} 0.5) (nearly bare & untilled surface) \\ \mathsf{V} = 7.0 * (\mathsf{Sf} 0.5) (short grass pasture surface) \\ \mathsf{V} = 5.0 * (\mathsf{Sf} 0.5) (short grass pasture surface) \\ \mathsf{V} = 2.5 * (\mathsf{Sf} 0.5) (forest w/heavy litter surface) \\ \mathsf{T} c = (\mathsf{Lf} / \mathsf{V}) / (3600 sec/hr) \\ \end{array}$

Where:

 $\begin{array}{l} Tc = Time \ of \ Concentration \ (hr) \\ Lf = Flow \ Length \ (ft) \\ V = Velocity \ (ft/sec) \\ Sf = Slope \ (ft/ft) \end{array}$

Channel Flow Equation :

 $\begin{array}{l} V &= (1.49 \, ^{*} \, (R^{(2/3)}) \, ^{*} \, (Sf^{(0.5)}) \, / \, n \\ R &= Aq \, / \, Wp \\ Tc &= (Lf \, / \, V) \, / \, (3600 \, sec/hr) \end{array}$

Where :

 $\begin{array}{l} \mathsf{Tc} = \mathsf{Time of Concentration (hr)} \\ \mathsf{Lf} = \mathsf{Flow Length (ft)} \\ \mathsf{R} = \mathsf{Hydraulic Radius (ft)} \\ \mathsf{Aq} = \mathsf{Flow Area (ft^2)} \\ \mathsf{Wp} = \mathsf{Wetted Perimeter (ft)} \\ \mathsf{V} = \mathsf{Velocity (ft/sec)} \\ \mathsf{Sf} = \mathsf{Slope (ft/ft)} \\ \mathsf{n} = \mathsf{Manning's roughness} \end{array}$

	Subarea		Subarea
Sheet Flow Computations	A	В	С
Manning's Roughness :	0.40	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	33	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.50	0.00	0.00
Velocity (ft/sec) :	0.25	0.00	0.00
Computed Flow Time (min) :	6.69	0.00	0.00
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	A	В	С
Flow Length (ft) :	325	0.00	0.00
Slope (%) :	20	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	7.22	0.00	0.00
Computed Flow Time (min) :	0.75	0.00	0.00
	Subarea		Subarea
Channel Flow Computations	A	В	С
Manning's Roughness :	0.032	0.00	0.00
Flow Length (ft) :	865	0.00	0.00
Channel Slope (%) :	1	0.00	0.00
Cross Section Area (ft ²) :	8	0.00	0.00
Wetted Perimeter (ft) :	12	0.00	0.00
Velocity (ft/sec) :	3.55	0.00	0.00
Computed Flow Time (min) :	4.06	0.00	0.00
Total TOC (min)11.50			

Subbasin Runoff Results

Total Rainfall (in)	4.90
Total Runoff (in)	1.59
Peak Runoff (cfs)	19.97
Weighted Curve Number	65.00
Time of Concentration (days hh:mm:ss)	0 00:11:30

Subbasin : Sub-02

Input Data

Area (ac)	1.59
Weighted Curve Number	65.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

omposite Curve Number			
	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
-	1.59	-	65.00
Composite Area & Weighted CN	1.59		65.00

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.4	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	33	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.50	0.00	0.00
Velocity (ft/sec) :	0.25	0.00	0.00
Computed Flow Time (min) :	6.69	0.00	0.00
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft) :	334	0.00	0.00
Slope (%) :	25	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	8.07	0.00	0.00
Computed Flow Time (min) :	0.69	0.00	0.00
	Subarea	Subarea	Subarea
Channel Flow Computations	А	В	С
Manning's Roughness :	0.032	0.00	0.00
Flow Length (ft) :	251	0.00	0.00
Channel Slope (%) :	1	0.00	0.00
Cross Section Area (ft ²) :	8	0.00	0.00
Wetted Perimeter (ft):	8	0.00	0.00
Velocity (ft/sec) :	4.66	0.00	0.00
Computed Flow Time (min) : Total TOC (min)8.28	0.90	0.00	0.00

Subbasin Runoff Results

Total Rainfall (in)	4.90
Total Runoff (in)	
Peak Runoff (cfs)	3.52
Weighted Curve Number	65.00
Time of Concentration (days hh:mm:ss)	0 00:08:17

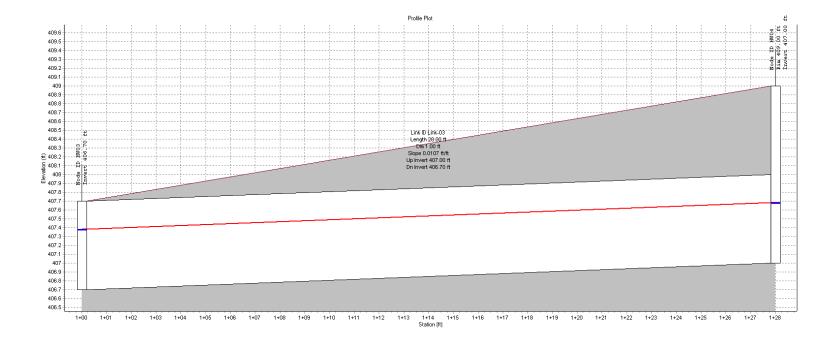
Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)	(in)
1 HW02	406.00	411.00	5.00	0.00	-406.00	0.00	-411.00	0.00	0.00
2 HW04	407.00	409.00	2.00	0.00	-407.00	0.00	-409.00	0.00	0.00

Junction Results


SN	Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
	ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
			Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
						Attained					Occurrence		
		(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1	HW02	19.58	19.58	407.63	1.63	0.00	3.37	406.17	0.17	0 12:05	0 00:00	0.00	0.00
2	HW04	3.51	3.51	407.68	0.68	0.00	1.32	407.04	0.04	0 12:05	0 00:00	0.00	0.00

Pipe Input


	SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
	ID		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
			Elevation	Offset	Elevation	Offset				Height							
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(in)	(in)					(cfs)	
_	1 HW01-HW02	38.00	406.00	0.00	405.80	0.00	0.20	0.5300	CIRCULAR	30.000	30.000	0.0150	0.5000	0.5000	0.0000	0.00 No	1
	2 Link-03	28.00	407.00	0.00	406.70	0.00	0.30	1.0700	Rectangular	12.000	12.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

S	N Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
	ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
			Occurrence		Ratio				Total Depth		
									Ratio		
		(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
	1 HW01-HW02	19.48	0 12:05	25.79	0.76	5.79	0.11	1.63	0.65	0.00	Calculated
	2 Link-03	3.50	0 12:05	4.70	0.75	5.15	0.09	0.68	0.68	0.00	Calculated

1+00 1+01 1+02 1+03 1+04 1+05 1+06 1+07 1+08 1+09 1+10 1+11 1+12 1+13 1+14 1+15 1+16 1+17 1+18 1+19 1+20 1+21 1+22 1+23 1+24 1+25 1+26 1+27 1+28 1+29 1+30 1+31 1+32 1+33 1+34 1+35 1+36 1+37 1+38 1+39 Station (it)

Appendix C: Water Quality Calculations

- Drain Area Map Proposed
- Metro Nashville LID Worksheet
- TNRAT Report
- Forebay Sizing Calculations

MWS LID Site Design Tool

Project Name	Old Hyde	es Ferry Pike
Parcel Identification #	Тах Мар	62, Parcel 4.01
Combined Sewer Overlay?	NO	
Pre-Development Impervious Area (acres)	0.05	
Post-Development Impervious Area (acres)	1.05	
Pre-Development Rv =	0.18	
Target Runoff Reduction Requirement =	80%	See Section 7.2.1 in Metro SWMM Volume 1

Capture Depth=	1	inch	
Cistern Capture=		% Total Vol captured	From Cistern Design Tool

MWS LID SITE DESIGN TOOL VERSION 9 - August 1, 2016

Instructions

1. Input cells are in Green.

2. Break Site Into Sub areas by single soils and land use type combinations.

3. Assign a code to each subarea and input the code into column C. Descriptions can be entered in column B.

4. Input the subarea drainage area in column D.

5. Input treatment credit code (Column F) for the first tier of treatments

6. Input additional treatment code as desired (Column I) for any subarea

7. Adjust until you reach 80% reduction or better (Cell N turns green if 80% reached).

8. If 80% reduction is not reached and it has been decided that GIPs in series is an option use Step 3a to place GIPs in series .

Their respective treatment volumes are calculated in column W. This volume is separate from GIPs upstream.

9. When using GIPs in Series the user will look to Cell T for confirmation the 80% goal has been met.

Percent V	olume Reducti	on-Base	d Calcu	ations																			_
Step 1: La	ay out the site and div specific land us			ach of a	use types permeable p	Change any s through ref oavement or use of open GIP.	foresting, green roofs		reat impervic use of disco sheet flow		Step 3: Treat primarily impervious areas with structural GIPs either in series with Step 3 intrinsic GIPs or alone downstream from Steps 1 and 2 land use.			Size controls for Step 3 by assigning						Size cont assigning each			
	Step1 Basic	c Land Use			Step	1a Modifie	d LU	Step	2 Intrinsic	GIPs	Step	3 Structural	GIPs	Structure ID	IA C	apture	Step 3a S	tructural GIF	s in Series	Structure ID	IA (Capture	Nominal Cu
Subarea	Description	Code	Acres	Base Rv	Code	Acres	Eff Rv1	Code	Trtmt VR1	Eff Rv2	Code	Trtmt VR2	Eff Rv3		Tv Multiplier	Tv (cf)	Code	Trtmt VR2	Eff Rv4	Site GIP ID Number	Tv Multiplier	Structure in Series Tv (cf)	Step 1
1				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
2	Imp to Bio to FA	IA	0.66	0.95	IA	0.66	0.95		0	0.95	B2	0.8	0.19		1.25	2,845		0	0.19		0.00	-	98
3	Grass to Bio to FA	TA	0.004	0.15	TA	0.004	0.15		0	0.15	B2	0.8	0.03		1.25	3		0	0.03		0.00	-	49
4	Imp to Bio to FB	IA	0.34	0.95	IA	0.34	0.95		0	0.95	B2	0.8	0.19		1.25	1,466		0	0.19		0.00	-	98
5	Grass to Bio to FB	TA	0.005	0.15	TA	0.005	0.15		0	0.15	B2	0.8	0.03		1.25	3		0	0.03		0.00	-	49
6	Bio	TA	0.1	0.15	TA	0.1	0.15		0	0.15	B2	0.8	0.03		1.25	68		0	0.03		0.00	-	49
7				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
8				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
9				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
10				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
11				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
12				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
13				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
14				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
15				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
16				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
17				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
18 19				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
19 20				0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	-	0
20		Weighted R Total Area=		0.871 0.97 12.9%	Weighted Ry Total Area= % Removal	v	0.871 0.97 12.9%	Weighted R % Removal	v	0.871 0.97	Weighted R % Removal	l U	0.174 0.19 82.6%		Step 3 Tv Total	4,385	% Remova	Ŭ	0.174 0.19 82.6%		Final Tv Total	4,385	93.2

THIS CELL WILL TURN GREEN WHEN

TARGET RUNOFF REDUCTION MET

THIS CELL WILL TURN GREEN WHEN

TARGET RUNOFF REDUCTION MET

MWS LID Site Design Tool

Project Name	Old Hydes Ferry Pike
Parcel Identification #	Tax Map 62, Parcel 4.01

MWS LID SITE DESIGN TOOL VERSION 9 - August 1, 2016

	Curve	Number	Instructions
--	-------	--------	---------------------

METRO RAINFALL Rainfall Return Period (in) 3.39 2-yr

50.9

4.50

5.23

6.16

6.85

7.53

PreDev

CN

5-yr

10-yr

25-yr 50-yr

100-yr

e Number

Step 1A

5. Select the rainfall in **Cell AC19** based on return periods shown in table to left. 6. Adjusted curve numbers for each subarea are shown in the table below in column AK, as well as the composite adjusted curve number in Cell AK59, for the rainfall selected. If this value is greater than the composite Pre-Development CN then **Cell AK60** will state "Detention Required" 7. These are the curve numbers to be used in flood control design calculations. Each watershed must be calculated independently. If there are multiple watersheds for the project, then the composite pre-development curve number and composite adjusted curve number should be compared for each watershed to determine if detention is required.

3. Curve numbers are shown for both Step 1 and Step 1a in columns X and Y as well as the composite curve number for the site in line 59 of those columns.

4. The ratio of the Tv provided/Tv required for each GIP (as a %) is entered in column AG (e.g. if only required Tv is provided then this should be 100%).

	No Cor						trols &Trea	• /	/ol Remov	ved
Original CN	Rainfall (in)	S (in)	Q (in)	Tv required (cu ft)	Tv provided (%)	RO Vol Red (cu ft)	Q reduction (in)	Q adj (in)	Adjusted CN	Difference
0.0	7.53	-	-	-			0	-	0.0	0.0
98.0	7.53	0.204	7.29	2845	100.0%	2845	1.1875	6.103	87.9	-10.1
49.0	7.53	10.408	1.87	3	100.0%	3	0.1875	1.685	47.0	-2.0
98.0	7.53	0.204	7.29	1466	100.0%	1466	1.1875	6.103	87.9	-10.1
49.0	7.53	10.408	1.87	3	100.0%	3	0.1875	1.685	47.0	-2.0
49.0	7.53	10.408	1.87	68	100.0%	68	0.1875	1.685	47.0	-2.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
0.0	7.53	-	-	-			0	-	0.0	0.0
93.2		0.731	0.04	4384.8131			1.089213255	-1.053	83.9	-9.3

Adjusted Curve Number Calculations (Step 3 only)

8. If there are GIPs in series, use the 2nd table to calculate the additional reduction in CN.

1. Enter the composite pre-development curve number (CN), to the left, for the watershed.

No Controls				Wi	With Structural Controls & Treatment Vol Removed							
Adjusted CN (St 3)	Rainfall (in)	S (in)	Q (in)	Tv required (cu ft)	Tv provided (%)	RO Vol Red (cu ft)	Q reduction (in)	Q adj (in)	Adjusted CN	Differen		
0.0	7.53	-	-	-			0	-	0.0	0.0		
87.9	7.53	1.371	6.10	-			0	6.103	87.9	0.0		
47.0	7.53	11.259	1.68	-			0	1.685	47.0	0.0		
87.9	7.53	1.371	6.10	-			0	6.103	87.9	0.0		
47.0	7.53	11.259	1.68	-			0	1.685	47.0	0.0		
47.0	7.53	11.259	1.68	-			0	1.685	47.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
0.0	7.53	-	-	-			0	-	0.0	0.0		
93.2		0.731	0.04	0			#DIV/0!	#DIV/0!	83.9	-9.3		

Note that this assumes the same Pre- and Post-developpmentTc and Drainage Areas **DETENTION REQ** if this is not the case additional routing calculations will be required

Note that this assumes the same Pre- and Post-developpmentTc and Drainage Areas if this is not the case additional routing calculations will be required

2. The tool automatically assigns curve numbers for each subarea based on MWS policy matching the land uses of Steps 1 and 1a to curve numbers (see column G COVER SHEET).

Adjusted Curve Number Calculations (Step 3a added)

TN Runoff Reduction Assessment Tool (RRAT)

Site Name: Old Hydes Ferry **Assigned Site Number:** Design submitter:

NOTES:

Access: R2_TN_RRAT_Basic Version #: 2.5.6.1

Design File Name: tn-rrat-runs\Ashland City

Design Results:

Design OK?: GREEN Pollutant removal OK?: GREEN Portion action vol captured: 100 % Volume red. OK?: GREEN Net volume red. depth: 1.65 in.

Portion pollutant removed: 100 %

Inputs:

Location: Nashville

Total surface area: 48300 ft2

Imp:active ratio (X:1): 6.52

General Design Conditions:

Design element #	Discharges to design element #	Area, ft2	Special conditions	Soil	Base SCM / management	Design element description
1	0	4386	none	silt Ioam	04. bioretention\bioretention	Bioretention Area
2	1	28590	none	silt Ioam	impervious\impervious	Impervious to Bio to FA
3	1	205.0	none	silt Ioam	06. infiltration areas\turf, fair	Grass to Bio to FA
4	1	14930	none	silt Ioam	06. infiltration areas\turf, fair	Impervious to Bio to FB
5	1	218.0	none	silt Ioam	06. infiltration areas\turf, fair	Grass to to Bio to FB

Specific Element Design Values:

Design element #	Base SCM / management	Surface removal eff, %	Drain disch rem eff, %	Drain invert depth, in.	Drain disch element #	Storage vol, gal	Withdrawal rate, gal	Layer #	Layer material	Layer design depth, in.
1	tn-rrat-scms\04. bioretention\bioretention	10.0					0	1	(none)	6.00
					0			2	tn-rrat- materials∖Mulch	3.00
					0			3	tn-rrat- materials\Media, soil-based, loamy sand	12.0
2	tn-rrat- scms\impervious\impervious	0					0	1	(none)	0
3	tn-rrat-scms\06. infiltration areas\turf, fair	15.0					0	1	(none)	0
4	tn-rrat-scms\06. infiltration areas\turf, fair	15.0					0	1	(none)	0
5	tn-rrat-scms\06. infiltration areas\turf, fair	15.0					0	1	(none)	0

Appendix A: Pond Calculations Contour Area Calculations for Forebay A

Required Volume

	Input		
Required Treatment Volume =	2848	cu ft	

Required Forebay Volume = 0.15(Req Trt Vol) 427.2 cu ft

Volume Calculations

* Calculations Based on the Average End Area Method

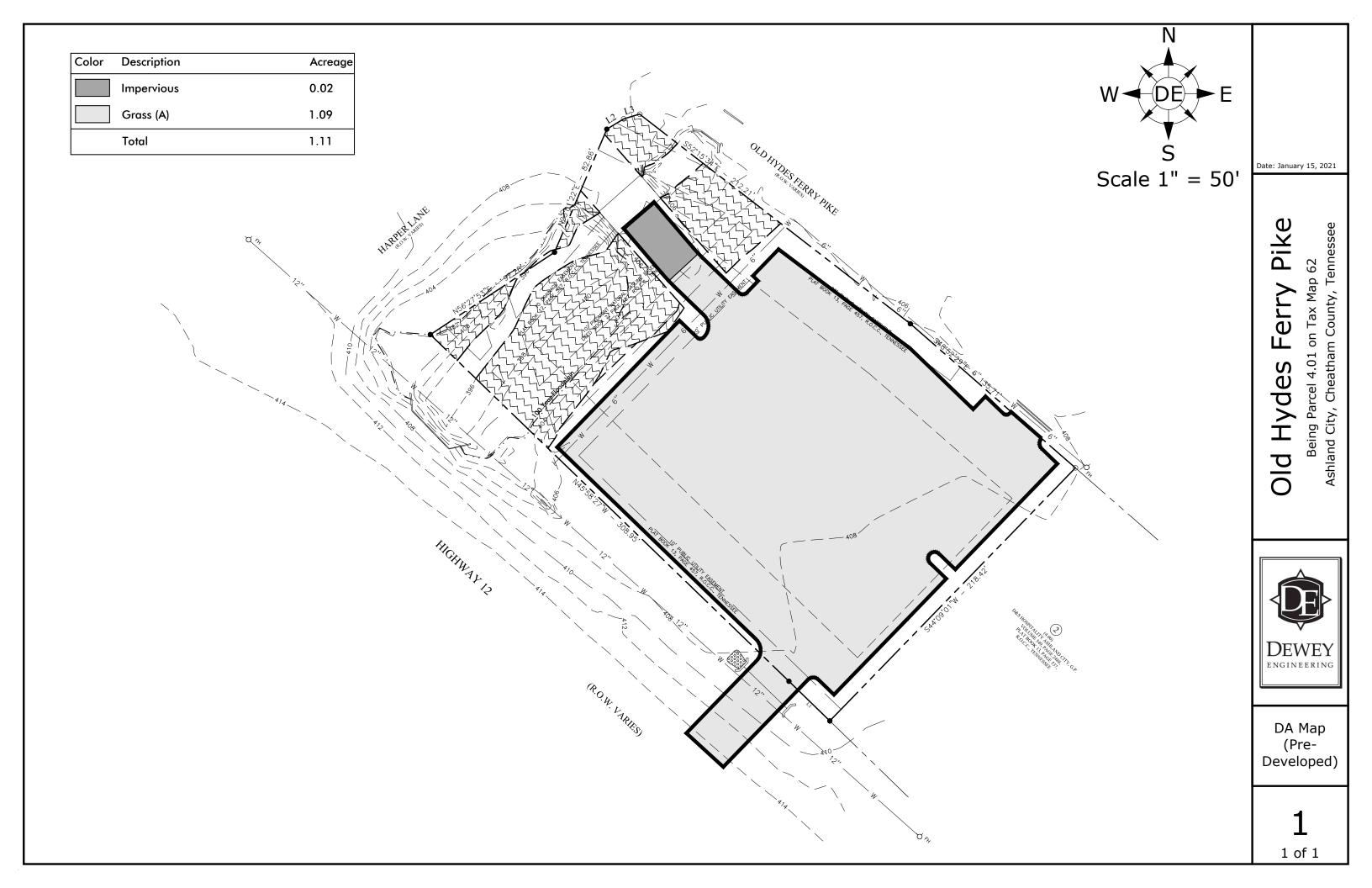
	Elevation (ft)	Area (ft^2)	Length Between Contours (ft)	Volume (cf)
ТОВ	406.8	427		
			2	467.0
BOB	404.8	40		

Appendix A: Pond Calculations Contour Area Calculations for Forebay B

Required Volume

	Input	
Required Treatment Volume =	1569	cu ft

Required Forebay Volume = 0.15(Req Trt Vol) 235.35 cu ft


Volume Calculations

* Calculations Based on the Average End Area Method

	Elevation (ft)	Area (ft^2)	Length Between Contours (ft)	Volume (cf)
ТОВ	406.8	252		
			2	272.0
BOB	404.8	20		

Appendix D: Pond Calculations

- Drain Area Map Existing for Detention
- Drain Area Map Proposed for Detention
- Contour Area Calculations (Input for Pond Calculations)
- Pond Calculations

Appendix D: Pond Calculations Contour Area Calculations for Bio Area 1

ıts			
Surface Area of Bioretention =	3598 sf	F	
Surface Area of Bottom Bank of Bio =	2224 sf	f	
tour Area Calculations			
Elevation Description	Elevation	Calculation	Contour Area
Bio Invert	398.80	=SA of Bioretention*0.40	1439.20
Top of Storage Layer	399.79	=SA of Bioretention*0.40	1439.20
Bottom of Bio Gravel	399.80	=SA of Bioretention*0.40	1439.20
	404 70		1 4 2 0 2 0
Top of Bio Gravel	401.79	=SA of Bioretention*0.40	1439.20
Top of Bio Gravel Bottom Of Media	401.79	=SA of Bioretention*0.40 =SA of Bioretention*0.25	899.50
Bottom Of Media	401.80	=SA of Bioretention*0.25	899.50

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hydrograph Return Period Recap..... 1

Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing to Outfall 1	
TR-55 Tc Worksheet	
Hydrograph No. 3, SCS Runoff, Proposed to Bio 1 to Outfall 1	5
TR-55 Tc Worksheet	6
Hydrograph No. 4, Reservoir, From Bioretention Area	7
Pond Report - Bioretention Area	8

5 - Year

Summary Report	10
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing to Outfall 1	
Hydrograph No. 3, SCS Runoff, Proposed to Bio 1 to Outfall 1	
Hydrograph No. 4, Reservoir, From Bioretention Area	

10 - Year

Summary Report	14
Hydrograph Reports	
Hydrograph No. 4, Reservoir, From Bioretention Area	
Hydrograph No. 1, SCS Runoff, Existing to Outfall 1 Hydrograph No. 3, SCS Runoff, Proposed to Bio 1 to Outfall 1	15 16

25 - Year

18
19
19
20
21

50 - Year

Summary Report	22
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing to Outfall 1	
Hydrograph No. 3, SCS Runoff, Proposed to Bio 1 to Outfall 1	
Hydrograph No. 4, Reservoir, From Bioretention Area	

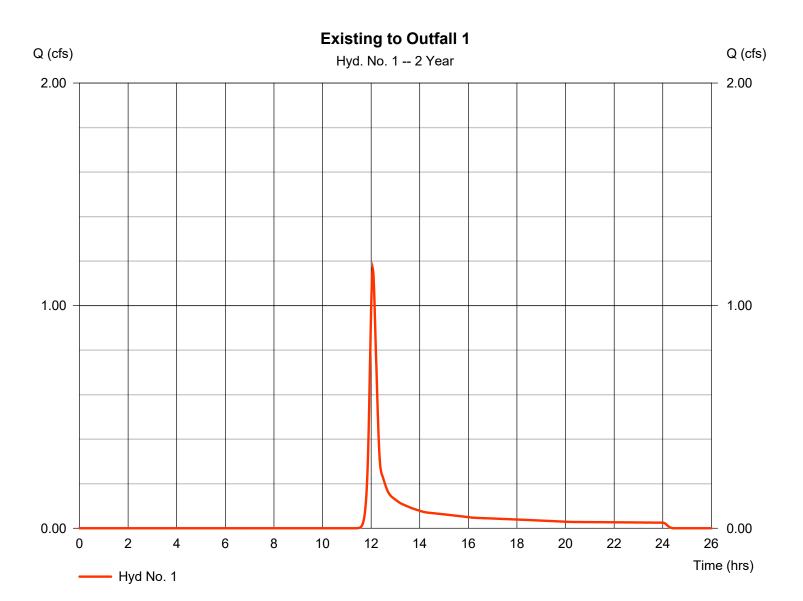
100 - Year

Summary Report	. 26
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing to Outfall 1	
Hydrograph No. 3, SCS Runoff, Proposed to Bio 1 to Outfall 1	
Hydrograph No. 4, Reservoir, From Bioretention Area	

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

iyu. Io.	Hydrograph type	Inflow hyd(s)	Peak Outflow (cfs)							Hydrograph Description	
0.	(origin)	194(5)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Decomption
1	SCS Runoff			1.166		2.229	2.999	4.044	4.848	5.658	Existing to Outfall 1
3	SCS Runoff			5.186		7.139	8.413	10.03	11.22	12.39	Proposed to Bio 1 to Outfall 1
4	Reservoir	3		0.000		0.000	0.000	0.497	2.013	5.208	From Bioretention Area

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.166	1	724	3,626				Existing to Outfall 1
3	SCS Runoff	5.186	1	715	9,930				Proposed to Bio 1 to Outfall 1
4	Reservoir	0.000	1	931	0	3	404.80	7,033	From Bioretention Area
200)53 - 2.gpw				Poture	Period: 2 Ye		Friday, 01	/ 15 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

Existing to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.166 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 3,626 cuft
Drainage area	= 1.110 ac	Curve number	= 69*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.10 min
Total precip.	= 3.39 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

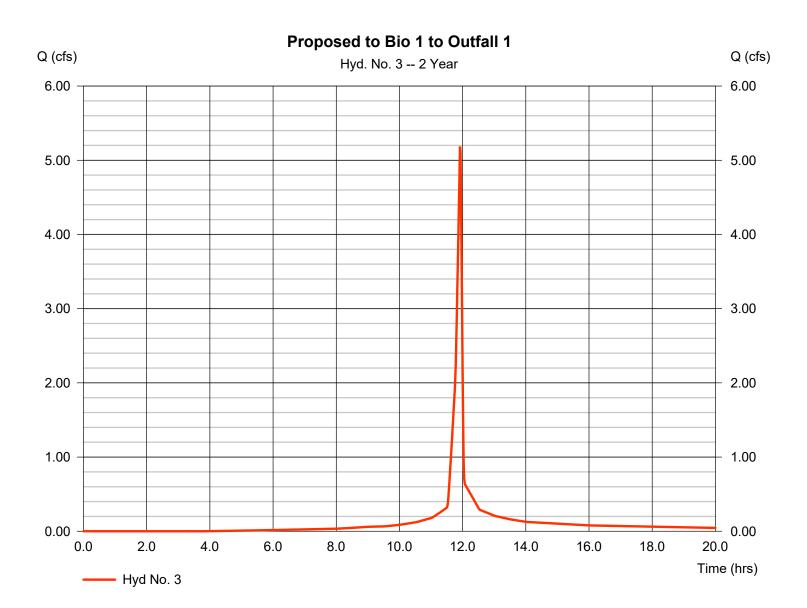
3

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

Existing to Outfall 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 3.39 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 12.56	+	0.00	+	0.00	=	12.56
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 408.00 = 2.00 = Unpaved =2.28	l	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.98	+	0.00	+	0.00	=	2.98
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%)	= 10.00 = 12.00		0.00 0.00		0.00 0.00		
Manning's n-value Velocity (ft/s)	= 1.00 = 0.025 =5.27		0.00 0.015 0.00		0.00 0.015 0.00		
Manning's n-value	= 0.025		0.00 0.015		0.00 0.015		
Manning's n-value Velocity (ft/s)	= 0.025 =5.27	+	0.00 0.015 0.00	+	0.00 0.015 0.00	=	0.60


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 5.186 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 9,930 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 3.39 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110

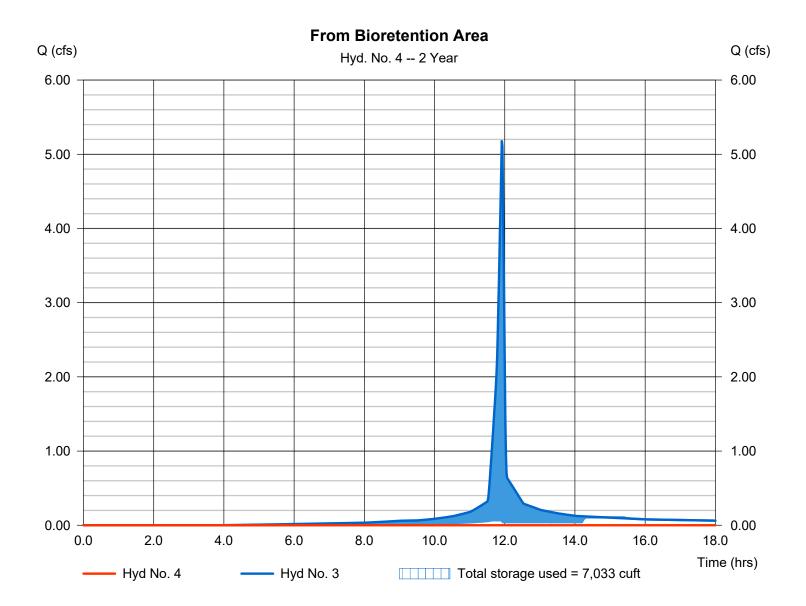
5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>			
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 100.0 = 3.39 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00					
Travel Time (min)	= 1.78	+	0.00	+	0.00	=	1.78			
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00					
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00			
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 10.00 = 10.00 = 1.00 = 0.015 =9.93		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00					
Flow length (ft)	({0})179.0		0.0		0.0					
Travel Time (min)	= 0.30	+	0.00	+	0.00	=	0.30			
Total Travel Time, Tc										


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

From Bioretention Area

Hydrograph type Storm frequency	= Reservoir = 2 yrs	Peak discharge Time to peak	= 0.000 cfs = 15.52 hrs
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No. Reservoir name	= 3 - Proposed to Bio 1 to= Bioretention Area	Max. Storage	= 404.80 ft = 7,033 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

7

Pond Report

Pond No. 1 - Bioretention Area

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 398.80 ft

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	398.80	1,439	0	0
0.99	399.79	1,439	1,425	1,425
1.00	399.80	1,439	14	1,439
2.99	401.79	1,439	2,864	4,303
3.00	401.80	900	12	4,314
5.99	404.79	900	2,691	7,005
6.00	404.80	2,284	16	7,021
8.00	406.80	4,276	6,560	13,581

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 406.30	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 2.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

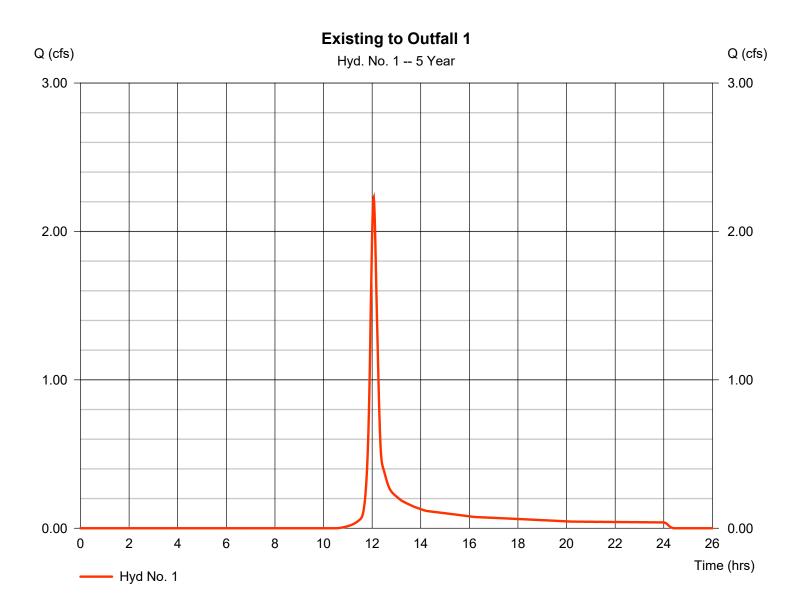
Slage	Storage	Discharge i	able										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	398.80					0.00				0.000		0.000
0.10	142	398.90					0.00				0.007		0.007
0.20	285	399.00					0.00				0.013		0.013
0.30	427	399.10					0.00				0.020		0.020
0.40	570	399.20					0.00				0.027		0.027
0.50	712	399.30					0.00				0.033		0.033
0.59	855	399.39					0.00				0.040		0.040
0.69	997	399.49					0.00				0.047		0.047
0.79	1,140	399.59					0.00				0.053		0.053
0.89	1,282	399.69					0.00				0.060		0.060
0.99	1,425	399.79					0.00				0.067		0.067
0.99	1,426	399.79					0.00				0.067		0.067
0.99	1,428	399.79					0.00				0.067		0.067
0.99	1,429	399.79					0.00				0.067		0.067
0.99	1,430	399.79					0.00				0.067		0.067
1.00	1,432	399.80					0.00				0.067		0.067
1.00	1,433	399.80					0.00				0.067		0.067
1.00	1,435	399.80					0.00				0.067		0.067
1.00	1,436	399.80					0.00				0.067		0.067
1.00	1,438	399.80					0.00				0.067		0.067
1.00	1,439	399.80					0.00				0.067		0.067
1.20	1,725	400.00					0.00				0.067		0.067
1.40	2,012	400.20					0.00				0.067		0.067
1.60	2,298	400.40					0.00				0.067		0.067
1.80	2,584	400.60					0.00				0.067		0.067
2.00	2,871	400.80					0.00				0.067		0.067
2.19	3,157	400.99					0.00				0.067		0.067
2.39	3,444	401.19					0.00				0.067		0.067
2.59	3,730	401.39					0.00				0.067		0.067
2.79	4,016	401.59					0.00				0.067		0.067
2.99	4,303	401.79					0.00				0.067		0.067
2.99	4,304	401.79					0.00				0.064		0.064
2.99	4,305	401.79					0.00				0.062		0.062
2.99	4,306	401.79					0.00				0.059		0.059
2.99	4,307	401.79					0.00				0.057		0.057
											Continue	s on nev	t nage

Bioretention Area Stage / Storage / Discharge Table

-	-	Jischarge	abic										
Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
3.00	4,308	401.80					0.00				0.054		0.054
3.00	4,310	401.80					0.00				0.052		0.052
3.00	4,311	401.80					0.00				0.049		0.049
3.00	4,312	401.80					0.00				0.047		0.047
3.00	4,313	401.80					0.00				0.044		0.044
3.00	4,314	401.80					0.00				0.042		0.042
3.30	4,583	402.10					0.00				0.042		0.042
3.60	4,853	402.40					0.00				0.042		0.042
3.90	5,122	402.70					0.00				0.042		0.042
4.20	5,391	403.00					0.00				0.042		0.042
4.50	5,660	403.30					0.00				0.042		0.042
4.79	5,929	403.59					0.00				0.042		0.042
5.09	6,198	403.89					0.00				0.042		0.042
5.39	6,467	404.19					0.00				0.042		0.042
5.69	6,736	404.49					0.00				0.042		0.042
5.99	7,005	404.79					0.00				0.042		0.042
5.99	7,007	404.79					0.00				0.048		0.048
5.99	7,009	404.79					0.00				0.054		0.054
5.99	7,010	404.79					0.00				0.061		0.061
5.99	7,012	404.79					0.00				0.067		0.067
6.00	7,013	404.80					0.00				0.074		0.074
6.00	7,015	404.80					0.00				0.080		0.080
6.00	7,016	404.80					0.00				0.087		0.087
6.00	7,018	404.80					0.00				0.093		0.093
6.00	7,020	404.80					0.00				0.099		0.099
6.00	7,021	404.80					0.00				0.106		0.106
6.20	7,677	405.00					0.00				0.115		0.115
6.40	8,333	405.20					0.00				0.124		0.124
6.60	8,989	405.40					0.00				0.133		0.133
6.80	9,645	405.60					0.00				0.143		0.143
7.00	10,301	405.80					0.00				0.152		0.152
7.20	10,957	406.00					0.00				0.161		0.161
7.40	11,613	406.20					0.00				0.170		0.170
7.60	12,269	406.40					0.66				0.180		0.838
7.80	12,925	406.60					3.42				0.189		3.608
8.00	13,581	406.80					7.35				0.198		7.552

...End

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.229	1	724	6,537				Existing to Outfall 1
3	SCS Runoff	7.139	1	715	14,006				Proposed to Bio 1 to Outfall 1
4	Reservoir	0.000	1	1538	0	3	405.52	9,392	From Bioretention Area
200	953 - 2.gpw				Return	Period: 5 Y	ear	Friday, 01	/ 15 / 2021

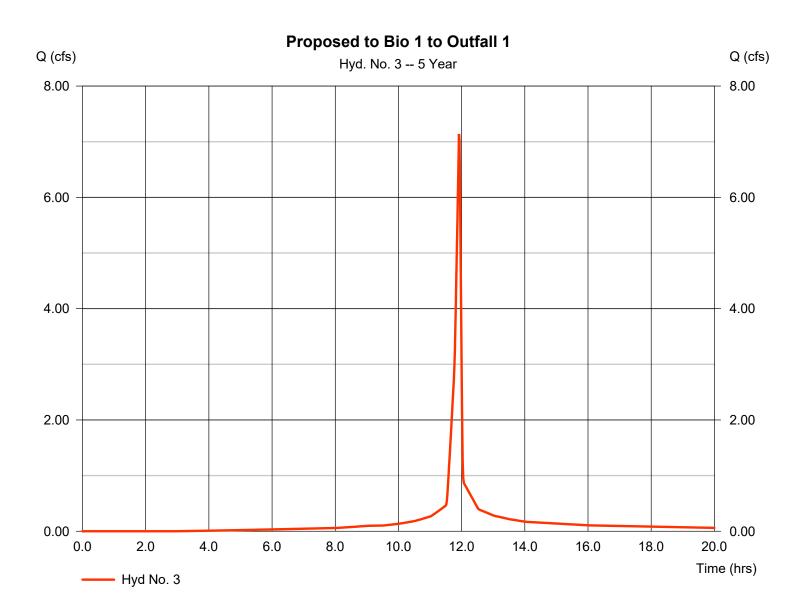

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

Existing to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 2.229 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 6,537 cuft
Drainage area	= 1.110 ac	Curve number	= 69*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.10 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

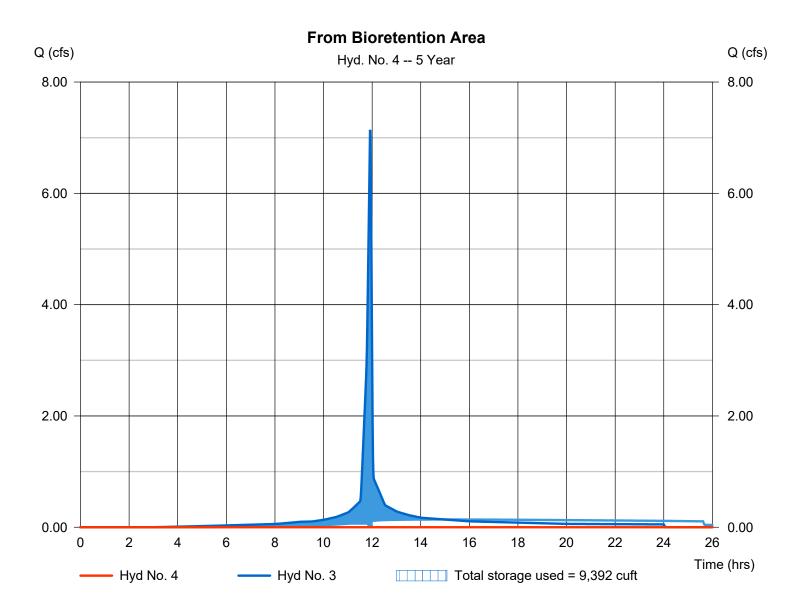

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 7.139 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 14,006 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

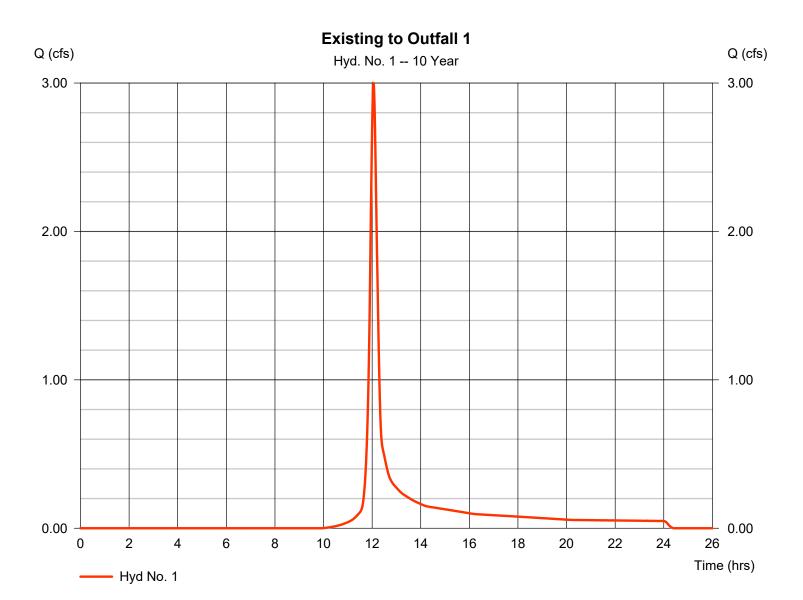
Hyd. No. 4

From Bioretention Area

Hydrograph type	 Reservoir 5 yrs 1 min 3 - Proposed to Bio 1 to 	Peak discharge	= 0.000 cfs
Storm frequency		Time to peak	= 25.63 hrs
Time interval		Hyd. volume	= 0 cuft
Inflow byd, No		OutfalMax_Elevation	= 405.52 ft
Inflow hyd. No.	3 - Proposed to Bio 1 toBioretention Area	Outfal M ax. Elevation	= 405.52 ft
Reservoir name		Max. Storage	= 9,392 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.999	1	723	8,674				Existing to Outfall 1
3	SCS Runoff	8.413	1	715	16,711				Proposed to Bio 1 to Outfall 1
4	Reservoir	0.000	1	720	0	3	406.09	11,238	From Bioretention Area
200									

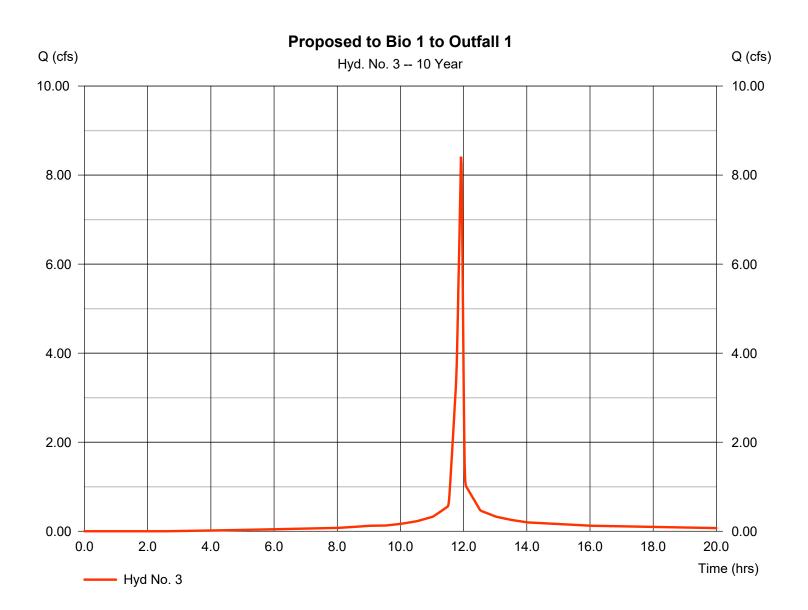

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

Existing to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 2.999 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.05 hrs
Time interval	= 1 min	Hyd. volume	= 8,674 cuft
Drainage area	= 1.110 ac	Curve number	= 69*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.10 min
Total precip.	= 5.23 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

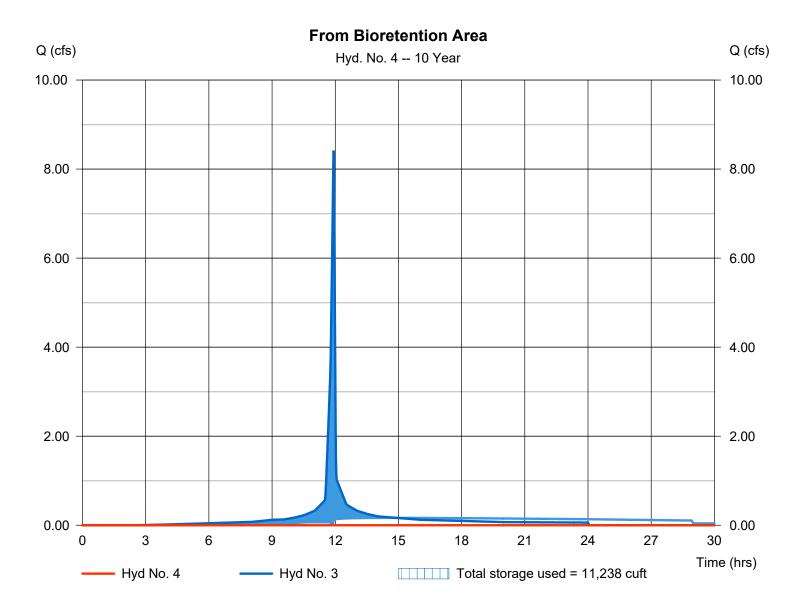

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 8.413 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 16,711 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 5.23 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

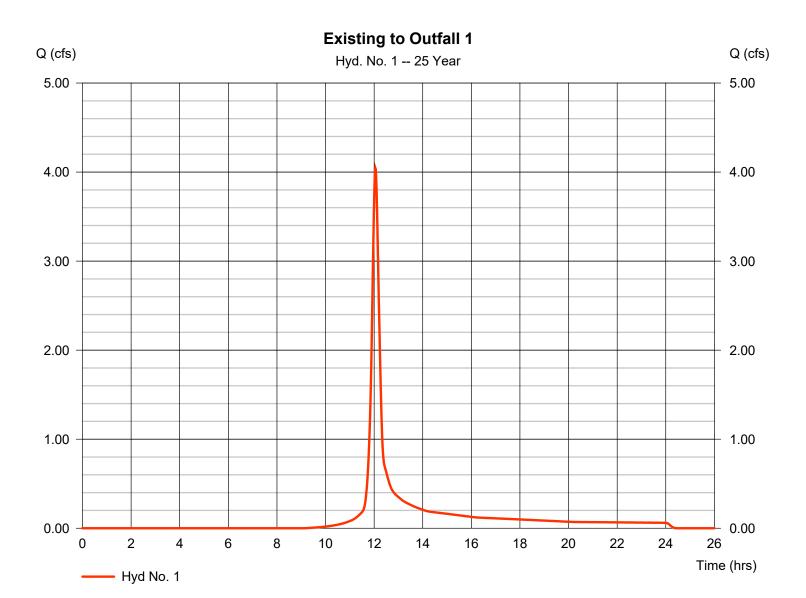
From Bioretention Area

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min		= 0 cuft
Inflow hyd. No.	= 3 - Proposed to Bio 1 to Outf	Hyd. volume	= 406.09 ft
Reservoir name	= Bioretention Area	Max. Storage	= 11,238 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

17

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.044	1	723	11,578				Existing to Outfall 1
3	SCS Runoff	10.03	1	715	20,174				Proposed to Bio 1 to Outfall 1
4	Reservoir	0.497	1	747	2,229	3	406.35	12,108	From Bioretention Area
200)53 - 2.gpw				Return	Period: 25	Year	Friday, 01	/ 15 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

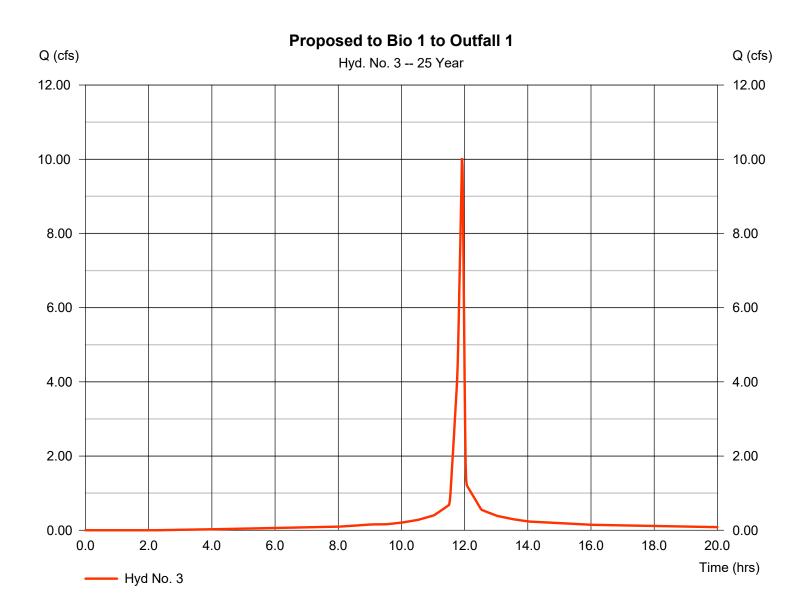
Hyd. No. 1

Existing to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 4.044 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.05 hrs
Time interval	= 1 min	Hyd. volume	= 11,578 cuft
Drainage area	= 1.110 ac	Curve number	= 69*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.10 min
Total precip.	= 6.16 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

19


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

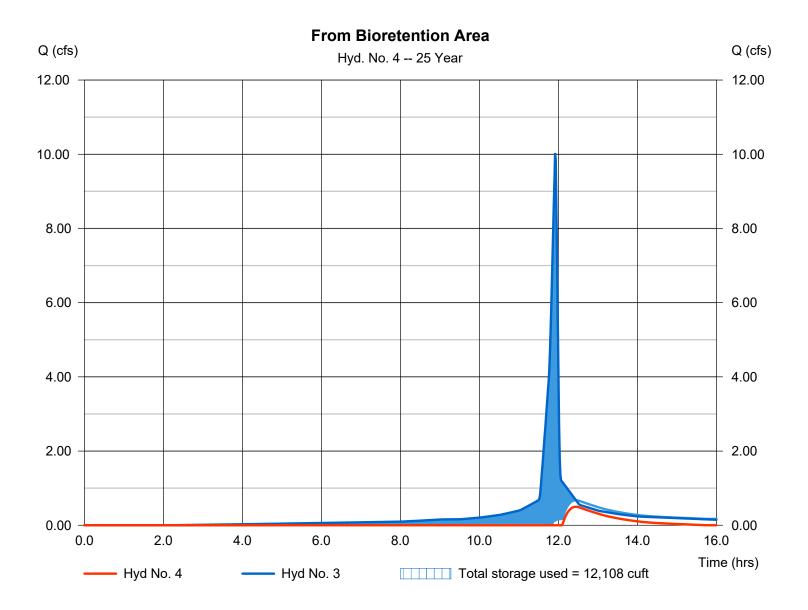
Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 10.03 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 20,174 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 6.16 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110

20


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

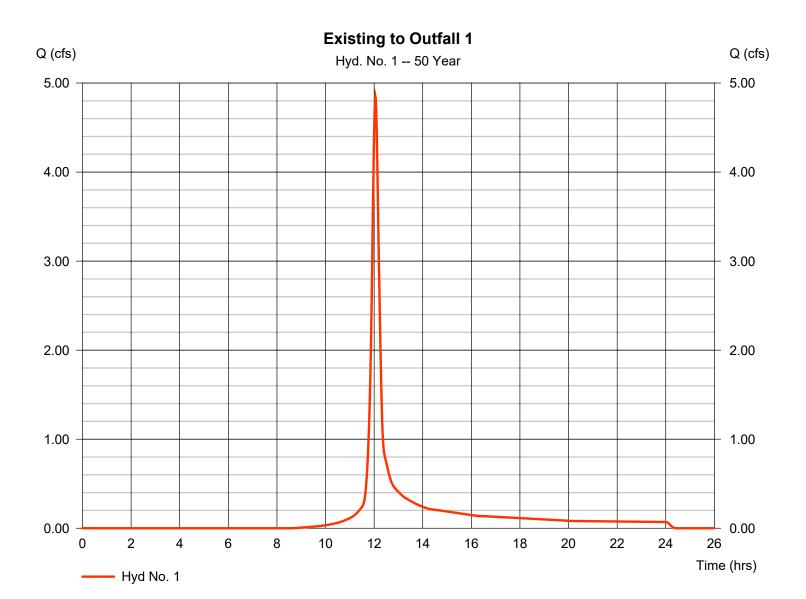
Hyd. No. 4

From Bioretention Area

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 25 yrs 1 min 3 - Proposed to Bio 1 to Outface 	Peak discharge Time to peak Hyd. volume al M ax. Elevation	 = 0.497 cfs = 12.45 hrs = 2,229 cuft = 406.35 ft
Reservoir name	= 3 - Proposed to Bio 1 to Outra	Max. Elevation Max. Storage	= 406.35 ft = 12,108 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.848	1	723	13,836				Existing to Outfall 1
3	SCS Runoff	11.22	1	715	22,751				Proposed to Bio 1 to Outfall 1
4	Reservoir	2.013	1	722	4,315	3	406.50	12,591	From Bioretention Area
200)53 - 2.gpw				Raturn	Period: 50 `	Vear	Friday, 01	/ 15 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

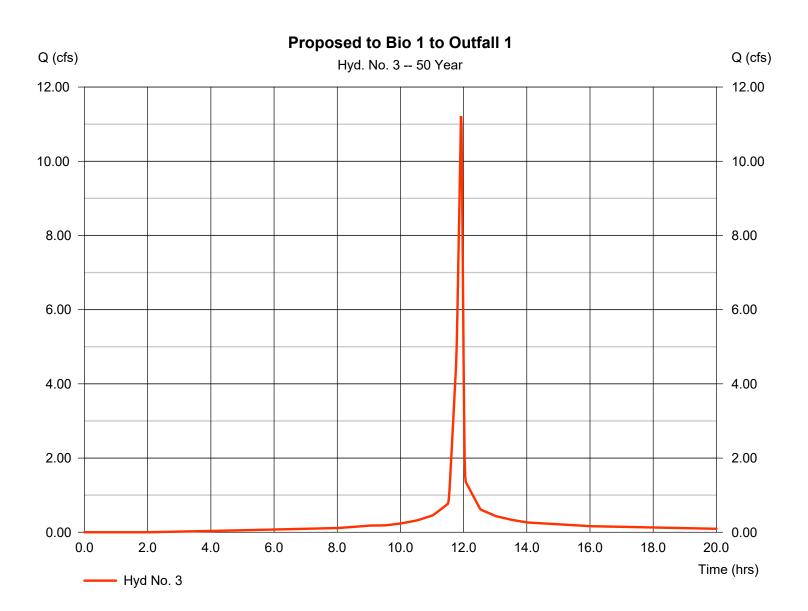
Hyd. No. 1

Existing to Outfall 1

CS Runoff	Peak discharge	= 4.848 cfs
) yrs	Time to peak	= 12.05 hrs
min	Hyd. volume	= 13,836 cuft
.110 ac	Curve number	= 69*
.0 %	Hydraulic length	= 0 ft
R55	Time of conc. (Tc)	= 16.10 min
.85 in	Distribution	= Type II
4 hrs	Shape factor	= 484
F) yrs min 110 ac 0 % R55 85 in) yrsTime to peakminHyd. volume110 acCurve number0 %Hydraulic lengthR55Time of conc. (Tc)85 inDistribution

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

23


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

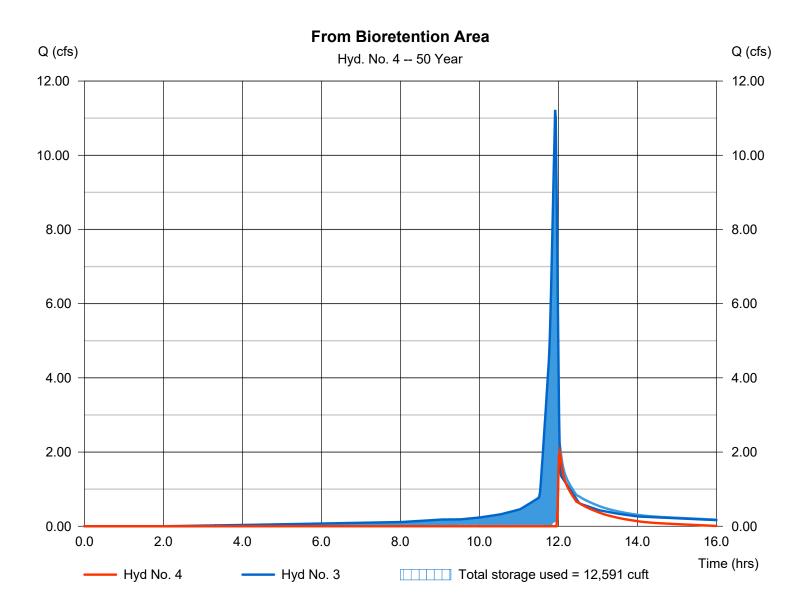
Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 11.22 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 22,751 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 6.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110

24


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

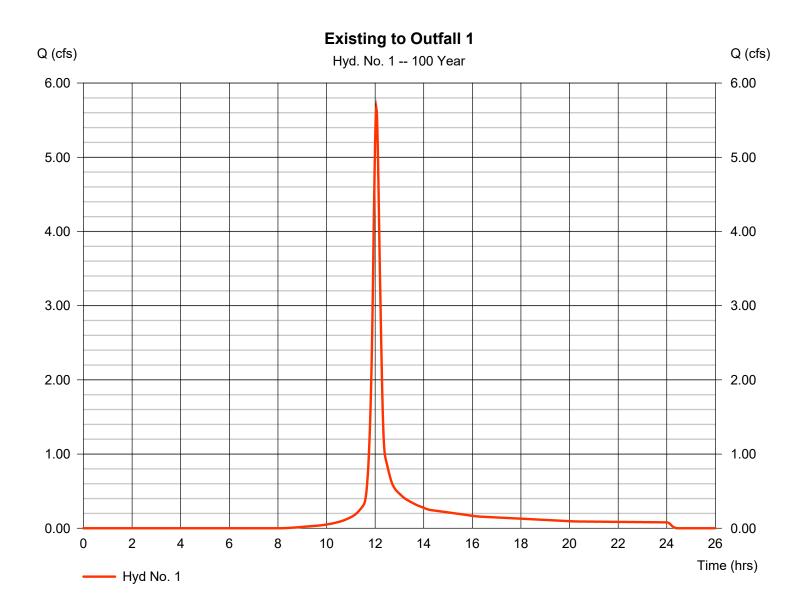
Hyd. No. 4

From Bioretention Area

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 50 yrs 1 min 3 - Proposed to Bio 1 to Outface 	Peak discharge Time to peak Hyd. volume al M ax. Elevation	 2.013 cfs 12.03 hrs 4,315 cuft 406.50 ft
Reservoir name	= 3 - Proposed to Bio 1 to Outra	Max. Storage	= 406.50 ft = 12,591 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.658	1	723	16,128				Existing to Outfall 1
3	SCS Runoff	12.39	1	715	25,296				Proposed to Bio 1 to Outfall 1
4	Reservoir	5.208	1	720	6,428	3	406.69	13,223	From Bioretention Area
)53 - 2.gpw					Period: 100		Friday, 01	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

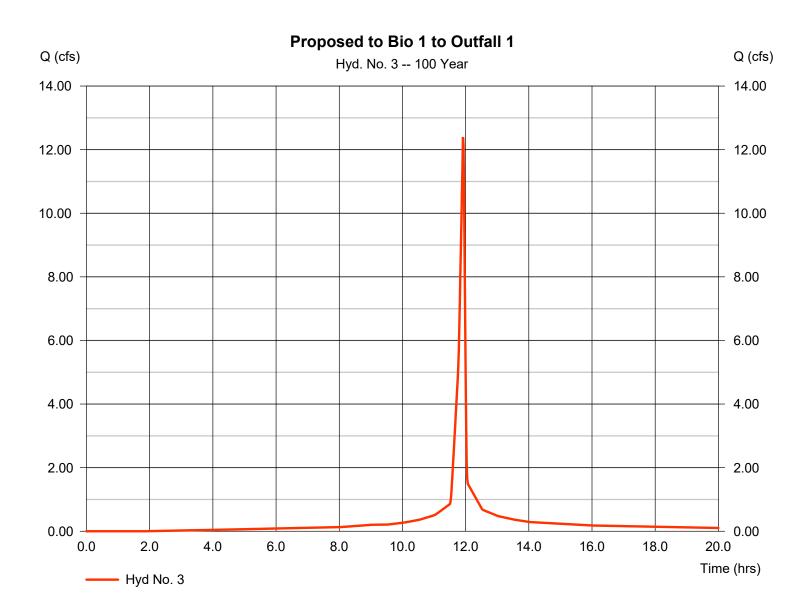
Hyd. No. 1

Existing to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 5.658 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.05 hrs
Time interval	= 1 min	Hyd. volume	= 16,128 cuft
Drainage area	= 1.110 ac	Curve number	= 69*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.10 min
Total precip.	= 7.53 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (1.090 x 68)] / 1.110

27


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

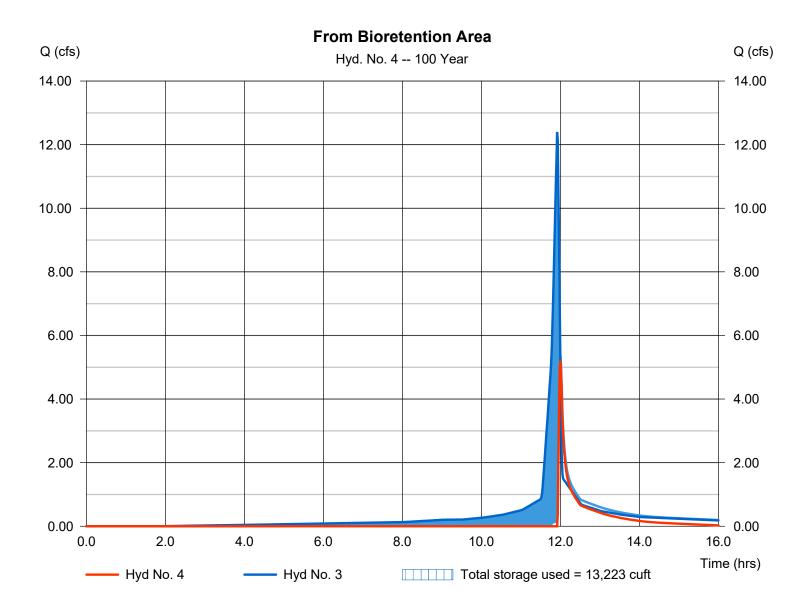
Hyd. No. 3

Proposed to Bio 1 to Outfall 1

Hydrograph type	= SCS Runoff	Peak discharge	= 12.39 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.92 hrs
Time interval	= 1 min	Hyd. volume	= 25,296 cuft
Drainage area	= 1.110 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.10 min
Total precip.	= 7.53 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.009 x 68) + (0.100 x 49)] / 1.110

28


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

From Bioretention Area

Hydrograph type Storm frequency	= Reservoir = 100 yrs	Peak discharge Time to peak	= 5.208 cfs = 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 6,428 cuft
Inflow hyd. No. Reservoir name	= 3 - Proposed to Bio 1 to Outf= Bioretention Area	Max. Storage	= 406.69 ft = 13,223 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

