During periods of low to moderate sunspot activity (about 50% of the 11-year solar cycle), the 14-MHz band closes down for propagation in the early evening. A radio amateur wishing to continue communication must shift to a lower frequency band. The next most highly used band below the 14-MHz band is the 7-MHz amateur band. **Fig 7** portrays a 7-MHz case for another transmitting site, this time from San Francisco, California, to the European continent. Now, the range of necessary elevation angles is from about 1° to 16°, with a peak statistical likelihood of about 16% occurring at an elevation of 3°. At this low elevation angle, a 7-MHz antenna must be *very* high in the air to be effective. Even the 120-foot antenna is hardly optimal for the peak angle of 3°. The 200-foot antenna shown would be far better than a 120-foot antenna. Further, the 35-foot high antenna is *greatly* inferior to the other antennas on this path and would provide far less capabilities, on both receiving and transmitting.

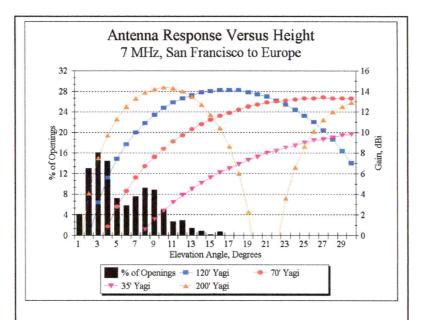


Fig 7—Comparison of antenna responses for another propagation path: from San Francisco to Europe on 7 MHz. Here, even a 120-foot high antenna is hardly optimal for the very low elevation angles required on this very long path. In fact, the 200-foot high antenna is far better suited for this path.

What If the Ground Isn't Flat?

In the preceding discussion, antenna radiation patterns were computed for antennas located over *flat ground*. Things get much more complicated when the exact local terrain surrounding a tower and antenna are taken into account. In the last few years, sophisticated ray-tracing computer models have become available that can calculate the effect that local terrain has on the elevation patterns for real-world HF installations—and *each* real-world situation is indeed different.