With regard to signal hopping, two important points should be recognized. First, a significant loss of signal occurs with each hop. Lower layers of the ionosphere absorb energy from the signals as they pass through, and the ionosphere tends to scatter the radio energy in various directions, rather than confining it to a tight bundle. The earth also scatters the energy at a reflection point. Thus, only a small fraction of the transmitted energy actually reaches a distant receiving point. Again refer to Fig 2. Two radio paths are shown from the transmitter to Point B, a one-hop path and a two-hop path. Measurements indicate that although there can be great variation in the ratio of the two signal strengths in a situation such as this, the signal power received at Point B will generally be from five to ten times greater for the one-hop wave than for the two-hop wave. (The terrain at the mid-path reflection point for the two-hop wave, the angle at which the wave is reflected from the earth, and the condition of the ionosphere in the vicinity of all the refraction points are the primary factors in determining the signal-strength ratio.) Signal levels are generally compared in decibels, abbreviated dB. The decibel is a logarithmic unit. Three decibels difference in signal strengths is equivalent to a power ratio of 2:1; a difference of 10 dB equates to a power ratio of 10:1. Thus the signal loss for an additional hop is about 7 to 10 dB. The additional loss per hop becomes significant at greater distances. For a simplified example, a distance of 4,000 miles can be covered in two hops of 2,000 miles each or in four hops of 1,000 miles each. For illustration, assume the loss for additional hops is 10 dB, or a 1/10 power ratio. Under such conditions, the four-hop signal will be received with only 1/100 the power or 20 dB below that received in two hops. The reason for this is that only 1/10 of the two-hop signal is received for the first additional (3rd) hop, and only 1/10 of that 1/10 for the second additional (4th) hop. It is for this reason that no more than four or five propagation hops are useful; the received signal eventually becomes too weak to be heard. The second important point to be recognized in multihop propagation is that the geometry of the first hop establishes the geometry for all succeeding hops. And it is the elevation angle at the transmitter that sets up the geometry for the first hop. It should be obvious from the preceding discussion that one needs a detailed knowledge of the range of elevation angles for effective communication in order to do a scientific evaluation of a possible communications circuit. The range of angles should be statistically valid over the full 11-year solar sunspot cycle, since the behavior of the Sun determines the changes in the nature of the Earth's ionosphere. ARRL did a very detailed computer study in the early 1990s to determine the angles needed for propagation throughout the world. The results of this study will be examined later, after we introduce the relationship between antenna height and the elevation pattern for an antenna. ## **Horizontal Antennas Over Flat Ground** A simple antenna that is commonly used for HF communications is the horizontal half-wave dipole. The dipole is a straight length of wire (or tubing) into which radio-frequency energy is fed at the center. Because of its simplicity, the dipole may be easily subjected to theoretical performance analyses. Further, the results of proper analyses are well borne out in practice. For these reasons, the half-wave dipole is a convenient performance standard against which other antenna systems can be compared. Because the earth acts as a reflector for HF radio waves, the directive properties of any antenna are modified considerably by the ground underneath it. If a dipole antenna is placed horizontally above the ground, most of the energy radiated downward from the dipole is