With regard to signal hopping, two important points should be recognized. First, a significant
loss of signal occurs with each hop. Lower layers of the ionosphere absorb energy from the
signals as they pass through, and the ionosphere tends to scatter the radio energy in various
directions, rather than confining it to a tight bundle. The earth also scatters the energy at a
reflection point. Thus, only a small fraction of the transmitted energy actually reaches a distant
receiving point.

Again refer to Fig 2. Two radio paths are shown from the transmitter to Point B, a one-hop
path and a two-hop path. Measurements indicate that although there can be great variation in the
ratio of the two signal strengths in a situation such as this, the signal power received at Point B
will generally be from five to ten times greater for the one-hop wave than for the two-hop wave.
(The terrain at the mid-path reflection point for the two-hop wave, the angle at which the wave is
reflected from the earth, and the condition of the ionosphere in the vicinity of all the refraction
points are the primary factors in determining the signal-strength ratio.) Signal levels are
generally compared in decibels, abbreviated dB. The decibel is a logarithmic unit. Three decibels
difference in signal strengths is equivalent to a power ratio of 2:1; a difference of 10 dB equates
to a power ratio of 10:1. Thus the signal loss for an additional hop is about 7 to 10 dB.

The additional loss per hop becomes significant at greater distances. For a simplified
example, a distance of 4,000 miles can be covered in two hops of 2,000 miles each or in four
hops of 1,000 miles each. For illustration, assume the loss for additional hops is 10 dB, or a 1/10
power ratio. Under such conditions, the four-hop signal will be received with only 1/100 the
power or 20 dB below that received in two hops. The reason for this is that only 1/10 of the two-
hop signal is received for the first additional (3™) hop, and only 1/10 of that 1/10 for the second
additional (4™) hop. It is for this reason that no more than four or five propagation hops are
useful; the received signal eventually becomes too weak to be heard.

The second important point to be recognized in multihop propagation is that the geometry of
the first hop establishes the geometry for all succeeding hops. And it is the elevation angle at the
transmitter that sets up the geometry for the first hop.

It should be obvious from the preceding discussion that one needs a detailed knowledge of
the range of elevation angles for effective communication in order to do a scientific evaluation of
a possible communications circuit. The range of angles should be statistically valid over the full
11-year solar sunspot cycle, since the behavior of the Sun determines the changes in the nature of
the Earth’s ionosphere. ARRL did a very detailed computer study in the early 1990s to determine
the angles needed for propagation throughout the world. The results of this study will be
examined later, after we introduce the relationship between antenna height and the elevation
pattern for an antenna.

Horizontal Antennas Over Flat Ground

A simple antenna that is commonly used for HF communications is the horizontal half-wave
dipole. The dipole is a straight length of wire (or tubing) into which radio-frequency energy is
fed at the center. Because of its simplicity, the dipole may be easily subjected to theoretical
performance analyses. Further, the results of proper analyses are well borne out in practice. For
these reasons, the half-wave dipole is a convenient performance standard against which other
antenna systems can be compared.

Because the earth acts as a reflector for HF radio waves, the directive properties of any
antenna are modified considerably by the ground underneath it. If a dipole antenna is placed
horizontally above the ground, most of the energy radiated downward from the dipole is

Page 5



