You may have noted that antenna heights are often discussed in terms of wavelengths. The reason for this is that the length of a radio wave is inversely proportional to its frequency. Therefore a fixed physical height will represent different electrical heights at different radio frequencies. For example, a height of 70 feet represents one wavelength at a frequency of 14 MHz. But the same 70-foot height represents a half wavelength for a frequency of 7 MHz and only a quarter wavelength at 3.5 MHz. On the other hand, 70 feet is 2 wavelengths high at 28 MHz. The lobes and nulls of the patterns shown in Fig 3 illustrate what was described earlier, that the effect of the ground beneath an antenna is to increase the intensity of radiation at some vertical elevation angles and to decrease it at others. At a height of a half wavelength, the radiated energy is strongest at a rather high elevation angle of 30°. This would represent the situation for a 14-MHz dipole 35 feet off the ground. As the horizontal antenna is raised to greater heights, additional lobes are formed, and the lower ones move closer to the horizon. The maximum amplitude of each of the lobes is roughly equal. As may be seen in Fig 3, for an antenna height of one wavelength, the energy in the lowest lobe is strongest at 15°. This would represent the situation for a 14-MHz dipole 70 feet high. The elevation angle of the lowest lobe for a horizontal antenna above perfectly conducting ground may be determined mathematically: $$\theta = \sin^{-1} \left(\frac{0.25}{h} \right)$$ Where θ = the wave or elevation angle h = the antenna height above ground in wavelengths In short, the higher the horizontal antenna, the lower is the lowest lobe of the pattern. As a very general rule of thumb, the higher an HF antenna can be placed above ground, the farther it will provide effective communications because of the resulting lower radiation angle. This is true for any horizontal antenna over real as well as theoretically perfect ground. You should note that the *nulls* in the elevation pattern can play an important role in communications—or lack of communication. If a signal arrives at an angle where the antenna system exhibits a deep null, communication effectiveness will be greatly reduced. It is thus quite possible that an antenna can be *too high* for good communications efficiency on a particular frequency. Although this rarely arises as a significant problem on the amateur bands below 14 MHz, we'll discuss the subject of optimal height in more detail later. Actual earth does not reflect all the radio-frequency energy striking it; some absorption takes place. Over real earth, therefore, the patterns will be slightly different than those shown in Fig 3, however the differences between theoretical and perfect earth ground are not significant for the range of elevation angles necessary for good HF communication. Modern computer programs can do accurate evaluations, taking all the significant ground-related factors into account. ## Beam Antennas For point-to-point communications, it is beneficial to concentrate the radiated energy into a beam that can be aimed toward a distant point. An analogy can be made by comparing the light