APEH 1873 ZOR HYCAROL

All property owners and neighborhood associations within 300 feet of this rezoning have been notified per UDO Sec. 2.2.11 *Public Notification*.

BACKGROUND INFORMATION:

Location:	5100, 5101, & 5220 Jessie Drive; 0 Dezola Street; and
	8140 (portion of), 8252, 8306 & 8308 Smith Road
PINs:	0751421387, 0751310079, 0751319308, 0750390993, 0751400194, 0750398682,
	0750495371, 0750299342, 0750280998 (portion of), 0750270906, 0750274707,
	0750278677, 0750278925
Applicant/Owners:	Jeff Roach, Peak Engineering & Design / MFW Investments, LLC; Horton Park MH, LLC;
	Mary E. Horton; MFWIRA, LLC; Kimberly Horton & Loomis Horton III

PROJECT DESCRIPTION:

Acreage:	±146.9				
Current Zoning:	Planned Unit Development-Conditional Zoning (PUD-CZ #18CZ04)				
Proposed Zoning:	Planned Unit Development-Conditional Zoning (PUD-CZ) (127.84 acres) and				
	Tech/Flex-Conditional Zoning (TF-CZ) (19.06 acres)				
2045 Land Use Map	:				
Within proposed PUD-CZ area: Medium Density Residential, High Density Residential, High Density Residential/Office Employment					
Within prop	osed TF-CZ area: Office Employment/Industrial Employment				

Town Limits: ETJ

Adjacent Zoning & Land Uses:

	Zoning	Land Use
North:	Light Industrial-Conditional Zoning (LI-CZ #17CZ19); Residential Agricultural (RA)	Vacant; Single-Family Residential
South:	Medium Density Residential-Conditional Zoning (MD-CZ #15CZ24); Rural Residential (RR); Planned Unit Development-Conditional Zoning (PUD-CZ #11CZ12)	Vacant; Single-Family Residential
East:	Residential Agricultural (RA); Rural Residential (RR)	Vacant; Single Family Residential; Sorrell Landfill (closed)
West:	Rural Residential (RR); Residential Agricultural (RA)	Vacant

EXISTING CONDITIONS: The subject properties are vacant and wooded. Two streams bisect the property from east to west. The Colonial Gas pipeline bisects the property from north to south.

NEIGHBORHOOD MEETING: The applicant conducted a neighborhood meeting on June 27, 2019. The neighborhood meeting report is attached.

2045 LAND USE MAP:

The 2045 Land Use Map classifications for the properties subject to this rezoning are as follows:

Within proposed PUD-CZ area: Medium Density Residential, High Density Residential,

High Density Residential/Office Employment

Within proposed TF-CZ area: Office Employment/Industrial Employment

The proposed amendments to the Horton Park PUD (PUD-CZ) and the proposed TF-CZ zoning district are consistent with those classifications.

TECH/FLEX-CONDITIONAL ZONING REQUEST:

The 19.06 acres requested to be rezoned to TF-CZ is currently approved as POD 2 of the Horton Park PUD. The applicant desires to remove this area from the PUD. The uses proposed are identical to those currently allowed in POD 2 with the exception of "Church or place of worship" which has been added. The building height and architectural conditions are also identical to those that are applicable to POD 2. Condition #6 has also been added.

Proposed Zoning Conditions:

Limitation of Uses:

The Rezoned Lands may be used for, and only for, the uses listed immediately below. The permitted uses are subject to the limitations and regulations stated in the UDO and any additional limitations or regulations stated below. For convenience, some relevant sections of the UDO may be referenced; such references do not imply that other sections of the UDO do not apply.

- 1. Church or place of worship
- 2. Day care facility
- 3. Drop-in or short-term day care
- 4. Government services
- 5. Veterinary clinic or hospital
- 6. Vocational school
- 7. Utility, minor
- 8. Botanical garden
- 9. Entertainment, indoor
- 10. Greenway
- 11. Park, active
- 12. Park, passive

- 13. Restaurant, general
- 14. Dispatching office
- 15. Medical or dental office or clinic 28. Printing and copying service
- 16. Medical or dental laboratory
- 17. Office, business or professional
- 18. Publishing office
- 19. Research facility
- 20. Artisan studio
- 21. Convenience store
- 23. Grocery, general
- 24. Grocery, specialty
- 25. Health/fitness center or spa

- 26. Personal service
- 27. Pharmacy
- 29. Real estate sales
- 30. Repair services, limited
- 31. Studio for art
- 32. Tailor shop
- 33. Upholstery shop
- 34. Pet services
- 22. Convenience store with gas sales 35. Laboratory, industrial research
 - 36. Microbrewery
 - 37. Microdistillery

Conditions:

- 1. Maximum non-residential building height is 65'.
- 2. Building shall be architecturally compatible through the use of similar colors and building materials. Buildings shall be consistent in scale, massing, style, and relationship to adjacent streets.
- 3. Building placement shall be done to maximize parking in the rear or side of buildings. Drive-thrus, pick-up windows, loading areas, trash facilities, and other accessory items for uses are encouraged to be oriented away from adjacent streets.
- 4. Buildings shall have vertical breaks across any facade which faces an adjacent street. Windows and other store front treatments shall be proportional to the building height and width. Horizontal and vertical setbacks shall be used to provide a visual break in the building mass. Various architectural

PEL

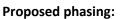
features shall be incorporated, including roofline changes, parapet heights, columns, piers, and material patterns to create various façade breaks.

PEX

- 5. Exterior materials for non-residential structures shall be a combination of materials. The primary façade (front) or any façade facing a street shall include:
 - Brick
 - Wood
 - Stacked stone or other native stone
 - Decorative block (integrally colored or textured) masonry units
 - EIFS cornices and parapet trim (EIFS or stucco shall not be used within 4 feet of ground and shall be limited to 25% of each building façade)
 - Precast concrete
- 6. The developer of the Horton Park PUD or the developer of the subject property shall construct and dedicate the portion of the Collector Street as shown on the Apex Transportation Plan on the subject property.

PLANNED UNIT DEVELOPMENT CHANGES:

The applicant is proposing changes to the approved PUD as shown below. The total number of residential units and the permitted uses are not proposed to be amended.


- 1. Removes POD 2 (19.06 acres) from the PUD. That area is currently approved for non-residential uses and is proposed to be rezoned to TF-CZ with the uses and conditions as described above.
- 2. Changes the phasing and timing of required road improvements (details in the "APEX TRANSPORTATION PLAN/ACCESS and CIRCULATION" section of this report).

PHASING OF PUD:

History of changes to phasing:

The original PUD (#17CZ19) was approved in November 2017 with two (2) options for "Residential Development Restrictions". Option 1 included three (3) phases with thresholds for how many residential units could be developed as certain roadway improvements were made. No restriction on the non-residential sections of Horton Park was provided. Option 2 allowed all lots and units within Horton Park to be released from any development timeline restrictions identified in Option 1 with the completion of the extension of Jessie Drive from Highway 55 to Ten Ten Road as a 2-lane roadway section.

In May 2018, a PUD amendment (#18CZ04) was approved that increased the number of residential units that can be platted or permitted in Phase I from 200 to 250 units while reducing the number of residential units in Phase II from 100 to 50 units. The developer also committed to completing the east-west Major Collector to Smith Road in Phase I. The 50 units in Phase II cannot be platted or permitted prior to the completion of additional through lanes associated with the NCDOT U-5825 project (Ten Ten Road widening). The remainder of the units within the PUD (Phase III) cannot be platted or permitted until the Jessie Drive extension from Highway 55 to Ten Ten Road has been let for construction. Option 2 remained as originally approved.

The applicant is proposing to remove references to Option 1 and Option 2 and instead divide the project into two (2) phases as follows:

PEL

Phase I:

Phase I includes the development of all single-family residential lots and townhome lots south of the PUD boundary located along the creek on the southern portion of the N/F Cash Property (PIN 0751-31-0079). This includes PODs 5–8, the East-West Major Collector Street from Smith Road to the western project boundary, and the North-South Collector Street from Colby Chase Drive to the boundary of the PUD located along the creek on the southern portion of the N/F Cash Property (PIN 0751-31-0079).

Phase II:

Phase II includes the development of the single-family, townhomes, and/or apartments along the Jessie Drive corridor. This specifically includes PODs 3 and 4. Phase II also includes the construction of the North-South Major Collector from the Phase I terminus to Jessie Drive and the construction of Jessie Drive from the current terminus to the North-South Major Collector Street.

Staff has the following concerns with the proposed change in phasing:

- The North-South Collector would not be completely built from Colby Chase Drive to Jessie Drive and Jessie Drive would not be built and improved from the North-South Collector Street to Ten Ten Road in Phase I.
- The proposed Phase I includes approximately 80 more lots than in the current Option 1, Phase I.
- There are no longer any restrictions on the number of permitted units tied to the completion of the State's improvements to Ten Ten Road and the beginning of construction of Jessie Drive from the N-S Collector Street to Highway 55. The result is the potential for 671 residential units to be approved prior to those improvements.
- The changes in phasing and timing puts a greater burden of traffic on Smith Rd, the Smith Rd/Stephenson Rd intersection, Ten Ten Road, and the Pemberley and Miramonte subdivisions.

APEX TRANSPORTATION PLAN/ACCESS and CIRCULATION:

As part of this PUD amendment, the applicant is proposing to change the phasing and therefore the timing of the road improvements that were approved in the current PUD #18CZ04. A revised TIA was completed on July 2, 2019 to account for the changes in phasing. Staff's TIA review letter is attached to the staff report.

Staff noted the following in the August 7, 2019 TIA review letter:

- The TIA assumed a build-out year of 2024 for Phase I and 2026 for Phase II.
- The TIA assumed for the Phase I build-out that the Ten Ten Road improvements would be constructed by 2024 as opposed to the 2023-2025 construction timeframe the State indicated at that time. It is now known that the construction has been delayed until 2029.
- For Phase II, the TIA assumed that the Jessie Drive east-west connection between Ten Ten Rd and NC 55 will be constructed by the Town along with geometric improvements at Jessie Drive and Ten Ten Road. It is important to note that Jessie Drive construction is not funded in the 2019-2020 Capital Improvements Plan (CIP) and is subject to reprioritization in 2020.
- For many of the impacted intersections, Traffic Engineering staff recommended that the phasing

and timing of road improvements remain the same as currently approved in #18CZ04. Please refer to the August 7, 2019 TIA review letter which follows the staff report for concerns noted by staff at each intersection.

After further discussions with staff after the Planning Board meeting, the applicant agreed to submit another addendum to the TIA in order to make corrections to the timing of the State's improvements to Ten Ten Rd and to remove references to the Town's completion of Jessie Drive to Hwy 55. The addendum was received on October 25, 2019 and was reviewed with comments provided. As of the deadline for this staff report, revisions had not been received. Staff's review and comments will be available at the November 6, 2019 Town Council meeting.

APPLICANT'S PROPOSED ROAD IMPROVEMENTS:

The following is the proposed version of the required Transportation Improvements as provided in the PUD text (note that staff disagrees with many of the proposed changes to timing of road improvements - please refer to the August 7, 2019 TIA review letter which follows the staff report for concerns noted by staff):

The Developer shall coordinate with NCDOT all planned improvements on state maintained roadways. In some cases, zoning conditions are subject to NCDOT review and approval and may change to conform to NCDOT approvals. Turn bay storage lengths refer to the length of full width lane provided exclusive of the 100-foot taper in each case. Jessie Drive shall continue as a state maintained roadway for all existing and proposed sections, and the developer shall dedicate the right-of-way pursuant to the current Town of Apex Transportation Plan, currently a 110-foot public right of way along all sections of Jessie Drive within the development.

The timing of the roadway improvements will be coordinated with Apex Transportation Staff during the Master Subdivision Plan and Construction Document review based upon the recommendations within the approved Traffic Impact Analysis (TIA) and according to the phasing plan provided in Section 17 - Phasing. The following recommendations are based upon the revised TIA which will supersede the TIA dated May 31, 2017, the Colby Chase Addendum dated August 30, 2017, and the TIA Update date July 2, 2019.

PHASE I TRANSPORTATION IMPROVEMENTS

US 1 Southbound Ramps / Waterford Green Drive at Center Street

- The Developer shall coordinate with NCDOT and Town staff in order to conduct a signal timing study and implement traffic signal timing modifications within the scope of the closed loop-system for Center Street/Ten-Ten Road, including this intersection, Lufkin Road and Reliance Avenue. The developer shall be obligated to pursue this effort only once during the development build-out schedule as directed by the Town of Apex Senior Transportation Engineer.
- The Developer shall provide intersection signal timing evaluation and modifications at a time to be determined by the Town of Apex Senior Transportation Engineer within the following schedule: The timing evaluation shall occur after the first Final Plat is recorded and prior to the recordation of the Final Plat for no more than 250 dwelling units of single-family and/or townhomes, or the issuance building permits for 250 apartment units, or any combination thereof.

Ten Ten Road at Smith Road

- The Developer shall extend the existing westbound left-turn lane to provide a minimum of 350 feet of storage and appropriate taper.
- The Developer shall construct the aforementioned improvements at the Ten Ten Road/Smith Road intersection at the time the East-West Collector Street is constructed and platted to Smith Road.

Smith Road at Stephenson Road/Smith Road

- The Developer shall construct an eastbound left-tum lane with a minimum of 100 feet of storage and appropriate taper.
- The Developer shall monitor this intersection for installation of all-way stop control and provide for the all-way stop conversion if warranted and permitted by NCDOT.
- The Developer shall construct the aforementioned improvements at the Smith Road/Stephenson Road intersection at the time the East-West Collector Street is constructed and platted to Smith Road.

Smith Road at East-West Collector Street

- The Developer shall construct a southbound right-tum lane with a minimum of 100 feet of storage and appropriate taper.
- The Developer shall construct a Major Collector Street from the North-South Collector Street to Smith Road on a 60-foot public right of way for the entire length.
- The Developer shall provide access to existing residential properties on Dezola Street in a manner that avoids residential driveways directly accessing any Major Collector Streets.

East Williams Street at Straywhite Avenue

- The Developer shall stripe the Straywhite Avenue approach to E. Williams Street for two lanes with 75 feet of storage.
- The Developer shall monitor the intersection and install a traffic signal if warranted and permitted by NCDOT.
- The Developer shall complete the monitoring period as directed by the Town of Apex Senior Transportation Engineer within the following schedule: The monitoring shall occur after the opening of Colby Chase Drive from the Pemberley subdivision to the Merion Subdivision but no later than the recording of the Final Plat for 250 dwelling units of single-family and/or townhomes, or the issuance of building permits for 250 apartment units, or any combination thereof.

East Williams Street at Technology Drive at NC 55

• Intersection included in the MOU. No improvements warranted per TIA.

North-South Collector Street

• The Developer shall construct the portion of the North-South Collector Street from Colby Chase Drive to the PUD boundary at the southern creek on N/F Cash Property (PIN 0751-31-0079) to a Minor Collector Street typical section on a 60-foot public right-of-way.

PHASE II TRANSPORTATION IMPROVEMENTS

The full project build-out includes the following intersections per the approved MOU.

Jessie Drive at Ten-Ten Road

• The Developer shall construct a westbound left-turn lane with a minimum of 100 feet of storage and

appropriate taper prior to the pending state TIP project.

- The Developer shall construct an eastbound right-turn lane with a minimum of 200 feet of storage and appropriate taper prior to the pending state TIP project.
- The Developer shall construct a northbound right-turn lane with 100 feet of storage and appropriate taper prior to the pending state TIP project.
- The Developer shall monitor this intersection and install a traffic signal if warranted and permitted by NCDOT prior to the pending state TIP project.
- The Developer shall construct the improvements at the aforementioned Jessie Drive/Ten Ten intersection at the time Jessie Drive is extended to the Horton Park North-South Collector/Production Drive intersection.
- If the traffic signal is not warranted prior to the first Final Plat, the developer shall provide a performance bond for the signal based on an engineer's estimate of final costs. The performance bond shall remain in place for a period of 5 years, or until the last Final Plat for the development, whichever comes first. Once the signal is warranted, the developer shall install the signal within 6 months plus time for any delays due to right-of-way acquisition and utility relocation but not to exceed 12 months.

Jessie Drive at the North-South Collector Street

- The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions at both intersections.
- The Developer shall construct the portion of the North-South Collector Street from the PUD boundary on the N/F Cash property (PIN 0751-31-0079) to Jessie Drive to a Major Collector Street typical section on a 60-foot public right of way.
- The Developer shall construct the aforementioned improvements prior to recordation of the first Final Plat for single-family and/or townhomes, or the issuance of the first building permit for apartments within Phase II of the development.

Jessie Drive at Site Drive #1 (PODs 3 & 4)

• The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions.

Jessie Drive at Site Drive #2 (POD 4)

• The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions.

The following roadway improvements are internal to the project and do not require NCDOT review or approval. These improvements shall be reviewed with Apex staff to verify compliance with design standards during the zoning, master subdivision, and construction document stages of the project as appropriate. Improvements shall be constructed and platted as the connections are created for each development POD. Said improvements were identified within the Traffic Impact Analysis dated May 31, 2017 with the Colby Chase Addendum dated August 30, 2017 with no proposed modifications.

North-South Collector Street at Site Drive #2, #3, and Dezola Street

• The Developer shall construct single lane eastbound and westbound approaches with stop control, and single lane northbound and southbound free-flow approaches.

East-West Collector Street at Site Drive #4

• The Developer shall construct single lane northbound and southbound approaches with stop control, and single lane eastbound and westbound free-flow approaches. Stop control may be reversed subject to future connectivity.

North-South Collector Street at Colby Chase Drive

- The Developer shall construct the connection of Colby Chase from Pemberley Subdivision to the Merion Subdivision. The connection of Colby Chase Drive to the state-maintained portion requires NCDOT review and approval.
- The Developer shall construct the connection of the North-South Collector Street to Colby Chase Drive.
- The Developer shall evaluate with Apex staff the option for traffic calming devices along Colby Chase Drive between Pemberley and Merion subdivisions.

Colby Chase Drive Extension

• The Developer agrees not to open Colby Chase Drive to the Merion Subdivision until the North-South Collector Street is constructed and open to the public or at the direction of the Town of Apex Senior Transportation Engineer.

PLANNING STAFF RECOMMENDATION:

Planning staff recommends denial of the proposed Horton Park PUD amendment and TF-CZ zoning as proposed by the applicant unless the following changes are made:

- 1. Remove "Church or place of worship" as a permitted use in the TF-CZ zoning district.
- 2. Maintain phasing and transportation improvement conditions as currently approved in #18CZ04.

PLANNING BOARD RECOMMENDATION:

The Planning Board heard this item at their October 14, 2019 meeting and recommended denial of the rezoning as proposed by the applicant by a vote of 5-0.

ANALYSIS STATEMENT OF THE REASONABLENESS OF THE PROPOSED REZONING:

This Statement will address consistency with the Town's comprehensive and other applicable plans, reasonableness, and effect on public interest:

The proposed rezoning is consistent with the 2045 Land Use Plan and other adopted plans in that the 2045 Land Use Map classifies the subject properties as Medium Density Residential, High Density Residential/Office Employment, and Office Employment/Industrial Employment. These classifications include the PUD-CZ and TF-CZ zoning districts.

However, the proposed rezoning is not reasonable and in the public interest due to the following:

1. The use "Church or place of worship" is not currently an approved use within POD 2 of the PUD and which is now proposed to be changed to TF-CZ. This use does not help to increase the tax base of the town or contribute a significant number of jobs which is more likely to occur with the other permitted uses.

- 2. The proposed changes in the phasing and timing of road improvements would result in the North-South collector street not being completed in the first phase. This negatively impacts Smith Road, Stephenson Road, and to a smaller extent roads within the Pemberley and Miramonte subdivisions that connect to E. Williams Street/NC 55. These impacts are further exacerbated by the fact that the State has delayed the start of the Ten Ten Road widening project from 2023 to 2029, yet the TIA indicates build-out of Phase I in 2024 and Phase II in 2026.
- 3. The submitted TIA assumed that the Town is building Jessie Drive, but that project is not currently funded. The Town has a feasibility study underway and the Council will be reviewing the project as part of the Capital Improvements Plan as part of the budget process.

PLANNED UNIT DEVELOPMENT DISTRICT AND CONDITIONAL ZONING STANDARDS:

Standards

In return for greater flexibility in site design requirements, Planned Development (PD) Districts are expected to deliver exceptional quality community designs that preserve critical environmental resources; provide high quality community amenities; incorporate creative design in the layout of buildings, Resource Conservation Area and circulation; ensure compatibility with surrounding land uses and neighborhood character; provide high quality architecture; and provide greater efficiency in the layout and provision of roads, utilities, and other infrastructure. The Planned Development (PD) Districts shall not be used as a means of circumventing the Town's adopted land development regulations for routine developments.

1) Planned Unit Development (PUD-CZ) District

In approving a Planned Development (PD) Zoning District designation for a PUD-CZ, the Town Council shall find the PUD-CZ district designation and PD Plan for PUD-CZ demonstrates compliance with the following standards:

- a) Development parameters
 - (i) The uses proposed to be developed in the PD Plan for PUD-CZ are those uses permitted in Sec. 4.2.2 *Use Table.*
 - (ii) The uses proposed in the PD Plan for PUD-CZ can be entirely residential, entirely non-residential, or a mix of residential and non-residential uses, provided a minimum percentage of non-residential land area is included in certain mixed use areas as specified on the 2045 Land Use Map. The location of uses proposed by the PUD-CZ must be shown in the PD Plan with a maximum density for each type of residential use and a maximum square footage for each type of non-residential use.
 - (iii) The dimensional standards in Sec. 5.1.3 *Table of Intensity and Dimensional Standards, Planned Development Districts* may be varied in the PD Plan for PUD-CZ. The PUD-CZ shall demonstrate compliance with all other dimensional standards of the UDO, North Carolina Building Code, and North Carolina Fire Code.
 - (iv) The development proposed in the PD Plan for PUD-CZ encourages cluster and compact development to the greatest extent possible that is interrelated and linked by pedestrian ways, bikeways and other transportation systems. At a minimum, the PD Plan must show

sidewalk improvements as required by the Apex Transportation Plan and the *Town of Apex Standard Specifications and Standard Details*, and greenway improvements as required by the Town of Apex Parks, Recreation, Greenways, and Open Space Plan and the Apex Transportation Plan. In addition, sidewalks shall be provided on both sides of all streets for single-family detached homes.

- v) The design of development in the PD Plan for PUD-CZ results in land use patterns that promote and expand opportunities for walkability, connectivity, public transportation, and an efficient compact network of streets. Cul-de-sacs shall be avoided unless the design of the subdivision and the existing or proposed street system in the surrounding area indicate that a through street is not essential in the location of the proposed cul-de-sac, or where sensitive environmental areas such as streams, floodplains, and wetlands would be substantially disturbed by making road connections.
- (vi) The development proposed in the PD Plan for PUD-CZ is compatible with the character of surrounding land uses and maintains and enhances the value of surrounding properties.
- (vii) The development proposed in the PD Plan for PUD-CZ has architectural and design standards that are exceptional and provide higher quality than routine developments. All residential uses proposed in a PD Plan for PUD-CZ shall provide architectural elevations representative of the residential structures to be built to ensure the Standards of this Section are met.
- b) *Off-street parking and loading*. The PD Plan for PUD-CZ shall demonstrate compliance with the standards of Sec. 8.3 *Off-Street Parking and Loading*, except that variations from these standards may be permitted if a comprehensive parking and loading plan for the PUD-CZ is submitted as part of the PD Plan that is determined to be suitable for the PUD-CZ, and generally consistent with the intent and purpose of the off-street parking and loading standards.
- c) *RCA.* The PD Plan for PUD-CZ shall demonstrate compliance with Sec. 8.1.2 *Resource Conservation Area*, except that the percentage of RCA required under Sec. 8.1.2 may be reduced by the Town Council by no more than two percent (2%) provided that:
 - (i) The PD Plan for PUD-CZ includes a non-residential component; or
 - (ii) The PD Plan for PUD-CZ has an overall density of 6 residential units per acre or more.
- d) *Landscaping*. The PD Plan for PUD-CZ shall demonstrate compliance with the standards of Sec. 8.2 *Landscaping, Buffering and Screening*, except that variations from these standards may be permitted where it is demonstrated that the proposed landscaping sufficiently buffers uses from each other, ensures compatibility with land uses on surrounding properties, creates attractive streetscapes and parking areas and is consistent with the character of the area. In no case shall a buffer be less than one half of the width required by Sec. 8.2 or 10 feet in width, whichever is greater.
- e) *Signs.* Signage in the PD Plan for PUD-CZ shall demonstrate compliance with Sec. 8.7 *Signs,* except that the standards can be varied if a master signage plan is submitted for review and approval

concurrent with the PD plan and is determined by the Town Council to be suitable for the PUD-CZ and generally consistent with the intent and purpose of the sign standards of the UDO. The master signage plan shall have design standards that are exceptional and provide for higher quality signs than those in routine developments and shall comply with Sec. 8.7.2 *Prohibited Signs*.

- f) *Public facilities.* The improvements standards and guarantees applicable to the public facilities that will serve the site shall comply with Article 7: *Subdivision and* Article 14: *Parks, Recreation, Greenways, and Open Space.*
 - (i) The PD Plan for PUD-CZ demonstrates a safe and adequate on-site transportation circulation system. The on-site transportation circulation system shall be integrated with the off-site transportation circulation system of the Town. The PD Plan for PUD-CZ shall be consistent with the Apex Transportation Plan and the *Town of Apex Standard Specifications and Standard Details* and show required right-of-way widths and road sections. A Traffic Impact Analysis (TIA) shall be required per Sec. 13.19.
 - (ii) The PD Plan for PUD-CZ demonstrates a safe and adequate on-site system of potable water and wastewater lines that can accommodate the proposed development, and are efficiently integrated into off-site potable water and wastewater public improvement plans. The PD Plan shall include a proposed water and wastewater plan.
 - (iii) Adequate off-site facilities for potable water supply, sewage disposal, solid waste disposal, electrical supply, fire protection and roads shall be planned and programmed for the development proposed in the PD Plan for PUD-CZ, and the development is conveniently located in relation to schools and police protection services.
 - (iv) The PD Plan shall demonstrate compliance with the parks and recreation requirements of Sec. Article 14: *Parks, Recreation, Greenways, and Open Space* and Sec. 7.3.1 *Privately-owned Play Lawns* if there is a residential component in the PUD-CZ.
- g) Natural resource and environmental protection. The PD Plan for PUD-CZ demonstrates compliance with the current regulatory standards of this Ordinance related to natural resource and environmental protection in Sec. 6.1 Watershed Protection Overlay District, Sec. 6.2 Flood Damage Prevention Overlay District, and Sec. 8.1 Resource Conservation.
- h) *Storm water management.* The PD Plan shall demonstrate that the post-development rate of onsite storm water discharge from the entire site shall not exceed pre-development levels in accordance with Sec. 6.1.7 of the UDO.
- i) *Phasing.* The PD Plan for PUD-CZ shall include a phasing plan for the development. If development of the PUD-CZ is proposed to occur in more than one phase, then guarantees shall be provided that project improvements and amenities that are necessary and desirable for residents of the project, or that are of benefit to the Town, are constructed with the first phase of the project, or, if this is not possible, then as early in the project as is technically feasible.

j) *Consistency with 2045 Land Use Map.* The PD Plan for PUD-CZ demonstrates consistency with the goals and policies established in the Town's 2045 Land Use.

PEX

k) *Complies with the UDO.* The PD Plan for PUD-CZ demonstrates compliance with all other relevant portions of the UDO.

Legislative Considerations

The Town Council shall find the PUD-CZ and TF-CZ designations demonstrate compliance with the following standards. Sec. 2.3.3.F:

The applicant shall propose site-specific standards and conditions that take into account the following considerations, which are considerations that are relevant to the legislative determination of whether or not the proposed conditional zoning district rezoning request is in the public interest. These considerations do not exclude the legislative consideration of any other factor that is relevant to the public interest.

- 1) *Consistency with 2045 Land Use Map.* The proposed Conditional Zoning (CZ) District use's appropriateness for its proposed location and consistency with the purposes, goals, objectives, and policies of the 2045 Land Use Map.
- 2) *Compatibility.* The proposed Conditional Zoning (CZ) District use's appropriateness for its proposed location and compatibility with the character of surrounding land uses.
- 3) *Zoning district supplemental standards.* The proposed Conditional Zoning (CZ) District use's compliance with Sec. 4.4 *Supplemental Standards,* if applicable.
- 4) Design minimizes adverse impact. The design of the proposed Conditional Zoning (CZ) District use's minimization of adverse effects, including visual impact of the proposed use on adjacent lands; and avoidance of significant adverse impacts on surrounding lands regarding trash, traffic, service delivery, parking and loading, odors, noise, glare, and vibration and not create a nuisance.
- 5) *Design minimizes environmental impact.* The proposed Conditional Zoning District use's minimization of environmental impacts and protection from significant deterioration of water and air resources, wildlife habitat, scenic resources, and other natural resources.
- 6) *Impact on public facilities.* The proposed Conditional Zoning (CZ) District use's avoidance of having adverse impacts on public facilities and services, including roads, potable water and wastewater facilities, parks, schools, police, fire and EMS facilities.
- 7) *Health, safety, and welfare.* The proposed Conditional Zoning (CZ) District use's effect on the health, safety, or welfare of the residents of the Town or its ETJ.
- 8) *Detrimental to adjacent properties.* Whether the proposed Conditional Zoning (CZ) District use is substantially detrimental to adjacent properties.
- 9) *Not constitute nuisance or hazard.* Whether the proposed Conditional Zoning (CZ) District use constitutes a nuisance or hazard due to traffic impact or noise, or because of the number of persons who will be using the Conditional Zoning (CZ) District use.
- 10) Other relevant standards of this Ordinance. Whether the proposed Conditional Zoning (CZ) District use complies with all standards imposed on it by all other applicable provisions of this Ordinance for use, layout, and general development characteristics.

August 07, 2019

Joshua Reinke P.E. Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609

Subject: Staff summary and comments for the Horton Park TIA, 07/02/2019

Mr. Reinke:

Please review the following summary of my comments and recommendations. You may schedule a meeting with me and your client to discuss at your convenience.

Study Area

The TIA proposes to study access to the development for two phases of the project:

Phase I assumes that the Ten-Ten Road improvements proposed in TIP Project U-5825 will be constructed by 2024. However, it is important to note that the draft STIP shows construction in 2023-2025, so Phase I of Horton Park may be at or near build-out a year before road improvements are completed. For the partial build phase (Phase I) the TIA proposes to study the following intersections:

- Smith Road and Dezola Street (primary access)
- Smith Road and Stephenson Road (offsite intersection)
- Ten-Ten Road and Smith Road (offsite intersection)
- E. Williams Street and Straywhite Avenue (secondary access)
- NC 55 and Technology Drive / E. Williams Street (offsite intersection)

Phase II assumes that the Jessie Drive east-west connection between Ten-Ten Road and NC 55 will be constructed by the Town of Apex, as well as geometric improvements at the existing intersection of Jessie Drive and Ten-Ten Road. However, it is important to note that Jessie Drive construction is not funded in the 2019-2020 CIP and subject to reprioritization in 2020. The following additional intersections are included in the study for Phase II based on that assumption:

- Ten-Ten Road and Jessie Drive (primary access)
- NC 55 and Future Jessie Drive Extension (primary access)
- NC 55 and Future Jessie Drive Extension Northbound U-Turnaround (primary access)
- Jessie Drive and North-South Connector (primary access)
- Jessie Drive and Site Drive 1 (primary access)
- Jessie Drive and Site Drive 2 (primary access)

TOWN OF APEXThe Peak of Good LivingPO Box 250 Apex, NC 27502 | (919) 249-3400 | www.apexnc.org

Trip Generation

The proposed development is anticipated to be built in two phases. Phase I includes 290 single family homes and 134 townhomes. Phase I is projected to generate approximately 67 new trips entering and 207 new trips exiting the site during the weekday A.M. peak hour and 227 new trips entering and 132 new trips exiting the site during the weekday P.M. peak hour. Phase I of the development is expected to add a total of 3,740 new trips per day to the adjacent roadway network. Phase II of the development includes an additional 78 townhomes, 356 apartments, 40,000 square feet of warehouse, and 40,000 square feet of business park. Phase II is projected to generate approximately 182 new trips entering and 365 new trips exiting the site during the weekday A.M. peak hour and 379 new trips entering and 278 new trips exiting the site during the weekday P.M. peak hour. Phase II of the development is expected to add a total of 3,79 new trips entering and 265 new trips exiting the site during the weekday A.M. peak hour. Phase II of the development is expected to add a total of 3,79 new trips entering and 278 new trips exiting the site during the weekday P.M. peak hour. Phase II of the development is expected to add a total of 8,270 new trips per day to the adjacent roadway network.

Background traffic

Background traffic consists of 3% annual background traffic growth compounded to build out year 2024 and year 2026 for the two development phases, and the following approved development:

• Stop & Go Gas Station

Additionally, geometric improvements on Ten-Ten Road from NCDOT TIP Project U-5825 are assumed in the background and build out analysis for both phases of the project. Geometric improvements associated with the on-going Town of Apex CIP project for extending and widening Jessie Drive are also assumed in the background and build out analysis for Phase II of the project.

Trip Distribution and Assignment

Trip distribution to and from the development was evaluated under the two phasing scenarios.

Phase I includes only residential trips:

- 60% to/from the west via Ten-Ten Road
- 15% to/from the east via Ten-Ten Road
- 5% to/from the south via E. Williams Street
- 10% to/from the south via NC 55 Bypass
- 5% to/from the northwest via NC 55
- 5% to/from the south via Stephenson Road

In addition to the distribution for residential trips, Phase II includes the following distribution for industrial/commercial trips:

- 45% to/from the west via Ten-Ten Road
- 30% to/from the east via Ten-Ten Road
- 5% to/from the south via NC 55 Bypass
- 15% to/from the northwest via NC 55
- 5% to/from the south via Stephenson Road

Traffic Capacity Analysis and Recommendations

Level of Service (LOS) is a grade of A through F assigned to an intersection, approach, or movement to describe how well or how poorly it operates. LOS A through D is considered acceptable for peak hour operation. LOS E or F describes potentially unacceptable operation and developers may be required to mitigate their anticipated traffic impact to improve LOS based on the Apex Unified Development Ordinance (UDO).

Tables 1 through 11 describe the levels of service (LOS) for the scenarios analyzed in the TIA. "*NA*" is shown when the scenario does not apply. The scenarios are as follows:

- Existing 2019 Existing year 2019 traffic grown from year 2017 traffic counts.
- **No Build 2024** Projected year (2024) traffic with background growth, approved development traffic and committed transportation improvements by others. *Additional lanes from TIP Projects U-5825 (Ten-Ten Rd Widening) are included.*
- **Build 2024** Phase I projected year (2024) with background traffic and site build-out including recommended improvements where applicable.
- No Build 2026 Projected year (2026) traffic with background growth, approved development traffic and committed transportation improvements by others. Additional lanes from TIP Projects U-5825 (Ten-Ten Rd Widening) as well as Town of Apex Jessie Drive CIP project which includes improvements at Ten-Ten Road, and the Jessie Drive Extension to NC 55 with superstreet at NC 55.
- **Build 2026** Phase II projected year (2026) with background traffic and site build-out including recommended improvements where applicable.

Smith Road and Dezola Street (unsignalized)

Table 1: A.M. / P.M. Peak Hour Unsignalized Levels of Service Smith Road and Dezola Street					
Existing 2019No Build 2024Build 2024No Build 					
<u>Overall</u>	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>
Eastbound (Dezola Street)	A / A²	A / A²	B / A²	A / A²	A / A²
Northbound (Smith Road)	A / A ¹				
Southbound (Smith Road)	NA	NA	NA	NA	NA

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

 The TIA recommends the construction of a southbound right-turn lane with a minimum of 75 feet of storage in Phase I. In Phase II the TIA recommends no additional improvements.

Apex staff recommendations:

 Per Town of Apex Transportation Plan, Dezola Street is planned as a major collector street. It's recommended that the development reconstruct the existing unpaved Dezola Street to a standard Major Collector Street typical section for future development traffic. In regard to intersection capacity, Apex staff agrees with the recommendations. Projected traffic is anticipated to experience short delays at this intersection.

Table 2: A.M. / P.M. Peak Hour Unsignalized Levels of Service Smith Road and Stephenson Road					
ExistingNo BuildBuildNo BuildBuild20192024202420262026					
<u>Overall</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>
Eastbound (Smith Road)	A / A ¹	B / A¹	B/A¹	B/A ¹	B/A¹
Westbound (Stephenson Road)	NA	NA	NA	NA	NA
Southbound (Smith Road)	B / C ²	C / E ²	E/F^2	C / F ²	C/F ²

Smith Road and Stephenson Road (unsignalized)

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

 The TIA recommends the construction of an eastbound left turn lane on Smith Road with minimum of 100 feet storage during Phase I of the project. The TIA evaluated a traffic signal to improve queuing and delays on the southbound approach, however the traffic volume at this intersection is not projected to be high enough in future scenarios to warrant a traffic signal. The TIA recommends no additional improvements for Phase II of the project.

Apex staff recommendations:

In Phase I the primary access point for the development will be off Smith Road, and the development is projected to increase traffic volumes at the intersection of Smith Road and Stephenson Road by 18% in the A.M. peak and 22% in the P.M. peak hours. The addition of development traffic causes LOS to deteriorate to LOS E and LOS F in the A.M. and P.M. peak hours, respectively. Average vehicle delays and 95th percentile queues were analyzed to be heaviest in the southbound stop-controlled direction during the P.M. peak hour. Average vehicle delays were analyzed to increase from 47.1 seconds per vehicle to 172.4 seconds per vehicle and 95th percentile queues were analyzed to increase from 14 vehicles (350 feet) to 33 vehicles (825 feet) from the 2024 No Build to the 2024 Build condition. The upstream intersection of Smith Road and Ten-Ten Road is 1,000 feet to the north, therefore about 80 percent of the roadway between the intersections is projected to be blocked by traffic. The queueing creates an access issue for residents off Smith Road, as well as safety and access issues for fire and emergency services since this roadway serves as the only connection from the north to a large residential area.

Town staff evaluated several additional options to mitigate congestion associated with development traffic. Based on HCS7 analysis, it was determined that in conjunction with

the Ten-Ten Road TIP project to reduce congestion upstream at Ten-Ten Road, a single-lane roundabout would operate at LOS B during the most critical P.M. peak hour and reduce 95th percentile queues to 7 vehicles (175 ft) on the southbound approach and overall intersection delay to 10.8 seconds per vehicle. However, this relies on completion of the Ten-Ten Road TIP project prior to the anticipated date in the draft STIP. Based on this analysis and considering project schedules and funding status of Ten-Ten Road and Jessie Drive, Town staff recommend extension of Jessie Drive from Ten-Ten Road to just beyond the North-South Connector road with connection of the North-South Connector road from Jessie Drive to Colby Chase Drive, as well as providing turn lane improvements as previously committed in the approved PD Plan with Phase I of the development.

Table 3: A.M. / P.M. Peak Hour Signalized Levels of Service Ten-Ten Road and Smith Road					
ExistingNo BuildBuildNo BuildBuild20192024202420262026					
<u>Overall</u>	<u>D/C</u>	<u>B / B</u>	<u>B / B</u>	<u>B / B</u>	<u>B / B</u>
Eastbound (Ten-Ten Road)	C/C	B/B	B/B	B/B	B/B
Westbound (Ten-Ten Road)	B/B	B/B	B/B	B/B	B/B
Northbound (Smith Road)	E/D	C/C	C/C	C/C	C/C

Ten-Ten Road and Smith Road (signalized)

TIA recommendations:

 The TIA does not recommend any improvements to the intersection by the developer. NCDOT TIP Project U-5825 is expected to widen Ten-Ten Road to a 4-lane median divided facility with left and right turn lanes at the traffic signal. The improvements are expected to be complete prior to Phase I build out of the development. With background and development traffic the signal was analyzed to operate at LOS C in both the A.M. and P.M. peak hours for both Phase I and Phase II build and no build scenarios.

Apex staff recommendations:

 As previously noted, the Ten-Ten Road TIP improvements are not anticipated to be completed by 2024. Therefore, Apex staff recommend extension of the westbound left turn lane to 350 feet when the East-West Collector Street is platted to Smith Road as previously committed in the approved PD Plan with Phase I of the development unless NCDOT recommends against the interim improvement. With the widening expected to be completed by NCDOT TIP Project U-5825, the most critical peak hour of operations that was analyzed was the P.M. peak hour in the 2024 Build scenario. Analysis showed all approaches and movements to operate at LOS D or better during that critical peak, with overall average intersection delay of 18 seconds per vehicle.

Table 4: A.M. / P.M. Peak Hour Unsignalized Levels of Service E. Williams Street and Straywhite Avenue					
ExistingNo BuildBuildNo BuildBuild20192024202420262026					
<u>Overall</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>	<u>N / A</u>
Westbound (Straywhite Avenue)	F / C ²	F / C ²	F / C ²	F/D ²	F/D^2
Northbound (E. Williams Street)	NA	NA	NA	NA	NA
Southbound (E. Williams Street)	B / A¹	C / B¹	C / B¹	C / B¹	C / B¹

E. Williams Street and Straywhite Avenue (unsignalized)

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

• The TIA recommends to stripe a lane line down the center of the existing 21-foot wide outbound lane of Straywhite Avenue. The pavement striping will provide the westbound approach of Straywhite Avenue with exclusive left turn and right turn lanes. A traffic signal was considered at this location, but based on traffic volumes and the residential nature of the minor street approach, it is not anticipated to meet signal warrants.

Apex staff recommendations:

 Apex staff recommend the previously approved PD Plan conditions for monitoring the intersection for a traffic signal during Phase I of the development and installing if permitted by NCDOT. Per the TIA recommendation, staff concur with striping a 75-foot long solid white lane line through the center of the westbound approach and provide stop bar and turn arrow pavement markings per NCDOT guidance. The striping will help with lane assignment at the approach, allowing right turn vehicles more gap opportunities to exit the subdivision. The operations are not anticipated to improve the LOS on the approach, however average vehicle delays are projected to decrease from 322 seconds/vehicle to 251 seconds/vehicle from the 2024 No Build to the 2024 Build condition in the critical A.M. peak hour.

Table 5: A.M. / P.M. Peak Hour Signalized Levels of Service NC 55 and Technology Drive / E. Williams Street					
ExistingNo BuildBuildNo BuildBuild20192024202420262026					
<u>Overall</u>	<u>E/C</u>	<u>F/E</u>	<u>F/E</u>	<u>F/E</u>	<u>F/E</u>
Eastbound (Technology Drive)	D/D	E/E	E/E	E/E	E/E
Westbound (E. Williams Street)	F/A	F/A	F/B	F/A	F/B
Northbound (NC 55)	C/C	C/C	C/C	C/C	C/C
Southbound (NC 55)	C/C	C/F	C/F	C/F	C/F

NC 55 and Technology Drive / E. Williams Street (signalized)

TIA recommendations:

 The TIA does not recommend any improvements to the intersection by the developer. The development is projected to add approximately 1% of traffic to the intersection. The addition of traffic is expected to increase average intersection delays by 9 seconds per vehicle during the A.M. peak and 4 seconds per vehicle during the P.M. peak in the Build 2024 scenario, and the impacts on overall intersection delays are even less when the development is fully build out in the Build 2026 scenario, due to the assumption that a large portion of development trips will be diverted to the Jessie Drive connection.

Apex staff recommendations:

 Apex staff concurs with the recommendation. Even though this intersection is projected to operate at LOS E or F in the future build and no build scenarios, the volume of development traffic at this intersection is not high enough to meet the threshold for traffic capacity improvements based on the UDO.

Ten-Ten Road and Jessie Drive

Table 6: A.M. / P.M. Peak Hour Levels of Service Ten-Ten Road and Jessie Drive					
	Existing No Build Build 2026 2019 2026 Signalized				
<u>Overall</u>	NA	NA	<u>B/B</u>		
Eastbound (Ten-Ten Road)	NA	NA	B/B		
Westbound (Ten-Ten Road)	A / B ¹	B / D1	B/B		
Northbound (Jessie Drive)	C / F ²	D / F ²	C/C		

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

The intersection of Ten-Ten Road and Jessie Drive was analyzed under the assumption that the widening expected to be done as part of NCDOT TIP Project U-5825, and the Jessie Drive east-west connection between Ten-Ten Road and NC 55 will be constructed prior to Phase II of the development moving forward. Under these assumptions Phase II of the development has connectivity to both Ten-Ten Road and NC 55 via Jessie Drive. The intersection of Ten-Ten Road and Jessie Drive was analyzed with three through lanes and a right turn lane in the eastbound direction, two through lanes and a left turn lane in the westbound direction, and one left turn and one right turn lane in the northbound direction. Based on these assumptions, analysis showed the northbound stop-controlled approach to fail in the P.M. peak hour in the No Build condition. To improve operations, the TIA recommends to monitor this intersection for signalization, and install a signal if warranted. With the signal, this intersection is projected to operate at an overall LOS B in both peak hours of the day in the 2026 Build scenario with minimum delays.

Apex staff recommendations:

 As noted previously, Apex staff recommend extension of Jessie Drive from Ten-Ten Road to just beyond the North-South Connector road with connection of the North-South Connector road from Jessie Drive to Colby Chase Drive, as well as providing turn lane improvements as previously committed in the approved PD Plan with Phase I of the development. The Jessie Drive east-west widening and extension CIP project is currently in feasibility study stage and not yet funded for right of way or construction in the annual budget. Given recent cost estimates it is currently recommended by staff to expand the feasibility study to provide additional information in order to reconsider the project during the next budget cycle. That could result in further delays unknown at this time. The adopted CIP shows \$10,000,000 in FY '20-'21 for right of way and construction but it is anticipated to cost substantially more based on updated estimates to be further refined in the coming months. Town staff recommend limiting the development build-out similar to the zoning conditions in Section 17 Phasing ("Option 1" and "Option 2") of the Horton Park PD Plan, approved by Town Council on 4/17/18. Additionally, not all of the existing Jessie Drive east of Horton Park is accepted into the state-maintained system for NCDOT maintenance. The western most 300' of the existing Jessie Drive paved roadway section is not under NCDOT maintenance. Town staff recommend that this section of Jessie Drive be improved to NCDOT standards and dedicated as a state-maintained roadway as part of any development requirement or CIP project providing connectivity to Ten-Ten Road.

Table 7: A.M. / P.M. Peak Hour Signalized Levels of Service NC 55 and Future Jessie Drive Extension				
No Build 2026 Build 2026				
<u>Overall</u>	<u>D / B</u>	<u>D/C</u>		
Westbound (Jessie Drive)	F/B	F/B		
Northbound (NC 55) D/B D/B				
Southbound Left (NC 55) E/B E/C				

NC 55 and Future Jessie Drive Extension (signalized)

TIA recommendations:

• The TIA assumes that the Town of Apex will construct Jessie Drive from Ten-Ten Road to NC 55 to meet the development schedule for Phase II. At the future signalized intersection of NC 55, the TIA assumes a superstreet with a single right turn lane in the westbound direction, two through lanes and a right turn lane in the northbound direction, and two through lanes and a left turn lane in the southbound direction. The TIA does not recommend any improvements at this future signalized intersection to be made by the development. Based on these assumptions, analysis showed this intersection to operate at an overall LOS D or better in both peak hours for both the 2026 No Build and Build scenarios. However the southbound and westbound approaches were analyzed to operate at LOS E or F during the A.M. peak hour, with average vehicles delays of 160 seconds per vehicle on the westbound approach and 77 seconds per vehicle for the southbound left turn.

Apex staff recommendations:

 Based on a more in-depth traffic analysis conducted during the Jessie Drive feasibility study, it was determined that on opening day, the intersection of Jessie Drive and NC 55 will need to be constructed as a superstreet with three northbound through lanes, three southbound through lanes and an exclusive southbound left turn lane with 300 feet of storage, and dual westbound right turn lanes with 200 feet of storage. With these recommendations the intersection is expected to operate at LOS C and D during the A.M. and P.M. peak hours. NCDOT staff have since recommended both the north and south U-turn bulb-outs on NC 55. Town staff recommend the construction of this intersection per the recommendations of the Jessie Drive feasibility study if/when extended to NC 55. As recommended, a delay in the Town's CIP project may result in a delay to a portion of Horton Park as was previously approved unless an alternative traffic scenario is presented and accepted by the Town.

Table 8: A.M. / P.M. Peak Hour Signalized Levels of Service NC 55 and Future Northbound U-Turn				
No Build 2026 Build 2026				
<u>Overall</u>	<u>N / A</u>	<u>N / A</u>		
Northbound U-turn (NC 55)	C/F	C/F		
Southbound (NC 55)	NA	NA		

NC 55 and Future Northbound U-Turn (signalized)

TIA recommendations:

The TIA assumes that the Town of Apex will construct Jessie Drive from Ten-Ten Road to NC 55. At the future signalized intersection of NC 55 and Jessie Drive, the TIA assumes a superstreet with a stop-controlled U-turn intersection 500 feet north of Jessie Drive. Analysis assumes two northbound through lanes, a single northbound U-turn lane and two southbound through lanes at the U-turn intersection. The TIA does not recommend any improvements at the U-turn intersection to be made by the development. Based on the assumptions, analysis showed the northbound U-turn to operate at LOS C and F in the A.M and P.M. peak hours for both the 2026 No Build and Build scenarios. The average vehicle delays for the northbound U-turn were analyzed to be 95.6 seconds per vehicle in the P.M. peak during the Build 2026 scenario.

Apex staff recommendations:

 Based on a more in-depth traffic analysis conducted during the Jessie Drive feasibility study, it was determined that on opening day, the intersection of Jessie Drive and NC 55 will need to be constructed as a superstreet with three northbound through lanes, and three southbound through lanes. The U-turn north of Jessie Drive will need to be signalized with and an exclusive northbound left turn lane with 300 feet of storage. With these recommendations the intersection is expected to operate at LOS A and B during the A.M. and P.M. peak hours. Town staff recommend the construction of this intersection per the recommendations of the Jessie Drive feasibility study.

Table 9: A.M. / P.M. Peak Hour Unsignalized Levels of Service Jessie Drive and North-South Connector				
Build 2026				
<u>Overall</u>	<u>N / A</u>			
Eastbound (Jessie Drive)	A / A ¹			
Westbound (Jessie Drive)	A / A ¹			
<i>Northbound (</i> North-South Connector <i>)</i>	B / B ²			
Southbound (North-South Connector)	B / B ²			

Jessie Drive and North-South Connector (unsignalized)

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

• The TIA recommends construction of a new unsignalized intersection that connects the north and south sides of the development to Jessie Drive. The TIA recommends to construct the northbound and southbound approaches with stop control and a single lane of ingress and egress. The TIA assumes that Jessie Drive will be constructed by the Town of Apex with a single through lane in both the eastbound and westbound directions of travel, and recommends to construct additional left turn lanes on the eastbound and westbound approaches with 75 feet of storage and appropriate taper. With the improvements recommended in the TIA, all approaches were analyzed to operate at LOS B or better during both peak hours of the day.

Apex staff recommendations:

Per the Advance Apex transportation plan, staff recommend Jessie Drive to be constructed on 110 feet of right-of-way and the North-South Connector road to be constructed on 60 feet of right-of-way. Apex staff recommends the northbound and southbound approaches be constructed with stop control and single left-through-right turn lanes, per the TIA recommendations; and free-flow eastbound and westbound approaches with single shared through-right lanes, and left-turn lanes with minimum 50 feet of storage and 150 feet of deceleration length and taper per 50 mph design speed. Left turn lanes should be constructed within the space of the divided median setting up future roadway widening to the outside of the roadway for the build-out of the ultimate Jessie Drive 4-lane median divided cross-section. See previous comments concerning Jessie Drive construction.

Table 10: A.M. / P.M. Peak Hour Unsignalized Levels of Service Jessie Drive and Site Drive 1		
	Build 2026	
<u>Overall</u>	<u>N / A</u>	
Eastbound (Jessie Drive)	A / A ¹	
Westbound (Jessie Drive)	A / A ¹	
Northbound (Site Drive 1)	B / B ²	
Southbound (Site Drive 1)	C / C ²	

Jessie Drive and Site Drive 1 (unsignalized)

1. Level of service for major-street left turning vehicles

2. Level of service for minor-street stop controlled

TIA recommendations:

• The TIA recommends construction of a new unsignalized intersection that connects the north and south sides of the development to Jessie Drive. The TIA recommends to construct the northbound and southbound approaches with stop control and single lanes of ingress and egress. The TIA assumes that Jessie Drive will be constructed by the Town of Apex with a single through lane in both the eastbound and westbound directions of travel, and recommends to construct additional left turn lanes with 50 feet of storage and appropriate taper on the eastbound approach and 75 feet of storage and appropriate taper on the westbound approach. With the improvements recommended in the TIA, all approaches were analyzed to operate at LOS C or better during both peak hours of the day.

Apex staff recommendations:

 Per the Advance Apex transportation plan, staff recommend Jessie Drive to be constructed on 110 feet of right-of-way. Apex staff recommends the northbound and southbound approaches be constructed with stop control and single left-through-right turn lanes per the TIA recommendation; and free-flow eastbound and westbound approaches with single shared through-right lanes, and left-turn lanes with minimum 50 feet of storage and 150 feet of deceleration length and taper per 50 mph design speed. Left turn lanes should be constructed within the space of the divided median setting up future roadway widening to the outside of the roadway for the build-out of the ultimate Jessie Drive 4-lane median divided cross-section. See previous comments concerning Jessie Drive construction.

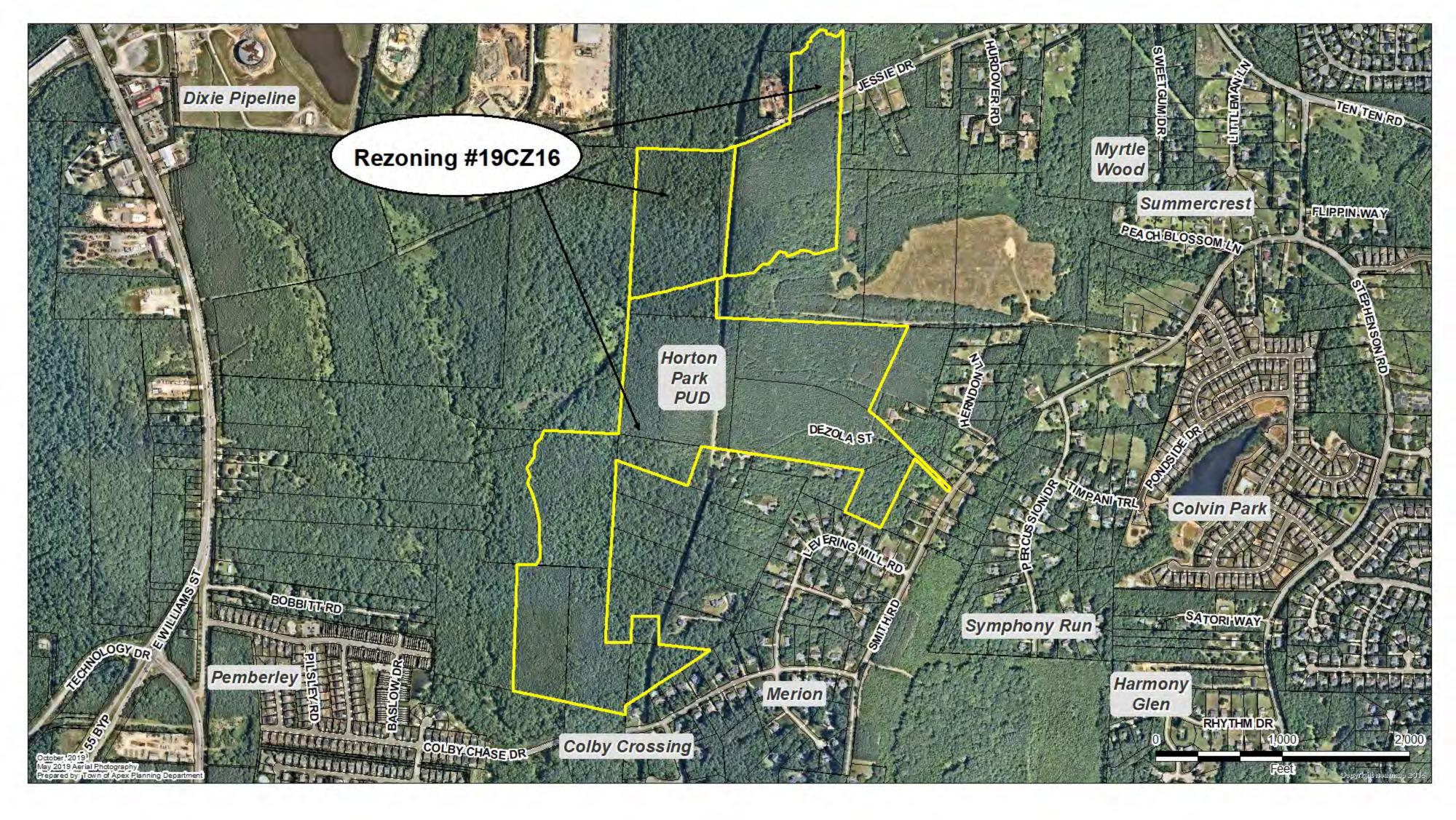
Table 11: A.M. / P.M. Peak Hour Unsignalized Levels of ServiceJessie Drive and Site Drive 2		
Build (2) 2023		
<u>Overall</u>	<u>N / A</u>	
Eastbound (Jessie Drive)	NA	
Westbound (Jessie Drive)	A / A ¹	
Northbound (Site Drive 1)	B / B ²	

- 1. Level of service for major-street left turning vehicles
- 2. Level of service for minor-street stop controlled

TIA recommendations:

• The TIA recommends construction of a new unsignalized intersection that connects the south side of the development to Jessie Drive. The TIA recommends to construct the northbound approach with stop control and a single lane of ingress and egress. The TIA assumes that Jessie Drive will be constructed by the Town of Apex with a single through lane in both the eastbound and westbound directions of travel, and recommends to construct an additional westbound left turn lane with 50 feet of storage and appropriate taper. With the improvements recommended in the TIA, all approaches were analyzed to operate at LOS B or better during both peak hours of the day.

Apex staff recommendations:


 Per the Advance Apex transportation plan, staff recommend Jessie Drive to be constructed on 110 feet of right-of-way. Apex staff recommends the northbound approach be constructed with stop control and a single left-right turn lane per the TIA recommendation; and free-flow single-lane eastbound and westbound approaches, and a westbound left-turn lane with minimum 50 feet of storage and 150 feet of deceleration length and taper per 50 mph design speed. The left turn lane should be constructed within the space of the divided median setting up future roadway widening to the outside of the roadway for the build-out of the ultimate Jessie Drive 4-lane median divided crosssection. See previous comments concerning Jessie Drive construction. Please coordinate with the NCDOT District Engineer's Office concerning recommended improvements. Town staff will be available for meetings with NCDOT staff to discuss improvements on state maintained roadways as needed. All recommendations are subject to review by Town Council prior to approval.

Sincerely,

Jereppente

Serge Grebenschikov, PE Traffic Engineer 919-372-7448

Corrections: Page 10 of 66, Table 1: Existing Roadway Inventory. Jessie Drive speed limit change to 55 mph, E. Williams Street speed limit change to 35 mph, Technology Drive change speed limit to 35 mph per NCDOT North Carolina Speed Limits Map: <u>http://ncdot.maps.arcgis.com/home/webmap/viewer.html?webmap=978abf2f2fe341c78f6d5263</u> <u>6a60ebff</u>

PLANNED	JNIT DEVELOPMENT APPLICATION		
This documer third parties.	nt is a public record under the North Carolina Public Reco	rds Act and may be publi	shed on the Town's website or disclosed to
Application	#: 19CZ16	Submittal Date:	7/1/2019
Fee Paid	\$ 4,399.19	Check #	1358 & 1359
PETITION T	O AMEND THE OFFICIAL ZONING DISTRICT M	AP	
Project Nan	ne:		
Address(es)	:		
PIN(s)			
			Acreage:
Current Zor	ning:	Proposed Zoning:	
Current 204	5 LUM Designation:		
•			
	e next page for LUM amendment		
	on of the project is shown as mixed use (3 or mo	re stripes on the 2045	Land Use Map) provide the following:
Are	ea classified as mixed use:	Acre	age:
Are	ea proposed as non-residential development:	Acre	age:
Pe	rcent of mixed use area proposed as non-residen	tial: Perc	ent:
Applicant I	nformation		
Name:			
Address:			
City:	Sta	te:	Zip:
Phone:	E-n	nail:	
Owner Info	rmation		
Name:			
Address:			
City:	Sta	te:	Zip:
Phone:		nail:	
Agent Infor	mation		
Name:			
Address:			
City:	Sta	te:	Zip:
Phone:	E-n	nail:	
Other contacts:			

PLANNED UNIT DEVELOPMENT APPLICATION			
Application #:	19CZ16	Submittal Date:	7/1/2019
2045 LAND USE N	NAP AMENDMENT (if applicable)		
The applicant does hereby respectfully request the Town Council amend the 2045 Land Use Map. In support of this request, the following facts are shown:			
The area sought to be amended on the 2045 Land Use Map is located at:			
Current 2045 Land Use Classification:			
Proposed 2045 Land Use Classification:			
What conditions justify the passage of the amendment to the 2045 Land Use Map? Discuss the existing use classifications of the subject area in addition to the adjacent land use classifications.			

ATTACHMENT A

Rezoning Application Parcel List Horton Park Assembly Apex, NC

Parcel	<u>Owner</u>	<u>PIN</u>
1	MFW Investments LLC	0751-42-1387
2	MFW Investments LLC	0751-31-0079 (portion)
3	Horton Park MH, LLC	0751-31-9308 (portion)
4	Mary Elizabeth Horton	0750-39-0993
5	MFWIRA, LLC	0751-40-0194
6	Kimberly Horton; Loomis Horton III 0750-39-8682	
7	Kimberly Horton; Loomis Horton III 0750-49-5371	
8	MFW Investments LLC 0750-29-9342	
9	MFW Investments LLC	0750-28-0998 (portion)
10	MFW Investments LLC 0750-27-0906	
11	Kimberly Horton; Loomis Horton III 0750-27-4707	
12	MFW Investments LLC 0750-27-8677	
13	MFW Investments LLC	0750-27-8925

CERTIFIED LIST OF NEIGHBORING PROPERTY OWNERS			
Application #:	19CZ16	Submittal Date:	7/1/2019

Provide a certified list of property owners subject to this application and all property owners within 300' of the subject property and HOA Contacts.

	Owner's Name	- PIN
1.	See attached sheets	
2.		
3.		
4.		
5.		
6.		
7.	2	
8.		
9.		
10.		
11.		-
12.		
13.		
14.		
15.		

I, Jonathan Edwards certify that this is an accurate listing of all property owners and property owners within 300' of the subject property.

Date: June 18, 2019

bratton C BV

COUNTY OF WAKE STATE OF NORTH CAROLINA

Sworn and subscribed before me, DANIEL H.	WOODS, a Notary Public for the above State and
County, on this the 18 day of JUNE	2019.
NIEL H. WO	Danul aturout
Of Common Children	Notary Public
SEAL & NOTARL	DANIEL H. WOODS
PUBLIC	Print Name
Z 30 ember 18. 200 Hours	My Commission Expires: <u>11/18/3</u>

TRINITY APEX NORTH 100 LLC 106 ISLAND VIEW DR BEAUFORT NC 28516-9108 0750085838

PAGE TWO HOLDINGS LLC RODESSA LLC 940 SE CARY PKWY STE 102 CARY NC 27518-7417 0750095624

STEELE, GERTRUDE 1713A E WILLIAMS ST APEX NC 27539-7706 0750096187

PEMBERLEY PROPERTY OWNERS' ASSOCIATION, INC., CHARLESTON MGMT PO BOX 97243 RALEIGH NC 27624-7243 0750176279

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750184078

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750197426

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750264926

MUSE, EDWARD MUSE, ROBIN 3305 COLBY CHASE DR APEX NC 27539-3602 0750267955 KUNSMAN, STEVEN A KUNSMAN, SUSAN E 5408 MERION STATION DR APEX NC 27539-3603 0750269948

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750270906

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750274707

FELTON, TIMOTHY M FELTON, ALLISON C 3304 COLBY CHASE DR APEX NC 27539-3601 0750278301

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750278677

MFW INVESTMENTS, LLC 7837 SMITH RD APEX NC 27539-8170 0750278925

FALCHI, JOHN J FALCHI, JOYCE T 3232 COLBY CHASE DR APEX NC 27539-3620 0750279358

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750280998

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750286271 RICHARDSON, DONALD FELIX 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750288532

RICHARDSON, ALTON RICHARDSON, TERESA 1295 WINDHAM RD GREENVILLE NC 27834-7093 0750288880

HORTON, MATTHEW 4 ARBOR LN BORDENTOWN NJ 08505-4807 0750299045

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750299342

YOUNG, TODD C YOUNG, GLORIA C 3228 COLBY CHASE DR APEX NC 27539-3620 0750370454

DALE, DENNIS DALE, ROBERTA 3224 COLBY CHASE DR APEX NC 27539-3620 0750371540

HEISE, ROBERT H HEISE, CARY VIVIAN 2408 MERION CREEK DR APEX NC 27539-6300 0750371996

STEWART, RICHARD J STEWART, MARY A 3220 COLBY CHASE DR APEX NC 27539-3620 0750372555

CATHEY, ROBERT E III CATHEY, KRISTA B 3212 COLBY CHASE DR APEX NC 27539-3620 0750373664 RHODES, AMANDA C RHODES, STEVEN A 3208 COLBY CHASE DR APEX NC 27539-3620 0750375700

PIETZ, BRYAN PIETZ, JORDAN 2400 MERION CREEK DR APEX NC 27539-6300 0750375774

KANODE, MARK E KANODE, LORI D 3204 COLBY CHASE DR APEX NC 27539-3620 0750376759

PIETZ, BRYAN S PIETZ, JORDAN 2400 MERION CREEK DR APEX NC 27539-6300 0750383293

COFFER, LANA HORTON 3113 CARRIAGE LIGHT CT RALEIGH NC 27604-6117 0750385765

MERION HOMEOWNERS ASSOCIATION INC OMEGA ASSOCIATION MANAGEMENT INC 160 NE MAYNARD RD STE 210 CARY NC 27513-9676 0750387004

HORTON, MARY ELIZABETH PO BOX 306 APEX NC 27502-0306 0750390993

HORTON, CHARLES LEON, SARAH 8804 STEPHENSON RD APEX NC 27539-8170 0750393222 HINTON, MELISSA D 5137 DEZOLA ST APEX NC 27539-9529 0750395262

MANSFIELD, MARISA MANSFIELD, MICHAEL 5133 DEZOLA ST APEX NC 27539-9529 0750398002

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750398682

RYDESKY, THOMAS E RYDESKY, LINDA U 5232 LEVERING MILL RD APEX NC 27539-3610 0750480767

HORNADA, JEFFREY MICHAEL HORNADA, KARA LEIGH 5228 LEVERING MILL RD APEX NC 27539-3610 0750481855

SURA, PIYUSH SURA, SMITA P 5229 LEVERING MILL RD APEX NC 27539-3640 0750482535

POZDER, VLADIMIR POZDER, JULI W 5224 LEVERING MILL RD APEX NC 27539-3610 0750482864

SINGLETARY, MICHAEL SINGLETARY, LAETITIA 5217 LEVERING MILL RD APEX NC 27539-3640 0750483541 MOUSHEGIAN, KENNITH C MOUSHEGIAN, CINDY W 5220 LEVERING MILL RD APEX NC 27539-3610 0750483860

GREENE, WILLIAM BLAKE GREENE, LAUREN KIRBY 5213 LEVERING MILL RD APEX NC 27539-3640 0750484438

BACHOLZKY, RICHARD JR BACHOLZKY, KATHRYN 5216 LEVERING MILL RD APEX NC 27539-3610 0750484775

MEHTA, RUSHIKESH J TRUSTEE RUSHIKESH J MEHTA REVOCABLE TRUST 5209 LEVERING MILL RD APEX NC 27539-3640 0750485424

BURNET, MARTHA SNYDER TRUSTEE BURNET, GILBERT NEFF TRUSTEE 5208 LEVERING MILL RD APEX NC 27539-3610 0750485688

RUSNAK, DAVID W RUSNAK, PAMELA P 5205 LEVERING MILL RD APEX NC 27539-3640 0750486339

MADRID, RICHARD J MADRID, RENE MONIQUE 5204 LEVERING MILL RD APEX NC 27539-3610 0750487632

KEENE, CHRISTOPHER P KEENE, ANNA E 5200 LEVERING MILL RD APEX NC 27539-3610 0750488577 HORTON, WILLIAM JR HORTON, EDNA 8208 SMITH RD APEX NC 27539-8176 0750488737

HORTON, WILLIAM JR 8208 SMITH RD APEX NC 27539-8176 0750489723

HORTON, WILLIAM JR BURRIS, JULIA HORTON 8208 SMITH RD APEX NC 27539-8176 0750489886

BECK, JOSHUA KEVIN BECK, KATHERINE CLEMMONS 5129 DEZOLA ST APEX NC 27539-9529 0750492134

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750495371

WRIGHT, DWIGHT MARVIN 407 S SALEM ST APEX NC 27502-2037 0750498888

HORTON, WILLIAM JR HORTON, EDNA 8208 SMITH RD APEX NC 27539-8176 0750499041

HORTON, WILLIAM SR HEIRS HORTON, LOOMIS JR HEIRS, WILLIAM HORTON JR 8208 SMITH RD APEX NC 27539-8176 0750499710 HORTON, WILLIAM HORTON, EDNA W 8208 SMITH RD APEX NC 27539-8176 0750582794

HORTON, WILLIAM JR HORTON, EDNA WILLIS 8205 SMITH RD APEX NC 27539-8177 0750583990

HORTON, WILLIAM HORTON, EDNA W 8208 SMITH RD APEX NC 27539-8176 0750591257

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750592361

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750592399

DOWNING, OSWALD DOWNING, DEBORAH H 8129 SMITH RD APEX NC 27539-8175 0750594097

GANDHI, ANIL R GANDHI, NEHA A 105 BONNIEWOOD DR CARY NC 27518-8961 0750596206

JACK 1, LLC 738 CASH ST APEX NC 27502-1302 0751137742

WOMBLE, CHARLES H ET AL WOMBLE, GLEN 802 BELLAMY RD NORTH MYRTLE BEACH SC 29582-2828 0751201670 MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751216689

PRISTINE PARTNERS LLC 2821 JONES FRANKLIN RD RALEIGH NC 27606-4007 0751222279

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751310079

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751319308

TRINITY APEX NORTH 100 LLC 106 ISLAND VIEW DR BEAUFORT NC 28516-9108 0751323228

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751328256

MFWIRA, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751400194

KK LAND INC 2203 GOOD SHEPHERD WAY APEX NC 27523-6947 0751400697

GRIFFIN, SIRRHAN GRIFFIN, JOSEPH A 1038 IRONGATE DR APEX NC 27502-6505 0751407981 MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751414924

HUNTER, MELVIN O HUNTER, NICOLE 5037 JESSIE DR APEX NC 27539-8859 0751415915

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751421387

HINTON, BLANCHE W 4929 JESSIE DR APEX NC 27539-9302 0751424433

TOOMER, JOE ELLIS TOOMER, FANNIE O PO BOX 676 APEX NC 27502-0676 0751426099

INDUS REAL ASSOC LLC 4713 BROOK TOP CT RALEIGH NC 27606-3100 0751426828

KK LAND INC 2203 GOOD SHEPHERD WAY APEX NC 27523-6947 0751510857

CAREY C JONES MEMORIAL PARK INC PO BOX 781 APEX NC 27502-0781 0751532815

Additional properties on Sweetgum Drive have been added for informational purposes

DEVELOPMENT NAME APPROVAL APPLICATION

Application #:

Submittal Date:

Fee for Initial Submittal: No Charge

Fee for Name Change after Approval: \$500*

Purpose

To provide a consistent and clearly stated procedure for the naming of subdivisions and/or developments and entrance roadways (in conjunction with *Town of Apex Address Policy*) so as to allow developers to define and associate the theme or aesthetics of their project(s) while maintaining the Town's commitment to preserving the quality of life and safety for all residents of Apex proper and extraterritorial jurisdiction.

Guidelines

- ✓ The subdivision/development name shall not duplicate, resemble, or present confusion with an existing subdivision/development within Apex corporate limits or extraterritorial jurisdiction except for the extension of an existing subdivision/development of similar or same name that shares a continuous roadway.
- ✓ The subdivision/development name shall not resemble an existing street name within Apex corporate limits or extraterritorial jurisdiction unless the roadway is a part of the subdivision/development or provides access to the main entrance.
- ✓ The entrance roadway of a proposed subdivision/development shall contain the name of the subdivision/development where this name does not conflict with the Town of Apex *Road Name Approval Application* and *Town of Apex Address Policy* guidelines.
- ✓ The name "Apex" shall be excluded from any new subdivision/development name.
- Descriptive words that are commonly used by existing developments will be scrutinized more seriously in order to limit confusion and encourage distinctiveness. A list of commonly used descriptive words in Apex's jurisdiction is found below.
- ✓ The proposed subdivision/development name must be requested, reviewed and approved during preliminary review by the Town.
- ✓ A \$500.00 fee will be assessed to the developer if a subdivision/development name change is requested after official submittal of the project to the Town.*

*The imposed fee offsets the cost of administrative changes required to alleviate any confusion for the applicant, Planning staff, other Town departments, decision-making bodies, concerned utility companies and other interested parties. There is no charge for the initial name submittal.

Existing Development Titles, Recurring

	Residential	Non-Residential
10 or more	Creek, Farm(s), Village(s),	Center/Centre
6 to 9	Crossing(s), Park, Ridge, Wood(s)	Commons, Park
3 to 5	Acres, Estates, Glen(s), Green [•] , Hills	Crossing(s), Plaza, Station, Village(s)

*excludes names with Green Level

DEVELOPMENT NAME APPROVAL APPLICATION								
Application #: 19CZ16	Subr	mittal Date:	7/1/2019					
Proposed Subdivision/Development Information								
escription of location: Properties located between Jessie Drive and Colby Chase Drive								
earest intersecting roads:								
Wake County PIN(s): See Attachment A								
Township: White Oak								
Contact Information (as appropriate)								
Contact person: Peak Engineering & Design (J	eff Roach)							
Phone number: (919) 439-0100	Fax number:	(919) 439-6411						
Address:Address:Address:Address:Address								
E-mail address: jroach@peakengineerin.com								
Owner: Michael F. Whitehead								
Phone number: (919) 801-3905	Fax number:							
Address: 114 Birklands Drive, Cary, NC 27518								
E-mail address: mwhitehead@macgregordev.co	om							
Proposed Subdivision/Development Name								
1 st Choice: Horton Park								
2 nd Choice <i>(Optional)</i> :								
Town of Apex Staff Approval:								

Town of Apex Planning Department Staff

Date

Application #:	19CZ16	Submittal Date:	7/1/2019
		Town of Apex	
	0	73 Hunter Street	
	Р.	O. Box 250 Apex, NC 27502 919-249-3400	
	WAKE COUNTY, NORTH	CAROLINA CUSTOMER SELECTION AC	GREEMENT
	Horton Park		
	÷	(the "Premises")	

The Town of Apex offers to provide you with electric utilities on the terms described in this Offer & Agreement. If you accept the Town's offer, please fill in the blanks on this form and sign and we will have an Agreement once signed by the Town.

______, the undersigned customer ("Customer") hereby irrevocably chooses and selects the Town of Apex (the "Town") as the permanent electric supplier for the Premises. Permanent service to the Premises will be preceded by temporary service if needed.

The sale, delivery, and use of electric power by Customer at the Premises shall be subject to, and in accordance with, all the terms and conditions of the Town's service regulations, policies, procedures and the Code of Ordinances of the Town.

Customer understands that the Town, based upon this Agreement, will take action and expend funds to provide the requested service. By signing this Agreement the undersigned signifies that he or she has the authority to select the electric service provider, for both permanent and temporary power, for the Premises identified above.

Any additional terms and conditions to this Agreement are attached as Appendix 1. If no appendix is attached this Agreement constitutes the entire agreement of the parties.

Acceptance of this Agreement by the Town constitutes a binding contract to purchase and sell electric power.

Please note that under North Carolina General Statute §160A-332, you may be entitled to choose another electric supplier for the Premises.

Upon acceptance of this Agreement, the Town of Apex Electric Utilities Division will be pleased to provide electric service to the Premises and looks forward to working with you and the owner(s).

CCEPTED:	
CUSTOMER: ON PRO	TOWN OF APEX
BY: Michael F. Colinteher	BY:
Authorized Agent	Authorized Agent
DATE: 6/28/2019	DATE:

Application #:	19CZ16	Submittal Date:	7/1/2019
MFW Investments, LLC		is the owner of the prope	rty for which the attached
application is being su	bmitted:		
Land Use Ar Rezoning	mendment		
Site Plan			
Subdivision			
Other:	1 <u>2</u>		
The property address	is: 5100 Jessie Drive, Ap	ex, NC, PIN 0751-42-1387	
The agent for this proj	ect is: Peak Engineering & D	esign	
	owner of the property and will	be acting as my own agent	
Agent Name:	Jeff Roach		
Address:	1125 Apex Peakway, Apex I	NC 27502	
Telephone Number:	(919) 439-0100		
E-Mail Address:	jroach@peakengineering.co	m	
	Signature(s) of opportunity disclosed F.	Whiteherd Type or print nam	ne <u>6/18/2019</u> Date
		Type or print nar	me Date
		Type or print nar	me Date

Application #:	19CZ16)	Submittal Date:	7/1/2019
Horton Park MF LLC			is the owner of the prope	erty for which the attached
application is being su	ibmitted:	2		
Land Use Ar Rezoning	mendmen	ıt		
Subdivision				
Variance				
Other:				
The property address	is: 5	i101 Jessie Drive, Apex	. NC PIN 0751-31-9308	
The agent for this proj	ect is: F	Peak Engineering & Des	sign	
I am the Agent Name:	owner of Jeff Ro		e acting as my own agent	
Address:	1125 A	pex Peakway, Apex, N	C 27502	
Telephone Number:		39-0100		
E-Mail Address:	jroach	peakengineering.com	-100-01 - 1-1-2-27	
	Signat	ure(s) of Owner(s)	ho	
	The Mem Horte	mas G. Dra ber / Marago so Pork MH L	Type or print nan	ne 6/24/17 Date
	The Mem Horte	mas G. Dra ber / Marago sno Pork MH L	Type or print nan	_

Applic	ation #:	19CZ1	6	Submittal Date:	7/1/2019	
MFW In	vestments, LL	С		is the owner of the property for which the attached		
applica	tion is being s	ubmitte	d:	,		
Π,	Land Use A	mendm	ent			
M	Rezoning					
	Site Plan					
M	Subdivision	r -				
Q	Variance					
	Other:	-				
The pro	perty address	is:	5220 Jessie Drive, Apex,	NC, PIN 0751-31-0079		
	ent for this pro		Peak Engineering & Desi	gn		
The age		7 - 1 - L				
in the second second			of the property and will be Roach	acting as my own agent		
Agent N	Name:	-				
Address	s:	1125	Apex Peakway, Apex NC	27502		
Telepho	one Number:	(919) 439-0100			
F-Mail	Address:	jroad	h@peakengineering.com			
		Sign	hickne (F. U	Type or print n	ame 6/28/2010 Date	
				Type or print n	ame Date	
		_		Type or print r	name Date	

Application #: 19CZ16		Submittal Date:	7/1/2019
Mary Elizabeth Horton		is the owner of the prop	erty for which the attached
pplication is being sub	mitted:		
Land Use Ame	endment		
Site Plan			
Subdivision			
Variance			
Other:			
he property address is:	0 Dezola Street, Ape	x, NC, PIN 0750-39-0993	
The agent for this project is: Peak Engineering & D		Design	
□ I am the ow	vner of the property and wi	Il be acting as my own agent	
gent Name:	Jeff Roach		
ddress:	1125 Apex Peakway, Apex	NC 27502	
elephone Number:	(919) 439-0100		
-Mail Address:	jroach@peakengineering.co	m	
	Signature(s) of Owner(s) Mary Elizat	Harton Type or print na	me June 28,20 Date
		Type or print na	me Date

AGENT	AUTHORIZAT	ION FORM			
Applica	ation #:	19CZ16		Submittal Date:	7/1/2019
MFWIRA	, LLC		i	s the owner of the prop	erty for which the attached
applicat	ion is being su	bmitted:			
Ξ,	Land Use An	nendment			
M	Rezoning				
	Site Plan				
Y	Subdivision				
	Variance				
	Other:				
The pro	perty address i	s: 0 Dezola	Street, Apex, NC,	PIN 0751-40-0194	
The age	nt for this proje	ect is: Peak Eng	ineering & Desigr	1	
		and the second second	erty and will be a	cting as my own agent	
Agant N		Jeff Roach		come as my own agent	
Agent N			WWW ARAY NO. 2	7500	
Address	:		kway, Apex NC 2	.7502	
Telepho	ne Number:	(919) 439-0100			
E-Mail A	ddress:	jroach@peaken	gineering.com		
		Signaturels of	AL F. (1 Chrotac Whitehezd Type or print na	me 6/28/2019
				Type or print na	me Date
				Type or print na	me Date

AGENT AUTHORIZAT	ION FORM			
Application #:	19CZ16	Submittal Date:	7/1/2019	L.,
Kimberly Horton and Lo application is being su		_ is the owner of the proper	ty for which the attached	
 Land Use An Rezoning Site Plan Subdivision Variance Other: 				
The property address i			50-27-4707, 10	750-49-5371
The agent for this proje	ect is: Peak Engineering & Des	sign		
I am the c	wner of the property and will be	e acting as my own agent		
Agent Name:	Jeff Roach			,
Address:	1125 Apex Peakway, Apex NC	27502		
Telephone Number:	(919) 439-0100			
E-Mail Address:	jroach@peakengineering.com			
	Signaturie(s) of Owner(s) <u>How How</u> Loomis Horf Kunherly Hor	On <u>La</u> Type or print nam	e 612819 Date	
	Kimberly H			
		Type or print nam	ne Date	

AGEN	T AUTHORIZATION	FORM	and the state of the	
Applic	ation #:1	.9CZ16	Submittal Date:	7/1/2019
Merion I	nvestment Proper	ties LLC	is the owner of the prop	erty for which the attached
applica	tion is being subm	hitted:		
	Land Use Amer	ndment		
M	Rezoning			
	Site Plan			
M	Subdivision			
	Variance			
	Other: _			
The pro	perty address is:	0 Dezola Street, Ap	ex, NC, PIN 0750-29-9342	
The age	ent for this project	is: Peak Engineering &	Design	
	🗆 I am the owr	ner of the property and w	vill be acting as my own agent	
Agent N	Vame: J	Jeff Roach		
Address	s: 1	1125 Apex Peakway, Ape	x NC 27502	
Telepho	one Number: (919) 439-0100		
E-Mail	Address: jr	roach@peakengineering,	com	
	-	Signatures of gurrents) Michzel F.	Whiteberd Type or print na	
			Type or print na	ime Date
	-		Typ e or print na	ame Date

Application #:1	9CZ16	Submittal Date: 7/1/2019		
MFW Investments, LLC		is the owner of the property for which the attached		
application is being subn	nitted:			
□ Land Use Ame	ndment			
M Rezoning				
□ Site Plan				
Subdivision				
Variance				
Other:		 		
The property address is:	8140 Smith Road, A	pex, NC, PIN 0750-28-0998		
The agent for this projec	t is: Peak Engineering &	is: Peak Engineering & Design		
🗆 I am the ow	ner of the property and w	ill be acting as my own agent		
Agent Name:	Jeff Roach			
Address: 1125 Apex Peakway, Apex N		NC 27502		
Telephone Number:	(919) 439-0100			
	roach@peakengineering.c	com		
	Signature(s) of Owner(s)	Whitebezd Type or print name	6 28 2019 Date	
		Type or print name	Date	
		Type or print name	Date	

AGENI	AUTHORIZAT		
Applica	ation #:	19CZ16	Submittal Date: 7/1/2019
Merion I	nvestments Pr	operties, LLC	is the owner of the property for which the attached
applicat	tion is being su	ibmitted:	
Ξ,	Land Use Ar	mendment	
M	Rezoning		
	Site Plan		
\checkmark	Subdivision		
	Variance		
	Other:		
The pro	perty address	is: 0 Dezola, Apex, N	C, PIN 0750-27-8677
	nt for this proj	Deals Fasing animal	& Design
			will be acting as my own agent
1.77.2		Jeff Roach	will be acting as my own agent
Agent N	lame:	Part of the second second	
Address		1125 Apex Peakway, Ape	ex NC 27502
Telepho	one Number:	(919) 439-0100	
E-Mail A	ddress:	jroach@peakengineering	.com
		Signature(s) of Owner(s)	F. Whiteless 6/28/201 Type or print name Date
			Type or print name Date
			Type or print name Date

Applic	ation #:	19CZ16		Submittal Date:	7/1/2019
MFW Investments, LLC		i	is the owner of the property for which the attached		
applica	tion is being su	ibmitted:			
Π,	Land Use Ar	mendmen	t		
Y	Rezoning				
Ξ,	Site Plan				
M	Subdivision				
	Variance				
	Other:				
The pro	perty address	is: 8	252 Smith Road, Apex, N	C, PIN 0750-27-8925	
		÷	Peak Engineering & Design	· · · · · · · · · · · · · · · · · · ·	
The age	nt for this proj	-			
	□ I am the o		the property and will be ac	ting as my own agent	
Agent N	lame:	Jeff Ro	ach		
Address	5:	1125 A	pex Peakway, Apex NC 2	7502	
Telepho	one Number:	(919) 4	39-0100		
	Address:	jroach@	peakengineering.com		
		Signatu	ure(s) of Owner(s) Lichze (F. (hiteberd	6/28/2010
				Type or print nar	ne Date
		_		Type or print nar	ne Date
		_			_
				Type or print nar	me Date

Instruction Packet and Affidavit for Neighborhood Meetings

Town of Apex Planning Department PO Box 250 Apex, NC 27502

T: 919-249-3426 F: 919-249-3338 This packet consists of instructions and templates for conducting a required Neighborhood Meeting. Planning Department staff are available to advise you in the preparation of these materials. Call the Planning Department at (919) 249-3426 for more information.

WHAT IS THE PURPOSE OF A NEIGHBORHOOD MEETING?

A neighborhood meeting is a required form of community outreach to receive initial feedback regarding certain project types prior to submittal to the Planning Department per the standards found in UDO Sec. 2.2.7. The intention of the meeting is to initiate neighbor communication and identify issues and concerns early on and provide the applicant an opportunity to address neighbor concerns about the potential impacts of the project prior to submitting an application. A neighborhood meeting is valid for six (6) months prior to the submission of an application; a delay in submission requires a new neighborhood meeting.

WHEN IS A NEIGHBORHOOD MEETING REQUIRED?

- Rezonings (including Planned Unit Developments);
- Major Site Plans;
- Master Subdivision Plan (excluding minor or exempt subdivisions); or
- Special Use Permits

INSTRUCTIONS

Prior to submitting a Rezoning, Major Site Plan, Master Subdivision Plan (excluding minor or exempt subdivisions), or Special Use Permits, the applicant must conduct at least one (1) Neighborhood Meeting. The applicant shall submit all forms included in this packet with their initial submittal.

The Neighborhood Meeting must be held in accordance with the following rules:

These groups and individuals must be invited to the meeting:

- The applicant is required to notify the Planning Department, all property owners within 300 feet of the subject property and any neighborhood association that represents citizens in the area via first class mail a minimum of 10 days in advance of the neighborhood meeting, not including the day of mailing. The applicant shall use <u>their own</u> return address on the envelopes as the meeting is a private meeting between the applicant and the neighbors.
- The applicant shall include with the meeting notice a vicinity map in addition to either the existing zoning map of the area or preliminary plans of the proposed development (see Handout requirements below).

The meeting must be held within specific timeframes and meet certain requirements:

- The meeting must be held for a minimum of two (2) hours, Monday through Thursday, during the 5:00 p.m. 9:00 p.m. time period. The meeting cannot be held on a Town recognized holiday (which coincide with the State of North Carolina recognized holidays).
- The meeting shall be held at a place that is generally accessible to neighbors that reside in close proximity to the land subject to the application.
- A sign-in sheet must be used in order to verify attendance. Ensure each attendee signs in. Please note if any person(s) refuses to sign in. Note if no one attended.
- Handout requirements:
 - For rezonings (excluding rezonings to PUD-CZ, TND-CZ and MEC-CZ), a vicinity map and existing zoning map of the area must be provided to help facilitate discussion.
 - For rezonings to PUD-CZ, TND-CZ and MEC-CZ; Major Site Plans; Master Subdivision Plans; and Special Use Permits, preliminary plans of the proposed development must be available at the meeting to help facilitate discussion. Neighbors may request emailed/mailed copies of the maps or plans from the applicant by checking the "send plans" box on the sign-in sheet, and the applicant shall provide reduced copies upon such request.
 - Printed copies must equal the number of notices required to be sent.
 - Contact information for the applicant's representative must be provided on the handout.
 - A copy of the handout must be included as part of the Neighborhood Meeting report.
- The agenda of the meeting shall include:
 - Explanation of all processes the meeting is being held for (rezoning, subdivision, etc.).
 - Explanation of future meetings (additional neighborhood meetings, Planning Board, Town Council, etc.).
 - Explanation of development proposal uses and conditions for rezonings, layout for subdivision and site plans, and builder/end user if known/public knowledge.
- Questions or concerns by attendees, and responses by the applicant, if any, must be noted. Provide blank comment sheets or notecards for neighbors to submit written comments. The applicant shall also include any questions and concerns received via written correspondence (such as email) or phone call along with responses provided by the applicant.
- The applicant shall be responsible for notifying any neighbors who check the "Send Plans & Updates" box on the sign-in sheet of any additional neighborhood meetings and the actual submittal date to the Town with a link to the Town of Apex's Interactive Development Map.

For accountability purposes, please submit the following with your application:

- A copy of the letter mailed to neighbors and neighborhood organizations (use attached invitation template);
- A list of those persons and neighborhood organizations invited to the meeting;
- A copy of the sign-in sheet (use attached sign-in sheet template);
- A summary of the meeting and a list of any changes made to the project as a result of the neighborhood comments (use attached meeting summary template);
- The affidavit, signed, dated, and notarized (use attached affidavit template); and
- One reduced copy of the maps and/or plans presented to the neighbors at the Neighborhood Meeting.

June 12, 2019

Adjacent Property Owners and Interested Parties,

RE: Horton Park Rezoning

During the design and review of Horton Park, the timing of NCDOT and Town of Apex projects are beginning to align with the Horton Park timing. For this reason, Horton Park will be submitting a rezoning on July 1st, 2019 to adjust the timing of off-site roadway improvements with three (3) major transportation improvements in mind.

- 1. Ten Ten Road improvements
- 2. Highway 55 design and future improvements
- 3. Jessie Drive design and future improvements/extension

The project will continue to have a mix of residential options (single family, townhomes, and apartments) and non-residential property along the future Jessie Drive corridor. This letter is to inform you that a neighborhood meeting has been scheduled to introduce the rezoning request, the overall Master Subdivision Plan and to answer any questions which you may have. You are welcome to attend the meeting, email me any questions, or call our office to discuss the project.

Meeting Information:

- Date of Neighborhood Meeting:
- Meeting location:
- Time of Meeting:

June 27, 2019 237 N. Salem Street, Apex, NC 27502 (Halle Cultural Arts Center) 5:30 PM

If you have any questions concerning the rezoning request, do not hesitate to call or email me at (<u>iroach@peakengineering.com</u>).

Sincerely,

2.0

Jeffret A Roach P.E. Peak Engineering & Design, PLLC

NOTICE OF NEIGHBORHOOD MEETING

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

June 12, 2019	
Date	
Dear Neighbor:	
You are invited to a neighborhood meeting	to review and discuss the development proposal at
See Attached Sheet	See Attached Sheet

Address(es)

PIN(s)

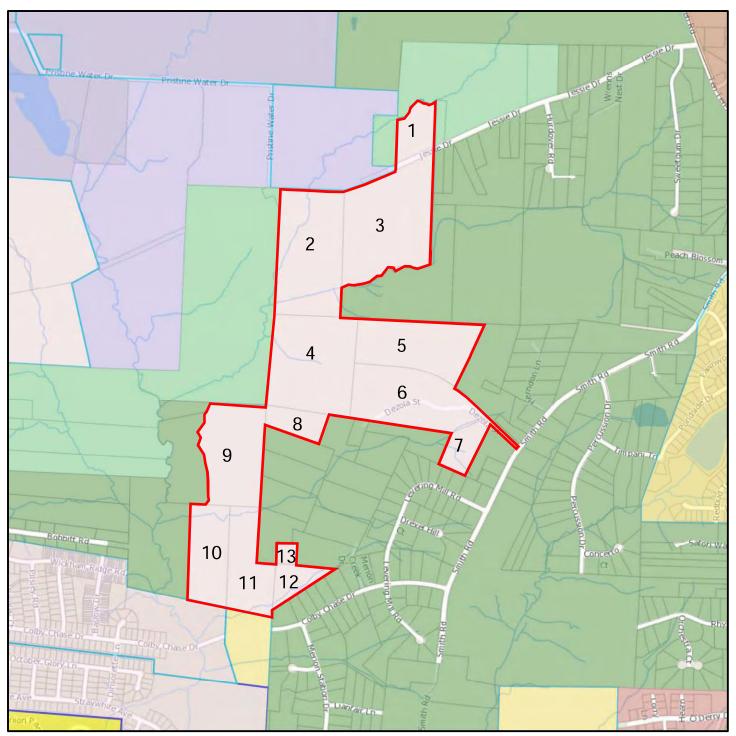
in accordance with the Town of Apex Neighborhood Meeting procedures. The Neighborhood Meeting is intended as a way for the applicant to discuss the project and review the proposed plans with adjacent neighbors and neighborhood organizations before the submittal of an application to the Town. This provides neighbors an opportunity to raise questions and discuss any concerns about the impacts of the project before it is officially submitted. Once an application has been submitted to the Town, it may be tracked using the <u>Interactive</u> <u>Development Map</u> or the <u>Apex Development Report</u> located on the Town of Apex website at <u>www.apexnc.org</u>.

A Neighborhood Meeting is required because this project includes (check all that apply):

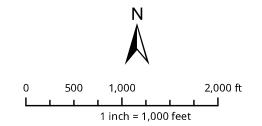
- Rezoning (including Planned Unit Development);
- □ Major Site Plan;
- Master Subdivision Plan (excludes minor or exempt subdivision); or
- □ Special Use Permit

The following is a description of the proposal (also see attached map(s) and/or plan sheet(s)):

To discuss with the adjacent property owners and other interested parties the rezoning request to adjust the phasing


of the project, timing of roadway improvements, the rezoning process, and the overall Master Subdivision Plan.

Estimated submittal date: July 1, 2019						
MEETING INFORMATION:						
Property Owner(s) name(s):	See Attached					
Applicant(s):	Peak Engineering & Design (Jeff Roach); MFW Investments, LLC					
Contact information (email/phone):	(919) 439-0100, jroach@peakengineering.com					
Meeting Address:	237 N. Salem Street, Apex, NC 27502 (Halle Cultural Arts Center)					
Date of meeting*:	June 27, 2019					
Time of meeting*:	5:30 -					
MEETING AGENDA TIMES:						
Welcome:	5:30 - 5:40					
Project Presentation:	5:40 - 6:00					
Question & Answer:	6:00 -					


*Meetings shall occur between 5:00 p.m. - 9:00 p.m. on a Monday through Thursday (excluding Town recognized holidays). If you have questions about the general process for this application, please contact the Planning Department at 919-249-3426. You may also find information about the Apex Planning Department and on-going planning efforts at http://www.apexnc.org/180/Planning.

Rezoning Application Parcel List Horton Park Assembly Apex, NC

Parcel	<u>Owner</u>	<u>PIN</u>
1	MFW Investments LLC	0751-42-1387
2	MFW Investments LLC	0751-31-0079
3	Horton Park MF, LLC	0751-31-9308
4	Mary Elizabeth Horton	0750-39-0993
5	MFWIRA, LLC	0751-40-0194
6	Kimberly Horton; Loomis Horton III	0750-39-8682
7	Kimberly Horton; Loomis Horton III	0750-49-5371
8	MFW Investments LLC	0750-29-9342
9	MFW Investments LLC	0750-28-0998
10	MFW Investments LLC	0750-27-0906
11	Kimberly Horton; Loomis Horton III	0750-27-4707
12	MFW Investments LLC	0750-27-8677
13	MFW Investments LLC	0750-27-8925

Horton Park Rezoning

<u>Disclaimer</u>

iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied ,are provided for the data therein, its use,or its interpretation.

PROJECT CONTACT INFORMATION

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Development Contacts:							
Project Name: MFW Investments, LLC							
Location: Properties located between Jessie Drive and Colby Chase Drive							
Property PIN: See Attached sheet Acreage/Square Feet:							
Zoning: PUD - CZ	Subdivision	-	ent:				
ousanning severopment.							
Property Owner: See Attached Sheet							
Address:							
City:	State:			Zip:			
Phone: Email:				·			
Developer: MFW Investments, LLC	С						
Address: 114 Birklands Drive							
City: Cary	State:	NC		Zip: 27518	3		
Phone: Fax:			Email:	mwhitehe	ead@macgregordev.com		
Engineer: Peak Engineering & D	esign, PLLC	(Jeff Roacl	η, Ρ.Ε.)				
Address: 1125 Apex Peakway	0		,				
City: Apex	State:	NC		Zip: 27502	2		
Phone: (919) 439-0100 Fax:	(919) 439-		Email:	·	eakengineerindesign.com		
			-				
Builder (if known):							
Address:							
City:	State:			Zip:			
Phone: Fax:			Email:				
Town of Apex Department Contacts							
Planning Department Main Number (Provide development name to be routed to	corroct plan	norl			(919) 249-3426		
Parks, Recreation & Cultural Resources Depa	-	ner)			(919) 249-3420		
Angela Reincke, Parks Planner	runent				(919) 249-7468		
Public Works - Transportation							
Russell Dalton, Senior Transportation Engine	er				(919) 249-3358		
Water Resources Department							
Mike Deaton, Stormwater & Utility Engineering Manager(919) 249-3413Stan Fortier, Senior Engineer (Sedimentation & Erosion Control)(919) 249-1166							
Electric Utilities Division		untrol)			(919) 249-1166		
Rodney Smith, Electric Technical Services Ma	inager				(919) 249-3342		

COMMON CONSTRUCTION ISSUES & WHO TO CALL

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Noise & Hours of Construction:	Non-Emergency Police	919-362-8661
	ivating, paving, and building structures is a routine particular structures is a routi	
	struction hours to 7 a.m. $-8:30$ p.m. so that there are	
	uction outside of these hours is allowed with special p	
-	construction occur at night, often to avoid traffic issu	
	/ through Friday from 8:00 a.m. to 5:00 p.m. Report vi	
	e Non-Emergency Police phone number at 919-362-8	
Construction Traffic:	Stan Fortier	919-249-1166
	throughout the development process, including but r	
	and/or out of the site, construction materials such as	
	ome in to pave, etc. The Town requires a construction	_
-	g the site as possible. If dirt does get into the road, th	-
clean the street (see "Dirt in the Road"		e rown can require they
Road Damage & Traffic Control:	Water Resources – Infrastructure Inspectio	ns 919-362-8166
	age, roadway improvements, and traffic control. Poth	
	trol, blocked sidewalks/paths are all common issues th	
	ections at 919-249-3427. The Town will get NCDOT inv	
Parking Violations:	Non-Emergency Police	919-362-8661
	ere should be no construction parking in neighbors' di	
	it-of-way is allowed, but Town regulations prohibit particulations and the second structure of the sec	
	gles. Trespassing and parking complaints should be re	-
Emergency Police phone number at 91		
Dirt in the Road:	Stan Fortier	919-249-1166
	existing roads due to rain events and/or vehicle traffic	
	inate the cleaning of the roadways with the developer	
	Stan Fortier	<u>010_7/10_1166</u>
Dirt on Properties or in Streams:	Stan Fortier Danny Smith	919-249-1166 Danny Smith@ncdenr.gov
	Danny Smith	Danny.Smith@ncdenr.gov
Sediment (dirt) can leave the site and g	Danny Smith get onto adjacent properties or into streams and strea	Danny.Smith@ncdenr.gov m buffers; it is typically
Sediment (dirt) can leave the site and g transported off-site by rain events. The	Danny Smith get onto adjacent properties or into streams and strea ese incidents should be reported to Stan Fortier at 919	Danny.Smith@ncdenr.gov m buffers; it is typically -249-1166 so that he can
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with	Danny Smith get onto adjacent properties or into streams and strea ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream k	Danny.Smith@ncdenr.gov m buffers; it is typically -249-1166 so that he can
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u>	Danny Smith get onto adjacent properties or into streams and strea ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream b <u>@ncdenr.gov</u>) with the State.	Danny.Smith@ncdenr.gov m buffers; it is typically 249-1166 so that he can puffers should also be
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust:	Danny Smith get onto adjacent properties or into streams and strea ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream k @ncdenr.gov) with the State. Stan Fortier	Danny.Smith@ncdenr.gov m buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become	Danny Smith get onto adjacent properties or into streams and strea ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream b <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re	Danny.Smith@ncdenr.gov m buffers; it is typically -249-1166 so that he can buffers should also be 919-249-1166 padways. These incidents
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream b <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat	Danny.Smith@ncdenr.gov m buffers; it is typically -249-1166 so that he can buffers should also be 919-249-1166 padways. These incidents
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust.	Danny.Smith@ncdenr.gov m buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 padways. These incidents er trucks onsite with the
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash:	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier	Danny.Smith@ncdenr.gov m buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 badways. These incidents er trucks onsite with the 919-249-1166
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream b @ncdenr.gov) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site.	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 019-249-1166 Dadways. These incidents er trucks onsite with the 019-249-1166 These incidents should be
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-11	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 019-249-1166 Dadways. These incidents er trucks onsite with the 019-249-1166 These incidents should be
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder.	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins:	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier	Danny.Smith@ncdenr.gov m buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166 badways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home 919-249-1166
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormward	Danny.Smith@ncdenr.gov Im buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be in with the developer/home 919-249-1166 ater pond) are often quite
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be report	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co	Danny.Smith@ncdenr.gov Im buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be in with the developer/home 919-249-1166 ater pond) are often quite
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (danny.smith Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the o Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be reported and/or mowing of the slopes and bottom	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be @ncdenr.gov) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co pom of the pond with the developer.	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be in with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be report and/or mowing of the slopes and botto Stormwater Control Measures:	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co om of the pond with the developer. Mike Deaton	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning 919-249-3413
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (<u>danny.smith</u> Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be report and/or mowing of the slopes and botto Stormwater Control Measures: Post-construction concerns related to S	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co pom of the pond with the developer. Mike Deaton Stormwater Control Measures (typically a stormwater	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning 919-249-3413
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (danny.smith) Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be repor and/or mowing of the slopes and botto Stormwater Control Measures: Post-construction concerns related to S and long-term maintenance should be	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream to @ncdenr.gov) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co for of the pond with the developer. Mike Deaton Stormwater Control Measures (typically a stormwater reported to Mike Deaton at 919-249-3413.	Danny.Smith@ncdenr.gov Im buffers; it is typically 0-249-1166 so that he can buffers should also be 919-249-1166 Dadways. These incidents er trucks onsite with the 919-249-1166 These incidents should be in with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning 919-249-3413 pond) such as conversion
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (danny.smith Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be report and/or mowing of the slopes and botto Stormwater Control Measures: Post-construction concerns related to S and long-term maintenance should be Electric Utility Installation:	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream be <u>@ncdenr.gov</u>) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormware red to Stan Fortier at 919-249-1166 so that he can co of the pond with the developer. Mike Deaton Stormwater Control Measures (typically a stormwater reported to Mike Deaton at 919-249-3413. Rodney Smith	Danny.Smith@ncdenr.gov m buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166 badways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning 919-249-3413 pond) such as conversion 919-249-3342
Sediment (dirt) can leave the site and g transported off-site by rain events. The coordinate the appropriate repairs with reported to Danny Smith (danny.smith Dust: During dry weather dust often become should be reported to Stan Fortier at 9 grading contractor to help control the of Trash: Excessive garbage and construction de reported to Stan Fortier at 919-249-110 builder. Temporary Sediment Basins: Temporary sediment basins during con unattractive. Concerns should be report and/or mowing of the slopes and botto Stormwater Control Measures: Post-construction concerns related to S and long-term maintenance should be Electric Utility Installation:	Danny Smith get onto adjacent properties or into streams and streat ese incidents should be reported to Stan Fortier at 919 h the developer. Impacts to the streams and stream to @ncdenr.gov) with the State. Stan Fortier es a problem blowing into existing neighborhoods or re 19-249-1166 so that he can coordinate the use of wat dust. Stan Fortier bris can blow around on a site or even off of the site. 66. He will coordinate the cleanup and trash collection Stan Fortier estruction (prior to the conversion to the final stormwar rted to Stan Fortier at 919-249-1166 so that he can co for of the pond with the developer. Mike Deaton Stormwater Control Measures (typically a stormwater reported to Mike Deaton at 919-249-3413.	Danny.Smith@ncdenr.gov m buffers; it is typically 2-249-1166 so that he can buffers should also be 919-249-1166 badways. These incidents er trucks onsite with the 919-249-1166 These incidents should be n with the developer/home 919-249-1166 ater pond) are often quite ordinate the cleaning 919-249-3413 pond) such as conversion 919-249-3342

-

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Meeting Address:	Halle Cult	tural Arts Center, 237 No	rth Salem Street, Apex, NC 27502	(Gallery Room)
Date of meeting:	June 27, 1	2019	Time of meeting: <u>5:30</u>	
Property Owner(s)	name(s):	See Attached Sheet		
Applicant(s): M	FW Invest	ments, LLC		

Please <u>print</u> your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL	SEND PLANS & UPDATES
1.	Falchi	3232 Colby Cho	a antiput		gmail.
2.	Dam Carter	Dely Sweetquindr			in v
3.	ERMA BURR	2625 SNeetgum DR	0		~
4.	Donna Provance	2624 11 11	C		tu
5.	Brien Johnson	3305 Cheswold Ct			v
6.	MOSS W, TITARS	111 AMMIANDITUE	-		viv
7.	Mike Mansfield	5133 Dezelast	-		
9,	Judy Ward	2528 Sweetsum	-		~
10	Karen Peters	5300 Levening Kill Rd	-		
11.	Marcaret Griffin	2609 Sweetsun Dr.			<u> </u>
.2.	Steren Thodas	3208 Co/63 (Gase)=	- -		a la
3.	Alton Richardson	1295 Windhankl. Greenvill			net u
14.	they externades on	15 10 Willing to Kat. Offering			4161

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Meeting Address:	Halle Cultural Arts Center, 237 Nor	(Gallery Room)	
	June 27, 2019	Time of meeting: <u>5:30</u>	
Property Owner(s)	name(s): See Attached Sheet		
Applicant(s): <u>M</u>	FW Investments, LLC		

Please <u>print</u> your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL	SEND PLANS & UPDATES
1.	Bochel Bullock	25.21 Sweetsmiller			
2,	Boshel Bullock Ronon Mann	2521 Sweetswe Dr. 106 JSLOND VIEWDY	-		
3.	. Jan lun Padaro	3216 hantan La	2		1
4.	Russ D Laune Bell	5508 Menin Station Dr.			
5.	MAD & CAUCIC ICI				
6.					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
14.					

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Meeting Address:	Halle Cultural Arts Center, 237 North	Salem Street, Apex, NC 27502	(Gallery Room)
Date of meeting:	June 27, 2019	_ Time of meeting: <u>5:30</u>	
Property Owner(s)	name(s): <u>See Attached Sheet</u>		
Applicant(s): <u>M</u>	FW Investments, LLC		

Please <u>print</u> your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL	SEND PLANS & UPDATES
1.	Joyce Falchi	3232 Colby Chase Dr			x
2.	Pam Carter	2616 Sweetgum Dr	-		x
3.	Erma Burr	2625 Sweetgum Dr	-		x
4.	Donna Provance	2624 Sweetgum Dr	_		x
5.	Brian Johnson	3305 Chaswold Ct			x
6.	Moss Withers	111 Annadale Dr			x
7.	Mike Mansfield	5133 Dezola St			x
8.	Judy Ward	2828 Sweetgum Dr			x
9.	Karen Peters	5300 Levering Mill Rd			x
10.	Marcaret Griffin	2609 Sweetgum Dr			x
11.	Melvin O Hunter	5037 Jessie Dr			x
12.	Steven Rhodes	3208 Colby Chase Dr			x
13.	Alton Richardson	1295 Windham Pl Greenville NC			x
14.					

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Meeting Address:	Halle Cultural Arts Center, 237 North	(Gallery Room	
Date of meeting:	June 27, 2019	_ Time of meeting: <u>5:30</u>	
Property Owner(s)	name(s): <u>See Attached Sheet</u>		
Applicant(s): <u>M</u>	FW Investments, LLC		

Please <u>print</u> your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL	SEND PLANS & UPDATES
1.	Bethel Bullock	2521 Sweetgum Dr			x
2.	Randy Mann	106 Island View Dr Beaufort NC	-		x
3.	Jerilyn Paolino	3216 Lianfair Ln	+		x
4.	Russ/Laurie Bell	5508 Merian Station Dr			x
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
14.					

SUMMARY OF DISCUSSION FROM THE NEIGHBORHOOD MEETING

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Property Owner(s) name(s):	See Attached Sheet			
Applicant(s):	MFW Investments, LLC			
Contact information (email/phone):	Jeff Roach, jroach@peakengineering.com			
Meeting Address:	Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room)			
Date of meeting: 6-27-2019	Time of meeting: 5:30 -			

Please summarize the questions/comments and your response from the Neighborhood Meeting in the spaces below (attach additional sheets, if necessary). Please state if/how the project has been modified in response to any concerns. The response should not be "Noted" or "No Response". There has to be documentation of what consideration the neighbor's concern was given and justification for why no change was deemed warranted.

Question/Concern #1: SEE ATTACHED LIST OF QUESTIONS AND RESPONSES

Applicant's Response:

Question/Concern #2:

Applicant's Response:

Question/Concern #3:

Applicant's Response:

Question/Concern #4:

Applicant's Response:

The Horton Park rezoning and Master Subdivision neighborhood meeting started at 5:30 pm with a brief introduction of the project, the location, and general housekeeping items including the sign-in sheets and handouts. This was followed up by a discussion related to what zoning and Master Subdivision Plans are, the timing of the project, and what our role is for the project. This led into the presentation of the proposed Zoning (10 minutes) followed by discussions related to the Master Subdivision Plan (10 minutes).

The floor was then opened to a discussion with questions and answers from the group. Following are the questions and a summary of responses (some of the questions and responses were long-winded, were condensed for clarity/space, or combined with other questions to provide clarity to staff):

- 1. Why is the project back again? Please clarify the changes again.
- A. Horton Park is being rezoned for three (3) reasons: (1) modify the conditions and timing associated with off-site roadway improvements; (2) incorporate timing of Phase I and Phase II development with Jessie Drive construction and alignment of the north-south collector street; and (3) removing the "Cash" property from the PUD and zoning it TF-CZ.

The Town of Apex is proposing to design and build Jessie Drive – and the zoning of Horton Park requires the adjustment of a number of zoning conditions to allow the project to start without having Jessie Drive either in place or under construction. The Town's investment in Jessie Drive as a Major Thoroughfare is something that has been in discussions for a couple years – and Apex sees the benefit of the connection for neighbors, commuters, and life safety personnel.

- 2. The Sweetgum neighbors were invited to the meeting is the zoning changing to incorporate more property near Sweetgum Drive?
- A. No, there is no additional property being added. The property owners on Sweetgum were notified based upon their interest in the original zonings over the past 2-1/2 years.
- 3. Are there any changes to the design of Jessie Drive @ Ten Ten which would impact the Sweetgum property owners?
- A. The Town is beginning the design of Jessie Drive @ Ten Ten in the next fiscal year. We are not aware of the final design at this time. Directed the property owners the Town's website and the Interactive Development Map for upcoming projects but not sure if Jessie Drive extension would be included until design-permitting was started.
- 4. Is a traffic signal proposed at Jessie Drive at Ten Ten Road?
- A. Horton Park Phase I is not proposing to construct Jessie Drive or have any traffic directed to Jessie Drive. The Horton Park study will not evaluate Jessie Drive for a traffic signal. The Town of Apex extension of Jessie Drive "should" evaluate the intersection for the installation of a new signal. That is part of the ongoing discussions with Apex Transportation Staff related to the Jessie Drive extension project.
- 5. What is the timing of Jessie Drive?
- A. Per staff discussions, the 2019-2020 budget allocated \$1MM for design and studies of the Jessie Drive corridor. 2021-2022 budget allocates \$10MM for the construction of Jessie Drive from Highway 55 to Ten Ten. This is still up for discussions with the Town of Apex but is the current status of the project.
- 6. How does the Jessie Drive timing align with the other projects in the area?
- A. Explained the current schedule for Ten Ten (start in 2023); Highway 55 (unknown at this time); and Jessie Drive (budget \$10mm for 2022 start). This will be reviewed annually to coordinate with NCDOT and other grants or alternate funding sources as soon as possible (per discussions with staff).

- 7. What is the plan for the barricade at Colby Crossing and the Merion Subdivision?
- A. Horton Park continues to have the zoning condition to install the barriers on the western edge of Merion on Colby Chase Drive until the Town of Apex determines the connection is needed. No change to this condition worked out with Merion HOA during the previous zoning requests.
- 8. Are there other conditions which are changing?
- A. We assured the neighbors that the rezoning is about timing of improvements not about modification of any of the conditions which were worked on for months through two previous rezonings.
- 9. What is the Middle Creek pump station? What is a pump station? And where is it located?
- A. The Middle Creek Regional Pump Station (aka Middle Creek north) is a pump station that is required to pump sewage from Horton Park and other upstream properties to the Town's Water Reclamation Facility on Pristine Water Drive. This pump station is approximately \$4MM in costs for the developer of Horton Park. The pump station is currently planned for the northeastern corner of the intersection of Middle Creek and Colby Chase Drive (same location that it has been in since the initial zoning and Master Subdivision Plan).
- 10. What do you mean by staff? Are you referring to Planning Department?
- A. Planning, Engineering, Transportation, Public Works, Fire, and Building Inspections. These are the staff groups which attend the pre-application meetings and we work with on every project.
- 11. What does minor collector mean?
- A. A minor collector is a street designation which specifies the street should expect more vehicles than neighborhood streets, have a slightly higher speed (possibly), and act as a funnel to the larger streets (larger streets being Major Collectors, Thoroughfares, and Interstates).
- 12. Is the Town of Apex proposing to take ownership of Jessie Drive after completion of the extension?
- A. That is unknown at this time. Current plan is for Jessie Drive to be constructed to Town of Apex standard but retained within the NCDOT maintenance system. That will be determined later.
- 13. In showing the 2045 Land Use Map, can you explain the different colors and what they mean?
- A. Went into the definition of medium density (light yellow), medium-high density (light orange), high density (dark orange), light blue (office employment), purple (industrial employment), and green (park). Then explained the difference between the existing ZONING MAP, 2045 LAND USE MAP, and the WAKE GIS.
- 14. What is the RCA? And where is it proposed?
- A. Resource Conservation Area (RCA) is the preservation of existing vegetation and environmentally sensitive areas including trees, wetlands, floodplains, steep slopes, and animal habitat. RCA is proposed to be around the property in various locations including those listed above (current MSP was used to identify current RCA locations).
- 15. How many lots are proposed with the project?
- A. The number of lots from the original zoning has not changed. In general, approximately 350 single family or townhomes plus the apartment area and Tech-Flex area along Jessie Drive.
- 16. What is Tech-Flex? And what are the uses permitted?
- A. Tech-Flex is an office or business zoning with a number of uses. The uses have been limited for this project to included (as an example) day care, vet, entertainment area (indoor or outdoor), restaurants, offices, convenience store, grocery store, repair services, and others. All the uses will be identified in the zoning application on Interactive Development Map once submitted to the Town.

17. What is the development timing?

- A. <u>Phase I</u> is the residential portion south of the existing landfill and "N/F Cash Property" which has access to Smith Road and Colby Chase Drive the property was identified on the maps at the meeting. This section is hoped to be approved in early 2020; construction start in Spring of 2020; full construction build-out of homes in 2024-2025. This timing is based upon the success of the project and any financial changes. <u>Phase II</u> of the project is the section along Jessie Drive including PODs 2,3 and 4 which all rely upon Jessie Drive for access this timing is based upon the timing of Jessie Drive, Ten Ten, and Highway 55 projects.
- 18. What is the timing of the review by Apex and the Town Council meetings?
- A. Submittal of the rezoning request is July 1, 2019. This will start a 3-4 month process prior to Town Council public hearings. Assuming approval of the zoning, the Master Subdivision Plan (which has previously been approved) will be modified to reflect the changes associated with the rezoning. Construction Documents will then follow for the contractor and permitting. Apex will send out a notification of future Public Hearings based upon the list of contacts we provided (including the Sweetgum Drive property owners).
- 19. What is the plan for the greenway and connection to surrounding properties?
- A. The Middle Creek Greenway was discussed at length. Middle Creek Greenway is major connection from the Town of Apex to Holly Springs' greenway system. These projects include Middle Creek Phase I and II (Town of Apex projects), Reunion Pointe, Horton Park, and future projects north of Jessie Drive. Future connection to Lufkin Road and the Town of Cary greenway system in Regency Park.
- 20. Who will the builder be?
- A. The construction team may be a couple of builders. Final builder team is TBD.
- 21. In summary, what is the meeting for?
- A. This meeting is to explain the process, the project, and product while gathering information from residents in the area. The questions will be gathered, answers provided, and included in the zoning submittal for Planning Board and Town Council review during the zoning process. Changes to the design documents or the zoning application may be made from comments received.
- 22. Who can I contact about the project? Town of Apex?
- A. A list of Town of Apex contacts were provided at the meeting. Staff will know about the project but will not know details until after the July 1, 2019 zoning submittal.
- 23. Who approves the revised rezoning request?
- A. Town Council reviews and ultimately provides final zoning determination.
- 24. Where can I find the rezoning application once it is submitted?
- A. On the Town's website under the "Interactive Development" tab is the map of projects. After the zoning package is submitted, the documents will be updated within a week or two.
- 25. In reviewing the Master Subdivision Plan provided, how is the zoning changing the design?
- A. The zoning will require the modification of the Master Subdivision Plan to remove the connection to Jessie Drive as part of the Phase I development. This will be done in conjunction with staff input to clarify the improvements on the property.

The Horton Park rezoning neighborhood meeting was very different from a majority of neighborhood meetings as the neighbors were well informed about the project. This is the 3rd zoning for this project based upon the size and complexity of the project. Most of the discussions were centered on previous items committed to or discussed with property owners. The questions asked were more process or overall

"why are you rezoning again" type questions. For this reason, the number of questions from the meeting were limited. It was difficult to track all the discussions.

At the conclusion of the meeting, the neighbors broke up into groups, some asking questions, some talking, and others leaving the meeting. There were a number of clarifications provided one-on-one but no additional conditions or concerns about the project beyond what was asking during the larger group setting. The meeting completed at 7:30 when all questions were answered.

AFFIDAVIT OF CONDUCTING A NEIGHBORHOOD MEETING, SIGN-IN SHEET AND ISSUES/RESPONSES SUBMITTAL

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Jonathan Edwards do hereby declare as follows:

Print Name

- 1. I have conducted a Neighborhood Meeting for the proposed Rezoning, Major Site Plan, Master Subdivision Plan, or Special Use Permit in accordance with UDO Sec. 2.2.7 *Neighborhood Meeting*.
- The meeting invitations were mailed to the Apex Planning Department, all property owners within 300 feet
 of the subject property and any neighborhood association that represents citizens in the area via first class
 mail a minimum of 10 days in advance of the Neighborhood Meeting.
- 3. The meeting was conducted at Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room) (location/address) on 6-27-2019 (date) from 5:30 (start time) to 7:30 (end time).
- 4. I have included the mailing list, meeting invitation, sign-in sheet, issue/response summary, and zoning map/reduced plans with the application.
- 5. I have prepared these materials in good faith and to the best of my ability.

6-28-201

STATE OF NORTH CAROLINA COUNTY OF WAKE

foratten She

Sworn and subscribed before me,	DANIEL	WOODS	, a Notary Public for the above State and
County, on this the _28 _ day of	TUNE	. 20 19	

ani thulo

Notary Public

IEL H WOODS Print Name

11/18/23 My Commission Expires:

Project Identification and Legal Description

Horton Park PUD Apex, White Oak Township Wake County, North Carolina Revised July 1, 2019

Horton Park property with the following Wake County Property Identification Numbers (PINs): 0751-42-1387, 0751-31-9308, 0751-31-0079, 0750-39-0993, 0751-40-0194, 0750-39-8682, 0750-49-5371, 0750-29-9342, 0750-28-0998, 0750-27-0906, 0750-27-4707, 0750-27-8677, and 0750-27-8925 located in the Apex's ETJ, between Jessie Drive and Colby Chase Drive, Apex, NC.

Commencing at an existing iron pipe at the northwest corner of N/F MFW Investments, LLC property (PIN# 0751-31-9308), said point intersects with southern line of N/F Trinity Apex North 100, LLC property (PIN# 0751-32-3228), and the northeast corner of N/F Fred Cash Jr. (PIN # 0751-31-0079), said point being the POINT OF BEGINNING;

thence N 01°34'29" E for 36.51' to an existing iron pipe at the northern Jessie Drive;

thence N 01°34'29" E for 30.22' to an existing iron pipe at the southern corner of N/F Trinity Apex North 100, LLC (PIN# 0751-42-1387);

thence N 01°34'29" W for 472.23' to a point along the N/F Blanche Hinton (PIN# 0751-32-8256) property line;

thence N 75°28'14" E for 47.89' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence S 70°56'43" E for 19.41' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 35°58'42" E for 29.34' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 64°47'45" E for 28.00' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 35°16'15" E for 29.31' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 00°20'08" E for 28.40' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 62°27'55" E for 32.05' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 10°59'28" W for 21.69' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 49°05'39" E for 103.19' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence S 76°41'38" E for 45.82' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence S 10°05'29" E for 28.71' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 83°54'46" E for 28.00' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence S 65°07'03" E for 45.42' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 75°33'41" E for 27.20' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 26°33'47" E for 42.52' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence N 89°35'33" E for 13.97' to a point along the N/F Indus Real Associates LLC property (PIN# 0751-42-6828);

thence S 01°50'31" W for 476.05' to a point along the N/F Blanche Hinton property (PIN# 0751-42-4433) ending at a point on the Jessie Drive northern Right of Way line;

thence S 01°50'31" W for 66.76' to a point along the Jessie Drive southern Right of Way line;

thence S 01°50'31" W for 426.99' to a point along the N/F Blanche Hinton property (PIN# 0751-41-4924);

thence S 01°54'49" W for 118.52' to a point along the N/F KK Land Inc. property (PIN# 0751-41-0857);

thence S 01°49'17" W for 625.99' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 89°11'21" W for 2.52' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 72°37'10" W for 92.98' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 73°45'10" W for 80.25' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 60°10'47" W for 49.51' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 81°52'01" W for 67.16' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 40°49'23" W for 22.21' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 70°25'32" W for 99.01' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 24°18'53" W for 34.03' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 77°13'16" W for 50.45' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 37°21'11" W for 127.24' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 84°47'45" W for 53.66' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 48°53'39" W for 94.23' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 79°54'53" W for 164.77' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence N 79°57'29" W for 36.14' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 87°46'00" W for 14.26' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697);

thence S 66°52'27" W for 76.36' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697) said point intersects with N/F Fred Cash Jr. property (PIN# 0751-31-0079);

thence S 07°14'12" E for 317.37' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697) said point intersects with N/F Mary Elizabeth Horton property (PIN# 0750-39-0993);

thence S 83°27'48" E for 187.41' to a point along the N/F KK Land Inc. property (PIN# 0751-40-0697) said point intersects with the northwest corner of the N/F MFWIRA, LLC property (PIN# 0751-40-0194);

thence S 83°27'48" E for 973.40' to a point in the southeast corner of the N/F KK Land Inc. property (PIN# 0751-40-0697) and the southwest corner of the N/F Sirrhan Griffin property (PIN# 0751-40-7981;

thence S 83°27'48" E for 337.45' to a point along the N/F Sirrhan Griffin property line (PIN# 0751-40-7981;

thence S 83°31'08" E for 16.61' to a point along the N/F Sirrhan Griffin property (PIN# 0751-40-7981 and the northwest corner of the N/F Dwight Wright property (PIN # 0750-49-8888);

thence S 28°37'14" W for 730.70' along the N/F Dwight Wright property (PIN# 0750-49-8888) to the southwest corner of said Wright property;

thence along a curve S 45°33'02" E with a radius 1,097.99' and chord length 144.18' to a point along the N/F Dwight Wright property (PIN# 0750-49-8888);

thence S 41°47'10" E for 763.27' to a point along the N/F Dwight Wright property (PIN# 0750-49-8888); said point being the centerline of Smith Road;

thence S 39°45'17" W for 30.00' to a point along the centerline of Smith Road;

thence N 41°47'45" W for 390.80 to a point along the N/F William Horton property (PIN# 0750-49-9041);

thence S 30°04'18" W for 604.83' to a point along the N/F William Horton property (PIN# 0750-49-9041) said point intersects with N/F Martha Burnet (PIN# 0750-48-5688);

thence N 62°26'59" W for 306.49 to a point along the N/F Martha Burnet property (PIN# 0750-48-5688), the N/F Richard Bacholzky property (PIN# 0750-48-4775) and N/F Kennith Moushegian property (PIN# 0750-48-3860) said point intersects with N/F Joshua Beck property (PIN# 0750-49-2134);

thence N 26°52'23" E for 354.32' to a point along the N/F Joshua Beck property (PIN# 0750-49-2134);

thence N 77°31'26" W for 861.72' to a point along the N/F Joshua Beck property (PIN# 0750-49-2134) said point intersects with N/F Melissa Hinton property (PIN# 0750-39-5262); thence N 77°28'29" W for 149.98' to a point along the N/F Melissa Hinton property (PIN# 0750-39-5262) said point intersects with N/F Mary Elizabeth Horton property (PIN# 0750-39-0993); thence N 77°33'04" W for 275.75' to a point along the N/F Eugene Horton Heirs property (PIN# 0750-39-3222) said point intersects with N/F Merion Investment Properties LLC property (PIN# 0750-29-9342);

thence S 23°52'03" W for 340.31' to a point along the N/F Eugene Horton Heirs property (PIN# 0750-39-3222) said point intersects with N/F Matt Horton property (PIN# 0750-29-9045); thence N 66°07'57" W for 585.43' to a point along the N/F Matt Horton property (PIN# 0750-29-9045) said point intersects with N/F MFW Investments LLC property (PIN# 0750-29-2070); thence S 07°36'44" W for 246.69' to a point along the N/F Matt Horton property (PIN# 0750-29-9045) said point intersects with N/F Alton Richardson property (PIN# 0750-28-8880); thence S 07°36'44" W for 274.24' to a point along the N/F Alton Richardson property (PIN# 0750-28-8880) said point intersects with N/F Donald Richardson property (PIN# 0750-28-8532); thence S 07°36'44" W for 313.79' to a point along the N/F Donald Richardson property (PIN# 0750-28-6271); thence S 07°36'44" W for 9.43' to a point along the N/F Donald Richardson property (PIN# 0750-28-6271); thence S 07°00'15" W for 588.50' to a point along the N/F Donald Richardson property (PIN# 0750-27-4707); thence S 07°00'15" W for 588.50' to a point along the N/F Donald Richardson property (PIN# 0750-27-4707); thence S 07°00'15" W for 588.50' to a point along the N/F Donald Richardson property (PIN# 0750-27-4707);

thence S 85°42'32" E for 165.00' to a point on the southeast corner of the N/F Donald Richardson property (PIN# 0750-28-6271) said point intersects with N/F Merion Investments LLC property (PIN# 0750-27-8677);

thence S 85°42'32" E for 40.00' to a point along the N/F Merion Investments LLC property (PIN# 0750-27-8677) said point in the southwest corner of the N/F Virginia Stewart property (PIN# 0750-27-8925);

thence N 04°17'28" E for 210.00' to a point which in the northwest corner of the N/F Virginia Horton Stewart parcel (PIN# 0750-27-8677);

thence S 85°42'32" E for 164.54' along the N/F Virginia Horton Stewart parcel (PIN# 0750-27-8677);

thence S 85°42'32" E for 45.46' to a point which is the northeast corner of the N/F Virginia Horton Stewart parcel (PIN# 0750-27-8677);

thence S 04°17'28" W for 210.00' to a point which in the southeast corner of the N/F Virginia Horton Stewart parcel (PIN# 0750-27-8677) and an existing iron pin in the southwest corner of the N/R Robert Heise property (PIN# 0750-37-1996);

4thence S 81°29'17" E for 436.45' to a point along the N/F Merion Investments LLC property (PIN# 0750-27-8677) said point intersects with N/F Robert Cathey property (PIN# 0750-37-3664); thence S 60°32'28" W for 824.16' to a point along the N/F Merion Investments LLC property (PIN# 0750-27-8677) said point intersects with N/F Robert Cathey property (PIN# 0750-37-3664), N/F Richard Stewart property (PIN# 0750-37-2555), N/F Dennis Dale property (PIN# 0750-37-1540), N/F Todd Young property (PIN# 0750-37-0454), N/F John Falchi property (PIN# 0750-27-9358) and George King property (PIN# 0750-27-8301), said point intersects with N/F Loomis Horton Heirs property (PIN# 0750-27-4707);

thence S 02°56'47" W for 73.32' to a point along the N/F Loomis Horton Heirs property (PIN# 0750-27-4707) said point intersects with N/F MFW Investments LLC property (PIN# 0750-26-4926);

thence N 77°50'29" W for 487.73' to a point along the N/F MFW Investments LLC property (PIN# 0750-26-4926) said point intersects with N/F Patricia Jones property (PIN# 0750-27-0906) and N/F Pemberley Property Owners' Association, Inc. property (PIN# 0750-17-6279);

thence N 77°50'39" W for 8.51' along the southern boundary of N/F Patricia Jones (PIN# 0750-27-0906);

thence N 77°50'39" W for 424.69' to the southwest corner of the N/F Patricia Jones property (PIN# 0750-27-0906) along the N/F Pemberley Property Owners' Association, Inc. property (PIN# 0750-17-6279);

thence N 06°15'00" E 997.21' to a point in the northwest corner of the N/F Patricia Jones property (PIN# 0750-27-0906);

thence S 83°40'10" E for 162.45' to a point along the N/F Patricia Jones property (PIN# 0750-27-0906) said point intersects with N/F MFW Investments LLC property (PIN# 0750-19-7053 and 0750-29-2070);

thence N 45°39'39" E for 56.43' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 01°01'01" E for 301.17' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 07°47'37" W for 187.77' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 24°12'03" W for 113.39' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 24°46'59" E for 71.19' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 26°33'54" W for 64.44' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 37°00'06" E for 121.55' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 07°08'18" E for 106.61' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 52°04'00" E for 50.09' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053);

thence N 26°44'55" E for 75.53' to a point along the N/F MFW Investments LLC property (PIN# 0750-19-7053), said point intersects with N/F Charles Womble property (PIN# 0750-29-0721);

thence S 83°33'51" E for 583.20' to a point along the N/F Charles Womble property (PIN# 0750-29-0721) said point intersects with the N/F Mary Elizabeth Horton property (PIN# 0750-39-0993) and the N/F Merion Investment Properties LLC property (PIN# 0750-29-9342);

thence N 08°41'45" E for 946.00' to a point along the N/F Charles Womble property (PIN# 0750-29-0721) said point intersects with N/F Fred Cash Jr. property (PIN# 0751-31-0079);

thence N 03°13'00" E for 1316.79' to a point along the N/F Charles Womble property (PIN# 0750-29-0721) said point intersects with N/F Trinity Apex North 100 LLC property (PIN# 0751-32-3228);

thence S 87°52'51" E for 659.44 to a point along the N/F Trinity Apex North 100 LLC property (PIN# 0751-32-3228), said point intersects with N/F MFW Investments LLC property (PIN# 0751-31-9308)

thence N 71°52'08" E for 205.23 to a point along N/F Trinity Apex North 100 LLC property (PIN# 0751-32-3228);

thence N 65°28'18" E for 379.18' to an existing iron pipe along the N/F Trinity Apex North 100, LLC (PIN# 0751-32-3228) property line, said point being the POINT OF BEGINNING.

Said property includes approximately 6,405,520 square feet or 146.899 acres.

List of Plats referenced to complete legal description.

- Recombination Survey Property of Trinity Apex North 100, LLC BM 2016 PG 1901
- Exempt Plat Property of Trinity Apex North 100, LLC Subdivision BM 2016 PG 1677
- Horton Heirs Properties BM 2015 PG 1973
- Map of Carcillar Horton "Estate Division" BM 1988 PG 754
- Division of E.L. Horton BM 1942 PG 114
- C.O. Heavner, Heirs and Joseph Ira Lee, Et Ux BM 2006 Pg 0172
- Exempt Division Survey Property of MFW Investments, LLC BM 2017 Pg 1067
- Exempt Recombination Plat Tract 2A and Tract 2B Horton Heirs Properties BM2017 Pg2004
- Estate Division Carcillar Horton BM1988 Pg754
- Patricia Jones property Deed DB 2900 Pg 698

			ZONING MAP & 2					
third parties.		under the N	Iorth Carolina Public	Records Ac	t and may t	pe published or	n the Town's webs	ite or disclosed to
Application		19CZ1	6		nittal Date	e: <u>7/</u>	1/19	
2045 LUIVI	Amendment:			Fee P	'ald:			
Project Inf	ormation							
Project Nar	me: Horton Par	k - TF-CZ	Z district					
Address(es): <u>5220 Jessi</u>	e Drive						
PIN(s):)751-31-0079 (nc	orth of the	southern creek)	and 0751	-31-9308	(west of the	Colonial pipeli	ne easement)
							Acreage:	19.06 acres
Current Zoi	ning: PUD-CZ			Proposed	I Zoning:	TF-CZ		
Current 204	45 LUM Designati	on:	Office Employm	ent/Indus	trial Emp	loyment		
Proposed 2	045 LUM Designa	ation:	Office Employm	ent/Indus	trial Emp	loyment		
	next page for LUI							
If any port	ion of the project	is shown	as mixed use (3 o	r more str	ipes on th	ne 2045 Land		ide the following:
Are	a classified as mix	ked use:				Acreage:	N/A	
Are	a proposed as no	n-residen	tial development:			Acreage:	N/A	
Perc	cent of mixed use	area prop	oosed as non-resid	lential:		Percent:	N/A	
Applicant I	nformation							
Name:	Mike Whitehea	d - MFW	Investments, LLC)				
Address:	114 Birklands	Drive						
City:	Cary			State:	NC		Zip:	27518
Phone:	(919) 801-3905	5		E-mail:	mwhite	head@macg	regordev.com	
Owner Info	ormation							
Name:	same							
Address:								
City:				State:			Zip:	
Phone:				E-mail:				
Agent Info	rmation							
		ing & Des	sign, PLLC - Jeff I	Roach				
Name:	1125 Apex Pea	_						
Address:		anway		.	NC			27502
City:	Apex (010) 430 0100	<u> </u>		State:		Dookonging	Zip:	21302
Phone:	(919) 439-0100		or (foriononuch	E-mail:			ening.com	
Other conta	acts: rieu Sp	mmenwei	per (fsprinnenweb	bel e pear	kengmeer	ing.com)		

PETITION TO AMEND THE OFFICIAL ZONING MAP & 2045 LAND USE MAP

Application #:

Submittal Date:

2045 LAND USE MAP AMENDMENT (IF APPLICABLE)

The applicant does hereby respectfully request the Town Council amend the 2045 Land Use Map. In support of this request, the following facts are shown:

The area sought to be amended on the 2045 Land Use Map is located at:

N/A

Current 2045 Land Use Classification:

Office Employment/Industrial Employment

Proposed 2045 Land Use Classification:

What condition(s) justifies the passage of the amendment to the 2045 Land Use Map? Discuss the existing use classifications of the subject area in addition to the adjacent land use classifications. Use additional pages as needed.

NO CHANGES TO THE LAND USE DESIGNATION IS PROPOSED

Application #:

Submittal Date:

An application has been duly filed requesting that the property described in this application be rezoned from <u>PUD-CZ</u> to <u>TF-CZ</u>. It is understood and acknowledged that if the property is rezoned as requested, the property described in this request will be perpetually bound to the use(s) authorized and subject to such conditions as imposed, unless subsequently changed or amended as provided for in the Unified Development Ordinance. It is further understood and acknowledged that final plans for any specific development to be made pursuant to any such Conditional Zoning shall be submitted for site or subdivision plan approval. Use additional pages as needed.

PROPOSED USES:

The Rezoned Lands may be used for, and only for, the uses listed immediately below. The permitted uses are subject to the limitations and regulations stated in the UDO and any additional limitations or regulations stated below. For convenience, some relevant sections of the UDO may be referenced; such references do not imply that other sections of the UDO do not apply.

1	Church or place of worship	21	Artisan studio
2	Day care facility	22	Convenience store
3	Drop-in or short-term day care	23	Convenience store with gas sales
4	Government service	24	Grocery, general
5	Veterinary clinic or hospital	25	Grocery, specialty
6	Vocational school	26	Health/fitness center or spa
7	Utility, minor	27	Personal service
8	Botanical garden	28	Pharmacy
9	Entertainment, indoor	29	Printing and copying service
10		30	Real estate sales
11	Greenway	31	Repair services, limited
12	Park, active	32	Studio for art
13	Park, passive	33	Tailor shop
14	Restaurant, general	34	Upholstery shop
15	Dispatching office	35	Pet services
16	Medical or dental office or clinic	36	Laboratory, industrial research
17	Medical of dental laboratory	37	Microbrewery
18	Office, business or professional	- 38	Microdistillery
19	Publishing office	39	
20	Research facility	40	

Application #:

Submittal Date:

PROPOSED CONDITIONS:

The applicant hereby requests that the Town Council of the Town of Apex, pursuant to the Unified Development Ordinance, approve the Conditional Zoning for the above listed use(s) subject to the following condition(s). Use additional pages as needed.

See attached list of conditions associated with the TF-CZ district.

LEGISLATIVE CONSIDERATIONS - CONDITIONAL ZONING

The applicant shall propose site-specific standards and conditions that take into account the following considerations, which are considerations that are relevant to the legislative determination of whether or not the proposed conditional zoning district rezoning request is in the public interest. These considerations do not exclude the legislative consideration of any other factor that is relevant to the public interest. Use additional pages as needed.

1) *Consistency with 2045 Land Use Map.* The proposed Conditional Zoning (CZ) District use's appropriateness for its proposed location and consistency with the purposes, goals, objectives, and policies of the 2045 Land Use Map.

The proposed non-residential zoning and building will not require a modification to the 2045 LUM and is in keeping

with the adopted plans from the Town of Apex. The original Horton Park zoning designated the area as non-

residential / Tech-Flex with the same uses list in this application.

2) *Compatibility*. The proposed Conditional Zoning (CZ) District use's appropriateness for its proposed location and compatibility with the character of surrounding land uses.

The proposed zoning and uses will have buffers and building standards which will be compatible with the surrounding

uses and fit within the Town's long-range plans for the property.

Application #:

Submittal Date:

3) Zoning district supplemental standards. The proposed Conditional Zoning (CZ) District use's compliance with Sec 4.4, Supplemental Standards, if applicable.

The proposed uses will meet the required Supplemental Standards per UDO section 4.4 as applicable.

4) Design minimizes adverse impact. The design of the proposed Conditional Zoning (CZ) District use's minimization of adverse effects, including visual impact of the proposed use on adjacent lands; and avoidance of significant adverse impacts on surrounding lands regarding trash, traffic, service delivery, parking and loading, odors, noise, glare, and vibration and not create a nuisance.

The design provides for perimeter buffers, architectural controls, access, and utility connections to avoid adverse

impacts on the surrounding residential and non-residential properties.

5) *Design minimizes environmental impact.* The proposed Conditional Zoning District use's minimization of environmental impacts and protection from significant deterioration of water and air resources, wildlife habitat, scenic resources, and other natural resources.

The is proposed to meeting UDO standards for design controls, including minimization and avoidance of

environmentally sensitive areas, limited site impacts, and reduction in removal of perimeter vegetation.

6) Impact on public facilities. The proposed Conditional Zoning (CZ) District use's avoidance of having adverse impacts on public facilities and services, including roads, potable water and wastewater facilities, parks, schools, police, fire and EMS facilities.

The site is located in close proximity or will be extending public facilities to the property in conjunction with the Horton

Park project. This includes water, sewer, stormwater, streets, gas, electric, telephone, and cable services. The site

is located south of Jessie Drive (Major Thoroughfare) and will have excellent access for emergency vehicles and

personnel.

7) *Health, safety, and welfare.* The proposed Conditional Zoning (CZ) District use's effect on the health, safety, or welfare of the residents of the Town or its ETJ.

The proposed uses on the property will not be detrimental to the health, safety, and welfare of Apex and Wake County

residents. The uses will provide services to the surrounding property owners.

PETITION INFORMATION

Application #:

Submittal Date:

8) *Detrimental to adjacent properties.* Whether the proposed Conditional Zoning (CZ) District use is substantially detrimental to adjacent properties.

The uses are in keeping with the Town of Apex's standards for non-residential/Tech-Flex zoning sounded by Light

Industrial, Horton Park's residential parcels, and the major street network.

9) Not constitute nuisance or hazard. Whether the proposed Conditional Zoning (CZ) District use constitutes a nuisance or hazard due to traffic impact or noise, or because of the number of persons who will be using the Conditional Zoning (CZ) District use.

The list of uses permitted on the property do not constitute a nuisance or hazard based upon anticipate traffic

numbers, noise, or number of persons expected to utilize the properties.

10) Other relevant standards of this Ordinance. Whether the proposed Conditional Zoning (CZ) District use complies with all standards imposed on it by all other applicable provisions of this Ordinance for use, layout, and general development characteristics.

The proposed zoning and future Minor Site Plan for each use will comply with the standards established by the UDO,

adopted plans, and details/specifications. The designs will meet standard development patterns and use requirements.

Horton Park Tech/Flex – Conditional Zoning (TF-CZ) District Architectural Standards for Non-Residential Structures

- 1. Maximum non-residential building height is 65'.
- 2. Building shall be architecturally compatible through the use of similar colors and building materials. Buildings shall be consistent in scale, massing, style, and relationship to adjacent streets.
- 3. Building placement shall be done to maximize parking in the rear or side of buildings. Drivethrus, pick-up windows, loading areas, trash facilities, and other accessory items for uses are encouraged to be oriented away from adjacent streets.
- 4. Buildings shall have vertical breaks across any facade which faces an adjacent street. Windows and other store front treatments shall be proportional to the building height and width. Horizontal and vertical setbacks shall be used to provide a visual break in the building mass. Various architectural features shall be incorporated, including roofline changes, parapet heights, columns, piers, and material patterns to create various façade breaks.
- 5. Exterior materials for non-residential structures shall be a combination of materials. The primary façade (front) or any façade facing a street shall include:
 - Brick
 - Wood
 - Stacked stone or other native stone
 - Decorative block (integrally colored or textured) masonry units
 - EIFS cornices and parapet trim (EIFS or stucco shall not be used within 4 feet of ground and shall be limited to 25% of each building façade)
 - Precast concrete
- 6. The developer of the Horton Park PUD or the developer of the subject property shall construct and dedicate the portion of the Collector Street as shown on the Apex Transportation Plan on the subject property.

CERTIFIED LIST OF NEIGHBORING PROPERTY OWNERS

Application #:

Submittal Date:

Provide a certified list of property owners subject to this application and all property owners within 300' of the subject property and HOA Contacts.

	Owner's Name	PIN
1.	SEE ATTACHED LIST	
2.		
3.	LIST IS PART OF THE HORTON PARK NEIGHBORHOOD	
4.	MEETING LIST AND OTHER DOCUMENTS	
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
	CEEPISM A ROLANK	19-24 - C-10
rope	EFFREN A. COACH, certify that this is an accurate erty owners within 300' of the subject property.	listing of all property owners and
	6 28/2019 By:	VNL
Date:	By:By:	pro le
COUN	ITY OF WAKE STATE OF NORTH CAROLINA)
C	RANCI II MORD	
	n and subscribed before me, <u>DANIEL H. WOODS</u> , a N cy, on this the 38 day of JUNE , 20 19 .	otary Public for the above State and
		wheele
CF.	A PARTINISSION & ON A	otary Public
SEA	P NOTARY DANIEL	H VV80D S Print Name
THE PARTY	AUBLIC BOOM	. / 1/
	My Commission Exp	res: 11/18/23
	NOTARY AUBLIC X To onber 18.20 X To countrient X To countrient	

3

TRINITY APEX NORTH 100 LLC 106 ISLAND VIEW DR BEAUFORT NC 28516-9108 0750085838

PAGE TWO HOLDINGS LLC RODESSA LLC 940 SE CARY PKWY STE 102 CARY NC 27518-7417 0750095624

STEELE, GERTRUDE 1713A E WILLIAMS ST APEX NC 27539-7706 0750096187

PEMBERLEY PROPERTY OWNERS' ASSOCIATION, INC., CHARLESTON MGMT PO BOX 97243 RALEIGH NC 27624-7243 0750176279

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750184078

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750197426

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750264926

MUSE, EDWARD MUSE, ROBIN 3305 COLBY CHASE DR APEX NC 27539-3602 0750267955 KUNSMAN, STEVEN A KUNSMAN, SUSAN E 5408 MERION STATION DR APEX NC 27539-3603 0750269948

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750270906

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750274707

FELTON, TIMOTHY M FELTON, ALLISON C 3304 COLBY CHASE DR APEX NC 27539-3601 0750278301

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750278677

MFW INVESTMENTS, LLC 7837 SMITH RD APEX NC 27539-8170 0750278925

FALCHI, JOHN J FALCHI, JOYCE T 3232 COLBY CHASE DR APEX NC 27539-3620 0750279358

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750280998

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750286271 RICHARDSON, DONALD FELIX 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750288532

RICHARDSON, ALTON RICHARDSON, TERESA 1295 WINDHAM RD GREENVILLE NC 27834-7093 0750288880

HORTON, MATTHEW 4 ARBOR LN BORDENTOWN NJ 08505-4807 0750299045

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0750299342

YOUNG, TODD C YOUNG, GLORIA C 3228 COLBY CHASE DR APEX NC 27539-3620 0750370454

DALE, DENNIS DALE, ROBERTA 3224 COLBY CHASE DR APEX NC 27539-3620 0750371540

HEISE, ROBERT H HEISE, CARY VIVIAN 2408 MERION CREEK DR APEX NC 27539-6300 0750371996

STEWART, RICHARD J STEWART, MARY A 3220 COLBY CHASE DR APEX NC 27539-3620 0750372555

CATHEY, ROBERT E III CATHEY, KRISTA B 3212 COLBY CHASE DR APEX NC 27539-3620 0750373664 RHODES, AMANDA C RHODES, STEVEN A 3208 COLBY CHASE DR APEX NC 27539-3620 0750375700

PIETZ, BRYAN PIETZ, JORDAN 2400 MERION CREEK DR APEX NC 27539-6300 0750375774

KANODE, MARK E KANODE, LORI D 3204 COLBY CHASE DR APEX NC 27539-3620 0750376759

PIETZ, BRYAN S PIETZ, JORDAN 2400 MERION CREEK DR APEX NC 27539-6300 0750383293

COFFER, LANA HORTON 3113 CARRIAGE LIGHT CT RALEIGH NC 27604-6117 0750385765

MERION HOMEOWNERS ASSOCIATION INC OMEGA ASSOCIATION MANAGEMENT INC 160 NE MAYNARD RD STE 210 CARY NC 27513-9676 0750387004

HORTON, MARY ELIZABETH PO BOX 306 APEX NC 27502-0306 0750390993

HORTON, CHARLES LEON, SARAH 8804 STEPHENSON RD APEX NC 27539-8170 0750393222 HINTON, MELISSA D 5137 DEZOLA ST APEX NC 27539-9529 0750395262

MANSFIELD, MARISA MANSFIELD, MICHAEL 5133 DEZOLA ST APEX NC 27539-9529 0750398002

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750398682

RYDESKY, THOMAS E RYDESKY, LINDA U 5232 LEVERING MILL RD APEX NC 27539-3610 0750480767

HORNADA, JEFFREY MICHAEL HORNADA, KARA LEIGH 5228 LEVERING MILL RD APEX NC 27539-3610 0750481855

SURA, PIYUSH SURA, SMITA P 5229 LEVERING MILL RD APEX NC 27539-3640 0750482535

POZDER, VLADIMIR POZDER, JULI W 5224 LEVERING MILL RD APEX NC 27539-3610 0750482864

SINGLETARY, MICHAEL SINGLETARY, LAETITIA 5217 LEVERING MILL RD APEX NC 27539-3640 0750483541 MOUSHEGIAN, KENNITH C MOUSHEGIAN, CINDY W 5220 LEVERING MILL RD APEX NC 27539-3610 0750483860

GREENE, WILLIAM BLAKE GREENE, LAUREN KIRBY 5213 LEVERING MILL RD APEX NC 27539-3640 0750484438

BACHOLZKY, RICHARD JR BACHOLZKY, KATHRYN 5216 LEVERING MILL RD APEX NC 27539-3610 0750484775

MEHTA, RUSHIKESH J TRUSTEE RUSHIKESH J MEHTA REVOCABLE TRUST 5209 LEVERING MILL RD APEX NC 27539-3640 0750485424

BURNET, MARTHA SNYDER TRUSTEE BURNET, GILBERT NEFF TRUSTEE 5208 LEVERING MILL RD APEX NC 27539-3610 0750485688

RUSNAK, DAVID W RUSNAK, PAMELA P 5205 LEVERING MILL RD APEX NC 27539-3640 0750486339

MADRID, RICHARD J MADRID, RENE MONIQUE 5204 LEVERING MILL RD APEX NC 27539-3610 0750487632

KEENE, CHRISTOPHER P KEENE, ANNA E 5200 LEVERING MILL RD APEX NC 27539-3610 0750488577 HORTON, WILLIAM JR HORTON, EDNA 8208 SMITH RD APEX NC 27539-8176 0750488737

HORTON, WILLIAM JR 8208 SMITH RD APEX NC 27539-8176 0750489723

HORTON, WILLIAM JR BURRIS, JULIA HORTON 8208 SMITH RD APEX NC 27539-8176 0750489886

BECK, JOSHUA KEVIN BECK, KATHERINE CLEMMONS 5129 DEZOLA ST APEX NC 27539-9529 0750492134

HORTON, KIMBERLY A HORTON, LOOMIS III 4801 SW 202ND AVE SOUTHWEST RANCHES FL 33332-1033 0750495371

WRIGHT, DWIGHT MARVIN 407 S SALEM ST APEX NC 27502-2037 0750498888

HORTON, WILLIAM JR HORTON, EDNA 8208 SMITH RD APEX NC 27539-8176 0750499041

HORTON, WILLIAM SR HEIRS HORTON, LOOMIS JR HEIRS, WILLIAM HORTON JR 8208 SMITH RD APEX NC 27539-8176 0750499710 HORTON, WILLIAM HORTON, EDNA W 8208 SMITH RD APEX NC 27539-8176 0750582794

HORTON, WILLIAM JR HORTON, EDNA WILLIS 8205 SMITH RD APEX NC 27539-8177 0750583990

HORTON, WILLIAM HORTON, EDNA W 8208 SMITH RD APEX NC 27539-8176 0750591257

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750592361

RICHARDSON, DONALD F 1630 VAN BUREN ST NW WASHINGTON DC 20012-2838 0750592399

DOWNING, OSWALD DOWNING, DEBORAH H 8129 SMITH RD APEX NC 27539-8175 0750594097

GANDHI, ANIL R GANDHI, NEHA A 105 BONNIEWOOD DR CARY NC 27518-8961 0750596206

JACK 1, LLC 738 CASH ST APEX NC 27502-1302 0751137742

WOMBLE, CHARLES H ET AL WOMBLE, GLEN 802 BELLAMY RD NORTH MYRTLE BEACH SC 29582-2828 0751201670 MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751216689

PRISTINE PARTNERS LLC 2821 JONES FRANKLIN RD RALEIGH NC 27606-4007 0751222279

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751310079

MFW INVESTMENTS, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751319308

TRINITY APEX NORTH 100 LLC 106 ISLAND VIEW DR BEAUFORT NC 28516-9108 0751323228

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751328256

MFWIRA, LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751400194

KK LAND INC 2203 GOOD SHEPHERD WAY APEX NC 27523-6947 0751400697

GRIFFIN, SIRRHAN GRIFFIN, JOSEPH A 1038 IRONGATE DR APEX NC 27502-6505 0751407981 MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751414924

HUNTER, MELVIN O HUNTER, NICOLE 5037 JESSIE DR APEX NC 27539-8859 0751415915

MFW INVESTMENTS LLC 114 BIRKLANDS DR CARY NC 27518-8203 0751421387

HINTON, BLANCHE W 4929 JESSIE DR APEX NC 27539-9302 0751424433

TOOMER, JOE ELLIS TOOMER, FANNIE O PO BOX 676 APEX NC 27502-0676 0751426099

INDUS REAL ASSOC LLC 4713 BROOK TOP CT RALEIGH NC 27606-3100 0751426828

KK LAND INC 2203 GOOD SHEPHERD WAY APEX NC 27523-6947 0751510857

CAREY C JONES MEMORIAL PARK INC PO BOX 781 APEX NC 27502-0781 0751532815

AGENT AUTHORIZ			- Car
Application #:		Submittal Date:	
MFW Investments, L	LC (Mike Whitehead - Manager)	is the owner of the property for which the	ne attached
application is being	submitted:		
□ Land Use	Amendment		
🕱 Rezoning			
Site Plan			
□ Subdivisio	n		
Variance			
□ Other:			
The property addres	s is: 5220 Jessie Drive, Apex	, NC (Wake PIN 0751-31-0079) (a portior	of the prope
The agent for this p	Beels Freedomenta & D	ign, PLLC (Jeff Roach)	
	e owner of the property and will be	acting as my own agent	
	Jeff Roach, P.E. (for Peak Eng		
Agent Name:	<u></u>		
Address:	1125 Apex Peakway, Apex, No	5.27502	
Telephone Number:	(919) 439-0100		
E-Mail Address:	jroach@peakengineering.com		
	Signature(s) of Owner(s) Michzel F.	Whitebezz	
		Type or print name	Date
		Type or print name	Date
		Type or print name	Date

Attach additional sheets if there are additional owners.

*Owner of record as shown on the latest equalized assessment rolls of Wake County. (An option to purchase does not constitute ownership). If ownership has been recently transferred, a copy of the deed must accompany this authorization.

Application #:	Submittal Date:
Horton Park MF LLC	is the owner of the property for which the attached
application is being su	ibmitted:
Land Use A	nendment
M Rezoning	
🖾 🛛 Site Plan	
Subdivision	
Variance	
Other: The property address	(portion of the property w is: 5101 Jessie Drive, Apex, NC PIN 0751-31-9308 the Colonial Pipeline easer
The agent for this proj	
-	owner of the property and will be acting as my own agent
Agent Name:	Jeff Roach
Address:	1125 Apex Peakway, Apex, NC 27502
Telephone Number:	(919) 439-0100
E-Mail Address:	jroach@peakengineering.com
	Signature(s) of Owner(s) 2 homes & Drake Thomas & Drake Member / Maragen Type or print name Horbo Park MH LLC
	Type or print name Date

*Owner of record as shown on the latest equalized assessment rolls of Wake County. (An option to purchase does not constitute ownership). If ownership has been recently transferred, a copy of the deed must accompany this authorization.

÷.

. .

Instruction Packet and Affidavit for Neighborhood Meetings

Town of Apex Planning Department PO Box 250 Apex, NC 27502

T: 919-249-3426 F: 919-249-3338 This packet consists of instructions and templates for conducting a required Neighborhood Meeting. Planning Department staff are available to advise you in the preparation of these materials. Call the Planning Department at (919) 249-3426 for more information.

WHAT IS THE PURPOSE OF A NEIGHBORHOOD MEETING?

A neighborhood meeting is a required form of community outreach to receive initial feedback regarding certain project types prior to submittal to the Planning Department per the standards found in UDO Sec. 2.2.7. The intention of the meeting is to initiate neighbor communication and identify issues and concerns early on and provide the applicant an opportunity to address neighbor concerns about the potential impacts of the project prior to submitting an application. A neighborhood meeting is valid for six (6) months prior to the submission of an application; a delay in submission requires a new neighborhood meeting.

WHEN IS A NEIGHBORHOOD MEETING REQUIRED?

- Rezonings (including Planned Unit Developments);
- Major Site Plans;
- Master Subdivision Plan (excluding minor or exempt subdivisions); or
- Special Use Permits

INSTRUCTIONS

Prior to submitting a Rezoning, Major Site Plan, Master Subdivision Plan (excluding minor or exempt subdivisions), or Special Use Permits, the applicant must conduct at least one (1) Neighborhood Meeting. The applicant shall submit all forms included in this packet with their initial submittal.

The Neighborhood Meeting must be held in accordance with the following rules:

These groups and individuals must be invited to the meeting:

- The applicant is required to notify the Planning Department, all property owners within 300 feet of the subject property and any neighborhood association that represents citizens in the area via first class mail a minimum of 10 days in advance of the neighborhood meeting, not including the day of mailing. The applicant shall use <u>their own</u> return address on the envelopes as the meeting is a private meeting between the applicant and the neighbors.
- The applicant shall include with the meeting notice a vicinity map in addition to either the existing zoning map of the area or preliminary plans of the proposed development (see Handout requirements below).

The meeting must be held within specific timeframes and meet certain requirements:

- The meeting must be held for a minimum of two (2) hours, Monday through Thursday, during the 5:00 p.m. 9:00 p.m. time period. The meeting cannot be held on a Town recognized holiday (which coincide with the State of North Carolina recognized holidays).
- The meeting shall be held at a place that is generally accessible to neighbors that reside in close proximity to the land subject to the application.
- A sign-in sheet must be used in order to verify attendance. Ensure each attendee signs in. Please note if any person(s) refuses to sign in. Note if no one attended.
- Handout requirements:
 - For rezonings (excluding rezonings to PUD-CZ, TND-CZ and MEC-CZ), a vicinity map and existing zoning map of the area must be provided to help facilitate discussion.
 - For rezonings to PUD-CZ, TND-CZ and MEC-CZ; Major Site Plans; Master Subdivision Plans; and Special Use Permits, preliminary plans of the proposed development must be available at the meeting to help facilitate discussion. Neighbors may request emailed/mailed copies of the maps or plans from the applicant by checking the "send plans" box on the sign-in sheet, and the applicant shall provide reduced copies upon such request.
 - Printed copies must equal the number of notices required to be sent.
 - Contact information for the applicant's representative must be provided on the handout.
 - A copy of the handout must be included as part of the Neighborhood Meeting report.
- The agenda of the meeting shall include:
 - Explanation of all processes the meeting is being held for (rezoning, subdivision, etc.).
 - Explanation of future meetings (additional neighborhood meetings, Planning Board, Town Council, etc.).
 - Explanation of development proposal uses and conditions for rezonings, layout for subdivision and site plans, and builder/end user if known/public knowledge.
- Questions or concerns by attendees, and responses by the applicant, if any, must be noted. Provide blank comment sheets or notecards for neighbors to submit written comments. The applicant shall also include any questions and concerns received via written correspondence (such as email) or phone call along with responses provided by the applicant.
- The applicant shall be responsible for notifying any neighbors who check the "Send Plans & Updates" box on the sign-in sheet of any additional neighborhood meetings and the actual submittal date to the Town with a link to the Town of Apex's Interactive Development Map.

For accountability purposes, please submit the following with your application:

- A copy of the letter mailed to neighbors and neighborhood organizations (use attached invitation template);
- A list of those persons and neighborhood organizations invited to the meeting;
- A copy of the sign-in sheet (use attached sign-in sheet template);
- A summary of the meeting and a list of any changes made to the project as a result of the neighborhood comments (use attached meeting summary template);
- The affidavit, signed, dated, and notarized (use attached affidavit template); and
- One reduced copy of the maps and/or plans presented to the neighbors at the Neighborhood Meeting.

June 12, 2019

Adjacent Property Owners and Interested Parties,

RE: Horton Park Rezoning

During the design and review of Horton Park, the timing of NCDOT and Town of Apex projects are beginning to align with the Horton Park timing. For this reason, Horton Park will be submitting a rezoning on July 1st, 2019 to adjust the timing of off-site roadway improvements with three (3) major transportation improvements in mind.

- 1. Ten Ten Road improvements
- 2. Highway 55 design and future improvements
- 3. Jessie Drive design and future improvements/extension

The project will continue to have a mix of residential options (single family, townhomes, and apartments) and non-residential property along the future Jessie Drive corridor. This letter is to inform you that a neighborhood meeting has been scheduled to introduce the rezoning request, the overall Master Subdivision Plan and to answer any questions which you may have. You are welcome to attend the meeting, email me any questions, or call our office to discuss the project.

Meeting Information:

- Date of Neighborhood Meeting:
- Meeting location:
- Time of Meeting:

June 27, 2019 237 N. Salem Street, Apex, NC 27502 (Halle Cultural Arts Center) 5:30 PM

If you have any questions concerning the rezoning request, do not hesitate to call or email me at (jroach@peakengineering.com).

Sincerely,

L. P.

Jeffret A Roach P.E. Peak Engineering & Design, PLLC

NOTICE OF NEIGHBORHOOD MEETING

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

June	12.	2019	
00110	•	2010	

Date

Dear Neighbor:

You are invited to a neighborhood meeting to review and discuss the development proposal at See Attached Sheet See Attached Sheet

Address(es)

PIN(s)

The TF-CZ neighborhood meeting was noticed with the overall Horton Park rezoning meeting below.

in accordance with the Town of Apex Neighborhood Meeting procedures. The Neighborhood Meeting is intended as a way for the applicant to discuss the project and review the proposed plans with adjacent neighbors and neighborhood organizations before the submittal of an application to the Town. This provides neighbors an opportunity to raise questions and discuss any concerns about the impacts of the project before it is officially submitted. Once an application has been submitted to the Town, it may be tracked using the <u>Interactive</u> <u>Development Map</u> or the <u>Apex Development Report</u> located on the Town of Apex website at <u>www.apexnc.org</u>.

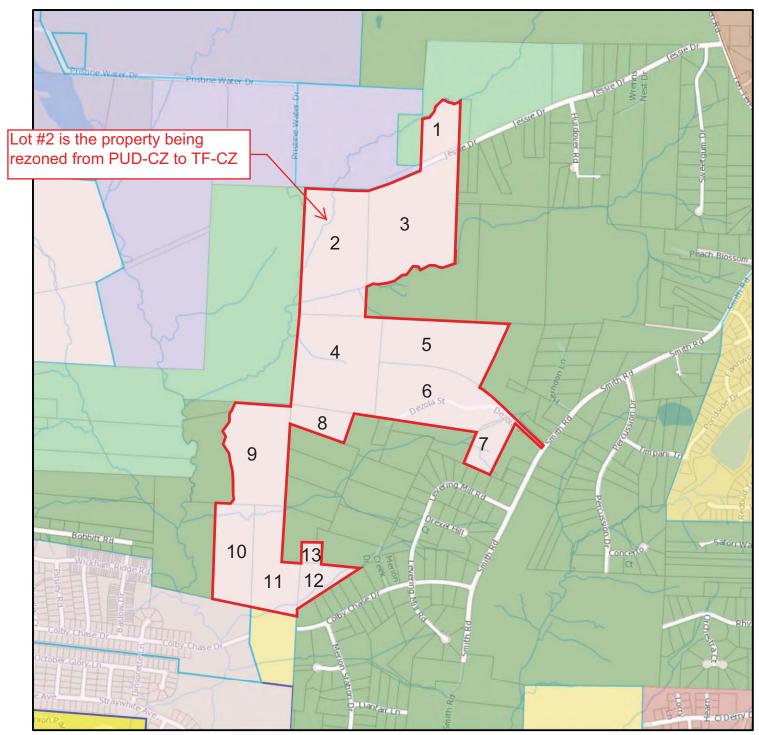
A Neighborhood Meeting is required because this project includes (check all that apply):

- Rezoning (including Planned Unit Development);
- □ Major Site Plan;
- Master Subdivision Plan (excludes minor or exempt subdivision); or
- □ Special Use Permit

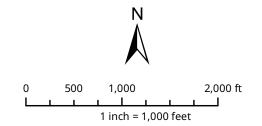
The following is a description of the proposal (also see attached map(s) and/or plan sheet(s)):

To discuss with the adjacent property owners and other interested parties the rezoning request to adjust the phasing

of the project, timing of roadway improvements, the rezoning process, and the overall Master Subdivision Plan.


Estimated submittal date:	July 1, 20)19	_
MEETING INFORMATION:			
Property Owner(s) name(s):		See Attached	
Applicant(s):		Peak Engineering & Design (Je	eff Roach); MFW Investments, LLC
Contact information (email/ph	ione):	(919) 439-0100, jroach@peake	engineering.com
Meeting Address:		237 N. Salem Street, Apex, NO	27502 (Halle Cultural Arts Center)
Date of meeting*:		June 27, 2019	
Time of meeting*:		5:30 -	
MEETING AGENDA TIMES:			
WEETING AGENDA TIMES:			
Welcome:		5:30 - 5:40	
Project Presentation:		5:40 - 6:00	
Question & Answer:		6:00 -	

*Meetings shall occur between 5:00 p.m. - 9:00 p.m. on a Monday through Thursday (excluding Town recognized holidays). If you have questions about the general process for this application, please contact the Planning Department at 919-249-3426. You may also find information about the Apex Planning Department and on-going planning efforts at http://www.apexnc.org/180/Planning.


Rezoning Application Parcel List Horton Park Assembly Apex, NC

A portion of these properties is being rezoned from PUD-CZ to TF-CZ

Parcel	<u>Owner</u>	<u>PIN</u>
1	MFW Investments LLC	0751-42-1387
2	MFW Investments LLC	0751-31-0079
3	Horton Park MF, LLC	0751-31-9308
4	Mary Elizabeth Horton	0750-39-0993
5	MFWIRA, LLC	0751-40-0194
6	Kimberly Horton; Loomis Horton III	0750-39-8682
7	Kimberly Horton; Loomis Horton III	0750-49-5371
8	MFW Investments LLC	0750-29-9342
9	MFW Investments LLC	0750-28-0998
10	MFW Investments LLC	0750-27-0906
11	Kimberly Horton; Loomis Horton III	0750-27-4707
12	MFW Investments LLC	0750-27-8677
13	MFW Investments LLC	0750-27-8925

Horton Park Rezoning

<u>Disclaimer</u>

iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied ,are provided for the data therein, its use,or its interpretation.

COMMON CONSTRUCTION ISSUES & WHO TO CALL

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

or disclosed to third parties.		
Noise & Hours of Construction:	Non-Emergency Police	919-362-8661
	avating, paving, and building structures is a rout	
	struction hours to 7 a.m. – 8:30 p.m. so that the	
-	uction outside of these hours is allowed with sp	-
	e construction occur at night, often to avoid traf	
limits hours of blasting rock to Monday	y through Friday from 8:00 a.m. to 5:00 p.m. Re	port violations of construction
hours and other noise complaints to th	ne Non-Emergency Police phone number at 919	-362-8661.
Construction Traffic:	Stan Fortier	919-249-1166
	r throughout the development process, including	
trees from site, loads of dirt coming in	and/or out of the site, construction materials su	uch as brick and wood brought to
-	ome in to pave, etc. The Town requires a constru	_
	ng the site as possible. If dirt does get into the ro	oad, the Town can require they
clean the street (see "Dirt in the Road"		
Road Damage & Traffic Control:	Water Resources – Infrastructure Ins	
	hage, roadway improvements, and traffic contro	
	trol, blocked sidewalks/paths are all common is	-
	ections at 919-249-3427. The Town will get NCD	
Parking Violations:	Non-Emergency Police	919-362-8661
	ere should be no construction parking in neighb	-
	nt-of-way is allowed, but Town regulations proh	
	ngles. Trespassing and parking complaints should	d be reported to the Non-
Emergency Police phone number at 91		
Dirt in the Road:	Stan Fortier	919-249-1166
–	existing roads due to rain events and/or vehicle	
	inate the cleaning of the roadways with the dev	
Dirt on Properties or in Streams:	Stan Fortier	919-249-1166
	Danny Smith	Danny.Smith@ncdenr.gov
	get onto adjacent properties or into streams and	
	ese incidents should be reported to Stan Fortier	
	the developer. Impacts to the streams and st	ream bullers should also be
reported to Danny Smith (<u>danny.smith</u> Dust:	Stan Fortier	919-249-1166
	es a problem blowing into existing neighborhood	
	19-249-1166 so that he can coordinate the use	-
grading contractor to help control the		of water trucks offsite with the
Trash:	Stan Fortier	919-249-1166
	bris can blow around on a site or even off of the	
	.66. He will coordinate the cleanup and trash co	
builder.		
Temporary Sediment Basins:	Stan Fortier	919-249-1166
	nstruction (prior to the conversion to the final st	
	rted to Stan Fortier at 919-249-1166 so that he	
and/or mowing of the slopes and botto		
Stormwater Control Measures:	Mike Deaton	919-249-3413
	Stormwater Control Measures (typically a storm	
	reported to Mike Deaton at 919-249-3413.	
Electric Utility Installation:	Rodney Smith	919-249-3342
	-	
	on can be addressed by the Δnex Flectric Htilitie	s Department Contact Rodney
Smith at 919-249-3342.	on can be addressed by the Apex Electric Utilitie	s Department. Contact Rodney

NEIGHBORHOOD MEETING SIGN-IN SHEET

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties,

Meeting Address: Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room) Time of meeting: 5:30 See Attached Sheet Applicant(s): MFW Investments, LLC Date of meeting: June 27, 2019 Property Owner(s) name(s):

Please print your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL	SEND PLANS & UPDATES
1. Falchi	3232 CUIDY Che	relap gigs		Land Lup
2. Jam Carter	Dely Sweetawn dr 919749 130	919749 131		- 7
3. ERMA BURR	2625 -Sweedown DR	919-335-6286		
4. Donna Provance	3034 11 11	919/335-89		2
5. Brien Johnson	3305 Cheswold Ct ((415)602-0542		
6. Wess CU. TITARS	111 AnnianDitce	919-810-249		
7. Wike MANSfeld	5133 Dezelast	912-222-919)
8. Judy Ward	2528 Swatcum	91-5-5-51-18		
9 Karen Peters	5300 Levening Kill Rd			1
10. Marcaret Briffin	2609 Supetsum Dr.			
Hn.	UNDER 5737 JESTEDA	412-274634		
12. Steven Rhades	3208 Co/65 (5/2 22			1
Alter Richa	1395 Windhard Greenvil	NC 3044		7
L4.				_
Use additional sheets, if necessary.				

NEIGHBORHOOD MEETING SIGN-IN SHEET

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Meeting Address:	Meeting Address: Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room)	n Street, Apex, NC 27502	(Gallery Room)
Date of meeting: Jun	le 27, 2019	Time of meeting: 5:30	
Property Owner(s) nar	name(s): See Attached Sheet		
Applicant(s): MI	Applicant(s): MFW Investments, LLC		

Please print your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	NAME/ORGANIZATION	ADDRESS	PHONE #	EMAIL SEND	SEND PLANS & UPDATES
i-	Buddel Bullock	25.21 Sweetzweller (919) 602-83	(did) 60.2 -83)
2.		106 Isuans Viewor	252-723.06		1
m	-	315.15 11 11 11 11 11 11 11 11 11 11 11 11 1	616 31.373		
4.	Russ 2 Lau	5508 Nerion Station Dr. 919303 851	919303 851		\backslash
ы.					
9.					
7.					
∞i					
6					
10.					
11.					
12.					
13.					
14.					
Use	Use additional sheets, if necessary.]-

SUMMARY OF DISCUSSION FROM THE NEIGHBORHOOD MEETING

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Property Owner(s) name(s):	See Attached Sheet
Applicant(s):	MFW Investments, LLC
Contact information (email/phone):	Jeff Roach, jroach@peakengineering.com
Meeting Address:	Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room)
Date of meeting: 6-27-2019	Time of meeting: 5:30 -

Please summarize the questions/comments and your response from the Neighborhood Meeting in the spaces below (attach additional sheets, if necessary). Please state if/how the project has been modified in response to any concerns. The response should not be "Noted" or "No Response". There has to be documentation of what consideration the neighbor's concern was given and justification for why no change was deemed warranted.

Question/Concern #1: SEE ATTACHED LIST OF QUESTIONS AND RESPONSES

Applicant's Response:

Question/Concern #2:

Applicant's Response:

Question/Concern #3:

Applicant's Response:

Question/Concern #4:

Applicant's Response:

The Horton Park rezoning and Master Subdivision neighborhood meeting started at 5:30 pm with a brief introduction of the project, the location, and general housekeeping items including the sign-in sheets and handouts. This was followed up by a discussion related to what zoning and Master Subdivision Plans are, the timing of the project, and what our role is for the project. This led into the presentation of the proposed Zoning (10 minutes) followed by discussions related to the Master Subdivision Plan (10 minutes).

The floor was then opened to a discussion with questions and answers from the group. Following are the questions and a summary of responses (some of the questions and responses were long-winded, were condensed for clarity/space, or combined with other questions to provide clarity to staff):

- 1. Why is the project back again? Please clarify the changes again.
- A. Horton Park is being rezoned for three (3) reasons: (1) modify the conditions and timing associated with off-site roadway improvements; (2) incorporate timing of Phase I and Phase II development with Jessie Drive construction and alignment of the north-south collector street; and (3) removing the "Cash" property from the PUD and zoning it TF-CZ.

The Town of Apex is proposing to design and build Jessie Drive – and the zoning of Horton Park requires the adjustment of a number of zoning conditions to allow the project to start without having Jessie Drive either in place or under construction. The Town's investment in Jessie Drive as a Major Thoroughfare is something that has been in discussions for a couple years – and Apex sees the benefit of the connection for neighbors, commuters, and life safety personnel.

- 2. The Sweetgum neighbors were invited to the meeting is the zoning changing to incorporate more property near Sweetgum Drive?
- A. No, there is no additional property being added. The property owners on Sweetgum were notified based upon their interest in the original zonings over the past 2-1/2 years.
- 3. Are there any changes to the design of Jessie Drive @ Ten Ten which would impact the Sweetgum property owners?
- A. The Town is beginning the design of Jessie Drive @ Ten Ten in the next fiscal year. We are not aware of the final design at this time. Directed the property owners the Town's website and the Interactive Development Map for upcoming projects but not sure if Jessie Drive extension would be included until design-permitting was started.
- 4. Is a traffic signal proposed at Jessie Drive at Ten Ten Road?
- A. Horton Park Phase I is not proposing to construct Jessie Drive or have any traffic directed to Jessie Drive. The Horton Park study will not evaluate Jessie Drive for a traffic signal. The Town of Apex extension of Jessie Drive "should" evaluate the intersection for the installation of a new signal. That is part of the ongoing discussions with Apex Transportation Staff related to the Jessie Drive extension project.
- 5. What is the timing of Jessie Drive?
- A. Per staff discussions, the 2019-2020 budget allocated \$1MM for design and studies of the Jessie Drive corridor. 2021-2022 budget allocates \$10MM for the construction of Jessie Drive from Highway 55 to Ten Ten. This is still up for discussions with the Town of Apex but is the current status of the project.
- 6. How does the Jessie Drive timing align with the other projects in the area?
- A. Explained the current schedule for Ten Ten (start in 2023); Highway 55 (unknown at this time); and Jessie Drive (budget \$10mm for 2022 start). This will be reviewed annually to coordinate with NCDOT and other grants or alternate funding sources as soon as possible (per discussions with staff).

- 7. What is the plan for the barricade at Colby Crossing and the Merion Subdivision?
- A. Horton Park continues to have the zoning condition to install the barriers on the western edge of Merion on Colby Chase Drive until the Town of Apex determines the connection is needed. No change to this condition worked out with Merion HOA during the previous zoning requests.
- 8. Are there other conditions which are changing?
- A. We assured the neighbors that the rezoning is about timing of improvements not about modification of any of the conditions which were worked on for months through two previous rezonings.
- 9. What is the Middle Creek pump station? What is a pump station? And where is it located?
- A. The Middle Creek Regional Pump Station (aka Middle Creek north) is a pump station that is required to pump sewage from Horton Park and other upstream properties to the Town's Water Reclamation Facility on Pristine Water Drive. This pump station is approximately \$4MM in costs for the developer of Horton Park. The pump station is currently planned for the northeastern corner of the intersection of Middle Creek and Colby Chase Drive (same location that it has been in since the initial zoning and Master Subdivision Plan).
- 10. What do you mean by staff? Are you referring to Planning Department?
- A. Planning, Engineering, Transportation, Public Works, Fire, and Building Inspections. These are the staff groups which attend the pre-application meetings and we work with on every project.
- 11. What does minor collector mean?
- A. A minor collector is a street designation which specifies the street should expect more vehicles than neighborhood streets, have a slightly higher speed (possibly), and act as a funnel to the larger streets (larger streets being Major Collectors, Thoroughfares, and Interstates).
- 12. Is the Town of Apex proposing to take ownership of Jessie Drive after completion of the extension?
- A. That is unknown at this time. Current plan is for Jessie Drive to be constructed to Town of Apex standard but retained within the NCDOT maintenance system. That will be determined later.
- 13. In showing the 2045 Land Use Map, can you explain the different colors and what they mean?
- A. Went into the definition of medium density (light yellow), medium-high density (light orange), high density (dark orange), light blue (office employment), purple (industrial employment), and green (park). Then explained the difference between the existing ZONING MAP, 2045 LAND USE MAP, and the WAKE GIS.
- 14. What is the RCA? And where is it proposed?
- A. Resource Conservation Area (RCA) is the preservation of existing vegetation and environmentally sensitive areas including trees, wetlands, floodplains, steep slopes, and animal habitat. RCA is proposed to be around the property in various locations including those listed above (current MSP was used to identify current RCA locations).
- 15. How many lots are proposed with the project?
- A. The number of lots from the original zoning has not changed. In general, approximately 350 single family or townhomes plus the apartment area and Tech-Flex area along Jessie Drive.
- 16. What is Tech-Flex? And what are the uses permitted?
- A. Tech-Flex is an office or business zoning with a number of uses. The uses have been limited for this project to included (as an example) day care, vet, entertainment area (indoor or outdoor), restaurants, offices, convenience store, grocery store, repair services, and others. All the uses will be identified in the zoning application on Interactive Development Map once submitted to the Town.

17. What is the development timing?

- A. <u>Phase I</u> is the residential portion south of the existing landfill and "N/F Cash Property" which has access to Smith Road and Colby Chase Drive the property was identified on the maps at the meeting. This section is hoped to be approved in early 2020; construction start in Spring of 2020; full construction build-out of homes in 2024-2025. This timing is based upon the success of the project and any financial changes. <u>Phase II</u> of the project is the section along Jessie Drive including PODs 2,3 and 4 which all rely upon Jessie Drive for access this timing is based upon the timing of Jessie Drive, Ten Ten, and Highway 55 projects.
- 18. What is the timing of the review by Apex and the Town Council meetings?
- A. Submittal of the rezoning request is July 1, 2019. This will start a 3-4 month process prior to Town Council public hearings. Assuming approval of the zoning, the Master Subdivision Plan (which has previously been approved) will be modified to reflect the changes associated with the rezoning. Construction Documents will then follow for the contractor and permitting. Apex will send out a notification of future Public Hearings based upon the list of contacts we provided (including the Sweetgum Drive property owners).
- 19. What is the plan for the greenway and connection to surrounding properties?
- A. The Middle Creek Greenway was discussed at length. Middle Creek Greenway is major connection from the Town of Apex to Holly Springs' greenway system. These projects include Middle Creek Phase I and II (Town of Apex projects), Reunion Pointe, Horton Park, and future projects north of Jessie Drive. Future connection to Lufkin Road and the Town of Cary greenway system in Regency Park.
- 20. Who will the builder be?
- A. The construction team may be a couple of builders. Final builder team is TBD.
- 21. In summary, what is the meeting for?
- A. This meeting is to explain the process, the project, and product while gathering information from residents in the area. The questions will be gathered, answers provided, and included in the zoning submittal for Planning Board and Town Council review during the zoning process. Changes to the design documents or the zoning application may be made from comments received.
- 22. Who can I contact about the project? Town of Apex?
- A. A list of Town of Apex contacts were provided at the meeting. Staff will know about the project but will not know details until after the July 1, 2019 zoning submittal.
- 23. Who approves the revised rezoning request?
- A. Town Council reviews and ultimately provides final zoning determination.
- 24. Where can I find the rezoning application once it is submitted?
- A. On the Town's website under the "Interactive Development" tab is the map of projects. After the zoning package is submitted, the documents will be updated within a week or two.
- 25. In reviewing the Master Subdivision Plan provided, how is the zoning changing the design?
- A. The zoning will require the modification of the Master Subdivision Plan to remove the connection to Jessie Drive as part of the Phase I development. This will be done in conjunction with staff input to clarify the improvements on the property.

The Horton Park rezoning neighborhood meeting was very different from a majority of neighborhood meetings as the neighbors were well informed about the project. This is the 3rd zoning for this project based upon the size and complexity of the project. Most of the discussions were centered on previous items committed to or discussed with property owners. The questions asked were more process or overall

"why are you rezoning again" type questions. For this reason, the number of questions from the meeting were limited. It was difficult to track all the discussions.

At the conclusion of the meeting, the neighbors broke up into groups, some asking questions, some talking, and others leaving the meeting. There were a number of clarifications provided one-on-one but no additional conditions or concerns about the project beyond what was asking during the larger group setting. The meeting completed at 7:30 when all questions were answered.

AFFIDAVIT OF CONDUCTING A NEIGHBORHOOD MEETING, SIGN-IN SHEET AND ISSUES/RESPONSES SUBMITTAL

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

, Jonathan Edwards , do hereby declare as follows:

Print Name

- 1. I have conducted a Neighborhood Meeting for the proposed Rezoning, Major Site Plan, Master Subdivision Plan, or Special Use Permit in accordance with UDO Sec. 2.2.7 *Neighborhood Meeting*.
- 2. The meeting invitations were mailed to the Apex Planning Department, all property owners within 300 feet of the subject property and any neighborhood association that represents citizens in the area via first class mail a minimum of 10 days in advance of the Neighborhood Meeting.
- 3. The meeting was conducted at Halle Cultural Arts Center, 237 North Salem Street, Apex, NC 27502 (Gallery Room) (location/address) on 6-27-2019 (date) from 5:30 (start time) to 7:30 (end time).
- 4. I have included the mailing list, meeting invitation, sign-in sheet, issue/response summary, and zoning map/reduced plans with the application.
- 5. I have prepared these materials in good faith and to the best of my ability,

6-20-

STATE OF NORTH CAROLINA COUNTY OF WAKE

watten Shal

Sworn and subscribed before me, <u>DANIEL WOODS</u>, a Notary Public for the above State and County, on this the <u>28</u> day of <u>TVNE</u>, 20<u>19</u>.

CO

Danie the and Notary Public

DANIEL H VEODS Print Name

My Commission Expires: 11/18/23

Legal Description for **Tech/Flex – Conditional Zoning** Revised August 1, 2019

Boundary description of the propos ed Tech/Flex- Conditional Zoning area includ es portions of property identified by Wake County GIS as PIN 0751-31-9308 (partial) and 0751-31-0079 (partial). The properties are located south of the future Jessie Drive extension in the Apex ETJ, White Oak Township, and Wake County.

BEING a portion of multiple properties bounded on the North by property N/F Trinity Apex North 100, LLC (BM 2006 Page 360, Wake County Registry); on the south by property of N/F KK Land, Inc (BM 1987 Page 1199, Wake County Registry) and N/F Mary Horton (BM2015 Pg1973, Wake County Registry); and west by property of N/F W omble et al. (DB4443 Pg949, Wake County Registry), more particularly described as follows:

Commencing at an exis ting iron pipe at the no rthwest corner of N/F MFW Investments, LLC property (PIN# 0751-31-9308) and the northeast corner of the N/F Fred Cash, Jr. property (PIN 0751-31-0079) as shown on the "Recombination Survey, property of Trinity Apex North 100, LLC" by Riley Surveying, P.A. recorded in Wake County Register of Deeds office Book of Maps 2016 Page 1902, said point being the POINT OF BEGINNING; thence N 71°52'08" E for 120.03' to the western edge of the Colonial Pipeline gas easement; thence S 05°16'12" W for 1,031.68' to a theoretical point along the southern property line of the N/F MFW Investments, LLC property (PIN 0751-31-9308); thence S 66°52'27" W for 52.20' to an ex isting iron pipe being in the southwest corner of the N/F MFW Investments, LLC propert y (PIN 0751-31-9308); thence S 03°17'44" W for 29.64' to a theoretical point along the eastern boundary of the N/F Fred Cash, Jr. property (PIN 0751-31-0079); thence S 77°11'09" W for 688.96' alo ng the south side of an existing creek to a theoretical point along the western boundary of the N/F Fred Cash, Jr. property (PIN 0751-31-0079); thence N $02^{\circ}00'13''$ E for 1,218.43' to the existing iron pipe in the northwest corner of the N/F Fred Cash, Jr. property (PIN 0751-31-0079); thence S 87°50'35" E for 659.92' to an existing iron pipe along the northern proper ty line of the N/F Fred Cash, Jr. property (PIN 0751-31-0079), said point being the POINT AND PLACE OF BEGINNING.

Said property includes approximately 830,332.87 square feet or 19.06 acres.

HORTON PARK

A PLANNED UNIT DEVELOPMENT

PD PLAN

Horton Park Zoning Approval (Case #17CZ19) Horton Park Zoning Approval (Case #18CZ04) October 17, 2017 May 1, 2018

Horton Park Zoning Submittal (Case #19CZ16) July 1, 2019 Revised: September 13, 2019 Revised: October 1, 2019

Applicant:

MFW Investments, LLC 114 Birklands Drive Cary, NC 27518

Civil Engineering & Land Planning:

Peak Engineering & Design, PLLC 5448 Apex Peakway #368 Apex, NC 27502 (919) 439-0100 JRoach@PeakEngineering.com

Table of Contents

Section 1:	Table of Contents
Section 2:	Vicinity Map
Section 3:	Project Data
Section 4:	Purpose Statement
Section 5:	Permitted Uses
Section 6:	Description, Density and Dimensional Standards
Section 7:	Architectural Standards
Section 8:	Parking and Loading
Section 9:	Resource Conservation Area (RCA)
Section 10:	Landscaping
Section 11:	Signage
Section 12:	Public Facilities
Section 13:	Pedestrian Circulation System and Amenities
Section 14:	Natural Resources and Environmental Protection
Section 15:	Storm Water Management
Section 16:	Parks and Recreation
Section 17:	Phasing
Section 18:	2045 Land Use Map
Section 19:	Compliance with the Unified Development Ordinance (UDO)

Exhibits

Building Elevations

Section 2: Vicinity Map

Horton Park is a property assembly located along the western terminus of Jessie Drive on the north; Colby Chase Drive on the south; Middle Creek on the west; and Smith Road on the east. A Tech-Flex area was part of the original PUD and is now proposed to be removed from the PUD with a request to change the zoning to Tech/Flex-Conditional Zoning (TF-CZ) (a portion of PIN 0751-31-0079 and a portion of 0751-31-9308)

Executive Summary:

Horton Park was rezoned in October 2017 (case #17CZ19) and May 2018 (case #18CZ04). The original zoning cases included 146.899 acres (121.109 acres PUD-CZ and 27.92 acres LI-CZ). This zoning case is to modify zoning conditions previously approved, modify the zoning on 19.06 acres from PUD-CZ to TF-CZ, remove all reference to the LI-CZ area (north of Jessie Drive) and clarify the timing of the improvements associated with the development. The following information is related to the overall project description and development opportunities.

Section 3: Project Data			
Project name:	Horton Park		
Applicant/Developer:	MFW Investments, LLC		
	114 Birklands Drive		
	Cary, NC 27518-8203		
	mwhitehead@macgregordev.com		
Prepared by:	Peak Engineering & Design, PLLC		
	5448 Apex Peakway #368		
	Apex, NC 27502		
	(919) 439-0100		
	jroach@peakengineering.com		
Zoning:			
Existing Zoning:	Planned Unit Development-Conditional Zoning (PUD-CZ)		
Proposed Zoning:	Planned Unit Development–Conditional 2	Zoning (PUD-CZ)	
2045 Land Use Map			
Existing Land Use Designation:	Medium Density Residential, High Densi Density Residential/Office Employment	ty Residential, High	
Proposed Land Use:	Medium Density Residential, High-Densi	ty Residential High	
Toposed Land Ose.	Density Residential/Office Employment (
Total Property:	PUD-CZ area: 127.84 acres		
Property Data (PINs):			
0751-42-1387	0750-39-8682	0751-40-0194	
0751-31-9308 (portion)	0750-29-9342	0750-27-0906	
0751-31-0079 (portion)	0750-28-0998 (portion) 0750-27-8925		
0750-39-0993	0750-27-4707		
0750-49-5371	0750-27-8677		

Legal descriptions of the properties are based upon surveys, recorded maps, plats, or deeds. This information is all public and provided within the zoning application packet.

Section 4: Purpose Statement

Horton Park is a proposed mixed-use development that is comprised of single family homes, townhomes, and apartments. The 127.84 acre assemblage is located in an underserved portion of Apex due to the lack of adequate road, water and sewer infrastructure. The PUD parameters are outlined in UDO Section 2.3.4(F)(1)(a)(i - vi) and addressed in various locations within the PD text document which will control the overall Horton Park development as previously described.

The PUD section of the property assemblage is comprised of thirteen (13) parcels, or portions thereof, which total 127.84 acres located along Jessie Drive, west of Smith Road, north of Colby Chase Drive, and east of Middle Creek. The properties are all currently zoned PUD-CZ. The Town of Apex's 2045 Land Use Map designates the properties as Medium Density Residential, High Density Residential, and High Density Residential/Office Employment. An amendment to the 2045 Land Use Map is not required for the current zoning request. Additional information related to the 2045 Land Use Map is provided in Section 18 - 2045 Land Use Map - within the PD Text document and with additional exhibits within the rezoning application.

The purpose of the PUD-CZ rezoning application is to modify conditions agreed to under Zoning #18CZ04. These modifications are summarized below:

- 1. Modify the timing of off-site roadway improvements to align with major NCDOT and Town of Apex projects including the Ten Ten Road widening; Jessie Drive construction between Ten Ten Road and Highway 55; and Highway 55 corridor improvements from Technology Drive to US 1.
- 2. Showing portion of PINs 0751-31-0079 and 0751-31-9308 proposed to be removed from the PUD and rezoned to TF-CZ on the official zoning map improves marketability of the site for long-term success.

The higher density residential portion of the property, including apartments and townhomes, will be clustered along Jessie Drive (a major thoroughfare), the North-South Collector Street (a major collector street), and the East-West Collector Street (a major collector street). As the site transitions from north to south, the residential density of Horton Park will reduce and the lot sizes increase. Infrastructure – including roads, water, and sewer – will extend from Smith Road west to the North-South Collector Street and south to Colby Chase Drive in Phase I. Phase II includes the development of the properties clustered along Jessie Drive, including PODs 3 and 4. The extension of the N-S Collector from the Phase I terminus to Jessie Drive is required with development of the adjacent N/F Cash Property (PIN 0751-31-0079) or by the developer of Horton Park PUD per the adopted Transportation Plan. This phasing aligns with the timing of connections of current and future major transportation corridors within NCDOT's and the Town of Apex's long-range plans.

The residential areas, along with the surrounding non-residentially zoned properties, will support the live-work environment which has been stressed by staff and elected officials for years. Greenways will provide pedestrian and bicycle connectivity to surrounding developments, future Apex trail connections, and adjacent municipal connections. In the greenways section of the PD text, the extension of the Middle Creek greenway will be analyzed as discussions have been ongoing with Parks & Recreation staff related to long-term connectivity within the basin.

The transportation systems associated with the project will construct various off-site improvements. Ramey Kemp & Associates has updated the Traffic Impact Analysis with input from NCDOT and Town of Apex staff. Those improvements are clarified in PD Text Section 12 – Public Facilities.

Phasing is covered in Section 17 of the PD Text and in summary, the project expects development to occur in a number of phases, including apartments, townhomes, and single family areas. The final construction phasing will be coordinated with Apex staff during the Master Subdivision Plan and Site Plan design stages. Section 17 provides additional phasing details.

The rezoning of the properties to PUD-CZ in conjunction with the proposed TF-CZ zoning adjacent to this PUD will provide a high quality project for the live–work option in southeast Apex, preserve significant environmentally sensitive areas, provide greenway connections and play lawns, ensure compatibility with the surrounding developments, provide major infrastructure upgrades, and add significant employment zoned areas in southeast Apex.

Section 5: Permitted Use Table

The rezoned lands may be used as listed below. The chart provided is a reference to UDO Section 4.2.2 - Use Table - which lists the uses which are permitted within the proposed Planned Unit Development (PUD-CZ).

Horton Park PUD					
Permitted Use Table	– PUD-CZ				
"P" permitted; "S" special use permit; " " not permitted; "%" percentage of gross square footage					
Use Type Residential High De PODs Resider 3, 5 - 8 POD					
Residential Uses (UDO 4.3.1)	Γ				
Accessory apartment	Р	Р			
Family care home	Р	Р			
Multi-family or apartment		Р			
Single-family	Р				
Townhouse P H					
Townhouse, detached	Р	Р			
Utilities (UDO 4.3.3)					
Utility, minor P P					
Recreation Uses (UDO 4.3.4)					
Greenway	Р	Р			
Park, active	P	P			
Park, passive	P	P			
Park, passivePPRecreation facility, privatePP					

Section 6: Description, Density and Dimensional Standards

The project is broken down into six (6) PODs, numbered 3-8, to explain the proposed uses, dimensional standards, density and other UDO standards. The PODs are shown on the project exhibit – identified as "EX-1: Proposed Site Exhibit" – included in the rezoning package. The density of the property is identified per POD, access shown per POD, and overall site configuration shown for future roadway extensions.

** If additional property is included in the project boundary prior to any single family homes or townhomes being occupied in an adjacent POD/Phase, the design buffer may be shifted to the new project boundary in coordination with Apex staff. The design buffer may also be crossed by future public streets based upon review and approval by Apex staff.

PODs 3 & 5Medium/Medium-High

POD 3 site area:	4.55 acres
POD 5 site area:	19.71 acres
Proposed zoning:	PUD-CZ
Maximum density:	Townhomes (6 units / acre) or single family homes (4 units / acre)
• POD 3 Densit	y: 27 townhomes or 18 single family homes
• POD 5 Densit	y: 118 townhomes or 78 single family homes
Maximum building h	eight: 40 feet
Maximum Built-Upor	n percentage: 70%
-	

PODs 3 & 5 are proposed for Medium/Medium-High Residential uses, including townhomes, single-family homes, or a mix of products. All development of the residential portions of Horton Park shall submit for Master Subdivision Plan approval through the Town of Apex. Townhomes will be a mix of one (1), two (2), and three (3) bedroom units with various garage and surface parking options to meet current UDO standards (parking standards are referenced in Section 8 of the PD Text).

Individual lot driveway access from POD 5 to the North-South Major Collector Street shall not be permitted.

Type T-1 Townhomes: front entry units

- Minimum lot width: 20 feet
- Minimum lot depth: 80 feet
- Front entry townhomes
- Setbacks:
 - o Front setback: 20 feet from R/W
 - Garage setback: 20 feet from back of sidewalk or back of curb where no SW exists

o Side setback: 0 feet
o End unit side & corner lot setback: 3 ft
o Rear setback: 10 feet

Type T-2 Townhomes: rear or alley entry units fronting on public streets

- Minimum lot width: 20 feet
- Minimum lot depth: 80 feet
- Rear or alley entry townhomes

o End unit side & corner lot setback: 3 ft

Setbacks:
Front setback: 10 feet from R/W
Side setback: 0 feet

• Rear setback: 5 feet from alley easement or right-of-way

Type S-1, S-2, S-3, and S-4 single family lots in PODs 3 & 5 shall match the standards established in PODs 6, 7, & 8 within the PD Text document.

Perimeter buffers POD 3 & 5:

All perimeter buffers for PODs 3 & 5 are noted in the table included at the end of Section 6.

POD 4	High Density Residential
Site Area:	20.99 acres
Proposed zoning:	PUD-CZ (Planned Unit Development – Conditional Zoning)

POD 4 is proposed for High Density Residential uses, including apartments, townhomes or a mix of both housing types. The final product will depend upon market conditions as the project progresses. POD 4 will have direct access to Jessie Drive and shall obtain approval from NCDOT and the Town of Apex.

The following parameters will control future apartment and/or townhome development within POD 4 as the required PUD-CZ standards apply:

POD 4 Apartments:POD 4 site area:20.99 acresProposed density:314 apartments (maximum of 15 units/acre)Maximum built-upon percentage:70%Maximum building height:65 feet; 4-stories (not including basement level)

Apartments will be a mix of one (1), two (2), and three (3) bedroom units with the option for various parking standards, including surface, garage, and/or basement level parking.

Proposed minimum building setbacks:

- Front, side and rear: 50 feet (perimeter of the apartment site only)

POD 4 Townhomes:POD 4 site area:20.99 acresProposed density:125 townhomes (max of 6 units/acre)Maximum built-upon percentage:70%Maximum building height:40 feet

If POD 4 is developed as townhomes, there may be a mix of two (2) car garage units, one (1) car garage units, and units without garages. Various types of parking shall be provided to meet current UDO standards (parking standard noted in Section 8 of the PD Text).

Type T-1 Townhomes: front entry units

- Minimum lot width: 18 feet
- Minimum lot depth: 80 feet
- Minimum building separation: 8 feet
- Front entry townhomes
- Setbacks:
 - o Front setback: 20 feet from R/W

 Garage setback: 20 feet from back of sidewalk or back of curb where no SW exists

Type T-2 Townhomes: rear or alley entry units

- Minimum lot width: 18 feet
- Minimum lot depth: 80 feet
- Minimum building separation: 8 feet
- Rear or alley entry townhomes
- Setbacks:
 o Front setback: 10 feet from R/W
 o Side setback: 0 feet
 o End unit side & corner lot setback: 3 ft

o Side setback: 0 feet
o End unit side & corner lot setback: 3 ft
o Rear setback: 10 feet

• Rear setback: 5 feet from alley right-ofway limits

Perimeter buffers POD 4: All perimeter buffers for POD 4 are noted in the table included at the end of Section 6.

The project will comply with other standards established by UDO Section 5.1.3 related to setbacks and density requirements or as proposed throughout the rezoning process and noted within the PD Text document.

PODs 6, 7, & 8 Medium Density Residential

PODs 6, 7, and 8 are proposed Medium Density Residential uses per Section 5 of the PD text – Permitted Use table.

POD 6	39.01 acres	
POD 7	19.37 acres	
POD 8	24.21 acres	
Total area:	82.59 acres	
Proposed density:	227 single fan	nily lots (2.75 units / acre – medium density)
Maximum Built Upon	n Percentage:	70%
Maximum Building h	eight:	40 feet

82.59 acres are proposed within the Medium Density Residential PODs (PODs 6, 7 & 8). The overall lot count for this area has not increased from the previous zoning (case #18CZ04). Single family lots will be a mix of various sizes to create different options for future residents, including:

Type S-1 single family lots

- Minimum lot width: 70 feet
- Minimum lot depth: 100 feet
- Minimum lot size: 7,700 SF
- Average lot size: 8,500 SF
- Lots shall be front, side, or rear entry garage homes
- Proposed minimum setbacks:
 - o Front setback: 15 feet from R/W
 o Garage setback: 20 feet from back of sidewalk, or back of curb where no SW exists
 - o Side setback: 5' min. (no aggregate)

Type S-2 single family lots

- Minimum lot width: 60 feet
- Minimum lot depth: 100 feet
- Minimum lot size: 6,600 SF
- Average lot size: 7,200 SF
- Lots shall be front, side, or rear entry garage homes
- Proposed minimum setbacks:
 - o Front setback: 15 feet from R/W
 - Garage setback: 20 feet from back of sidewalk, or back of curb where no SW exists
 - Side setback: 5' min. (no aggregate)

- Corner side setback: 10 feet minimum
- o Rear setback: 10 feet
- Rear entry setback: 5 feet (garage setback for driveway parking standards from alley)

- o Corner side setback: 8 feet minimum
- o Rear setback: 10 feet
- Rear entry setback: 5 feet (garage setback for driveway parking standards from alley)

Type S-3 single family lots

- Minimum lot width: 50 feet
- Minimum lot depth: 100 feet
- Minimum lot size: 5,500 SF
- Average lot size: 6,000 SF
- Lots shall be front, side, or rear entry garage homes
- Building setbacks:
 - o Front setback: 10 feet from R/W
 - Garage setback: 20 feet from back of sidewalk, or back of curb where no SW exists
 - o Side setback: 5' min. (no aggregate)

Corner side setback: 5 feet
Rear setback: 5 feet
Rear entry setback: 5 feet (garage setback for driveway parking standards from alley)

Type S-4 single family lots

S-4 single family lots are not permitted in POD 8 and are only permitted along the collector streets within POD 6 and 7.

- Minimum lot width: 40 feet
- Minimum lot depth: 100 feet
- Minimum lot size: 4,000 SF
- Average lot size: 4,500 SF
- Front entry units may have 1 car garage or no garage for each unit
- Rear entry units may have 2 car garage for each unit
- Building setbacks:
 - o Front setback: 10 feet from R/W
 - Garage setback: 20 feet from back of sidewalk, or back of curb where no SW exists
 - o Side setback: 5' min. (no aggregate)

o Corner side setback: 5 feet

- o Rear setback: 5 feet
- Rear entry setback: 5 feet (garage setback for driveway parking standards from alley)

Perimeter buffers PODs 6, 7 & 8:

All perimeter buffers for PODs 6, 7 & 8 are noted in the table included at the end of Section 6.

Horton Park PUD Proposed Buffer Table						
POD #						
3	20' Type B	20' Type B	30' Type B (50' Type A/B if disturbed per UDO)	20' Type B		
4	30' Type B (50' Type A/B if disturbed per UDO)	25' Type B-residential and landfill	25' Type B – stream buffer next to landfill	0' - adjacent to gas easement		
5	20' Type B	25' Type B–next to landfill 0' between POD 5&6	10' Type A-major collector * (type 'D' for alley loaded)	20' Type B		
6	25' Type B – landfill 20' Type B- residential	20' Type B	10' Type A-major collector * (type 'D' for alley loaded) 20' Type B-residential 30' Type B-Beck property	0' - adjacent to gas easement		
7	10' Type A-major collector *	10' Type D-collector OR 20' Type B-residential	None; internal to project (stream buffer)	10' Type B-floodplain		
8	0' – internal 20' Type B-residential	20' Type B-stream buffer 20' Type B – residential 10' Type B – eastern boundary of Virginia Horton Stewart property	10' Type B-Colby Crossing & stream buffer	10' Type B floodplain		

Buffers along roads shall be provided as shown on Sheet EX-1 or the PUD Plan Sheet Packet. Per UDO 8.2.6, within residential developments, no streetfront buffer is required on minor collectors or residential streets.

* Where alley-loaded homes face a major collector, a Type 'D' buffer shall be required.

Section 7: Architectural Standards

The following Architectural Standards shall apply for the multi-family/apartments, townhomes and single family homes as applicable to the following sections.

Apartment standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. Siding materials shall be varied in type and/or color on 30% of each façade on each building.
- 3. Windows must vary in size and/or type.
- 4. Windows that are not recessed must be trimmed.
- 5. Recesses and projections shall be provided for at least 50% of each façade on each building.
- 6. Rooflines cannot be a single mass; they must be varied with the use of gables or parapets.
- 7. Garage doors must have windows, decorative details or carriage-style adornments.
- 8. At least three of the following decorative features shall be used on each building:
 - Decorative shake
 - Board and batten
 - Decorative porch railing/posts
 - Shutters
 - Decorative/functional air vents on roof or foundation
- Recessed windows
- Decorative windows
- Decorative brick/stone
- Decorative gables
- Decorative cornices
- Tin/metal roof
- 9. A varied color palette shall be utilized for the apartment buildings throughout the development. With garden style apartments, a minimum of three color families for siding shall be provided and will include varied trim, shutter, and accent colors complementing the siding color. For a single mass apartment structure, the color shall vary with accent colors or architectural features to provide building relief.
- 10. Breezeway(s) for the four story apartment elevation is to be enclosed for additional mechanical equipment or elevators.

Townhome standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. All townhomes shall have a crawl space or raised foundation which at a minimum rises at least 12 inches from average grade across the front of the house to the finished floor level at the front door.
- 3. Roofline cannot be a single mass; it must be broken up horizontally and vertically between units.
- 4. Garage doors must have windows, decorative details or carriage-style adornments.
- 5. House entrances for units with front-facing single-car garages shall have a prominent covered porch/stoop area leading to the front door.
- 6. The garage cannot protrude more than 1 foot out from the front façade or front porch.
- 7. The visible side of a townhome on a corner lot facing the public street shall contain at least 2 decorative elements such as, but not limited to, the following elements:
 - Windows
 - Bay window
 - Recessed window

- Decorative window
- Trim around the windows
- Wrap around porch or side porch

- Two or more building materials
- Decorative brick/stone
- Decorative trim
- Decorative shake
- Decorative air vents on gable
- Decorative gable

- Decorative cornice
- Column
- Portico
- Balcony
- Dormer
- 8. Building facades shall have horizontal relief achieved by the use of recesses and projections.
- 9. A varied color palette shall be utilized on homes throughout the subdivision to include a minimum of three color families for siding and shall include varied trim, shutter, and accent colors complementing the siding color.
- 10. The rear and side elevations of the units that can be seen from the right-of-way shall have trim around the windows.
- 11. Minor elevation adjustments may be accommodated with staff approval including limiting clipped dormers on no more than 25% of the proposed townhome building designs.
- 12. Side entry, end unit townhomes in highly visible locations shall provide a covered entry feature for each unit. Highly visible locations shall include the end of a series of buildings, and adjacent to public or private rights-of-ways, recreation areas, open space, buffers, or adjacent properties.

Single-family residential standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. All single-family homes shall have a crawl space or have a raised foundation which at a minimum rises at least 20 inches from average grade across the front of the house to the finished floor level at the front door.
- 3. Garage doors must have windows, decorative details or carriage-style adornments.
- 4. The garage cannot protrude more than 1 foot out from the front façade or front porch.
- 5. The roof shall be pitched at 5:12 or greater for 50% of the building designs.
- 6. Garages on the front façade of a home that faces the street shall not exceed 40% of the total width of the house and garage together.
- 7. Eaves shall project at least 12 inches from the wall of the structure.
- 8. The visible side of a home on a corner lot facing the public street shall contain at least 3 decorative elements such as, but not limited to, the following elements:
 - Windows
 - Bay window
 - Recessed window
 - Decorative window
 - Trim around the windows
 - Wrap around porch or side porch
 - Two or more building materials
 - Decorative brick/stone

• Decorative trim

- Decorative shake
- Decorative air vents on gable
- Decorative gable
- Decorative cornice
- Column
- Portico
- Balcony
- Dormer
- 9. A varied color palette shall be utilized on homes throughout the subdivision to include a minimum of three color families for siding and shall include varied trim, shutter, and accent colors complementing the siding color.

- 10. House entrances for units with front-facing single-car garages shall have a prominent covered porch/stoop area leading to the front door.
- 11. The rear and side elevations of the units that can be seen from the right-of-way shall have trim around the windows.
- 12. Front porches shall be a minimum of 6 feet deep.
- 13. No more than 25% of lots may be accessed with J-driveways. There shall be no more than 3 such homes in a row on any single block. Any lots eligible for a J-driveway home shall be identified on the Final Plat.
- 14. A maximum of 100% of the single family detached residential units within POD 6 shall be permitted as "zero-entry" homes without the 20 inch rise from average grade across the front of the property to the finished floor elevation. All "zero-entry" homes shall also provide first floor master bedrooms. Lots permitted as "zero-entry" shall be noted on the Final Plat.
- 15. All single family detached residential homes are to be pre-configured with conduit for a solar energy system.
- 16. No less than 10 single family detached homes out of the first 100 homes within POD 6 will be installed with a minimum of a 4 kW solar PV system.

Section 8: Parking and Loading

Parking will be provided for each product type in accordance with Apex UDO Section 8.3 standards or as noted below.

Apartments:

Parking shall be provided by surface, garage, underground parking, or a mix of parking types. Parking shall be provided per UDO Section 8.3 standards in conjunction with staff reviews.

Townhomes:

Townhome parking shall be provided pursuant to standards established in Section 8.3 of the UDO with the following clarification:

- 2 parking space/townhome required, including garage or driveway spaces, plus
- 0.50 parking spaces/bedroom over 2 bedrooms/unit, plus
- 0.25 parking spaces/unit for guest spaces
- Garages and driveways shall be counted for overall parking standards if they meet dimensional standards

Single Family detached:

Parking for single family homes will be provided in garages and concrete driveways on each lot which meet Apex UDO standards. CBU or Mail Kiosk parking shall be calculated per UDO Section 8.3 standards and provided around the appropriate device.

Residential driveways shall have a minimum width of 12' and 20' in length as measured from the back of the sidewalk or, where no sidewalk exists, a minimum of 20' as measured from the back of the curb, to count as required parking.

Section 9: Resource Conservation Area (RCA)

Horton Park PUD (127.84 acres) is located north and east of 540 and is therefore required to meet the standards of UDO Section 8.1.2 to preserve or establish a minimum of 20% Resource Conservation Area (RCA) for the project. The project is proposing to mass grade the single-family portions of the project and is therefore required to provide an additional 2% RCA for the single family, mass graded sections. The project will provide an overall RCA of no less than 20% (25.568 acres) of the project's total gross acreage if the site is stage-graded, with an additional 2% RCA for any single family sections within Horton Park which are mass graded.

With large portions of floodplain along the western boundary of the site, development patterns may adjust to accommodate required RCA standards. RCA for the project may include stream buffers, floodplains, wetlands, steep slope areas, perimeter buffers, street and roadway buffers, a portion of storm water devices, community amenity areas, play lawns and other designated areas. The final location and calculations for RCA shall be finalized during the Master Subdivision Plan and Construction Document reviews.

Section 10: Landscaping

Internal landscaping will comply with various UDO sections including Section 8.2 for buffers, street tree plantings, foundation plantings, and tree preservation (as proposed) or as noted within Section 6 of the PD Text or as shown on EX-1: Proposed Site Exhibit attached with the rezoning request. With the variety of uses in and around the property, variable width and variable opacity buffers will be provided throughout the project.

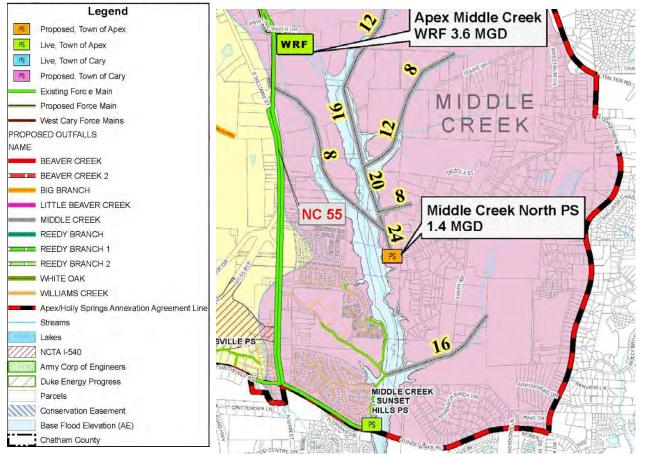
The residential buffers will follow UDO standards for perimeter plantings, Jessie Drive frontage (thoroughfare), collector streets, and residential properties adjacent to developed or undeveloped property. Proposed buffers are labeled within Section 6 – Description, Density, and Dimensional Standards for each POD and shown on Exhibit 1 to assist in the identification of the buffer classifications.

Section 11: Signage

All signage will comply with the applicable standards and requirements of UDO Section 8.7.

Signage for the residential developments, whether apartments, townhome or single family PODs, shall be coordinated with staff during the appropriate Master Subdivision Plan and/or Master Signage Plan approval. Each section of the development will provide sign easements along perimeter street infrastructure for appropriate signage.

Section 12: Public Facilities

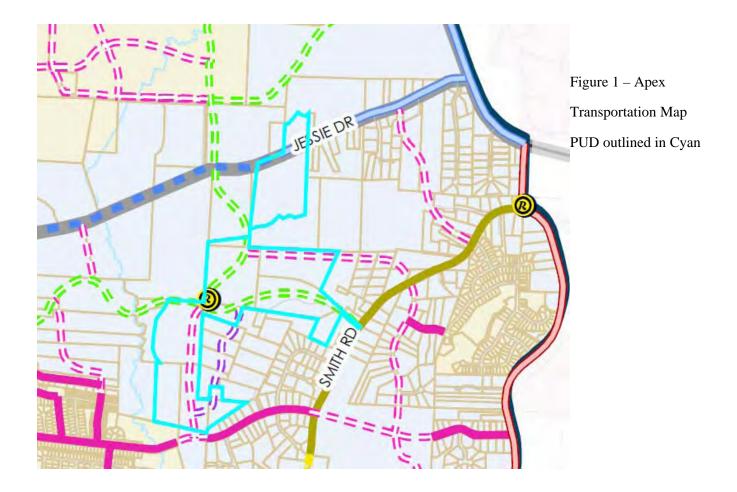

The project's construction will consist of the extension of public facilities to serve the site. All public facilities and infrastructure shall be designed per the current Town of Apex standards and specifications. Facilities include:

Water

Water will be extended from Pemberley subdivision (south) and Smith Road (east) for Phase I; and from Jessie Drive (north) for Phase II. Various extensions will be provided within the Horton Park phasing study to confirm sufficient pressure and flows to all portions of the project during any phased portion of the development.

Sanitary Sewer

The Middle Creek North Pump Station is proposed to provide sanitary sewer service to the Middle Creek drainage basin north of Colby Chase Drive. This pump station will be constructed by the development team, including design, land acquisition, construction, and commissioning. Costs associated with the pump station will be reimbursed through separate developers' agreements with the Town of Apex that are outside the scope of the PUD process. The new regional pump station is required as the existing Middle Creek – Sunset Hills pump station is currently at capacity and cannot accept significant flows from development within the Middle Creek drainage basin. This new pump station will alleviate capacity concerns for the existing pump station and provide a public sewer system option for Horton Park and other parts of Apex.



October 1, 2019

Streets

A number of future collector streets and a future 4-lane thoroughfare are shown on the Apex Transportation Plan – Thoroughfare and Collector Street Map within the boundary of the PUD. These streets include Jessie Drive (major thoroughfare); an east-west major collector (within the vicinity of Dezola Street); an east-west minor collector (connection from Percussion Drive to the north-south connector); a north-south minor collector (Colby Chase Drive to the east-west major collector), and a north-south major collector from the east-west major collector to Jessie Drive). The final alignment of any collectors or thoroughfares will be coordinated with staff during the Master Subdivision Plan or Site Plans. The ultimate right-of-way for each of the collectors and thoroughfares shall be provided during the time of Master Subdivision Plan review. The roadway sections which are installed are based upon the traffic capacity evaluations, the Traffic Impact Analysis, standards, and discussions with staff at the time of submittal of the Horton Park design documents. Modifications to the alignment of all streets shown within the Master Subdivision Plans will be reviewed with staff at the appropriate time to ensure compliance with Town standards that certain connections are made. The final alignment of all streets shown within the Master Subdivision Plans

Transportation:

Following are the Traffic Capacity Zoning Conditions for the project pursuant to the MOU dated June 21, 2019 coordinated between NCDOT, the Town of Apex Transportation Engineering staff, and the project Transportation Engineer (Ramey Kemp & Associates).

The Developer shall coordinate with NCDOT all planned improvements on state maintained roadways. In some cases, zoning conditions are subject to NCDOT review and approval and may change to conform to NCDOT approvals. Turn bay storage lengths refer to the length of full width lane provided exclusive of the 100-foot taper in each case. Jessie Drive shall continue as a state maintained roadway for all existing and proposed sections, and the developer shall dedicate the right-of-way pursuant to the current Town of Apex Transportation Plan, currently a 110-foot public right of way along all sections of Jessie Drive within the development.

The timing of the roadway improvements will be coordinated with Apex Transportation Staff during the Master Subdivision Plan and Construction Document review based upon the recommendations within the approved Traffic Impact Analysis (TIA) and according to the phasing plan provided in Section 17 - Phasing. The following recommendations are based upon the revised TIA which will supersede the TIA dated May 31, 2017, the Colby Chase Addendum dated August 30, 2017, and the TIA Update date July 2, 2019.

PHASE I TRANSPORTATION IMPROVEMENTS

US 1 Southbound Ramps / Waterford Green Drive at Center Street

- The Developer shall coordinate with NCDOT and Town staff in order to conduct a signal timing study and implement traffic signal timing modifications within the scope of the closed loop-system for Center Street/Ten-Ten Road, including this intersection, Lufkin Road and Reliance Avenue. The developer shall be obligated to pursue this effort only once during the development build-out schedule as directed by the Town of Apex Senior Transportation Engineer.
- The Developer shall provide intersection signal timing evaluation and modifications at a time to be determined by the Town of Apex Senior Transportation Engineer within the following schedule: The timing evaluation shall occur after the first Final Plat is recorded and prior to the recordation of the Final Plat for no more than 250 dwelling units of single-family and/or townhomes, or the issuance building permits for 250 apartment units, or any combination thereof.

Ten Ten Road at Smith Road

- The Developer shall extend the existing westbound left-turn lane to provide a minimum of 350 feet of storage and appropriate taper.
- The Developer shall construct the aforementioned improvements at the Ten Ten Road/Smith Road intersection at the time the East-West Collector Street is constructed and platted to Smith Road.

Smith Road at Stephenson Road/Smith Road

- The Developer shall construct an eastbound left-tum lane with a minimum of 100 feet of storage and appropriate taper.
- The Developer shall monitor this intersection for installation of all-way stop control and provide for the all-way stop conversion if warranted and permitted by NCDOT.
- The Developer shall construct the aforementioned improvements at the Smith Road/Stephenson Road intersection at the time the East-West Collector Street is constructed and platted to Smith Road.

Smith Road at East-West Collector Street

- The Developer shall construct a southbound right-tum lane with a minimum of 100 feet of storage and appropriate taper.
- The Developer shall construct a Major Collector Street from the North-South Collector Street to Smith Road on a 60-foot public right of way for the entire length.
- The Developer shall provide access to existing residential properties on Dezola Street in a manner that avoids residential driveways directly accessing any Major Collector Streets.

East Williams Street at Straywhite Avenue

- The Developer shall stripe the Straywhite Avenue approach to E. Williams Street for two lanes with 75 feet of storage.
- The Developer shall monitor the intersection and install a traffic signal if warranted and permitted by NCDOT.
- The Developer shall complete the monitoring period as directed by the Town of Apex Senior Transportation Engineer within the following schedule: The monitoring shall occur after the opening of Colby Chase Drive from the Pemberley subdivision to the Merion Subdivision but no later than the recording of the Final Plat for 250 dwelling units of single-family and/or townhomes, or the issuance of building permits for 250 apartment units, or any combination thereof.

East Williams Street at Technology Drive at NC 55

• Intersection included in the MOU. No improvements warranted per TIA.

North-South Collector Street

• The Developer shall construct the portion of the North-South Collector Street from Colby Chase Drive to the PUD boundary at the southern creek on N/F Cash Property (PIN 0751-31-0079) to a Minor Collector Street typical section on a 60-foot public right-of-way.

PHASE II TRANSPORTATION IMPROVEMENTS

The full project build-out includes the following intersections per the approved MOU.

Jessie Drive at Ten-Ten Road

- The Developer shall construct a westbound left-turn lane with a minimum of 100 feet of storage and appropriate taper prior to the pending state TIP project.
- The Developer shall construct an eastbound right-turn lane with a minimum of 200 feet of storage and appropriate taper prior to the pending state TIP project.
- The Developer shall construct a northbound right-turn lane with 100 feet of storage and appropriate taper prior to the pending state TIP project.
- The Developer shall monitor this intersection and install a traffic signal if warranted and permitted by NCDOT prior to the pending state TIP project.
- The Developer shall construct the improvements at the aforementioned Jessie Drive/Ten Ten intersection at the time Jessie Drive is extended to the Horton Park North-South Collector/Production Drive intersection.
- If the traffic signal is not warranted prior to the first Final Plat, the developer shall provide a performance bond for the signal based on an engineer's estimate of final costs. The performance bond shall remain in place for a period of 5 years, or until the last Final Plat for the development, whichever comes first. Once the signal is warranted, the developer shall install the signal within 6 months plus time for any delays due to right-of-way acquisition and utility relocation but not to exceed 12 months.

Jessie Drive at the North-South Collector Street

- The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions at both intersections.
- The Developer shall construct the portion of the North-South Collector Street from the PUD boundary on the N/F Cash property (PIN 0751-31-0079) to Jessie Drive to a Major Collector Street typical section on a 60-foot public right of way.
- The Developer shall construct the aforementioned improvements prior to recordation of the first Final Plat for single-family and/or townhomes, or the issuance of the first building permit for apartments within Phase II of the development.

Jessie Drive at Site Drive #1 (POD 3 & 4)

• The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions.

Jessie Drive at Site Drive #2 (POD 4)

• The Developer shall construct single lane northbound and southbound approaches with stop control, and free-flow eastbound and westbound approaches with 100-foot left turn lanes both directions.

The following roadway improvements are internal to the project and do not require NCDOT review or approval. These improvements shall be reviewed with Apex staff to verify compliance with design standards during the zoning, master subdivision, and construction document stages of the project as appropriate. Improvements shall be constructed and platted as the connections are created for each development POD. Said improvements were identified within the Traffic Impact Analysis dated May 31, 2017 with the Colby Chase Addendum dated August 30, 2017 with no proposed modifications.

North-South Collector Street at Site Drive #2, #3, and Dezola Street

• The Developer shall construct single lane eastbound and westbound approaches with stop control, and single lane northbound and southbound free-flow approaches.

East-West Collector Street at Site Drive #4

• The Developer shall construct single lane northbound and southbound approaches with stop control, and single lane eastbound and westbound free-flow approaches. Stop control may be reversed subject to future connectivity.

North-South Collector Street at Colby Chase Drive

- The Developer shall construct the connection of Colby Chase from Pemberley Subdivision to the Merion Subdivision. The connection of Colby Chase Drive to the state-maintained portion requires NCDOT review and approval.
- The Developer shall construct the connection of the North-South Collector Street to Colby Chase Drive.
- The Developer shall evaluate with Apex staff the option for traffic calming devices along Colby Chase Drive between Pemberley and Merion subdivisions.

Colby Chase Drive Extension

• The Developer agrees not to open Colby Chase Drive to the Merion Subdivision until the North-South Collector Street is constructed and open to the public or at the direction of the Town of Apex Senior Transportation Engineer.

Sidewalks

Sidewalks will be installed in accordance with the UDO standards along all streets within the residential development and along the public rights-of-ways.

Greenways

Greenways and multi-use paths will be provided within the development per the PRGOS Master Plan and as an additional project amenity. Location of said greenways and multi-use paths is being and will continue to be coordinated with staff through the rezoning process and future MSPs. Additional detail will be provided at the appropriate time including the Parks & Recreation Advisory Commission meeting, MSP review and construction document submittals. Additional information is contained in Section 16 – Parks & Recreation.

Section 13: Pedestrian Circulation System and Amenities

The pedestrian circulation system will include sidewalks along internal streets, perimeter roadways, Jessie Drive, Dezola Street and other named and unnamed collectors, residential streets, alleys or as appropriate in discussion with staff for each Phase of the project. Various greenways and multi-use paths are shown within the Apex Master Plans and will be coordinated with staff for the design and installation as appropriate during Master Subdivision Plan review.

The developer has agreed to work with staff to find a location which can accommodate a future transit easement along Jessie Drive for Phase II of the project. Any final agreements and location shall be coordinated during the design of Jessie Drive. This commitment is not a commitment to construct – this is a commitment to work with staff to find an appropriate location only.

Section 14: Natural Resources and Environmental Protection

The site is located within the Town's Secondary Watershed Protection Overlay District including Middle Creek and the large floodplain associated with this feature. This part of Apex is currently undeveloped and has a number of creeks and streams containing a large amount of wetlands, floodplains, stream buffers and other environmentally sensitive areas. The site is shown within Specials Flood Hazard areas as identified by FEMA FIRM Maps 3720075100J and 3720075000J dated May 2, 2006.

Impacts to some of these environmentally sensitive areas will be unavoidable during the design and permitting for the project. Impacts will be identified and permitted through the appropriate local, State and/or Federal review agencies as required for construction of the project. Major creek crossings will be required and adjusted to minimize environmental impacts associated with the development.

A full review of the flora, fauna, endangered species, and historical data has been completed and all areas identified within the previously approved Master Subdivision Plans. Environmentally sensitive areas and impact maps have been prepared through the rezoning, Master Subdivision Plan, and construction documents for impacts. The creeks, streams, and buffers which are currently shown were provided by S&EC, Inc. and from the current USGS map and Wake County soils

survey. An onsite review with the US Army Corps of Engineers and NC-DNR has been completed. Any additional buffers or streams have been coordinated with NCDWR staff and the site adjusted per the final concurrence calls. Immediately adjoining land uses would extend into the newly available development area with additional building square footage or additional lots not to exceed the zoning approval conditions.

Based upon the North Carolina State Historic Preservation Office website (HPOWEB GIS Service) and Apex UDO Section 12.2 – Historic Structures – there are no historic homes or contributory structures within the boundary of the properties.

Section 15: Storm Water Management

The project will contain a number of proposed storm water SCMs. The site is located within the Middle Creek basin and Apex's Secondary Watershed Overlay District and is therefore required to meet the standards of UDO Section 6.1 as applicable. Horton Park will utilize approved structural devices to control storm water and sediment runoff including detention ponds, retention ponds, bioretention cells, wetlands, underground devices, and/or other State recognized storm water management devices. Storm water control devices shall blend into the surrounding developments or be used as possible amenities depending upon their design, aesthetics, size, and location. Final routing of the SCMs will be done in conjunction with the Apex Environmental Services staff to assure compliance with appropriate guidelines.

Section 16: Parks and Recreation

The Parks, Recreation, Greenways and Open Space Master Plan shows the development of the Middle Creek greenway from the Holly Springs greenway system at Sunset Lake Road extending north to Lufkin Road Middle School and the Town of Cary's greenway system north of Ten Ten Road. The greenway and multi-use paths shall be a mix of asphalt, concrete, sidewalk, boardwalk, and pedestrian bridges which will be identified with Apex staff during the Master Subdivision Plan review. Horton Park has been in discussions with Parks & Recreation staff to determine the best routing to serve the most residents and possible commuters as practical. This routing would involve greenways along Middle Creek, unnamed creeks and streams, floodplain boundaries and other natural areas as well as multi-use paths along residential streets, minor collectors, and major collectors.

Horton Park was reviewed at the August 30, 2017 PRCR Advisory Commission meeting and was approved consistent with Staff's recommendation for a fee-in-lieu for the project with the flexibility for both parties to continue to work to find a way to implement the Middle Creek Greenway plan. In the event a solution can be reached, which may involve adjusting the corridor, the developer would build the connection and receive credit against the fees owed. All other sections of the UDO pertaining to the construction of public greenway would then be applicable.

A Public Art Easement shall be provided at the intersection of Jessie Drive and the North-South Collector with a second location within the roundabout at the intersection of the North-South Collector and the East-West Collector streets.

Section 17: Phasing

Lot Development Phasing:

The project will consist of as many as seven (7) development phases. These phases will be broken into the following categories, although development will vary in timing and order of POD development based upon market conditions and off-site roadway improvements at the time of approval:

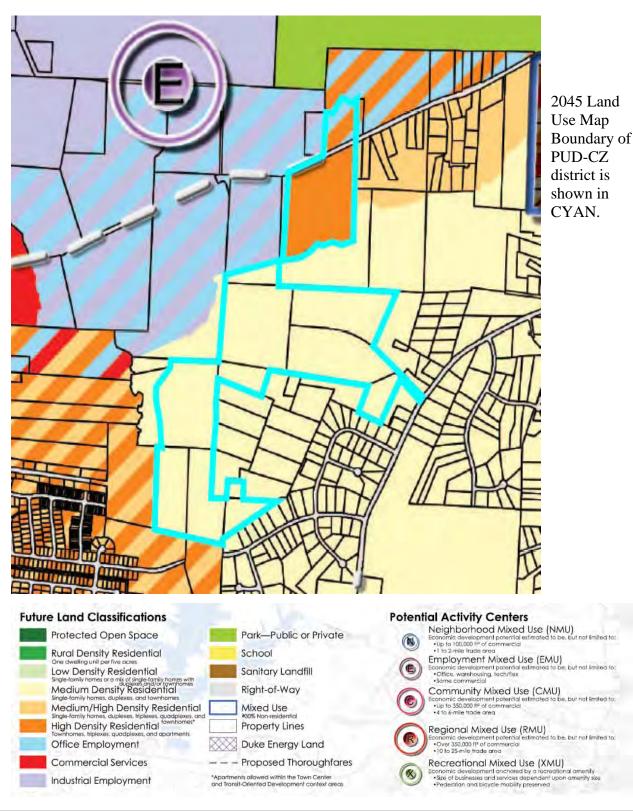
- 1. one (1) phase of single-family and/or townhomes north of Jessie Drive (POD 3);
- 2. one (1) phase of townhomes and/or apartments south of Jessie Drive (POD 4);
- 3. two (2) townhome phases south of Jessie Drive (POD 5); and
- 4. three (3) medium density, single family phases south of Jessie Drive to Colby Chase Drive and east to Smith Road (PODs 6, 7 & 8).

The development of Horton Park will also be broken down into two (2) larger phases – as identified in the Traffic Impact Analysis (TIA). The two phases within the TIA are described as:

Phase I:

Phase I includes the development of all single-family residential lots and townhome lots south of the PUD boundary located along the creek on the southern portion of the N/F Cash Property (PIN 0751-31-0079). This includes PODs 5 - 8, the East-West Major Collector Street from Smith Road to the western project boundary and the North-South Collector Street from Colby Chase Drive to the boundary of the PUD located along the creek on the southern portion of the N/F Cash Property (PIN 0751-31-0079).

Phase II:


Phase II includes the development of the single-family, townhomes, and/or apartments along the Jessie Drive corridor. This specifically includes PODs 3 and 4. Phase II also includes the construction of the North-South Major Collector from the Phase I terminus to Jessie Drive; and the construction of Jessie Drive from the current terminus to the North-South Major Collector Street.

Section 18: 2045 Land Use Map

The Horton Park PUD development encompasses 127.84 acres of property including multiple residential types (PODs 3-8). The rezoning request is in keeping with the land use designations identified on the current 2045 Land Use Map. The 2045 Land Use Map has been included for reference in this section although there are no requested changes.

NO CHANGES TO THE CURRENT 2045 LAND USE MAP ARE PROPOSED WITH THE HORTON PARK REZONING.

Section 19: Compliance with the Unified Development Ordinance

With any specific items previously identified within the PD Text addressed, the project – including the Residential Master Subdivision Plans, non-residential Site Plans, and Construction Documents – shall comply with the applicable Apex Unified Development Ordinance sections. Any deviation from these standards shall be approved by staff, Planning Board or Town Council representatives through the design and approval for the project as appropriate.

EXHIBITS

The following exhibits/drawings are attached as part of the required PUD-CZ. Any reference to the LI-CZ parcels is for information purposes only and does not constitute control or additional standards on the LI-CZ parcel.

COVER SHEET (Sheet C000)

The Cover Sheet contains contact information, a vicinity map, the site design guidelines and required Town of Apex site notes and descriptions.

EXISTING CONDITIONS (Sheet C001)

The C001 Existing Conditions sheet is the overall boundary of the property including land owners, property line calls, creek data, adjacent property owner's information, land uses, PIN reference, deed and/or plat information, and surrounding roadway networks.

EXISTING CONDITIONS - TOPO (Sheet C002)

The C002 Existing Conditions sheet includes the data on sheet C001 along with LIDAR topographic information referenced into the drawing.

EXISTING CONDITIONS – TREE SURVEY (C003)

The C003 Tree Survey sheet contains the location, size and tree data. The trees were identified per requirements of UDO Section 8.1.2(B)(2) including perimeter site locations, anticipated RCA, and a general notation for internal tree samplings. This information was provided by Ellen & Associates, registered NC forester #565.

CONCEPTUAL SITE PLAN (Sheet C100)

The Conceptual Site Plan includes the required base items per the PUD checklist, standard site notes, access points, existing street network, and identification of specific uses. The townhome and apartment areas, as well as the single family residential areas, are all identified on the plan. Items to point out are the locations of Jessie Drive, the gas easement and creek locations based upon surveys, LIDAR and FEMA mapping information.

CONCEPTUAL UTILITY PLAN (Sheet C200)

The Conceptual Utility Plan shows the location of existing water and sewer infrastructure in the area. Although there is no sewer in the area, we have still set up the drawing to reflect existing conditions and location of the connections and Middle Creek North Pump Station.

PROPOSED SITE EXHIBIT (Sheet EX-1)

The Proposed Site Exhibit shows the location of the different uses within the project boundary. This includes; high density residential (townhomes and/or apartments); medium/high density residential (townhomes); and medium density residential (single family homes). Each section is broken into PODs for each use and summarized in the PD Text document.

PLANNED UNIT DEVELOPMENT CONDITIONAL ZONING JESSIE DRIVE

NOT TO SCALE

CIVIL ENGINEER PEAK ENGINEERING & DESIGN, PLLC JEFF ROACH, P.E. 5448 APEX PEAKWAY #368 APEX, NC 27502 PHONE: (919) 439-0100 FAX: (919) 439-6411 WEBSITE: www.PeakEngineeringDesign.com

TRANSPORTATION ENGINEER

RAMEY KEMP & ASSOCIATES RYNAL STEPHENSON, P.E. 5808 FARRINGDON PLACE SUITE 100 RALEIGH, NC 27609 PHONE: (919) 872-5115 FAX: (919) 878-5416 WEBSITE: www.RameyKemp.com

FORESTER

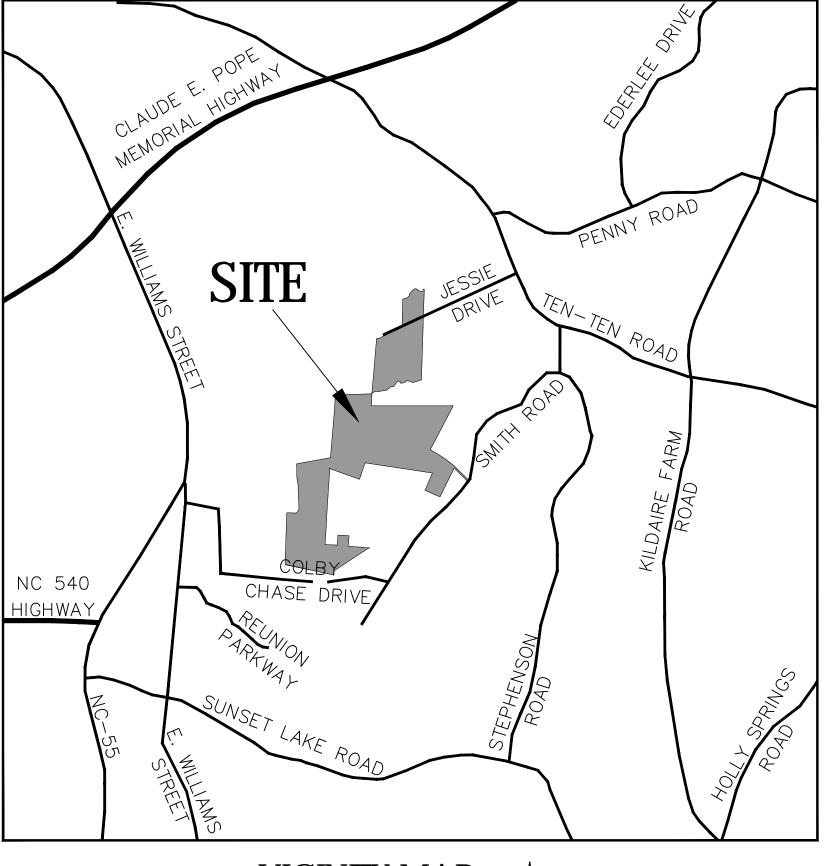
ELLEN & ASSOCIAT JOSEPH L. ELLEN NC REGISTERED FOREST 219 E CHATHAM ST CARY, NC 27511 PHONE: (919) 353-116 JOSEPHELLEN49@GMA

SURVEYOR

MFW INVESTMENTS, LLC

MIKE WHITEHEAD

CARY, NC 27518


114 BIRKLANDS DRIVE

BATEMENT CIVIL SURVEYING COMPANY STEVEN CARSON, PLS 2424 RELIANCE AVENUE APEX, 27539 PHONE: (919) 577-1080 FAX: (919) 577-1081 WEBSITE: www.BatemanCivilSurvey.com

OWNER/DEVELOPER

HORTON PARK

APEX, NORTH CAROLINA PROJECT NUMBER: 161201 July 1, 2019

VICINITY MAP NOT TO SCALE

DRAWING INDEX:

TES	C000	COVER SHEET
TER #565	C001	EXISTING CONDITIONS
1LR # 505	C002	EXISTING CONDITIONS (TOPO)
61	C003	EXISTING TREE SURVEY
AL.COM	C100	CONCEPTUAL SITE PLAN
	C200	CONCEPTUAL UTILITY PLAN
	EX-1	PROPOSED SITE EXHIBIT

SITE INFORMATION:

Property Owner/Site Addr MFW Investments LLC

5125 Jessie Drive Apex, NC 27539-6280 MFW Investments LLC

5220 Jessie Drive Apex, NC 27539-7328

Horton Park MF LLC 5101 Jessie Drive Apex, NC 27539-7328

Mary Elizabeth Horton 0 Dezola Street Apex, NC 27539

MFWIRA, LLC 0 Dezola Street Apex, NC 27539

Loomis III/Kimberly A Horto 0 Dezola Street Apex, NC 27539

Loomis III/Kimberly A Horto 0 Dezola Street Apex, NC 27539

Merion Investment Proper 0 Dezola Street Apex, NC 27539

MFW Investments LLC 8140 Smith Road Apex, NC 27539-8857

MFW Investments LLC 8306 Smith Road Apex, NC 27539-8178

Loomis III/Kimberly A Horto 8308 Smith Road Apex, NC 27539-8178

Merion Investment Propert 0 Dezola Street Apex, NC 27539

MFW Investments LLC 8252 Smith Road Apex, NC 27539-8176

Previously Rezoned Acreag

Proposed PUD-CZ acreage:

Existing Zoning:

Proposed Zoning:

Current 2045 Land Use Map

Existing Use:

Proposed Uses:

Township:

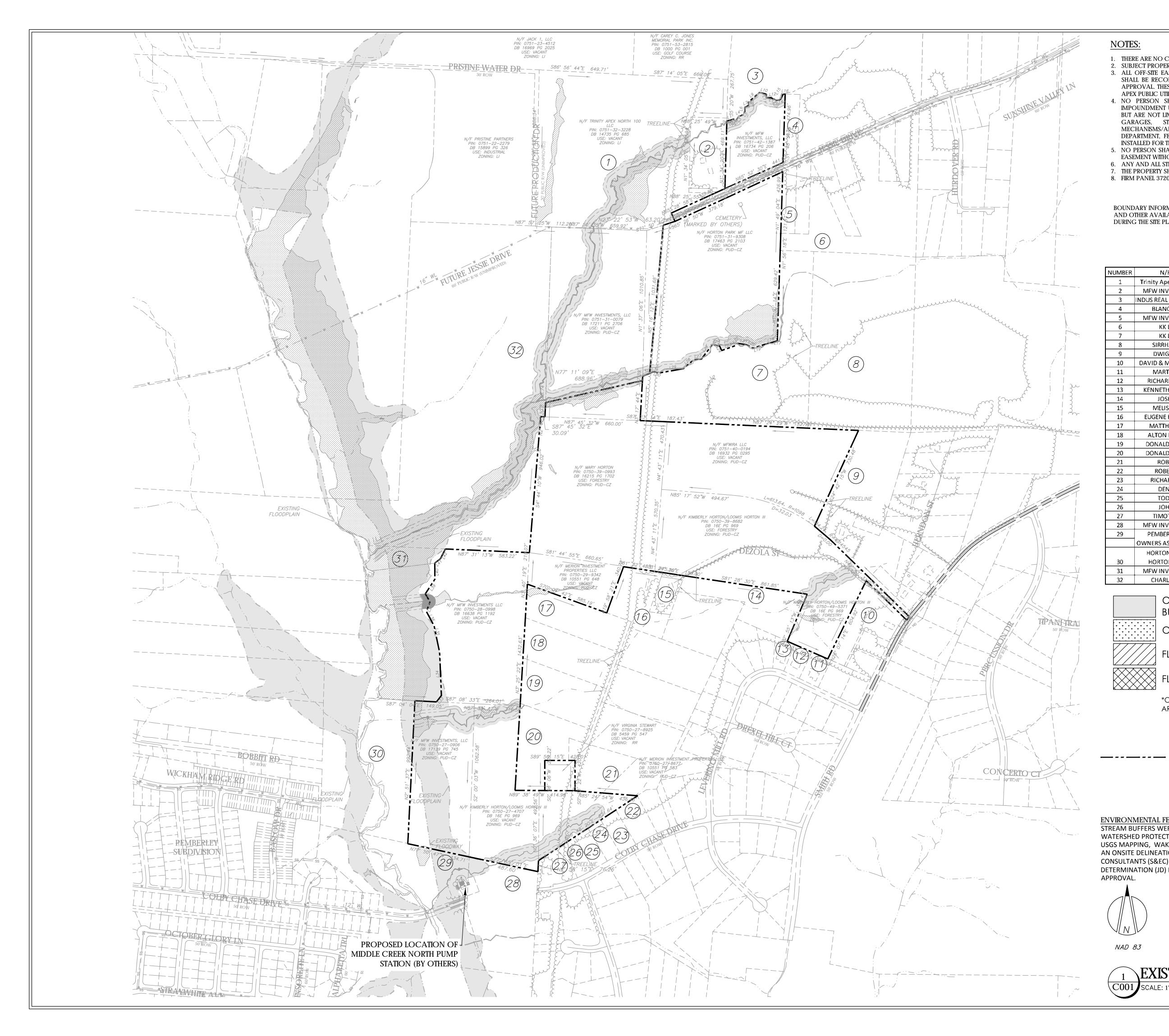
Flood Zone Information:

Watershed Information:

Historical:

PIN	REID	Map Number	Deeded Acreage	Deed Book/Plat Book & Page
0751-42-1387	440614	75103	4.554	DB 16734-206, BM 2016-1677
0751-31-0079	12276	75103	20.000 2.858 acres in PUD	DB 17211-2706
0751-31-9308	34313	75103	23.275 21.42 acres in PUD	DB 17463 - 2103 DB 16638-1192, BM 2016-1902
0750-39-0993	434123	75001	20.000	DB 16215-1702, BM 2015-1973
0751-40-0194	0449641	75103	14.790	DB 16932-295
0750-49-5371	434122	75001	3.84	DB 16-E-969, BM 2018-01394
0750-39-8682	457588	75001	16.54	DB 16-E-969, BM 2018-01394
0750-29-9342	203126	75001	3.946	DB 10551-648
0750-28-0998	40550	75001	23.23 15.033 acres in PUD	DB 16638-1192
0750-27-0906	0033171	75001	10.000	DB 17139-745
0750-27-4707	33292	75001	10.000	DB 16-E-969
0750-27-8677	203135	75001	3.946	DB 10551-583
0750-27-8925	0089614	75001	1.000	DB 17473-2443
	0751-42-1387 0751-31-0079 0751-31-9308 0750-39-0993 0750-49-5371 0750-29-9342 0750-29-9342 0750-28-0998 0750-28-0998 0750-27-0906	0751-42-1387 440614 0751-31-0079 12276 0751-31-9308 34313 0750-39-0993 434123 0750-49-5371 434122 0750-29-9342 4357588 0750-29-9342 203126 0750-27-0906 0033171 0750-27-8677 203135	0751-42-1387 440614 75103 0751-31-0079 12276 75103 0751-31-9308 34313 75103 0750-39-0993 434123 75001 0750-49-5371 434122 75001 0750-39-8682 457588 75001 0750-29-9342 203126 75001 0750-29-9342 203126 75001 0750-27-0906 0033171 75001 0750-27-4707 33292 75001 0750-27-8677 203135 75001	0751-42-1387 440614 75103 4.554 0751-31-0079 12276 75103 20.000 0751-31-9308 34313 75103 23.275 0750-39-0993 434123 75001 20.000 0751-40-0194 0449641 75103 14.790 0750-49-5371 434122 75001 3.84 0750-29-9342 203126 75001 3.946 0750-28-0998 40550 75001 23.23 0750-27-0906 0033171 75001 10.000 0750-27-4707 33292 75001 3.946

All properties included in Apex Zoning Case #18CZ04 for the Horton Park PUD

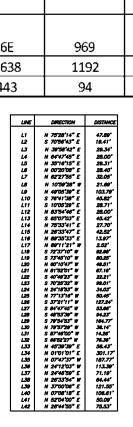

ge of PUD:	146.889 acres
e:	127.84 acres
	PUD-CZ (case #18CZ04)
	PUD-CZ (Planned Unit Density - Conditional Zoning)
ap:	Medium Density Residential, High Density Residential, High Density Residential/Office Employment
	Vacant
	Apartments, Townhouses, Single Family
	White Oak
	Firm Panel 3720075100J and 3720075000J shows the presence of flood zones on properties
	Secondary Watershed Protection Overlay District, Middle Creek Basin, Neuse River Basin
	No historical structures on site

NC License #P-0673

JWNSHIP CAROLINA 27502 PARK SEAL 24427 NOT FOR CONSTRUCTION title: COVER SHEET proj #: 161201 date: July 1, 2019 dwg by: chkd by: JR JE scale: As Noted

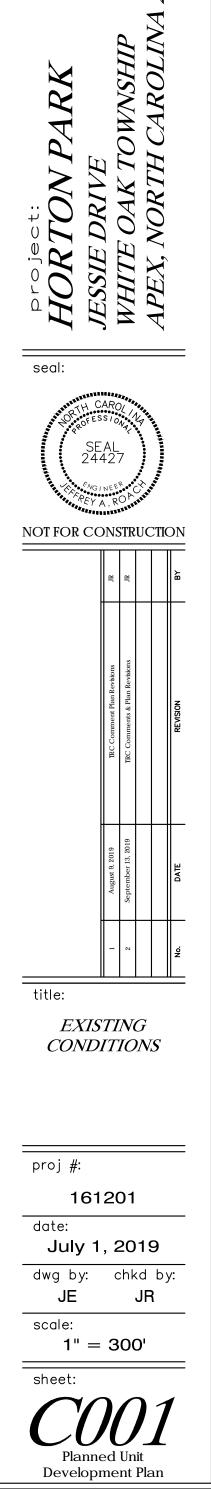
sheet

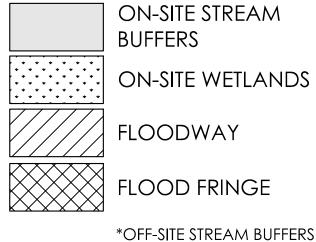
Planned Uni Development Plan © 2019 Peak Engineering & Design. All Rights Reserved

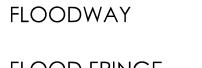


NOTES:

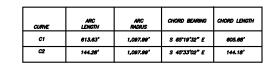
- 1. THERE ARE NO CONTRIBUTING HISTORICAL STRUCTURES WITHIN THE PROJECT BOUNDARY.
- SUBJECT PROPERTIES KNOWN AS PARCEL IDENTIFICATION NUMBERS: AS SHOWN ON SHEET COOO. 3. ALL OFF-SITE EASEMENTS SHALL BE ACQUIRED BY THE DEVELOPER AND THESE OFF-SITE EASEMENTS SHALL BE RECORDED BY A DEED OF EASEMENT PRIOR TO UTILITY INFRASTRUCTURE CONSTRUCTION APPROVAL. THESE EASEMENTS SHALL BE DEDICATED TO THE TOWN OF APEX AND LABELED "TOWN OF APEX PUBLIC UTILITY EASEMENT".
- 4. NO PERSON SHALL PLACE ANY PART OF A STRUCTURE, ANY PERMANENT EQUIPMENT, OR IMPOUNDMENT UPON TOWN OF APEX PUBLIC UTILITY EASEMENTS, PROHIBITED STRUCTURES INCLUDE, BUT ARE NOT LIMITED TO: BUILDINGS, HOUSES, AIR CONDITIONING UNITS, HEAT PUMP UNITS, DECKS, GARAGES, STORAGE/TOOL SHEDS, SWIMMING POOLS, WALLS, RETAINING WALL MECHANISMS/APPURTENANCES AND FENCES. UPON PRIOR WRITTEN APPROVAL BY THE PUBLIC WORKS DEPARTMENT, FENCES MAY PERMITED ACROSS EASEMENTS, PROVIDED THAT AN ACCESS GATE IS INSTALLED FOR THE FULL WIDTH OF THE EASEMENT.
- 5. NO PERSON SHALL PLANT TREES, SHRUBS, OR OTHER PLANTS WITHIN A TOWN OF APEX PUBLIC UTILITY EASEMENT WITHOUT PRIOR WRITTEN APPROVAL FROM THE PUBLIC WORKS DEPARTMENT. 6. ANY AND ALL STREET SIGNS SHALL ONLY BE PROVIDED AND INSTALLED BY THE TOWN OF APEX.
- 7. THE PROPERTY SHOWN HEREON IS IN THE TOWN OF APEX SECONDARY WATERSHED PROTECTION AREA.
- 8. FIRM PANEL 3720075100J AND 3720075000J SHOWS THE PRESENCE OF FLOOD ZONES ON PROPERTY.


BOUNDARY INFORMATION OBTAINED FROM WAKE COUNTY GIS, DEED AND PLAT DESCRIPTIONS, APEX LIDAR AND OTHER AVAILABLE DATA SOURCES. FINAL BOUNDARY AND SURVEY DOCUMENT WILL BE PROVIDED DURING THE SITE PLAN DESIGN PHASE OF THE DEVELOPMENT.


NUMBER	N/F OWNER	PIN	DEED BOOK	DEED PAGE	USE	ZONING
1	Trinity Apex North 100 LLC	0751-32-3228	14735	685	Vacant	RA
2	MFW INVESTMENTS, LLC	0751-32-8256	17311	557	SINGLE FAMILY	RA
3	INDUS REAL ASSOCIATION LLC	0751-42-6828	12215	930	SINGLE FAMILY	RA
4	BLANCHE HINTON	0751-42-4433	12-E	1476	SINGLE FAMILY	RA
5	MFW INVESTMENTS, LLC	0751-41-4924	17311	557	SINGLE FAMILY	RR
6	KK LAND INC	0751-51-0857	13881	629	VACANT	RR
7	KK LAND INC	0751-40-0697	13881	629	VACANT	RR
8	SIRRHAN GRIFFIN	0751-40-7981	8778	2496	VACANT	RR
9	DWIGHT WRIGHT	0750-49-8888	16215	1702	SINGLE FAMILY	RR
10	DAVID & MARILYN MARTIN	0750-59-0018	17467	358	SINGLE FAMILY	RR
11	MARTHA BURNET	0750-48-5688	13519	1893	SINGLE FAMILY	RR
12	RICHARD BACHOLZKY	0750-48-4775	16444	1976	SINGLE FAMILY	RR
13	KENNETH MOUSHEGIAN	0750-48-3860	12784	2062	SINGLE FAMILY	RR
14	JOSHUA BECK	0750-49-2134	15284	1727	SINGLE FAMILY	RR
15	MELISSA HINTON	0750-39-5262	8281	225	MOBILE	RR
16	EUGENE HORTON HEIRS	0750-39-3222	15-E	1859	VACANT	RR
17	MATTHEW HORTON	0750-29-9045	5861	59	VACANT	RR
18	ALTON RICHARDSON	0750-28-8880	7245	786	VACANT	RR
19	DONALD RICHARDSON	0750-28-8532	11858	2707	VACANT	RR
20	DONALD RICHARDSON	0750-28-6271	7275	654	VACANT	RR
21	ROBERT HEISE	0750-37-1996	16444	2524	SINGLE FAMILY	RR
22	ROBERT CATHEY	0750-37-3664	11988	1801	SINGLE FAMILY	RR
23	RICHARD STEWART	0750-37-2555	11012	2141	SINGLE FAMILY	RR
24	DENNIS DALE	0750-37-1540	11800	97	SINGLE FAMILY	RR
25	TODD YOUNG	0750-37-0454	11069	476	SINGLE FAMILY	RR
26	JOHN FALCH	0750-27-9358	10836	2123	SINGLE FAMILY	RR
27	TIMOTHY FELTON	0750-27-8301	17376	1337	SINGLE FAMILY	RR
28	MFW INVESTMENTS, LLC	0750-26-4926	16554	2295	SINGLE FAMILY	RR
29	PEMBERLY PROPERTY OWNERS ASSOCIATION, INC.	0750-17-6279	16533	1996	VACANT	PUD-CZ
	HORTON, KIMBERLY A					
30	HORTON, LOOMIS III	0750-18-4078	16E	969	VACANT	RR
31	MFW INVESTMENTS, LLC	0750-19-7426	16638	1192	VACANT	RR
32	CHARLES WOMBLE	0751-20-1670	4443	94	VACANT	RA

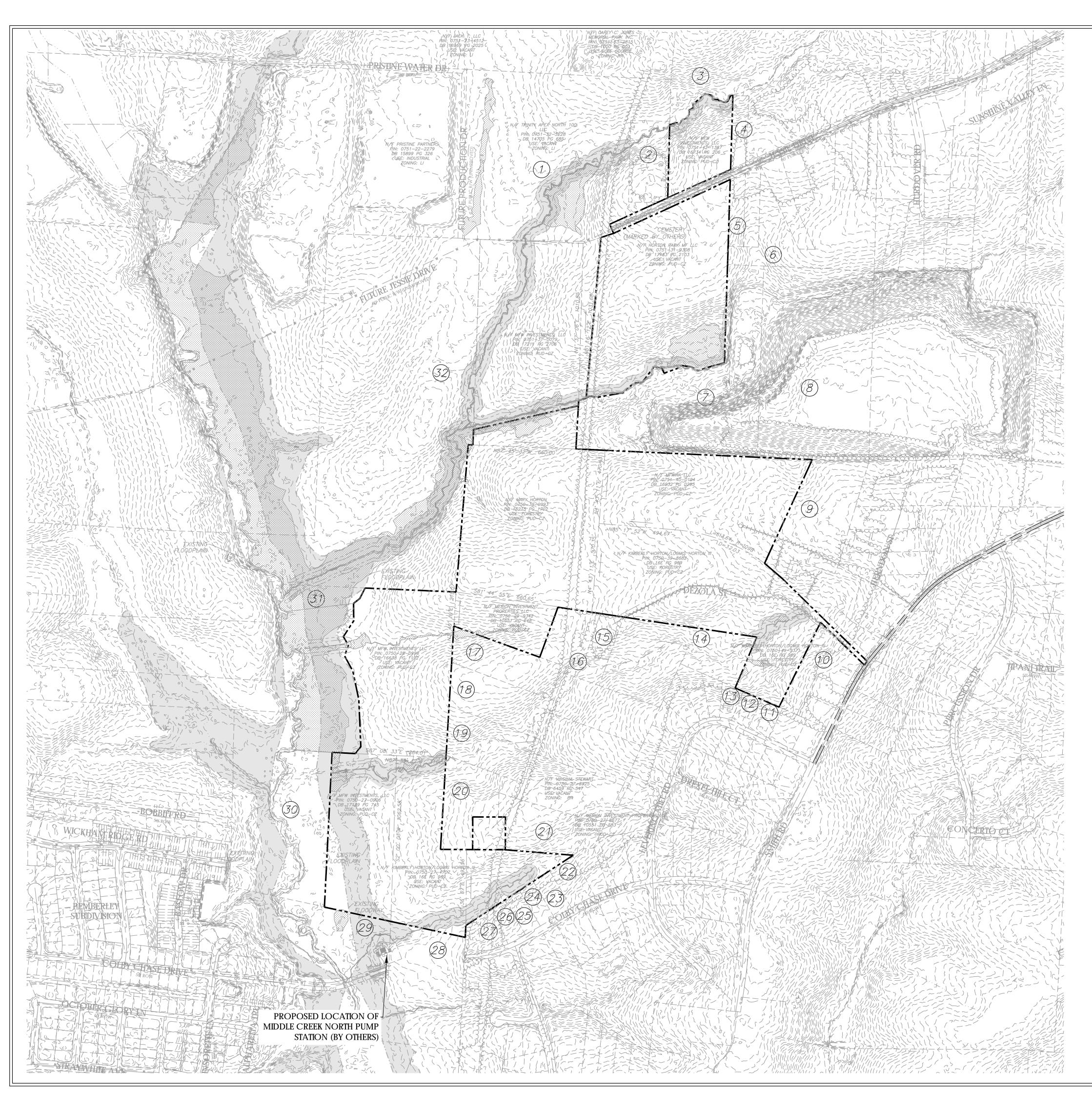


27502



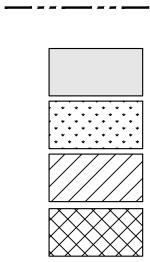
FLOOD FRINGE

*OFF-SITE STREAM BUFFERS ARE NOT SHOWN


> PROJECT'S PERIMETER BOUNDARY

ENVIRONMENTAL FEATURES NOTE: STREAM BUFFERS WERE OBTAINED FROM APEX WATERSHED PROTECTION OVERLAY DISTRICT MAP, USGS MAPPING, WAKE COUNTY SOILS SURVEY AND AN ONSITE DELINEATION BY SOIL & ENVIRONMENTAL CONSULTANTS (S&EC). A FINAL JURISDICTIONAL DETERMINATION (JD) MAP WILL BE PREPARED FOR

APPROVAL.	,	
	0 150 300	600
NAD 83	SCALE: 1" = 300'	
NAD 65		
	STING CON	DIIIONS
C001 SCALE:	1"= 300'	


© 2019 Peak Engineering & Design. All Rights Reserved

ENVIRONMENTAL FEATURES NOTE:

STREAM BUFFERS WERE OBTAINED FROM APEX WATERSHED PROTECTION OVERLAY DISTRICT MAP, USGS MAPPING, WAKE COUNTY SOILS SURVEY AND AN ONSITE DELINEATION BY SOIL & ENVIRONMENTAL CONSULTANTS (S&EC). A FINAL JURISDICTIONAL DETERMINATION (JD) MAP WILL BE PREPARED FOR APPROVAL.

PROJECT'S PERIMETER BOUNDARY

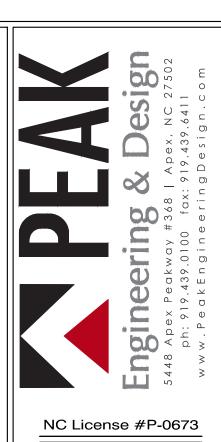
ON-SITE STREAM BUFFERS

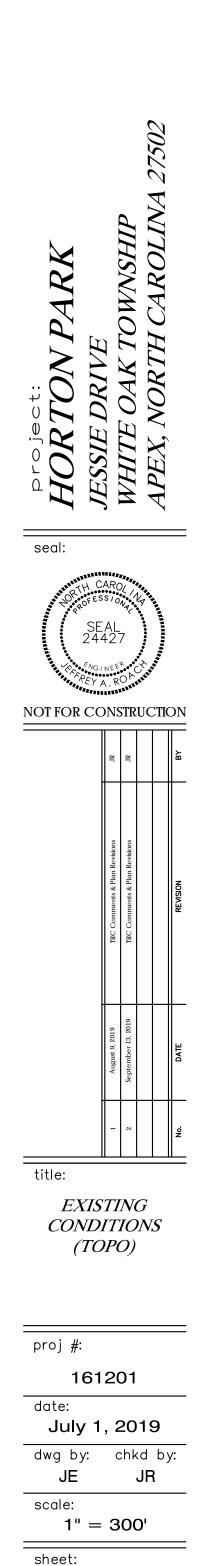
ON-SITE WETLANDS

FLOODWAY

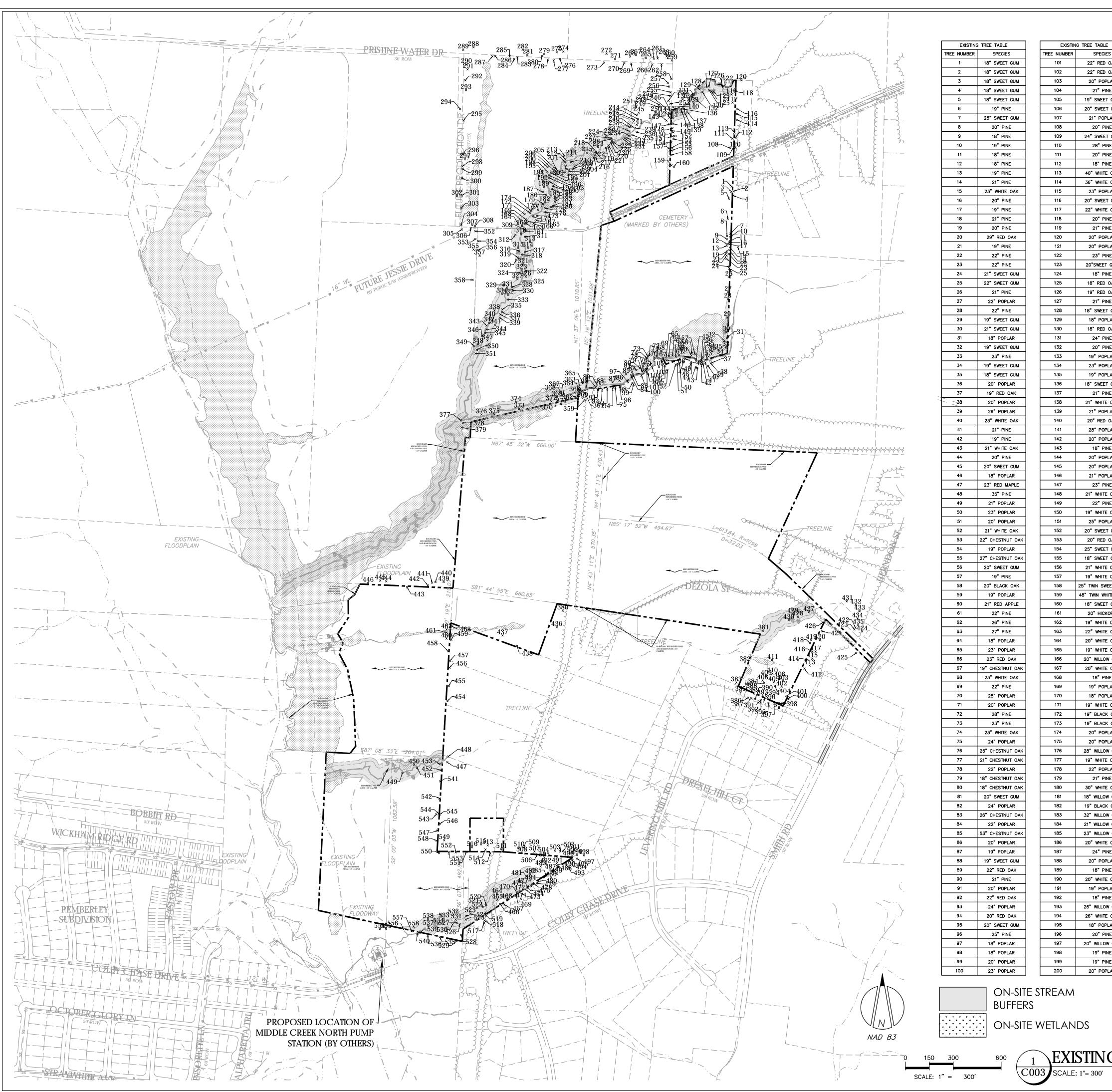

FLOOD FRINGE

*OFF-SITE STREAM BUFFERS ARE NOT SHOWN


NUMBER	N/F OWNER	PIN	DEED BOOK	DEED PAGE	USE	ZONING
1	Trinity Apex North 100 LLC	0751-32-3228	14735	685	Vacant	RA
2	MFW INVESTMENTS, LLC	0751-32-8256	17311	557	SINGLE FAMILY	RA
3	INDUS REAL ASSOCIATION LLC	0751-42-6828	12215	930	SINGLE FAMILY	RA
4	BLANCHE HINTON	0751-42-4433	12-E	1476	SINGLE FAMILY	RA
5	MFW INVESTMENTS, LLC	0751-41-4924	17311	557	SINGLE FAMILY	RR
6	KK LAND INC	0751-51-0857	13881	629	VACANT	RR
7	KK LAND INC	0751-40-0697	13881	629	VACANT	RR
8	SIRRHAN GRIFFIN	0751-40-7981	8778	2496	VACANT	RR
9	DWIGHT WRIGHT	0750-49-8888	16215	1702	SINGLE FAMILY	RR
10	DAVID & MARILYN MARTIN	0750-59-0018	17467	358	SINGLE FAMILY	RR
11	MARTHA BURNET	0750-48-5688	13519	1893	SINGLE FAMILY	RR
12	RICHARD BACHOLZKY	0750-48-4775	16444	1976	SINGLE FAMILY	RR
13	KENNETH MOUSHEGIAN	0750-48-3860	12784	2062	SINGLE FAMILY	RR
14	JOSHUA BECK	0750-49-2134	15284	1727	SINGLE FAMILY	RR
15	MELISSA HINTON	0750-39-5262	8281	225	MOBILE	RR
16	EUGENE HORTON HEIRS	0750-39-3222	15-E	1859	VACANT	RR
17	MATTHEW HORTON	0750-29-9045	5861	59	VACANT	RR
18	ALTON RICHARDSON	0750-28-8880	7245	786	VACANT	RR
19	DONALD RICHARDSON	0750-28-8532	11858	2707	VAĆANT	RR
20	DONALD RICHARDSON	0750-28-6271	7275	654	VACANT	RR
21	ROBERT HEISE	0750-37-1996	16444	2524	SINGLE FAMILY	RR
22	ROBERT CATHEY	0750-37-3664	11988	1801	SINGLE FAMILY	RR
23	RICHARD STEWART	0750-37-2555	11012	2141	SINGLE FAMILY	RR
24	DENNIS DALE	0750-37-1540	11800	97	SINGLE FAMILY	RR
25	TODD YOUNG	0750-37-0454	11069	476	SINGLE FAMILY	RR
26	JOHN FALCHI	0750-27-9358	10836	2123	SINGLE FAMILY	RR
27	TIMOTHY FELTON	0750-27-8301	17376	1337	SINGLE FAMILY	RR
28	MFW INVESTMENTS, LLC	0750-26-4926	16554	2295	SINGLE FAMILY	RR
29	PEMBERLY PROPERTY	0750-17-6279	16533	1996	ναζαντ	PUD-CZ
	OWNERS ASSOCIATION, INC.	0/50-17-02/9	10222	1990	VACANT	PUD-CZ
	HORTON, KIMBERLY A					
30	HORTON, LOOMIS III	0750-18-4078	16E	969	VACANT	RR
31	MFW INVESTMENTS, LLC	0750-19-7426	16638	1192	VACANT	RR
32	CHARLES WOMBLE	0751-20-1670	4443	94	VACANT	RA


LINE	DIRECTION	DISTANCE
L1	N 75°28'14" E	47.89'
L2	S 70°56'43" E	19.41'
L3	N 39°58'42" E	29.34'
L4	N 64°47'45" E	28.00'
L5	N 35°16'15" E	29.31'
L6	N 00°20'08" E	28.40'
L7	N 62°27'55" E	32.05'
L8	N 10°59'28" W	21.69'
L9	N 49°05'39" E	103.79'
L10	S 76°41'38" E	45.82'
L11	S 10°05'29" E	28.71'
L12	N 83°54'46" E	28.00'
L13	S 65°07'03" E	45.42'
L14	N 75°33'41" E	27.70'
L15	N 26°33'47" E	42.52'
L16	N 89°35'33" E	13.97'
L17	N 89°11'21" W	2.52'
L18	S 72°37'10" W	92.98'
L19	S 73°45'10" W	80.25'
L20	N 60°10'47" W	49.51'
L21	N 81°52'01" W	67.16'
L22	S 40°49'23" W	22.21'
L23	S 70°25'32" W	99.01'
L24	N 24°18'53" W	34.03'
L25	N 77°13'16" W	50.45'
L26	S 37°21'11" W	127.24'
L27 L28	S 84°47'45" W S 48°53'39" W	53.66'
L28 L29	S 48°53'39" W S 79°54'53" W	94.23' 164.77'
L29 L30	N 79°57°29" W	36.14'
L30 L31	S 87°46'00" W	14.26'
L32	S 66'52'27" W	76.36'
L33	N 45'39'39" E	56.43'
L34	N 01°01'01" E	301.17'
L35	N 07°47'37" W	187.77'
L36	N 24°12'03" W	113.39'
L37	N 24°46'59" E	71.19'
L38	N 26'33'54" W	64.44'
L39	N 37°00'06" E	121.55'
L40	N 07°08'18" E	106.61'
L41	N 52°04'00" E	50.09'
L42	N 26°44'55" E	75.53'

CURVE	ARC LENGTH	ARC RADIUS	CHORD BEARING	CHORD LENGTH
C1	613.63'	1,097.99'	S 65°19'32" E	605.68'
C2	144.28'	1,097.99'	S 45°33'02" E	144.18'



TREE NUMBE	R SPECIES
101	22" RED OAK
102	22" RED OAK
103	20" POPLAR
104	21" PINE
105	19" SWEET GUM
106	20" SWEET GUM
107	21" POPLAR
108 109	20" PINE 24" SWEET GUM
109	24 SWEET GOM 28" PINE
110	20" PINE
112	18" PINE
113	40" WHITE OAK
114	36" WHITE OAK
115	23" POPLAR
116	20" SWEET GUM
117	22" WHITE OAK
118	20" PINE
119	21" PINE
120	20" POPLAR
121	20" POPLAR
122	23" PINE
123	20"SWEET GUM
124 125	18" PINE 18" RED OAK
125	18 RED OAK
128	21" PINE
127	18" SWEET GUM
129	18" POPLAR
130	18" RED OAK
131	24" PINE
132	20" PINE
133	19" POPLAR
134	23" POPLAR
135	19" POPLAR
136	18" SWEET GUM
137	21" PINE
138 139	21" WHITE OAK 21" POPLAR
139	20" RED OAK
140	28" POPLAR
142	20" POPLAR
143	18" PINE
144	20" POPLAR
145	20" POPLAR
146	21" POPLAR
147	23" PINE
148	21" WHITE OAK
149	22" PINE
150 151	19" WHITE OAK 25" POPLAR
151	25 PUPLAR 20" SWEET GUM
153	20" RED OAK
154	25" SWEET GUM
155	18" SWEET GUM
156	21" WHITE OAK
157	19" WHITE OAK
158	25" TWIN SWEET GUM
159	48" TWIN WHITE OAK
160	18" SWEET GUM
161	20" HICKORY
162	19" WHITE OAK 22" WHITE OAK
163 164	
164	20" WHITE OAK
165	20" WILLOW OAK
167	20" WHITE OAK
168	18" PINE
169	19" POPLAR
170	18" POPLAR
171	19" WHITE OAK
172	19" BLACK GUM
173	19" BLACK GUM
174 175	20" POPLAR 20" POPLAR
175	20 POPLAR 28" WILLOW OAK
178	19" WHITE OAK
178	22" POPLAR
179	21" PINE
180	30" WHITE OAK
181	18" WILLOW OAK
182	19" BLACK GUM
183	32" WILLOW OAK
184	21" WILLOW OAK
185 186	23" WILLOW OAK 20" WHITE OAK
180	20 WHILE OAK 24" PINE
187	20" POPLAR
189	18" PINE
	20" WHITE OAK
190	19" POPLAR
190 191	'
	18" PINE
191	
191 192 193 194	18" PINE 26" WILLOW OAK 26" WHITE OAK
191 192 193 194 195	18" PINE 26" WILLOW OAK 26" WHITE OAK 18" POPLAR
191 192 193 194 195 196	18" PINE 26" WILLOW OAK 26" WHITE OAK 18" POPLAR 20" PINE
191 192 193 194 195	18" PINE 26" WILLOW OAK 26" WHITE OAK 18" POPLAR
191 192 193 194 195 196 197	18" PINE 26" WILLOW OAK 26" WHITE OAK 18" POPLAR 20" PINE 20" WILLOW OAK

EXISTING TREE TABLE

260 261 262 263 264 265 266 18" WHITE OAK 267 268 269 18" RED OAK 270 19" SWEET GUM 271 23" WHITE OAK 272 273 20" WHITE OAK 274 22" RED OAK 275 18" WHITE OAK 276 23" RED OAK 277 18" RED OAK 278 279 20" RED OAK 280 20" WHITE OAK 281 282 18" WHITE OAK 283 284 285 286 287 20" RED OAK 288 289 20" SWEET GUM 290 291 292 293 294

205 20" BLACK GUM 206 20" WHITE OAK 207 38" RED MAPLE 208 209 20" WHITE OAK 210 211 20" WILLOW OAK 212 19" POPLAR 213 214 215 21" RED MAPLE 216 217 218 219 220 221 222 223 224 225 226 227 228 229

230

231

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

259

232

EXISTING TREE TABLE

201 21" BLACK GUM

203 20" WILLOW OAK

204 20" POPLAR TWINS

SPECIES

21" ELM

21" POPLAR

25" POPLAR

19" PINE

20" PINE

19" POPLAR

21" POPLAR

26" PINE

21" PINE

24" POPLAR

25" POPLAR

19" POPLAR

23" PINE

19" POPLAR

21" PINE

22" PINE

20" PINE

22" PINE

21" PINE

22" PINE

20" WILLOW OAK

18" POPLAR

22" POPLAR

22" POPLAR

24" PINE

25" PINE

21" PINE

19" POPLAR

22" PINE

25" POPLAR

19" PINE

18" PINE

18" WHITE OAK

21" PINE

28" RED OAK

18" RED OAK

18" RED OAK

23" PINE

26" PINE

19" WHITE OAK

20" PINE

18" PINE

18" POPLAR

22" PINE

21" POPLAR

21" POPLAR

21" PINE

21" PINE

19"PINE

22" POPLAR

18" POPLAR

18" PINE

23" RED OAK

40" POPLAR

20" PINE

18" RED OAK

18" PINE

20" PINE

21" PINE

18" WHITE OAK

19" PINE

18" PINE

19" POPLAR

19" PINE

19" PINE

18" PINE

19" POPLAR

18" PINE

18" PINE

19" WHITE OAK

295

296

297

256 18" WHITE OAK

258 18" WHITE OAK

233 20" SWEET GUM

REE NUMBER

202

EXISTING TREE TABLE

302 20" RED MAPLE 303 32" WILLOW OAK

306 19" WILLOW OAK

312 19" RED MAPLE

313 18" SWEET GUM

319 26" SWEET GUM

320 21" WILLOW OAK

322 27" WHITE OAK

325 21" WILLOW OAK

327 19" RED MAPLE

328 20" WILLOW OAK

332 19" WHITE OAK

338 25" RED MAPLE

341 21" BLACK GUM

343 22" SWEET GUM

345 19" SWEET GUM

346 35" WILLOW OAK

348 33" SYCAMORE

353 21" WILLOW OAK

355 18" WILLOW OAK

SPECIES

28" PINE

18" WHITE OAK

20" WHITE OAK

18" SWEET GUM

18" SWEET GUM

19" SWEET GUM

21" POPLAR

19" PINE

20" ELM

19" POPLAR

21" POPLAR

20" SWEET GUM

18" SWEET GUM

20" POPLAR

21" HICKORY

20" RED OAK

19" RED OAK

19" SWEET GUM

19" POPLAR

18" PINE

18" PINE

19" RED MAPLE

19" WILLOW OAK

20" RED MAPLE

18" PINE

20" WHITE OAK

19" POPLAR

20" POPLAR

33" WILLOW OAK

22" POPLAR

28" POPLAR

21" RED OAK

19" WHITE OAK

24" WILLOW OAK

29" WILLOW OAK

19" SWEET GUM

TREE NUMBER

301

304

307

309

310

314

315

316

317

318

321

323

324

326

329

331

330

333

335

336

337

339

342

344

347

349

350

351

354

356

352

340

334

305

308

311

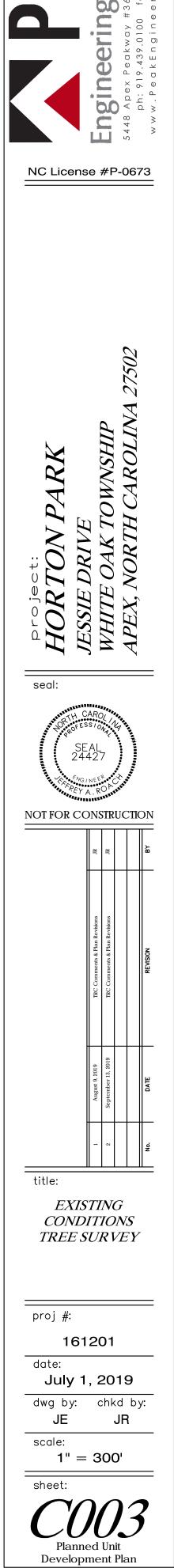
EXISTING TREE TABLE

\EXISTING CONDITIONS - TREE SURVEY

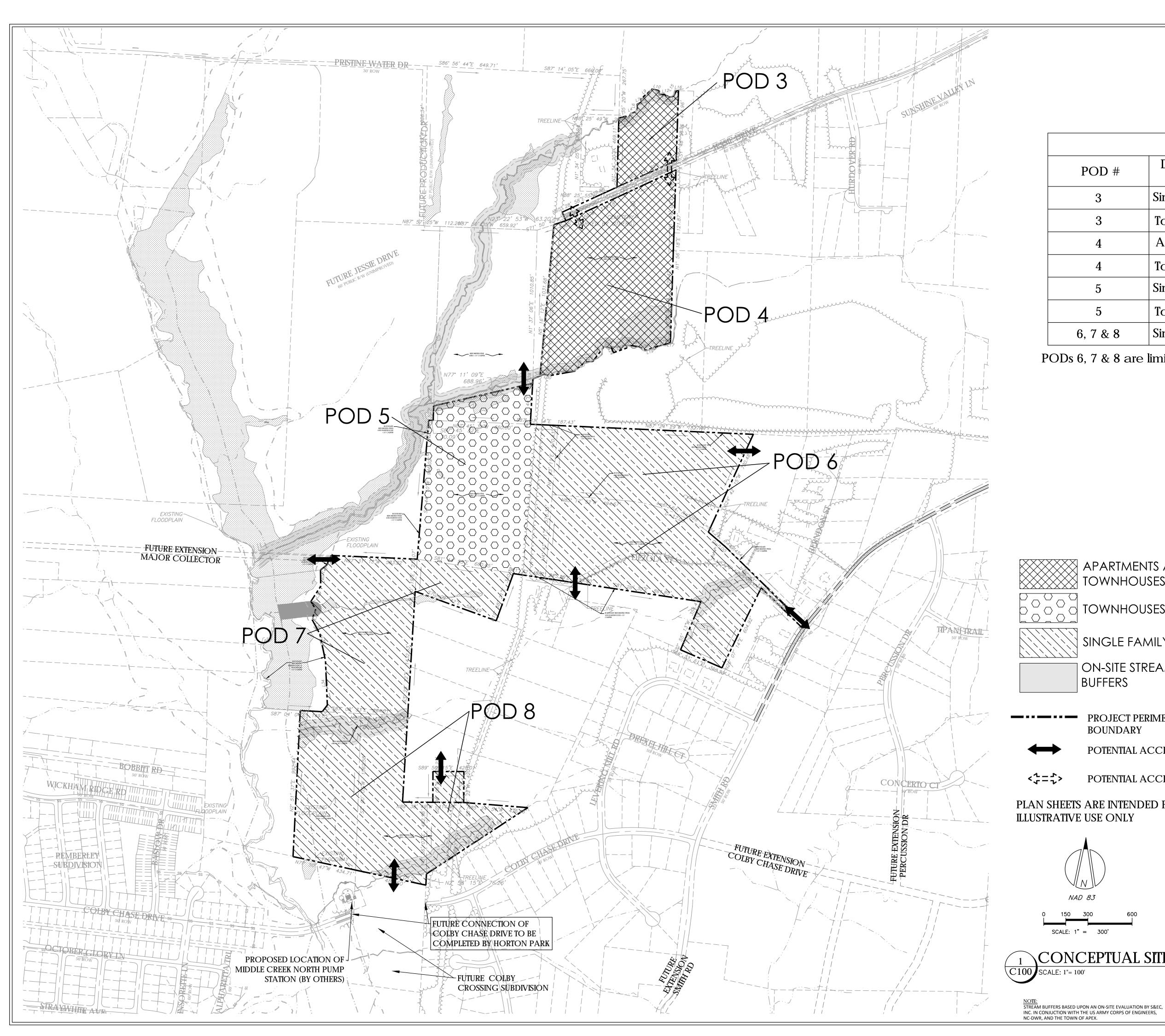
FORESTER ELLEN & ASSOCIATES JOSEPH L. ELLEN NC REGISTERED FORESTER #565 219 E CHATHAM ST CARY, NC 27511 PHONE: (919) 353-1161 JOSEPHELLEN49@GMAIL.COM

FLO

298		19" PINE		
299		19" PINE		
300		21" WILLOW OAK		
	FL	OODWA	Y	


*OFF-SITE STREAM BUFFERS
ARE NOT SHOWN

)OD	FRINGE		


357	18" WHITE OAK
358	18" WHITE OAK
359	19" RED MAPLE
360	25" RED OAK
361	19" WHITE OAK
362	20" RED MAPLE
363	30" RED MAPLE
364	21" RED OAK
365	26" POPLAR
366	22" SWEET GUM
367	18" RED MAPLE
368	18" RED MAPLE
369	26" GREEN ASH
370	21" POPLAR
371	40" POPLAR
372	18" CHESTNUT OAK
373	22" POPLAR
374	24" CHESTNUT OAK
375	18" WHITE OAK
376	18" POPLAR
377	19" GREEN ASH
378	20" GREEN ASH
379	19" WILLOW OAK
380	22" WHITE OAK
381	19" WHITE OAK
382	18" POPLAR
383	19" PINE
384	20" PINE
385	23" POPLAR
386	24" POPLAR
387	22" WHITE OAK
388	21" POPLAR
389	20" PINE
390	21" RED OAK
391	20" PINE
392	19" POPLAR
393	19" PINE
394	18" PINE
395	19" PINE
396	19" PINE
397	18" POPLAR
398	19" PINE
399	20" PINE
400	18" PINE

TREE NUMBER	
401	SPECIES 19" PINE
402	20" PINE
403	25" PINE
404	21" POPLAR
405	20" POPLAR
406	19" WHITE OAK
407	20" POPLAR
408	23" RED OAK
409	18" WHITE OAK
410	23" WHITE OAK
411	19" SWEET GUM
412	22" POPLAR
413	24" PINE
414	18" SWEET GUM
415	19" PINE
416	18" PINE
417	18" PINE
418	24" PINE
419	19" PINE
420	28" SWEET GUM
421	43" SWEET GUM
422	19" PINE
423	19" PINE
424	22" PINE
425	30" BASSWOOD
426	26" WILLOW OAK
427	18" POPLAR
428	19" WHITE OAK
429	20" RED MAPLE
430	20" WHITE OAK
431	18" SWEET GUM
432	24" PINE
433	24 FINE 21" PINE
434	19" PINE
434	19 PINE
436	19" RED OAK
430	
	19" RED OAK
438	18" PINE
439	28" WHITE OAK
440	21" RED OAK
441	19" WHITE OAK
442	19" WHITE OAK
443	31" WHITE OAK
444	26" POPLAR
445	21" PINE
446	21" PINE
447	21" PINE
448	18" POPLAR
449	22" RED OAK
450	18" SWEET GUM
451	18" POPLAR
452	23" SWEET GUM
453	20" POPLAR
454	20" RED OAK
455	20" RED OAK
456	18" WHITE OAK
457	22" WHITE OAK
458	18" RED OAK
459	18" WHITE OAK
460	18" WHITE OAK
461	28" WHITE OAK
462	28" WHITE OAK
463	21" RED MAPLE
464	23" WILLOW OAK
465	18" MAPLE OAK
466	19" POPLAR
467	19" POPLAR
468	19" WHITE OAK
469	20" WHITE OAK
470	19" POPLAR
471	19" RED OAK
472	19" WHITE OAK
473	21" WHITE OAK
474	20" POPLAR
475	18" RED MAPLE
476	18" WHITE OAK
477	20" POPLAR
478	22" WHITE OAK
479	21" SWEET GUM
480	30" WHITE OAK
481	18" RED MAPLE
482	22" POPLAR
483	24" WHITE OAK
484	24" WHITE OAK
485	24" WHITE OAK
486	18" WHITE OAK
487	20" WILLOW OAK
488	19" WHITE OAK
489	19" WHITE OAK
490	-
	20" WHITE OAK
491	20" WHITE OAK 21" WHITE OAK
491 492	
	21" WHITE OAK
492	21" WHITE OAK 18" SWEET GUM
492 493	21" WHITE OAK 18" SWEET GUM 21" WILLOW OAK
492 493 494	21" WHITE OAK 18" SWEET GUM 21" WILLOW OAK 22" POPLAR
492 493 494 495	21" WHITE OAK 18" SWEET GUM 21" WILLOW OAK 22" POPLAR 22" WHITE OAK
492 493 494 495 496	21" WHITE OAK 18" SWEET GUM 21" WILLOW OAK 22" POPLAR 22" WHITE OAK 22" POPLAR
492 493 494 495 496 497	21" WHITE OAK 18" SWEET GUM 21" WILLOW OAK 22" POPLAR 22" WHITE OAK 21" WHITE OAK

FXISTING	TREE TABLE
TREE NUMBER	SPECIES
501	19" PINE
502	19" PINE
503	20" PINE
504	26" WILLOW OAK
505	19" RED MAPLE
506	19" WHITE OAK
507	18" PINE
508	18" PINE
509	22" PINE
510	18" PINE
510	35" PINE
512	22" WILLOW OAK
513	19" PINE
514	23" PINE
515	19" PINE
516	20" PINE
517	20 PINE 21" PINE
517	18" PINE
518	20" PINE
520	20 PINE 24" PINE
520	24 PINE 20" POPLAR
521	40" RED MAPLE
522	21"" RED MAPLE
525	19" POPLAR
525	19 PUPLAR 19" SWEET GUM
525	22" SYCAMORE
527 528	18" POPLAR
529	
530	21" WILLOW OAK 18" SWEET GUM
	21" SWEET GUM
531 532	18" SWEET GUM
533	20" POPLAR
534	24" WILLOW OAK
535	22" PINE
536	18" PINE
537	18" SWEET GUM
538	18 SWEET GUM
539	21" RED MAPLE
539	18" RED MAPLE
540	21" POPLAR
542	18" RED OAK
542	36" RED OAK
543	21" SWEET GUM
545	21" SWEET GUM 20" PINE
546	
	18" PINE 18" PINE
547	18" PINE 18" PINE
548	
549	20" PINE
550	18" PINE
551	19" PINE
552	18" PINE
553	18" PINE
554	22" POPLAR
555	18" SWEET GUM
556	18" POPLAR
557	20" POPLAR
558	19" RED OAK

© 2019 Peak Engineering & Design. All Rights Reserved

POD SUMMARY						
POD #	ACREAGE	MAXIMUM ALLOWED				
3	Single Family	4.55	18*			
3	Townhomes	4.55	27**			
4	Apartments	20.99	314***			
4	Townhomes	20.99	125**			
5	Single Family	19.71	78*			
5	Townhomes	19.71	118**			
8,7&8	Single Family	82.59	227			

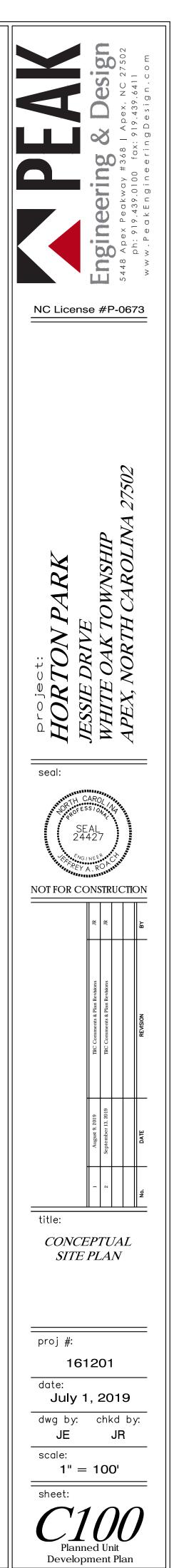
PODs 6, 7 & 8 are limited by the number of lots - not density

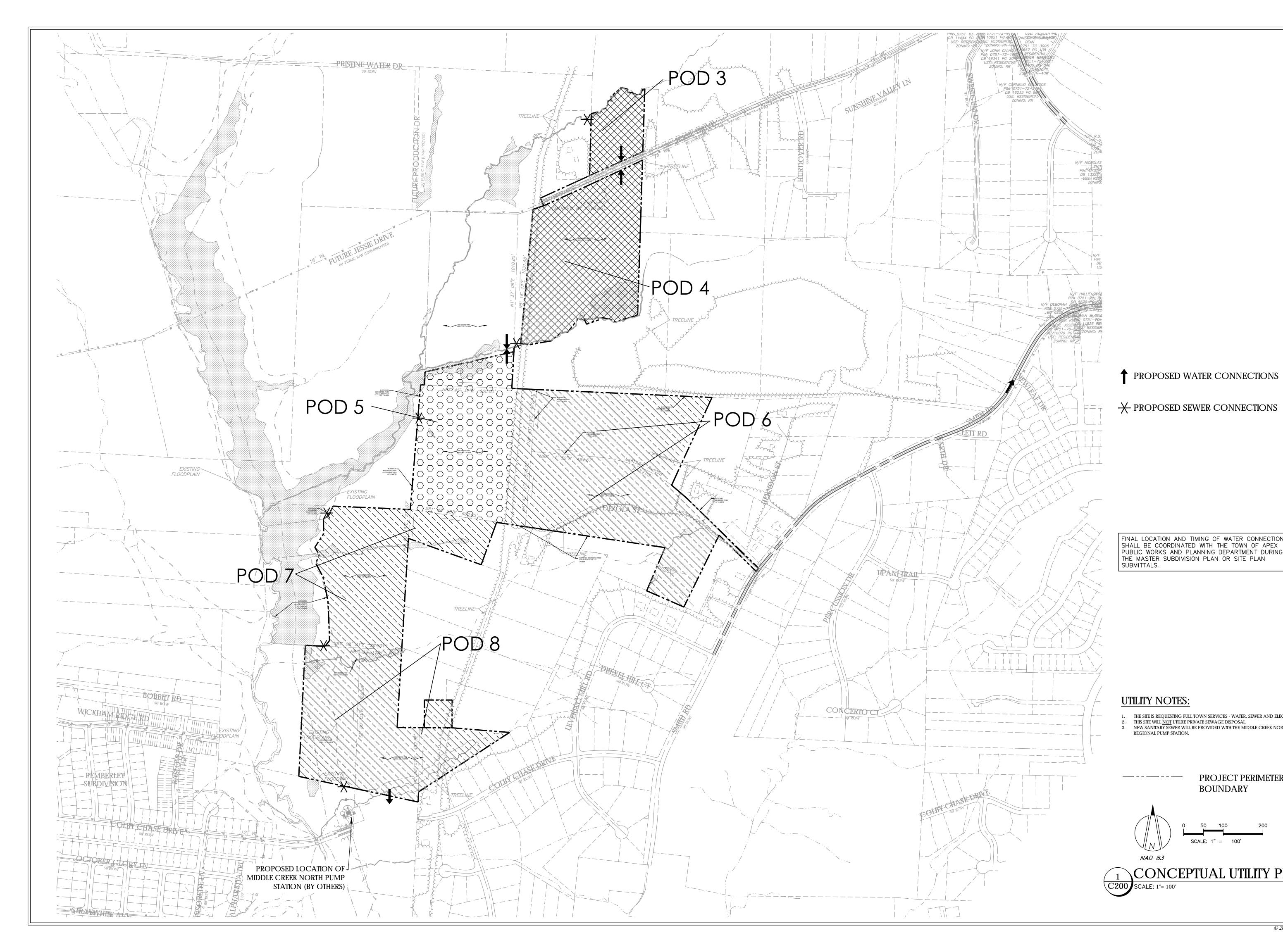
APARTMENTS AND/OR TOWNHOUSES

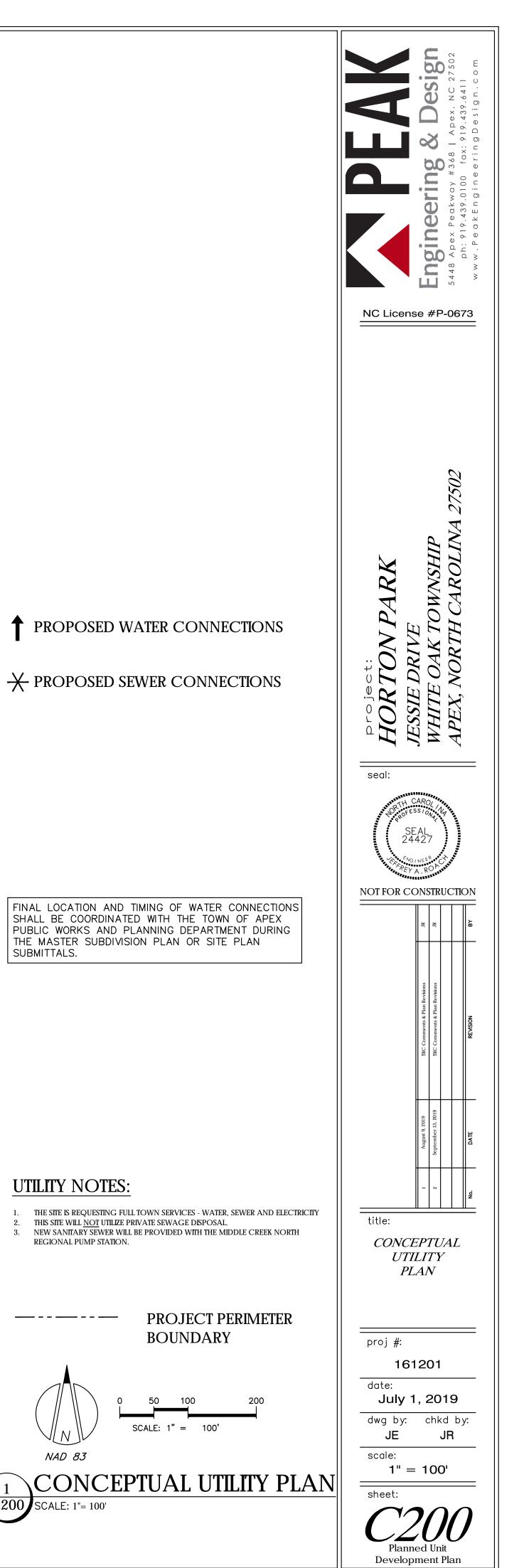
SINGLE FAMILY

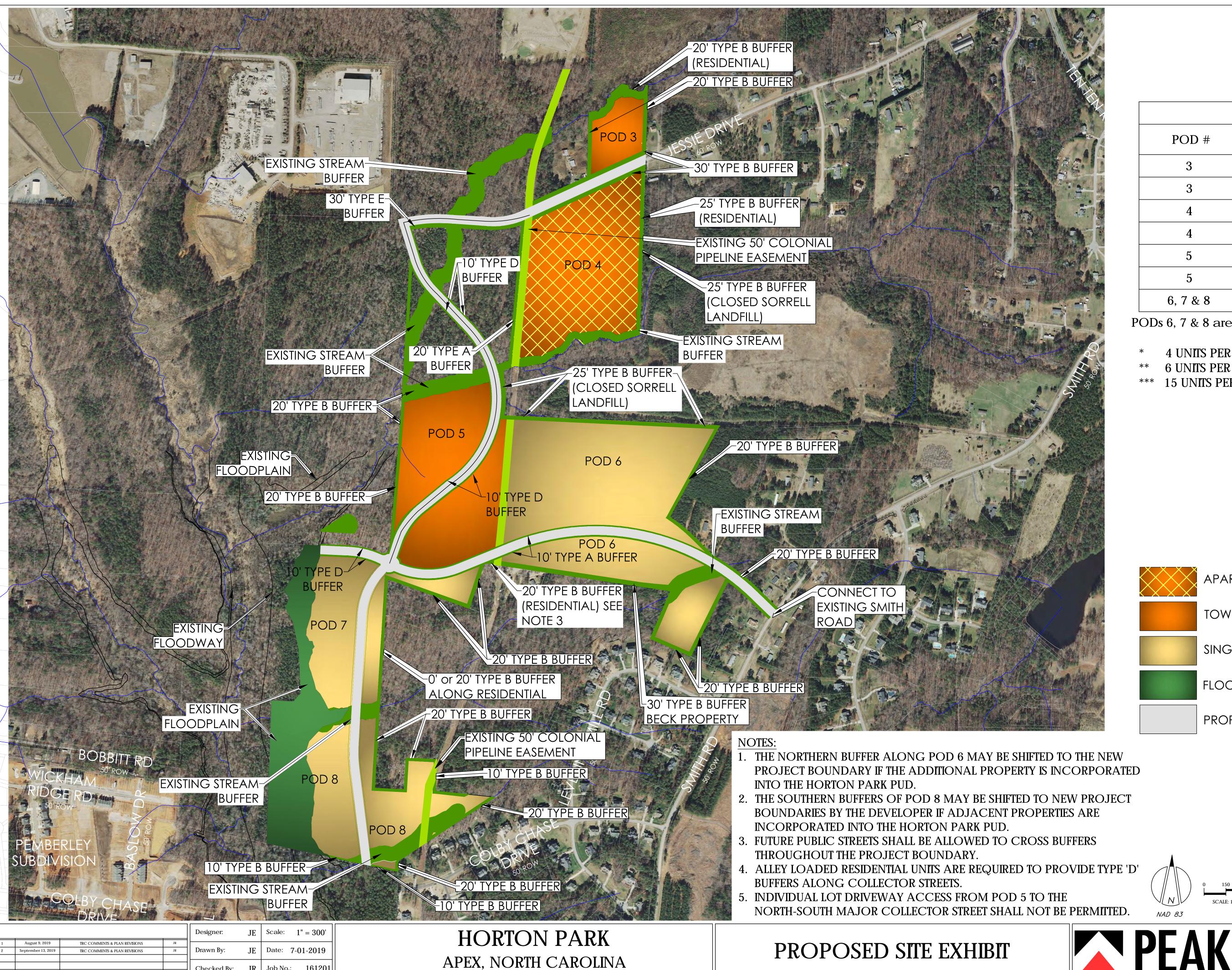
ON-SITE STREAM BUFFERS

PROJECT PERIMETER BOUNDARY

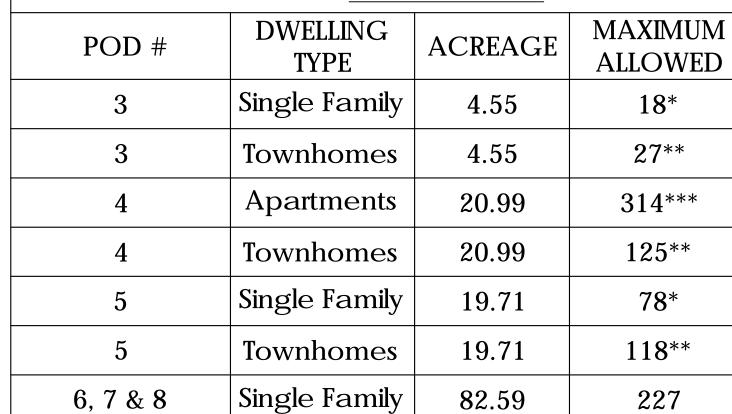

POTENTIAL ACCESS POINTS (PHASE 1)


POTENTIAL ACCESS POINTS (PHASE 2)


PLAN SHEETS ARE INTENDED FOR


300

CONCEPTUAL SITE PLAN



				Designer:	JE	Scale: $1'' = 300'$	ЦОР
1	August 9, 2019	TRC COMMENTS & PLAN REVISIONS	JR				
2	September 13, 2019	TRC COMMENTS & PLAN REVISIONS	JR	Drawn By:	JE	Date: 7-01-2019	
							APEX, NO
				Checked By:	JR	Job No.: 161201	
No.	DATE	REVISION	BY				

POD SUMMARY

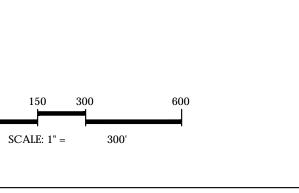
PODs 6, 7 & 8 are limited by the number of lots - not density

4 UNITS PER ACRE

** 6 UNITS PER ACRE

*** 15 UNITS PER ACRE

APARTMENTS AND/OR TOWNHOUSES


TOWNHOUSES AND/OR SINGLE FAMILY

SINGLE FAMILY

FLOODPLAIN OR BUFFERS

PROPOSED STREETS

NAD 83

Engineering & Design 5448 Apex Peakway #368 | Apex, NC 27502 ph: 919.439.0100 fax: 919.439.6411 www.PeakEngineeringDesign.com Sheet No. *EX-1*

© 2019 Peak Engineering & Design. All Rights Reserved

SINGLE FAMILY BUILDING ELEVATIONS

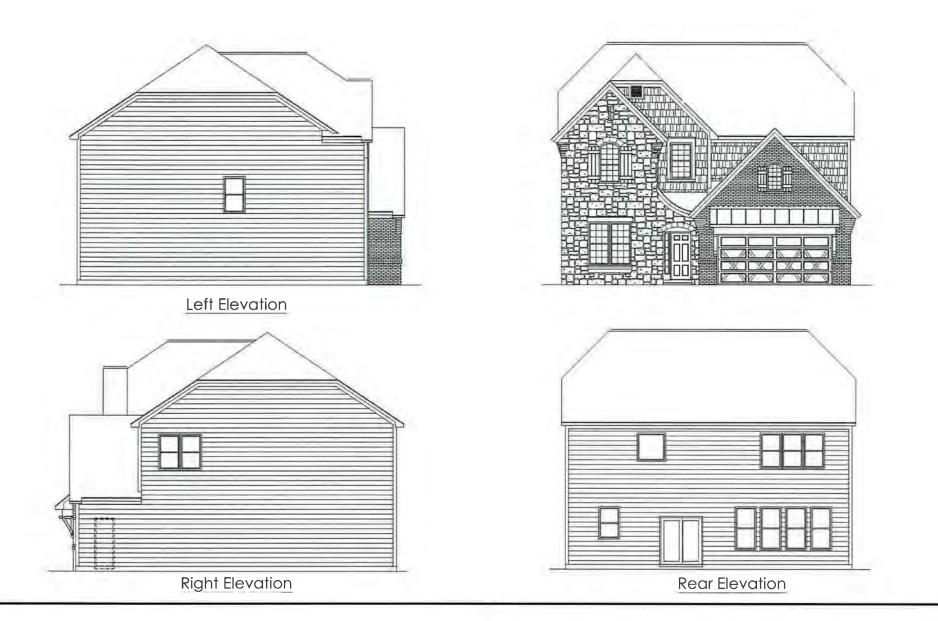
Single-family residential standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. All single-family homes shall have a crawl space or have a raised foundation which at a minimum rises at least 20 inches from average grade across the front of the house to the finished floor level at the front door.
- 3. Garage doors must have windows, decorative details or carriage-style adornments.
- 4. The garage cannot protrude more than 1 foot out from the front façade or front porch.
- 5. The roof shall be pitched at 5:12 or greater for 50% of the building designs.
- 6. Garages on the front façade of a home that faces the street shall not exceed 40% of the total width of the house and garage together.
- 7. Eaves shall project at least 12 inches from the wall of the structure.
- 8. The visible side of a home on a corner lot facing the public street shall contain at least 3 decorative elements such as, but not limited to, the following elements:
 - Windows
 - Bay window
 - Recessed window
 - Decorative window
 - Trim around the windows
 - Wrap around porch or side porch
 - Two or more building materials
 - Decorative brick/stone

- Decorative shake
- Decorative air vents on gable
- Decorative gable
- Decorative cornice
- Column
- Portico
- Balcony •
- Dormer •

- Decorative trim
- 9. A varied color palette shall be utilized on homes throughout the subdivision to include a minimum of three color families for siding and shall include varied trim, shutter, and accent colors complementing the siding color.
 - 10. House entrances for units with front-facing single-car garages shall have a prominent covered porch/stoop area leading to the front door.
 - 11. The rear and side elevations of the units that can be seen from the right-of-way shall have trim around the windows.
 - 12. Front porches shall be a minimum of 6 feet deep.
 - 13. No more than 25% of the lots may be accessed with J-driveways. There shall be no more than 3 such homes in a row on any single block. Any lots eligible for a J-driveway home shall be identified on the Final Plat.
 - 14. A maximum of 100% of the single family detached residential units within POD 6 shall be permitted as "zero-entry" homes without the 20 inch rise from average grade across the front of the property to the finished floor elevation. All "zero-entry" homes shall also provide first floor master bedrooms. Lots permitted as "zero-entry" shall be noted on the Final Plat.
 - 15. All single family detached residential homes are to be pre-configured with conduit for a solar energy system.
 - 16. No less than 10 single family detached homes out of the first 100 homes within POD 6 will be installed with a minimum of a 4 kW solar PV system.

Townhome and Single Family Home Color Palette (Sherwin Williams) All colors are Primary with the exception of those noted


SW 6166	SW 7502	SW 6008	SW 9148
ECLIPSE	DRY ROCK	INDIVIDUAL AZURITE	SMOKEY
SW 6260	SW 9136	SW 9131	SW 6524
UNIQUE GRAY	LULLABY SLATE	CORNWALL GREEN	COMMODORE
SW 9119	SW 6188	SW 9117	SW 6156
DIRTY MARTINI	SHADE GROWN	URBAN JUNGLE	RAMIE
SW 6994	SW 6717	SW 7589	SW 70399148
GREENBLACK ACCENT	LIME RICKEY ACCENT	HABANERO CHILE	VIRTUAL TAUPE
		ACCENT	

White may also be used as a primary, trim, or accent color with any palette variations

1

Wakefield

Wakefield - French Country

Wakefield

Wakefield - Low Country

Wakefield

Wakefield - Craftsman

Wakefield

Wakefield - Federal - Brick

Wakefield

Wakefield - Federal - Siding

Dorset - Craftsman BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Dorset - French Country

Dorset - Low Country

Dorset - Arts and Crafts

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Dorset - European

Dorset - Federal - Brick

Dorset - Federal - Siding

Low Country

Brighton - Craftsman

Brighton - Farmhouse

Brighton - Federal - Brick

Brighton - Federal - Siding

Brighton - Traditional

Highland - Craftsman

Highland - Farmhouse

Highland - Federal - Brick

Highland - Federal - Siding

Highland - Traditional

Kendyll - Craftsman

Kendyll - European

Kendyll - Farmhouse BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Kendyll - Federal - Brick

Kendyll - Federal - Siding

Kendyll - Traditional BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

London - Craftsman

London - Farmhouse BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

London - Federal - Brick

London - Federal - Siding

London - Traditional

1

PAGE INTENTIONALLY LEFT BLANK

Somerset

Prescott II

Prescott II

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY 73

77

Prescott II

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY 79

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY 81

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY 89

Game Changer

3,037 square feet 3 Bedrooms | 2.5 Bathrooms

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

106

2,883 square feet 4 Bedrooms | 3.5 Bathrooms | Game Room

108

3,147 square feet 4 Bedrooms | 3 Bathrooms | Study

3,217 square feet 4 Bedrooms | 3.5 Bathrooms

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

2,580 square feet 4 Bedrooms | 3.5 Bathrooms

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Braxton

2,935 square feet 4 Bedrooms | 2.5 Bathrooms | Loft

3,015 square feet 4 Bedrooms | 2.5 Bathrooms

BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

TOWNHOME BUILDING ELEVATIONS

Townhome Standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. All townhomes shall have a crawl space or raised foundation which at a minimum rises at least 12 inches from average grade across the front of the house to the finished floor level at the front door.
- 3. Roofline cannot be a single mass; it must be broken up horizontally and vertically between units.
- 4. Garage doors must have windows, decorative details or carriage-style adornments.
- 5. House entrances for units with front-facing single-car garages shall have a prominent covered porch/stoop area leading to the front door.
- 6. The garage cannot protrude more than 1 foot out from the front façade or front porch.
- 7. The visible side of a townhome on a corner lot facing the public street shall contain at least 2 decorative elements such as, but not limited to, the following elements:
 - Windows
 - Bay window
 - Recessed window
 - Decorative window
 - Trim around the windows
 - Wrap around porch or side porch
 - Two or more building materials
 - Decorative brick/stone
- ne

- Decorative shake
- Decorative air vents on gable
- Decorative gable
- Decorative cornice
- Column
- Portico
- Balcony
- Dormer

- Decorative trim
- 8. Building facades shall have horizontal relief achieved by the use of recesses and projections.
- 9. A varied color palette shall be utilized on homes throughout the subdivision to include a minimum of three color families for siding and shall include varied trim, shutter, and accent colors complementing the siding color.
- 10. The rear and side elevations of the units that can be seen from the right-of-way shall have trim around the windows.
- 11. Minor elevation adjustments may be accommodated with staff approval including limiting clipped dormers on no more than 25% of the proposed townhome building designs.
- 12. Side entry, end unit townhomes in highly visible locations shall provide a covered entry feature for each unit. Highly visible locations shall include the end of a series of buildings, and adjacent to public or private rights-of-ways, recreation areas, open space, buffers, or adjacent properties.

Townhome and Single Family Home Color Palette (Sherwin Williams) All colors are Primary with the exception of those noted

SW 6166	SW 7502	SW 6008	SW 9148
ECLIPSE	DRY ROCK	INDIVIDUAL AZURITE	SMOKEY
SW 6260	SW 9136	SW 9131	SW 6524
UNIQUE GRAY	LULLABY	CORNWALL	COMMODORE
	SLATE	GREEN	
SW 9119	SW 6188	SW 9117	SW 6156
DIRTY	SHADE	URBAN	RAMIE
MARTINI	GROWN	JUNGLE	
SW 6994	SW 6717	SW 7589	SW 70399148
GREENBLACK	LIME RICKEY	HABANERO	VIRTUAL
ACCENT	ACCENT	CHILE ACCENT	TAUPE

White may also be used as a primary, trim, or accent color with any palette variations

Elevation A1-R

Elevation A2

Elevation A3-R

Elevation B2

Elevation B3-R

Elevation B1

Elevation C1

Elevation C2

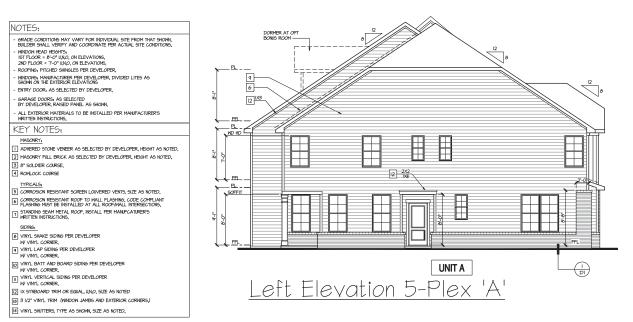
Elevation D1

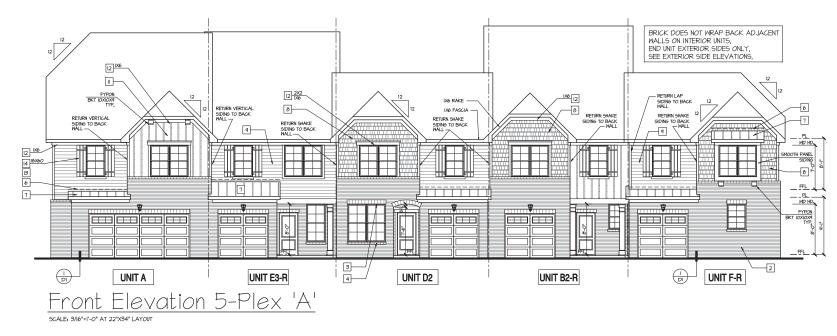
Elevation D2

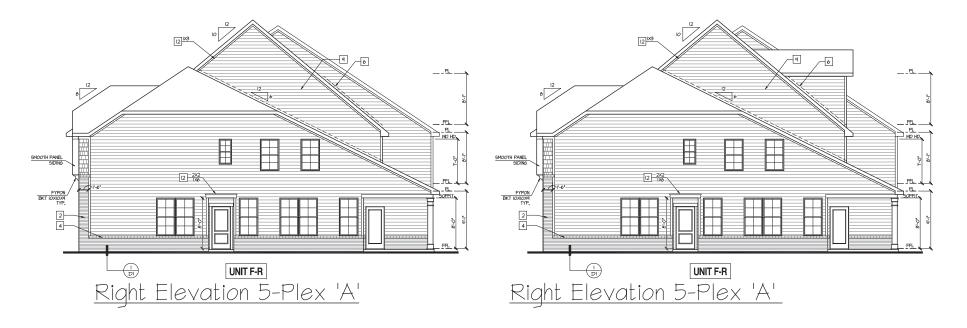
Elevation E1

Elevation E2

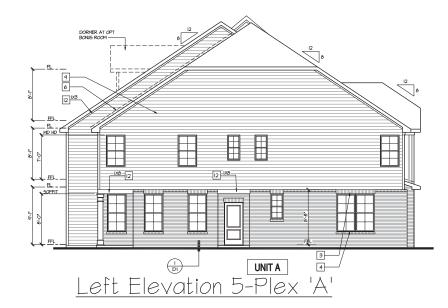
Elevation E3 R

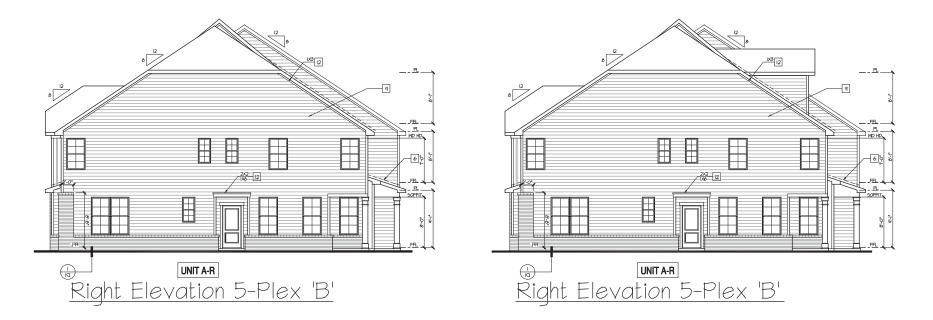



Elevation F1

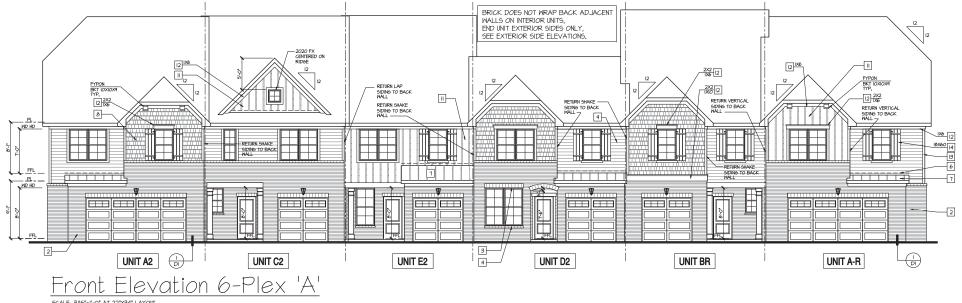

Elevation F2-R

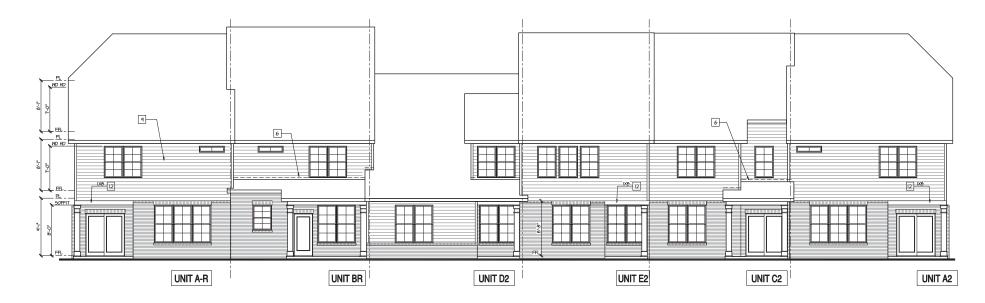
Elevation F3





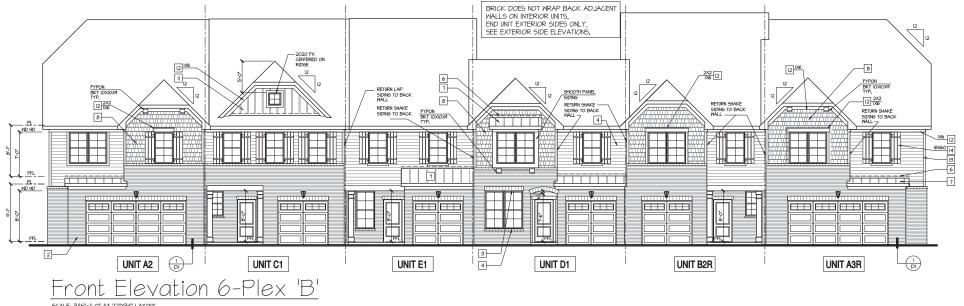
SCALE: 3/16"=1'-0" AT 22"X34" LAYOUT





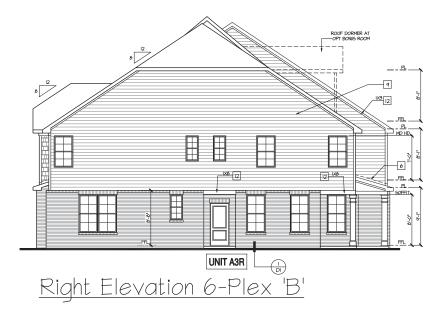
SCALE, 3/16"=1'-0" AT 22"X34" | AYOUT

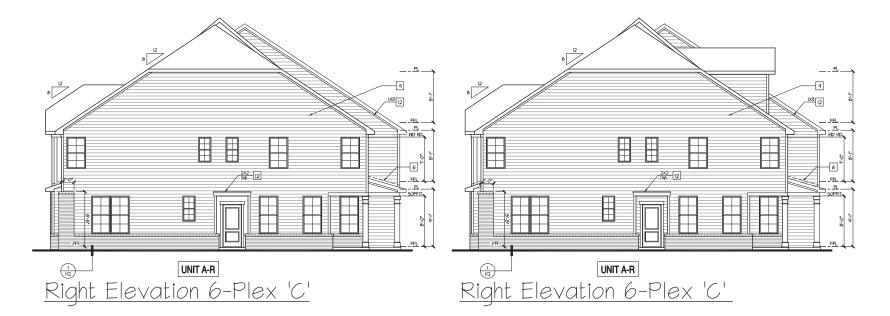
Rear Elevation 6-Plex 'A'

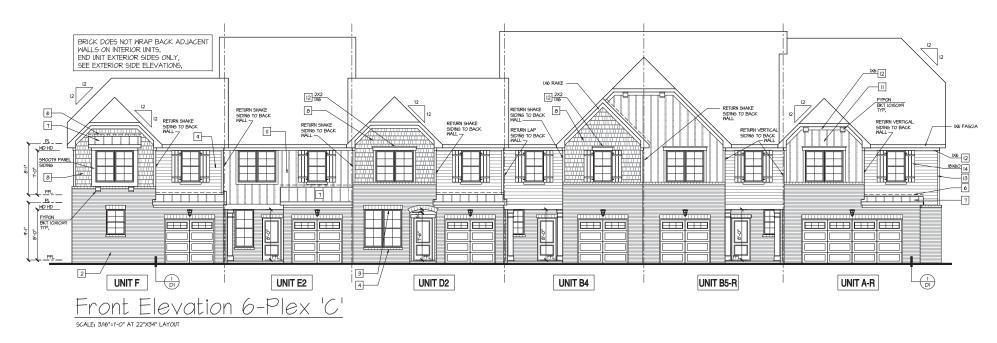


130

SCALE: 3/16"=1'-0" AT 22"X34" LAYOUT


SCALE: 3/16"=1'-0" AT 22"X34" LAYOUT





133

SCALE: 3/16"=1'-0" "AT 22"X34" LAYOUT

12 103 6-9-WD HD +

2X2 1X6 12

SCALE: 3/16"=1'-0" AT 22"X34" LAYOUT

H

Right Elevation 6-Plex 'C'

8

SCALE: 3/16"=1'-0" AT 22"X34" LAYOUT

민

9

ND HD

- 6

FFI

PL.

1×3

12 1X8

+

IX8 |12

-1'-6

SMOOTH PANEL

BKT IOXIOX9 TYP,

-2 -4

APARTMENT BUILDING ELEVATIONS

Apartment standards:

- 1. Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.
- 2. Siding materials shall be varied in type and/or color on 30% of each façade on each building.
- 3. Windows must vary in size and/or type.
- 4. Windows that are not recessed must be trimmed.
- 5. Recesses and projections shall be provided for at least 50% of each façade on each building.
- 6. Rooflines cannot be a single mass; they must be varied with the use of gables or parapets.
- 7. Garage doors must have windows, decorative details or carriage-style adornments.
- 8. At least three of the following decorative features shall be used on each building:
 - Decorative shake
 - Board and batten
 - Decorative porch railing/posts
 - Shutters
 - Decorative/functional air vents on roof or foundation
- Recessed windows
- Decorative windows
- Decorative brick/stone
- Decorative gables
- Decorative cornices
- Tin/metal roof
- 9. A varied color palette shall be utilized for the apartment buildings throughout the development. With garden style apartments, a minimum of three color families for siding shall be provided and will include varied trim, shutter, and accent colors complementing the siding color. For a single mass apartment structure, the color shall vary with accent colors or architectural features to provide building relief.
- 10. Breezeway(s) for the four story apartment elevation is to be enclosed for additional mechanical equipment or elevators.

Apartment Color Palette (Sherwin Williams) All colors are Primary with the exception of those noted

White may also be used as a primary, trim, or accent color with any palette variations

NUM PORT die . 20

PRELIMINARY BUILDING ELEVATION FOR ILLUSTRATIVE PURPOSES ONLY

PRELIMINARY BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Front Elevation

Typ. Side Elevation

Rear Elevation

PRELIMINARY BUILDING ELEVATIONS FOR ILLUSTRATIVE PURPOSES ONLY

Traffic Impact Analysis Update Horton Park Apex, NC

Smith

+ Stephensor

201 102 ATIN SEASTIN PA

TRAFFIC IMPACT ANALYSIS UPDATE

FOR

HORTON PARK

LOCATED

IN

APEX, NORTH CAROLINA

Prepared For: MFW Investments, LLC

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

July 2019

Prepared By: NAB

Reviewed By: JTR

RKA Project No. 19203

TABLE OF CONTENTS

1.	INTRODUCTION
1.1.	Site Location and Study Area2
1.2.	Proposed Land Use and Site Access
	Adjacent Land Uses
1.4.	Existing Roadways
2.	EXISTING (2019) PEAK HOUR CONDITIONS
2.1.	Existing (2019) Peak Hour Traffic
2.2.	Analysis of Existing (2019) Peak Hour Traffic
3.	BACKGROUND (2024/2026) PEAK HOUR CONDITIONS10
3.1.	Ambient Traffic Growth10
3.2.	Adjacent Development Traffic10
3.3.	Future Roadway Improvements10
3.4.	Background (2024/2026) Peak Hour Traffic Volumes11
3.5.	Analysis of Background (2024/2026) Peak Hour Traffic Conditions11
4.	SITE TRIP GENERATION AND DISTRIBUTION
4.1.	Trip Generation
4.2.	Site Trip Distribution and Assignment
5.	COMBINED (2024/2026) TRAFFIC CONDITIONS
5.1.	Combined (2024/2026) Peak Hour Traffic Volumes
5.2.	Analysis of Combined (2024/2026) Peak Hour Traffic
6.	TRAFFIC ANALYSIS PROCEDURE
6.1.	Adjustments to Analysis Guidelines
7.	CAPACITY ANALYSIS
7.1.	Ten-Ten Road and Smith Road
7.2.	NC 55 / NC 55 Bypass and Technology Drive / E. Williams Street
7.3.	Smith Road and Stephenson Road
7.4.	Smith Road and Dezola Street
7.5.	E. Williams Street and Straywhite Avenue41
7.6.	Ten-Ten Road and Jessie Drive43
7.7.	Jessie Drive Extension and NC 5545

9. RECON	MMENDATIONS	4
8. CONCL	LUSIONS	0
7.11. Jessie	e Drive and Site Drive #24	9
7.10. Jessie	e Drive and Site Drive #14	8
7.9. Jessie Dr	Drive and North-South Connector4	7
7.8. Northbor	ound U-Turn and NC 554	6

LIST OF FIGURES

Figure 1 – Site Location Map
Figure 2 – Preliminary Site Plan
Figure 3 – Existing Lane Configurations7
Figure 4 – Existing (2019) Peak Hour Traffic9
Figure 5A – Projected (2024) Peak Hour Traffic
Figure 5B – Projected (2026) Peak Hour Traffic
Figure 6 – Adjacent Development Trips14
Figure 7 – Jessie Drive Extension Diverted Traffic15
Figure 8A – Background (2024) Peak Hour Traffic16
Figure 8B – Background (2026) Peak Hour Traffic17
Figure 9A – Residential Site Trip Distribution - Phase 1
Figure 9B – Residential Site Trip Distribution - Full Buildout
Figure 10 – Industrial Site Trip Distribution - Full Buildout
Figure 11A – Residential Site Trip Assignment - Phase 1
Figure 11B – Residential Site Trip Assignment - Full Buildout25
Figure 12 – Industrial Site Trip Assignment - Full Buildout
Figure 13 – Total Site Trip Assignment - Full Buildout27
Figure 14A – Combined (2024) Peak Hour Traffic – Phase 1
Figure 14B – Combined (2026) Peak Hour Traffic – Full Buildout
Figure 15A – Recommended Lane Configurations – Phase 1
Figure 15B – Recommended Lane Configurations – Full Buildout

LIST OF TABLES

Table 1: Existing Roadway Inventory	4
Table 2: Trip Generation Summary – Phase 1	
Table 3: Trip Generation Summary – Full Buildout	19
Table 4: Highway Capacity Manual – Levels-of-Service and Delay	
Table 5: Analysis Summary of Ten-Ten Road and Smith Road	
Table 6: Analysis Summary of NC 55 / NC 55 Bypass and Technology Drive / E.	Williams
Street	
Table 7: Analysis Summary of Smith Road and Stephenson Road	
Table 8: Analysis Summary of Smith Road and Dezola Street	
Table 9: Analysis Summary of E. Williams Street and Straywhite Avenue	41
Table 10: Analysis Summary of Ten-Ten Road and Jessie Drive	
Table 11: Analysis Summary of Jessie Drive Extension and NC 55	45
Table 12: Analysis Summary of Northbound U-Turn and NC 55	46
Table 13: Analysis Summary of Jessie Drive and North-South Connector	47
Table 14: Analysis Summary of Jessie Drive and Site Drive #1	
Table 15: Analysis Summary of Jessie Drive and Site Drive #2	49

Appendix A:	Memorandum of Understanding (MOU)
Appendix B:	Traffic Counts
Appendix C:	Signal Plans
Appendix D:	Adjacent Development / Background Improvement Information
Appendix E:	Capacity Calculations – Ten-Ten Road and Smith Road
Appendix F:	Capacity Calculations – NC 55 / NC 55 Bypass and Technology Drive / E.
	Williams Street
Appendix G:	Capacity Calculations – Smith Road and Stephenson Road
Appendix H:	Capacity Calculations – Smith Road and Dezola Street
Appendix I:	Capacity Calculations – E. Williams Street and Straywhite Avenue
Appendix J:	Capacity Calculations – Ten-Ten Road and Jessie Drive
Appendix K:	Capacity Calculations – Jessie Drive Extension and NC 55
Appendix L:	Capacity Calculations – Northbound U-Turn and NC 55
Appendix M:	Capacity Calculations – Jessie Drive and North-South Connector
Appendix N:	Capacity Calculations – Jessie Drive and Site Drive #1
Appendix O:	Capacity Calculations – Jessie Drive and Site Drive #2

TECHNICAL APPENDIX

TRAFFIC IMPACT ANALYSIS UPDATE HORTON PARK APEX, NORTH CAROLINA

1. INTRODUCTION

The contents of this report present the findings of the Traffic Impact Analysis (TIA) Update conducted for the proposed Horton Park development to be located between Smith Road and E. Williams Street, south of Ten-Ten Road in Apex, North Carolina. The purpose of this study is to determine the potential impacts to the surrounding transportation system created by traffic generated by the proposed development, as well as recommend improvements to mitigate the impacts. Phase 1 of the development is expected to provide site access via connections to Dezola Street to the east and Colby Chase Drive to the west. Under Full Buildout, the development is expected to provide additional site access via three (3) full movement driveways on Jessie Drive Extension.

The proposed development is expected to be constructed in two (2) phases with Phase 1 anticipated to be completed in 2024 and Full Buildout in 2026. Phase 1 of the development is assumed to consist of the following uses:

- 290 single-family detached homes
- 134 townhomes

Full Buildout of the development is assumed to consist of the following uses:

- 290 single-family detached homes
- 212 townhomes
- 356 apartments
- 40,000 square feet (s.f.) of warehouse
- 40,000 s.f. of business park

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

• Existing (2019) Traffic Conditions

- Background (2024) Traffic Conditions
- Background (2026) Traffic Conditions
- Combined (2024) Traffic Conditions Phase 1
- Combined (2026) Traffic Conditions Full Buildout

1.1. Site Location and Study Area

The development is proposed to be located between Smith Road and E. Williams Street, south of Ten-Ten Road in Apex, North Carolina. Refer to Figure 1 for the site location map.

The study area for the TIA was determined through coordination with the North Carolina Department of Transportation (NCDOT) and the Town of Apex (Town) and consists of the following existing intersections:

- Ten-Ten Road and Smith Road
- Smith Road and Stephenson Road
- Smith Road and Dezola Street
- E. Williams Street and Straywhite Avenue
- NC 55 and Technology Drive / E. Williams Street
- Ten-Ten Road and Jessie Drive (Full Buildout scenarios only)
- NC 55 and Jessie Drive Extension (Full Buildout scenarios only)
- NC 55 and Jessie Drive Extension Northbound U-Turn Location (Full Buildout scenarios only)

Refer to Appendix A for the Memorandum of Understanding (MOU) approved by NCDOT and the Town.

1.2. Proposed Land Use and Site Access

The proposed development is expected to be constructed in two (2) phases with Phase 1 anticipated to be completed in 2024 and Full Buildout in 2026. Phase 1 of the development is assumed to consist of the following uses:

- 290 single-family detached homes
- 134 townhomes

Full Buildout of the development is assumed to consist of the following uses:

- 290 single-family detached homes
- 212 townhomes
- 356 apartments
- 40,000 square feet (s.f.) of warehouse
- 40,000 s.f. of business park

Phase 1 of the development is expected to provide site access via connections to Dezola Street to the east and Colby Chase Drive to the west. Under Full Buildout, the development is expected to provide additional site access via three (3) full movement driveways on Jessie Drive Extension.

Refer to Figure 2 for a copy of the most recent preliminary site plan.

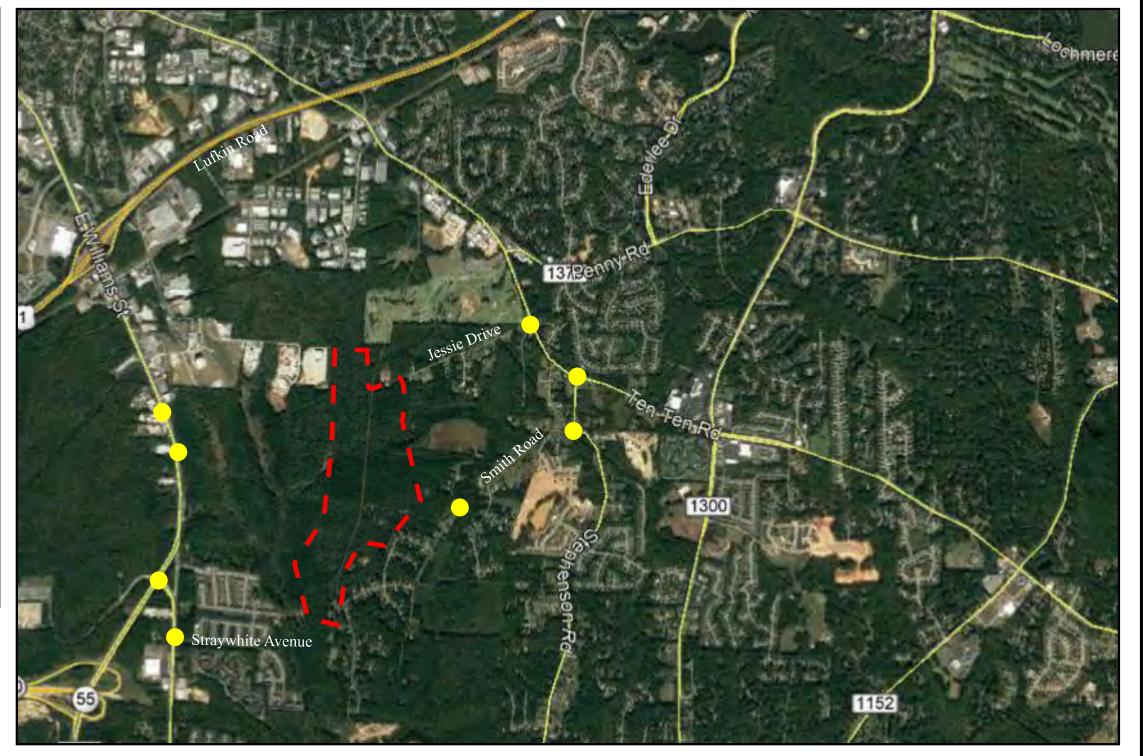
1.3. Adjacent Land Uses

The proposed development is located in an area consisting primarily of undeveloped land, residential, and industrial developments.

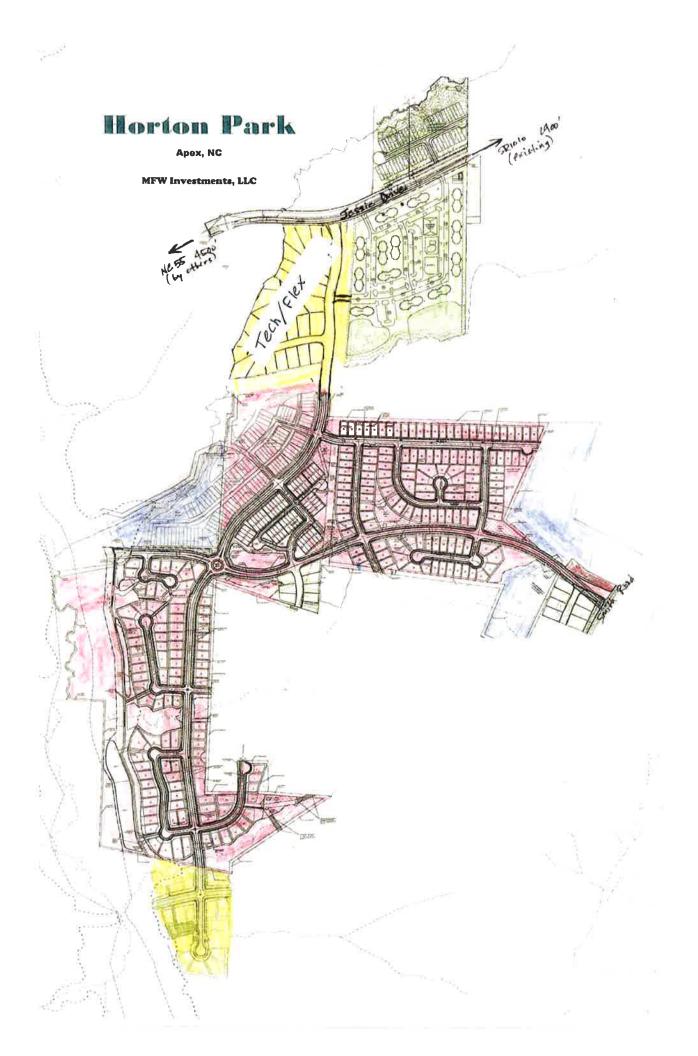
1.4. Existing Roadways

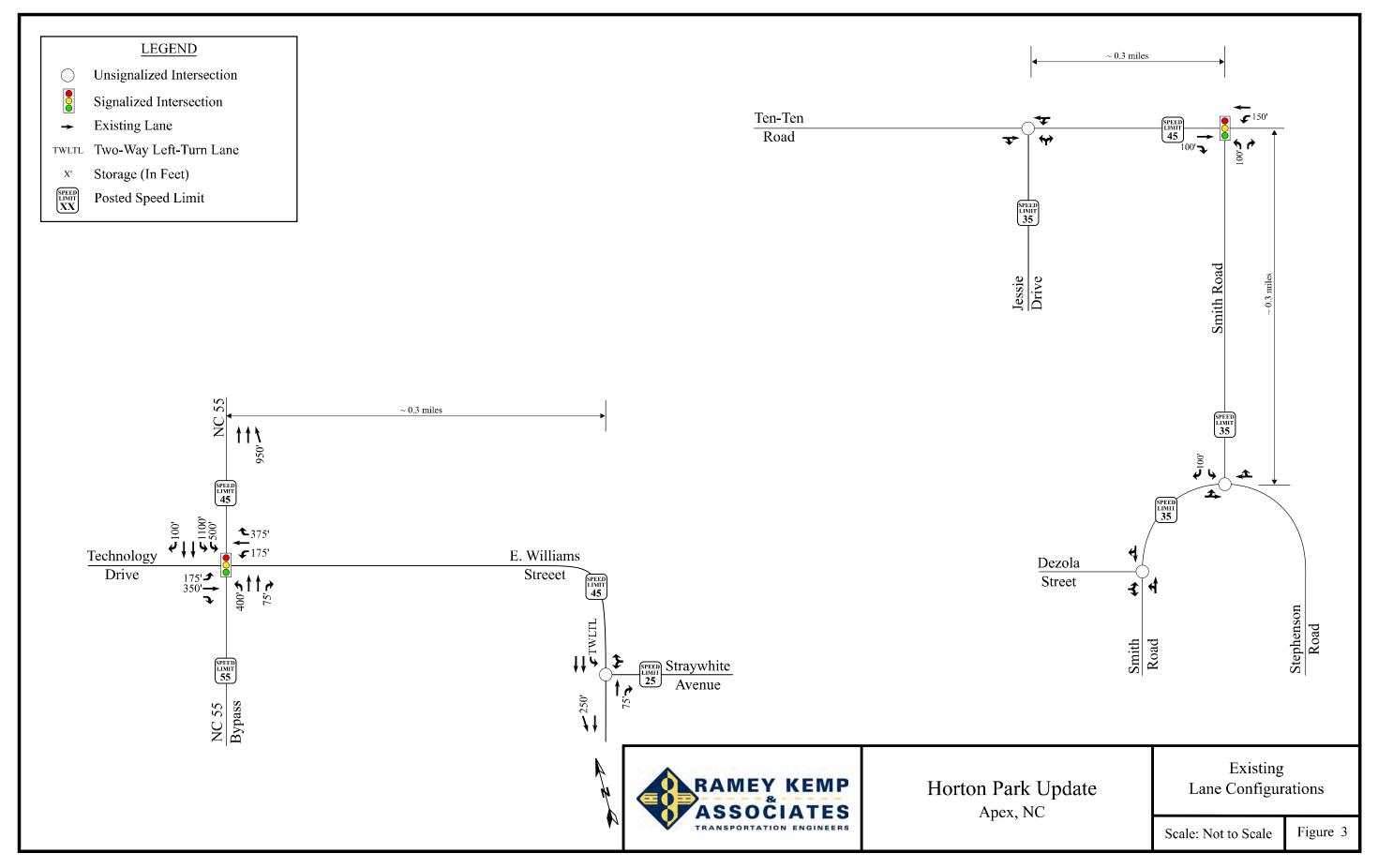
Existing lane configurations (number of traffic lanes on each intersection approach), lane widths, storage capacities, and other intersection and roadway information was collected through field reconnaissance by Ramey Kemp & Associates, Inc. (RKA). Table 1 provides a summary of the field data collected. Refer to Figure 3 for an illustration of the existing lane configurations within the study area.

Road Name	Route Number	Typical Cross Section	Speed Limit	Maintained By	2017 AADT (vpd)
Ten-Ten Road	SR 1010	2-lane undivided	45 mph	NCDOT	22,000
Smith Road	SR 1303	2-lane undivided	35 mph	NCDOT	8,200*
Stephenson Road	SR 1302	2-lane undivided	35 mph	NCDOT	4,900**
Dezola Street	N/A	2-lane undivded	25 mph (assumed)	Private	100*
Jessie Drive	SR 1304	2-lane undivided	35 mph	NCDOT	300*
Straywhite Avenue	N/A	2-lane undivided	25 mph	Town	1,700*
E. Williams Street	NC-55	2-lane undivided	45 mph	NCDOT	13,000
NC 55	NC 55	4-lane divided	45 mph	NCDOT	43,000
NC 55 Bypass	NC 55 Byp	4-lane divided	55 mph	NCDOT	29,000
Technology Drive	SR 1191	2-lane undivided	45 mph (assumed)	NCDOT	1,500*


 Table 1: Existing Roadway Inventory

* ADT based on the existing (2019) peak hour traffic volumes and assuming the weekday PM peak hour volume is 10% of the average daily traffic. **2015 ADT data from NCDOT.


Study Area
Study Intersection



Horton Park Update Apex, NC

Site Location Map Scale: Not to Scale Figure 1

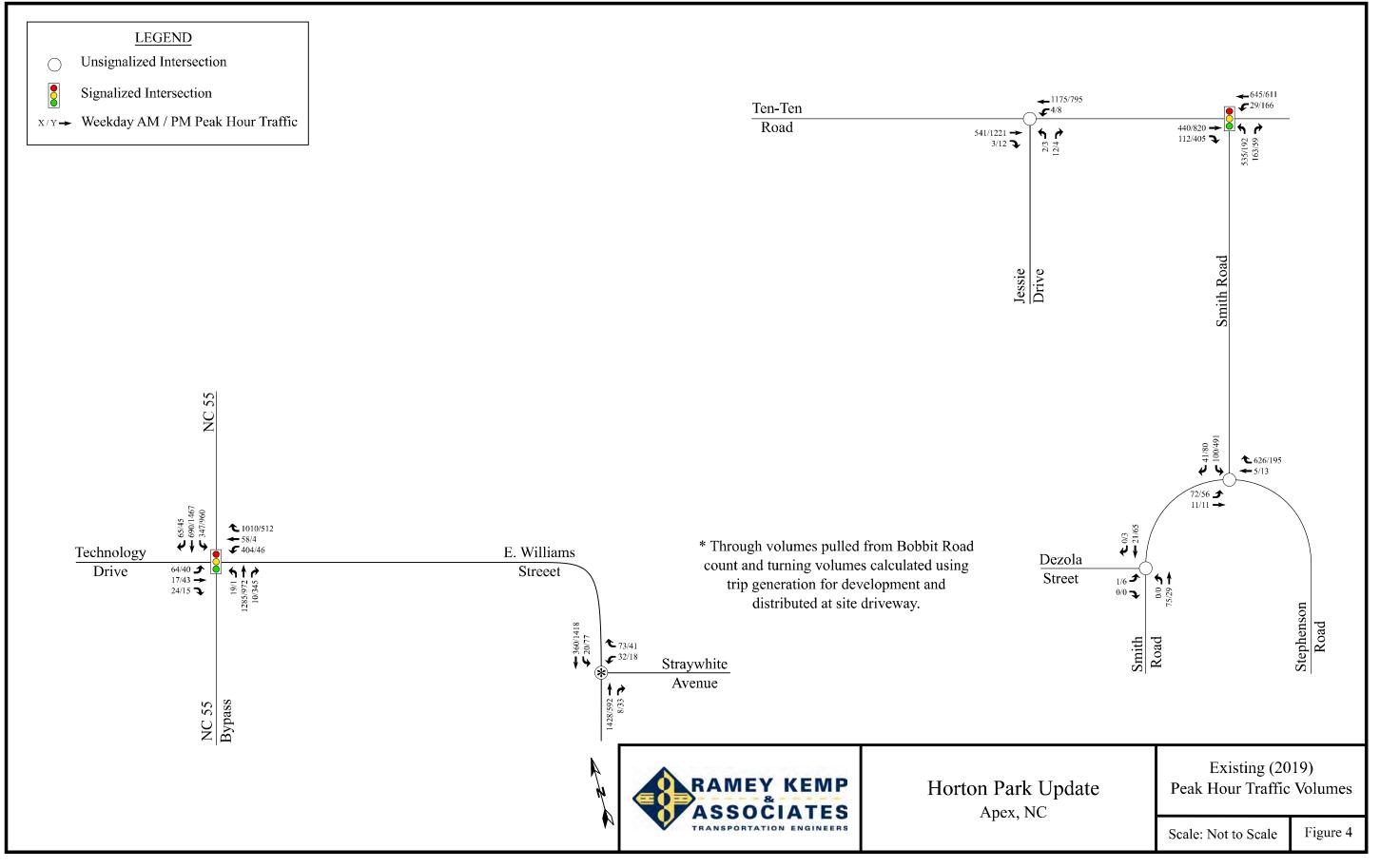
2. EXISTING (2019) PEAK HOUR CONDITIONS

2.1. Existing (2019) Peak Hour Traffic

Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed below, in May of 2017 and March of 2016 by RKA and Gannet Flemming during a typical weekday AM (7:00 AM - 9:00 AM) and PM (4:00 PM - 6:00 PM) peak periods:

- Ten-Ten Road and Jessie Drive
- Ten-Ten Road and Smith Road
- Smith Road and Stephenson Road
- Smith Road and Dezola Street
- Technology Drive / E. Williams Street and NC 55

The traffic volumes at the intersection of E. Williams Street and Straywhite Avenue were determined via trip generation and through volumes were pulled from the Bobbit Road and E. Williams Street intersection, per the methodology included in the original Horton Park TIA and TIA Addendums.


In order to project the 2016 and 2017 traffic counts to 2019 conditions, a 3% annually compounded growth rate was used to grow these volumes 3 and 2 years, respectively. The count methodology above was reviewed and approved by NCDOT and the Town.

Traffic volumes were balanced between study intersections, where appropriate. Refer to Figure 4 for existing (2019) weekday AM and PM peak hour traffic volumes. A copy of the count data is located in Appendix B of this report.

2.2. Analysis of Existing (2019) Peak Hour Traffic

The existing (2019) weekday AM and PM peak hour traffic volumes were analyzed to determine the current levels of service at the study intersections under existing roadway conditions. Signal information was obtained from NCDOT and field reconnaissance and is included in Appendix C. The results of the analysis are presented in Section 7 of this report.

3. BACKGROUND (2024/2026) PEAK HOUR CONDITIONS

In order to account for growth of traffic and subsequent traffic conditions at a future year, background traffic projections are needed. Background traffic is the component of traffic due to the growth of the community and surrounding area that is anticipated to occur regardless of whether or not the proposed development is constructed. Background traffic is comprised of existing traffic growth within the study area and additional traffic created as a result of adjacent approved developments.

3.1. Ambient Traffic Growth

Through coordination with the Town and NCDOT, it was determined that an annually compounded growth rate of 3% would be used to generate projected (2024 and 2026) weekday AM and PM peak hour traffic volumes. Refer to Figures 5A and 5B for projected (2024) and projected (2026) peak hour traffic, respectively.

3.2. Adjacent Development Traffic

Through coordination with the Town, Empire Estates at Apex 55 (Stop & Go Gas Station) was identified to be included as am adjacent development in this study. This development is summarized below.

Empire Estates at Apex 55 (Stop & Go Gas Station) is a commercial development expected to consist of approximately 1,800 s.f. of retail and a gas station with 16 fueling positions with an anticipated buildout year of 2017. An approved TIA was conducted by Timmons Group in November 2015. The Empire Estates at Apex 55 development is located in the southeast quadrant of the intersection of E. Williams Street and NC 55 / NC 55 Bypass in Apex, NC.

Adjacent development trips are shown in Figure 6. Additional adjacent development information can be found in Appendix D.

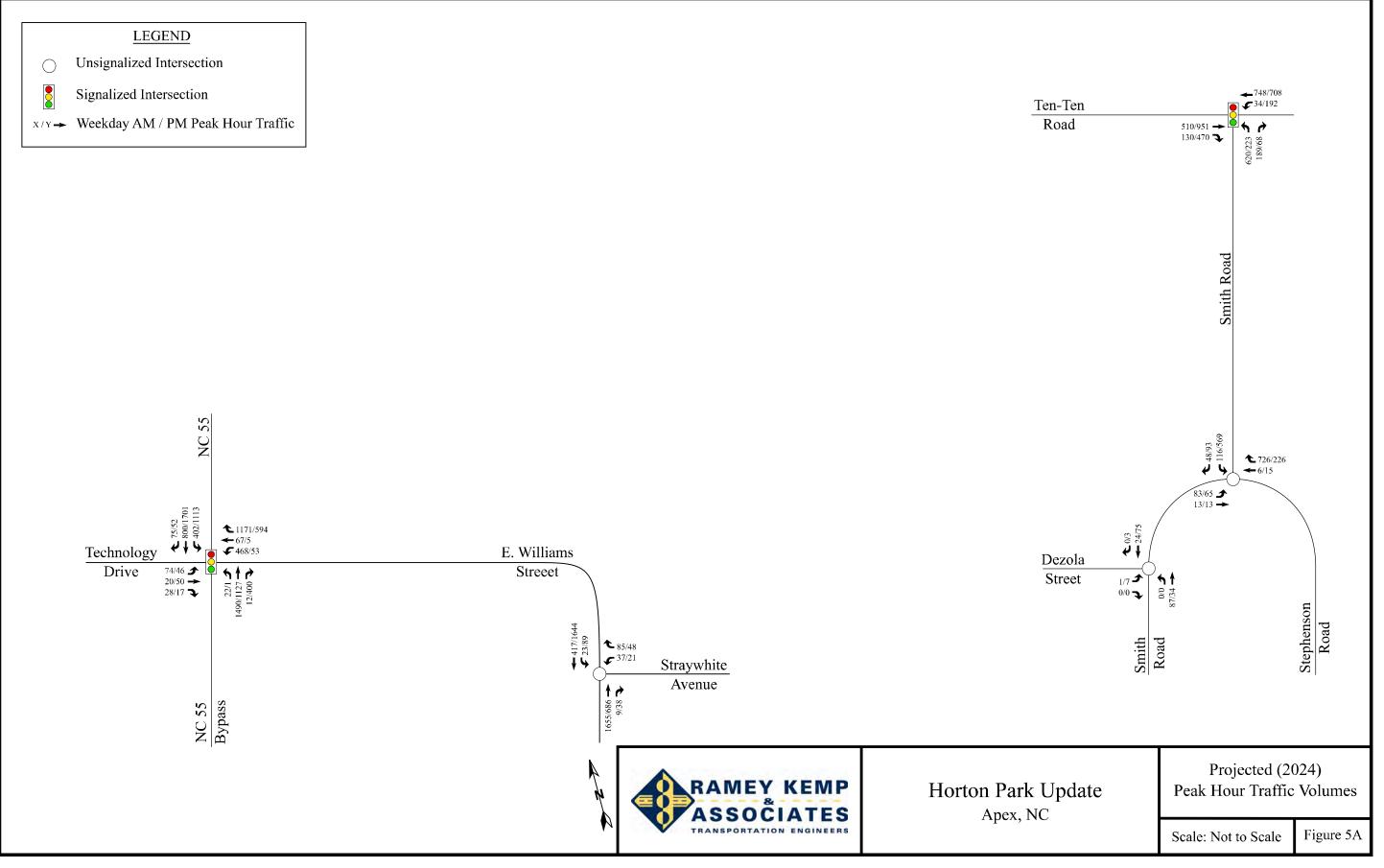
3.3. Future Roadway Improvements

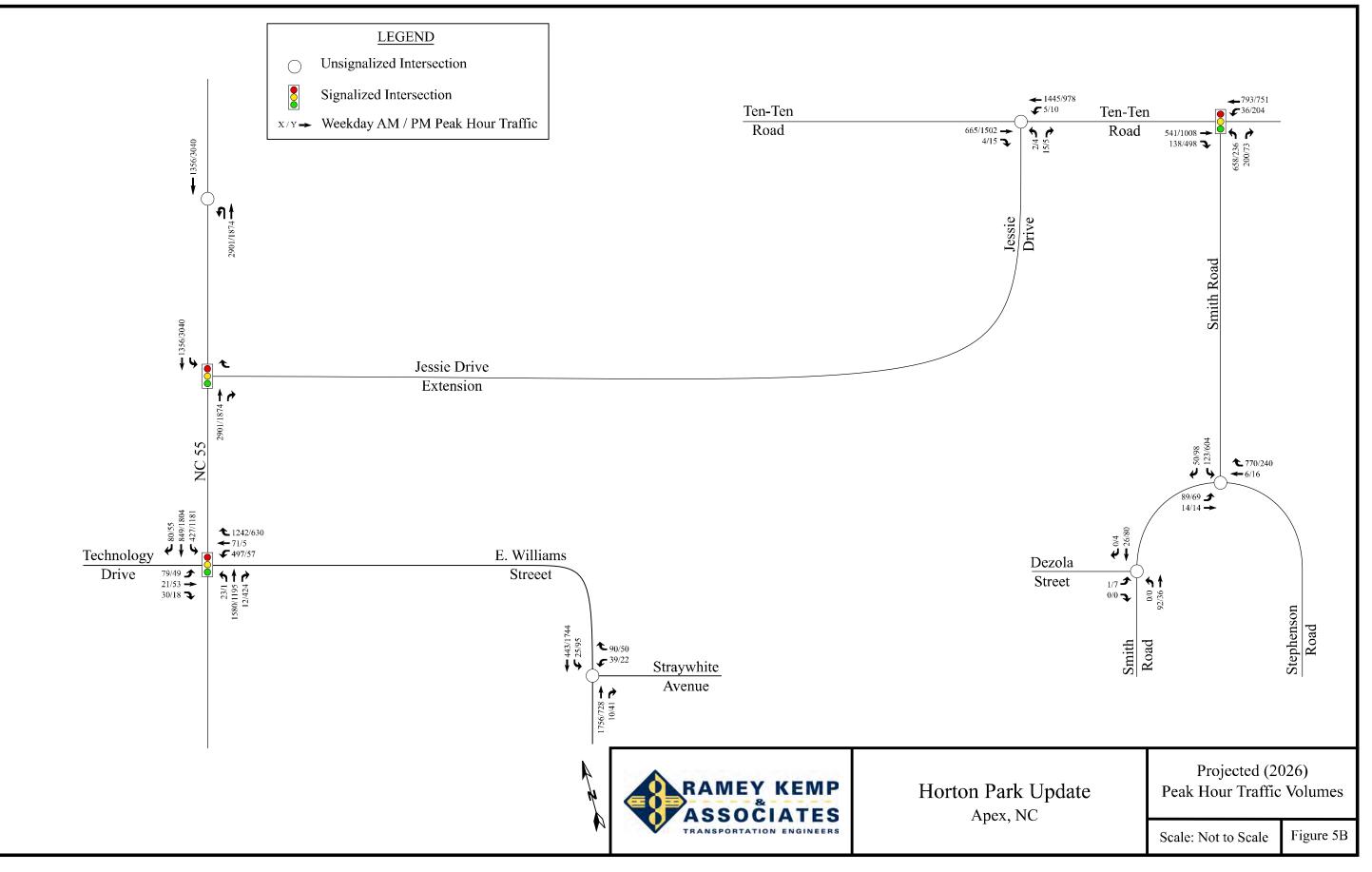
Based on coordination with the NCDOT and the Town, it was determined that the Jessie Drive Extension would be included in the background (2026) and combined (2026) analysis because this improvement is expected to apply for LAPP funding in 2021 and be constructed in 2024.

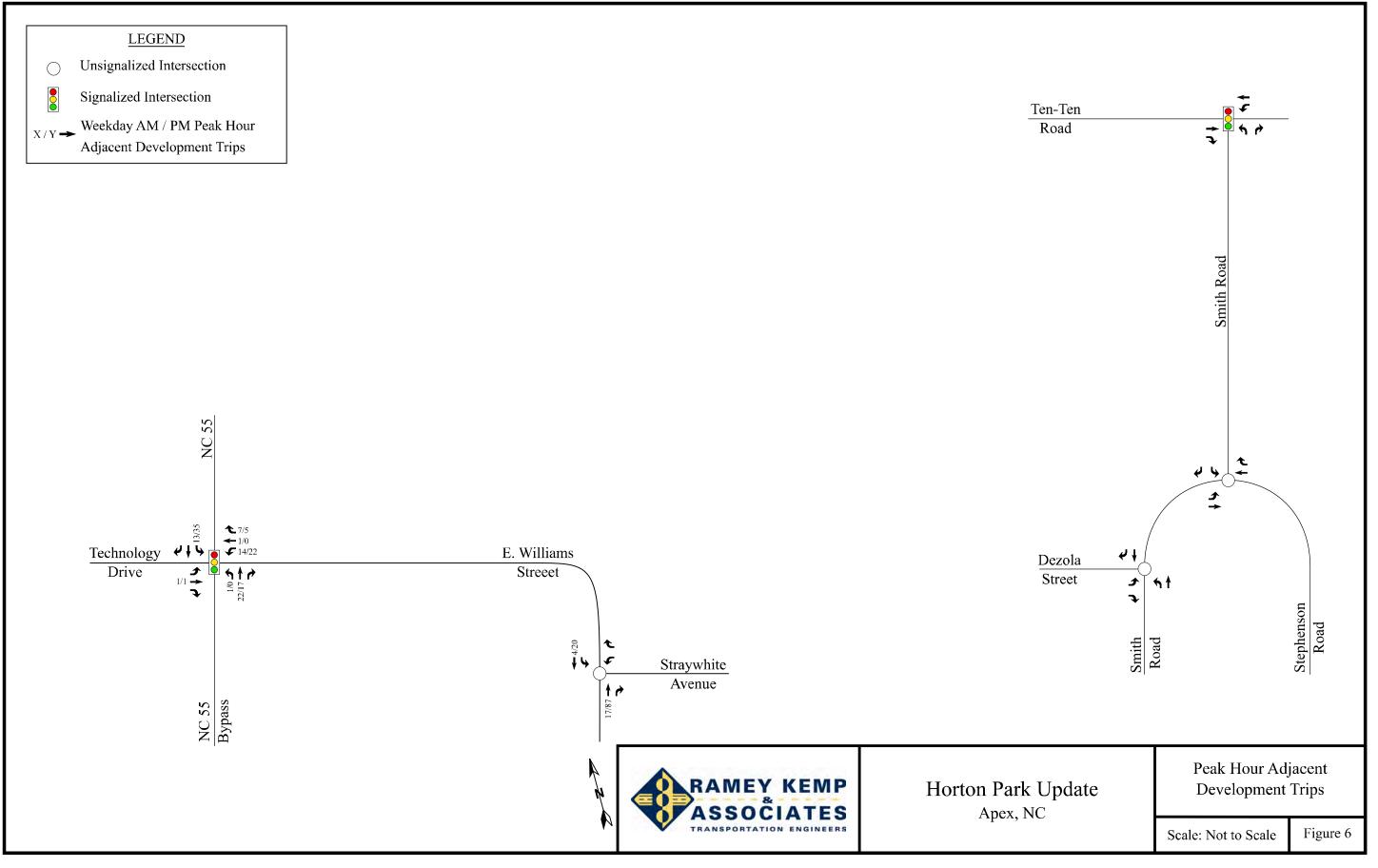
Phase 1 of the development is not expected to have any connection to Jessie Drive; therefore, this improvement / intersections are only included under Full Buildout conditions. As this roadway is not yet designed, laneage was assumed per coordination with Town staff. It was assumed that Jessie Drive will be constructed as a two-lane roadway with turn-lanes on both the northern (Ten-Ten Road) and southern (NC 55) extents. To account for the background traffic volumes that are expected to be shifted to this roadway with completion of its extension, assumptions were made similar to the original Horton Park TIA and diverted traffic was calculated.

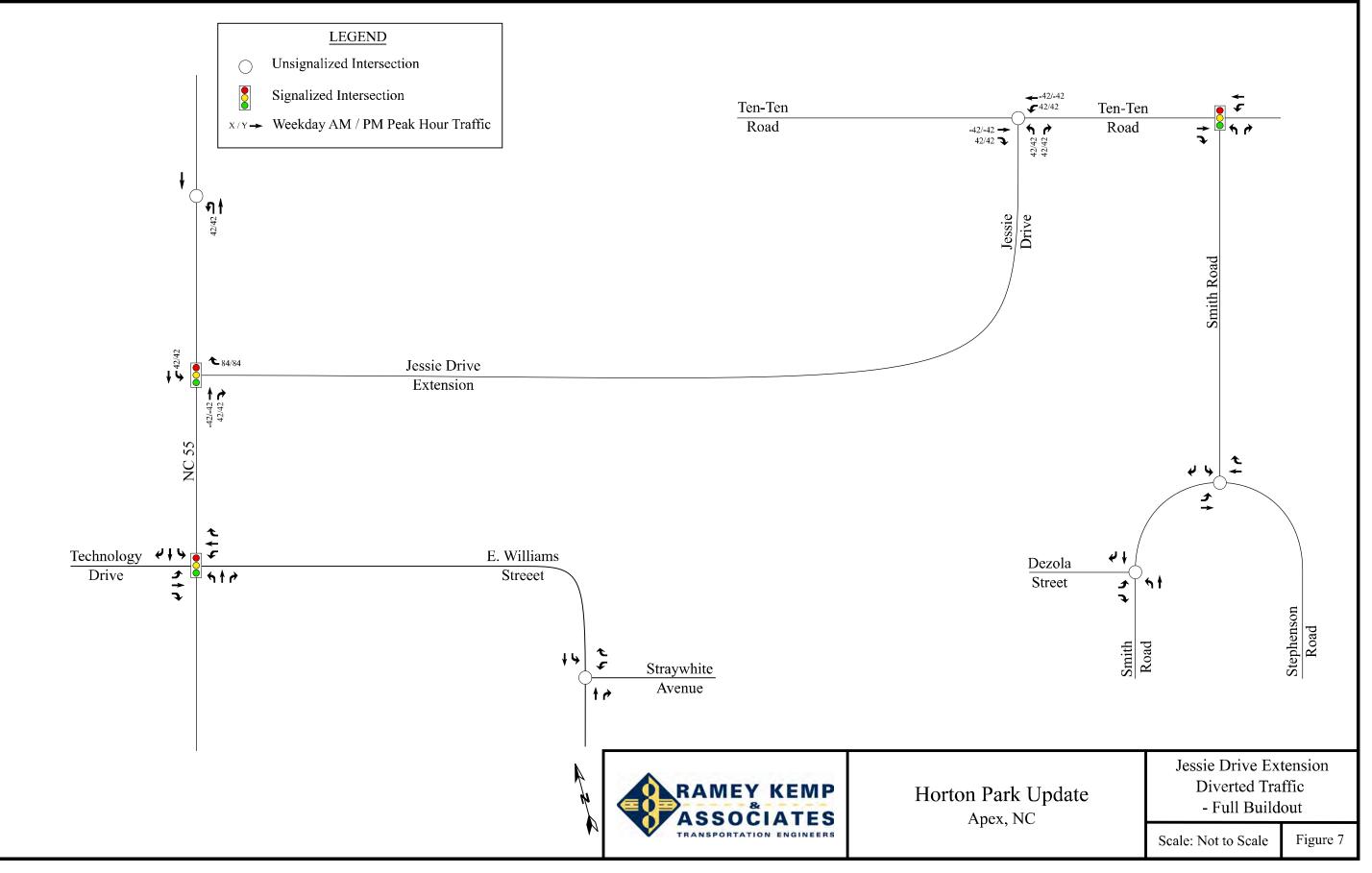
The NCDOT TIP project U-5825B is expected to be completed along Ten-Ten Road between Reliance Avenue and Kildaire Farm Road by the buildout of Phase 1 of the Horton Park development. This project is currently in the design phase; however, preliminary design concepts were utilized for background laneage assumptions.

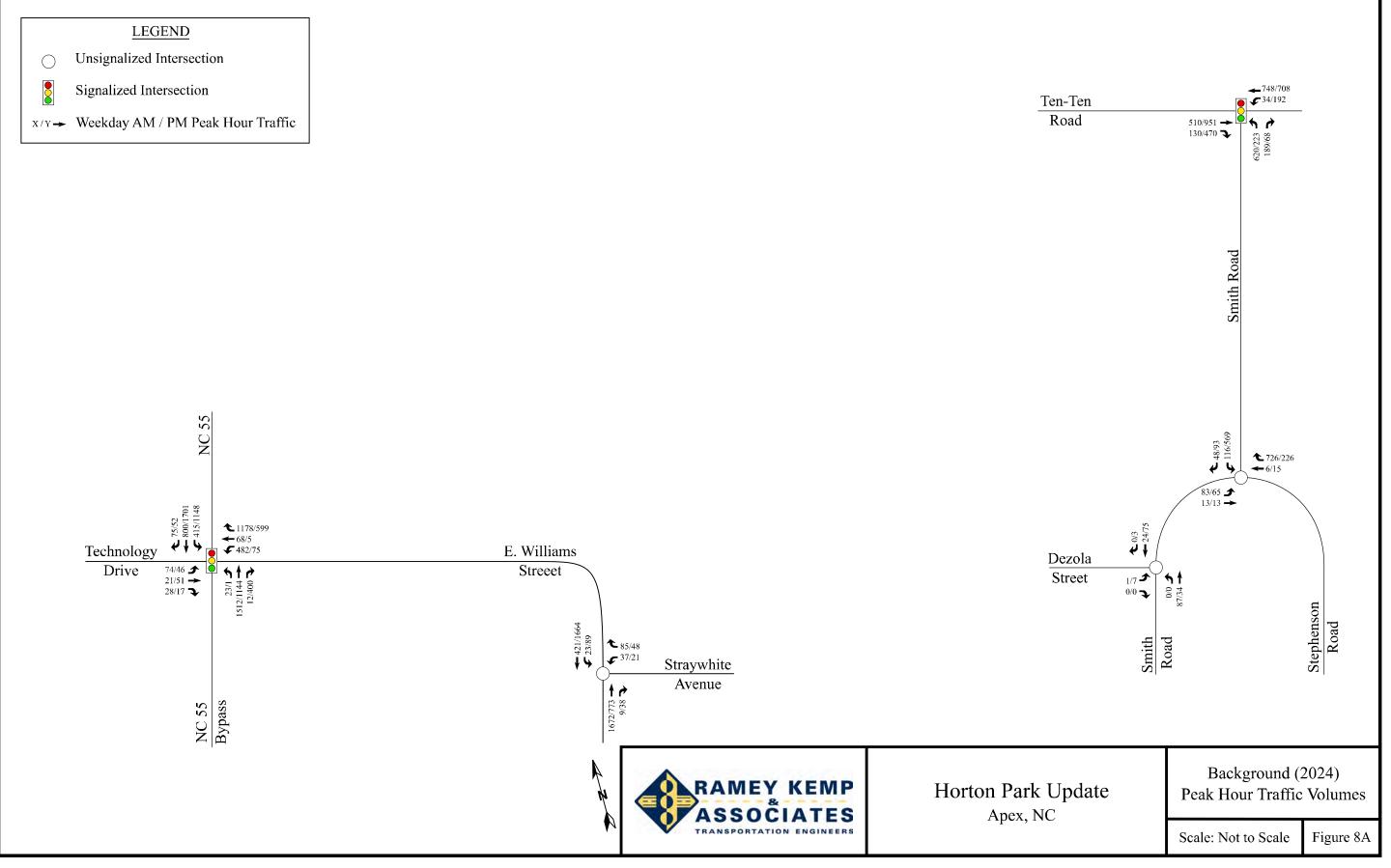
Refer to Figure 7 for the diverted traffic volumes due to the Jessie Drive Extension. Appendix D provides additional information pertaining to the background roadway improvements included in this study.

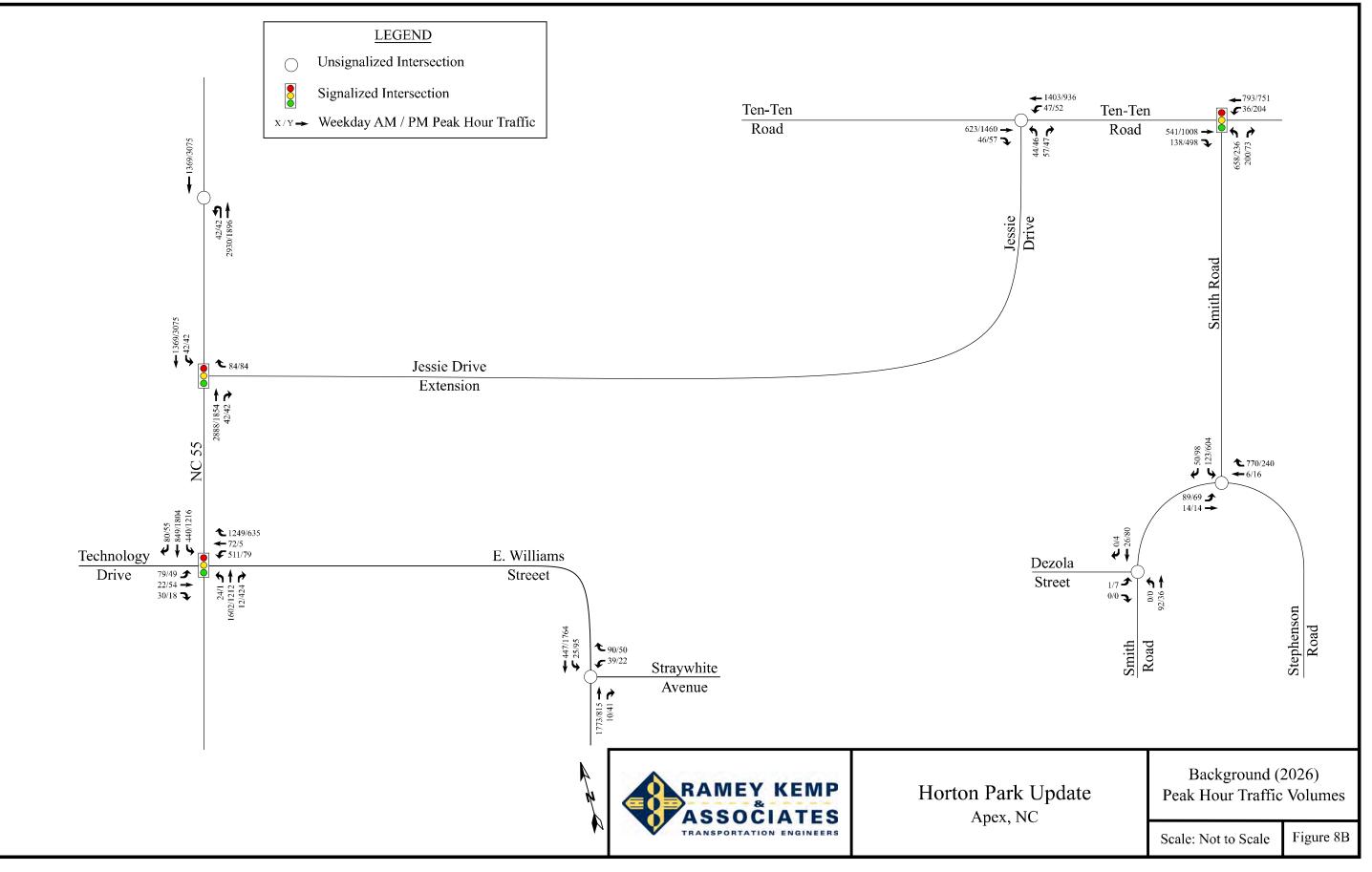

3.4. Background (2024/2026) Peak Hour Traffic Volumes


The background (2024/2026) traffic volumes were determined by projecting the existing (2019) peak hour traffic to the year 2024 and 2026, respectively, and adding the adjacent development trips and diverted traffic volumes (for 2026 conditions only). Refer to Figures 8a and 8b for illustrations of the background (2024) and background (2026) peak hour traffic volumes at the study intersections.


3.5. Analysis of Background (2024/2026) Peak Hour Traffic Conditions


The background (2024/2026) AM and PM peak hour traffic volumes at the study intersections were analyzed with future geometric roadway conditions and traffic control. The analysis results are presented in Section 7 of this report.





4. SITE TRIP GENERATION AND DISTRIBUTION

4.1. Trip Generation

The proposed development is expected to be constructed in two phases. Phase 1 is assumed to consist of approximately 290 single-family homes and 134 townhomes. Full Buildout is assumed to consist of approximately 290 single-family homes, 212 townhomes, 356 apartments, a 40,000 sq. ft. warehouse, and a 40,000 sq. ft. business park. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 10th Edition. Per the ITE land uses, townhomes and apartments were both analyzed as multifamily housing (low-rise). It should be noted that these land uses have the potential for internal capture between the industrial land uses and residential. In order to present a conservative analysis, this internal capture was not included within the study. Table 2 provides a summary of the trip generation potential for the site under Phase 1 conditions and Table 3 provides a summary of the Full Buildout trip generation potential.

Land Use (ITE Code)	Intensity	Daily Traffic (vpd)	Weekday AM Peak Hour Trips (vph)		Weekday PM Peak Hour Trips (vph)	
Single Family Detached Housing	290		Enter	Exit	Enter	Exit
(210)	Units	2,770	53	158	178	104
Multifamily Housing (Low-Rise) (220)	134 Units	970	14	49	49	28
Total Trips		3,740	67	207	227	132

 Table 2: Trip Generation Summary – Phase 1

It is estimated that Phase 1 of the proposed development will generate approximately 3,740 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 274 trips (67 entering and 207 exiting) will occur during the weekday AM peak hour and 359 (227 entering and 132 exiting) will occur during the weekday PM peak hour.

Land Use (ITE Code)	Intensity Daily (und)		Weekday AM Peak Hour Trips (vph)		Weekday PM Peak Hour Trips (vph)	
		(vpd)	Enter	Exit	Enter	Exit
Single Family Detached Housing (210)	290 Units	2,770	53	158	178	104
Multifamily Housing (Low-Rise) (220)	568 Units	4,250	57	191	175	102
Warehouse (150)	40,000 s.f.	110	23	7	9	24
Business Park (770)	40,000 s.f.	1,140	49	9	17	48
Total Trips		8,270	182	365	379	278

Table 3: Trip Generation Summary – Full Buildout

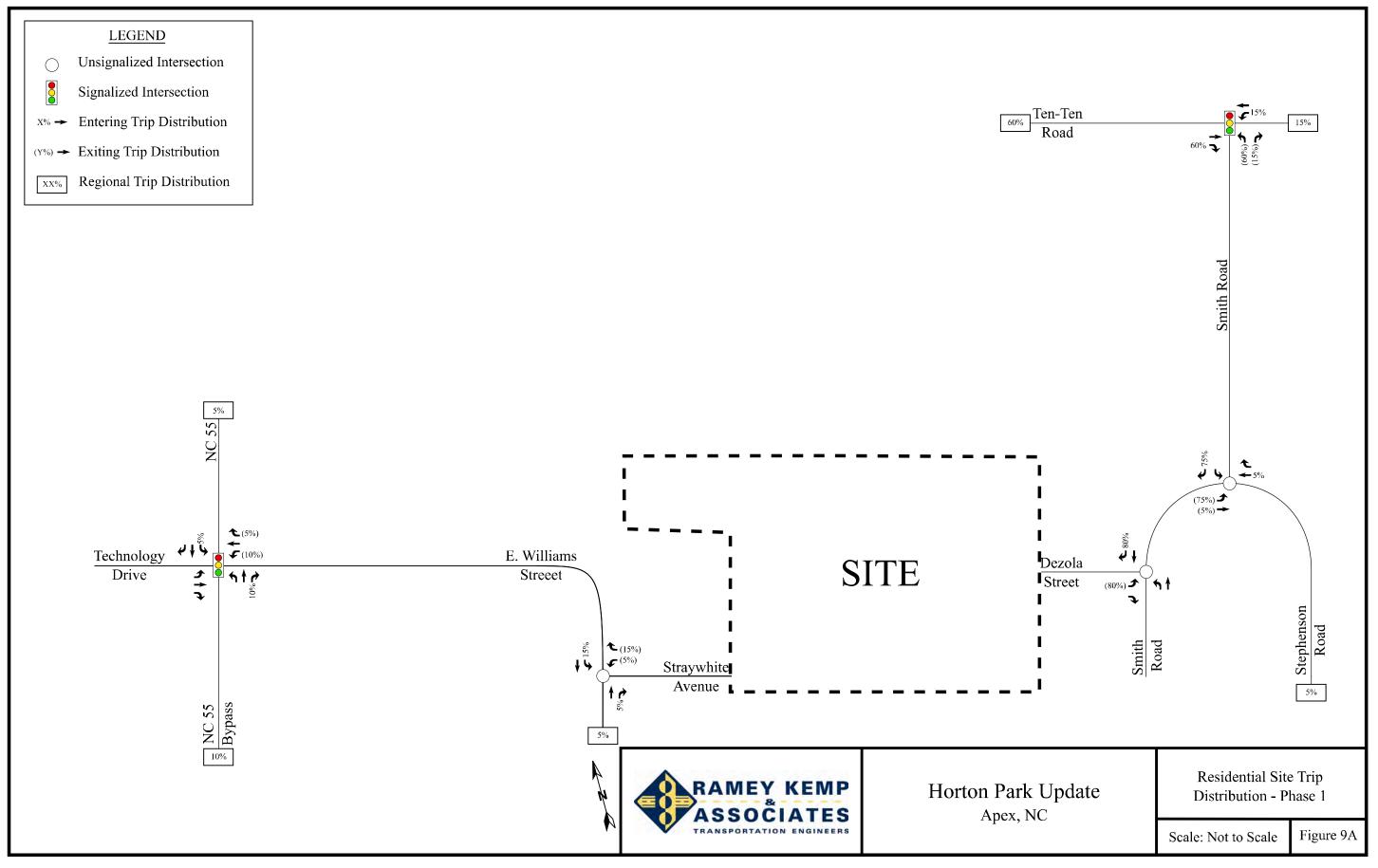
It is estimated that Full Buildout of the proposed development will generate approximately 8,270 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 547 trips (182 entering and 365 exiting) will occur during the weekday AM peak hour and 657 (379 entering and 278 exiting) will occur during the weekday PM peak hour. It should be noted that this Full Buildout density includes the land uses proposed as part of Phase 1 of the development.

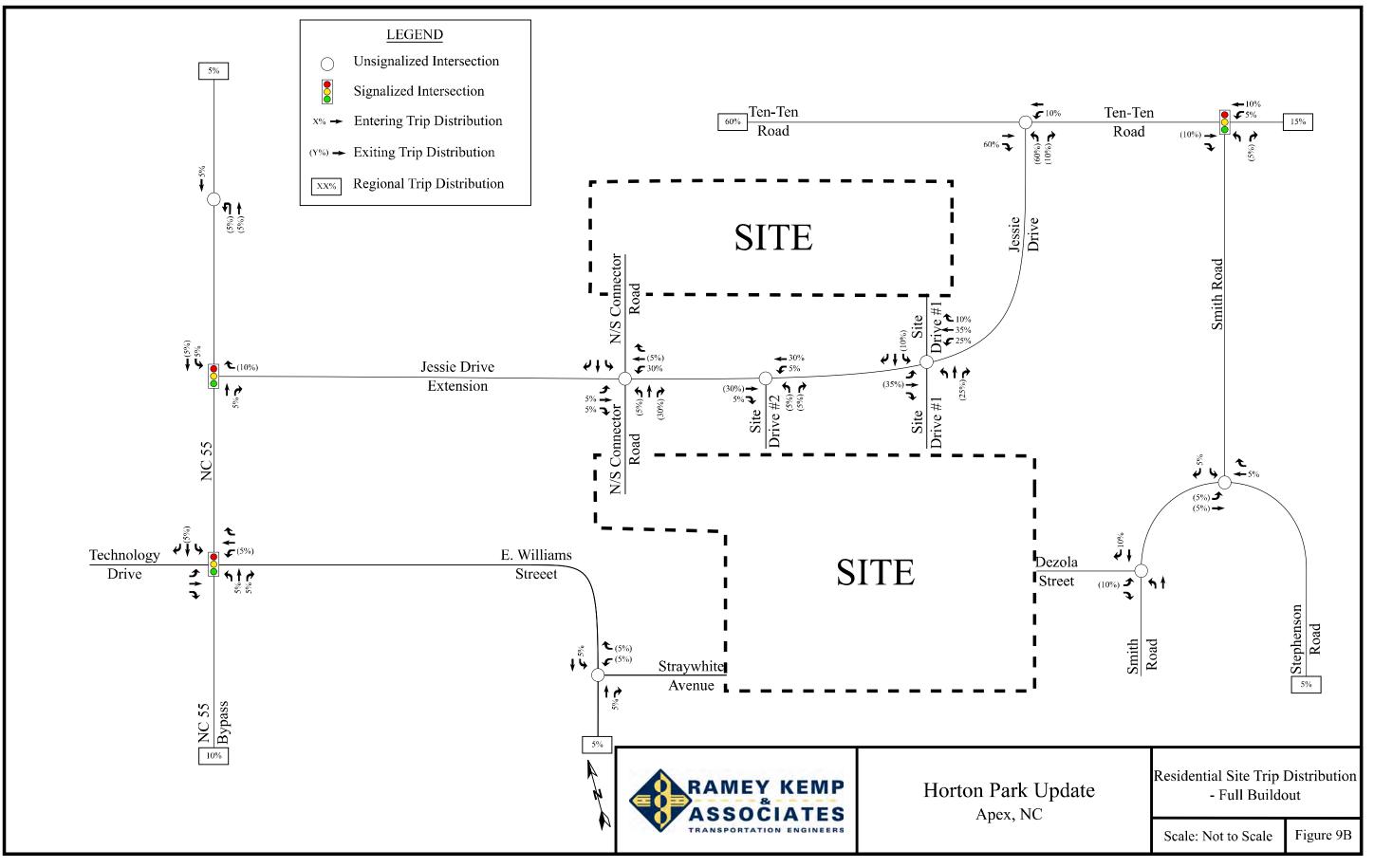
4.2. Site Trip Distribution and Assignment

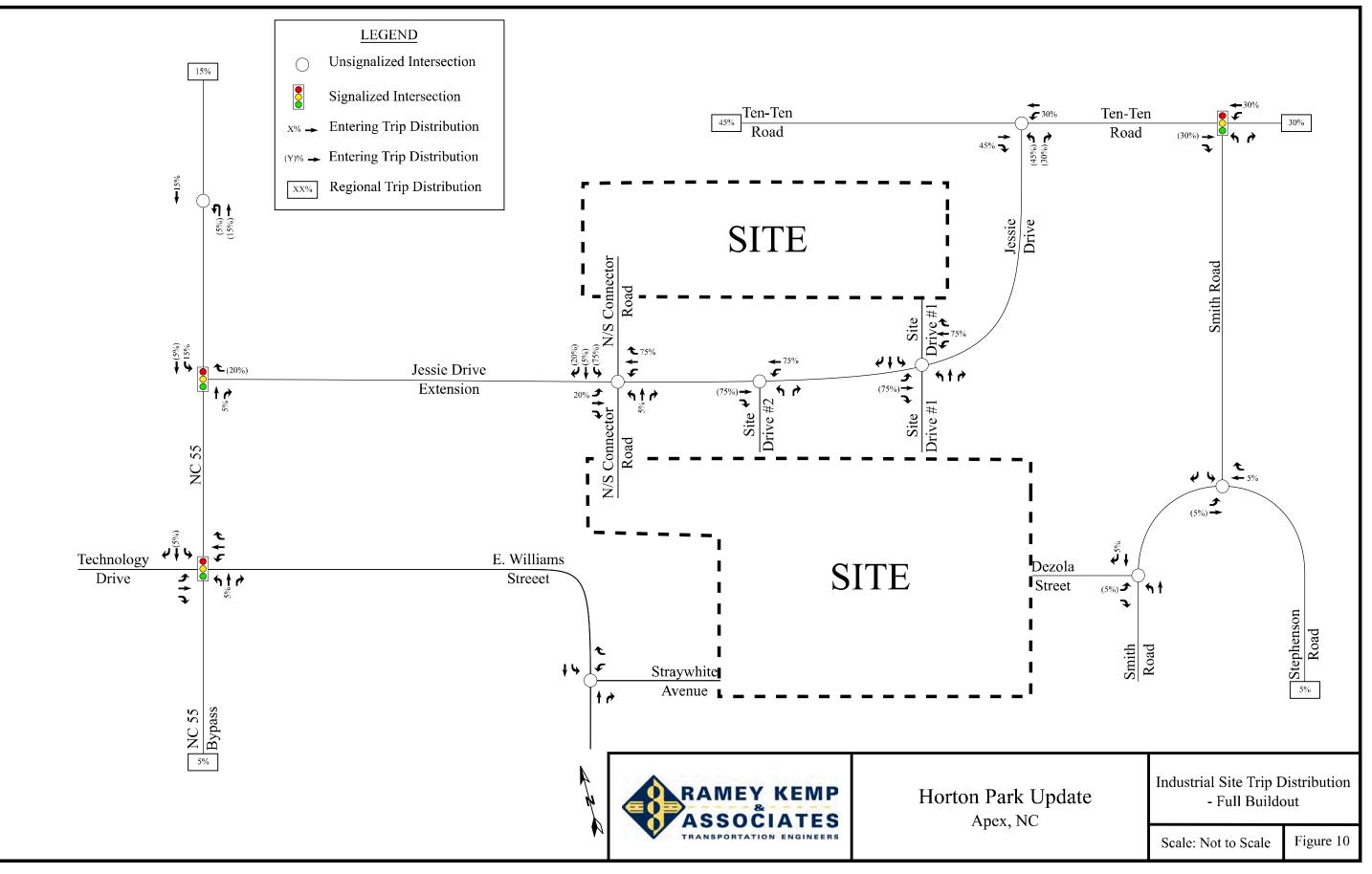
Trip distribution percentages used in assigning site traffic for this development were estimated based on a combination of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. The trip distribution has been reviewed and approved by the Town and NCDOT. It is estimated that the Phase 1 and Full Buildout residential trips will be distributed as follows:

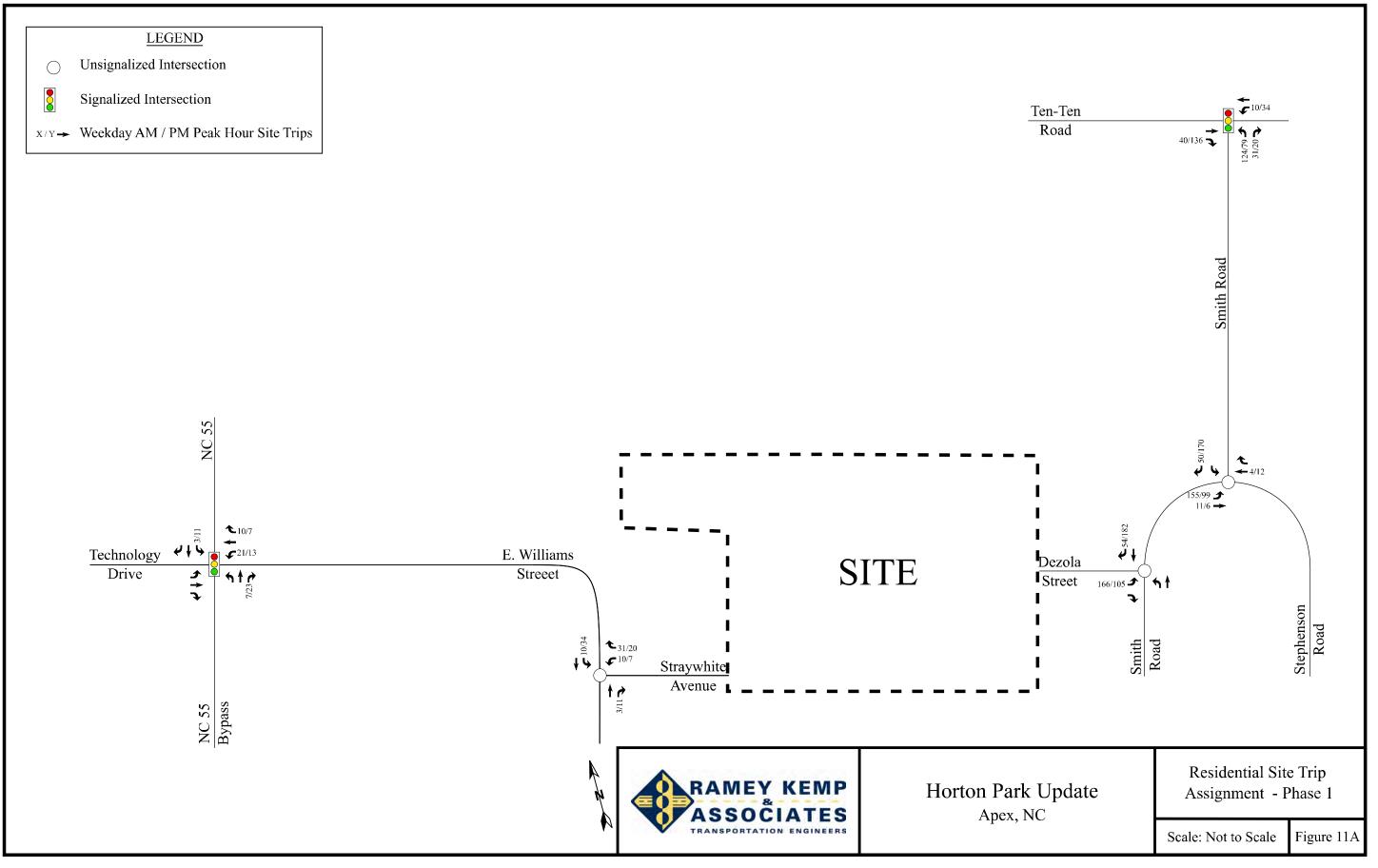
- 60% to/from the west via Ten-Ten Road
- 15% to/from the east via Ten-Ten Road
- 5% to/from the south via E. Williams Street
- 10% to/from the south via NC 55 Bypass

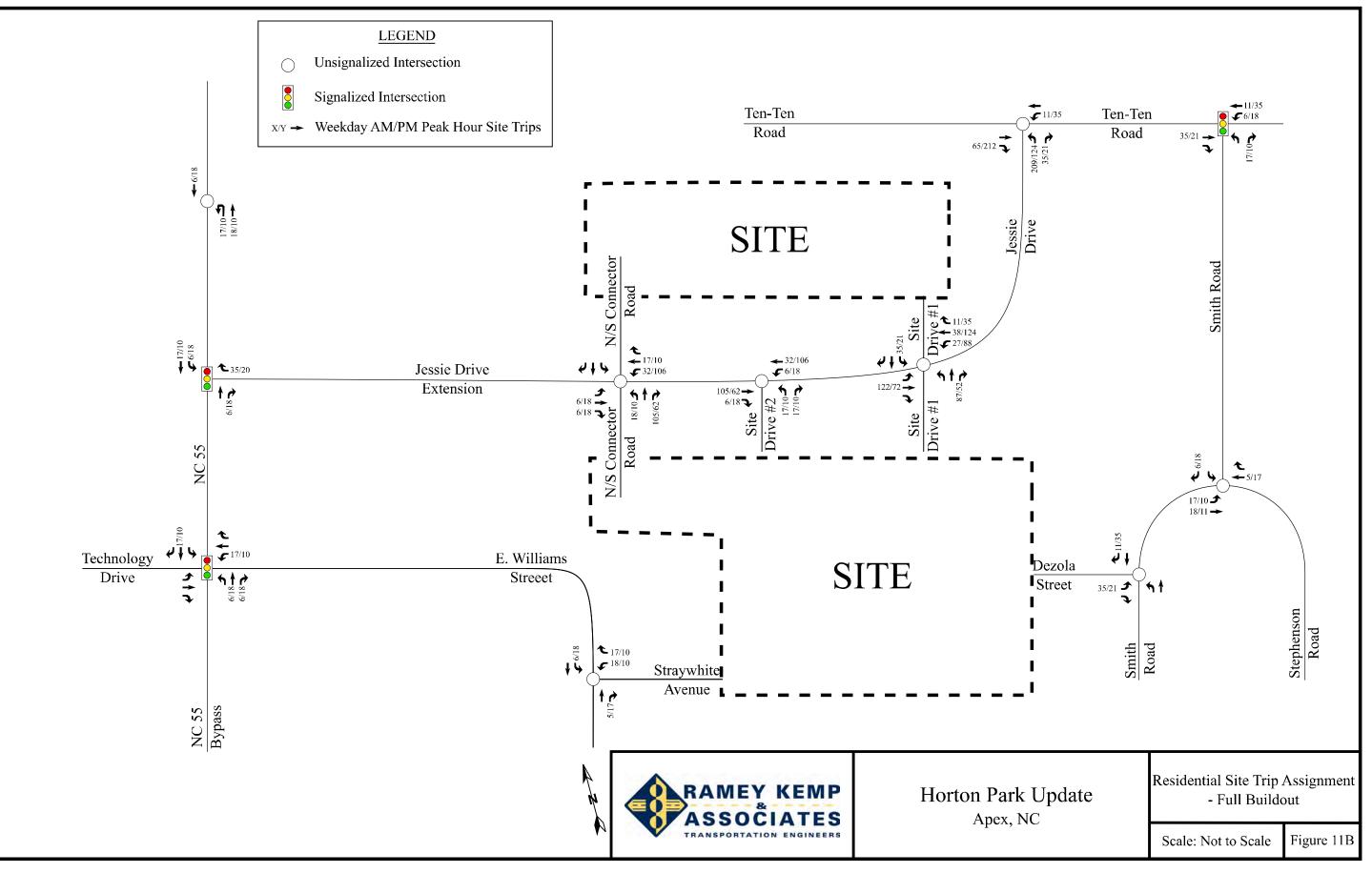
- 5% to/from the northwest via NC 55
- 5% to/from the south via Stephenson Road

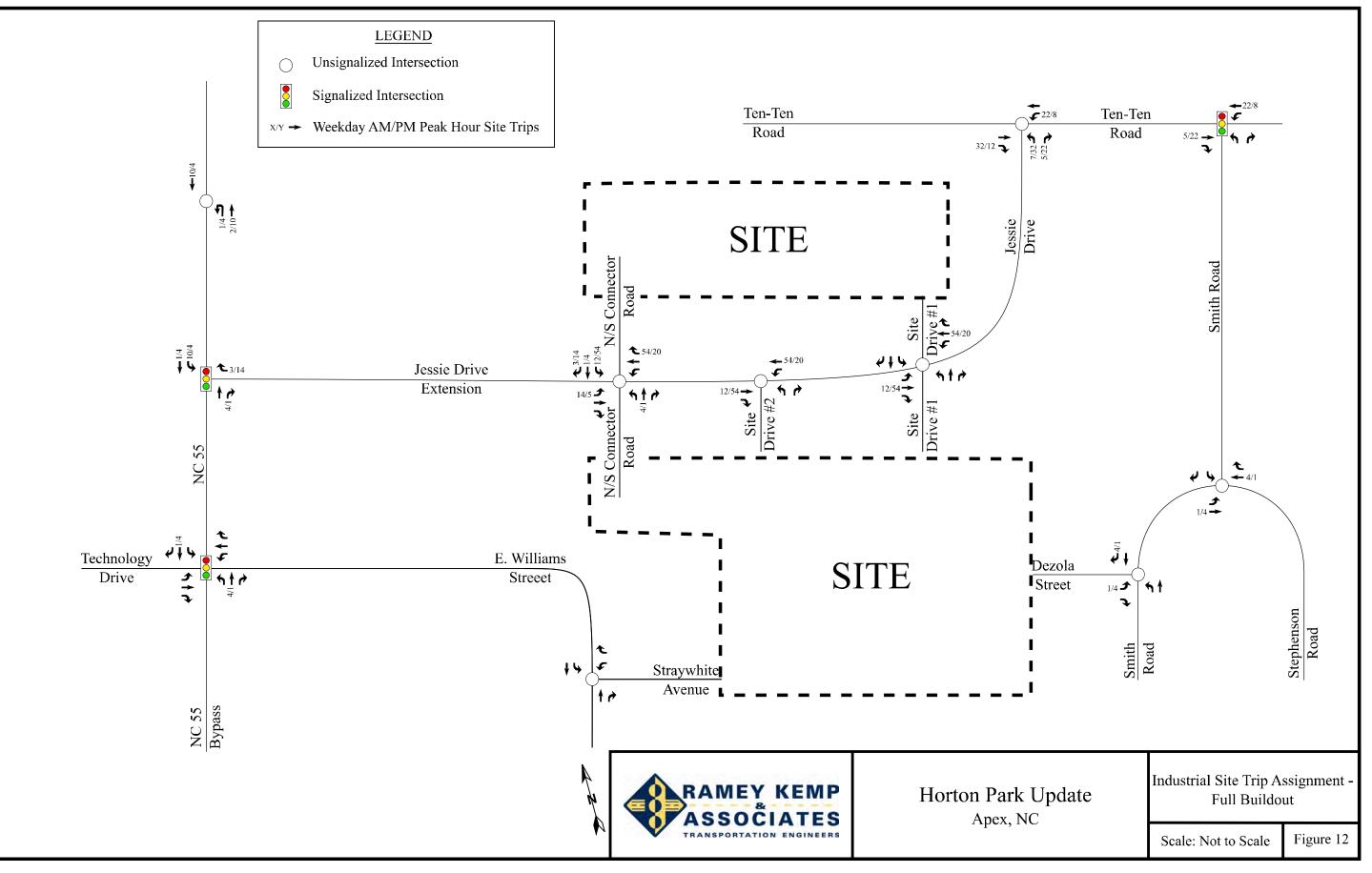

It is estimated that the industrial trips will be distributed as follows:

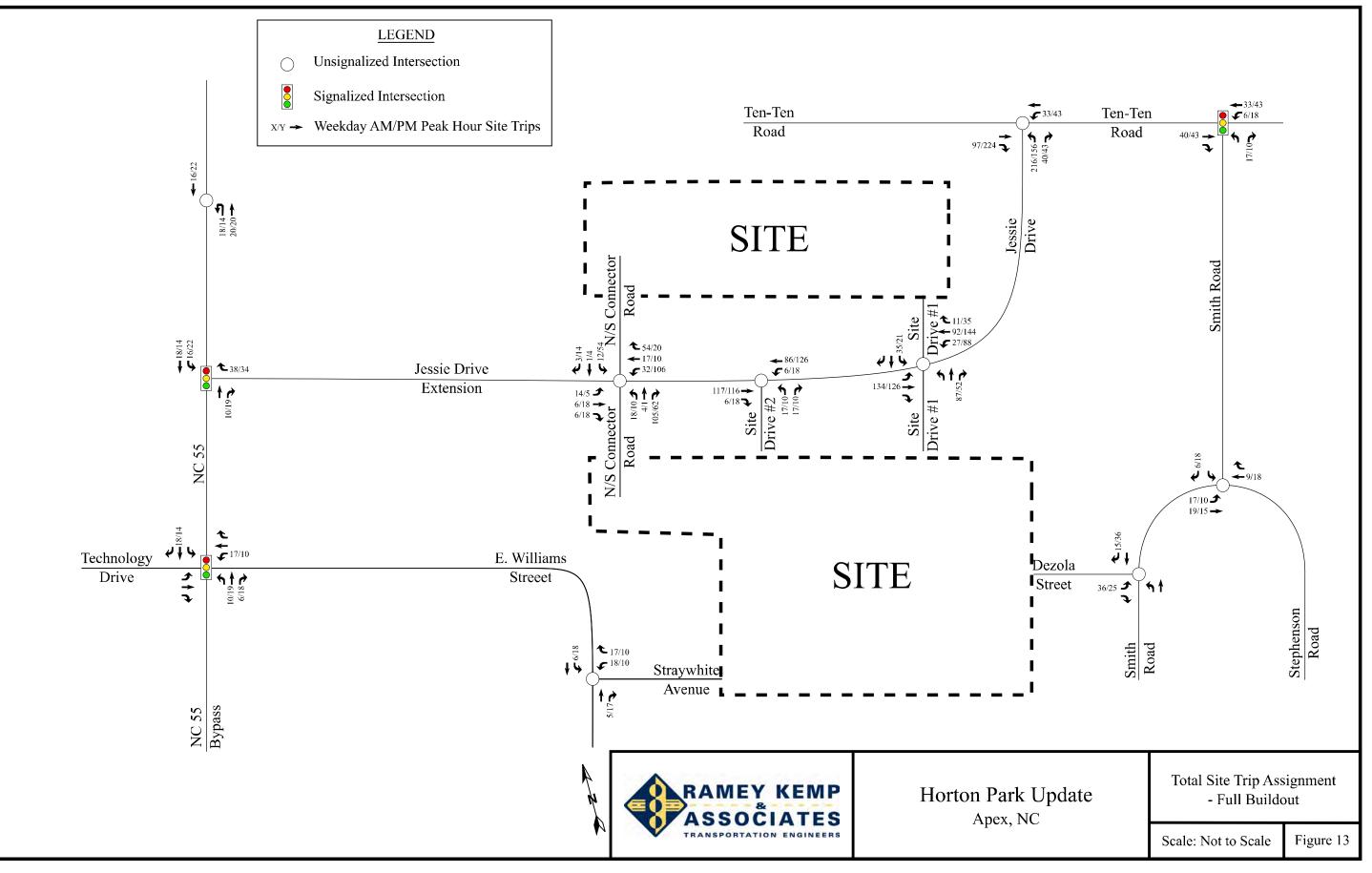

- 45% to/from the west via Ten-Ten Road
- 30% to/from the east via Ten-Ten Road
- 5% to/from the south via NC 55 Bypass
- 15% to/from the northwest via NC 55
- 5% to/from the south via Stephenson Road


The residential site trip distributions are shown for Phase 1 and Full Buildout in Figures 9A and 9B, respectively. Refer to Figure 10 for the industrial site trip distributions.

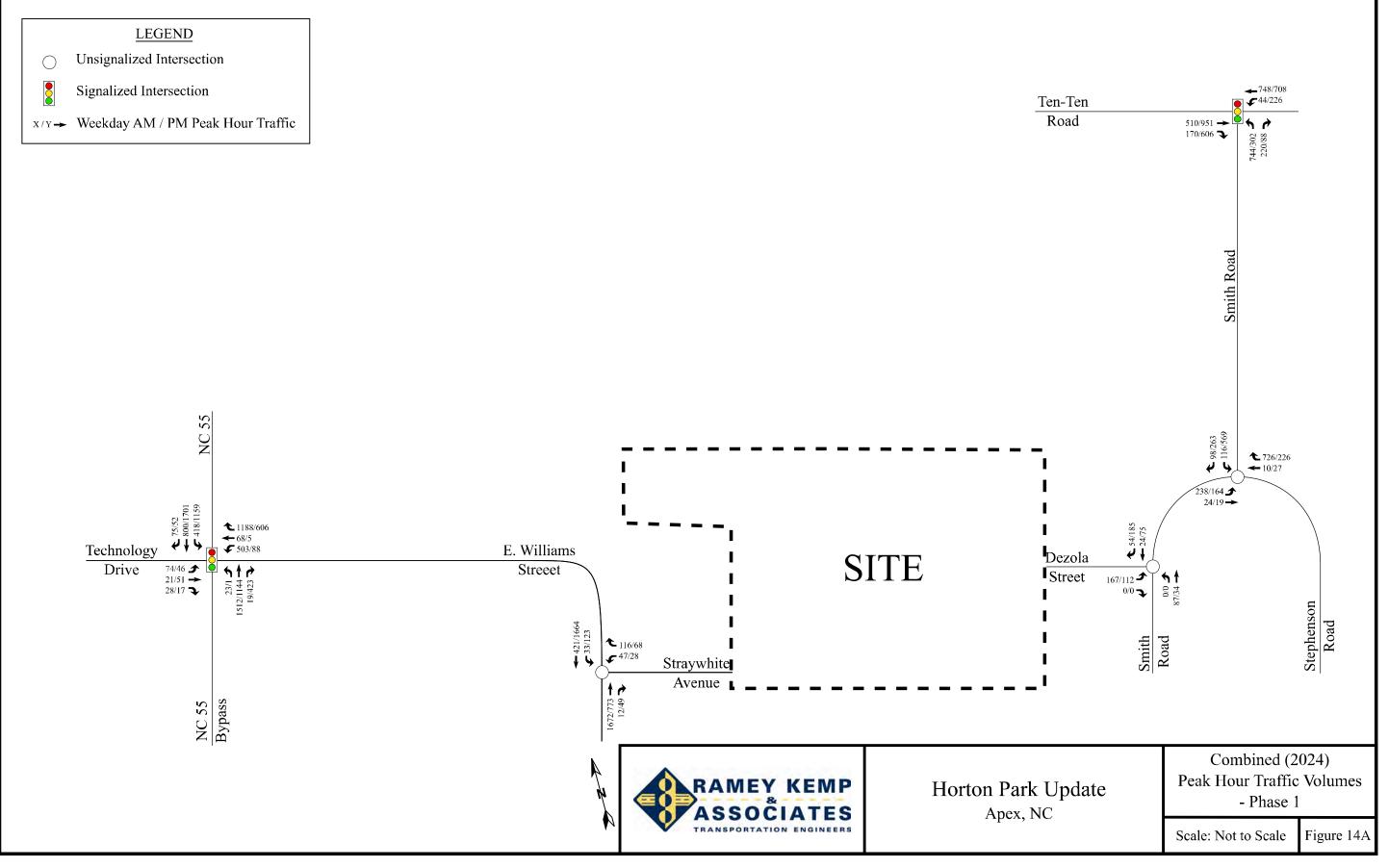

Figures 11A and 11B provide the Phase 1 and Full Buildout residential site trip assignments, respectively. Figure 12 provides the Full Buildout industrial site trip assignments. Refer to Figure 13 for the Full Buildout total site trip volumes.

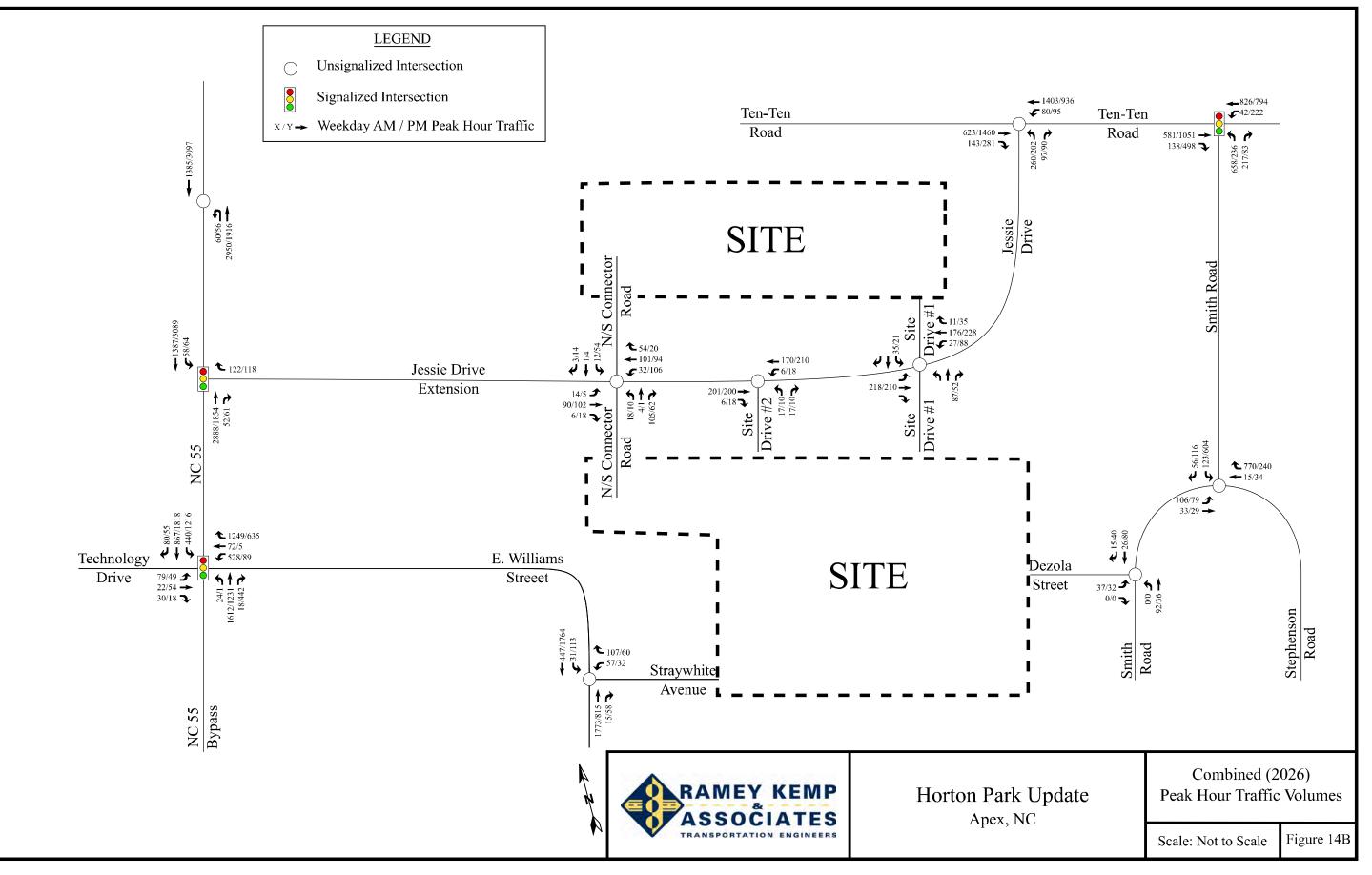






5. COMBINED (2024/2026) TRAFFIC CONDITIONS


5.1. Combined (2024/2026) Peak Hour Traffic Volumes


To estimate traffic conditions with Phase 1 and Full Buildout conditions of the site fully builtout, the total site trips for each scenario were added to the background (2024/2026) traffic volumes to determine the combined (2024) – Phase 1 and combined (2026) – Full Buildout traffic volumes. Refer to Figure 14A for an illustration of the combined (2024) – Phase 1 peak hour traffic volumes and Figure 14B for the combined (2026) - Full Buildout peak hour traffic volumes with the proposed site fully developed.

5.2. Analysis of Combined (2024/2026) Peak Hour Traffic

Study intersections were analyzed with the combined (2024) – Phase 1 and combined (2026) – Full Buildout traffic volumes using the same methodology previously discussed for existing and background traffic conditions. Intersections were analyzed with improvements necessary to accommodate future traffic volumes. The results of the capacity analysis for each intersection are presented in Section 7 of this report.

6. TRAFFIC ANALYSIS PROCEDURE

Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual* (HCM), 6th Edition, published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 10.3), was used to complete the analyses for most of the study area intersections. Please note that the unsignalized capacity analysis does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions, and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from Level "A" representing free flow, to Level "F" where breakdown conditions are evident. Refer to Table 4 for HCM levels of service and related average control delay per vehicle for both signalized and unsignalized intersections. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay". An average control delay of 50 seconds at a signalized intersection results in LOS "D" operation at the intersection.

UNSIGN	ALIZED INTERSECTION	SIGNALIZED INTERSECTION		
LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	
А	0-10	А	0-10	
В	10-15	В	10-20	
С	15-25	С	20-35	
D	25-35	D	35-55	
Е	35-50	E	55-80	
F	>50	F	>80	

Table 4: Highway Capacity Manual – Levels-of-Service and Delay

6.1. Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to the NCDOT Congestion Management Guidelines and the Town of Apex UDO, with the exception of the following items:

The Jessie Drive extension project is currently an unfunded project with the Town currently planning on LAPP funding in 2021 and construction in 2024. As Full Buildout / driveway access points along Jessie Drive are not feasible prior to the Town constructing this roadway, this project was included as a background improvement under Full Buildout conditions. This assumption was approved by the Town and NCDOT during the scoping process. Laneage was assumed per feedback from the Town of Apex staff regarding the anticipated cross-section (two-lane roadway with turn-lanes at Ten-Ten Road and at NC 55) and the desired superstreet configuration at NC 55, which will require a northbound U-turn movement north of the future connection.

7. CAPACITY ANALYSIS

7.1. Ten-Ten Road and Smith Road

The existing signalized intersection of Ten-Ten Road and Smith Road was analyzed under existing (2019), background (2024), background (2026), combined (2024) - Phase 1, and combined (2026) – Full Buildout traffic conditions with the lane configurations shown in Table 5. Refer to Table 5 for a summary of the analysis results. Refer to Appendix E for the Synchro capacity analysis reports.

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR F SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	EB WB NB	1 TH, 1 RT 1 LT, 1 TH 1 LT, 1 RT	C B E	D (35)	C B D	C (22)
Background (2024) Conditions	EB WB NB	<u>1 UT, 2 TH, 1 RT</u> 1 LT, <u>2 TH</u> <u>2 LT</u> , 1 RT	B B C	B (16)	B B C	B (16)
Background (2026) Conditions	EB WB NB	<u>1 UT, 2 TH, 1 RT</u> 1 LT, <u>2 TH</u> <u>2 LT</u> , 1 RT	B B C	B (17)	B B C	B (16)
Combined (2024) Conditions – Phase 1	EB WB NB	<u>1 UT, 2 TH, 1 RT</u> 1 LT, <u>2 TH</u> <u>2 LT</u> , 1 RT	B B C	B (18)	B B C	B (18)
Combined (2026) Conditions – Full Buildout	EB WB NB	<u>1 UT, 2 TH, 1 RT</u> 1 LT, <u>2 TH</u> <u>2 LT</u> , 1 RT	B B C	B (17)	B B C	B (17)

Table 5: Analysis Summary of Ten-Ten Road and Smith Road

Expected TIP Improvements are underlined.

Capacity analysis of existing (2019) conditions indicate that the intersection of Ten-Ten Road and Smith Road currently operates at an overall LOS D or better during the weekday AM and PM peak hours. Under all background and combined analysis conditions, the intersection is expected to operate at LOS B, with all approaches operating at LOS C or better during the weekday AM and PM peak hours. This improvement in operations is expected due to the NCDOT U-5825B project to widen Ten-Ten Road to a four-lane median divided roadway. The proposed development is expected to have a larger impact at this intersection under Phase 1

conditions with the operations improving under Full Buildout due to the additional site accesses that will be opened up to Jessie Drive and the Jessie Drive Extension. These additional accesses are expected to reduce the number of site trips that will use this intersection. It should also be noted that the NCDOT TIP improvements (U-5825B) were modeled according to the most current conceptual drawings available. These plans are expected to change slightly throughout the design process. Additionally, signal phasing was assumed according to NCDOT Congestion Management standards for analysis of new intersections with protected only phasing. Protected/permitted phasing, or Dallas protected/permitted phasing may be possible and will be determined during design of the TIP project. These signal phasing's, if possible, will likely present improvements to the signal operations over the protected only phasing that was analyzed.

7.2. NC 55 / NC 55 Bypass and Technology Drive / E. Williams Street

The existing signalized intersection of NC 55 / NC 55 Bypass and Technology Drive / E. Williams Street was analyzed under existing (2019), background (2024), background (2026), combined (2024) - Phase 1, and combined (2026) – Full Buildout traffic conditions with the lane configurations shown in Table 6. Refer to Table 6 for a summary of the analysis results. Refer to Appendix F for the Synchro capacity analysis reports.

Table 6: Analysis Summary of NC 55 / NC 55 Bypass and Technology Drive / E. Williams

ANALYSIS	A P P R	LANE	PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		DAY PM HOUR F SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	D F C C	E (62)	D A C C	C (23)
Background (2024) Conditions	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	E F C C	F (108)	E A C F	E (57)
Background (2026) Conditions	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	E F C C	F (129)	E A C F	E (72)
Combined (2024) Conditions – Phase 1	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	E F C C	F (117)	E B C F	E (61)
Combined (2024) Conditions – Phase 1 – with Signal Timing Modifications	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	D E E E	E (62)	E B E C	D (37)
Combined (2026) Conditions – Full Buildout	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	E F C C	F (137)	E B C F	E (76)
Combined (2026) Conditions – Full Buildout – with Signal Timing Modifications	EB WB NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT 1 LT, 2 TH, 1 RT 2 LT, 2 TH, 1 RT	C E F E	E (77)	F B E C	D (41)

Street

Capacity analysis of existing (2019) conditions indicate the intersection of E. Williams Street / Technology Drive and NC 55 / NC 55 Bypass operates at an overall LOS E during the weekday AM peak hour and LOS C during the weekday PM peak hour. Under background (2024), background (2026), combined (2024) – Phase 1, and combined (2026) – Full Buildout conditions the intersection is expected to operate to an overall LOS F during the weekday AM peak hour and LOS E during the weekday PM peak hour. Under Phase 1 conditions, the proposed development is expected to increase the overall intersection delay by 9 seconds during the weekday AM peak hour and 4 seconds during the weekday PM peak hour.

Under Full Buildout conditions, the proposed development is expected to increase the overall intersection delay by 8 seconds during the weekday AM peak hour and 4 seconds during the weekday PM peak hour. The proposed development is expected to have a larger impact at this intersection under Phase 1 conditions with the operations improving under full buildout due to the additional site accesses that will be opened up to Jessie Drive and the Jessie Drive Extension. These additional accesses are expected to reduce the number of site trips that will use this intersection. Per the Town UDO, if background conditions are expected to operate at an overall LOS E or worse the development must improve the intersection if the developments traffic is greater than or equal to 10% of the weekday AM or PM peak hour traffic when compared to the background traffic conditions. It should be noted that the development is expected to add approximately 1% of traffic to the intersection during the weekday AM and PM peak hours in Phase 1 and Full Buildout conditions.

Despite the minor impact at the subject intersection, signal timing improvements were considered to improve the intersection to an overall LOS E or better under all analysis conditions. These improvements will likely be implemented periodically by NCDOT and are therefore not recommended for the subject development.

7.3. Smith Road and Stephenson Road

The existing unsignalized intersection of Smith Road and Stephenson Road was analyzed under existing (2019), background (2024), background (2026), combined (2024) - Phase 1, and combined (2026) – Full Buildout traffic conditions with the lane configurations and traffic control shown in Table 7. Refer to Table 7 for a summary of the analysis results. Refer to Appendix G for the Synchro capacity analysis reports.

ANALYSIS	A P P R	LANE	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	EB WB SB	1 LT-TH 1 TH-RT 1 LT, 1 RT	$ \begin{array}{c} \mathbf{A}^{1} \\ \\ \mathbf{B}^{2} \end{array} $	N/A	$ \begin{array}{c} \mathbf{A}^{1} \\ \overline{\mathbf{C}^{2}} \end{array} $	N/A
Background (2024) Conditions	EB WB SB	1 LT-TH 1 TH-RT <u>1 LT</u> , 1 RT	$\begin{array}{c} A^1 \\ \hline \\ C^2 \end{array}$	N/A	$\begin{array}{c} A^{1} \\ \hline \\ E^{2} \end{array}$	N/A
Background (2026) Conditions	EB WB SB	1 LT-TH 1 TH-RT <u>1 LT</u> , 1 RT	B^1 - C^2	N/A	$ \begin{array}{c} \mathbf{A}^{1} \\ $	N/A
Combined (2024) Conditions – Phase 1	EB WB SB	1 LT-TH 1 TH-RT <u>1 LT,</u> 1 RT	$ \begin{array}{c} \mathbf{B}^{1} \\ - \\ \mathbf{E}^{2} \\ \mathbf{B}^{1} \end{array} $	N/A	$\begin{array}{c} A^{1} \\ \hline \\ F^{2} \end{array}$	N/A
Combined (2024) Conditions – Phase 1- with Improvements	EB WB SB	1 LT , 1 TH 1 TH-RT <u>1 LT</u> , 1 RT	$\overline{E^2}$	N/A	$\begin{array}{c} \mathbf{A}^{1} \\ \hline \mathbf{F}^{2} \end{array}$	N/A
Combined (2026) Conditions – Full Buildout	EB WB SB	1 LT-TH 1 TH-RT <u>1 LT</u> , 1 RT	$\begin{array}{c} \mathbf{B}^{1} \\ \mathbf{-} \\ \mathbf{C}^{2} \end{array}$	N/A	$ \begin{array}{c} A^{1} \\ \hline F^{2} \end{array} $	N/A
Combined (2026) Conditions – Full Buildout - with Improvements	EB WB SB	1 LT , 1 TH 1 TH-RT <u>1 LT</u> , 1 RT	B^1 \overline{C}^2	N/A	$\frac{A^1}{F^2}$	N/A

Table 7: Analysis Summary of Smith Road and Stephenson Road

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Expected TIP Improvements are <u>underlined</u>.

Capacity analysis of existing (2019) conditions indicates the major-street left-turn movement and minor-street approaches operate at LOS C or better during the weekday AM and PM peak

hour. Under background (2026), combined (2024) – Scenario 1, and combined (2026) – Full Buildout conditions the minor-street approach is expected to operate at LOS F during the weekday PM peak hour. Although not necessary from a level-of-service perspective, an eastbound left-turn lane is recommended to accommodate the additional eastbound traffic at the intersection. NCDOT's U-5825B Ten-Ten Road widening project is expected to widen Smith Road to a three-lane section from Ten-Ten Road to Stephenson Road. These improvements are not expected to affect the capacity at the intersection of Stephenson Road and Smith Road but are included in all future year analyses.

It should be noted that a signal was considered according to the methodology contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and the intersection is expected to only meet the weekday PM peak hour warrants for a signal under combined (2023) – Scenario 1 and combined (2023) – Scenario 2 conditions. Due to the residential nature of this area, it is not expected that the intersection would meet the 4 or 8-hour warrants for a signal, which the NCDOT typically require. Based on the short duration of heavy traffic expected at this intersection, signalization is not recommended as part of this study.

7.4. Smith Road and Dezola Street

The existing unsignalized intersection of Smith Road and Dezola Street was analyzed under existing (2019), background (2024), background (2026), combined (2024) - Phase 1, and combined (2026) – Full Buildout traffic conditions with the lane configurations and traffic control shown in Table 8. Refer to Table 8 for a summary of the analysis results. Refer to Appendix H for the Synchro capacity analysis reports.

ANALYSIS	A P P R	LANE	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	A ² A ¹	N/A
Background (2024) Conditions	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	$\begin{array}{c} A^2 \\ A^1 \\ \hline \end{array}$	N/A
Background (2026) Conditions	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	$\begin{array}{c} \mathbf{A}^2\\ \mathbf{A}^1\\ \mathbf{-}\end{array}$	N/A
Combined (2024) Conditions – Phase 1	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	B ² A ¹	N/A	B^2 A^1	N/A
Combined (2024) Conditions – Phase 1 – with Improvements	EB NB SB	1 LT-RT 1 LT-TH 1 TH, 1 RT	B ² A ¹	N/A	A ² A ¹	N/A
Combined (2026) Conditions – Full Buildout	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	A ² A ¹	N/A
Combined (2026) Conditions – Full Buildout – with Improvements	EB NB SB	1 LT-RT 1 LT-TH 1 TH, 1 RT	A ² A ¹ 	N/A	A ² A ¹ 	N/A

Table 8: Analysis Summary of Smith Road and Dezola Street

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Capacity analysis of all analysis conditions indicates that the minor-street approach and majorstreet left-turn movement at the intersection of Smith Road and Dezola Street are expected to

operate at LOS B or better during both weekday AM and PM peak hours. Although not necessary to meet the level-of-service requirements, a southbound right-turn lane is recommended to accommodate the additional site traffic at the intersection. This turn-lane was recommended based on the NCDOT Driveway Manual *Warrant for left and Right-Turn Lanes* chart.

7.5. E. Williams Street and Straywhite Avenue

The existing unsignalized intersection of E. Williams Street and Straywhite Avenue was analyzed existing (2019), background (2024), background (2026), combined (2024) - Phase 1, and combined (2026) – Full Buildout traffic conditions with the lane configurations and traffic control shown in Table 9. Refer to Table 9 for a summary of the analysis results. Refer to Appendix I for the Synchro capacity analysis reports.

ANALYSIS	A P P R LANE		PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		DAY PM HOUR F SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	WB NB SB	1 LT-RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - B^1	N/A	C^2 - A^1	N/A
Background (2024) Conditions	WB NB SB	1 LT-RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	C^2 - B^1	N/A
Background (2026) Conditions	WB NB SB	1 LT-RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	D^2 B^1	N/A
Combined (2024) Conditions – Phase 1	WB NB SB	1 LT-RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	D^2 - B^1	N/A
Combined (2024) Conditions – Phase 1 – with Improvements	WB NB SB	1 LT, 1 RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	C^2 - B^1	N/A
Combined (2026) Conditions – Full Buildout	WB NB SB	1 LT-RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	D^2 - B^1	N/A
Combined (2026) Conditions – Full Buildout – with Improvements	WB NB SB	1 LT, 1 RT 1 TH, 1 RT 1 LT, 1 TH	F^2 - C^1	N/A	D^2 - B^1	N/A

Table 9: Analysis Summary of E. Williams Street and Straywhite Avenue

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Capacity analysis of all analysis conditions indicates the minor-street approach at the intersection of E. Williams Street and Straywhite Avenue is expected to operate at LOS F

during the weekday AM peak hour. During the weekday PM peak hour, the minor-street approach is expected to operate at LOS D or better under all analysis conditions. The major-street left-turn movement is expected to operate at LOS C or better during the weekday AM and PM peak hours under all analysis conditions.

Although it is not uncommon to experience significant delay for a minor-street approach during the peak hour with a high volume of through traffic on the mainline, a signal was considered according to methodology contained in the MUTCD. The intersection is expected to only meet peak hour warrants for signalization during the weekday AM peak hour under Phase 1 and Full Buildout conditions. Due to the residential nature of this area, it is not expected that the intersection would meet the 4 or 8-hour warrants for a signal, which the NCDOT typically require. Due to this, signalization of this intersection is not recommended by the subject development. Additionally, the intersection of E. Williams Street / Technology Drive and NC 55 / NC 55 Bypass is located approximately 1,400 feet north of this intersection. Per SimTraffic simulations of the weekday AM peak hour under existing (2019) conditions, the westbound approach at this upstream signal (E. Williams Street), queues beyond the Straywhite Avenue intersection. Due to this, signalization would likely not be desirable to NCDOT. Traffic exiting Straywhite Avenue during the weekday AM peak hour would likely be given courtesy gaps by motorists on E. Williams Street, allowing for egress with significantly less delay than modeled by Synchro.

The subject development is expected to account for approximately 2% of the traffic at this intersection during the weekday AM peak hour and 3% during the weekday PM peak hour under combined (2024) – Phase 1 conditions. Due to the additional site access provided to Jessie Drive under Full Buildout conditions, Phase 1 conditions are expected to reduce the number of site trips added to this intersection by the proposed Horton Park development.

The westbound approach of Straywhite Avenue at E. Williams Street is approximately 21 feet in width. Due to this available pavement, it is recommended that Straywhite Avenue be restriped to provide an exclusive left and right-turn lane at E. Williams Street.

7.6. Ten-Ten Road and Jessie Drive

The existing unsignalized intersection of Ten-Ten Road and Jessie Drive was analyzed under existing (2019), background (2026), and combined (2026) – Full Buildout traffic conditions with the lane configurations shown in Table 10. Refer to Table 10 for a summary of the analysis results. Refer to Appendix J for the Synchro capacity analysis reports.

ANALYSIS	A P P R LANE		WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Existing (2019) Conditions	EB WB NB	1 TH-RT 1 LT-TH 1 LT-RT	A^1 C^2	N/A	B^1 F^2	N/A
Background (2026) Conditions	EB WB NB	<u>3 TH</u> , 1 RT <u>1 LT, 2 TH</u> 1 LT, 1 RT	B^1 D^2	N/A	$\begin{array}{c} \\ D^1 \\ F^2 \end{array}$	N/A
Combined (2026) Conditions – Full Buildout	EB WB NB	<u>3 TH</u> , 1 RT <u>1 LT, 2 TH</u> 1 LT, 1 RT	B^1 F^2	N/A	F^1 F^2	N/A
Combined (2026) Conditions – Full Buildout – with Signalization	EB WB NB	<u>3 TH</u> , 1 RT <u>1 LT, 2 TH</u> 1 LT, 1 RT	B B C	B (18)	B B C	B (18)

Table 10: Analysis Summary of Ten-Ten Road and Jessie Drive

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Expected TIP Improvements are <u>underlined</u>.

Expected Town Improvements are in red. (Potential LAPP project)

Capacity analysis of existing (2019) and background (2026) conditions indicates that the major-street left-turn movement is expected to operate at LOS D or better during the weekday AM and PM peak hour. The minor-street approach is expected to operate at LOS D or better during the weekday AM peak hour and LOS F during the weekday PM peak hour under existing (2019) and background (2026) conditions. Under combined (2026) – Full Buildout conditions the minor-street approach is expected to degrade to LOS F during the weekday AM peak hour and the major-street left-turn movement is expected to degrade to LOS F during the weekday AM peak hour and the major-street left-turn movement is expected to degrade to LOS F during the weekday AM peak hour. Due to the poor level of service expected under combined (2026) –

Full Buildout conditions, a signal was considered according to the methodology contained within the *Manual on Uniform Traffic Control Devices* (MUTCD). The intersection is expected to meet the weekday AM and PM peak hour warrants for a signal under combined (2026) – Full Build conditions. Ten-Ten Road is expected to undergo widening as part of the U-5825B project, prior to full buildout of the proposed development. These improvements are not full designed; therefore, laneage was included in this study according to the most recent conceptual design available. Additional improvements are expected with the Town's LAPP funded project to extend Jessie Drive to NC 55. Per coordination with the Town, this project is expected to provide a two-lane roadway with turn-lanes at NC 55 and at Ten-Ten Road. At the time of this TIA, signalization of this intersection is not currently planned as part of the NCDOT or Town projects. With signalization in place, the intersection is expected to operate at an overall LOS C or better under combined (2026) – Full Buildout conditions. Due to the operational benefits of the signal, it is recommended that the intersection be monitored for signalization by proposed development after buildout of the Jessie Drive site access.

7.7. Jessie Drive Extension and NC 55

The proposed signalized intersection of Jessie Drive and NC 55 was analyzed under background (2026) and combined (2026) – Full Buildout traffic conditions with proposed lane configurations and traffic control. Refer to Table 11 for a summary of the analysis results. Refer to Appendix K for the Synchro capacity analysis reports.

ANALYSIS SCENARIO H	P P	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE		
	Α		Approach	Overall (seconds)	Approach	Overall (seconds)
Background (2026) Conditions	WB NB SB	1 RT 2 TH, 1 RT 1 LT, 2 TH	E F D*	D (47)	B B B*	B (15)
Combined (2026) Conditions – Full Buildout	WB NB SB	1 RT 2 TH, 1 RT 1 LT, 2 TH	E F D*	D (53)	B B C*	C (21)

Table 11: Analysis Summary of Jessie Drive Extension and NC 55

*Due to the limited capabilities of Synchro, the southbound left-turn movement was analyzed as an eastbound through movement.

Expected Town Improvements are in red.

Capacity analysis of background (2026) and combined (2026) – Full Buildout traffic conditions indicate the intersection of Jessie Drive Extension and NC 55 is expected to operate at an overall LOS D or better during the weekday AM and PM peak hours. This intersection is expected to be constructed by the Town of Apex via a LAPP funded project to construct the Jessie Drive extension in 2024. As this project is not currently designed, the location, laneage, and superstreet configuration were determined through coordination with Town staff. Jessie Drive Extension is expected to provide a two-lane roadway with turn-lanes at NC 55 and at Ten-Ten Road. Full buildout of the proposed development is expected to account for approximately 6 seconds of additional delay during the weekday AM peak hour and 6 seconds of additional delay during the weekday PM peak hour.

7.8. Northbound U-Turn and NC 55

The proposed unsignalized intersection of Northbound U-Turn and NC 55 was analyzed under background (2026) and combined (2026) – Full Buildout traffic conditions with proposed lane configurations and traffic control. Refer to Table 12 for a summary of the analysis results. Refer to Appendix L for the Synchro capacity analysis reports.

ANALYSIS SCENARIO	APPRLANEOCONFIGURATIONSACH	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE		
		Approach	Overall (seconds)	Approach	Overall (seconds)	
Background (2026) Conditions	NB SB	1 UT, 2 TH 2 TH	C*1 	N/A	F* ¹ 	N/A
Combined (2026) Conditions – Full Buildout	NB SB	<mark>1 UT</mark> , 2 TH 2 TH	C*1	N/A	F* ¹ 	N/A

Table 12: Analysis Summary of Northbound U-Turn and NC 55

*Due to the limited capabilities of Synchro, the northbound U-turn was analyzed as a westbound left-turn.

1. Level of service for major-street U-turn movement.

Expected Town Improvements are in red.

Capacity analysis of background (2026) and combined (2026) – Full Buildout traffic conditions indicate the unsignalized NorthboundU-turn movement, north of the proposed Jessie Drive Extension, is expected to operate at LOS C during the weekday AM peak hour and LOS F during the weekday PM peak hour. A signal was considered according to the methodology contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and the intersection is not expected to meet the weekday AM or PM peak hour warrants for a signal under combined (2026) – Full Buildout conditions. Additionally, due to the upstream signals, sufficient gaps in traffic are expected to allow for U-turn maneuvers during times of heavy traffic (weekday PM peak hour). This intersection is expected by the Town of Apex via a LAPP funded project to construct the Jessie Drive extension in 2024. As this project is not currently designed, the location, and laneage for this intersection was assumed based on coordination with Town staff.

7.9. Jessie Drive and North-South Connector

The proposed unsignalized intersection of Jessie Drive and North-South Connector was analyzed under combined (2026) – Full Buildout traffic conditions with proposed lane configurations and traffic control. Refer to Table 13 for a summary of the analysis results. Refer to Appendix M for the Synchro capacity analysis reports.

Table 15: Analysis Summary of Jessie Drive and North-South Connector						
ANALYSIS	A P P R LANE		WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Combined (2026) Conditions – Full Buildout	EB WB NB SB	1 LT, 1 TH-RT 1 LT, 1 TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	$\begin{array}{c} A^1 \\ A^1 \\ B^2 \\ B^2 \end{array}$	N/A	$\begin{array}{c} A^1 \\ A^1 \\ B^2 \\ B^2 \end{array}$	N/A

Table 13: Analysis Summary of Jessie Drive and North-South Connector

Level of service for major-street left-turn movement.
 Level of service for minor-street approach.

Improvements by Developer in **Bold**.

Expected Town Improvements are in red.

Capacity analysis of combined (2026) – Full Buildout traffic conditions indicate that the minor-street approaches and major-street left-turn movements at the intersection of Jessie Drive and North-South Connector are expected to operate at LOS B or better during both weekday AM and PM peak hours. Although not needed from a level of service standpoint, left-turn lanes are recommended for the eastbound and westbound approaches according to the *Warrant for Left and Right-Turn Lanes* chart included in the NCDOT Driveway Manual.

7.10. Jessie Drive and Site Drive #1

The proposed unsignalized intersection of Jessie Drive and Site Drive #1 was analyzed under combined (2026) – Full Buildout traffic conditions with the lane configurations shown in Table 14. Refer to Table 14 for a summary of the analysis results. Refer to Appendix N for the Synchro capacity analysis reports.

ANALYSIS SCENARIO	A P P R LANE		WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
Combined (2026) Conditions – Full Buildout	EB WB NB SB	1 LT, <mark>1 TH</mark> -RT 1 LT, <mark>1 TH</mark> -RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	$\begin{array}{c} \mathbf{A}^1\\ \mathbf{A}^1\\ \mathbf{B}^2\\ \mathbf{C}^2 \end{array}$	N/A	$\begin{array}{c} \mathbf{A}^1\\ \mathbf{A}^1\\ \mathbf{B}^2\\ \mathbf{C}^2 \end{array}$	N/A

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Expected Town Improvements are in red.

Capacity analysis of combined (2026) – Full Buildout traffic conditions indicate that the minor-street approaches and major-street left-turn movements at the intersection of Jessie Drive and Site Drive #1 are expected to operate at LOS C or better during both weekday AM and PM peak hours. Although not needed from a level of service standpoint, left-turn lanes are recommended for the eastbound and westbound approaches according to the *Warrant for Left and Right-Turn Lanes* chart included in the NCDOT Driveway Manual.

7.11. Jessie Drive and Site Drive #2

The proposed unsignalized intersection of Jessie Drive and Site Drive #2 was analyzed under combined (2026) – Full Buildout traffic conditions with the lane configurations shown in Table 15. Refer to Table 15 for a summary of the analysis results. Refer to Appendix O for the Synchro capacity analysis reports.

ANALYSIS SCENARIO H	P P	LANE CONFIGURATIONS	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
	A C		Approach	Overall (seconds)	Approach	Overall (seconds)
Combined (2026) Conditions – Full Buildout	EB WB NB	<mark>1 TH-</mark> RT 1 LT, 1 TH 1 LT-RT	$\begin{array}{c}\\ A^1\\ B^2 \end{array}$	N/A	$\frac{-}{A^1} \\ B^2$	N/A

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Improvements by Developer in Bold.

Expected Town Improvements are in red.

Capacity analysis of combined (2026) – Full Buildout traffic conditions indicate that the minor-street approach and major-street left-turn movement at the intersection of Jessie Drive and Site Drive #2 are expected to operate at LOS B or better during both weekday AM and PM peak hours. Although not needed from a level of service standpoint, a left-turn lane is recommended for the westbound approach according to the *Warrant for Left and Right-Turn Lanes* chart included in the NCDOT Driveway Manual.

8. CONCLUSIONS

This Traffic Impact Analysis Update was conducted to determine the potential traffic impacts of the proposed Horton Park development, located between E. Williams Street and Smith Road and south of Ten-Ten Road in Apex, North Carolina. The proposed development is expected to be a mixed-use development and be built out in phases, with completion of Phase 1 expected in 2024 and Full Buildout in 2026. Phase 1 of the development is expected to provide site access via connections to Dezola Street to the east and Colby Chase Drive to the west. Under Full Buildout, the development is expected to provide additional site access via three (3) full movement driveways on Jessie Drive Extension.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- Existing (2019) Traffic Conditions
- Background (2024) Traffic Conditions
- Background (2026) Traffic Conditions
- Combined (2024) Traffic Conditions Phase 1
- Combined (2026) Traffic Conditions Full Buildout

Trip Generation

It is estimated that Phase 1 of the proposed development will generate approximately 3,740 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 274 trips (67 entering and 207 exiting) will occur during the weekday AM peak hour and 359 (227 entering and 132 exiting) will occur during the weekday PM peak hour.

Full Buildout of the proposed development is estimated to generate approximately 8,270 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 547 trips (182 entering and 365 exiting) will occur during the AM peak hour and 657 (379 entering and 278 exiting) will occur during the PM peak hour.

Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to the Town's UDO and NCDOT Congestion Management Guidelines. Refer to section 6.1 of this report for a detailed description of any adjustments to these guidelines made throughout the analysis.

Intersection Capacity Analysis Summary

All the study area intersections (including the proposed site driveways) are expected to operate at acceptable levels-of-service under existing and future year conditions with the exception of the intersections listed below. A summary of the study area intersections that are expected to need improvements are as follows:

Ten-Ten Road and Jessie Drive

The intersection of Ten-Ten Road and Jessie Drive is expected to be improved by widening along Ten-Ten Road as part of the U-5825B project and turn-lane improvements as part of the Town's LAPP funded project to extend Jessie Drive from Ten-Ten Road to NC 55. These projects do not have finalized designs, therefore laneage was assumed per coordination with NCDOT and Town staff. Under full buildout conditions, when the proposed development is expected to provide access to Jessie Drive Extension, a signal was considered according to methodology contained in the MUTCD and is expected to meet the weekday AM and PM peak hour warrants for signalization. Under combined (2026) – Full Buildout conditions with signalization, the intersection is expected to operate at an overall LOS B during the weekday AM and PM peak hours. It is recommended that the proposed development monitor this intersection for signalization after construction of the first Site Driveway onto Jessie Drive / Jessie Drive Extension.

Smith Road and Stephenson Road

The unsignalized intersection of Smith Road and Stephenson Road is expected to operate at LOS F on the minor-street approach during the weekday PM peak hour under background (2024), background (2026), combined (2024) – Phase 1, and combined (2026) – Full Buildout conditions. A signal was considered at the intersection according to the methodology contained in the MUTCD but is only expected to meet the weekday PM peak hour warrants for

a signal. An eastbound left-turn lane is recommended to accommodate the additional eastbound traffic expected at the intersection.

Technology Drive / E. Williams Street and NC 55 / NC 55 Bypass

The intersection of Technology Drive / E. Williams Street and NC 55 / NC 55 Bypass is expected to operate at an overall LOS F during the weekday AM peak hour and LOS E during the weekday PM peak hour under background (2024), background (2026), combined (2024) – Phase 1, and combined (2026) – Full Buildout conditions.

Under Full Buildout conditions, the proposed development is expected to increase the overall intersection delay by 8 seconds during the weekday AM peak hour and 4 seconds during the weekday PM peak hour. The proposed development is expected to have a larger impact at this intersection under Phase 1 conditions with the operations improving under full buildout due to the additional site accesses that will be opened up to Jessie Drive and the Jessie Drive Extension. These additional accesses are expected to reduce the number of site trips that will use this intersection. Per the Town UDO, if background conditions are expected to operate at an overall LOS E or worse the development must improve the intersection if the developments traffic is greater than or equal to 10% of the weekday AM or PM peak hour traffic when compared to the background traffic conditions. It should be noted that the development is expected to add approximately 1% of traffic to the intersection during the weekday AM and PM peak hours in Phase 1 and Full Buildout conditions. Signal timing modifications were

Despite the minor impact at the subject intersection, signal timing improvements were considered to improve the intersection to an overall LOS E or better under all analysis conditions. These improvements will likely be implemented periodically by NCDOT and are therefore not recommended for the subject development.

E. Williams Street and Straywhite Avenue

The minor-street approach of Straywhite Avenue at E. Williams Street is expected to operate at LOS F under all analysis conditions. Although it is not uncommon for a minor-street approach to operate with significant delay with a high volume of through traffic on the

mainline, a signal was considered according to methodology contained in the MUTCD. The intersection is expected to only meet peak hour warrants for signalization during the weekday AM peak hour under Phase 1 and Full Buildout conditions. Due to the residential nature of this area, it is not expected that the intersection would meet the 4 or 8-hour warrants for a signal, which the NCDOT typically require. Additionally, the intersection of E. Williams Street / Technology Drive and NC 55 / NC 55 Bypass is located approximately 1,400 feet north of this intersection. Per SimTraffic simulations of the weekday AM peak hour under existing (2019) conditions, the westbound approach at this upstream signal (E. Williams Street), queues beyond the Straywhite Avenue intersection. Due to these reasons, signalization is not recommended by the proposed development. Additionally, traffic exiting Straywhite Avenue during the weekday AM peak hour would likely be given courtesy gaps by motorists on E. Williams Street, allowing for egress with significantly less delay than modeled by Synchro.

The subject development is expected to account for approximately 2% of the traffic at this intersection during the weekday AM peak hour and 3% during the weekday PM peak hour under combined (2024) – Phase 1 conditions. Despite the relatively low impact expected by the proposed development, it is recommended that the proposed Horton Park development monitor this intersection for signalization through buildout of Phase 1 of the development and install a signal when warranted and approved by NCDOT. Due to the additional site access provided to Jessie Drive under Full Buildout conditions, if signalization is not warranted under Phase 1 conditions, it is recommended that this requirement be eliminated.

The westbound approach of Straywhite Avenue at E. Williams Street is approximately 21 feet in width. Due to this available pavement, it is recommended that Straywhite Avenue be restriped to provide an exclusive left and right-turn lane at E. Williams Street.

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 15A for an illustration of the Phase 1 recommended lane configuration for the proposed development and 15B for the Full Buildout recommended lane configurations.

Recommended Improvements by TIP U-5825B

• Widen Ten-Ten Road to a minimum four lane, median divided, cross-section throughout the study area.

Ten-Ten Road and Jessie Drive

- Provide three (3) eastbound through lanes and two (2) westbound through lanes on Ten-Ten Road with full length storage.
- Provide an exclusive westbound left-turn lane on Ten-Ten Road with a minimum of 400 feet of storage and appropriate taper.

Ten-Ten Road and Smith Road

- Provide two (2) eastbound through lanes and two (2) westbound through lanes on Ten-Ten Road with full length storage.
- Provide an exclusive westbound left-turn lane on Ten-Ten Road with a minimum of 400 feet of storage and appropriate taper.
- Provide an exclusive eastbound U-turn lane on Ten-Ten Road with a minimum of 400 feet of storage and appropriate taper.
- Provide an exclusive eastbound right-turn lane on Ten-Ten Road with full length storage.
- Provide exclusive dual northbound left-turn lanes on Smith Road, one as a two-way left-turn lane extending to Stephenson Road and one with full length storage.
- Provide an exclusive northbound right-turn lane on Smith Road with a minimum of 250 feet of storage and appropriate taper.

Recommended Improvements by Town (Jessie Drive Extension)

• Extend Jessie Drive from NC 55 to Ten-Ten Road with a two-lane cross-section.

Ten-Ten Road and Jessie Drive

- Construct an exclusive northbound right-turn lane on Jessie Drive with a minimum of 200 feet of storage and appropriate taper.
- Construct an exclusive eastbound right-turn lane on Ten-Ten Road with a minimum of 100 feet of storage and appropriate taper.

NC 55 and Jessie Drive Extension

- Construct a left-over intersection with a median on NC 55 restricting westbound left-turn movements from Jessie Drive Extension.
- Monitor for signalization and install once warranted and approved by NCDOT.
- Construct an exclusive northbound right-turn lane on NC 55 with a minimum of 150 feet of storage and appropriate taper.
- Construct an exclusive southbound left-turn lane on NC 55 with a minimum of 250 feet of storage and appropriate taper.

NC 55 and Jessie Drive Extension

- Construct a U-turn intersection and bulb-out on NC 55, north of Jessie Drive Extension.
- Construct an exclusive northbound U-turn lane on NC 55 with a minimum of 250 feet of storage and appropriate taper.

Recommended Improvements by Developer – Phase 1

Smith Road and Stephenson Road

• Construct an eastbound left-turn lane on Smith Road with a minimum of 100 feet of storage and appropriate taper.

Smith Road and Dezola Street

• Construct a southbound right-turn lane on Smith Road with a minimum of 75 feet of storage and appropriate taper.

E. Williams Street and Straywhite Avenue

• Restripe the westbound approach on Straywhite Avenue to provide two (2) westbound egress lanes, an exclusive left-turn lane with full length storage and an exclusive right-turn lane with a minimum of 200 feet of storage and appropriate taper.

Recommended Improvements by Developer – Full Buildout

Ten-Ten Road and Jessie Drive

• Monitor for signalization and install if warranted and approved by NCDOT after site driveway connections to Jessie Drive / Jessie Drive Extension are constructed.

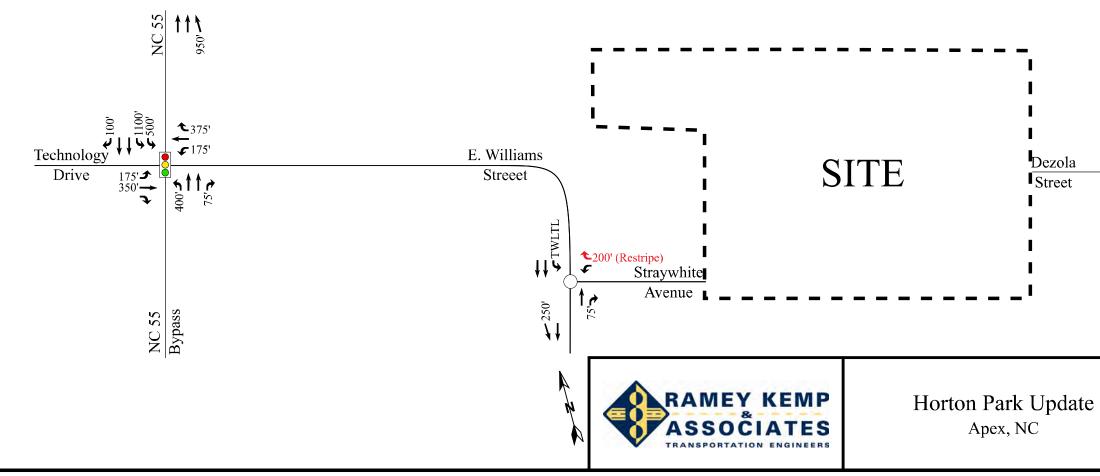
Jessie Drive / Jessie Drive Extension and North-South Connector

- Construct a stop controlled northbound approach with one (1) ingress and one (1) egress lane.
- Construct a stop controlled southbound approach with one (1) ingress and one (1) egress lane.
- Construct an exclusive eastbound left-turn lane on Jessie Drive Extension with a minimum of 75 feet of storage and appropriate taper.
- Construct an exclusive westbound left-turn lane on Jessie Drive with a minimum of 75 feet of storage and appropriate taper.

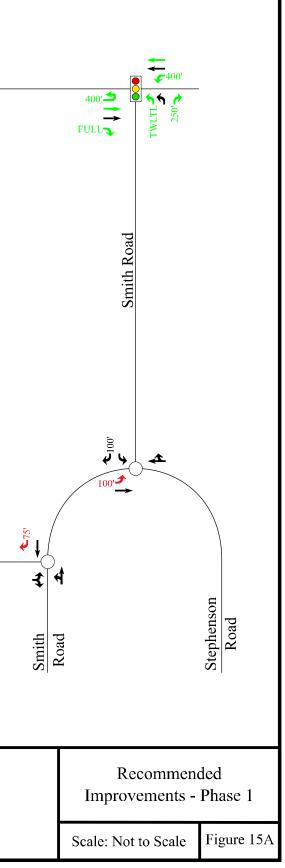
Jessie Drive and Site Drive #1

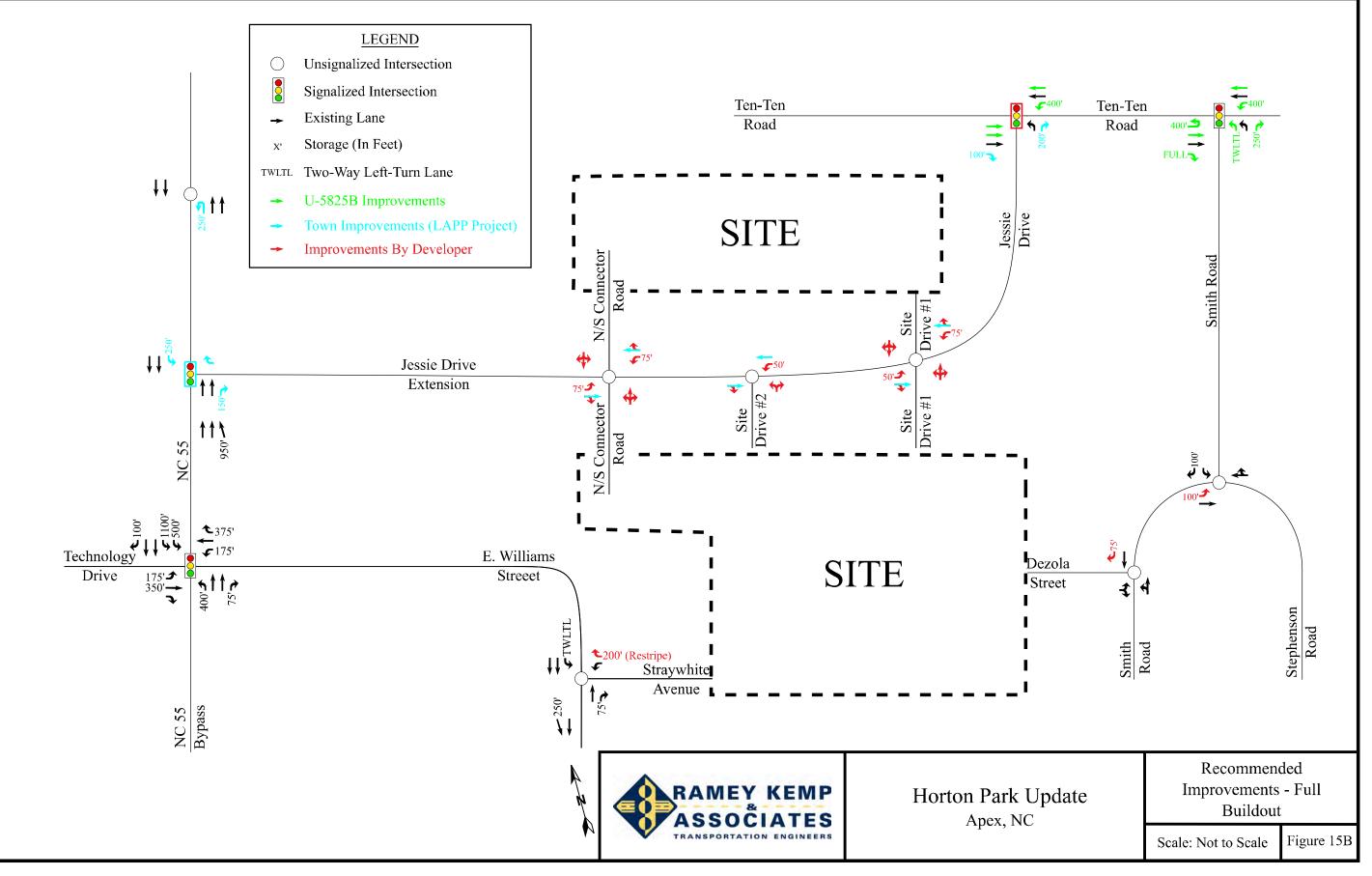
- Construct a stop controlled northbound approach with one (1) ingress and one (1) egress lane.
- Construct a stop controlled southbound approach with one (1) ingress and one (1) egress lane.

- Construct an exclusive eastbound left-turn lane on Jessie Drive with a minimum of 50 feet of storage and appropriate taper.
- Construct an exclusive westbound left-turn lane on Jessie Drive with a minimum of 75 feet of storage and appropriate taper.


Jessie Drive and Site Drive #2

- Construct a stop controlled northbound approach with one (1) ingress and one (1) egress lane.
- Construct an exclusive westbound left-turn lane on Jessie Drive with a minimum of 50 feet of storage and appropriate taper.




LEGEND

- O Unsignalized Intersection
- Signalized Intersection
- → Existing Lane
- x' Storage (In Feet)
- TWLTL Two-Way Left-Turn Lane
- → U-5825B Improvements
- → Town Improvements (LAPP Project)
- → Improvements By Developer

Ten-Ten Road

Charleston, SC - Charlotte, NC - Columbia, SC - Raleigh, NC - Richmond, VA - Winston-Salem, NC

TECHNICAL APPENDIX

APPENDIX A

MEMORANDUM OF UNDERSTANDING (MOU)

Nate Bouquin

From:	Serge Grebenschikov <serge.grebenschikov@apexnc.org></serge.grebenschikov@apexnc.org>
Sent:	Friday, June 21, 2019 1:49 PM
To:	Nate Bouquin; Brennan, Sean P; Wheeler, Millard S; Russell Dalton
Cc:	Ishak, Doumit Y; Bunting, Clarence B; Walker, Braden M; Joshua Reinke
Subject:	RE: Horton Park TIA Update MOU
Attachments:	MOU - Horton Park TIA Update 6.21.19.pdf

Hi Nate,

Please see my comments attached. I would like to ask you to revise your trip distribution and assignment for the residential piece to more closely match the distribution in the original TIA and the TIA addendum completed in 2017. I don't believe that 15% of traffic will come to/from northwest NC 55, considering improvements on Ten Ten will make that a preferred route over the congested NC 55, (especially considering the tricky left turn movement from NC 55 unto E Williams St at Technology Drive, and the hassle of weaving through the Straywhite neighborhood).

Also please consider 5% coming from the south Via Stephenson Road as you did previously.

- 60% to/from the west via Ten-Ten Road
- 5% to/from the south via E. Williams Street
- 10% to/from the south via NC 55 Bypass
- 5% 15% to/from the northwest via NC 55
- 15% 10% to/from the east via Ten-Ten Road

5% to/from the south via Stephenson Road

Thank you

Serge Grebenschikov, PE Traffic Engineer Public Works & Transportation – Traffic 73 Hunter Street, 3rd Fl PO Box 250 Apex, NC 27502 P: (919) 372-7448 E: Serge.Grebenschikov@apexnc.org

From: Nate Bouquin [mailto:nbouquin@rameykemp.com] **Sent:** Friday, June 21, 2019 10:16 AM

To: Brennan, Sean P <spbrennan@ncdot.gov>; Wheeler, Millard S <mwheeler@ncdot.gov>; Russell Dalton <Russell.Dalton@apexnc.org>; Serge Grebenschikov <Serge.Grebenschikov@apexnc.org> Cc: Ishak, Doumit Y <dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; Walker, Braden M <bmwalker1@ncdot.gov>; Joshua Reinke <jreinke@rameykemp.com> Subject: Horton Park TIA Update MOU

Gentlemen,

Per our meeting last week, attached is a MOU for the Horton Park TIA Update. This should have addressed everything discussed during our scoping meeting. We are hoping to have a quick turnaround on this project, so if we could get MOU comments back within the next couple business days we would really appreciate it.

A couple brief items that we would like to request for this:

- Town: TIA for the Stop & Go Gas Station
- NCDOT: 25% plans for U-5825B

Please let me know if there are any questions.

Have a great weekend everyone!

Nate Bouquin, El Transportation Associate

5808 Faringdon Place, Suite 100 Raleigh, NC 27609 919-872-5115 (Office) 919-987-1301 (Direct)

Proudly serving the Southeast since 1992.

Nate Bouquin

From:	Brennan, Sean P <spbrennan@ncdot.gov></spbrennan@ncdot.gov>
Sent:	Tuesday, June 25, 2019 11:43 AM
To:	Nate Bouquin; Wheeler, Millard S; Russell Dalton; Serge Grebenschikov
Cc:	Ishak, Doumit Y; Bunting, Clarence B; Walker, Braden M; Joshua Reinke
Subject:	RE: [External] Horton Park TIA Update MOU
Follow Up Flag:	Follow up
Flag Status:	Flagged

Nate,

I'm okay with the MOU.

Regards,

Sean Brennan, PE Senior Assistant District Engineer Division 5/District 1 Department of Transportation

919-733-3213 office 919-715-5778 fax <u>spbrennan@ncdot.gov</u>

4009 District Drive (Physical Address) Raleigh, NC 27607

1575 Mail Service Center (Mailing Address) Raleigh, NC 27699-1575

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Nate Bouquin <nbouquin@rameykemp.com>

Sent: Friday, June 21, 2019 10:16 AM

To: Brennan, Sean P <spbrennan@ncdot.gov>; Wheeler, Millard S <mwheeler@ncdot.gov>; Russell Dalton
 <Russell.Dalton@apexnc.org>; Serge Grebenschikov <Serge.Grebenschikov@apexnc.org>
 Cc: Ishak, Doumit Y <dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; Walker, Braden M
 <bmwalker1@ncdot.gov>; Joshua Reinke <jreinke@rameykemp.com>
 Subject: [External] Horton Park TIA Update MOU

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to report spam@nc.gov

Gentlemen,

Per our meeting last week, attached is a MOU for the Horton Park TIA Update. This should have addressed everything discussed during our scoping meeting. We are hoping to have a quick turnaround on this project, so if we could get MOU comments back within the next couple business days we would really appreciate it.

A couple brief items that we would like to request for this:

- Town: TIA for the Stop & Go Gas Station
- NCDOT: 25% plans for U-5825B

Please let me know if there are any questions.

Have a great weekend everyone!

Nate Bouquin, El Transportation Associate

5808 Faringdon Place, Suite 100 Raleigh, NC 27609 919-872-5115 (Office) 919-987-1301 (Direct)

Proudly serving the Southeast since 1992.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

RAMEY KEMP & ASSOCIATES, INC. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 Phone: 919-872-5115 www.rameykemp.com

June 21, 2019

Russell Dalton, PE Town of Apex, Public Works & Transportation 919-249-3358 Russell.Dalton@apexnc.org

Reference: Horton Park TIA Update Apex, North Carolina

Subject: Memorandum of Understanding for TIA Report

Dear Mr. Dalton:

The following is a Memorandum of Understanding (MOU) outlining the proposed scope of work and assumptions related to the Updated Traffic Impact Analysis (TIA) for the proposed Horton Park mixed use development, to be located west of Smith Road and north of Colby Chase Drive in Apex, North Carolina. Refer to the attached site location map. The development is expected to be phased with Phase 1 site access being provided via one (1) full movement intersection on Smith Road (at existing Dezola Street) and one (1) full movement intersection on Colby Chase Drive. Under Full Buildout conditions, the Jessie Drive extension to NC Highway 55 is assumed to be completed and the development is expected to connect to Jessie Drive. Full buildout site access will add two (2) full movement driveway connections to Jessie Drive. Phase 1 is expected to be built out in 2024 and full buildout is expected in 2026. The proposed site is expected to consist of approximately 290 single family homes and 134 townhomes under Phase 1 conditions. Full Buildout is expected to consist of a total of 290 single family homes, 212 townhomes, 356 apartments, 40,000 square feet (s.f.) of warehouse, and 40,000 s.f. of business park. A preliminary site plan is attached.

The contents of this MOU were determined during the TIA scoping meeting on June 10, 2019 attended by NCDOT District staff, NCDOT Congestion Management Staff, Town of Apex Staff, RKA, and Peak Engineering.

Study Area

Based on coordination with the Town of Apex (Town) and the North Carolina Department of Transportation (NCDOT), the study area is proposed to consist of the following intersections:

Phase 1:

- Ten-Ten Road and Smith Road
- Smith Road and Stephenson Road / Smith Road

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Raleigh, NC - Charleston, SC - Charlotte, NC - Columbia, SC - Richmond, VA - Winston-Salem, NC

_

_

- Smith Road and Dezola Street
- E. Williams Street and Straywhite Avenue
- E. Williams Street / Technology Drive and NC 55

Full Buildout:

- Ten-Ten Road and Smith Road
- Smith Road and Stephenson Road / Smith Road
- Smith Road and Dezola Street
- E. Williams Street and Straywhite Avenue
- E. Williams Street / Technology Drive and NC 55
- Jessie Drive Extension and NC 55
- Ten-Ten Road and Jessie Drive
- Jessie Drive and Proposed Site Driveway(s)

Existing Traffic Volumes

Peak hour turning movement counts utilized in the original Horton Park TIA will be utilized and grown to 2019 according to a 3% average annual growth rate for existing conditions. These traffic counts were conducted by RKA in May 2017 and March 2016 during the weekday AM (7:00 to 9:00) and weekday PM (4:00 to 6:00) peak hours while schools were in session. It should be noted that the counts at the intersection of E. Williams Street and Straywhite Avenue were determined according to a trip generation for the existing development and through volumes were pulled from the Bobbitt Road and E. Williams Street intersection. The traffic counts at the intersection of Technology Drive / E. Williams Street and NC 55 were determined according to the 2017 TIA conducted by Gannett Fleming for the Trinity Apex Development. Signal information was obtained from the NCDOT. Refer to the attached existing (2019) traffic volumes figure.

Trip Generation

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 10th Edition. Refer to Table 1 for a detailed breakdown of the proposed site trip generation under Phase 1 conditions and Table 2 for the site trip generation under Full Buildout conditions. In order to present a conservative analysis of Full Buildout conditions, internal capture was not included in this analysis.

RAMEY KEMP

Land Use (ITE Code)	Intensity	Daily Traffic	AM Pea Trips		PM Pea Trips	
(III Cout)	1	(vpd)	Enter	Enter	Enter	Exit
Single-Family Detached Housing (210)	290 Units	2,770	53	158	178	104
Multifamily Housing (Low-Rise) (220)	134 Units	970	14	49	49	28
Total Trips		3,740	67	207	227	132

 Table 1: Trip Generation Summary – Phase 1

It is estimated that Phase 1 of the proposed development will generate approximately 3,740 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 274 trips (67 entering and 207 exiting) will occur during the AM peak hour and 359 (227 entering and 132 exiting) will occur during the PM peak hour.

Land Use (ITE Code)	Intensity	Daily Traffic	AM Pea Trips		PM Pea Trips	
(ITE couc)		(vpd)	Enter	Enter	Enter	Exit
Single-Family Detached Housing (210)	290 Units	2,770	53	158	178	104
Multifamily Housing (Low-Rise) (220)	568 Units	4,250	57	191	175	102
Warehouse (150)	40,000 s.f.	110	23	7	9	24
Business Park (770)	40,000 s.f.	1,140	49	9	17	48
Total Trips		8,270	182	365	379	278

Table 2: Trip Generation Summary - Full Buildout

It is estimated that the proposed development will generate approximately 8,270 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 547 trips (182 entering and 365 exiting) will occur during the AM peak hour and 657 (379 entering and 278 exiting) will occur during the PM peak hour.

Trip Distribution and Assignment

The primary site trips are distributed based on the locations of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. A summary of the overall residential distributions (Phase 1 and Full Buildout) is below:

- 60% to/from the west via Ten-Ten Road
- 5% to/from the south via E. Williams Street
- 10% to/from the south via NC 55 Bypass
- 15% to/from the northwest via NC 55
- 10% to/from the east via Ten-Ten Road

A summary of the overall industrial distribution is below:

- 45% to/from the west via Ten-Ten Road
- 5% to/from the south via Stephenson Road
- 5% to/from the south via NC 55 Bypass
- 15% to/from the northwest via NC 55
- 30% to/from the east via Ten-Ten Road

Refer to the attached trip distribution figure for a more detailed visualization of the proposed trip distribution.

Analysis Scenarios

All capacity analyses will be performed utilizing Synchro (Version 10.3). All study intersections will be analyzed during the weekday AM and PM peak hours under the following proposed traffic scenarios:

- Existing (2019)
- Background (2024)
- Background (2026)
- Combined (2024)
- Combined (2026)

Background Traffic Volumes

Based on a review of traffic growth patterns and adjacent development information, background traffic volumes will be determined by projecting existing (2019) traffic volumes to the build-out year using a proposed 3% annually compounded growth rate. It was also determined, through coordination with the Town and NCDOT that the following adjacent development would be included under background and combined conditions according to the approved TIA for the development:

- Stop & Go Gas Station

_ _ _ _ _ _ _ _ _ _ _ _ _ _

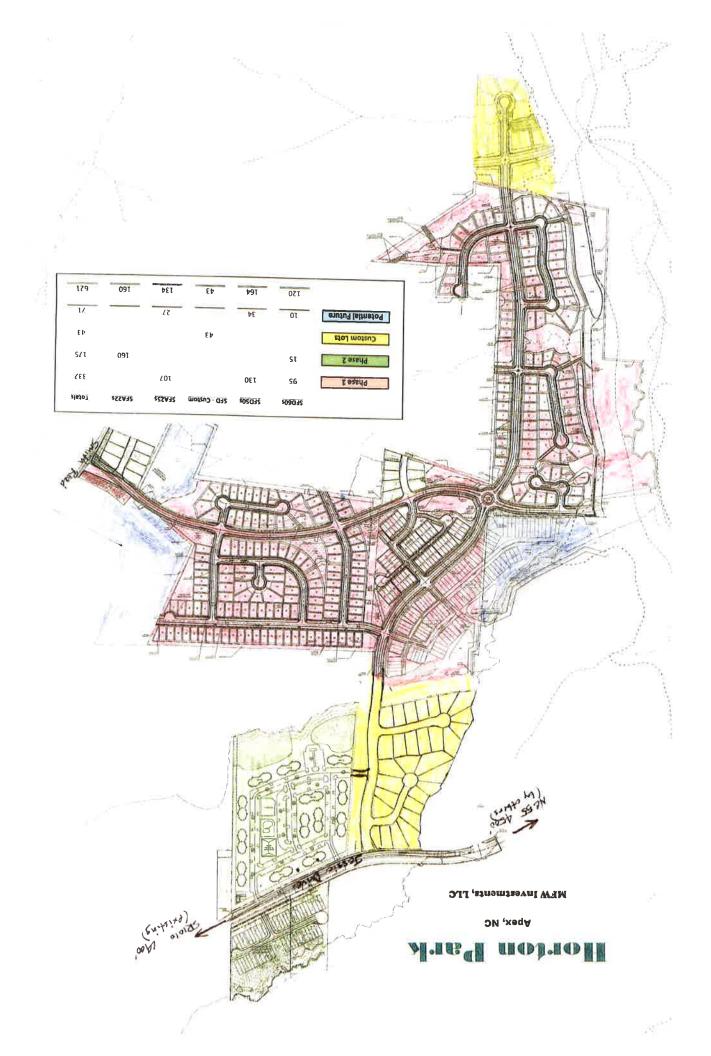
U-5825B is a funded NCDOT roadway project, expected to widen Ten-Ten Road to a four-lane median divided roadway from US Highway 1 to Kildaire Farm Road. This project is expected to begin construction in 2023. Per coordination with NCDOT and the Town, these improvements will be assumed complete under all future conditions and will be included according to the 25% concept plans provided by NCDOT.

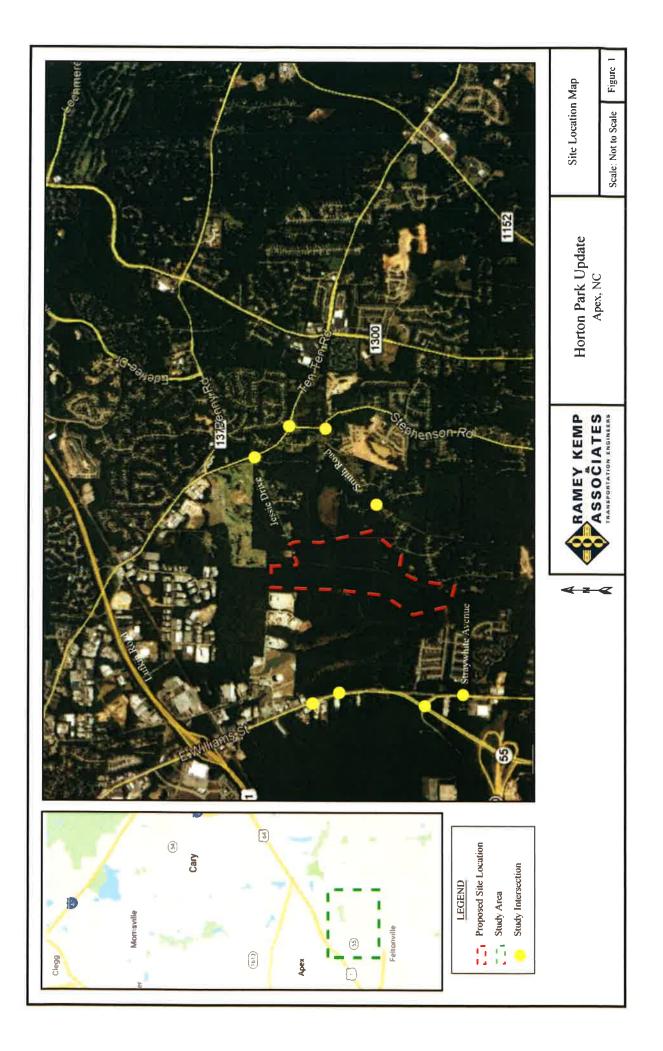
NC-540 extension was also considered but is not expected to be completed by Full Buildout of the Horton Park development. Due to this, NC-540 extension will not be assumed in this analysis.

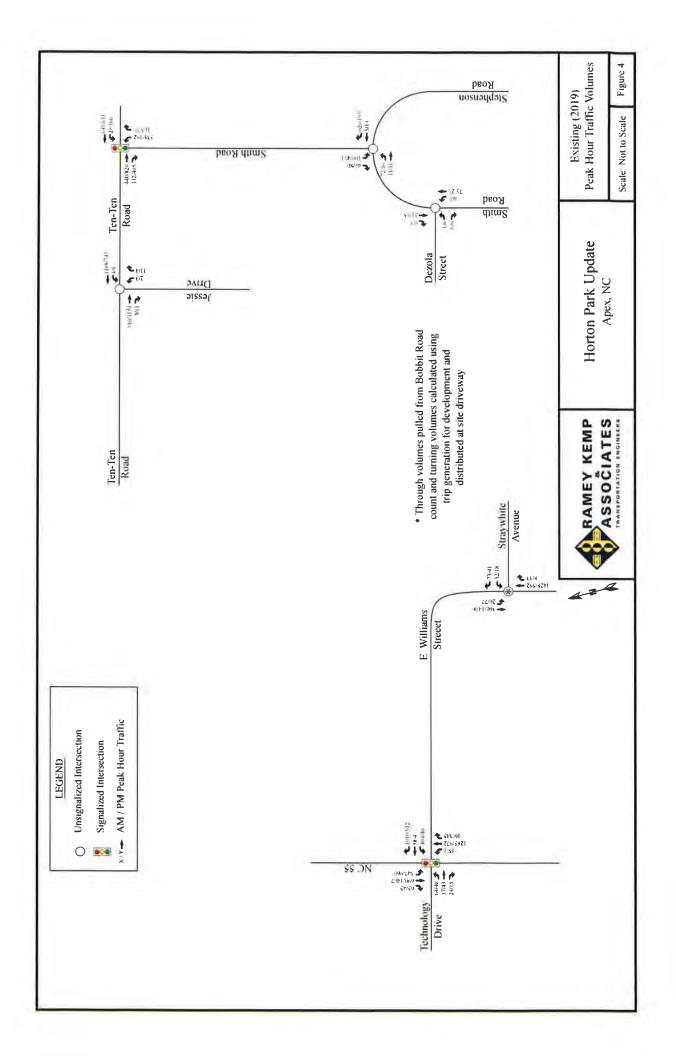
Report

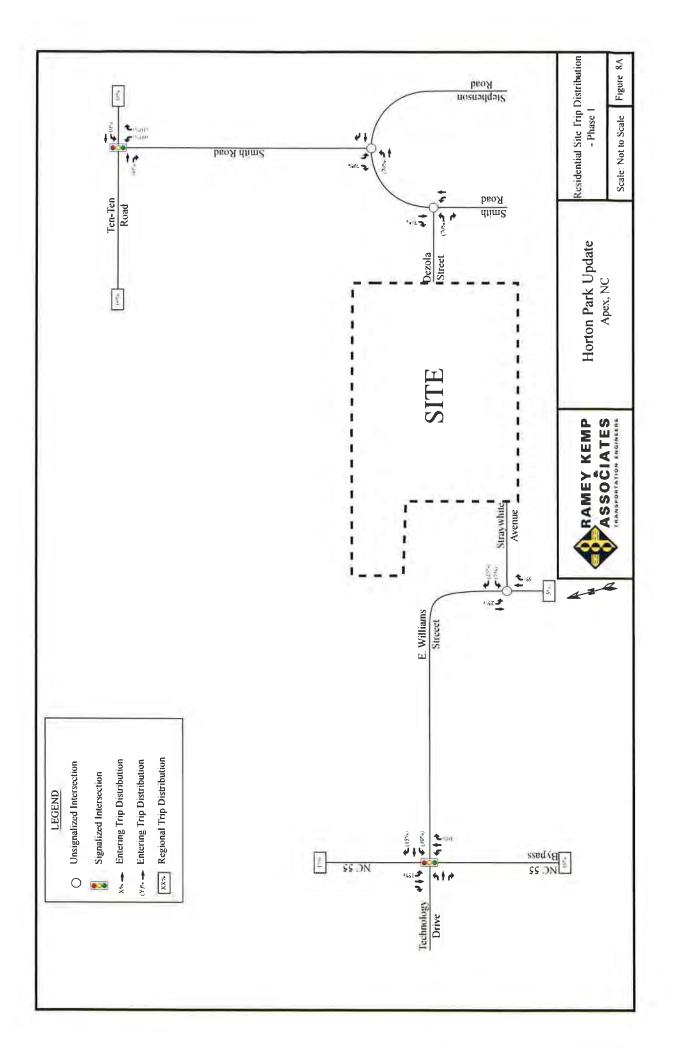
The TIA report will be prepared based on the Town and NCDOT requirements.

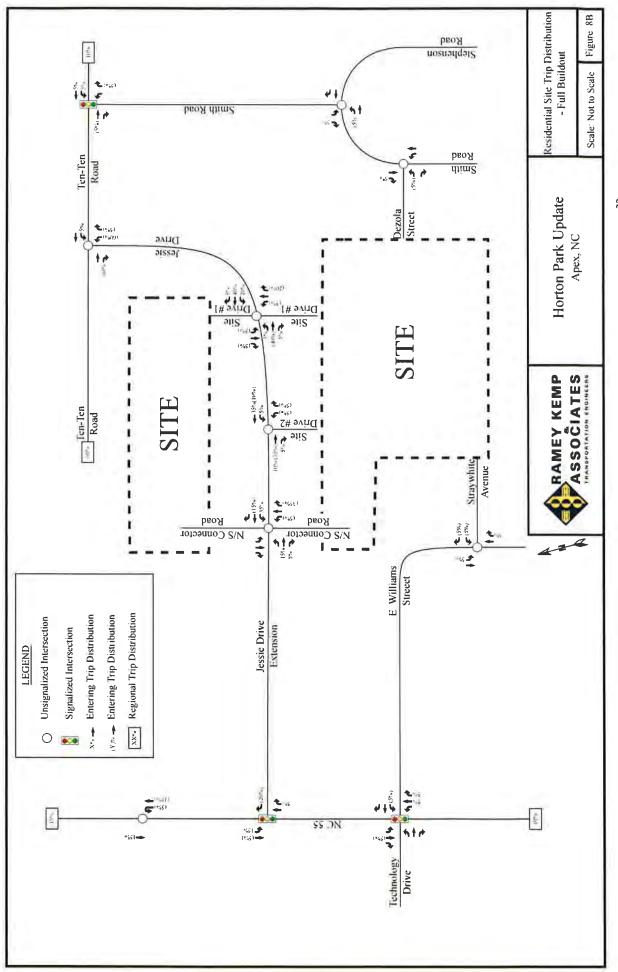
If you find this memorandum of understanding acceptable, please let me know so that we may include it in the TIA report. If you have any questions or concerns, please do not hesitate to contact me.

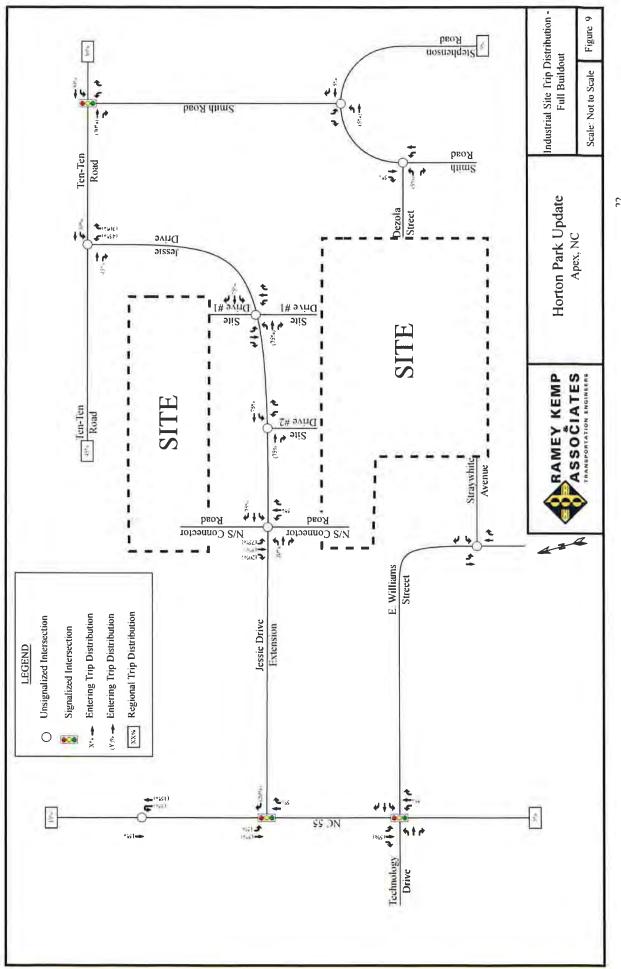

Sincerely, Ramey Kemp & Associates, Inc.

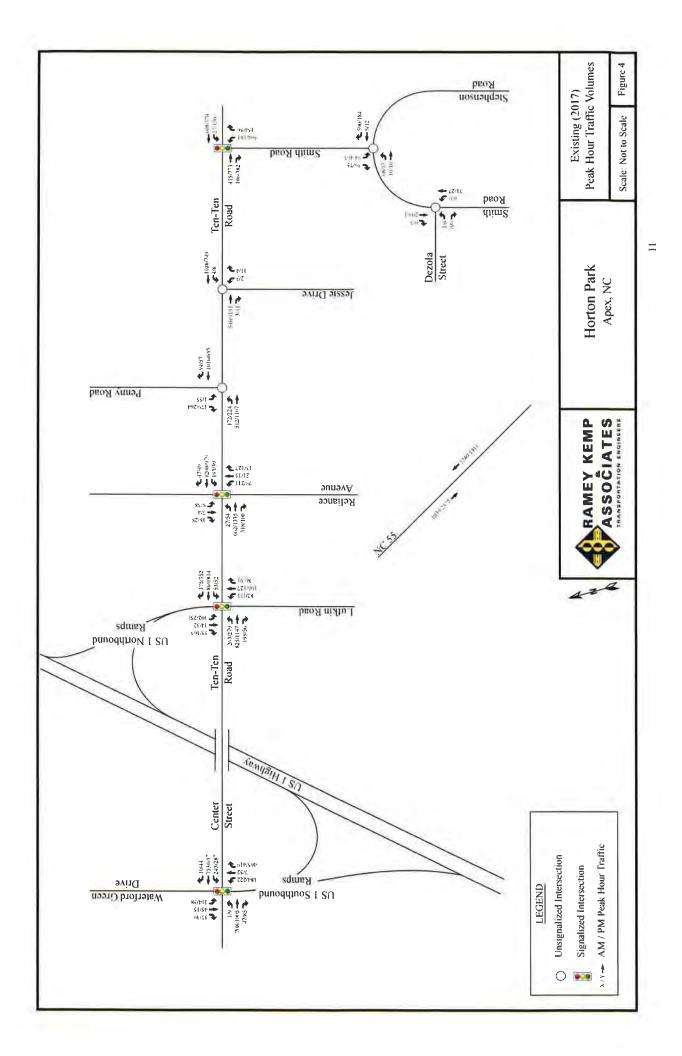

Jon T. Fieles

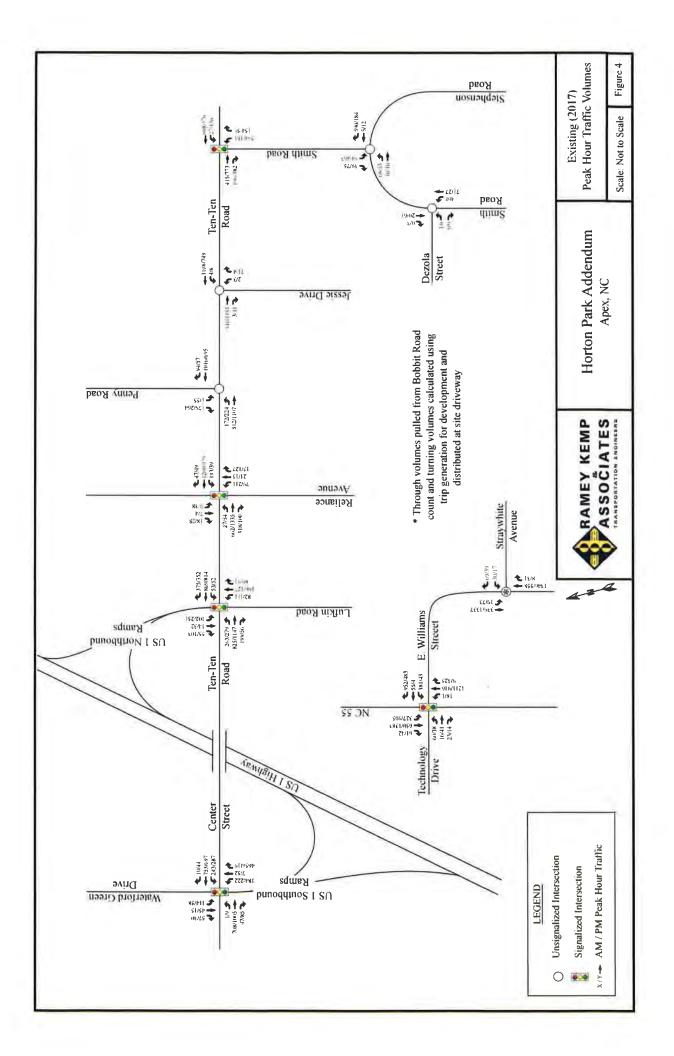

Joshua Reinke, P.E. Transportation Engineer


- Attachments: Site Location Map Preliminary Site Plan Existing (2019) Traffic Volumes Figure Primary Site Trip Distribution Figures
- Cc: Serge Grebenschikov, Town of Apex Sean Brennan, NCDOT Scott Wheeler, NCDOT NCDOT Congestion Management



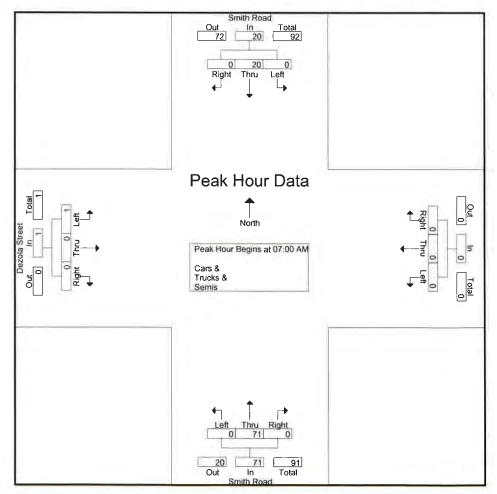






APPENDIX B

TRAFFIC COUNTS

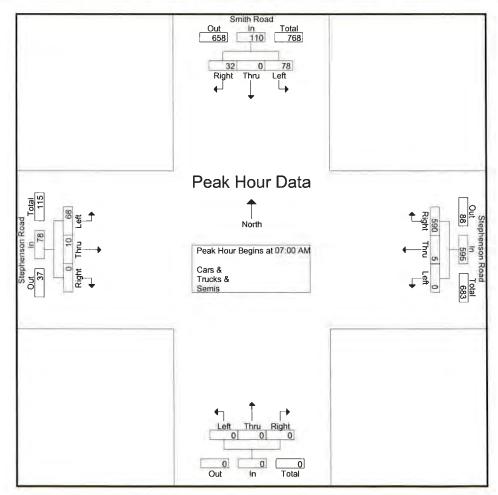


												Site Co Start Da					
											E	age N	o :	1			
						Groups	Printe	d- Cars &	- Truck	- 8 - Se		agon	• •				
	-	Smith	Road	-	1000	oroupa	1 mile	u ouro u	HUGH		Road			Dezola	Street		1
	1		bound			West	bound				bound			East			
Start Time	Right	Thru	Left	App Totai	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Int. Tota
07:00 AM	0	2	0	2	0	0	0	0	0	24	0	24	0	0	1	1	2
07:15 AM	0	5	0	5	0	Ō	0	0	0	17	0	17	Ō	ō	0	0	2
07:30 AM	0	6	Ó	6	0	Ō	0	Ō	0	22	Ő	22	Ő	Ő	Ő	Ő	2
07:45 AM	0	7	0	7	0	0	Ō	0	0	8	Ő	8	0	0	0	Ő	1
Total	0	20	0	20	0	0	0	0	0	71	0	71	0	D	1	1	9
08:00 AM	0	6	0	6	0	0	0	0	0	15	0	15	0	0	0	0	2
08:15 AM	Õ	5	ŏ	5	ő	õ	ő	ŏ	õ	20	ŏ	20	ŏ	õ	Ő	Ő	2
08:30 AM	Ő	5	ŏ	5	Ő	Ő	ŏ	ŏ	ŏ	14	ŏ	14	ŏ	0	ő	0	1
08:45 AM	0	6	0	6	0	0	Ő	0	0	14	Ő	14	0	0	0	0	2
Total	0	22	0	22	0	0	0	0	0	63	0	63	0	0	0	0	8
04:00 PM 04:15 PM	0 0	7 20	0 0	7 20	0	0	0 0	0	0	8 7	0	8 7	0	0	0	0	1
04:30 PM	1	16	0	17	Ő	Ō	Ō	õ	õ	9	õ	9	Ő	õ	6	6	3
04:45 PM	2	15	0	17	0	0	0	0	0	5	0	5	0	0	0	0	2
Total	3	58	0	61	0	0	0	0	0	29	0	29	0	0	6	6	9
05:00 PM	0	10	0	10	0	0	0	0	0	6	0	6	0	0	0	0	1
05:15 PM	0	9	0	9	Ó	0	Ō	ō	ō	7	Ő	7	Ő	Ő	õ	Ő	1
05:30 PM	0	10	0	10	0	0	Ō	Ō	Ō	11	Ō	11	Ō	ō	1	1	2
05:45 PM	1	7	0	8	0	D	0	0	0	12	0	12	0	0	0	0	2
Total	1	36	0	37	0	0	0	0	0	36	0	36	0	0	1	1	7
Grand Total	4	136	0	140	0	0	0	0	0	199	0	199	0	0	8	8	34
Apprch %	2.9	97.1	Ő		õ	õ	ŏ		ŏ	100	õ		ő	õ	100	Ŭ	04
Total %	1.2	39.2	0	40.3	0	0	0	0	0	57.3	0	57.3	0	0	2.3	2.3	
Cars &	4	121	0	125	0	0	0	0	0	185	0	185	0	0	8	8	31
% Cars &	100	89	ő	89.3	0 0	Ő	0	0	0	93	0	93	0	0	100	100	91.
Trucks &	0	14	0	14	0	0	0	0	0	13	0	93	0	0	0		
% Trucks &	0	10.3	0	14	0	0	0	-	•		-		-	-	-	0	2
70 HUGAS OC	U	10.3	U	- 10	U	U	U	0	0	6.5	0	6.5	0	0	0	0	7.
Comin	0	4	0		0	0	0	<u>^</u>	0	4	0		0	0	0		
Semis % Semis	0	1 0.7	0	1	0	0	0	0	0	1 0.5	0	1 0.5	0	0	0	0	0

> File Name : 8 Smith rd @ Dezola St Site Code : 00000008 Start Date : 5/3/2017 Page No : 2

			Road bound			West	bound				Road	_			a Street	t	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App. Total	Right	Thru	Left	App Total	Int. Total
Peak Hour Analys					< 1 of 1												
Peak Hour for Ent	ire Interse	ection Be	gins at 0	07:00 AM													
07:00 AM	0	2	0	2	0	0	0	0	0	24	0	24	0	0	1	1	27
07:15 AM	0	5	0	5	0	0	0	0	0	17	0	17	0	0	0	0	22
07:30 AM	0	6	0	6	0	0	0	0	0	22	0	22	0	0	0	0	28
07:45 AM	0	7	0	7	0	0	0	0	0	8	0	8	0	0	0	0	15
Total Volume	0	20	0	20	0	0	0	0	0	71	0	71	0	0	1	1	92
% App. Total	0	100	0		0	0	0	1000	0	100	0		0	0	100		
PHF	.000	.714	.000	714	.000	.000	.000	.000	000	740	.000	.740	.000	.000	.250	.250	.821

File Name 38 Smith rd @ Dezola St Site Code : 0000008 Start Date : 5/3/2017 Page No : 3 Smith Road Smith Road **Dezola Street** Southbound Westbound Northbound Eastbound Start Time Right Thru Left App Total Right Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1 Thru Left App Total Right Thru Left App Total Right Left App Total Int. Total Thru Peak Hour for Entire Intersection Begins at 04:15 PM 04:15 PM 04:30 PM 04:45 PM 05:00 PM **Total Volume** % App. Total 4.7 95.3 PHF .375 .000 .000 .000 .000 .000 .000 Smith Road <u>In</u> 1 64 Out 33 Total Right Thru Left Peak Hour Data Out North Peak Hour Begins at 04:15 PM Cars & Trucks & Total 0 Semis Total Out In mith Ros


File Name : 7 Smith rd @ Stepenson Site Code : 0000007 Start Date : 5/3/2017 Page No : 1

	-	Smith	Road			Stephen		d-Cars & ad	- ITUCK	5 G - 06	antio			Stephen	son Ro	he	Ī
		South	bound			West	bound	40		North	bound				bound	au	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Int. Tota
07:00 AM	6	0	14	20	152	1	0	153	0	0	0	0	0	3	15	18	19
07:15 AM	7	0	17	24	169	0	0	169	0	0	0	0	0	3	20	23	21
07:30 AM	10	0	19	29	157	0	0	157	0	0	0	0	0	3	12	15	20
07:45 AM	9	0	28	37	112	4	0	116	0	0	0	0	0	1	21	22	17
Total	32	0	78	110	590	5	0	595	0	0	0	0	0	10	68	78	78
08:00 AM	12	0	41	53	100	1	0	101	0	0	0	0	0	3	22	25	17
08:15 AM	11	0	29	40	92	4	0	96	Ó	Ō	Ō	0	Ō	4	27	31	16
08:30 AM	12	0	32	44	124	2	0	126	Ō	0	Ō	Ő	Ő	7	18	25	19
08:45 AM	6	0	28	34	135	4	0	139	0	0	0	Ő	0	5	25	30	20
Total	41	0	130	171	451	11	0	462	0	0	0	0	0	19	92	111	74
*BREAK***																	
04:00 PM	12	0	98	110	41	5	0	46	0	0	0	0	0	5	11	16	17
04:15 PM	23	0	90	113	35	8	0	43	0	0	Ó	Ō	Ō	3	21	24	18
04:30 PM	19	0	98	117	58	2	0	60	Ó	Ō	0	0	Ō	3	11	14	19
04:45 PM	19	0	107	126	38	4	0	42	0	Ō	0	Ö	0	6	11	17	18
Total	73	0	393	466	172	19	0	191	0	0	0	0	0	17	54	71	73
05:00 PM	18	0	101	119	37	0	0	37	0	0	0	0	0	2	9	11	16
05:15 PM	18	0	132	150	41	1	0	42	0	0	Ó	0	0	0	16	16	20
05:30 PM	20	0	123	143	56	7	Ó	63	0	Õ	Ō	Ō	ŏ	2	17	19	22
05:45 PM	9	0	87	96	48	4	0	52	0	0	0	0	0	5	19	24	17
Total	65	0	443	508	182	12	0	194	0	0	0	0	0	9	61	70	71
Grand Total	211	0	1044	1255	1395	47	0	1442	0	0	0	0	0	55	275	330	302
Apprch %	16.8	0	83.2		96.7	3.3	0		0	0	0		Ō	16.7	83.3		
Total %	7	0	34.5	41.5	46.1	1.6	0	47.6	0	0	õ	0	0	1.8	9.1	10.9	
Cars &	196	0	1039	1235	1384	42	0	1426	0	0	0	0	0	47	261	308	296
% Cars &	92.9	Ő	99.5	98.4	99.2	89.4	Ő	98.9	Ő	0	0	0	0	85.5	94.9	93_3	98
Trucks &	14	0	4	18	7	5	0	12	0	0	0	0	0	8	12	20	50
% Trucks &	6.6	Ő	0.4	1.4	0.5	10.6	Ő	0.8	ŏ	Ő	Ő	0	0	14.5	4.4	6.1	1
Semis	1	0	1	2	4	0	0	4	0	0	0	0	0	0	4.4	2	
% Semis	0.5	ŏ	0.1	0.2	0.3	0	0	0.3	0	0	0	0	0	0	0.7		0.
70 Octilis	00	U	0.1	0.2	0.3	U	0	0.3	U	U	U	U	U	U	U.7	0.6	

> File Name : 7 Smith rd @ Stepenson Site Code : 00000007 Start Date : 5/3/2017 Page No : 2

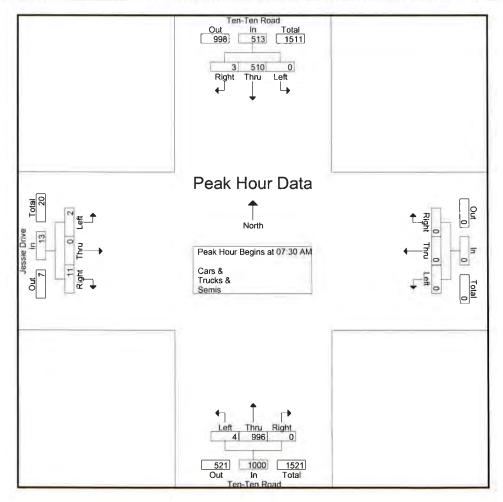
			Road bound		S	tephens Westt	son Ro bound	ad		North	bound		S	tephen: Eastl	son Ro bound	ad	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Int. Total
Peak Hour Analys	is From C	7:00 AM	to 11:45	AM - Peal													
Peak Hour for Ent	ire Interse	ection Be	gins at C	7:00 AM													
07:00 AM	6	0	14	20	152	1	0	153	0	0	0	0	0	3	15	18	191
07:15 AM	7	0	17	24	159	0	0	169	0	0	0	0	0	3	20	Д	216
07:30 AM	10	0	19	29	157	0	0	157	0	0	0	0	0	3	12	15	201
07:45 AM	9	0	28	37	112	4	0	116	0	0	0	0	0	1	21	22	175
Total Volume	32	0	78	110	590	5	0	595	0	0	0	0	0	10	68	78	783
% App. Total	29.1	0	70.9		99.2	0.8	0		0	0	0		0	12.8	87.2		1.
PHF	.800	.000	.696	.743	.873	313	000	.880	.000	.000	_000	.000	.000	833	810	.848	.906

File Name : 7 Smith rd @ Stepenson Site Code : 00000007 Start Date : 5/3/2017 Page No : 3 Smith Road Stephenson Road Stephenson Road Southbound Northbound Eastbound Westbound Start Time Right Thru Left App Total Right Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1 Left App Total Right Thru Left App Total Right Left App Total Int. Total Thru Thru Peak Hour for Entire Intersection Begins at 04:45 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM **Total Volume** 13.9 86_1 93.5 % App. Total 6.5 15.9 84.1 PHF .938 .000 .877 .000 .000 .417 .872 Smith Road In Total 538 763 Out 225 0 463 Thru Right Left L Peak Hour Data otal 150 North Peak Hour Begins at 04:45 PM Cars & Trucks & Semis Righ

Total

In

Out


> File Name : 5 Ten Ten @ Jessie Site Code : 00000005 Start Date : 5/3/2017 Page No : 1

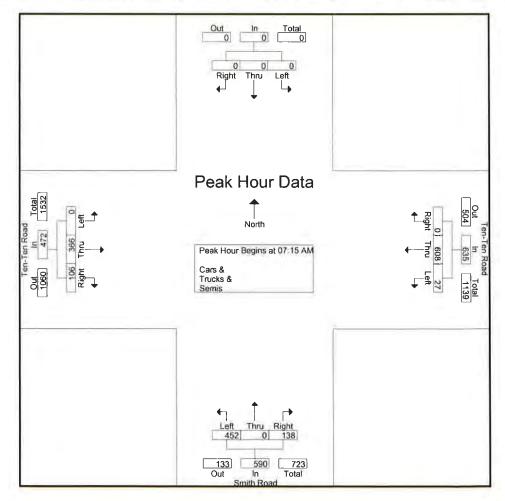
07:00 AM 07:15 AM 07:30 AM	Right 1 0 1	Ten-Te South Thru 69		ł						T T .	- D	1		In a sta	Drive		
07:00 AM 07:15 AM 07:30 AM	1 0		Loft		1	West	bound			Ten-Te North	bound	1	1		bound		
07:15 AM 07:30 AM	0	69	LOIL	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Int. Tota
07:30 AM	-		0	70	0	0	0	0	0	334	2	336	2	0	3	5	41
	1	101	0	101	0	0	0	0	0	286	0	286	1	0	0	1	388
		107	0	108	0	0	0	0	0	254	2	256	4	0	0	4	368
07:45 AM	1	111	0	112	0	0	0	0	0	272	2	274	4	0	2	6	392
Total	3	388	0	391	0	0	0	0	0	1146	6	1152	11	0	5	16	1559
08:00 AM	1	138	0	139	0	0	0	0	0	238	0	238	0	0	0	0	377
08:15 AM	0	154	0	154	0	0	0	0	0	232	0	232	3	0	0	3	389
08:30 AM	1	137	0	138	0	0	0	0	0	272	0	272	0	0	3	3	413
08:45 AM	0	141	0	141	0	0	0	0	0	278	0	278	1	0	3	4	423
Total	2	570	0	572	0	0	0	0	0	1020	0	1020	4	0	6	10	1602
*BREAK***																	
04:00 PM	6	288	0	294	0	0	0	0	0	148	1	149	0	0	1	1	444
04:15 PM	1	269	0	270	0	0	0	0	0	138	2	140	1	0	0	1	41
04:30 PM	1	231	0	232	0	0	0	0	0	179	2	181	3	0	0	3	416
04:45 PM	5	277	0	282	0	0	0	0	0	151	1	152	1	0	3	4	438
Total	13	1065	0	1078	0	0	0	0	0	616	6	622	5	0	4	9	170
05:00 PM	0	284	0	284	0	0	0	0	0	177	1	178	1	0	1	2	464
05:15 PM	5	284	0	289	0	0	0	0	0	148	4	152	0	0	2	2	443
05:30 PM	3	240	0	243	0	0	0	0	0	193	2	195	2	0	0	2	44(
05:45 PM	3	237	0	240	0	0	0	0	0	200	1	201	1	Ū	0	1.	442
Total	11	1045	0	1056	0	0	0	0	0	718	8	726	4	0	3	7	1789
Grand Total	29	3068	0	3097	0	0	0	0	0	3500	20	3520	24	0	18	42	6659
Apprch %	0.9	99.1	0	- C. C.	0	0	0		0	99.4	0.6		57.1	0	42.9		
Total %	0.4	46.1	0	46.5	0	0	0	0	0	52.6	0.3	52.9	0.4	0	0.3	0.6	
Cars &	28	2962	0	2990	0	0	0	0	0	3392	19	3411	24	0	17	41	6442
	96.6	96.5	ŏ	96.5	ŏ	ŏ	Ő	Ő	ŏ	96.9	95	96.9	100	Ő	94.4	97.6	96.7
Trucks &	0	95	0	95	0	0	0	0	0	93	1	94	0	0	1	1	190
% Trucks &	0	3.1	Ő	3.1	Ő	Ő	0	0	ő	27	5	2.7	ő	۵	5.6	2.4	2.9
Semis	1	11	0	12	0	0	0	0	0	15	0	15	0	0	0	0	2
	3.4	0.4	ő	0.4	0	ő	0	0	ő	0.4	0	0.4	0	0	0	0	0.4

> File Name : 5 Ten Ten @ Jessie Site Code : 00000005 Start Date : 5/3/2017 Page No : 2

		Ten-Te South	n Road bound	4		West	bound				en Road bound	1			e Drive bound		
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Int. Tota
Peak Hour Analys	is From C	7:15 AM	to 08:15	AM - Peal	< 1 of 1	-											
Peak Hour for Ent	ire Interse	ection Be	gins at C	7:30 AM													
07:30 AM	1	107	0	108	0	0	0	0	0	254	2	256	4	0	0	4	368
07:45 AM	1	111	0	112	0	0	0	0	0	272	2	274	4	0	2	6	392
08:00 AM	1	138	0	139	0	0	0	0	0	238	0	238	0	0	0	0	377
08:15 AM	0	154	0	154	0	0	0	0	0	232	0	232	3	0	0	3	389
Total Volume	3	510	0	513	0	0	0	0	0	996	4	1000	11	0	2	13	1526
% App. Total	0.6	99.4	0		0	0	0		0	99.6	0.4		84.6	0	15.4		
PHF	.750	.828	.000	.833	.000	.000	.000	.000	.000	.915	.500	.912	.688	.000	.250	.542	.973

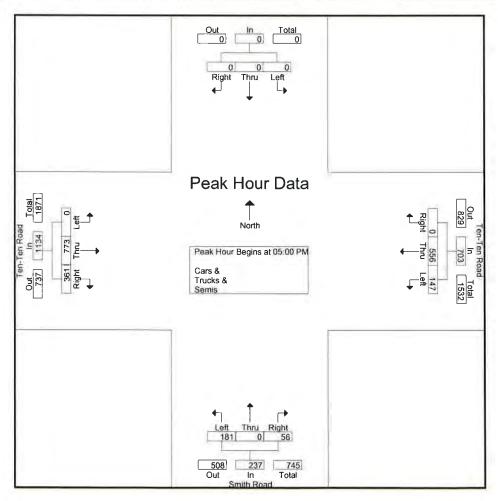
> File Name : 5 Ten Ten @ Jessie Site Code : 00000005 Start Date : 5/3/2017 Page No : 3

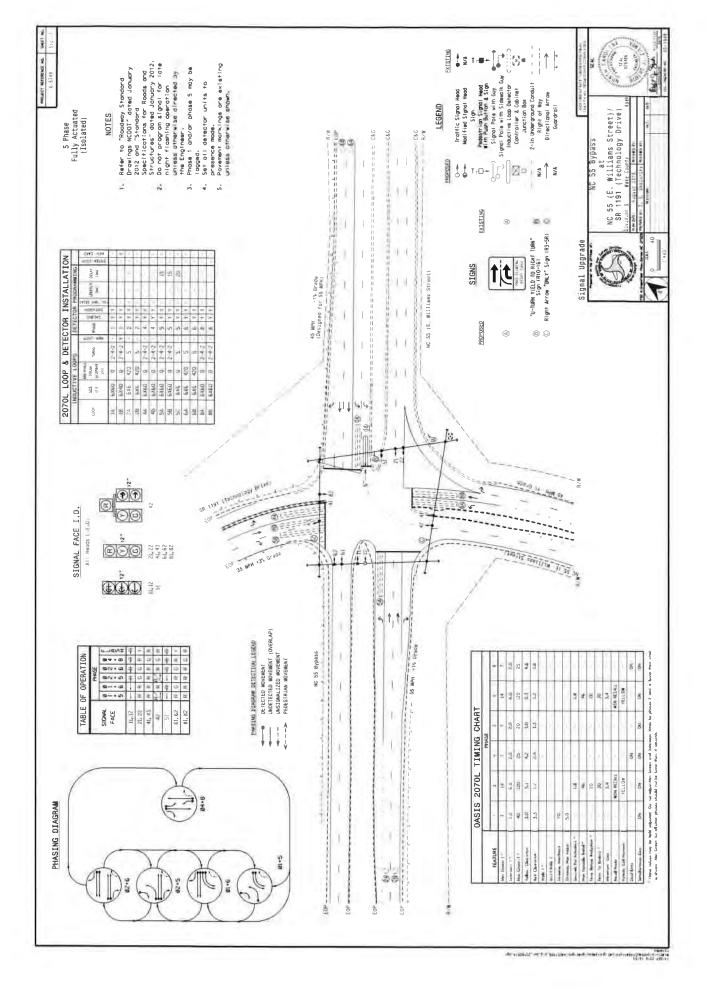
			n Road	-							en Road	t			Drive		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Tota
Peak Hour Analys	is From ()4:45 PM	to 05:45	PM - Peal	k1 of 1							151.1			10000000	1	
Peak Hour for Ent	ire Inters	ection Be	gins at 0	5:00 PM													
05:00 PM	0	284	0	284	0	0	0	0	0	177	1	178	1	0	1	2	
05:15 PM	5	284	0	289	0	0	0	0	0	148	4	152	0	0	2	2	443
05:30 PM	3	240	0	243	0	0	0	0	0	193	2	195	2	0	0	2	440
05:45 PM	3	237	0	240	0	0	0	0	0	200	1	201	1	0	0	1	442
Total Volume	11	1045	0	1056	0	0	0	0	0	718	8	726	4	0	3	7	1789
% App. Total	1	99	0		0	0	0		0	98.9	1.1		57.1	0	42.9		
PHF	.550	.920	.000	.913	.000	.000	.000	.000	.000	.898	.500	.903	.500	.000	.375	.875	.964

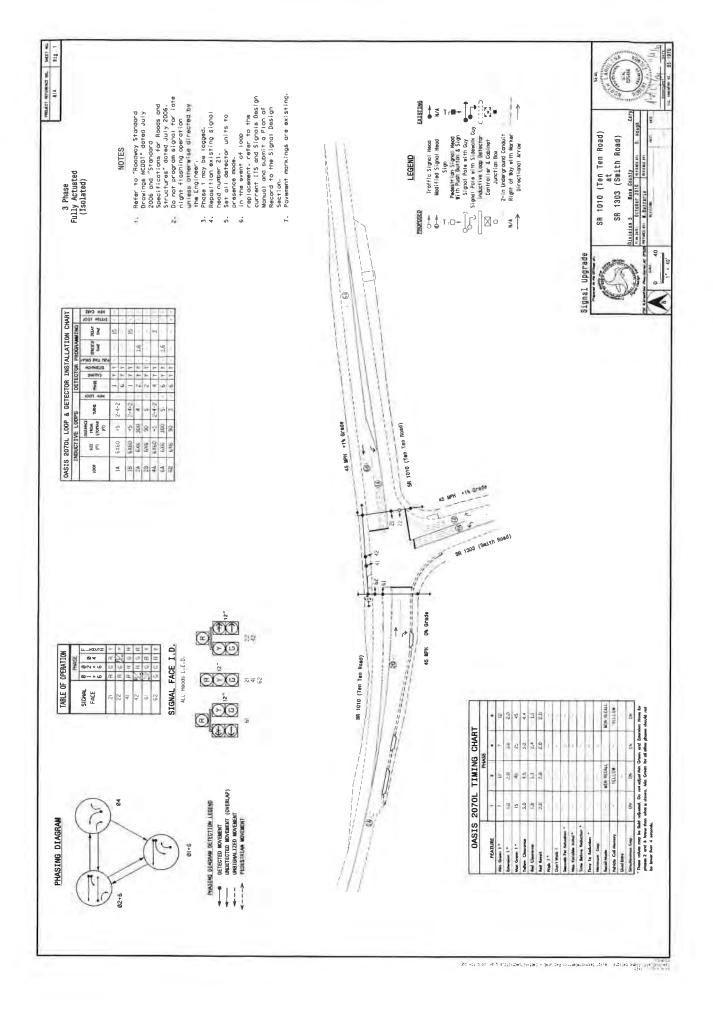

File Name : 6 Ten Ten @ Smith Site Code : 00000006 Start Date : 5/3/2017 Page No : 1

		South	bound			Ten-Te West		ł			Road			Ten-Te Eastb		1	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App. Total	Right	Thru	Left	ADD Total	Right	Thru	Left	App Total	Int. Tota
07:00 AM	0	0	0	0	0	211	3	214	22	0	135	157	11	58	0	69	440
07:15 AM	0	0	0	0	0	165	6	171	42	0	128	170	20	81	0	101	442
07:30 AM	0	0	0	0	0	156	5	161	43	0	127	170	22	95	0	117	448
07:45 AM	0	0	0	0	0	157	7	164	30	0	93	123	34	81	0	115	402
Total	0	0	0	0	0	689	21	710	137	0	483	620	87	315	0	402	1732
08:00 AM	0	0	0	0	0	130	9	139	23	0	104	127	30	109	0	139	405
08:15 AM	0	0	0	0	0	137	9	146	17	0	94	111	39	122	0	161	418
08:30 AM	0	0	0	0	0	141	7	148	27	0	101	128	19	125	0	144	420
08:45 AM	0	0	0	0	0	165	6	171	33	0	110	143	19	121	0	140	454
Total	0	0	0	0	0	573	31	604	100	0	409	509	107	477	0	584	169
*BREAK***																	
04:00 PM	0	0	0	0	0	110	18	128	13	0	27	40	77	219	0	296	464
04:15 PM	0	0	0	0	0	101	20	121	23	0	36	59	95	173	0	268	448
04:30 PM	0	0	0	0	0	124	31	155	12	0	53	65	90	166	0	256	47
04:45 PM	0	0	0	D	0	107	28	135	13	0	34	47	92	186	0	278	460
Total	0	0	0	0	0	442	97	539	61	0	150	211	354	744	0	1098	184
05:00 PM	0	0	0	0	0	136	28	164	10	0	41	51	100	201	0	301	516
05:15 PM	0	0	0	0	0	111	52	163	19	0	41	60	97	195	0	292	51
05:30 PM	0	0	0	0	0	149	41	190	20	0	48	68	91	202	0	293	55
05:45 PM	0	0	0	0	0	160	26	186	7	0	51	58	73	175	0	248	493
Total	0	0	0	0	0	556	147	703	56	0	181	237	361	773	0	1134	207
Grand Total	0	0	0	0	0	2260	296	2556	354	0	1223	1577	909	2309	0	3218	735
Apprch %	0	0	0		0	88.4	11.6		22.4	0	77.6		28.2	71.8	0		
Total %	0	0	0	0	0	30.7	4	34.8	4.8	0	16.6	21.5	12.4	31.4	0	43.8	
Cars &	0	0	0	0	0	2219	290	2509	342	0	1206	1548	888	2264	0	3152	720
% Cars &	Ő	Ő	Ő	Ő	Ő	98.2	98	98.2	96.6	ő	98.6	98.2	97.7	98.1	Ő	97.9	98.
Trucks &	0	0	0	0	0	32	5	37	12	Ő	14	26	20	35	Ő	55	11
% Trucks &	õ	õ	Ő	Ő	Ő	1.4	1.7	1.4	3.4	ő	1.1	1.6	2.2	1.5	Ő	1.7	1.6
Semis	0	0	0	0	0	9	1	10	0.4	0	3	3	1	10	0	11	2
% Semis	0	Ő	Ő	0	Ő	0.4	0.3	0.4	0	õ	0.2	0.2	0.1	0.4	0	0.3	0.3

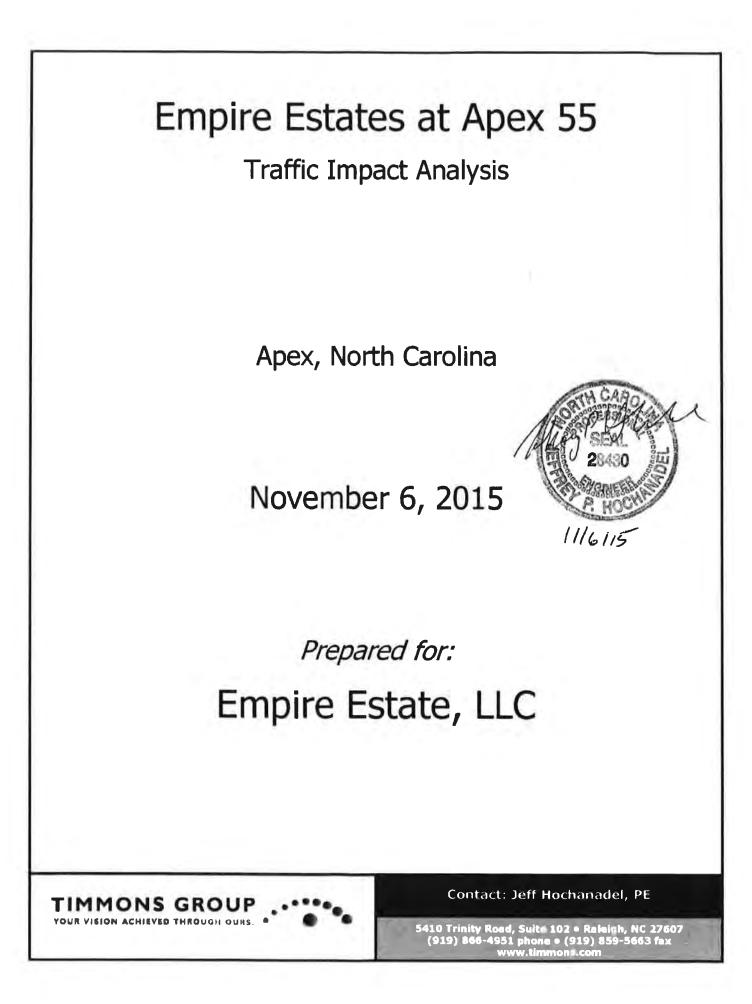
> File Name : 6 Ten Ten @ Smith Site Code : 00000006 Start Date : 5/3/2017 Page No : 2

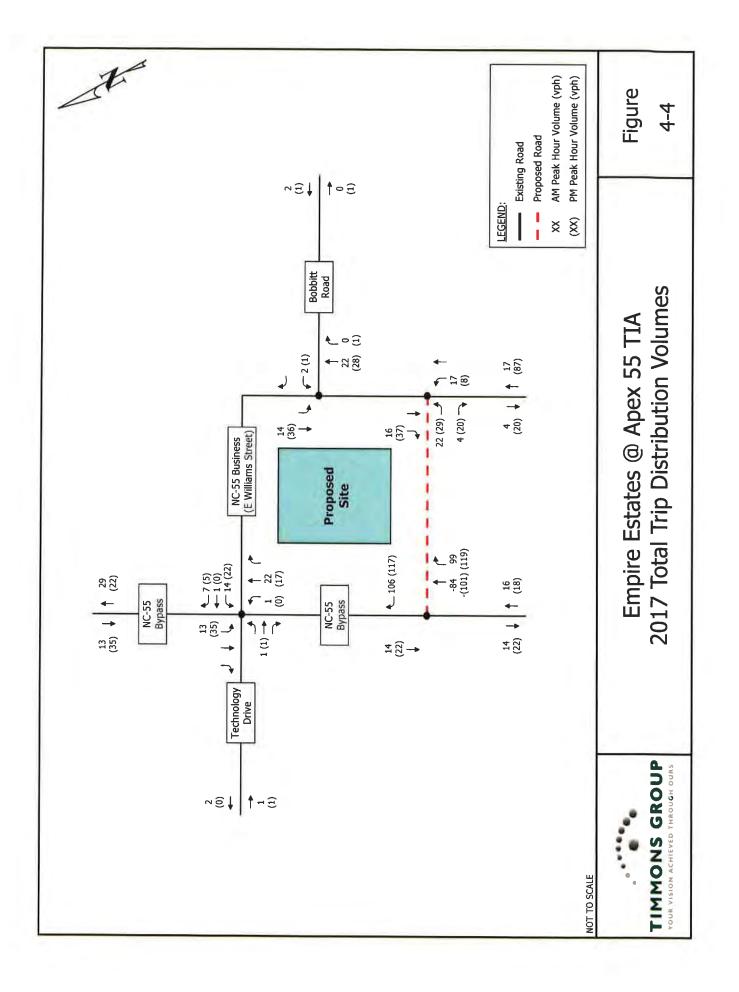

		South	bound			Ten-Te West	n Road	d			Road bound			Ten-Te Eastt	n Roac	1	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App Total	Right	Thru	Left	App. Total	Int. Tota
Peak Hour Analys					s1 of 1												
Peak Hour for Ent	ire Interse	ection Be	gins at C	7:15 AM	0 165 6 171 42												
07:15 AM	0	0	0	0	0	165	6	171	42	0	128	170	20	81	0	101	442
07:30 AM	0	0	0	0	0	156	5	161	43	0	127	170	22	95	0	117	448
07:45 AM	0	0	0	0	0	157	7	164	30	0	93	123	34	81	0	115	402
08:00 AM	0	0	0	0	0	130	9	139	23	0	104	127	30	109	0	139	405
Total Volume	0	0	0	0	0	608	27	635	138	0	452	590	106	366	0	472	1697
% App. Total	0	0	0		0	95.7	4.3		23.4	0	76.6		22.5	77.5	0		
PHF	.000	.000	.000	.000	.000	.921	.750	.928	.802	.000	.883	.868	.779	.839	.000	.849	.947

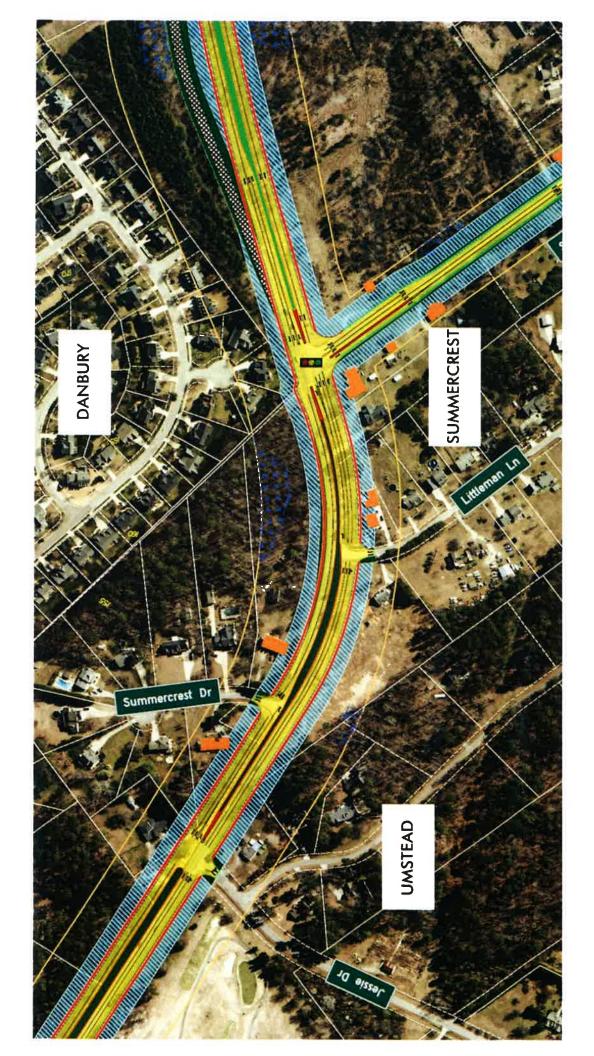

> File Name : 6 Ten Ten @ Smith Site Code : 0000006 Start Date : 5/3/2017 Page No : 3

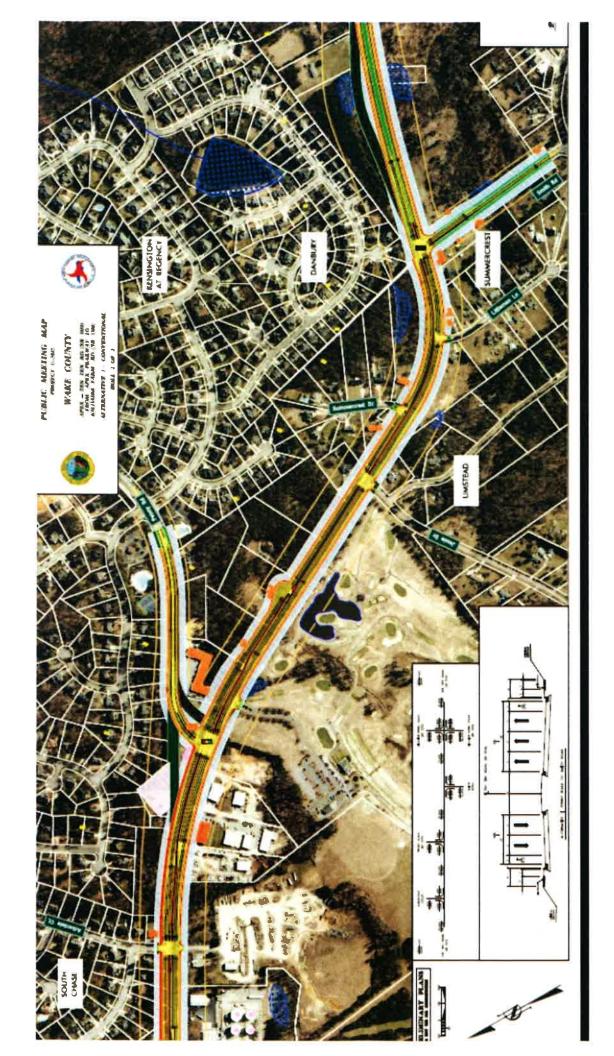

		South	bound				en Road bound	d			n Road bound				en Road bound	1	
Start Time	Right	Thru	Left	App Total	Right	Thru	Left	App. Total	Right	Thru	Left	App Tolal	Right	Thru	Left	App Total	Int. Total
Peak Hour Analys					м												
Peak Hour for Ent	ire Interse	ection Be	gins at C	5:00 PM													
05:00 PM	0	0	0	0	0	136	28	164	10	0	41	51	100	201	0	100	516
05:15 PM	0	0	0	0	0	111	52	163	19	0	41	60	97	195	0	292	515
05:30 PM	0	0	0	0	0	149	41	180	20	0	48	68	91	202	0	293	551
05:45 PM	0	0	0	0	0	160	26	186	7	0	51	58	73	175	0	248	492
Total Volume	0	0	0	0	0	556	147	703	56	0	181	237	361	773	0	1134	2074
% App. Total	0	0	0		0	79.1	20.9		23.6	0	76.4		31.8	68.2	0		
PHF	_000	.000	.000	.000	.000	.869	.707	.925	.700	.000	.887	.871	.903	.957	.000	.942	.941

APPENDIX C


SIGNAL PLANS






APPENDIX D

ADJACENT DEVELOPMENT / BACKGROUND IMPROVEMENT INFORMATION

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS TEN-TEN ROAD

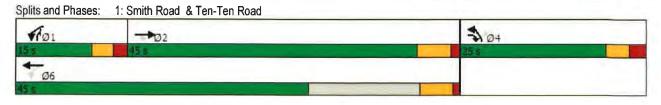
&

SMITH ROAD

1: Smith Road & Ten-Ten Road Horton Park - Apex, NC

	-	7	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	1	٦	1
Traffic Volume (vph)	440	112	29	645	535	163
Future Volume (vph)	440	112	29	645	535	163
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	1000	100	150	1000	100	0
Storage Lanes		100	1.00		100	1
Taper Length (ft)		1	100		100	1
	1.00	1 00		4.00		4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt Filt Desta start		0.850	0.050			0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	1863	1583	1770	1863	1770	1583
Flt Permitted			0.183		0.950	
Satd. Flow (perm)	1863	1583	341	1863	1770	1583
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	45			45	35	
Link Distance (ft)	1511			1269	1107	
Travel Time (s)	22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	489	124	32	717	594	181
Shared Lane Traffic (%)	100		02		004	101
Lane Group Flow (vph)	489	124	32	717	594	181
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	
Median Width(ft)	12	Right	Leit			Right
				12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	4.00					
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Number of Detectors	2	0	1	2	1	1
Detector Template						
Leading Detector (ft)	306	0	65	306	65	65
Trailing Detector (ft)	90	0	5	90	5	5
Detector 1 Position(ft)	90	0	5	90	5	5
Detector 1 Size(ft)	6	20	60	6	60	60
Detector 1 Type	Cl+Ex		CI+Ex	Cl+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	0^		01. 24	OI! EA	OI LA	OI · EX
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
1 /	0.0	0.0				
Detector 1 Delay (s)		0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)	300			300		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			Cl+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	1.6			1.6		
Turn Type	NA	pm+ov	pm+pt	NA	Prot	pm+ov
Protected Phases	2	4	1	6	4	1
Permitted Phases		2	6			4

Horton Park - Apex, NC 06/26/2019 Existing (2019) AM RKA

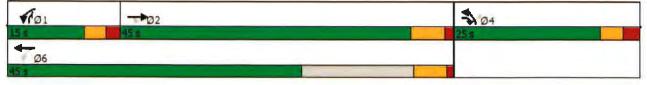

Synchro 10 Report Page 1

1: Smith Road & Ten-Ten Road Horton Park - Apex, NC

	-	\rightarrow	- 🗲	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	2	4	1	6	4	1
Switch Phase						
Minimum Initial (s)	12.0	7.0	7.0	12.0	7.0	7.0
Minimum Split (s)	17.8	12.4	11.8	17.5	12.4	11.8
Total Split (s)	45.0	25.0	15.0	45.0	25.0	15.0
Total Split (%)	52.9%	29.4%	17.6%	52.9%	29.4%	17.6%
Maximum Green (s)	39.2	19.6	10.2	39.5	19.6	10.2
Yellow Time (s)	4.5	3.0	3.0	4.4	3.0	3.0
All-Red Time (s)	1.3	2.4	1.8	1.1	2.4	1.8
Lost Time Adjust (s)	-0.8	-0.4	0.2	-0.5	-0.4	0.2
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lag		Lead			Lead
Lead-Lag Optimize?	Yes		Yes			Yes
Vehicle Extension (s)	2.0	1.0	1.0	2.0	1.0	1.0
Recall Mode	Min	None	None	Min	None	None
Act Effct Green (s)	20.9	46.1	32.8	32.8	20.2	32.1
Actuated g/C Ratio	0.33	0.73	0.52	0.52	0.32	0.51
v/c Ratio	0.79	0.11	0.10	0.74	1.05	0.22
Control Delay	29.0	2.5	7.4	16.9	78.0	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.0	2.5	7.4	16.9	78.0	11.3
LOS	C	A	A	B	E	B
Approach Delay	23.6			16.5	62.4	5
Approach LOS	C			B	E	
Queue Length 50th (ft)	165	10	5	194	~255	36
Queue Length 95th (ft)	260	20	15	305	#526	92
Internal Link Dist (ft)	1431			1189	1027	
Turn Bay Length (ft)	1101	100	150		102/	
Base Capacity (vph)	1192	1157	406	1636	566	886
Starvation Cap Reductn	0	0	400 0	0	0	000
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.11	0.08	0.44	1.05	0.20
	0.71	0.11	0.00	0.44	1.00	0.20
Intersection Summary						
Area Type:	Other					
Cycle Length: 85						
Actuated Cycle Length: 63	3.1					
Natural Cycle: 75						
Control Type: Actuated-U	ncoordinated	l				
Maximum v/c Ratio: 1.05						
Intersection Signal Delay:				lr	ntersectio	n LOS: D
Intersection Capacity Utili	zation 71.9%	,		IC	CU Level	of Service (
Analysis Period (min) 15						
~ Volume exceeds capa	acity, queue i	s theoreti	cally infin	ite.		
Queue shown is maxir			÷			
# 95th percentile volume			Jeue may	be longe	εr.	
Queue shown is maxir			,			
		,				

Horton Park - Apex, NC 06/26/2019 Existing (2019) AM RKA

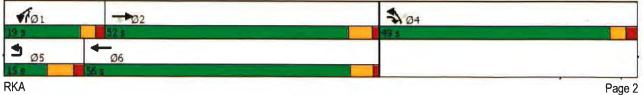
Synchro 10 Report Page 2



	-	\mathbf{r}	-	-	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	3	1	٦	1
Traffic Volume (vph)	820	405	166	611	192	59
Future Volume (vph)	820	405	166	611	192	59
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		100	150		100	0
Storage Lanes		1	1		.00	1
Taper Length (ft)			100		100	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	1.00	0.850
Flt Protected		0.000	0.950		0.950	0.000
	1863	1583		1000		1500
Satd. Flow (prot)	1003	1000	1770	1863	1770	1583
Flt Permitted	4000	4500	0.090	4000	0.950	
Satd. Flow (perm)	1863	1583	168	1863	1770	1583
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	45			45	35	
Link Distance (ft)	1511			1269	1107	
Travel Time (s)	22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	911	450	184	679	213	66
Shared Lane Traffic (%)						
Lane Group Flow (vph)	911	450	184	679	213	66
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	rugin	Lon	12	12	rugin
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
	1 00	1.00	1.00	1 00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15	•	15	9
Number of Detectors	2	0	1	2	1	1
Detector Template						
Leading Detector (ft)	306	0	65	306	65	65
Trailing Detector (ft)	90	0	5	90	5	5
Detector 1 Position(ft)	90	0	5	90	5	5
Detector 1 Size(ft)	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0 0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)	300		10.0	300	0.0	10.0
Detector 2 Size(ft)	6			6		
Detector 2 Type	Cl+Ex			CI+Ex		
Detector 2 Channel	OULX			OFFER		
Detector 2 Extend (s)	1.6			1.6		
					Deet	
Turn Type	NA	pm+ov	pm+pt	NA		pm+ov
Protected Phases Permitted Phases	2	4	1	6	4	1
Pormittad Phases		2	6			4

06/26/2019 RKA

	->	\mathbf{r}	-		-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	2	4	1	6	4	1
Switch Phase	-	•	•	Ŭ		
Minimum Initial (s)	12.0	7.0	7.0	12.0	7.0	7.0
Minimum Split (s)	17.8	12.4	11.8	17.5	12.4	11.8
Total Split (s)	45.0	25.0	15.0	45.0	25.0	15.0
Total Split (%)	52.9%	29.4%	17.6%	52.9%	29.4%	17.6%
Maximum Green (s)	39.2	19.6	10.2	39.5	19.6	10.2
Yellow Time (s)	4.5	3.0	3.0	4.4	3.0	3.0
All-Red Time (s)	1.3	2.4	1.8	1.1	2.4	1.8
Lost Time Adjust (s)	-0.8	-0.4	0.2	-0.5	-0.4	0.2
Total Lost Time (s)	-0.8 5.0	-0.4 5.0	0.2 5.0	-0.5 5.0	-0.4 5.0	0.2 5.0
Lead/Lag		5.0		0.0	0.0	
0	Lag		Lead			Lead
Lead-Lag Optimize?	Yes	4.0	Yes	0.0	4.0	Yes
Vehicle Extension (s)	2.0	1.0	1.0	2.0	1.0	1.0
Recall Mode	Min	None	None	Min	None	None
Act Effct Green (s)	40.2	58.0	53.0	53.0	12.8	25.7
Actuated g/C Ratio	0.53	0.76	0.70	0.70	0.17	0.34
v/c Ratio	0.92	0.37	0.65	0.52	0.71	0.12
Control Delay	35.2	4.0	23.0	7.9	43.4	17.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.2	4.0	23.0	7.9	43.4	17.2
LOS	D	А	С	А	D	В
Approach Delay	24.9			11.2	37.2	
Approach LOS	С			В	D	
Queue Length 50th (ft)	352	47	29	123	94	21
Queue Length 95th (ft)	#752	97	107	264	168	46
Internal Link Dist (ft)	1431			1189	1027	
Turn Bay Length (ft)		100	150		100	
Base Capacity (vph)	986	1361	329	1356	468	582
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	Ō	0	Ő	Ō	Ō
Reduced v/c Ratio	0.92	0.33	0.56	0.50	0.46	0.11
Intersection Summary						
Area Type:	Other					
Cycle Length: 85	outor					
Actuated Cycle Length: 75	59					
Natural Cycle: 80						
Control Type: Actuated-U	ncoordinated	1				
Maximum v/c Ratio: 0.92	ncoorumateu					
	01.5				ataraaatia	-100.0
Intersection Signal Delay:						n LOS: C
Intersection Capacity Utiliz	zation 75.5%)		10	CU Level	of Service
Analysis Period (min) 15						
# 95th percentile volume			leue may	v be longe	er.	
Queue shown is maxin	num after two	o cycles.				
Collite and Dhases 1: C	with Danel 0		Deed			


Splits and Phases: 1: Smith Road & Ten-Ten Road

	5		\mathbf{r}	-	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	††	1	٦	^	ኘካ	1
Traffic Volume (vph)	4	510	130	34	748	620	189
Future Volume (vph)	4	510	130	34	748	620	189
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		0	400		600	250
Storage Lanes	1		1	1		1	1
Taper Length (ft)	100			100		100	-
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt			0.850		0.00	0101	0.850
Flt Protected	0.950		0.000	0.950		0.950	0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Flt Permitted	0.950			0.950	0000	0.950	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red		0000	No	11.10	0000	0400	No
Satd. Flow (RTOR)			NO				NU
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			1209	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	567	144	38	831	689	210
Shared Lane Traffic (%)	4	507	144	30	031	009	210
Lane Group Flow (vph)	4	567	144	38	831	689	210
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	RNA	Left					
Median Width(ft)	KINA	16	Right	Left	Left	Left 24	Right
Link Offset(ft)		0			16 0	24	
Crosswalk Width(ft)		16			16	16	
Two way Left Turn Lane		10			10		
Headway Factor	1.00	1.00	1.00	1 00	1.00	Yes 1.00	4.00
Turning Speed (mph)		1.00		1.00	1.00		1.00
Number of Detectors	9 1	2	9	15	0	15	9
Detector Template		2	0	1	2	1	1
•	Left	200	0	05	000	05	05
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0_0	0.0	0.0	0,0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0,0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3,0	15.0
Detector 2 Position(ft)		300			300		
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel							
Detector 2 Extend (s)		1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
	E	2	4	1	6	4	. 1
Protected Phases	5	۷ ۲	- T				

06/26/2019 RKA

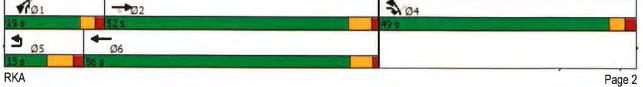
	1		\mathbf{Y}	-	+	-	1	
Lane Group	EBU	ËBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	5	2	4	1	6	4	1	
Switch Phase								
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0	
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8	
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0	
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%	
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2	
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0	
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8	
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2	
Total Lost Time (s)	-2.0	-0.8	-0.4 5.0	5.0	-0.5 5.0	-0.4 5.0	0.2 5.0	
Lead/Lag			5.0			5.0		
	Lead	Lag		Lead	Lag		Lead	
Lead-Lag Optimize?	Yes	Yes	4.0	Yes	Yes	4.0	Yes	
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0	
Recall Mode	None	Min	None	None	Min	None	None	
Act Effct Green (s)	9.4	17.5	38.7	7.2	28.0	16.0	28.4	
Actuated g/C Ratio	0.17	0.31	0.69	0.13	0.50	0.28	0.50	
v/c Ratio	0.01	0.52	0.13	0.17	0.47	0.71	0.26	
Control Delay	27.2	17.8	2.9	29.4	12.3	23.2	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	27.2	17.8	2.9	29.4	12.3	23.2	10.4	
LOS	С	В	А	С	В	С	В	
Approach Delay		14.9			13.0	20.2		
Approach LOS		В			В	С		
Queue Length 50th (ft)	1	75	12	10	74	92	31	
Queue Length 95th (ft)	11	145	23	48	234	212	111	
Internal Link Dist (ft)		1 431			1189	1027		
Turn Bay Length (ft)	400			400		600	250	
Base Capacity (vph)	328	3057	1552	460	3202	2805	1007	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	Ō	0	Ō	0	
Reduced v/c Ratio	0.01	0.19	0.09	0.08	0.26	0.25	0.21	
ntersection Summary								
Area Type:	Other							
Cycle Length: 120								
Actuated Cycle Length: 56	4							
Natural Cycle: 60	. T							
Control Type: Actuated-Un	coordinated							
Maximum v/c Ratio: 0.71	COOLUMALEU							
Intersection Signal Delay: 1	16.2			1.	ntersectio			
Intersection Signal Delay.					CU Level			
Analysis Period (min) 15	au011 34.3%			I	SO Level	OI SELVICI	e A	
naiyois renou (min) 15								
Splits and Phases: 1: Sn	nith Road 8	Ten-Ter	n Road					
Aa								
-							21	

	5	-	\rightarrow	-	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	^	7	٢	^	35	1
Traffic Volume (vph)	4	951	470	192	708	223	68
Future Volume (vph)	4	951	470	192	708	223	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		0	400		600	250
Storage Lanes	1		ı 1	1		1	1
Taper Length (ft)	100			100		100	1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt	1.00	0.55		1.00	0.95	0.97	
	0.050		0.850	0.050		0.050	0.850
Fit Protected	0.950	0500	4500	0.950	0500	0.950	4500
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Flt Permitted	0.950			0.950		0.950	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red			No				No
Satd. Flow (RTOR)							
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	1057	522	213	787	248	76
Shared Lane Traffic (%)							
Lane Group Flow (vph)	4	1057	522	213	787	248	76
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)	11111	16	rugit	Lon	16	24	ragin
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
		10			10		
Two way Left Turn Lane	1 00	1 00	1 00	4.00	4 00	Yes	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	9		9	15		15	9
Number of Detectors	1	2	0	1	2	1	1
Detector Template	Left						
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0,0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)	0.0	300	0.0	10.0	300	0.0	10-0
Detector 2 Size(ft)		6			6		
		-					
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel							
Detector 2 Extend (s)	_	1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
Protected Phases	5	2	4	1	6	4	1
Permitted Phases			2				4

06/26/2019 RKA

-		•	-		1		
EBU	EBT	EBR	WBL	WBT	NBL	NBR	
5	2	4	1	6	4	1	
7.0	12.0	7.0	7.0	12.0	7.0	7.0	
14.0							
3.0		1.0			1.0		
		42.0					
С	В	А	С				
	16.0			12.0			
	В			В			
1	178	98	76	50	47	17	
11	262	156	#191	155	93	50	
	1431			1189	1027		
400			400		600	250	
270	2545	1583	379	2762	2311	691	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0.01	0.42	0.33	0.56	0.28	0.11	0.11	
Other					-		
4							
coordinated							
15.8			łr	ntersectio	n I OS [,] B		
	1						
					51 110		
exceeds ca	pacity, q	Jeue may	be longe	er.			
	o cycles.						
	5 7.0 14.0 15.0 12.5% 8.0 5.0 2.0 -2.0 5.0 Lead Yes 3.0 None 9.1 0.14 0.02 29.8 C 0.0 29.8 C 1 11 400 270 0 0 0.01 Other 4 coordinated 15.8 ation 55.8%	5 2 7.0 12.0 14.0 17.8 15.0 52.0 12.5% 43.3% 8.0 46.2 5.0 4.5 2.0 1.3 -2.0 -0.8 5.0 5.0 Lead Lag Yes Yes 3.0 2.0 None Min 9.1 27.2 0.14 0.41 0.02 0.73 29.8 19.7 0.0 0.0 29.8 19.7 C B 16.0 B 1 178 11 262 1431 400 270 2545 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 2 4 7.0 12.0 7.0 14.0 17.8 12.4 15.0 52.0 49.0 12.5% 43.3% 40.8% 8.0 46.2 43.6 5.0 4.5 3.0 2.0 1.3 2.4 -2.0 -0.8 -0.4 5.0 5.0 5.0 Lead Lag Yes Yes Yes 3.0 2.0 1.3 2.4 -2.0 -0.8 -0.4 5.0 5.0 5.0 Lead Lag Yes Yes Yes 3.0 2.0 1.0 None Min None 9.1 27.2 42.0 0.14 0.41 0.63 0.00 29.8 19.7 8.5 0.0 0.0 0.0 29.8 19.7 8.5 16.0 1431 4000 270 2545	5 2 4 1 7.0 12.0 7.0 7.0 14.0 17.8 12.4 11.8 15.0 52.0 49.0 19.0 12.5% 43.3% 40.8% 15.8% 8.0 46.2 43.6 14.2 5.0 4.5 3.0 3.0 2.0 1.3 2.4 1.8 -2.0 -0.8 -0.4 0.2 5.0 5.0 5.0 5.0 Lead Lag Lead Yes Yes Yes Yes 3.0 0.10 1.0 None Min None 9.1 27.2 42.0 14.2 0.14 0.41 0.63 0.21 0.02 0.73 0.52 0.56 29.8 19.7 8.5 33.0 0.0 0.0 0.0 0.0 270 2545 1583 379 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 4 1 6 4 7.0 12.0 7.0 7.0 12.0 7.0 14.0 17.8 12.4 11.8 17.5 12.4 15.0 52.0 49.0 19.0 56.0 49.0 12.5% 43.3% 40.8% 15.8% 46.7% 40.8% 8.0 46.2 43.6 14.2 50.5 43.6 5.0 4.5 3.0 3.0 4.4 3.0 2.0 1.3 2.4 1.8 1.1 2.4 -2.0 -0.8 -0.4 0.2 -0.5 -0.4 5.0 5.0 5.0 5.0 5.0 5.0 Lead Lag Lead Lag Yes Yes Yes 3.0 2.0 1.0 1.0 2.0 1.0 None Min None None Min None 9.1 27.2 42.0 14.2 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Splits and Phases: 1: Smith Road & Ten-Ten Road


Background (2026) AM 06/28/2019

	1	-	Y	-	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A	† †	1	1	^	ኘካ	7
Traffic Volume (vph)	4	541	138	36	793	658	200
Future Volume (vph)	4	541	138	36	793	658	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		0	400		600	250
Storage Lanes	1		1	1		1	1
Taper Length (ft)	100			100		100	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt	1.00	0.00	0.850	1.00	0.00	0.07	0.850
Flt Protected	0.950		0.000	0.950		0.950	0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Flt Permitted	0.950	0000	1000	0.950	0000	0.950	1000
Satd. Flow (perm)	1770	3539	1583	1770	3539		1583
Right Turn on Red	1770	2029		1110	2028	3433	
			No				No
Satd. Flow (RTOR)		45			45	0.5	
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	601	153	40	881	731	222
Shared Lane Traffic (%)							
Lane Group Flow (vph)	4	601	153	40	881	731	222
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)		16			16	24	
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
Two way Left Turn Lane						Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	9		9	15		15	9
Number of Detectors	1	2	0	1	2	1	1
Detector Template	Left						
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	Ő	5	90	5	5
Detector 1 Position(ft)	0	90	Ő	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex		CI+Ex	
Detector 1 Channel	OTLA	OFLX	OFEX	OFFER	UITEX	CITEX	UTEX
	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0_0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0 0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)		300			300		
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel							
Detector 2 Extend (s)		1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
Desta stall Diseases	5	2	4	1	6	4	1
Protected Phases							

06/26/2019 RKA

Background (2026) AM 06/28/2019

	1	->	\mathbf{r}	-	4	1	-	
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	5	2	4	1	6	4	1	
Switch Phase								
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0	
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8	
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0	
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%	
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2	
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0	
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8	
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0	
Recall Mode	None	Min	None	None	Min	None	None	
Act Effct Green (s)	9.5	18.6	41.5	7.3	29.4	17.5	30.2	
Actuated g/C Ratio	0.16	0.31	0.70	0.12	0.49	0.29	0.51	
v/c Ratio	0.01	0.54	0.14	0.18	0.50	0.72	0.28	
Control Delay	29.8	18.8	2.9	31.7	13.2	24.0	11.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.8	18.8	2.9	31.7	13.2	24.0	11.0	
LOS	C	B	A	C	B	C	B	
Approach Delay	· ·	15.7		Ŭ	14.0	21.0	5	
Approach LOS		В			B	C		
Queue Length 50th (ft)	1	84	13	11	85	103	34	
Queue Length 95th (ft)	12	168	25	53	268	242	125	
Internal Link Dist (ft)		1431			1189	1027		
Turn Bay Length (ft)	400			400	1100	600	250	
Base Capacity (vph)	315	2946	1558	441	3108	2764	1003	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	Ő	0	Ō	Ő	0	Ő	
Storage Cap Reductn	Õ	Õ	Ő	Õ	Ő	0	õ	
Reduced v/c Ratio	0.01	0.20	0.10	0.09	0.28	0.26	0.22	
Intersection Summary								
Area Type:	Other							
Cycle Length: 120								
Actuated Cycle Length: 59.4	4							
Natural Cycle: 60								
Control Type: Actuated-Unc	coordinated							
Maximum v/c Ratio: 0.72								
Intersection Signal Delay: 1	7.0			lr	ntersectio	n LOS: B		
Intersection Capacity Utiliza					CU Level		эB	
Analysis Period (min) 15								
Splits and Phases: 1: Sm	ith Road &	Ten-Ter	Road					
1	2.5		nodu				•	
VI01	02	_	_				\$ 04	

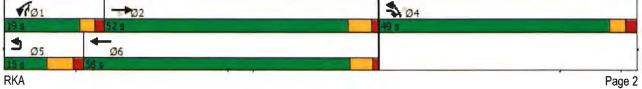
Background (2026) PM 06/28/2019

	5	-	\mathbf{r}	1	-	1	1	
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	A	† †	7	η	† †	ካካ	1	
Traffic Volume (vph)	4	1008	498	204	751	236	73	
Future Volume (vph)	4	1008	498	204	751	236	73	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	400		0	400		600	250	
Storage Lanes	1		1	1		1	1	
Taper Length (ft)	100			100		100	•	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00	
Frt		0.00	0.850	1.00	0.00	0.07	0.850	
Flt Protected	0.950		0.000	0.950		0.950	0.000	
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583	
Flt Permitted	0.950	0000	1000	0.950	0000	0.950	1505	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583	
Right Turn on Red	1770	2223	No	1110	2029	3433		
Satd. Flow (RTOR)			NU				No	
		45			45	25		
Link Speed (mph) Link Distance (ft)		45 1511			45	35		
()					1269	1107		
Travel Time (s)	0.00	22.9	0.00	0.00	19.2	21.6	0.00	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	4	1120	553	227	834	262	81	
Shared Lane Traffic (%)		4400					•	
ane Group Flow (vph)	4	1120	553	227	834	262	81	
Enter Blocked Intersection	No	No	No	No	No	No	No	
ane Alignment	R NA	Left	Right	Left	Left	Left	Right	
Median Width(ft)		16			16	24		
Link Offset(ft)		0			0	0		
Crosswalk Width(ft)		16			16	16		
Two way Left Turn Lane						Yes		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Furning Speed (mph)	9	_	9	15		15	9	
Number of Detectors	1	2	0	1	2	1	1	
Detector Template	Left							
eading Detector (ft)	20	306	0	65	306	65	65	
Frailing Detector (ft)	0	90	0	5	90	5	5	
Detector 1 Position(ft)	0	90	0	5	90	5	5	
Detector 1 Size(ft)	20	6	20	60	6	60	60	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel								
Detector 1 Extend (s)	0.0	0.0	0.0	0,0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0,0	0.0	0.0	0.0	a de la companya de l
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3.0	15.0	
Detector 2 Position(ft)		300			300			
Detector 2 Size(ft)		6			6			
Detector 2 Type		CI+Ex			CI+Ex			
Detector 2 Channel								
Detector 2 Extend (s)		1.6			1.6			
Furn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov	
Protected Phases	5	2	4	1	6	4	1	
	~	-	2		~	- 7	4	

06/26/2019 RKA

	5		\mathbf{r}	1	+	1	1	
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	5	2	4	1	6	4	1	
Switch Phase								
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0	
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8	
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0	
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%	
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2	
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0	
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8	
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0	
Recall Mode	None	Min	None	None	Min	None	None	
Act Effct Green (s)	9.2	29.8	45.0	14.2	46.8	10.1	29.5	
Actuated g/C Ratio	0.13	0.43	0.65	0.20	0.67	0.15	0.43	
v/c Ratio	0.02	0.74	0.54	0.63	0.35	0.52	0.12	
Control Delay	31.5	19.8	8.5	37.4	6.3	32.8	14.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.5	19.8	8.5	37.4	6.3	32.8	14.9	
LOS	C	B	A	D	A	02.0 C	B	
Approach Delay	Ŭ	16.1	~	U	13.0	28.6	D	
Approach LOS		B			B	20.0 C		
Queue Length 50th (ft)	2	198	106	88	56	53	20	
Queue Length 95th (ft)	11	285	167	#225	167	102	56	
Internal Link Dist (ft)		1431	107	17220	1189	1027	00	
Turn Bay Length (ft)	400	1401		400	1100	600	250	
Base Capacity (vph)	259	2438	1583	363	2664	2214	672	
Starvation Cap Reductn	200	2400	0	0	2004	0	0/2	
Spillback Cap Reductn	0	Ő	0	0	0	Ő	0	
Storage Cap Reductn	Õ	Ő	0	0 0	0	Ő	0	
Reduced v/c Ratio	0.02	0.46	0,35	0.63	0.31	0.12	0.12	
Intersection Summary	0.02	0.10	0.00	0.00	0.01	0.12	0.12	
Area Type:	Other							
Cycle Length: 120								
Actuated Cycle Length: 69	4							
Natural Cycle: 60								
Control Type: Actuated-Ur	ncoordinated							
Maximum v/c Ratio: 0.74	1000101110160							
Intersection Signal Delay:	16.4			Ь	ntersectio	n LOS: B		
Intersection Capacity Utiliz						of Servic		
Analysis Period (min) 15	201011 30.470			N.	OO LEVEI		6 D	
# 95th percentile volume	a avraade oo	inacity o		he longe	ar.			
Queue shown is maxin			leue may	ne iolige	э г.			
Queue SHOWITIS ITIBXIII		o cycles.						

Splits and Phases: 1: Smith Road & Ten-Ten Road


Combined (2024) AM - Phase 1 06/28/2019

	5	-	\mathbf{r}	1	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	††	1	۲	† †	ሻሻ	1
Traffic Volume (vph)	4	510	170	44	748	744	220
Future Volume (vph)	4	510	170	44	748	744	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400	1500	0	400	1500	600	250
Storage Lanes	400		1	400		1	
Taper Length (ft)	100						1
Lane Util. Factor		0.05	1.00	100	0.05	100	4 00
	1.00	0.95	1.00	1.00	0 95	0.97	1.00
Frt	0.050		0.850	0.050		0.050	0.850
Flt Protected	0.950	0500		0.950		0.950	
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Fit Permitted	0.950			0.950		0.950	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red			No				No
Satd. Flow (RTOR)							
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	567	189	49	831	827	244
Shared Lane Traffic (%)					•••	•=-	
Lane Group Flow (vph)	4	567	189	49	831	827	244
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)	IN INC	16	rugin	Lon	16	24	rugitt
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
. ,		10			10		
Two way Left Turn Lane	1.00	1 00	1.00	4 00	4.00	Yes	4 00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	9	0	9	15	•	15	9
Number of Detectors	1	2	0	1	2	1	1
Detector Template	Left		-				
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)	0.0	300	0.0	10.0	300	0.0	10,0
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel		OFLX					
		16			16		
Detector 2 Extend (s)	Drot	1.6		Deat	1.6	Deet	
Turn Type	Prot	NA	pm+ov	Prot	NA		pm+ov
Protected Phases	5	2	4	1	6	4	1
Permitted Phases			2				4

Horton Park - Apex, NC $\,$ 06/26/2019 Combined (2024) AM - Phase 1 RKA $\,$

Combined (2024) AM - Phase 1 06/28/2019

	1	-+	7	-	-	1	1	
Lane Group	EBU	ËBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	5	2	4	1	6	4	1	
Switch Phase								
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0	
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8	
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0	
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%	
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2	
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0	
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8	
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0	
Recall Mode	None	Min	None	None	Min	None	None	
Act Effct Green (s)	9.5	18.5	43.5	7.4	29.4	19.7	32.4	
Actuated g/C Ratio	0.15	0.30	0.71	0.12	0.48	0.32	0.53	
v/c Ratio	0.01	0.53	0.17	0.23	0.49	0.75	0.29	
Control Delay	31.0	20.1	3.0	33.2	14.2	24,2		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.0	20.1	3.0	33.2	14.2	24.2		
LOS	C	C	A	C	В	C	В	
Approach Delay	•	15.9		•	15.3	21.1	-	
Approach LOS		В			В	C		
Queue Length 50th (ft)	1	83	16	15	86	121	38	
Queue Length 95th (ft)	13	169	32	63	263	274	131	
Internal Link Dist (ft)		1431			1189	1027		
Turn Bay Length (ft)	400			400		600	250	
Base Capacity (vph)	304	2863	1538	426	3040	2602		
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.01	0.20	0.12	0.12	0.27	0.32		
Intersection Summary								
Area Type:	Other							
Cycle Length: 120	Outor							
Actuated Cycle Length: 61	5							
Natural Cycle: 60	.0							
Control Type: Actuated-Un	opordinated							
Maximum v/c Ratio: 0.75	coordinated							
Intersection Signal Delay:	17 0			l.	ntersectio	- LOC- I	-	
					CU Level			
Intersection Capacity Utiliz Analysis Period (min) 15	au011 00.2%			IL IL	-O Level		2 D	
Anaiyoio richidu (mini) 10								
Splits and Phases: 1: Sr	mith Road &	Ten-Ter	1 Road					

Combined (2024) PM - Phase 1 06/28/2019

	•	-+	*	4	+	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	† †	1	1	† †	ኘካ	7
Traffic Volume (vph)	4	951	606	226	708	302	88
Future Volume (vph)	4	951	606	226	708	302	88
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400	1900	1900	400	1900	600	250
Storage Lanes	400		1	400		1	
			I			-	1
Taper Length (ft)	100	0.05	4.00	100	0.05	100	4.00
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt	0.050		0.850				0.850
Flt Protected	0.950			0.950		0.950	
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Flt Permitted	0.950			0.950		0.950	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red			No				No
Satd. Flow (RTOR)							
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	1057	673	251	787	336	98
Shared Lane Traffic (%)							
Lane Group Flow (vph)	4	1057	673	251	787	336	98
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)	1.1.1.1	16	ragin	Lon	16	24	rugin
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
Two way Left Turn Lane		10			10	Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		1.00			1.00		1.00
Turning Speed (mph) Number of Detectors	9 1	n	9	15	0	15	9
	-	2	0	1	2	1	1
Detector Template	Left	200	0		000	05	05
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)		300			300		
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel		ST. EX			0. · LA		
Detector 2 Extend (s)		1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
Protected Phases	5	2	pm+0v 4	1	6	4	PI11∓0V 1
Permitted Phases	5	2			0	4	1
Formitted Flidses			2				4

Horton Park - Apex, NC 06/26/2019 Combined (2024) PM - Phase 1 RKA

Combined (2024) PM - Phase	1
06/28/20	19

	1	-+	\mathbf{r}	-	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	5	2	4	1	6	4	1
Switch Phase							
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	0.0	Lead	Lag	0.0	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0
Recall Mode	None	Min	None	None	Z.0 Min	None	None
Act Effct Green (s)	9.2	28.4	45.6	14.3	45.6	12.0	31.4
Actuated g/C Ratio	9.2 0.13	20.4 0.41	45.6 0.65	0.20	45.6 0.65	0.17	0.45
v/c Ratio	0.13	0.41	0.65	0.20	0.65	0.17	0.45 0.14
Control Delay	32.5	21.1	10.6	41.3	7.3	31.7	13.9
Queue Delay	0.0	0.0	0.0	41.3 0.0	0.0	0.0	0.0
Total Delay	32.5	21.1	10.6	41.3	7.3	31.7	13.9
LOS	52.5 C	21.1 C	10.0 B	41.3 D	7.5 A	51.7 C	13.9 B
	U	17.1	D	D		27.7	D
Approach Delay					15.5		
Approach LOS	0	B	4 4 7	00	B	C	00
Queue Length 50th (ft)	2	191	147	99 #000	58	68	23
Queue Length 95th (ft)	12	287	233	#266	173	125	63
Internal Link Dist (ft)	400	1431		400	1189	1027	050
Turn Bay Length (ft)	400	0400	4500	400	0000	600	250
Base Capacity (vph)	258	2426	1583	361	2638	2203	710
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.44	0.43	0.70	0.30	0.15	0.14
Intersection Summary							
Area Type:	Other						
Cycle Length: 120							
Actuated Cycle Length: 70	.1						
Natural Cycle: 55							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.74							
Intersection Signal Delay:	18.0			lr	ntersectio	n LOS: B	
Intersection Capacity Utiliz				10	CU Level	of Service	e B
Analysis Period (min) 15							
# 95th percentile volume	exceeds ca	pacity, q	ueue may	be longe	er.		
Queue shown is maxim			,	5-			

Splits and Phases: 1: Smith Road & Ten-Ten Road

Combined (2026) AM - Full Buildout 06/28/2019

	5	-	\mathbf{r}	-		-	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	† †	1	٦	^	ኘኘ	7
Traffic Volume (vph)	4	581	138	42	826	658	217
Future Volume (vph)	4	581	138	42	826	658	217
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		0	400		600	250
Storage Lanes	1		1	1		1	1
Taper Length (ft)	100			100		100	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt			0.850				0.850
Fit Protected	0.950			0.950		0.950	
Satd. Flow (prot)	1770	3539	1583	1770	3539	3433	1583
Flt Permitted	0.950			0.950		0.950	
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red			No				No
Satd. Flow (RTOR)							
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	646	153	47	918	731	241
Shared Lane Traffic (%)							
Lane Group Flow (vph)	4	646	153	47	918	731	241
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)		16			16	24	
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
Two way Left Turn Lane						Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	9		9	15		15	9
Number of Detectors	1	2	0	1	2	1	1
Detector Template	Left						
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	6	60	60
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0_0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0_0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)		300			300		
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel							
Detector 2 Extend (s)		1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
Protected Phases	5	2	4	1	6	4	1
Permitted Phases			2				4

06/26/2019 RKA

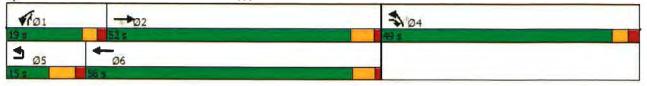
Combined	(2026)	AM	- Full	Buildout
				06/28/2019

	5		\rightarrow	1	-	1	-	
ane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	5	2	4	1	6	4	1	
Switch Phase								
Viinimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0	
Vinimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8	
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0	
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%	
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2	
(ellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0	
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8	
.ost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2	
otal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
ead/Lag	Lead	Lag	0.0	Lead	Lag	0.0	Lead	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	
ehicle Extension (s)	3.0	2.0	1.0	1.0		1.0		
Recall Mode					2.0	1.0	1.0	
	None	Min	None	None	Min	None	None	
Act Effct Green (s)	9.6	19.7	43.0	7.4	30.6	18.1	30.8	
ctuated g/C Ratio	0.16	0.32	0.70	0.12	0.50	0.30	0.50	
/c Ratio	0.01	0.57	0.14	0.22	0.52	0.72	0.30	
ontrol Delay	31.0	19.3	2.8	33.0	13.5	24.5	11.6	
lueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	31.0	19.3	2.8	33.0	13.5	24.5	11.6	
OS	С	В	Α	С	В	С	В	
pproach Delay		16.2			14.4	21.3		
pproach LOS		В			В	С		
ueue Length 50th (ft)	1	93	13	14	93	109	42	
ueue Length 95th (ft)	12	185	26	61	285	248	138	
nternal Link Dist (ft)		1431			1189	1027		
urn Bay Length (ft)	400			400		600	250	
ase Capacity (vph)	307	2874	1552	430	3045	2625	990	
tarvation Cap Reductn	0	0	0	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	
leduced v/c Ratio	0.01	0.22	0.10	0.11	0.30	0.28	0.24	
tersection Summary								
rea Type:	Other							
ycle Length: 120 ctuated Cycle Length: 61. latural Cycle: 60								
Control Type: Actuated-Uno Maximum v/c Ratio: 0.72		l						
ntersection Signal Delay: 1 ntersection Capacity Utiliza analysis Period (min) 15		I			ntersectio CU Level		e B	

Splits and Phases: 1: Smith Road & Ten-Ten Road

Combined (2026) PM - Full Buildout

	1	-	\mathbf{r}	1	-	1	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	† †	7	۲	11	ሻሻ	1
Traffic Volume (vph)	4	1051	498	222	794	236	83
Future Volume (vph)	4	1051	498	222	794	236	83
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		0	400		600	250
Storage Lanes	1		1	1		1	1
Taper Length (ft)	100			100		100	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.97	1.00
Frt	1.00	0.55	0.850	1.00	0.95	0.91	0.850
Fit Protected	0.950		0.000	0.950		0.950	0.000
Satd. Flow (prot)	1770	2520	1583	1770	2520		1500
Flt Permitted	0.950	3539	1000		3539	3433	1583
		2520	1500	0.950	2520	0.950	4500
Satd. Flow (perm)	1770	3539	1583	1770	3539	3433	1583
Right Turn on Red			No				No
Satd. Flow (RTOR)							
Link Speed (mph)		45			45	35	
Link Distance (ft)		1511			1269	1107	
Travel Time (s)		22.9			19.2	21.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	4	1168	553	247	882	262	92
Shared Lane Traffic (%)							
Lane Group Flow (vph)	4	1168	553	247	882	262	92
Enter Blocked Intersection	No	No	No	No	No	No	No
Lane Alignment	R NA	Left	Right	Left	Left	Left	Right
Median Width(ft)		16	-		16	24	
Link Offset(ft)		0			0	0	
Crosswalk Width(ft)		16			16	16	
Two way Left Turn Lane						Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	9		9	15		15	9
Number of Detectors	1	2	0	1	2	1	1
Detector Template	Left	-	•		-		
Leading Detector (ft)	20	306	0	65	306	65	65
Trailing Detector (ft)	0	90	0	5	90	5	5
Detector 1 Position(ft)	0	90	0	5	90	5	5
Detector 1 Size(ft)	20	6	20	60	90 6	60	60
Detector 1 Type	Cl+Ex	CI+Ex					
Detector 1 Channel	UTEX	UTEX		CI+Ex	OI+EX	CI+Ex	CI+Ex
	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	00	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0 0	0.0	0.0	15.0	0.0	3.0	15.0
Detector 2 Position(ft)		300			300		
Detector 2 Size(ft)		6			6		
Detector 2 Type		CI+Ex			CI+Ex		
Detector 2 Channel							
Detector 2 Extend (s)		1.6			1.6		
Turn Type	Prot	NA	pm+ov	Prot	NA	Prot	pm+ov
· / · ·			•				· 4
Protected Phases	5	2	4	1	6	4	


06/26/2019

RKA

Combined (2026) PM - Full Buildout 06/28/2019

	5	-	\mathbf{r}	-	-	-	1
Lane Group	EBU	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	5	2	4	1	6	4	1
Switch Phase							
Minimum Initial (s)	7.0	12.0	7.0	7.0	12.0	7.0	7.0
Minimum Split (s)	14.0	17.8	12.4	11.8	17.5	12.4	11.8
Total Split (s)	15.0	52.0	49.0	19.0	56.0	49.0	19.0
Total Split (%)	12.5%	43.3%	40.8%	15.8%	46.7%	40.8%	15.8%
Maximum Green (s)	8.0	46.2	43.6	14.2	50.5	43.6	14.2
Yellow Time (s)	5.0	4.5	3.0	3.0	4.4	3.0	3.0
All-Red Time (s)	2.0	1.3	2.4	1.8	1.1	2.4	1.8
Lost Time Adjust (s)	-2.0	-0.8	-0.4	0.2	-0.5	-0.4	0.2
Total Lost Time (s)	-2.0 5.0	-0.8 5.0	-0.4 5.0	0.2 5.0	-0.5 5.0	-0.4 5.0	0.2 5.0
			5.0			5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead
Lead-Lag Optimize?	Yes	Yes	1.0	Yes	Yes		Yes
Vehicle Extension (s)	3.0	2.0	1.0	1.0	2.0	1.0	1.0
Recall Mode	None	Min	None	None	Min	None	None
Act Effct Green (s)	9.2	31.9	47.2	14.3	48.9	10.2	29.5
Actuated g/C Ratio	0.13	0.45	0.66	0.20	0.68	0.14	0.41
v/c Ratio	0.02	0.74	0.53	0.70	0.36	0.54	0.14
Control Delay	33.0	19.6	8.2	42.4	6.3	34.2	16.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.0	19.6	8.2	42.4	6.3	34.2	16.1
LOS	С	В	А	D	А	С	В
Approach Delay		15.9			14.2	29.5	
Approach LOS		В			В	С	
Queue Length 50th (ft)	2	212	106	101	61	55	24
Queue Length 95th (ft)	12	300	166	#264	178	106	66
Internal Link Dist (ft)		1431			1189	1027	
Turn Bay Length (ft)	400			400		600	250
Base Capacity (vph)	251	2365	1583	352	2610	2148	653
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	Õ	Ő	Ő	Õ	0	Ő	0
Storage Cap Reductn	Ő	Ő	0 0	Ő	Ő	0 0	Ő
Reduced v/c Ratio	0.02	0.49	0.35	0.70	0.34	0.12	0.14
	0.02	0.45	0.00	0.70	0.54	0.12	0.14
Intersection Summary Area Type:	Other					_	
Cycle Length: 120	Oulei						
	1.0						
Actuated Cycle Length: 7	0.1						
Natural Cycle: 55							
Control Type: Actuated-U	ncoordinated						
Maximum v/c Ratio: 0.74							
Intersection Signal Delay:				lı lı	ntersectio	n LOS: B	
Intersection Capacity Utili	zation 60.6%			10	CU Level	of Service	еB
Analysis Period (min) 15							
# 95th percentile volume	e exceeds ca	pacity, qu	leue may	be longe	er.		
Queue shown is maxir	num after two	cycles.	-	-			
		-					

Splits and Phases: 1: Smith Road & Ten-Ten Road

APPENDIX F

CAPACITY ANALYSIS CALCULATIONS NC 55 / NC 55 BYPASS

&

TECHNOLOGY DRIVE / E. WILLIAMS STREET

Intersection: 5: NC 55 & Technology Drive/E. Williams Street

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB	SB	SB
Directions Served	L	Т	R	L	Т	R	Ļ	Т	Т	R	L	L
Maximum Queue (ft)	82	56	103	275	1369	475	48	369	389	174	240	210
Average Queue (ft)	47	18	26	273	1359	475	17	206	224	8	154	127
95th Queue (ft)	84	53	70	279	1370	475	37	321	326	62	231	199
Link Distance (ft)			1592		1354			4075	4075			
Upstream Blk Time (%)					31							
Queuing Penalty (veh)					464							
Storage Bay Dist (ft)	263	263		175		375	400			75	800	800
Storage Blk Time (%)				91					33			
Queuing Penalty (veh)				975					3			

Intersection: 5: NC 55 & Technology Drive/E. Williams Street

Movement	SB	SB	SB	and the second	 1982
Directions Served	Т	Т	R		
Maximum Queue (ft)	183	203	200		
Average Queue (ft)	80	80	27		
95th Queue (ft)	152	166	94		
Link Distance (ft)	894	894			
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			100		
Storage Blk Time (%)		4			
Queuing Penalty (veh)		3			

	٦	-	7	-	-	*	-	+	1	1	¥	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	1	1	+	1	ሻ	††	7	ካካ	††	7
Traffic Volume (vph)	64	17	24	404	58	1010	19	1285	10	347	690	65
Future Volume (vph)	64	17	24	404	58	1010	19	1285	10	347	690	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.715			0.745			0.950			0.950		
Satd. Flow (perm)	1332	1863	1583	1388	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	71	19	27	449	64	1122	21	1428	11	386	767	72
Shared Lane Traffic (%)												
Lane Group Flow (vph)	71	19	27	449	64	1122	21	1428	11	386	767	72
Enter Blocked Intersection	No	No	No	No	No							
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex						
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5		8		5	2		1	6	
Permitted Phases	4		4	8		Free			2			6

Horton Park - Apex, NC 06/26/2019 Existing (2019) AM RKA

	۶	-	\mathbf{r}	-	-	×.	1	1	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	5	8	8		5	2	2	1	6	e
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Mir
Act Effct Green (s)	20.4	20.4	34.2	20.4	20.4	118.1	8.7	61.9	61.9	20.4	76.9	76.9
Actuated g/C Ratio	0.17	0.17	0.29	0.17	0.17	1.00	0.07	0.52	0.52	0.17	0.65	0.65
/c Ratio	0.31	0.06	0.06	1.87	0.20	0.71	0.16	0.77	0.01	0.65	0.33	0.07
Control Delay	52.8	48.9	37.5	437.3	49.7	2.7	61.3	25.5	13.5	52.5	9.7	8.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	52.8	48.9	37.5	437.3	49.7	2.7	61.3	25.5	13.5	52.5	9.7	8.1
LOS	D	D	D	F	D	А	Е	С	В	D	А	A
Approach Delay		48.7			123.9			26.0			23.1	
Approach LOS		D			F			С			С	
Queue Length 50th (ft)	47	12	15	~511	41	0	15	430	4	139	133	20
Queue Length 95th (ft)	115	43	48	#914	103	0	49	579	14	229	169	37
Internal Link Dist (ft)		1581			1372			4052			874	
Turn Bay Length (ft)	263			175		375	400		75	800		100
Base Capacity (vph)	230	322	547	240	322	1583	229	3317	1483	1039	3489	1560
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio	0.31	0.06	0.05	1.87	0.20	071	0.09	0.43	0.01	0.37	0.22	0.05
ntersection Summary												
Area Type:	Other							_				
Cycle Length: 185												
Actuated Cycle Length: 118	3.1											
Natural Cycle: 110												
Control Type: Actuated-Un	coordinated	1										
Maximum v/c Ratio: 1.87												
Intersection Signal Delay: 6	61.9			Ir	ntersectio	n LOS: F						
Intersection Capacity Utilization)			CU Level							
Analysis Period (min) 15				•	0.01							
 Volume exceeds capac 	itv. queue i	s theoreti	cally infin	ite.								
Queue shown is maximi												

Horton Park - Apex, NC 06/26/2019 Existing (2019) AM RKA

95th percentile volume exceeds capacity, queue may be longer, Queue shown is maximum after two cycles.

	۶	-+	\mathbf{r}	1	+	×.		1	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٣	1	1	٣	+	1	۲	††	7	ሻሻ	††	1
Traffic Volume (vph)	40	43	15	46	4	512	1	972	345	960	1467	45
Future Volume (vph)	40	43	15	46	4	512	1	972	345	960	1467	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.755			0.726			0.950			0.950		
Satd. Flow (perm)	1406	1863	1583	1352	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No		0000	No	0,00		No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	44	48	17	51	4	569	0.50	1080	383	1067	1630	50
Shared Lane Traffic (%)	77	40	17	51	-	505	1	1000	505	1007	1000	50
Lane Group Flow (vph)	44	48	17	51	4	569	1	1080	383	1067	1630	50
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Len	16	Tagin	Len	16	rugin	Cell	36	Tagin	Leit	36	Tight
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			Yes			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	1.00	1.00	1.00	9
Number of Detectors	10	2	1	1	2	1	13	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	20	0	20	20	0	20	20	0	20	20	0	20
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	-	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	ONLX	OULX	OFLA	ULL	OFLA	OFLA	OIL	OFLA	OFLA	OULX		OFLA
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0		0.0	0,0		0.0	0.0		0.0
Detector 2 Size(ft)		94			94 6			94 6			94 6	
Detector 2 Type		CI+Ex			-			-				
Detector 2 Channel		UTEX			CI+Ex			CI+Ex			CI+Ex	
		0.0			0.0						0.0	
Detector 2 Extend (s)	D	0.0		D	0.0	F	D 4	0.0	D	D 4	0.0	Da
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5	0	8	F	5	2	^	1	6	~
Permitted Phases	4		4	8		Free			2			6

06/26/2019

RKA

	٦	-	\rightarrow	-	-	*	-	†	1	1	÷.	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	(
Switch Phase												
Vinimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.(
Vinimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.:
ost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.
Fotal Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
_ead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
_ead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Ye
/ehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Mir
Act Effct Green (s)	11.1	11.1	21.2	11.0	11.0	106.6	8.5	48.0	48.0	35.7	85.4	85.4
Actuated g/C Ratio	0.10	0.10	0.20	0.10	0.10	1.00	0.08	0.45	0.45	0.33	0.80	0.8
/c Ratio	0.30	0.10	0.20	0.10	0.02	0.36	0.00	0.43	0.54	0.93	0.58	0.04
Control Delay	53.7	51.0	36.7	56.1	47.8	0.50	53.0	26.2	25.3	50.7	7.6	4.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fotal Delay	53.7	51.0	36.7	56.1	47.8	0.6	53.0	26.2	25.3	50.7	7.6	4.9
_OS	00.7 D	D	50.7 D	E	47.0 D	A A	55.0 D	20.2 C	20.0 C	50.7 D	A	4
Approach Delay	D	49.8	D	L	5.5	~	D	26.0	0	U	24.3	
Approach LOS		43.0 D			0.0 A			20.0 C			24.5 C	
Queue Length 50th (ft)	29	31	9	33	3	0	1	308	191	367	158	:
Queue Length 95th (ft)	72	75	32	81	14	0	7	414	304	#662	440	2
Internal Link Dist (ft)	12	1581	52	01	1372	U	'	4052	504	#00Z	874	20
Furn Bay Length (ft)	263	1001		175	1072	375	400	4032	75	800	074	100
Base Capacity (vph)	269	356	416	258	356	1583	254	3468	1551	1150	3539	158
Starvation Cap Reductn	205	0	-10	200	0	0	204	0400	0	0	0	100.
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio	0.16	0.13	0.04	0.20	0.01	0.36	0.00	0.31	0.25	0.93	0.46	0.0
	0.10	0.10	0.04	0.20	0,01	0.00	0.00	0.01	0,20	0.00	0.40	0.04
ntersection Summary Area Type:	Other		-				-		_			
Cycle Length: 185	0 1101											
Actuated Cycle Length: 106	6											
Natural Cycle: 80												
Control Type: Actuated-Un	coordinated	4										
Maximum v/c Ratio: 0.93	sooramatot	•										
ntersection Signal Delay: 2	3.0			Ir	ntersectio	108.0						
ntersection Capacity Utiliza					CU Level							
Analysis Period (min) 15		,		IV.								
4 95th percentile volume	exceeds os	anacity o		r he longe	۹r							
- Jour percentile volutile	CYPEGRA (S	apaoliy, qi	ucue IIId)	or onge	а.							

	≯	-	\rightarrow	-	-	*	1	1	1	1	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	1	<u>الا</u>	t	1	٦	- ++	7	ሻሻ	††	1
Traffic Volume (vph)	74	21	28	482	68	1178	23	1512	12	415	800	75
Future Volume (vph)	74	21	28	482	68	1178	23	1512	12	415	800	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950		01000	0.950		0.000	0.950			0.950		0.000
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.686	1000	1000	0.742	1000	1000	0.950	0000	1000	0.950	0000	1000
Satd. Flow (perm)	1278	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red	1210	1000	No	1002	1000	No	1110	0000	No	0400	0000	No
Satd. Flow (RTOR)			NU			NU			NU			NU
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
()	0.00		0.90	0.90		0.90	0.00	0.90	0.90	0.90	0.90	0.00
Peak Hour Factor	0.90	0.90			0.90		0.90					0.90
Adj. Flow (vph)	82	23	31	536	76	1309	26	1680	13	461	889	83
Shared Lane Traffic (%)	00	00	04	500	70	4000	00	4000	40	404	000	0.0
Lane Group Flow (vph)	82	23	31	536	76	1309	26	1680	13	461	889	83
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes						4.00	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	-	9	15		9	15	-	9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	C
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	C
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+E>
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	i omi	4	5	i citil	8	100	5	2	- onit	1	6	1 011
Permitted Phases	4	4	4	8	0	Free	5	2	2	1	0	(
remiller Fildses	4		4	0	_	Fiee			2			_

06/26/2019

RKA

Background (2024) AM 06/28/2019

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	÷	1
Lane Group	ÉBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Vinimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	20.6	20.6	34.9	20.6	20.6	147.2	9.2	84.8	84.8	26.4	105.4	105.4
Actuated g/C Ratio	0.14	0.14	0.24	0.14	0.14	1.00	0.06	0.58	0.58	0.18	0.72	0.72
v/c Ratio	0.46	0.09	0.08	2.79	0.29	0.83	0.24	0.82	0.01	0.75	0.35	0.07
Control Delay	74.7	66.0	53.0	839.7	67.4	5.1	79.7	29.0	13.4	67.4	8.4	6.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	74.7	66.0	53.0	839.7	67.4	5.1	79.7	29.0	13.4	67.4	8.4	6.7
LOS	E	E	D	F	Е	А	E	С	В	E	А	A
Approach Delay		68.3			240.4			29.6			27.3	
Approach LOS		E			F			С			С	
Queue Length 50th (ft)	72	19	23	~862	65	0	24	646	5	214	162	23
Queue Length 95th (ft)	164	59	66	#1406	148	0	69	837	16	341	204	41
Internal Link Dist (ft)		1581			1372			4052			874	
Turn Bay Length (ft)	263			175		375	400		75	800		100
Base Capacity (vph)	178	260	442	192	260	1583	185	2839	1270	838	3199	1430
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.46	0.09	0.07	2.79	0.29	0.83	0.14	0.59	0.01	0.55	0.28	0.06
Intersection Summary												
Area Type:	Other											
Cycle Length: 185												
Actuated Cycle Length: 147	7.2											
Natural Cycle: 140												
Control Type: Actuated-Und	coordinated	ł										
Maximum v/c Ratio: 2.79												
Intersection Signal Delay: 1	07.7			I	ntersectio	n LOS: F						
Intersection Capacity Utiliza	ation 99.5%	, D		10	CU Level	of Servic	e F					
Analysis Period (min) 15												
 Volume exceeds capac 			ically infin	ite.								
Queue shown is maximi	im offer hu											

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Background (2024) PM 06/28/2019

	٠	->	7	1	4		1	†	1	5	ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	+	1	7	+	1	7	††	1	ሻሻ	† †	7
Traffic Volume (vph)	46	51	17	75	5	599	1	1144	400	1148	1701	52
Future Volume (vph)	46	51	17	75	5	599	1	1144	400	1148	1701	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Fit Permitted	0.754			0.720			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1341	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	57	19	83	6	666	1	1271	444	1276	1890	58
Shared Lane Traffic (%)	•				·	••••	•					
Lane Group Flow (vph)	51	57	19	83	6	666	1	1271	444	1276	1890	58
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	16	, agin	Lon	16	rugite	Lon	36	ragine	2010	36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00
Turning Speed (mph)	15		9	15	1100	9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	Õ	Ő	Õ	Õ	Õ	Õ	Ő	Ő	Ő	Ő	Ő	Ő
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel		•••	••••				0	.	•·· =··	0 . <u>-</u>		•• <u> </u>
Detector 1 Extend (s)	0.0	0.0	0.0	0,0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94	0.0	0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel					OI. LA			UI. LA			OI. LA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	1 GIIII	4	5 pint-0v	i cilil	8	1166	5	2	- CIII	1	6	i çim
Permitted Phases	4	+	4	8	0	Free	5	2	2	1	0	6
r ennitteu r nases	4		4	U		TTEE			2		-	0

06/26/2019

RKA

Background (2024) PM 06/28/2019

	۶	-	7	1	-		1	1	1	1	_↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	e
Switch Phase												
Vinimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.(
Vinimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.
Fotal Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
_ead/Lag	0.0	0.0	Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	La
_ead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Ye
/ehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.
Fime Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Fime To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None			SU.U Min	Min		Min	SU. Mi
Act Effct Green (s)	14.4	14.4	28.0	14.4	14.4	127.3	None 8.5	61.8	61.8	None 35.7	95.3	
Actuated g/C Ratio	0.11	0.11	0.22	0.11	0.11	127.3	0.5 0.07	01.0	01.0	0.28	95.3 0.75	95.
/c Ratio	0.11	0.11	0.22	0.11	0.11	0.42	0.07	0.49		1.33	0.75	0.7
Control Delay	0.32 61.4	58.6	0.05 44.4	0.55 70.5	0.03 55.8	0.42	66.0	28.9	0.58 26.6	1.33	12.1	0.0
Queue Delay	01.4	0.0	44.4 0.0	70.5 0.0	55.8 0.0					190.4 0.0	0.0	5.
Fotal Delay	61.4	58.6	44.4	70.5	55.8	0.0	0.0	0.0	0.0			0.
LOS	01.4 E	56.6 E	44.4 D			0.8	66.0 E	28.9	26.6 C	190.4	12.1 B	5.
	E	⊑ 57.6	D	E	E 8.9	A	E	C	U	F		1
Approach Delay Approach LOS		57.6 E						28.3			82.6 F	
••	38	⊑ 43	12	64	A 4	0	1	C 431	255	~697		4
Queue Length 50th (ft)	36 94	43 100	41	04 140		0	1		255		485	1
Queue Length 95th (ft)	94	1581	41	140	21	0	8	541	375	#1101	634	29
nternal Link Dist (ft) Furn Bay Length (ft)	263	1901		475	1372	275	400	4052	75	000	874	40
	203	298	400	175	200	375	400	0477	75	800	2422	10
Base Capacity (vph)			433	214	298	1583	212	3177	1421	963	3433	153
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0 0.23	0	0	0	0	0	0	0	0	0	0	0.0
Reduced v/c Ratio	0.23	0_19	0.04	0.39	0.02	0.42	0.00	0.40	0.31	1.33	0.55	0.0
ntersection Summary	Other			_	_		_					_
Area Type:	Other											
Cycle Length: 185	7.0											
Actuated Cycle Length: 127	.3											
Natural Cycle: 90	م م م ما اس م اس ما											
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 1.33	· o c											
ntersection Signal Delay: 5					ntersectio							
ntersection Capacity Utiliza	ation 87.7%)		10	CU Level	of Service	θE					
Analysis Period (min) 15	., .											
Volume exceeds capac			cally infin	ite.								
Queue shown is maximu	um after two	o cycles.										

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Background (2026) AM 06/28/2019

	۶	-	\mathbf{r}	1	+	*	1	1	1	1	ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1	7	5	+	1	۳.	11	1	55	**	1
Traffic Volume (vph)	79	22	30	511	72	1249	24	1602	12	440	849	80
Future Volume (vph)	79	22	30	511	72	1249	24	1602	12	440	849	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.653			0.742			0.950			0.950		
Satd. Flow (perm)	1216	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	88	24	33	568	80	1388	27	1780	13	489	943	89
Shared Lane Traffic (%)			00		00		_ .		10	100	010	
Lane Group Flow (vph)	88	24	33	568	80	1388	27	1780	13	489	943	89
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2010	16	i ugint	Lon	16	ragine	Lon	36	rugin	Lon	36	rugine
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes						10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	Õ	Õ	0 0	Ő	0 0	Ő	Õ	Ő	õ	Ő	Ő	Ő
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	OI LA	01. 24		0 LA	OPER	OIL CA	UNLA	ONEX	OI! LA		ONEX	OILA
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94	0,0	0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			54 6			54 6			54 6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel					ULL			OFER			UPLA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	r CIIII	4	рш+оv 5	r.cum	NA 8	Fiee	5	2		1	6	- enn
Permitted Phases	A	4	5 4	0	0	Eroc	5	2	n	1	0	6
r ennilleu FildSes	4		4	8		Free			2	_		6

06/26/2019

RKA

Background (2026) AM 06/28/2019

	≯	-	\mathbf{r}	1	-		-	1	1	1	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18,6		13.7	113.7	113.7	33.7	113,5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	20.5	20.5	34.9	20.5	20.5	159.0	9.3	94.4	94.4	28.8	117.3	117.3
Actuated g/C Ratio	0.13	0.13	0.22	0.13	0.13	1.00	9.3 0.06	0.59	0.59	0.18	0.74	0.74
v/c Ratio	0.13	0.13	0.22	3.19	0.13	0.88	0.06	0.59	0.09	0.18	0.74	0.74
Control Delay	85.8	71.5	58.3	1023.2	0.33 74.0	0.00 7.3	86.0	0.85 31.0	13.4	73.8	0.30 8.0	6.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	85.8	71.5	58.3	1023 2	74.0	7.3	86.0	31.0	13.4	73.8	0.0 8.0	6.3
LOS	65.6 F	E	56.5 E	1023 Z F	740 E	7.3 A	00.0 F	31.0 C	13.4 B	73.0 E	0.0 A	0.3 A
Approach Delay	Г	77.2	E	Г	293.3	A	Г	31.6	D	Ľ	29.1	-
Approach LOS		11.2 E			293.3 F			31.0 C			29.1 C	
Queue Length 50th (ft)	88	23	28	~1037	г 77	0	28	764	5	252	175	24
• • • •	#187	23 61	20 70	~1037 #1489	156	0	20 71	935	16	362	220	24 44
Queue Length 95th (ft)	#10/		70	#1409		0	()		10	302	220 874	44
Internal Link Dist (ft)	262	1581		175	1372	375	400	4052	75	800	0/4	100
Turn Bay Length (ft)	263	240	400	175	240	375	400	0600			2045	100
Base Capacity (vph)	156	240	408	178	240	1583	171	2622	1173	774	3045	1362
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0.07
Reduced v/c Ratio	0.56	0,10	0.08	3 19	0.33	0.88	0.16	0.68	0,01	0.63	0.31	0.07
Intersection Summary Area Type:	Other			_	-		_			_		_
Cycle Length: 185	Other											
Actuated Cycle Length: 159	`											
Natural Cycle: 140	,											
	ممصاممهم											
Control Type: Actuated-Uno	coordinated	I										
Maximum v/c Ratio: 3.19	00 C				- i							
Intersection Signal Delay: 1					ntersectio							
Intersection Capacity Utiliza	ation 104.3	%		10	CU Level	or Servic	eG					
Analysis Period (min) 15												
 Volume exceeds capac 			cally infir	nite.								
Queue shown is maximu	and a flam have											

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{r}	-	-		1	1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	7	†	1	ሻ	† †	1	ኘኘ	† †	1
Traffic Volume (vph)	49	54	18	79	5	635	1	1212	424	1216	1804	55
Future Volume (vph)	49	54	18	79	5	635	1	1212	424	1216	1804	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.754			0.718			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1337	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	54	60	20	88	6	706	1	1347	471	1351	2004	61
Shared Lane Traffic (%)	•		20	00	Ŭ	,				1001	2001	01
Lane Group Flow (vph)	54	60	20	88	6	706	1	1347	471	1351	2004	61
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	16	ragin	Lon	16	rugine	2010	36	ragine	Lon	36	i ugitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			Yes			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	Ő	Ő	Ő	0	0	0	Ŭ Ŭ	Ő	Ő	Ő	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	OI'LA	OFEA	OFFER	OULT	OI . EX	OF LA	OULT	OI' LA	OI LA	OI . EX	OI' EX	01.24
Detector 1 Extend (s)	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	0.0 94	0.0	0.0	94	0,0	0.0	94	0.0
Detector 2 Size(ft)		54 6			54 6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OFEX			UFEX			OFEX				
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm		nm±ou/	Dom	NA	Eroc	Prot	NA	Dorm	Prot	NA	Perm
Protected Phases	reiiii	NA 4	pm+ov	Perm	NA 8	Free	Prot 5	NA 2	Perm	Prot 1	NA 6	- CHIII
Permitted Phases	А	4	5 4	0	0	Free	5	2	n	1	0	c
Fennilleu Fildses	4		4	8		Fiee	_	-	2			6

06/26/2019

RKA

Background (2026) PM 06/28/2019

	1	-+	\mathbf{i}	₹	-	. 🔨	1	†	1	1	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	0.0	0.0	Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	15.2	15.2	28.8	15.2	15.2	134.4	8.5	68.2	68.2	35.7	101.7	101.7
Actuated g/C Ratio	0.11	0.11	0.21	0.11	0.11	1.00	0.06	0.51	0.51	0.27	0.76	0.76
v/c Ratio	0.11	0.11	0.21	0.11	0.03	0.45	0.00	0.51	0.51	1.48	0.75	0.70
Control Delay	0.34 65.3	62.1	47.6	0.58 76.0	0.03 59.0	0.45	69.0	29.0	26.3	258.1	13.1	5.8
Queue Delay	0.0	02.1	47.0	0.0	0.0	0.9	0.0	29.0 0.0	20.3	238.1	0.0	0.0
Total Delay	65.3	62.1	47.6	76.0	59.0	0.0	69.0	29.0	26.3	258.1	13.1	5.8
LOS	05.3 E	02.1 E	47.0 D		59.0 E	0.9 A	69.0 E	29.0 C	20.3 C	200.1 F	B	5.0 A
Approach Delay	C	⊐ 61.2	U	E	⊑ 9.6	A	E	28.3	C	Г	ы 109.8	A
Approach LOS		E			9.0 A			20.3 C			109.0 F	
Queue Length 50th (ft)	43	48	14	73	5	0	1	480	281	~834	567	15
• • • • •	43 100	40 107	43	151	22	0	8	400 588	404	~034 #1223	720	31
Queue Length 95th (ft) Internal Link Dist (ft)	100	1581	43	101	1372	U	0	4052	404	#1223	874	31
.,	263	1001		175	13/2	375	400	400Z	75	800	0/4	100
Turn Bay Length (ft) Base Capacity (vph)	203	282	419	203	282			2020	1359	911	2250	
						1583	201	3038			3358	1502
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn Reduced v/c Ratio	0 0.25	0 0.21	0 0.05	0 0.43	0 0.02	0 0.45	0 0.00	0 0.44	0 0,35	0 1.48	0 0.60	0.04
Intersection Summary	0.20	0.21	0.00	0.40	0.02	040	0.00	0.44	0.00	1.40	0.00	0.04
Area Type:	Other											
Cycle Length: 185	Othor											
Actuated Cycle Length: 134	4 4											
Natural Cycle: 110												
Control Type: Actuated-Un	coordinated	1										
Maximum v/c Ratio: 1.48		•										
Intersection Signal Delay: 7	71.8			Ir	ntersectio							
Intersection Capacity Utilization		, ,			CU Level							
Analysis Period (min) 15		,		N								
 Volume exceeds capac 	ity auque i	e thooreti	cally infin	ito								
 Volume exceeds capac Queue shown is maximum 			cally infin	ite.								

06/26/2019 RKA

Lanes, Volumes, Timings 5: NC 55 & Technology Drive/E. Williams Street

Combined (2024) AM - Phase 1

06/28/2019

	۶	->	7	1	-	۰.	1	+	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	1	٣	†	1	7	††	1	ሻኘ	^	1
Traffic Volume (vph)	74	21	28	503	68	1188	23	1512	19	418	800	75
Future Volume (vph)	74	21	28	503	68	1188	23	1512	19	418	800	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.685			0.742			0.950			0.950		
Satd. Flow (perm)	1276	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0,90	0.90	0.90	0.90
Adj. Flow (vph)	82	23	31	559	76	1320	26	1680	21	464	889	83
Shared Lane Traffic (%)	02	20	01	000	10	1020	20	1000	21	707	000	00
Lane Group Flow (vph)	82	23	31	559	76	1320	26	1680	21	464	889	83
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	16	rugin	Leit	16	ragin	Lon	36	rugin	Leit	36	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			Yes			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	15	1.00	9	1.00	1.00	9	1.00	1.00	1.00
Number of Detectors	13	2	1	1	2	3 1	1	2	1	1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	20	0	20	20	001	20	20	001	20	20	001	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	0 20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex				
Detector 1 Channel	CITEX	OITEX	OFEX	UITEX	UITEX	UTEX	UITEX	UITEX	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0	_	-	0.0	_	_	0.0	-
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5		8		5	2		1	6	
Permitted Phases	4		4	8		Free			2			6

Horton Park - Apex, NC 06/26/2019 Combined (2024) AM - Phase 1 RKA

Lanes, Volumes, Timings
5: NC 55 & Technology Drive/E. Williams Street

Combined (2024) AM - Phase 1 06/28/2019

	≯	-	\mathbf{r}	1	-	*	1	†	1	- \	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	0.0	0.0	Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	20.5	20.5	34.9	20.5	20.5	147.6	9.2	85.1	85.1	26.5	105.9	105.9
Actuated g/C Ratio	0.14	0.14	0.24	0.14	0.14	1.00	0.06	0.58	0.58	0.18	0.72	0.72
v/c Ratio	0.14	0.14	0.24	2.91	0.14	0.83	0.00	0.88	0.00	0.16	0.72	0.72
Control Delay	75.1	66.1	53.2	896.4	67.7	5.3	79.9	29.0	13.5	67.6	0.33 8.4	6.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.0	0.0	07.0	0.4	0.0
Total Delay	75.1	66.1	53.2	896.4	67.7	5.3	79.9	29.0	13.5	67.6	0.0 8.4	0.0 6.7
LOS	75.1 E	60.1 E	55.2 D	090.4 F	67.7 E	5.5 A		29.0 C	13.5 B	07.0 E		6.7 A
Approach Delay	C	⊑ 68.6	U	Г	⊆ 262.5	А	E	29.6	D	E	A 27.4	A
Approach LOS		00.0 E			202.0 F			29.0 C			27.4 C	
Queue Length 50th (ft)	70	19	23	~909	г 66	0	24	648	0	016	162	00
,	72 164	59	23 66			0	24		8	216		23
Queue Length 95th (ft)	104		00	#1467	148	0	69	837	22	343	204	41
Internal Link Dist (ft)	263	1581		175	1372	275	400	4052	75	000	874	100
Turn Bay Length (ft)		250	440	175	250	375	400	2020	75	800	2406	100
Base Capacity (vph)	177	259	440	192	259	1583	184	2830	1266	835	3196	1429
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.46	0.09	0.07	2.91	0.29	0.83	0.14	0.59	0.02	0.56	0.28	0.06
Intersection Summary	Others		_				_					-
Area Type:	Other											
Cycle Length: 185	7.0											
Actuated Cycle Length: 14	d.b											
Natural Cycle: 150												
Control Type: Actuated-Un	coordinated	1										
Maximum v/c Ratio: 2.91												
Intersection Signal Delay: 1		.,			ntersectio		_					
Intersection Capacity Utilization	ation 100.8	%		10	CU Level	of Service	e G					
Analysis Period (min) 15												
 Volume exceeds capacity 			cally infin	ite.								
Queue shown is maxim	um after tw	o cycles.										

Lanes, Volumes, Timings 5: NC 55 & Technology Drive/E. Williams Street

Combined	(2024)	PM -	Phase 1
			00100100

06/28/2019

	٦	+	\mathbf{r}	4	+		-	1	1	5	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	+	7	7	+	1	1	† †	1	ሻሻ	††	1
Traffic Volume (vph)	46	51	17	88	5	606	1	1144	423	1159	1701	52
Future Volume (vph)	46	51	17	88	5	606	1	1144	423	1159	1701	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.754			0.720			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1341	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red	1100		No		1000	No		0000	No	0.00		No
Satd. Flow (RTOR)			110									110
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	57	19	98	6.50	673	0.50	1271	470	1288	1890	58
Shared Lane Traffic (%)	01	01	15	50	0	070	,	1271	110	1200	1000	50
Lane Group Flow (vph)	51	57	19	98	6	673	1	1271	470	1288	1890	58
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	16	ragin	Leit	16	Tagin	LĢI	36	rugni	Leit	36	Ngin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			Yes			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	1.00	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	1	13	2	1	1	2	1	13	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	20	0	20	20	001	20	20	001	20	20	0	20
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	UITEX	UTEX	UTEX	CITEX		UITEX	CITEX	GITEX	UITEX	UITEX	CITEX	UTEX
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
()					0.0					0.0		
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6 CH Ev			6 СЫ-Би			6 СШ Би				
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel											• •	
Detector 2 Extend (s)	_	0.0		_	0.0	_		0.0	-	-	0.0	-
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	-	4	5	-	8	_	5	2	_	1	6	
Permitted Phases	4		4	8		Free			2			6

Horton Park - Apex, NC 06/26/2019 Combined (2024) PM - Phase 1 RKA

Lanes, Volumes, Timings	
5: NC 55 & Technology Drive/E. Williams Stree	et

Combined	(2024)	PM -	Phase 1
			06/28/2019

	≯	-	\mathbf{r}	-	-		1	1	1	1	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	0.0	0.0	Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	15.9	15.9	29.4	15.9	15.9	130.0	8.5	63.2	63.2	35.6	96.6	96.6
Actuated g/C Ratio	0.12	0.12	0.23	0.12	0.12	1.00	0.07	0.49	0.49	0.27	0.74	0.74
v/c Ratio	0.12	0.12	0.25	0.12	0.12	0.43	0.07	0.49	0.49	1.37	0.74	0.04
Control Delay	60.6	58.2	44.5	72.8	55.8	0.43	66.0	29.5	28.1	209.6	12.8	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.5	0.0	209.0	0.0	0.2
Total Delay	60.6	58.2	44.5	72.8	55.8	0.0	66.0	29.5	28.1	209.6	12.8	6.2
LOS	00.0 E	50.2 E	44.J D	72.0 E	55.8 E	0.8 A	00.0 E	29.0 C	20.1 C	209.0 F	12.0 B	0.2 A
Approach Delay		57.1	U	E	10.3	A	C	29.1	U	Г	91.0	A
Approach LOS		57.1 E			10.3 B			29.1 C			91.0 F	
Queue Length 50th (ft)	39	44	13	79	5	0	1	447	287	~753	521	15
Queue Length 95th (ft)	94	100	41	161	21	0	8	541	405	#1113	634	29
Internal Link Dist (ft)	94	1581	41	101	1372	0	0	4052	405	#1113	874	23
	263	1001		175	1372	375	400	4002	75	800	0/4	100
Turn Bay Length (ft)	203	291	441	209	291	1583	400 207	3119	1395	941	3419	1529
Base Capacity (vph)												
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn Reduced v/c Ratio	0 0.23	0 0,20	0 0.04	0 0.47	0 0.02	0 0.43	0 0.00	0 0.41	0 0.34	0 1.37	0 0.55	0 04
Intersection Summary	0.23	0.20	0.04	0.47	0.02	0.45	0.00	0.41	0.04	1.07	0.00	0.04
Area Type:	Other											-
Cycle Length: 185	Other											
Actuated Cycle Length: 130	`											
Natural Cycle: 90	,											
Control Type: Actuated-Und	acardinated											
Maximum v/c Ratio: 1.37	Joorninglen											
	4.0			1.								
Intersection Signal Delay: 6					ntersectio							
Intersection Capacity Utiliza	auun 88.7%			PI I	CU Level	UI SERVIC	e E					
Analysis Period (min) 15				·								
 Volume exceeds capac 			ically infin	ite.								
Queue shown is maximu	um atter two	o cycles.										

5: NC 55 & Technology Drive/E. Williams Storebined (2024) AM - Phase 1 - with Impro	ovements
Horton Park - Apex, NC	06/28/2019

	1	-	\mathbf{r}	•	-	*	1	†	1	5	ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	1	7	7	•	7	7	^	1	ኘካ	††	7
Traffic Volume (vph)	74	21	28	503	68	1188	23	1512	19	418	800	75
Future Volume (vph)	74	21	28	503	68	1188	23	1512	19	418	800	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
FIt Permitted	0.700			0.742			0.950			0.950		
Satd. Flow (perm)	1304	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	82	23	31	559	76	1320	26	1680	21	464	889	83
Shared Lane Traffic (%)												
Lane Group Flow (vph)	82	23	31	559	76	1320	26	1680	21	464	889	83
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5		8		5	2		1	6	
Permitted Phases	4		4	8		Free			2			6

06/26/2019 RKA

5: NC 55 & Technology Drive/E. Williams Storebined (2024) AM - Phase 1 - with Improvements Horton Park - Apex, NC 06/28/2019

	۶	-+	\rightarrow	-	-+		\mathbf{n}	†	1	- \	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	63.0	63.0	15.0	63.0	63.0		15.0	94.0	94.0	28.0	107.0	107.0
Total Split (%)	34.1%	34.1%	8.1%	34.1%	34.1%		8.1%	50.8%	50.8%	15.1%	57.8%	57.8%
Maximum Green (s)	56.4	56.4	8.7	56.6	56.6		8.7	87.7	87.7	21.7	100.5	100.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	58.0	58.0	71.9	58.0	58.0	185.0	8.9	89.0	89.0	23.0	105.7	105.7
Actuated g/C Ratio	0.31	0.31	0.39	0.31	0.31	1.00	0.05	0.48	0.48	0.12	0.57	0.57
v/c Ratio	0.20	0.04	0.05	1.29	0.13	0.83	0.31	0.99	0.03	1.09	0.44	0.09
Control Delay	48.2	44.6	35.4	195.8	46.3	5.3	94.3	65.7	25.5	141.4	24.1	19.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.2	44.6	35.4	195.8	46.3	5.3	94.3	65.7	25.5	141.4	24.1	19.3
LOS	D	D	D	F	D	А	F	E	С	F	С	B
Approach Delay		44.7			61.4			65.6			61.7	
Approach LOS		D			E			Е			E	
Queue Length 50th (ft)	74	20	24	~861	67	0	31	1052	13	~324	327	46
Queue Length 95th (ft)	124	45	49	#1110	113	0	69	#1227	32	#446	389	78
Internal Link Dist (ft)		1581			1372			4052			874	
Turn Bay Length (ft)	263			175		375	400		75	800		100
Base Capacity (vph)	408	584	624	433	584	1583	95	1702	761	426	2022	904
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	C
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	C
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio	0.20	0.04	0.05	1.29	0.13	0.83	0.27	0.99	0.03	1.09	0.44	0.09
Intersection Summary												
Area Type:	Other											
Cycle Length: 185												
Actuated Cycle Length: 185												
Natural Cycle: 150												
Control Type: Actuated-Unc	oordinated	ł										
Maximum v/c Ratio: 1.29												
Intersection Signal Delay: 62	2.4			l	ntersectio	n LOS: E						
Intersection Capacity Utiliza		%			CU Level		G					
Analysis Period (min) 15												
~ Volume exceeds capaci	lv. queue i	s theoreti	cally infir	ite.								

5: NC 55 & Technology Drive/E. Williams Storebined (2024) AM - Phase 1 - with Improvements Horton Park - Apex, NC 06/28/2019

Splits and Phases: 5: NC 55 & Technology Drive/E. Williams Street

	٦		\mathbf{r}	1	+		1	1	1	5	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	•	1	7	+	1	7	44	7	ሻሻ	† †	1
Traffic Volume (vph)	46	51	17	88	5	606	1	1144	423	1159	1701	52
Future Volume (vph)	46	51	17	88	5	606	1	1144	423	1159	1701	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.754			0.712			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1326	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No

45

1452

22.0

0.90

6

6

No

Left

16

0

16

Yes

1.00

Thru

100

0

0

6

CI+Ex

0.0

0.0

0.0

94

6

CI+Ex

0.0

NA

8

2

0.90

673

673

No

Right

1.00

Right

20

0

0

20

0.0

0.0

0.0

Free

Free

CI+Ex

9

1

0.90

1

1

No

Left

1.00

15

1

Left

20

0

0

20

0.0

0.0

0.0

Prot

5

CI+Ex

55

4132

51.2

0.90

1271

1271

No

Left

36

0

16

1.00

Thru

100

0

0

6

CI+Ex

0.0

0.0

0.0

94

6

CI+Ex

0.0

NA

2

2

0.90

470

470

No

Right

1.00

Right

20

0

0

20

0.0

0.0

0.0

Perm

2

CI+Ex

9

1

0.90

1288

1288

No

Left

1.00

15

1

Left

20

0

0

20

0.0

0.0

0.0

Prot

1

CI+Ex

45

1661

25.2

0.90

57

57

No

Left

16

0

16

1.00

Thru

100

0

0

6

CI+Ex

0.0

0.0

0.0

94

6

0.0

NA

4

CI+Ex

2

0.90

19

19

No

Right

1.00

Right

20

0

0

20

0.0

0.0

0.0

pm+ov

5

4

CI+Ex

9

1

0.90

98

98

No

Left

1.00

15

1

Left

20

0

0

20

0.0

0.0

0.0

Perm

8

CI+Ex

0.90

51

51

No

Left

1.00

15

1

Left

20

0

0

20

0.0

0.0

0.0

CI+Ex

5: NC 55 & Technology Drive/F. Williams Storebined (2024) PM - Phase 1 - with Improvements

06/26/2019 RKA

Turn Type

Satd. Flow (RTOR)

Link Speed (mph)

Link Distance (ft)

Peak Hour Factor

Shared Lane Traffic (%) Lane Group Flow (vph)

Enter Blocked Intersection

Travel Time (s)

Adj. Flow (vph)

Lane Alignment

Median Width(ft)

Headway Factor

Crosswalk Width(ft)

Two way Left Turn Lane

Turning Speed (mph)

Number of Detectors

Leading Detector (ft)

Trailing Detector (ft)

Detector 1 Size(ft)

Detector 1 Channel Detector 1 Extend (s)

Detector 1 Queue (s)

Detector 1 Delay (s)

Detector 2 Size(ft)

Detector 2 Channel Detector 2 Extend (s)

Protected Phases

Permitted Phases

Detector 2 Type

Detector 2 Position(ft)

Detector 1 Type

Detector 1 Position(ft)

Detector Template

Link Offset(ft)

Synchro 10 Report Page 3

45

954

14.5

0.90

1890

1890

No

Left

36

0

16

1.00

Thru

100

0

0

6

0.0

0.0

0.0

94

6

CI+Ex

0.0

NA

6

CI+Ex

2

0.90

58

58

No

Right

1.00

Right

20

0

0

20

0.0

0.0

0.0

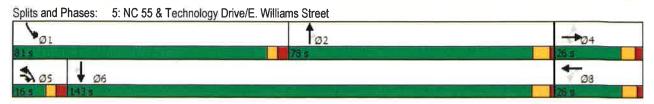
Perm

6

CI+Ex

9

1

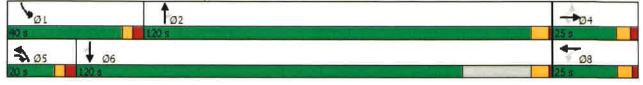

4

Perm

5: NC 55 & Technology Drive/E. Williams Storebined (2024) PM - Phase 1 - with Improvements Horton Park - Apex, NC 06/28/2019

	۶	-	\mathbf{r}	4	-		1	1	1	· 🖌	-	4
Lane Group	EBL	EBŤ	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	26.0	26.0	16.0	26.0	26.0		16.0	78.0	78.0	81.0	143.0	143.0
Total Split (%)	14.1%	14.1%	8.6%	14.1%	14.1%		8.6%	42.2%	42.2%	43.8%	77.3%	77.3%
Maximum Green (s)	19.4	19.4	9.7	19.6	19.6		9.7	71.7	71.7	74.7	136.5	136.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	0.0	0.0	Lead		0.0		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	17.5	17.5	30.9	17.5	17.5	173.3	8.4	70.2	70.2	70.5	138.2	138.2
Actuated g/C Ratio	0.10	0.10	0.18	0.10	0.10	1.00	0.05	0.41	0.41	0.41	0.80	0.80
v/c Ratio	0.36	0.30	0.07	0.74	0.03	0.43	0.01	0.89	0.73	0.92	0.67	0.05
Control Delay	83.0	79.4	63.1	108.4	73.6	0.8	85.0	57.4	53.2	60.9	10.3	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	83.0	79.4	63.1	108.4	73.6	0.8	85.0	57.4	53.2	60.9	10.3	5.0
LOS	F	Е	E	F	E	A	F	E	D	E	В	A
Approach Delay		78.4	-		15.0			56.3	-	_	30.3	
Approach LOS		Ē			В			E			С	
Queue Length 50th (ft)	58	64	19	116	- 7	0	1	757	485	748	546	15
Queue Length 95th (ft)	109	117	48	#196	24	0	8	873	645	864	633	29
Internal Link Dist (ft)		1581			1372	-	-	4052			874	
Turn Bay Length (ft)	263			175		375	400		75	800		100
Base Capacity (vph)	172	228	307	162	228	1583	113	1507	674	1522	2916	1304
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	C
Spillback Cap Reductn	Ő	Ō	0	Ō	0	0	Ō	0	Ő	0	Ő	C
Storage Cap Reductn	Ő	Ō	Ō	Ő	0 0	Ő	Ő	0	Ő	Ō	0	C
Reduced v/c Ratio	0.30	0.25	0.06	0.60	0.03	0.43	0.01	0.84	0.70	0.85	0.65	0.04
Intersection Summary												
Area Type:	Other											
Cycle Length: 185												
Actuated Cycle Length: 173	3.3											
Natural Cycle: 90												
Control Type: Actuated-Un	coordinated	ł										
Maximum v/c Ratio: 0.92												
Intersection Signal Delay: 3	37.0			Ir	ntersectio	1 LOS: D						
Intersection Capacity Utilization		, D			CU Level		ε					
Analysis Period (min) 15				•			_					
# 95th percentile volume	exceeds ca	apacity, or	Jeue may	, pe lonae	er.							

5: NC 55 & Technology Drive/E. Williams Storebined (2024) PM - Phase 1 - with Improvements Horton Park - Apex, NC 06/28/2019



	۶	-	*	-	+	×.	-	†	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	7	1	1	1	٦	††	1	ሻሻ	††	7
Traffic Volume (vph)	79	22	30	528	72	1249	24	1612	18	440	867	80
Future Volume (vph)	79	22	30	528	72	1249	24	1 612	18	440	867	80
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.652			0.742			0.950			0.950		
Satd. Flow (perm)	1215	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0,90	0.90	0.90	0.90
Adj. Flow (vph)	88	24	33	587	80	1388	27	1791	20	489	963	89
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	24	33	587	80	1388	27	1791	20	489	963	89
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5		8		5	2		1	6	
Permitted Phases	4		4	8		Free			2			6

06/26/2019 RKA

	•	-	\mathbf{i}	4	+	×	-	1	1	1	- + -	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.0
Minimum Split (s)	13.6	13.6	13,3	13,4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25,0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13,5%	10.8%	13,5%	13,5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Maximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5,0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead				Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2,0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0,0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Min
Act Effct Green (s)	20.5	20.5	34.9	20.5	20.5	159.5	9.3	94.8	94.8	28.8	117.8	117.8
Actuated g/C Ratio	0.13	0.13	0.22	0.13	0.13	1.00	0.06	0.59	0.59	0.18	0.74	0.74
v/c Ratio	0.57	0.10	0.10	3.32	0.33	0.88	0.26	0.85	0.02	0.79	0.37	0.08
Control Delay	86.3	71.6	58.5	1077.2	74.2	7.3	86.2	31.2	13.4	74.0	8.1	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	86.3	71.6	58.5	1077.2	74.2	7.3	86.2	31.2	13.4	74.0	8.1	6.2
LOS	F	E	E	F	E	А	F	С	В	Е	А	А
Approach Delay		77.5			315.5			31.8			28.9	
Approach LOS		E			F			С			С	
Queue Length 50th (ft)	88	23	28	~1086	78	0	28	775	8	254	180	24
Queue Length 95th (ft)	#187	61	70	#1540	156	0	71	947	22	362	226	44
Internal Link Dist (ft)		1581			1372			4052			874	
Turn Bay Length (ft)	263			175		375	400		75	800		100
Base Capacity (vph)	155	239	406	177	239	1583	170	2612	1168	771	3036	1358
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.10	0.08	3.32	0.33	0.88	0.16	0.69	0.02	0.63	0.32	0.07
Intersection Summary									_			
Area Type:	Other											
Cycle Length: 185												
Actuated Cycle Length: 159	9.5											
Natural Cycle: 150												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 3.32												
Intersection Signal Delay: 1					ntersectio							
Intersection Capacity Utiliza	ation 105.5°	%		0	CU Level	of Servic	e G					
Analysis Period (min) 15												
 Volume exceeds capac 			cally infir	iite.								
Queue shown is maximu	um after two	o cycles.										

	۶	-+	7	1	+	A.	1	1	1	1	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	*	٦	1	1	٦	† †	1	ሻሻ	^	1
Traffic Volume (vph)	49	54	18	89	5	635	1	1231	442	1216	1818	55
Future Volume (vph)	49	54	18	89	5	635	1	1231	442	1216	1818	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.754			0.718			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1337	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	54	60	20	99	6	706	1	1368	491	1351	2020	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	54	60	20	99	6	706	1	1368	491	1351	2020	61
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0	_	-	0.0	-	-	0.0	_
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	5	-	8	-	5	2	-	1	6	-
Permitted Phases	4		4	8		Free			2		_	6

06/26/2019 RKA

Combined (2026) PM - Full Buildout 06/28/2019

	٦	-	\rightarrow	1	-		-	- †	1	1	+	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	5	8	8		5	2	2	1	6	6
Switch Phase												
dinimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.(
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	25.0	25.0	20.0	25.0	25.0		20.0	120.0	120.0	40.0	120.0	120.0
Total Split (%)	13.5%	13.5%	10.8%	13.5%	13.5%		10.8%	64.9%	64.9%	21.6%	64.9%	64.9%
Aaximum Green (s)	18.4	18.4	13.7	18.6	18.6		13.7	113.7	113.7	33.7	113.5	113.
fellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
ost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.
Fotal Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
_ead/Lag	0.0		Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	Lag
.ead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Ye
/ehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
/inimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Mi
Act Effct Green (s)	16.4	16.4	30.0	16.4	16.4	138.1	8.5	70.8	70.8	35.7	104.2	104.2
Actuated g/C Ratio	0.12	0.12	0.22	0.12	0.12	1.00	0.06	0.51	0.51	0.26	0.75	0.7
/c Ratio	0.32	0.12	0.06	0.63	0.03	0.45	0.00	0.75	0.61	1.52	0.76	0.0
Control Delay	65.7	62.8	48.6	79.2	60.2	0.40	71.0	29.4	27.1	277.2	13.6	5.6
Queue Delay	0.0	02.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fotal Delay	65.7	62.8	48.6	79.2	60.2	0.0	71.0	29.4	27.1	277.2	13.6	5.8
LOS	60.7 E	02.0 E	40.0 D	, <u>5.2</u> E	60.2 E	0.5 A	, 1.0 E	20.4 C	27.1 C	277.2 F	10.0 B	
Approach Delay	L	61.8	D	L	10.9	~	L.	28.8	0	'	117.2	
Approach LOS		E			B			20.0 C			F	
Queue Length 50th (ft)	45	49	14	85	5	0	1	508	308	~884	613	10
Queue Length 95th (ft)	102	108	44	169	22	Ő	8	602	426	#1246	731	3
nternal Link Dist (ft)	102	1581	77	100	1372	U	Ŭ	4052	720	11240	874	0
Furn Bay Length (ft)	263	1001		175	1012	375	400	4002	75	800	0/4	10
Base Capacity (vph)	203	274	421	197	274	1583	195	2971	1329	886	3318	148
Starvation Cap Reductn	0	0		0	0	0	0	2371	0	000	0	140
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	1
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.22	0.05	0.50	0.02	0.45	0.01	0.46	0.37	1.52	0 61	0.0
	0.20	0.22	0.00	0.00	0.02	0.40	0.01	0.40	0.57	1.02	001	0.0
ntersection Summary Area Type:	Other		-						-		_	
Cycle Length: 185	Outor											
Actuated Cycle Length: 138	21											
Natural Cycle: 120												
Control Type: Actuated-Uni	coordinated											
Maximum v/c Ratio: 1.52	Continated	1										
ntersection Signal Delay: 7	75.0				ntersectio							
• • •												
ntersection Capacity Utiliza	auon 92.0%	,		P	CU Level		σΓ					
Analysis Period (min) 15	ity anous :	a theorem	ioolly infi-	ito								
 Volume exceeds capac Queue shown is maximum 			ically infin	nie.								
L'ILIQUO Chown le mavim	im atter two	o cycles.										

5: NC 55 & Technology Drive/E.	Willia Chandbiaeti (2026) AM - Full Buildout - with Improvements
Horton Park - Apex, NC		06/28/2019

	۶	-	\mathbf{r}	1	4		1	Ť	1	1	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٣	↑	7	1	+	1	1		1	ካካ	^	1
Traffic Volume (vph)	79	22	30	528	72	1249	24	1612	18	440	867	80
Future Volume (vph)	79	22	30	528	72	1249	24	1612	18	440	867	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.705			0.742			0.950			0.950		
Satd. Flow (perm)	1313	1863	1583	1382	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0,90	0.90	0.90	0.90
Adj. Flow (vph)	88	24	33	587	80	1388	27	1791	20	489	963	89
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	24	33	587	80	1388	27	1791	20	489	963	89
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16	Ŭ		16	Ŭ		36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	. 5		8		5	2		1	6	
Permitted Phases	4		4	8		Free			2			6

06/26/2019

RKA

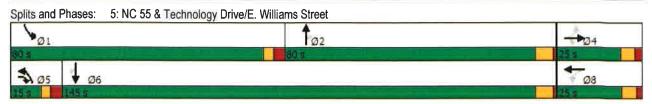
5: NC 55 & Technology Drive/E. Willia Cost Stribet	(2026) AM - Full Buildout - with Improvements
Horton Park - Apex, NC	06/28/2019

	۶.	-+	\rightarrow	-	-		1	1	1	- \	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4	5	8	8		5	2	2	1	6	1
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.(
Minimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.5
Total Split (s)	56.0	56.0	15.0	56.0	56.0		15.0	71.0	71.0	23.0	79.0	79.0
Total Split (%)	37.3%	37.3%	10.0%	37.3%	37.3%		10.0%	47.3%	47.3%	15.3%	52.7%	52.7%
Maximum Green (s)	49.4	49.4	8.7	49.6	49.6		8.7	64.7	64.7	16.7	72.5	72.5
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.3
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.2
Lost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.5
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		0.0		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.0
Minimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.4
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.0
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Mir
Act Effct Green (s)	51.0	51.0	64.8	51.0	51.0	150.0	8.8	66.0	66.0	18.0	77.9	77.9
Actuated g/C Ratio	0.34	0.34	0.43	0.34	0.34	1.00	0.06	0.44	0.44	0.12	0.52	0.52
v/c Ratio	0.20	0.04	0.05	1.25	0.13	0.88	0.00	1.15	0.03	1.19	0.52	0.02
Control Delay	36.6	33.5	24.9	170.9	34.9	7.5	73.8	114.0	24.1	161.6	25.8	20.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0
Total Delay	36.6	33.5	24.9	170.9	34.9	7.5	73.8	114.0	24.1	161.6	25.8	20.0
LOS	00.0 D	C	24.5 C	F	C	Â	70.0 E	F	24.1 C	101.0 F	20.0 C	20.0
Approach Delay	5	33.4	Ŭ		55.3	~	-	112.5	Ŭ		68.6	
Approach LOS		C			50.5 E			F			60.0 E	
Queue Length 50th (ft)	61	16	19	~714	54	0	26	~1081	11	~295	330	45
Queue Length 95th (ft)	108	38	40	#952	95	Ő	60	#1217	28	#411	404	80
Internal Link Dist (ft)	100	1581	40	#00L	1372	v	00	4052	20	<i>n</i> -+11	874	00
Turn Bay Length (ft)	263	1001		175	1072	375	400	7002	75	800	10	100
Base Capacity (vph)	446	633	696	469	633	1583	118	1557	696	411	1837	821
Starvation Cap Reductn	0	000	0.00	-00	000	0	0	0	0.00	0	0	(
Spillback Cap Reductn	Ő	Ő	Ő	Ő	Ő	0	0	0	Ő	Ő	0	(
Storage Cap Reductn	Õ	ŏ	Ő	ŏ	Ő	Ő	Ő	0	Ő	Ő	Ö	(
Reduced v/c Ratio	0.20	0.04	0.05	1.25	0.13	0,88	0.23	1.15	0.03	1.19	0.52	0.11
Intersection Summary												
	Other											
Cycle Length: 150												
Actuated Cycle Length: 150)											
Natural Cycle: 150												
Control Type: Actuated-Unc	coordinated	1										
Maximum v/c Ratio: 1.25												
Intersection Signal Delay: 7	7.2			lı.	ntersectio	h LOS: E						
Intersection Capacity Utiliza		%			CU Level							
Analysis Period (min) 15												
~ Volume exceeds capac	ity, queue i	s theoreti	cally infin	ite.								

5: NC 55 & Technology Drive/E. Willia CosnStrinedt (2026) AM - Full Buildout - with Improvements Horton Park - Apex, NC 06/28/2019

Splits and Phases: 5: NC 55 & Technology Drive/E. Williams Street

5: NC 55 & Technology Drive/E. Willia CosnStributed (2026) PM - Full Buildout - with Improve	ements
Horton Park - Apex, NC	6/28/2019


	۶	-	\mathbf{r}	1	-		1	1	1	1	↓ I	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	+	1	1	+	1	ň	**	7	ካካ	^	1
Traffic Volume (vph)	49	54	18	89	5	635	1	1231	442	1216	1818	55
Future Volume (vph)	49	54	18	89	5	635	1	1231	442	1216	1818	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	263		0	175		375	400		75	800		100
Storage Lanes	2		1	1		1	1		1	2		1
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	3433	3539	1583
Flt Permitted	0.754			0.689			0.950			0.950		
Satd. Flow (perm)	1405	1863	1583	1283	1863	1583	1770	3539	1583	3433	3539	1583
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		45			45			55			45	
Link Distance (ft)		1661			1452			4132			954	
Travel Time (s)		25.2			22.0			51.2			14.5	
Peak Hour Factor	0.90	0.90	0_90	0_90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	54	60	20	99	6	706	1	1368	491	1351	2020	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	54	60	20	99	6	706	1	1368	491	1351	2020	61
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			36			36	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane			5		Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	-	9	15	_	9	15	-	9	15	_	9
Number of Detectors	1	_ 2	1	1	2	1	1	_ 2	1	1	_ 2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0											
Detector 1 Extend (s)	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0						0.0				
Detector 2 Extend (s)	D	0.0		Dem	0.0	F	D 1	0.0	D	Dest	0.0	D
Turn Type Distanted Disease	Perm	NA	pm+ov	Perm	NA	Free	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	A	4	5	0	8	F	5	2	•	1	6	~
Permitted Phases	4		4	8		Free			2			6

06/26/2019 RKA

5: NC 55 & Technology Drive/E. Willia Osrothieeti (2026) PM - Full Buildout - with Impro	vements
Horton Park - Apex, NC	06/28/2019

	-	-	\mathbf{r}	1	-		1	1	1	1	+	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Detector Phase	4	4	5	8	8		5	2	2	1	6	
Switch Phase												
Vinimum Initial (s)	7.0	7.0	7.0	7.0	7.0		7.0	14.0	14.0	7.0	14.0	14.
Vinimum Split (s)	13.6	13.6	13.3	13.4	13.4		13.3	20.3	20.3	13.3	20.5	20.
Total Split (s)	25.0	25.0	15.0	25.0	25.0		15.0	80.0	80.0	80.0	145.0	145.
Total Split (%)	13.5%	13.5%	8.1%	13.5%	13.5%		8.1%	43.2%	43.2%	43.2%	78.4%	78.49
Maximum Green (s)	18.4	18.4	8.7	18.6	18.6		8.7	73.7	73.7	73.7	138.5	138.
Yellow Time (s)	4.2	4.2	3.0	4.6	4.6		3.0	5.1	5.1	3.0	5.3	5.
All-Red Time (s)	2.4	2.4	3.3	1.8	1.8		3.3	1.2	1.2	3.3	1.2	1.
_ost Time Adjust (s)	-1.6	-1.6	-1.3	-1.4	-1.4		-1.3	-1.3	-1.3	-1.3	-1.5	-1.
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
_ead/Lag	0.0	0.0	Lead	0.0	0.0		Lead	Lag	Lag	Lead	Lag	La
_ead-Lag Optimize?			Yes				Yes	Yes	Yes	Yes	Yes	Ye
/ehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0	6.0	6.0	3.0	6.0	6.
Vinimum Gap (s)	2.0	2.0	2.0	2.0	2.0		2.0	3.4	3.4	3.0	3.4	3.
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	30.0	30.0	0.0	30.0	30.
Recall Mode	None	None	None	None	None		None	Min	Min	None	Min	Mi
Act Effct Green (s)	17.8	17.8	31.1	17.8	17.8	181.1	8.3	74.6	74.6	73.8	145.5	145.
Actuated g/C Ratio	0.10	0.10	0.17	0.10	0.10	1.00	0.05	0.41	0.41	0.41	0.80	0.8
/c Ratio	0.39	0.33	0.07	0.79	0.03	0.45	0.03	0.41	0.41	0.41	0.80	0.0
Control Delay	85.8	0.33 81.6	64.1	118.3	0.03 74.4	0.45	85.0	64.2	0.75 54.9	69.4	11.1	4.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.9	0.0	04.2	0.0	09.4	0.0	4. 0.
Total Delay	85.8	81.6	64.1	118.3	74.4	0.0	85.0	64.2	54.9	69.4	11.1	4.
LOS	00.0 F	51.0 F	04.1 E	F	/4.4 E	0.9 A	65.0 F	04.2 E	04.9 D	09.4 E	B	4.
Approach Delay	1	80.7	L		15.8	A	Г	⊐ 61.8	D		33.9	
Approach LOS		50.7 F			10.0 B			01.0 E			55.9 C	
Queue Length 50th (ft)	62	68	20	118	7	0	1	⊾ 848	514	829	642	1
Queue Length 95th (ft)	114	122	49	#213	25	0	8	#998	674	#985	714	2
Internal Link Dist (ft)		1581	45	#215	1372	U	0	4052	074	#303	874	Z
Turn Bay Length (ft)	263	1001		175	1072	375	400	4002	75	800	014	10
Base Capacity (vph)	155	206	286	141	206	1583	400	1467	656	1423	2843	127
Starvation Cap Reductn	0	200	200	0	200	0	0	0	0.00	0	2043	127
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.35	0.29	0.07	0.70	0.03	0.45	0.01	0.93	0.75	0.95	0.71	0.0
ntersection Summary	0.00	0 20	0.01	0.10	0.00	0.10	0.01	0.00	0.10	0.00	0.11	0.0
Area Type:	Other											
Cycle Length: 185	Outor											
Actuated Cycle Length: 181	1											
Natural Cycle: 120												
Control Type: Actuated-Und	nordinated	1										
Vaximum v/c Ratio: 0.97		•										
ntersection Signal Delay: 4	0.0			Ir	ntersection							
ntersection Capacity Utiliza					CU Level		F					
Analysis Period (min) 15	AUUT 32.0/(,		R	JO LEVEL		21					
 95th percentile volume 	avcaade or	nacity o		he longe	r							
Queue shown is maximu			ieue may	be longe	а.							
	un auer iWi	a cycles										

06/26/2019 RKA 5: NC 55 & Technology Drive/E. Willia@snStriped (2026) PM - Full Buildout - with Improvements Horton Park - Apex, NC 06/28/2019

APPENDIX G

CAPACITY ANALYSIS CALCULATIONS SMITH ROAD

&

STEPHENSON ROAD

Intersection			_	_		
Int Delay, s/veh	3.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ન	4		۲	1
Traffic Vol, veh/h	72	11	5	626	100	41
Future Vol, veh/h	72	11	5	626	100	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-			-	0	100
Veh in Median Storage	. # -	0	0	-	õ	-
Grade, %		ŏ	Ő	-	Ő	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	80	12	6	696	111	46
	00	12	U	090	111	40
	Major1		Major2		Minor2	
Conflicting Flow All	702	0	•	0	526	354
Stage 1	-		2	-	354	-
Stage 2	-	-	7	-	172	-
Critical Hdwy	4.12	4	-	-	6.42	6.22
Critical Hdwy Stg 1	4		-	-	5.42	-
Critical Hdwy Stg 2		1.5		-	5.42	-
Follow-up Hdwy	2.218			-	3.518	3.318
Pot Cap-1 Maneuver	895			-	512	690
Stage 1				-	710	-
Stage 2	-	1.4	-	-	858	-
Platoon blocked, %		4	1			
Mov Cap-1 Maneuver	895	1.1	-		466	690
Mov Cap-2 Maneuver	500	1.12	-	2	466	-
Stage 1	1				646	-
Stage 2					858	-
Oldyo Z					000	-
Approach	EB		WB		SB	
HCM Control Delay, s	8.2	-	0		13.8	
HCM LOS	0.2		U		13.0 B	
					U	
						0.01
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		895	-	-	-	466
HCM Lane V/C Ratio		0.089	-			0.200
		0.4	0	1.1	1.00	15.1
HCM Control Delay (s)		9.4	0			
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh		9.4 A	A	-		C

Intersection	_	_					
Int Delay, s/veh	16.6						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્સ	4		1	1	
Traffic Vol, veh/h	56	11	13	195	491	80	
Future Vol, veh/h	56	11	13	195	491	80	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-			-	0	100	
Veh in Median Storage	.# -	0	0	_	0	-	
Grade, %		ŏ	ŏ	-	ŏ		
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	62	12	14	217	546	89	
	02	12	14	217	0-0	03	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	231	0	-	0	259	123	
Stage 1	-	-	-	-	123	-	
Stage 2	-			-	136	1	
Critical Hdwy	4.12			-	6.42	6.22	
Critical Hdwy Stg 1	-		1		5.42	-	
Critical Hdwy Stg 2	-			-	5.42		
Follow-up Hdwy	2.218			-		3.318	
Pot Cap-1 Maneuver	1337	1		-	730	928	
Stage 1	-			-	902	-	
Stage 2	-		1	-	890		
Platoon blocked, %			14				
Mov Cap-1 Maneuver	1337	1			696	928	
Mov Cap-2 Maneuver	-			1	696	-	
Stage 1	-			-	860	-	
Stage 2	-	-	-		890	-	
Approach	EB		WB		SB		
HCM Control Delay, s	6.5		0		23.9		
HCM LOS	0.0		5		C		
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1 SE	Ln2
Capacity (veh/h)		1337		-	-	696	928
HCM Lane V/C Ratio		0.047	_			0.784 0	.096
HCM Control Delay (s)		7.8	0		1.1	26.3	9.3
HCM Lane LOS		Α	Α		-	D	Α
HCM 95th %tile Q(veh)		0.1				7.7	0.3

Intersection							
Intersection Int Delay, s/veh	3.5			_			
Movement	EBL	срт	WBT		CDI	CDD	
Lane Configurations	CDL	EBT		WBR	SBL	SBR	_
Traffic Vol, veh/h	83	କ 13	1 + 6	726	1 16	1 48	
Future Vol, veh/h	83	13	6	726	116	40 48	
Conflicting Peds, #/hr		0	0	0	0	40	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	1100	None	otop		
Storage Length	_	110110		-	100	0	
Veh in Median Storag	e.# -	0	0	-	0	-	
Grade, %	 -	0	Ő	_	0		
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	92	14	7	807	129	53	
	ŶL			501	.20		
Major/Minor	Major1		Major2	-	Minor2		
Conflicting Flow All	814	0		0	609	411	
Stage 1	-		-	-	411	-	
Stage 2	-			-	198		
Critical Hdwy	4.12	-	18	- i	6.42	6.22	
Critical Hdwy Stg 1	+			-	5.42	-	
Critical Hdwy Stg 2				-	5.42	-	
Follow-up Hdwy	2.218	-		-		3.318	
Pot Cap-1 Maneuver	813	-		-	458	641	
Stage 1	-	-		-	669		
Stage 2	-			-	835	- e.	
Platoon blocked, %		-	ź	- 2			
Mov Cap-1 Maneuver				- 3	406	641	
Mov Cap-2 Maneuver		-	-	2 3	406	÷.	
Stage 1			•	- <u>1</u>	593		
Stage 2	-		Ŧ	3	835	1	
Approach	EB		WB		SB		
HCM Control Delay, s	8.6		0		15.9		
HCM LOS					С		
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1 SI	_
Capacity (veh/h)		813	1	4		406	641
HCM Lane V/C Ratio		0.113	-	÷			
HCM Control Delay (s	\$)	10	0	÷			11.1
HCM Lane LOS		A	A		1.1	С	В
HCM 95th %tile Q(vel	h)	0.4	-	*	1	1.3	0.3

nt Delay, s/veh 32.3 Movement EBL EBT WBT WBR SBL SBR Lane Configurations Image: Configurations Image: Configurations Image: Configurations Image: Configurations Image: Configurations Interpretended Configurations Image: Configurations Image: Configurations Image: Configurations Image: Configurations Image: Configurations Craftic Vol, veh/h 65 13 15 226 569 93 Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Free Free Free Free Stop RT Channelized - None - None - None Storage Length - - - 100 0 - - Grade, % - 0 0 - 0 - - - Peak Hour Factor 90 90 90 90 90 90 90 - - - - - - - - - -								
Movement EBL EBT WBT WBR SBL SBR ane Configurations 4 1 226 569 93 Future Vol, veh/h 65 13 15 226 569 93 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Storage Length - - 100 0 - 0 - Storage Length - - - 100 0 - 0 Storage Length - 0 0 - 0 - - Storage Length - 0 0 - 0 - - Storage Length - 0 0 - 0 - - Storage Length - 0 0 - 0 - - Stage 1 - - - 143 - - - - - - - <td>Intersection</td> <td>32.3</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	Intersection	32.3				-		
Lane Configurations Image: Configurations Image: Configurations Image: Configurations Fraffic Vol, veh/h 65 13 15 226 569 93 Sourgic Ling Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Free Stop 93 Storage Length - - 100 0 0 0 0 Storage Length - - - 100 0 - - Storage Length - - 0 0 - 0 - - Storage Length - - 0 0 - 0 - - Storage Length - - 0 0 - 0 - - Storage Length - - 0 0 - 0 - - - - - - - - - - - - - - - - - - -			FOT	MOT		0.01	000	
Traffic Vol, veh/h 65 13 15 226 569 93 Future Vol, veh/h 65 13 15 226 569 93 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop Storage Length - - 0 0 - 0 Storage Length - - 0 0 - 0 Storage Length - 0 0 - 0 - Pack Hour Factor 90 90 90 90 90 90 Pack Hour Factor 90 90 90 90 90 90 Stage 1 - - 143 - - 143		EBL			WBR			
Future Vol, veh/h 65 13 15 226 569 93 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 Sign Control Free Free Free Stop Stop Stop Athen Median Storage, # 0 0 - 0 - - Geh in Median Storage, # 0 0 - 0 - - Grade, % - 0 0 - 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 <		05			000			
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - - 0 0 - - Ale in Median Storage, # 0 0 - 0 - - Stade, % - 0 0 - 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Algor/Minor Major1 Major2 Minor2 - - 143 - Stage 1 - - - 143 -								
Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - - - 100 0 //eh in Median Storage, # - 0 0 - - Grade, % - 0 0 - - - Peak Hour Factor 90 90 90 90 90 90 90 eak Hour Factor 90 90 90 90 90 90 90 eak Hour Factor 90 90 90 90 90 90 90 eak Hour Factor 90 90 90 90 90 90 90 eak Hour Factor 72 14 17 251 632 103 Major/Minor Major1 Major2 Minor2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <								
RT Channelized - None - None - None Storage Length - - - 100 0 Yeh in Median Storage, # - 0 0 - 0 - Strade, % - 0 0 - 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 72 14 17 251 632 103 Major/Minor Major Major Minor2 Minor2 22 2 2 2 2 2 2 2 2 2 2 2 2 2						-		
Storage Length - - - 100 0 /eh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Vinor Major1 Major2 Minor2 Minor2 - - - Conflicting Flow All 268 0 - 0 301 143 - Stage 1 - - - 143 - - - 542 - Critical Hdwy 4.12 - - 6.42 6.22 -						•		
/eh in Median Storage, # 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Vimit Flow 72 14 17 251 632 103 Major/Minor Major1 Major2 Minor2		-	None	-				
Grade, % - 0 0 - 0 - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 Wint Flow 72 14 17 251 632 103 Major/Minor Major1 Major2 Minor2		- 	-	-				
Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 </td <td></td> <td>e,# -</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		e,# -		-				
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 103 Major/Minor Major1 Major2 Minor2 Minor2 Conflicting Flow All 268 0 - 0 301 143 Stage 1 - - - 143 - Stage 2 - - - 143 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 3.518 3.318 Pot Cap-1 Maneuver 1296 - 652 905 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-						
Wint Flow 72 14 17 251 632 103 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 268 0 - 0 301 143 Stage 1 - - - 143 - Stage 2 - - - 143 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 5.42 - Chical Hdwy Stg 2 - - - 3.518 3.318 Pot Cap-1 Maneuver 1296 - 652 905 Mot Cap-1 Maneuver 1296 -<								
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 268 0 - 0 301 143 Stage 1 - - - 143 - Stage 2 - - - 158 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Collow-up Hdwy 2.218 - - 5.42 - Follow-up Hdwy 2.218 - - 6.91 905 Stage 1 - - 884 - Stage 2 - - 871 - Platoon blocked, % - - 652 905 Mov Cap-1 Maneuver 1296 - 652 905 Mov Cap-2 Maneuver - - 652 905 Mov Cap-2 Maneuver - 834 - Stage 1 - - - 871 - - <								
Conflicting Flow All 268 0 - 0 301 143 Stage 1 - - - 143 - Stage 2 - - - 143 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Collow-up Hdwy 2.218 - - 5.42 - Follow-up Hdwy 2.218 - - 6.91 905 Stage 1 - - - 691 905 Stage 2 - - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - - 652 905 Viov Cap-2 Maneuver 1296 - - 834 - Stage 2 - - 834 - - Stage 2 - - - 871 - Approach EB WB SB - - <td>Mvmt Flow</td> <td>72</td> <td>14</td> <td>17</td> <td>251</td> <td>632</td> <td>103</td> <td></td>	Mvmt Flow	72	14	17	251	632	103	
Conflicting Flow All 268 0 - 0 301 143 Stage 1 - - - 143 - Stage 2 - - - 143 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Contical Hdwy Stg 2 - - - 5.42 - Contical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Contical Hdwy Stg 2 - - - 5.42 - Contical Hdwy Stg 2 - - - 5.42 - Control Hdwy Stg 2 - - - 8.41 - Stage 1 - - - 884 - Stage 2 - - 652 905 Viov Cap-2 Maneuver 1296 - - 871 - Approach EB WB SB	Major/Minor	Maior1		Maior?		Minor?		
Stage 1 - - 143 - Stage 2 - - 158 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 3.518 3.318 Pot Cap-1 Maneuver 1296 - - 871 - Platoon blocked, % - - - 534 - Stage 1 - - - 652 905 HCM Control Delay, s 6.6 0 47.1 -						_	143	
Stage 2 - - 158 - Critical Hdwy 4.12 - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 6.91 905 Stage 1 - - 884 - - Stage 1 - - 652 905 - Mov Cap-2 Maneuver 1296 - 652 905 HCM Control Delay, s 6.6 0 47.1 - CAPP Control Delay, s 6.6 0 47.1 - CMIOS<		200	U					
Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Critical Hdwy Stg 1 - - 5.42 - Clow Cap-1 Maneuver 1296 - - 871 - Platoon blocked, % - - - 834 - Mov Cap-1 Maneuver 1296 - - 871 - Stage 2 - - - 871 - Approach EB WB SB <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Follow-up Hdwy 2.218 - - 6.91 905 Stage 1 - - - 884 - Stage 1 - - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - - 652 905 Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - - 834 - Stage 1 - - - 834 - Stage 2 - - 834 - - Stage 2 - - 871 - - Approach EB WB SB - - HCM Control Delay, s 6.6 0 47.1 - HCM LOS E E E - 652 905 <								
Critical Hdwy Stg 2 - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1296 - - 691 905 Stage 1 - - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - - 652 905 Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - - 834 - Stage 1 - - - 834 - Stage 2 - - - 871 - Approach EB WB SB - HCM Control Delay, s 6.6 0 47.1 - HCM LOS E - - 652 905 HCM LOS E E E E E - Minor Lane/Major Mvmt EBL EBL WBT WBR SBLn1 SBLn2 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1296 - - 691 905 Stage 1 - - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - - 871 - Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - - 652 - Stage 1 - - - 834 - Stage 2 - - - 871 - Approach EB WB SB - HCM Control Delay, s 6.6 0 47.1 HCM LOS E E E E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control								
Pot Cap-1 Maneuver 1296 - - 691 905 Stage 1 - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - 652 905 Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - 652 - - Stage 1 - - - 652 - - Stage 2 - - - 834 - - Stage 2 - - - 871 - - Approach EB WB SB - - - 871 - AcM Control Delay, s 6.6 0 47.1 - - - 652 905 Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 - - 652 905 Capacity (veh/h) 1296 - - 652 905 - - 0.97 0.1							3 318	
Stage 1 - - - 884 - Stage 2 - - - 871 - Platoon blocked, % - - - 652 905 Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - 652 - - Stage 1 - - - 834 - Stage 2 - - - 871 - Approach EB WB SB - HCM Control Delay, s 6.6 0 47.1 HCM LOS E E E E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A			1					
Stage 2 - - - 871 - Platoon blocked, % - - - 652 905 Mov Cap-1 Maneuver 1296 - - 652 - Mov Cap-2 Maneuver - - - 652 - Stage 1 - - - 834 - Stage 2 - - - 871 - Approach EB WB SB - HCM Control Delay, s 6.6 0 47.1 HCM LOS E E E - Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		1200						
Platoon blocked, % - - - Mov Cap-1 Maneuver 1296 - 652 905 Mov Cap-2 Maneuver - - 652 - Stage 1 - - 834 - Stage 2 - - 871 - Approach EB WB SB HCM Control Delay, s 6.6 0 47.1 HCM LOS E E Minor Lane/Major Mvmt EBL EBT WBT VBR SBLn1 SBLn2 Capacity (veh/h) 1296 - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		_	1					
Mov Cap-1 Maneuver 1296 - - 652 905 Mov Cap-2 Maneuver - - 652 - Stage 1 - - 834 - Stage 2 - - 871 - Approach EB WB SB - HCM Control Delay, s 6.6 0 47.1 HCM LOS E - - 652 905 Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A				1		571		
Mov Cap-2 Maneuver - - 652 - Stage 1 - - 834 - Stage 2 - - 871 - Approach EB WB SB HCM Control Delay, s 6.6 0 47.1 HCM LOS E E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		1296	-			652	905	
Stage 1 - - - 834 - Stage 2 - - 871 - Approach EB WB SB HCM Control Delay, s 6.6 0 47.1 HCM LOS EB EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A								
Stage 2 - - 871 - Approach EB WB SB HCM Control Delay, s 6.6 0 47.1 HCM LOS E E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		_		- 5			-	
Approach EB WB SB HCM Control Delay, s 6.6 0 47.1 HCM LOS E E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		_		- 1 <u>0</u>			-	
HCM Control Delay, s 6.6 0 47.1 HCM LOS E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A	Oldyo Z	-	2			071	-	
HCM Control Delay, s 6.6 0 47.1 HCM LOS E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A	Approach	EB		WB		SB		
HCM LOS E Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 SBLn2 Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A	HCM Control Delay, s	6.6		0		47.1		
Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - - 53.3 9.5 HCM Lane LOS A A - F A	HCM LOS							
Capacity (veh/h) 1296 - - 652 905 HCM Lane V/C Ratio 0.056 - - 0.97 0.114 HCM Control Delay (s) 7.9 0 - - 53.3 9.5 HCM Lane LOS A A - F A								
HCM Lane V/C Ratio 0.056 0.97 0.114 HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A		nt		EBT	WBT	WBR		
HCM Control Delay (s) 7.9 0 - 53.3 9.5 HCM Lane LOS A A - F A								
HCM Lane LOS A A + F A					7			
		5)						
HCM 95th %tile Q(veh) 0.2 14.2 0.4				А	*	11.5		
	HCM 95th %tile Q(vel	ר)	0.2	-	3	3	14.2	0.4

Intersection							
Int Delay, s/veh	3.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	4		٦	1	
Traffic Vol, veh/h	89	14	6	770	123	50	
Future Vol, veh/h	89	14	6	770	123	50	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	100	0	
Veh in Median Storag	e,# -	0	0	-	0		
Grade, %		Õ	Õ	_	Õ	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	99	16	7	856	137	56	
			·	500	,		
Major/Minor	Major1	N	Major2		Minor2		
Conflicting Flow All	863	0	-	0	649	435	
Stage 1		9	1	-	435	-	
Stage 2			1	-	214		
Critical Hdwy	4.12	4	1.2	-	6.42	6.22	
Critical Hdwy Stg 1				-	5.42	-	
Critical Hdwy Stg 2				-	5.42		
Follow-up Hdwy	2.218			÷ .	3.518	3.318	
Pot Cap-1 Maneuver	779	-		-	434	621	
Stage 1	1.0		-	-	653	-	
Stage 2			-	-	822	1.4	
Platoon blocked, %		4	-				
Mov Cap-1 Maneuver	779	-			378	621	
Mov Cap-2 Maneuver					378	-	
Stage 1					569	-	
Stage 2	-	4	.+		822	-	
J							
Approach	EB		WB		SB		
HCM Control Delay, s			0		17.4		
HCM LOS			Ŭ		С		
					2		
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SBLn1 SI	BLn2
Capacity (veh/h)		779				378	621
HCM Lane V/C Ratio		0.127	-	-			
HCM Control Delay (s	5)	10.3	0		1.12	19.8	11.4
HCM Lane LOS	-,	B	Ă			•	В
HCM 95th %tile Q(vel	h)	0.4	-	1		1.6	0.3
	,	v r				1.0	0.0

Intersection Int Delay, s/veh	47.4			-				
		FOT	WDT		0.01	000		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	69	4 14	₽ 16	240	-	98		
Traffic Vol, veh/h Future Vol, veh/h	69 69	14 14	16	240 240	604 604	98 98		
Conflicting Peds, #/hr	09	14	0 0	240	604 0	98 0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	- 1100	None	-	None	- Stop	None		
Storage Length	-	NULLE	-	NUNC -	100	0		
Veh in Median Storage	. # -	0	0	_	0	-		
Grade, %	γ, π - -	0	0	-	0	-		
Peak Hour Factor	90	90	90	90	90	90		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	77	16	18	267	671	109		
		10	10	201	011			
N A - i/N Ai	Mate of							
	Major1		Major2		Minor2	450		
Conflicting Flow All	285	0	1	0	322	152		
Stage 1	-	-		-	152			
Stage 2	- 4.12	*	1	-	170	6.00		
Critical Hdwy Critical Hdwy Stg 1	4.1Z	-	-	-	6.42 5.42	6.22		
Critical Hdwy Stg 2	-	-		(5.42 5.42	•		
Follow-up Hdwy	- 2.218	-	÷	-	3.518	3 319		
Pot Cap-1 Maneuver	1277		- 1	-	672	894		
Stage 1	1211				876	094		
Stage 2	-		- 3	1	860	2		
Platoon blocked, %	-		- 4		000			
Mov Cap-1 Maneuver	1277		- 2	÷	~ 631	894		
Mov Cap-2 Maneuver	-				~ 631	034		
Stage 1	_		11		823	1.2		
Stage 2	_			- ÷	860	4		
00002					000			
Approach	EB		WB		SB			
Approach	6.6		_		69.5			
HCM Control Delay, s HCM LOS	0.0		0		69.5 F			
					Г			
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1 S		
Capacity (veh/h)		1277			÷	631	894	
HCM Lane V/C Ratio		0.06	-	+	11.3	1.064 (
HCM Control Delay (s)	8	0			79.2	9.6	
HCM Lane LOS		Α	Α	÷	11.8	F	Α	
HCM 95th %tile Q(veh)	0.2	-	÷		18.6	0.4	
Notes								
~: Volume exceeds ca				ceeds 3		-	tation Not Defi	

Intersection						
Int Delay, s/veh	8.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	1		٦	1
Traffic Vol, veh/h	238	24	10	726	116	98
Future Vol, veh/h	238	24	10	726	116	98
Conflicting Peds, #/hr	200	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	1100	None	0.00	None
Storage Length	_	-		-	100	0
Veh in Median Storage,		0	0	_	0	-
Grade, %	,π - _	Ő	0	_	0	-
Peak Hour Factor	90	90	90	90	90	- 90
Heavy Vehicles, %	90 2	90 2	90 2	90 2	90 2	90 2
Mvmt Flow	264	2 27	11	2 807	2 129	2 109
	204	21	11	007	129	109
Major/Minor N	laia-1		Anie-2		Minor2	
Conflicting Flow All	/lajor1 818	0	Major2	0	970	415
	010	U			415	
Stage 1	-	-		-		1.5
Stage 2	-			-	555	6 00
Critical Hdwy	4.12		-	-	6.42	6.22
Critical Hdwy Stg 1	-		-		5.42	
Critical Hdwy Stg 2	-	-	- 1	-	5.42	-
	2.218		1	-		3.318
Pot Cap-1 Maneuver	810	-	-	•	281	637
Stage 1	-		-	-	666	-
Stage 2	-			-	575	-
Platoon blocked, %		÷				
Mov Cap-1 Maneuver	810			-	188	637
Mov Cap-2 Maneuver	-	÷		-	188	-
Stage 1	-	-	7	-	446	-
Stage 2	-	-	~	1.5	575	-
Approach	EB		WB		SB	
HCM Control Delay, s	10.5		0		36.8	
HCM LOS					Е	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		810	-	-	-	188
oupdoily (voining		0.326	-		-	0.686
HCM Lane V/C Ratio						
HCM Lane V/C Ratio			0		-	57.9
		11.6 B	0 A	1	-	57.9 F

Intersection	_		-	_				_	
Int Delay, s/veh	114.9								
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		र्भ	4		٦	7			
Traffic Vol, veh/h	164	19	27	226	569	263			
Future Vol, veh/h	164	19	27	226	569	263			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	-	-	-	100	0			
Veh in Median Storage	e,# -	0	0	-	0	-			
Grade, %	-	0	0	-	0	-			
Peak Hour Factor	90	90	90	90	90	90			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	182	21	30	251	632	292			
Major/Minor	Major1	1	Major2		Vinor2				
Conflicting Flow All	281	0	-	0	541	156			
Stage 1	-	-	-	-	156				
Stage 2	-	÷.	-	•	385	-			
Critical Hdwy	4.12			-	6.42	6.22			
Critical Hdwy Stg 1	-	-			5.42	-			
Critical Hdwy Stg 2	-				5.42				
Follow-up Hdwy	2.218			-		3.318			
Pot Cap-1 Maneuver	1282	*	-	-	~ 502	890			
Stage 1	-	-	-	•	872	-			
Stage 2	-		Ť	•	688	-			
Platoon blocked, %		i fe		3					
Mov Cap-1 Maneuver		-		1	~ 430	890			
Mov Cap-2 Maneuver	-	-		÷	~ 430	-			
Stage 1	-		1	1	746	-			
Stage 2	-		11	*	688	-			
Approach	EB		WB	_	SB			 	
HCM Control Delay, s	7.4		0		173.5				
HCM LOS					F				
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1 S	BLn2		
Capacity (veh/h)		1282		-		430	890		
HCM Lane V/C Ratio		0.142		1.1.2					
HCM Control Delay (s	3)	8.3			-		11		
HCM Lane LOS	7	A	Ă			F	В		
HCM 95th %tile Q(vel	h)	0.5	-		-	32.6	1.4		
	'								
Notes									

Intersection						
Int Delay, s/veh	8.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۲	1	Ĥ		۲	1
Traffic Vol, veh/h	238	24	10	726	116	98
Future Vol, veh/h	238	24	10	726	116	98
Conflicting Peds, #/hr	200	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	100			-	100	0
Veh in Median Storage		0	0	-	0	-
Grade, %		Ő	Ő	-	Ő	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	264	27	11	807	129	109
	204	21		001	120	100
	Major1		Major2		Vinor2	445
Conflicting Flow All	818	0	- 2	0	970 415	415
Stage 1	1	-	-	-		×.
Stage 2	4.12	1.1	-	-	555	6.22
Critical Hdwy		-	-	-	6.42	0.22
Critical Hdwy Stg 1			-	1.1	5.42	
Critical Hdwy Stg 2	0.040			•	5.42	2 240
Follow-up Hdwy	2.218	1		•		3.318
Pot Cap-1 Maneuver	810	1	-		281	637
Stage 1				-	666	3
Stage 2	-		÷		575	-
Platoon blocked, %	040	1	-	1.1	400	007
Mov Cap-1 Maneuver				1.5	189	637
Mov Cap-2 Maneuver				1.5	189	-
Stage 1	•	÷			449	-
Stage 2	-	•		1.1	575	-
Approach	EB		WB		SB	
HCM Control Delay, s	10.5		0		36.4	
HCM LOS					E	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1 SB
Capacity (veh/h)		810				189
HCM Lane V/C Ratio		0.326		à là		
HCM Control Delay (s	5)	11.6	-		-	57.2 1
HCM Lane LOS		В	1.4			F
HCM 95th %tile Q(vel	h)	1.4		S - 2		4.1

tersection								
t Delay, s/veh	114.2							
ovement	EBL	EBT	WBT	WBR	SBL	SBR		
e Configurations	۲	•	f.		٩	1		
fic Vol, veh/h	164	19	27	226	569	263		
e Vol, veh/h	164	19	27	226	569	263		
flicting Peds, #/hr	0	0	0	0	0	0		
Control	Free	Free	Free	Free	Stop	Stop		
Channelized	-	None	-	None		None		
age Length	100	-		-	100	0		
in Median Storag		0	0	_	0	-		
le, %	-	õ	Ő	-	Ő	-		
Hour Factor	90	90	90	90	90	90		
y Vehicles, %	2	2	2	2	2	2		
t Flow	182	21	30	251	632	292		
	102	£ 1	00	201	002	202		
	Major1		Major2	1	Minor2			
licting Flow All	281	0	÷	0	541	156		
Stage 1	-	-	-	-	156			
Stage 2	-		-	-	385	-		
al Hdwy	4.12	+		-	6.42	6.22		
al Hdwy Stg 1	-			-	5.42			
al Hdwy Stg 2	-				5.42	1.41		
v-up Hdwy	2.218			-	3.518	3.318		
ap-1 Maneuver	1282	. 4	-	-	~ 502	890		
Stage 1	-			-	872			
Stage 2	-	÷	-	-	688	-		
on blocked, %								
Cap-1 Maneuver	1282	4			~ 431	890		
Cap-2 Maneuver		4		4	~ 431	-		
Stage 1	-		-		748	-		
Stage 2	-	Ŧ	•	÷	688	-		
bach	EB		WB		SB			
				-				
Control Delay, s	7.4		0		172.4			
LOS					F			
or Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1 S	BLn2	
acity (veh/h)		1282		i.	-	431	890	
Lane V/C Ratio		0.142		1	-	1.467		
Control Delay (s	;)	8.3		- 4	-	247	11	
Lane LOS		A	-	1.1	-	F	В	
95th %tile Q(vel	ר)	0.5	-		-	32.5	1.4	
V	,							
ume exceeds ca			elay exc				utation Not Defined	ume in platoor

ntersection											
nt Delay, s/veh	4.2										
lovement	EBL	EBT	WBT	WBR	SBL	SBR					
ane Configurations		र्भ	1		٦	۲					
raffic Vol, veh/h	106	- 33	15	770	123	56					
uture Vol, veh/h	106	33	15	770	123	56					
Conflicting Peds, #/hr	0	0	0	0	0	0					
Sign Control	Free	Free	Free	Free	Stop	Stop					
RT Channelized	-	None	-	None	-	None					
Storage Length	-	-		-	100	0					
eh in Median Storage	e,# -	0	0		0						
Grade, %	-	0	0	-	0	-					
eak Hour Factor	90	90	90	90	90	90					
leavy Vehicles, %	2	2	2	2	2	2					
lvmt Flow	118	37	17	856	137	62					
/lajor/Minor	Major1	N	/lajor2	,	Minor2						
Conflicting Flow All	873	0	najorz	0	718	445	-			 	
Stage 1	013	U		U	445	440					
Stage 2		-			273	2					
ritical Hdwy	4.12			· ·	6.42	6.22					
ritical Hdwy Stg 1	4.12				5.42	0.22					
			- 3	-	5.42 5.42						
ritical Hdwy Stg 2 ollow-up Hdwy	2.218		- 2		3.518	2 240					
	2.210		-	-	396	613					
ot Cap-1 Maneuver	113		1	-							
Stage 1				-	646 773						
Stage 2			1.17		113						
Platoon blocked, %	779			3	334	613					
Nov Cap-1 Maneuver		-									
Nov Cap-2 Maneuver		-			334	-					
Stage 1	1		-		545	-					
Stage 2		5			773	7					
pproach	EB		WB		SB						
CM Control Delay, s	8		0		19.4						
ICM LOS					С						
						001 4 0					
/linor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1 S		_	_	 	
Capacity (veh/h)		773		-	-	334	613				
CM Lane V/C Ratio	`	0.152	-	-		0.409					
HCM Control Delay (s	5)	10.5	0			23	11.5				
ICM Lane LOS	,	В	A		· · ·	C	В				
ICM 95th %tile Q(ver	ן (ו	0.5	-			1.9	0.3				

tersection								_
t Delay, s/veh	64.7							
ovement	EBL	EBT	WBT	WBR	SBL	SBR		
ane Configurations		र्भ	4		٦	1		
affic Vol, veh/h	79	29	34	240	604	116		
ure Vol, veh/h	79	29	34	240	604	116		
nflicting Peds, #/hr		0	0	0	0	0		
n Control	Free	Free	Free	Free	Stop	Stop		
Channelized	-	None	-	None	-	None		
brage Length	-	-	-	-	100	0		
h in Median Storag	e.# -	0	0	-	0	-		
ade, %	-	Ő	õ	-	Ő	-		
ak Hour Factor	90	90	90	90	90	90		
avy Vehicles, %	2	2	2	2	2	2		
mt Flow	88	32	38	267	671	129		
		02	00	207	0			
r/Minor	Major1	ľ	Major2		Minor2			_
nflicting Flow All	305	0	-	0	380	172		
Stage 1	-	-	-	-	172			
Stage 2	-	-		-	208	1.4		
ical Hdwy	4.12	-	-	-	6.42	6.22		
ical Hdwy Stg 1	-	1.1	-	-	5.42	1.12		
ical Hdwy Stg 2	-	-		-	5.42	1.1		
ow-up Hdwy	2.218	4	4	-	3.518	3.318		
Cap-1 Maneuver	1256		-		~ 622	872		
Stage 1	-			-	858	- 5		
Stage 2	-	-	1.5	-	827	1.1		
toon blocked, %		-	÷	-				
v Cap-1 Maneuver	1256		-		~ 578	872		
v Cap-2 Maneuver		-	4	-	~ 578	-		
Stage 1	-	-	-		797	-		
Stage 2	-		-	-	827	-		
-								
roach	EB	-	WB		SB			
M Control Delay, s	5.9		0		98.1			
MLOS					F			
nor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1 S	BLn2	
pacity (veh/h)		1256				578	872	
M Lane V/C Ratio		0.07			14	1.161		
VI Control Delay (s		8.1	0			115.1	9.8	
VI Lane LOS	-,	A	Ă			F	A	
V 95th %tile Q(ve	h)	0.2	-		-		0.5	
es	,							
, lume exceeds c			elay exc			+: Com		 n platoon

2: Smith Road & Stephenson Road Combined (2026) AM - Full Buildout - with Improvements Horton Park - Apex, NC 06/28/2019

Intersection										
Int Delay, s/veh	4.2									
Movement	EBL	EBT	WBT	WBR	SBL	SBR				
Lane Configurations	۲	+	î.		٦	1			_	
Traffic Vol, veh/h	106	33	15	770	123	56				
Future Vol, veh/h	106	33	15	770	123	56				
Conflicting Peds, #/hr	0	0	0	0	0	0				
Sign Control	Free	Free	Free	Free	Stop	Stop				
RT Channelized	-	None	-	None	-	None				
Storage Length	100	-	-	-	100	0				
Veh in Median Storage		0	0	-	0	-				
Grade, %	-	Õ	Õ	-	Õ	-				
Peak Hour Factor	90	90	90	90	90	90				
Heavy Vehicles, %	2	2	2	2	2	2				
Mvmt Flow	118	37	17	856	137	62				
				000		<u>.</u>				
Major/Minor	Major1	N	Major2		Minor2					
Conflicting Flow All	873	0	4	0	718	445				
Stage 1		1			445	-				
Stage 2					273					
Critical Hdwy	4.12				6.42	6.22				
Critical Hdwy Stg 1					5.42	-				
Critical Hdwy Stg 2	1		1	-	5.42	2				
Follow-up Hdwy	2.218		1	· .	3.518	3 3 18				
Pot Cap-1 Maneuver	773	1.1	1.1		396	613				
Stage 1				-	646	-				
Stage 2	1.4	-	12	-	773					
Platoon blocked, %										
Mov Cap-1 Maneuver	773	-	- i - i - i - i - i - i - i - i - i - i		335	613				
Mov Cap-2 Maneuver					335	-				
Stage 1		-			547	-				
Stage 2	12	-			773	2				
01490 2										
Approach	EB		WB		SB					
HCM Control Delay, s	8		0		19.4					
HCM LOS					С					
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1 S	BLn2			
Capacity (veh/h)		773			14	335	613			
HCM Lane V/C Ratio		0.152								
HCM Control Delay (s))	10.5				23	11.5			
HCM Lane LOS		В				С	В			

2: Smith Road & Stephenson Road	Combined (2026) PM - Full Buildout - with Improvements
Horton Park - Apex, NC	06/28/2019

ersection								
Delay, s/veh	64.7							
vement	EBL	EBT	WBT	WBR	SBL	SBR		
Configurations	۲	+	ţ.		٣	1		
c Vol, veh/h	79	29	34	240	604	116		
ire Vol, veh/h	79	29	34	240	604	116		
flicting Peds, #/hr	0	0	0	0	0	0		
Control	Free	Free	Free	Free	Stop	Stop		
Channelized	-	None		None	_	None		
age Length	100	-		-	100	0		
in Median Storag		0	0	-	0	_		
le, %	-	Ő	Ő	-	0	_		
Hour Factor	90	90	90	90	90	90		
y Vehicles, %	2	2	2	2	2	2		
t Flow	88	32	38	267	671	129		
	00	02		207		120		
/Minor	Major1	Ν	Major2	N	/linor2			
licting Flow All	305	0	4	0	380	172		
Stage 1	-	-		5 i	172			
Stage 2	-	-	-	-	208	÷.		
al Hdwy	4.12		-	- 8	6.42	6.22		
al Hdwy Stg 1	-	-	-	-	5.42			
al Hdwy Stg 2	-	-	-	-	5.42	4		
w-up Hdwy	2.218	-		-	3.518	3.318		
ap-1 Maneuver	1256	-	1		~ 622	872		
Stage 1	-				858			
Stage 2	-			-	827			
on blocked, %								
Cap-1 Maneuver	1256				~ 578	872		
Cap-2 Maneuver		-	1.1		~ 578	-		
Stage 1	-				798	-		
Stage 2	-	-		š	827	-		
-								
oach	EB		WB		SB			
Control Delay, s	5.9		0		98.1			
LOS					F			
r Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1		
city (veh/h)		1256		7		578	872	
Lane V/C Ratio		0.07		.7	-	1.161		
Control Delay (s	5)	8.1			 - 	115.1	9.8	
Lane LOS		А			-	•	A	
195th %tile Q(ve	h)	0.2	-	1	-	22.7	0.5	
ime exceeds c	an a alik i	¢. D.		ceeds 3	000	L: Com	putation Not Defined	*: All major volume in platoon

APPENDIX H

CAPACITY ANALYSIS CALCULATIONS SMITH ROAD

&

DEZOLA STREET

Intersection Int Delay, s/veh 0.7 Movement EBL EBR NBL NBT SBT SBR Lane Configurations Y 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free RT Channelized None - 0 0 - - - Veh in Median Storage, # 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2<							
Int Delay, s/veh 0.7 Movement EBL EBR NBL NBT SBT SBR Lane Configurations It 4 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 - -<	Intersection						
Movement EBL EBR NBL NBT SBT SBR Lane Configurations Y 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 Sign Control Stop Stop Free		0.7					
Lane Configurations Y 4 4 75 21 4 Traffic Vol, veh/h 1 4 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free RT Channelized - None - None - None Storage Length 0 -		EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h 1 4 4 75 21 4 Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - None - None - None Storage Length 0 - - 0 0 - Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Major/Minor Minor2 Major1 Major2 - - - - Conflicting Flow All 116 25 27 0 0 0 - Conflicting Flow All 16.622			2011				ODIT
Future Vol, veh/h 1 4 4 75 21 4 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Stop Free Free Free Free RT Channelized - None - None - None Storage Length 0 - - 0 0 - Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Major/Minor Minor2 Major1 Major2 - - - - Conflicting Flow All 116 25 27 0 - 0 - Stage 1 25 - - - - - - - - - <	÷	1	4	4			4
Conflicting Peds, #/hr 0	•	1					
Sign Control Stop Stop Free Free Free Free Free Free Free Free Free RT Channelized - None None None							
RT Channelized - None - None - None - None Storage Length 0 - - 0 0 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>						•	
Storage Length 0 -							
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mymt Flow 1 4 4 83 23 4 Major/Minor Minor2 Major1 Major2 - - Conflicting Flow All 116 25 27 0 0 - Stage 1 25 - - - - - - Critical Hdwy 6.42 6.22 4.12 - - - - Critical Hdwy Stg 1 5.42 - - - - - - Follow-up Hdwy 3.518 3.318 2.218 -	Storage Length	0		-	۲. I	-	1.2
Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Major/Minor Minor2 Major1 Major2 - - - Conflicting Flow All 116 25 27 0 - 0 Stage 1 25 - - - - - Conflicting Flow All 116 25 27 0 - 0 Stage 1 25 - - - - - - Critical Hdwy 6.42 6.22 4.12 - - - - Critical Hdwy Stg 1 5.42 - - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - - Stage 1 998 - - - - - - - Not Cap-1 Maneuver			-	-	0	0	1.2
Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Major/Minor 1 4 4 83 23 4 Major/Minor Minor2 Major1 Major2			-	-			-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 Mymt Flow 1 4 4 83 23 4 Major/Minor Minor2 Major1 Major2 - - Conflicting Flow All 116 25 27 0 - 0 Stage 1 25 - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - - Stage 1 998 - - - - - - Not Cap-1 Maneuver 877 1051 1587 - - - - Mov Cap-2 Maneuver 877 <t< td=""><td></td><td>90</td><td>90</td><td>90</td><td></td><td>-</td><td>90</td></t<>		90	90	90		-	90
Mvmt Flow 1 4 4 83 23 4 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 116 25 27 0 0 Stage 1 25 - - - - Stage 2 91 - - - - Critical Hdwy 6.42 6.22 4.12 - - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Stage 1 998 - - - - - Stage 1 998 - - - - - Mov Cap-1 Maneuver 877 1051 1587 - - - Mov Cap-2 Maneuver 877 - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 116 25 27 0 0 Stage 1 25 - - - - Stage 2 91 - - - - Critical Hdwy 6.42 6.22 4.12 - - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Pot Cap-1 Maneuver 880 1051 1587 - - - Stage 1 998 - - - - - - Mov Cap-1 Maneuver 877 1051 1587 - - - - Stage 1 995 - - - -	•						
Conflicting Flow All 116 25 27 0 - 0 Stage 1 25 - - - - - - Stage 2 91 - - - - - - - Critical Hdwy 6.42 6.22 4.12 -							
Conflicting Flow All 116 25 27 0 - 0 Stage 1 25 -	Major/Minor	Minor?		Maior1		Maior?	
Stage 1 25 -<							Ω
Stage 2 91 -<			20	21	U		U
Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - - Pot Cap-1 Maneuver 880 1051 1587 - - - - Stage 1 998 - - - - - - - Platoon blocked, % -			-				
Critical Hdwy Stg 1 5.42 - <td></td> <td></td> <td>6 22</td> <td>4 12</td> <td></td> <td>5</td> <td></td>			6 22	4 12		5	
Critical Hdwy Stg 2 5.42 - <td></td> <td></td> <td>0 22</td> <td>T. 12</td> <td></td> <td></td> <td></td>			0 22	T. 12			
Follow-up Hdwy 3.518 3.318 2.218 - - - Pot Cap-1 Maneuver 880 1051 1587 - - - Stage 1 998 - - - - - - Stage 2 933 - - - - - - Platoon blocked, % - - - - - - - Mov Cap-1 Maneuver 877 1051 1587 - - - - Mov Cap-2 Maneuver 877 -			_				
Pot Cap-1 Maneuver 880 1051 1587 - - Stage 1 998 - - - - - Stage 2 933 - - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 877 1051 1587 - - - Mov Cap-2 Maneuver 877 - - - - - Stage 1 995 - - - - - Stage 2 933 - - - - - Stage 1 995 - - - - - Stage 2 933 - - - - - Stage 2 933 - - - - - - Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR - - Capacity (veh/h) 1587 - 1011 - - HCM Lane V/C Ratio 0.003 </td <td></td> <td></td> <td>3,318</td> <td>2,218</td> <td>- 1</td> <td>-</td> <td>1.6</td>			3,318	2,218	- 1	-	1.6
Stage 1 998 -					2	2	
Stage 2 933 -						14	
Platoon blocked, % -			-	-			
Mov Cap-1 Maneuver 877 1051 1587 - - - Mov Cap-2 Maneuver 877 - <							
Mov Cap-2 Maneuver 877 -		877	1051	1587	- <u>6</u>	-	2
Stage 1 995 -			-	-	-	-	4
Stage 2 933 - - Approach EB NB SB HCM Control Delay, s 8.6 0.4 0 HCM LOS A A Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Capacity (veh/h) 1587 - 1011 - HCM Lane V/C Ratio 0.003 - 0.005 - HCM Control Delay (s) 7.3 0 8.6 HCM Lane LOS A A -			-	-			1
ApproachEBNBSBHCM Control Delay, s8.60.40HCM LOSAAMinor Lane/Major MvmtNBLNBT EBLn1SBTSBRCapacity (veh/h)1587-1011HCM Lane V/C Ratio0.003-0.005-HCM Control Delay (s)7.308.6-HCM Lane LOSAAA-			-	-	1	-	
HCM Control Delay, s 8.6 0.4 0 HCM LOS A 0 Minor Lane/Major Mvmt NBL NBT EBLn1 SBT Capacity (veh/h) 1587 - 1011 HCM Lane V/C Ratio 0.003 - 0.005 HCM Control Delay (s) 7.3 0 8.6 HCM Lane LOS A A -							
HCM Control Delay, s 8.6 0.4 0 HCM LOS A 0 Minor Lane/Major Mvmt NBL NBT EBLn1 SBT Capacity (veh/h) 1587 - 1011 HCM Lane V/C Ratio 0.003 - 0.005 HCM Control Delay (s) 7.3 0 8.6 HCM Lane LOS A A -	Approach	FB		NR		SB	
HCM LOSAMinor Lane/Major MvmtNBLNBT EBLn1SBTSBRCapacity (veh/h)1587-1011-HCM Lane V/C Ratio0.003-0.005-HCM Control Delay (s)7.308.6-HCM Lane LOSAAA-							
Minor Lane/Major MvmtNBLNBT EBLn1SBTSBRCapacity (veh/h)1587-1011HCM Lane V/C Ratio0.003-0.005HCM Control Delay (s)7.308.6HCM Lane LOSAAA				0.4		U	
Capacity (veh/h) 1587 - 1011 - - HCM Lane V/C Ratio 0.003 - 0.005 - - HCM Control Delay (s) 7.3 0 8.6 - - HCM Lane LOS A A - - -		~					
Capacity (veh/h) 1587 - 1011 - - HCM Lane V/C Ratio 0.003 - 0.005 - - HCM Control Delay (s) 7.3 0 8.6 - - HCM Lane LOS A A - - -	Minor Long/Major Ma-		NDI	NDT		COT	000
HCM Lane V/C Ratio 0.003 - 0.005 - - HCM Control Delay (s) 7.3 0 8.6 - - HCM Lane LOS A A A - -		n.					_
HCM Control Delay (s) 7.3 0 8.6 HCM Lane LOS A A A							
HCM Lane LOS A A A		۱					1
		/		_			1.1
		7	U	-	U	1	

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्भ	4	
Traffic Vol, veh/h	6	4	4	29	65	3
Future Vol, veh/h	6	4	4	29	65	3
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	14	None
Storage Length	0	-	-	-	1.4	-
Veh in Median Storage		+	-	0	0	-
Grade, %	0	÷.	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2		2	2	2	2
Mvmt Flow	7	4	4	32	72	3
Major/Minor	Minor2		Major1	1	Major2	
Conflicting Flow All	114	74	75	0	-	0
Stage 1	74	-				
Stage 2	40	-		-		
Critical Hdwy	6.42	6.22	4.12		1.4	
Critical Hdwy Stg 1	5.42	1.00		-	-	
Critical Hdwy Stg 2	5.42	-	-			
Follow-up Hdwy		3.318	2.218	-	-	1.1
Pot Cap-1 Maneuver	882	988	1524	- 2	- ÷	
Stage 1	949	-	-	2	4	
Stage 2	982	-	-	÷		- ÷.
Platoon blocked, %						
Mov Cap-1 Maneuver	879	988	1524		-	
Mov Cap-2 Maneuver	879	1				1.2
Stage 1	946	-2	1	-	4	
Stage 2	982		1		1.	-
Approach	EB		NB		SB	
HCM Control Delay, s	9		0.9		0	
HCM LOS	A					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1524		920	14	-
HCM Lane V/C Ratio		0.003				-
HCM Control Delay (s)	7.4	0	9		
HCM Lane LOS	'	A	Ă	Å		
HCM 95th %tile Q(veh	1)	0		0	-	
	.,			Ŭ		

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f,	
Traffic Vol, veh/h	1	4	4	87	24	4
Future Vol, veh/h	1	4	4	87	24	4
Conflicting Peds, #/hr	, 0		0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-		-	-	-
Veh in Median Storage			2	0	0	-
Grade, %	0		1	0	Ő	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	4	4	97	27	4
	i	4	4	JI	21	4
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	134	29	31	0		0
Stage 1	29	20	01	U U		v
Stage 2	105	12		111	- 5	
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22	4.12	- 6		
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy	3.518	3.318	2.218	- C	1	
Pot Cap-1 Maneuver	3.516 860	1046		2		· · · ·
		1040	1582			
Stage 1	994	-	•		•	
Stage 2	919		*	1		
Platoon blocked, %	0.57	1010		1	•	•
Mov Cap-1 Maneuver		1046	1582	2	-	÷
Mov Cap-2 Maneuver	857	-	-	1	-	•
Stage 1	991	-	-	ę		¥.
Stage 2	919	-	-	÷	-	•
Approach	EB		NB		SB	
HCM Control Delay, s			0.3		0	
HCM LOS	A		0.0		v	
	Ч					
Minor Lano/Major Mar	ot	NDI	NDT		СРТ	000
Minor Lane/Major Mvn	11	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1582	-		-	
HCM Lane V/C Ratio	、	0.003	-			
HCM Control Delay (s)	7.3	0	8.6	1	1.15
HCM Lane LOS HCM 95th %tile Q(veh		A 0	A	A 0	4	÷.
			-			

Intersection						
Int Delay, s/veh	1	1				_
	EDI	EDD	NDI	NOT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	1 +	0
Traffic Vol, veh/h	7	4	4	34	75	3
Future Vol, veh/h	7	4	4	34	75	3
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	4	4	38	83	3
Major/Minor	Minor2		Major1		Aajor2	
Conflicting Flow All	131	85	86	0	najuiz	0
•		60	00	U	1	0
Stage 1	85	-		•		
Stage 2	46	-	+ +0			
Critical Hdwy	6.42	6,22	4.12			
Critical Hdwy Stg 1	5.42	-	-	1.5	-	
Critical Hdwy Stg 2	5.42	-			-	
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	863	974	1510		÷	-
Stage 1	938	-	-	-	-	1.4
Stage 2	976	-	-	-	-	11.4
Platoon blocked, %						1.12
Mov Cap-1 Maneuver	860	974	1510	2	4	
Mov Cap-2 Maneuver	860		-		-	
Stage 1	935		-			
Stage 2	976					- A
Oldgo Z	510					
Approach	EB		NB		SB	
And the second sec		-				_
HCM Control Delay, s	9.1		0.8		0	
HCM LOS	А					
Minor Lane/Major Mvm	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		1510		898	4	
HCM Lane V/C Ratio		0.003	-		1.2	
HCM Control Delay (s)		7.4	0	9.1	-	1.14
HCM Lane LOS	,	A	Ă	A		
HCM 95th %tile Q(veh)	١	Ő	<u></u>	Ô		
I OW SOUL MUIE OR AGIN	/	U	-	U	17	

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्भ	4	
Traffic Vol, veh/h	. 1	4	4		26	4
Future Vol, veh/h	1	4	4		26	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-		- 62	None
Storage Length	0	-		-	1.2	
Veh in Median Storag		4	ι.	0	0	-
Grade, %	0		з.,	0	0	
Peak Hour Factor	90	90	90	-	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	4	4	102	29	4
	•			102		
Major/Minor	Minor2		Major1	M	Major2	
Conflicting Flow All	141	31	33	0		0
Stage 1	31	01	00			, v
Stage 2	110					
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	Q.22				
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy		3.318	2 218			
Pot Cap-1 Maneuver	852	1043	1579			
Stage 1	992	10-10	1013			
Stage 2	915					
Platoon blocked, %	515					
Mov Cap-1 Maneuver	849	1043	1579			
Mov Cap-2 Maneuver		1040	1019			
Stage 1	989		- 6		1	1.5
	969 915	15				
Stage 2	915		-		-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.3		0	
HCM LOS	A		0.5		0	
	~					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1579	-	997		- 64
HCM Lane V/C Ratio		0.003		0.006		
HCM Control Delay (s	3	7.3	0	8.6	-	
HCM Lane LOS	1	A	Ă	A		
HCM 95th %tile Q(veh	n)	0	-	Ő		
	.,	J	-	v	1	

Intersection						
Int Delay, s/veh	0.9		_			
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDI	TIDL	भ		ODIX
Traffic Vol, veh/h	T	4	4	€ 36	€ 08	4
Future Vol, veh/h	7	4	4	36 36	80	4
Conflicting Peds, #/hr	0	4	4	0	0	4
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- SiOP	None	Fiee	None	-	None
Storage Length	0	HUIR		NUILE		NULLE
Veh in Median Storage				0	0	
Grade, %	5, m 0	-		0	Ő	_
Peak Hour Factor	90	- 90	- 90	90	90	90
Heavy Vehicles, %	90 2	90		90 2	90 2	90 2
Momt Flow	28	2 4	2	2 40	2 89	2 4
	ð	4	4	40	89	4
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	139	91	93	0	-	0
Stage 1	91	-	-			
Stage 2	48					
Critical Hdwy	6.42	6.22	4.12	1		
Critical Hdwy Stg 1	5.42	0.22				
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy		3.318	2.218			
Pot Cap-1 Maneuver	854	967	1501			
Stage 1	933	301	1001			
Stage 2	933 974					
Platoon blocked, %	514					1
	054	067	1504	1		
Mov Cap-1 Maneuver	851	967	1501			1
Mov Cap-2 Maneuver	851	-	-	-	-	-
Stage 1	930	-	-		1	
Stage 2	974	-	-	1	-	
Approach	EB		NB		SB	
HCM Control Delay, s	9.1		0.7		0	
HCM LOS	A		0.1		Ŭ	
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1501	-	890	-	-
HCM Lane V/C Ratio		0.003	-	0.014	-	
HCM Control Delay (s)	7.4	0	9.1		-
HCM Lane LOS	,	A	Ā	A		
HCM 95th %tile Q(veh)	0	-	0		
	,			5		

Intersection						
Int Delay, s/veh	5.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ન	Þ	
Traffic Vol, veh/h	167	4	4	87	24	54
Future Vol, veh/h	167	4	4	87	24	54
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-		-	1	
Veh in Median Storage		0.	-	0	0	6
Grade, %	0	2	-	0	Ő	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	186	4	4	97	27	60
	100	4	4	91	21	00
	Minor2		Major1		Major2	-
Conflicting Flow All	162	57	87	0	+	0
Stage 1	57					•
Stage 2	105	*				•
Critical Hdwy	6.42	6.22	4.12	-	2	
Critical Hdwy Stg 1	5.42	· · · ·	-	्र		÷.
Critical Hdwy Stg 2	5.42		-	÷	-	÷.,
Follow-up Hdwy	3.518	3.318	2.218	5	-	1.1.5
Pot Cap-1 Maneuver	829	1009	1509	-	-	1.15
Stage 1	966			-		1.2
Stage 2	919			- ÷	-	1.1.2
Platoon blocked, %				1.14		
Mov Cap-1 Maneuver	827	1009	1509			
Mov Cap-2 Maneuver	827	-	-	12		
Stage 1	963	-	-		1	
Stage 2	919	-			-	
Approach	EB		NB		SB	
HCM Control Delay, s	10.6		0.3		0	
HCM LOS	B		0.0		0	
	J					
Manal and Marter Pt		ND	NDT		0.07	000
Minor Lane/Major Mvm	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1509	-	831	-	-
HCM Lane V/C Ratio		0.003		0.229	-	-
HCM Control Delay (s))	7.4	0	10.6	1.5	
HCM Lane LOS		А	А	В	1.4	-
HCM 95th %tile Q(veh		0		0.9		

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ধ	Þ	
Traffic Vol, veh/h	112	4	4	34	75	185
Future Vol, veh/h	112	4	4	34	75	185
Conflicting Peds, #/hr	0	0	Ó	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0					
Veh in Median Storage		_		0	0	2
Grade, %	5, m 0		_	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	30 2	30 2	2
Mvmt Flow	124	4	4	38	83	206
	124	4	4	50	00	200
				_		
	Minor2		Major1		Major2	
Conflicting Flow All	232	186	289	0		0
Stage 1	186	-				-
Stage 2	46	-		7	•	-
Critical Hdwy	6.42	6.22	4.12	•		
Critical Hdwy Stg 1	5.42				-	-
Critical Hdwy Stg 2	5.42	-			7	-
Follow-up Hdwy		3.318			1.4	
Pot Cap-1 Maneuver	756	856	1273	-	1.1	-
Stage 1	846			-	-	
Stage 2	976	÷	•	÷		1.1.8
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	754	856	1273			-
Mov Cap-2 Maneuver	754	1.5		-	-	1.12
Stage 1	843	-	-	-		1.14
Stage 2	976	-	-		÷	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.7		0.8	_	0	
HCM LOS	B		0.0		0	
	5					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1273	-	757		
HCM Lane V/C Ratio		0.003	-	0.17	-	
HCM Control Delay (s))	7.8	0	10.7		
HCM Lane LOS		Α	Α	В		-
HCM 95th %tile Q(veh				0.6		

Intersection						
Int Delay, s/veh	5.3		-			
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	NDL	स	1	T T
Traffic Vol. veh/h	167	4	4	•¶ 87	т 24	54
Future Vol, veh/h	167	4	4	87	24	54
Conflicting Peds, #/hr		4	4	07 0	24	54 0
Sign Control		Stop	Free	•	U Free	-
	Stop			Free		Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	75
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	186	4	4	97	27	60
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	132	27	87	0	najurz	0
Stage 1	27	41	07	U		U
	105	-				1.1
Stage 2		0.00		1		
Critical Hdwy	6.42	6.22	4.12		-	-
Critical Hdwy Stg 1	5.42	-		-		
Critical Hdwy Stg 2	5.42	1.4	1.5			
Follow-up Hdwy		3.318			-	1.15
Pot Cap-1 Maneuver	862	1048	1509	2	-	
Stage 1	996	1.14	-	÷		
Stage 2	919			-		
Platoon blocked, %				÷	-	-
Mov Cap-1 Maneuver	859	1048	1509			-
Mov Cap-2 Maneuver	859	-	-		-	-
Stage 1	993	-	-			
Stage 2	919			1		-
Oldge Z	313		1.1		10	
Approach	EB		NB		SB	
HCM Control Delay, s			0.3		0	
HCM LOS	B		0.0		Ŭ	
	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1509	÷	863		
		0.003	-	0.22	-	-
HCM Lane V/C Ratio						
)	7.4	0	10.3	-	-
HCM Lane V/C Ratio		7.4 A	0 A	10.3 B 0.8		-

Intersection						
Int Delay, s/veh	2.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	HOL	र्भ	1	T.
Traffic Vol, veh/h	112	4	4	34	75	185
Future Vol, veh/h	112	4	4	34	75	185
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	-	-	-	75
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0	_	-	Ő	Ő	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	30 2	90 2	90 2	2
Mvmt Flow	124	4	4	38	83	206
	124	4	4	30	ბა	200
Main / Min a	Mar 0		Materia		4-1-0	
	Minor2		Major1		Major2	
Conflicting Flow All	129	83	289	0		0
Stage 1	83	•			1	10
Stage 2	46	•	•	3		
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	-	-		-	
Critical Hdwy Stg 2	5.42		-	-	÷	-
Follow-up Hdwy		3.318	2.218		- 4	
Pot Cap-1 Maneuver	865	976	1273	-	1.0	-
Stage 1	940	1	-	14		÷
Stage 2	976	12		ą	4	
Platoon blocked, %				-		1.64
Mov Cap-1 Maneuver	862	976	1273		-	
Mov Cap-2 Maneuver	862	-	-		-	
Stage 1	937		5		1	1.1
Stage 2	976					1.2
0.030 5	5.0					
Approach	EB		NB		SB	
HCM Control Delay, s	9.9		0.8		0	
HCM LOS	3.3 A		0.0		0	
	A					
Manal and Md-1 - F4		ND	NOT		0.5.7	000
Minor Lane/Major Mvm	11	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1273	-	865	1	
HCM Lane V/C Ratio		0.003	-		-	÷
HCM Control Delay (s))	7.8	0	9.9	7	14
HCM Lane LOS		Α	Α	А	-	1.1
HCM 95th %tile Q(veh	1	0		0.5		

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ર્સ	4	
Traffic Vol, veh/h	37	4	4	92	26	15
Future Vol, veh/h	37	4	4	92	26	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-		-		Nono
Veh in Median Storage				0	0	
			-			-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	4	4	102	29	17
5.4 · /6.4						
	Minor2		Major1		Major2	^
Conflicting Flow All	148	38	46	0		0
Stage 1	38	-	- ÷	1		115
Stage 2	110		-	- ÷		-
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	-		14	-	-
Critical Hdwy Stg 2	5.42	-		1.114	-	
Follow-up Hdwy	3.518	3.318	2.218		- 4	
Pot Cap-1 Maneuver	844	1034	1562			
Stage 1	984					
Stage 2	915					
Platoon blocked, %	515					
Mov Cap-1 Maneuver	0/1	1024	1562			
	841	1034	1002			
Mov Cap-2 Maneuver	841	-	-	1	-	
Stage 1	981	-	-			
Stage 2	915	-	-	~	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.3		0	
HCM LOS	9.4 A		0.5		0	
	А					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1562	-			-
HCM Lane V/C Ratio		0.003	-			
HCM Control Delay (s)	۱ ۱	7.3	0	9.4		
HCM Lane LOS	/	7.3 A	A	9.4 A		
HCM 95th %tile Q(veh		0	А	0.2		
	9	U	-	0.2	-	

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	ţ.	
Traffic Vol, veh/h	32	4	4	36	80	40
Future Vol, veh/h	32	4	4	36	80	40
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0			-	-	1.1
Veh in Median Storag	e,# 0	-	-	0	0	1.7
Grade, %	0	14	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	4	4	40	89	44
Major/Minor	Minor2		Major1	-	Major2	
Conflicting Flow All	159	111	133	0	-	0
Stage 1	111	14	4		4	1
Stage 2	48	2		1		÷
Critical Hdwy	6.42	6.22	4.12	-	-	14
Critical Hdwy Stg 1	5.42		-		-	2
Critical Hdwy Stg 2	5.42	12	-		-	4
Follow-up Hdwy		3.318	2.218		4	
Pot Cap-1 Maneuver	832	942	1452	-		114
Stage 1	914					
Stage 2	974	1.2				1.18
Platoon blocked, %				-		-
Mov Cap-1 Maneuver		942	1452	-		1.6
Mov Cap-2 Maneuver		-	-	-		1.10
Stage 1	911	-	-	-	÷	1.1
Stage 2	974	-	-			-
Approach	EB		NB		SB	
HCM Control Delay, s			0.7		0	
HCM LOS	A 0.0		0.7		0	
	~					
					<u></u>	055
Minor Lane/Major Mvi	mt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1452	-	• • •	-	
HCM Lane V/C Ratio		0.003	-			
HCM Control Delay (s	5)	7.5	0	9.5	-	
HCM Lane LOS		A	A	A		
HCM 95th %tile Q(vel	n)	0	-	0.1	7	•

Intersection	0.0					
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ন	1	
Traffic Vol, veh/h	37	4	4	92	26	15
Future Vol, veh/h	37	4	4	92	26	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	otop	None	-	None	-	None
	_		-	NULLE	-	None 75
Storage Length	0	-	-	-	-	
Veh in Median Storage	-	17	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	4	4	102	29	17
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	139	29	46	0		0
Stage 1	29	20	UF	U		U
	110				- 15	
Stage 2		6 00	4 40			
Critical Hdwy	6.42	6.22	4.12			1.5
Critical Hdwy Stg 1	5.42	1			1.5	-
Critical Hdwy Stg 2	5.42		-	-	-	1.1
Follow-up Hdwy		3.318			-	
Pot Cap-1 Maneuver	854	1046	1562	-		-
Stage 1	994		-	-	-	-
Stage 2	915				-	
Platoon blocked, %						
Mov Cap-1 Maneuver	851	1046	1562			
Mov Cap-2 Maneuver	851	10-0	1002			
	991	-	-			
Stage 1		-	-		1	
Stage 2	915	-	-	7		-
Approach	EB		NB	_	SB	
HCM Control Delay, s	9.4		0.3		0	
HCM LOS	A				•	
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
		1562	0. 	867		-
Capacity (veh/h)		0.003		0.053		-
Capacity (veh/h) HCM Lane V/C Ratio		0.005				
)	7.3		9.4		
HCM Lane V/C Ratio HCM Control Delay (s)	7.3		9.4	•	-
HCM Lane V/C Ratio			0		•	

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	Ť	1
Traffic Vol, veh/h	32	4	4	36	80	40
Future Vol, veh/h	32	. 4	4	36	80	40
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	None		None	_	75
Veh in Median Storage		1		0	0	-
Grade, %	, " 0	2	1	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	90 2	2	90 2	30 2
•		2 4				2 44
Mvmt Flow	36	4	4	40	89	44
Maior/Minor	Vin and		Maiaut		10:0-0	
	Minor2		Major1		Major2	0
Conflicting Flow All	137	89	133	0	•	0
Stage 1	89	-			-	
Stage 2	48	-			-	1
Critical Hdwy	6.42	6.22	4.12	-	•	-
Critical Hdwy Stg 1	5.42	1	-	1		
Critical Hdwy Stg 2	5.42	1				- ÷
Follow-up Hdwy		3.318		1	+	~
Pot Cap-1 Maneuver	856	969	1452			
Stage 1	934		-		÷	
Stage 2	974	-	-			1.1
Platoon blocked, %				÷	+	
Mov Cap-1 Maneuver	853	969	1452	-		-
Mov Cap-2 Maneuver	853					
Stage 1	931	-	-			
Stage 2	974		1			
Olugo Z	514					
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		0.7		0	
HCM LOS	A		•		5	
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	it.	1452	-	864		
HCM Lane V/C Ratio		0.003	-	01010	-	1
HCM Control Delay (s)		7.5	0	9.4		
HCM Lane LOS		A	A	A	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

APPENDIX I

CAPACITY ANALYSIS CALCULATIONS E. WILLIAMS STREET

&

STRAYWHITE AVENUE

Intersection						
Int Delay, s/veh	5.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		+	1	۲	11
Traffic Vol, veh/h	32	73	1428	8	20	360
Future Vol, veh/h	32	73	1428	8	20	360
Conflicting Peds, #/hr	0	0	0	Ő	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	75	100	-
Veh in Median Storage		_	0		-	0
Grade, %	, " 0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	- 90	90
Heavy Vehicles, %	2	90 2	90 2	90 2	90 2	90 2
Mvmt Flow	36	∠ 81	∠ 1587	2	22	2 400
	30	01	1007	9	22	400
	Vinor1		Major1		Major2	
Conflicting Flow All	1831	1587	0	0	1596	0
Stage 1	1587	÷	-		1.15	-
Stage 2	244			16	-	
Critical Hdwy	6.63	6.23	-	÷	4.13	-
Critical Hdwy Stg 1	5.43	-		4		1.1
Critical Hdwy Stg 2	5.83	-	-		4	
Follow-up Hdwy	3.519	3.319	-		2.219	
Pot Cap-1 Maneuver	75	132	-	-	409	÷
Stage 1	184		- Q			
Stage 2	775					
Platoon blocked, %						1.1
Mov Cap-1 Maneuver	71	132			409	
Mov Cap-2 Maneuver	153	-	1		100	
Stage 1	184					
Stage 2	733				- 0	
Jlaye Z	100				Ĩ	
Approach			ND		00	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.8	
HCM LOS	F					
Minor Lane/Major Mvm	it	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	138	409	
HCM Lane V/C Ratio		-			0.054	
HCM Control Delay (s)		-		101.8	14.3	-
HCM Lane LOS			- 4	F	В	
)			5.4	0.2	

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Ť	*	٦	† †
Traffic Vol, veh/h	18	41	592	33	77	1418
Future Vol, veh/h	18	41	592	33	77	1418
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	75	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	Õ	-		Ő
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	46	658	37	86	1576
	20	υF	000	57	00	1010
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1618	658	viaj011 0	0	695	0
Stage 1	658	- 000	0	0	090	U
	960	-	1			
Stage 2			1		4 1 2	
Critical Hdwy	6.63	6.23	*		4.13	
Critical Hdwy Stg 1	5.43		-		1	-
Critical Hdwy Stg 2	5.83	-	÷		-	-
Follow-up Hdwy		3.319		-	2.219	
Pot Cap-1 Maneuver	103	463		-	899	
Stage 1	514	1	1.5	6		
Stage 2	333	-		ž	•	
Platoon blocked, %				-		
Mov Cap-1 Maneuver	93	463			899	-
Mov Cap-2 Maneuver	212	-			6	4
Stage 1	514	-	-	-	i i i	-
Stage 2	301	-		-	2	-
Approach	WB		NB		SB	
HCM Control Delay, s	18.1		0		0.5	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
		-		340	899	-
Capacity (veh/h)				0.193		1.4
Capacity (veh/h) HCM Lane V/C Ratio			-	U. 1 7.1		
HCM Lane V/C Ratio						
HCM Lane V/C Ratio HCM Control Delay (s))	•	-	18.1	9.4	-
HCM Lane V/C Ratio		•				

ntersection		_					
nt Delay, s/veh	16.9						
lovement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	Y		+	7	٦	† †	
raffic Vol, veh/h	37	85	1672	9	23	421	
uture Vol, veh/h	37	85	1672	9	23	421	
Conflicting Peds, #/hr		0	0	0	0	0	
lign Control	Stop	Stop	Free	Free	Free	Free	
T Channelized	-	None	-	None	-	None	
torage Length	0	-	-	75	100	-	
eh in Median Storag		i.	0	-	-	0	
irade, %	0, 0	1	Ő	-	-	ŏ	
eak Hour Factor	90	90	90	90	90	90	
eavy Vehicles, %	2	2	2	2	2	2	
lvmt Flow	41	94	1858	10	26	468	
	11		1000	10	20	400	
ajor/Minor	Minor1		Major1	1	Major2		
onflicting Flow All	2144	1858	0	0	1868	0	
Stage 1	1858	-	-			-	
Stage 2	286	-	-	1.1			
tical Hdwy	6.63	6.23	-	1.5	4.13		
tical Hdwy Stg 1	5.43	-			÷	1.4	
ical Hdwy Stg 2	5.83	-	-	÷	-	4	
low-up Hdwy	3.519	3.319			2.219		
Cap-1 Maneuver	47	~ 91	-	-	320		
Stage 1	135	-	-		-		
Stage 2	738	-	-	4	4	-	
toon blocked, %			-			1.1	
ov Cap-1 Maneuver	43	~ 91		14	320	14	
ov Cap-2 Maneuver			-		010		
Stage 1	135		-				
Stage 2	678				-		
proach	WB		NB		SB		
CM Control Delay, s			0		0.9		
CMLOS	F						
inor Lane/Major Mvi	nt	NBT	NBRV	VBLn1	SBL	SBT	
pacity (veh/h)		-		97	320	-	
CM Lane V/C Ratio			-	1.397	0.08		
M Control Delay (s	.)			308.6	17.2		
M Lane LOS	,		- -	F	C		
CM 95th %tile Q(vel	ר)	-	-	9.9	0.3		
es							
olume exceeds ca			elay exc			+: Comp	*: All major volume in platoor

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	TIDIX	1	1	٥DL ۲	† †
Traffic Vol, veh/h	21	48	773	1° 38	89	тт 1664
Future Vol, veh/h	21	40 48	773	38 38	89 89	1664 1664
Conflicting Peds, #/hr	0	40	0	30 0	09 0	
Sign Control	Stop	Stop	Free	Free		0 5r00
RT Channelized	Stop	None	Free -	None	Free	Free None
Storage Length		None -	-	None 75	-	
	0				100	-
Veh in Median Storage		-	0	-	10	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	53	859	42	99	1849
Major/Minor f	Minor1	N	Major1		Major2	
Conflicting Flow All	1982	859	0	0	901	0
Stage 1	859	-	-	-	001	-
Stage 2	1123	_				
Critical Hdwy	6.63	6.23			4.13	-
Critical Hdwy Stg 1	5.43	0.23		,	4.13	. 9
	5.43 5.83	-	-			
Critical Hdwy Stg 2		-	-		0.040	-
Follow-up Hdwy		3.319	*		2.219	3
Pot Cap-1 Maneuver	60	355	-	-	752	-
Stage 1	414	-	~	-	1	
Stage 2	273	-	3		-	
Platoon blocked, %			•			-
Mov Cap-1 Maneuver	52	355	-	1	752	
Mov Cap-2 Maneuver	159	-	-		-	-
Stage 1	414	-	-			
Stage 2	237	-	-	- 14		
•						
Approach	WB		NB		SB	
HCM Control Delay, s	24.7		0		0.5	
HCM LOS	C				0.0	
	0					
Minor Long/Maine Mar		NOT			0.01	0.07
Minor Lane/Major Mvm	IC	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-		258	752	
HCM Lane V/C Ratio		-		0.297		-
HCM Control Delay (s)			-	24.7	10.5	
HCM Lane LOS HCM 95th %tile Q(veh)		-		C 1.2	B 0.5	

4: E. Williams Street & Straywhite Avenue Horton Park - Apex, NC

Intersection						
Int Delay, s/veh	25					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ŧ	7	۲	† †
Traffic Vol, veh/h	39	90	1773	10	25	447
Future Vol, veh/h	39	90	1773	10	25	447
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		75	100	-
Veh in Median Storage		1.1	0	-	-	0
Grade, %	., <i>"</i> 0		Ő	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	100	1970	11	28	497
	τJ	100	1010	11	20	101
	Minor1		Major1		Major2	
Conflicting Flow All	2275	1970	0	0	1981	0
Stage 1	1970	-		2	-	
Stage 2	305	-	-		-	
Critical Hdwy	6.63	6.23		÷.	4.13	
Critical Hdwy Stg 1	5.43	1	•			
Critical Hdwy Stg 2	5.83	-	-	÷	3	÷
Follow-up Hdwy		3.319		-	2.219	1.5
Pot Cap-1 Maneuver	~ 39	~ 78	-	-	289	
Stage 1	118		-		+	-
Stage 2	722	17	~		-	× .
Platoon blocked, %			-			12
Mov Cap-1 Maneuver	~ 35	~ 78	•	•	289	
Mov Cap-2 Maneuver	99	-		÷		1
Stage 1	118	-		÷	-	() ÷
Stage 2	652	•	÷.		-	1.1
Approach	WB		NB		SB	
HCM Control Delay, s			0		1	-
HCM CONTO Delay, S	407.0 F		U		1	
	Ľ					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	83	289	-
HCM Lane V/C Ratio		-		1.727		
HCM Control Delay (s)			-\$	457.8	18.8	-
HCM Lane LOS		-	-	F	C	
HCM 95th %tile Q(veh)		-	12	0.3	
Notes	,					
NOTOP						

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ŧ	7	1	† †
Traffic Vol, veh/h	22	50	815	41	95	1764
Future Vol, veh/h	22	50	815	41	95	1764
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	1100	None
Storage Length	0	-	-	75	100	None
Veh in Median Storage		-	0		100	0
Grade, %	c, # 0 0	-	0	-		0
Peak Hour Factor	90	90	90	- 90	90	90
	90	90 2	90 2	90	90 2	90 2
Heavy Vehicles, %		∠ 56				
Mvmt Flow	24	QC	906	46	106	1960
	Minor1		Major1		Major2	_
Conflicting Flow All	2098	906	0	0	952	0
Stage 1	906					
Stage 2	1192	-				
Critical Hdwy	6.63	6.23	-		4.13	
Critical Hdwy Stg 1	5.43	-	-	-	T é	-
Critical Hdwy Stg 2	5.83	2	-	- 1	4	
Follow-up Hdwy		3.319			2.219	-
Pot Cap-1 Maneuver	51	334		-	720	-
Stage 1	393	-		1		- E.
Stage 2	251	2	i i			
Platoon blocked, %	201		2		12	
Mov Cap-1 Maneuver	44	334	1.5	1	720	
		554				1.5
Mov Cap-2 Maneuver		-	1		÷.	
Stage 1	393	-			-	
Stage 2	214	-	•	<u>े</u>		
Approach	WB	_	NB		SB	
HCM Control Delay, s			0		0.6	
HCM LOS	D					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
THINGT EQUICITIENCION INTERS				239	720	-
Capacity (veh/h)			- Q	0.335	0 147	
Capacity (veh/h) HCM Lane V/C Ratio)	-	1	0.335		
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	*		27.5	10.9	÷
Capacity (veh/h) HCM Lane V/C Ratio		-				

Intersection						
Int Delay, s/veh	36.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	7	٦	† †
Traffic Vol, veh/h	47	116	1672	12	33	421
Future Vol, veh/h	47	116	1672	12	33	421
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop		Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	9.	75	100	-
Veh in Median Storage			0	-	-	0
Grade, %	0	4	Ő	-	-	ŏ
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	52	129	1858	13	37	468
	02	120	1000	10	01	
Mains/Mines	• 4ta4					
	Minor1		Major1		Major2	^
Conflicting Flow All	2166	1858	0	0	1871	0
Stage 1	1858				-	
Stage 2	308	- -			4.40	
Critical Hdwy	6.63	6.23		1	4.13	
Critical Hdwy Stg 1	5.43	E.	-			
Critical Hdwy Stg 2	5.83	-			-	
Follow-up Hdwy	3.519		1	-	2.219	
Pot Cap-1 Maneuver	~ 46	~ 91	7	-	320	1
Stage 1	135			-		•
Stage 2	719		1		1.1	
Platoon blocked, %		• •	10	4		÷.
Mov Cap-1 Maneuver		~ 91		1	320	•
Mov Cap-2 Maneuver	112	-		-		
Stage 1	135	-				•
Stage 2	636	-				,
Approach	WB	_	NB		SB	
HCM Control Delay, st	\$ 509.6		0		1.3	
HCM LOS	F					
Minor Lane/Major Mvr	nt	NBT	NRR	VBLn1	SBL	SBT
Capacity (veh/h)	int.	NDT	NDIN	96	320	JDT
HCM Lane V/C Ratio			-		0.115	
HCM Control Delay (s	\	•		509.6	17.7	1
HCM Lane LOS)	•	¢-		C	
HCM 95th %tile Q(veh		1	-	F 15.1	0.4	-
· ·	7	~	-	10.1	0.4	•
Notes				-		
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	00s	+: Comp

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	1	<u>۲</u>	† †
Traffic Vol, veh/h	28	68	773	49	123	1664
Future Vol, veh/h	28	68	773	49	123	1664
Conflicting Peds, #/hr	0	Ő	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0		- 2	75	100	-
Veh in Median Storage			0	+	-	0
Grade, %	0, "		Ő		-	Ő
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	31	76	859	54	137	1849
	01	10	000		101	1070
h 4 - 1 /h 41	ыг. <i>А</i>					
	Minor1		Major1		Major2	
Conflicting Flow All	2058	859	0	0	913	0
Stage 1	859	-	-			-
Stage 2	1199	-	-	-		
Critical Hdwy	6.63	6.23		-	4.13	1.0
Critical Hdwy Stg 1	5.43			-		-
Critical Hdwy Stg 2	5.83	-	- 1		-	-
Follow-up Hdwy	3.519			-	2.219	-
Pot Cap-1 Maneuver	54	355	-	-	744	-
Stage 1	414					-
Stage 2	249	•	1	1	-	
Platoon blocked, %		<u></u>			- • •	-
Mov Cap-1 Maneuver		355		*	744	
Mov Cap-2 Maneuver		-			-	-
Stage 1	414	-			-	
Stage 2	203	-			-	•
Approach	WB		NB	_	SB	
HCM Control Delay, s	30.2		0		0.8	
HCM LOS	D					
Minor Lane/Major Mvr	nt	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)		-	NDIN	247	744	- 100
HCM Lane V/C Ratio					0.184	
HCM Control Delay (s	4			30.2	10.9	
HCM Lane LOS	7			50.2 D	10.9 B	
HCM 95th %tile Q(veh	n)			2	0.7	
	9			2	0.7	

4: E. Williams Street & Straywhite Avenue Combined (20	024) AM - Phase 1 - with Improvements
Horton Park - Apex, NC	07/01/2019

ntersection nt Delay, s/veh	17.8						
			LIDT		0.51	0.0.7	
Movement	WBL		NBT	NBR	SBL	SBT	-
ane Configurations	ሻ	7	+	7	۲	††	
Fraffic Vol, veh/h	47	116	1672	12	33	421	
Future Vol, veh/h	47	116	1672	12	33	421	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	· -	None	-	None	
Storage Length	0	200	-	75	100	-	
/eh in Median Storag	e,# 0	-	0	14	-	0	
Grade, %	0	-	0		-	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Nvmt Flow	52	129	1858	13	37	468	
Joint/Minn-	Minart		Mais-4		Mais-0		
	Minor1		Major1		Major2		
Conflicting Flow All	2166	1858	0	0	1871	0	
Stage 1	1858	-					
Stage 2	308	-		1	4.40		
Critical Hdwy	6.63	6.23			4.13		
Critical Hdwy Stg 1	5.43	-			-		
Critical Hdwy Stg 2	5.83	-	1.7	•	1		
Follow-up Hdwy		3.319	7	-	2.219	1	
Pot Cap-1 Maneuver	~ 46	~ 91			320		
Stage 1	135	-	6	-		+	
Stage 2	719	-	-	(4)	÷	1.0	
Platoon blocked, %			-	-		+	
Nov Cap-1 Maneuver	~ 41	~ 91	:+)	÷	320		
Nov Cap-2 Maneuver	112	-					
Stage 1	135	-		9		1.0	
Stage 2	636	-	-		.4		
v							
Annroach			ND		00		
Approach	WB		NB	_	SB		
ICM Control Delay, s			0		1.3		
HCM LOS	F						
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-		112	91	320	-
HCM Lane V/C Ratio		1			1.416		
HCM Control Delay (s	1				322.6	17.7	
HCM Lane LOS	7						
				F	F	C	
HCM 95th %tile Q(vel	9		*	2.1	9.7	0.4	•
Votes							

4: E. Williams Street & Straywhite	e AvenueCombined (2024) PM - Phase 1 - with Improvements
Horton Park - Apex, NC	07/01/2019

Intersection		_								
Int Delay, s/veh	1.4									
Movement	WBL		NBT	NBR	SBL	SBT				
Lane Configurations	٦	7	•	1	٦	† †		 		
Traffic Vol, veh/h	28	68	773	49	123	1664				
Future Vol, veh/h	28	68	773	49	123	1664				
Conflicting Peds, #/hr	0	0	0	0	0	0				
Sign Control	Stop	Stop	Free	Free	Free	Free				
RT Channelized	-	None	-	None	-	None				
Storage Length	0	200	-	75	100					
Veh in Median Storage	e,# 0	-	0	1.1		0				
Grade, %	0	-	0	-	-	0				
Peak Hour Factor	90	90	90	90	90	90				
Heavy Vehicles, %	2	2	2	2	2	2				
Mvmt Flow	31	76	859	54	137	1849				
Major/Minor	Minor1	1	Major1		Major2					
Conflicting Flow All	2058	859	0	0	913	0				
Stage 1	859	-	-	1.1	-	1.2				
Stage 2	1199	-	÷	- 2		1.12				
Critical Hdwy	6.63	6.23		1	4.13	-				
Critical Hdwy Stg 1	5.43		-			- ÷				
Critical Hdwy Stg 2	5.83	÷	-	. ş	-					
Follow-up Hdwy	3.519	3.319	-		2.219					
Pot Cap-1 Maneuver	54	355	-	-	744	-				
Stage 1	414	÷	-			-				
Stage 2	249		-		-	-				
Platoon blocked, %										
Mov Cap-1 Maneuver	44	355			744	4				
Mov Cap-2 Maneuver	142	-		4	4					
Stage 1	414	-								
Stage 2	203	-		-	4	1.4				
Approach	WB	_	NB	_	SB					
HCM Control Delay, s	23.6		0		0.8					
HCM LOS	С									
Minor Lane/Major Mvm	nt	NBT	NBR	VBLn1V		SBL	SBT	_	 	
Capacity (veh/h)		-	-	142	355	744				
HCM Lane V/C Ratio			-		0.213		1.5			
HCM Control Delay (s)			-	37.3	17.9	10.9				
HCM Lane LOS			-	E	С	В	-			
HCM 95th %tile Q(veh)	۱			0.8	0.8	0.7				

Intersection		_		_		
Int Delay, s/veh	43.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	1	۲	† †
Traffic Vol, veh/h	57	107	1773	15	31	447
Future Vol, veh/h	57	107	1773	15	31	447
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		75	100	-
Veh in Median Storage			0		-	0
Grade, %	0		Ő		-	Ő
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	63	119	1970	17	34	497
	05	115	1910	17	J4	431
	Minor1		Vlajor1		Major2	
Conflicting Flow All	2287	1970	0	0	1987	0
Stage 1	1970		1			1.1
Stage 2	317	-				1.15
Critical Hdwy	6.63	6.23		•	4.13	
Critical Hdwy Stg 1	5.43	-	÷			
Critical Hdwy Stg 2	5.83	÷.			1.4	·
Follow-up Hdwy		3.319		-	2.219	-
Pot Cap-1 Maneuver	~ 38	~ 78	-	-	288	-
Stage 1	118	4		- 4		
Stage 2	712		ie.		100	
Platoon blocked, %						
Mov Cap-1 Maneuver	~ 34	~ 78		-	288	÷.,
Mov Cap-2 Maneuver	98	-	14	4	4	
Stage 1	118	-			-	
Stage 2	628	-	52		12	
Approach			ND		00	
Approach	WB	_	NB		SB	
HCM Control Delay, st			0		1.2	
HCM LOS	F					
Minor Lane/Major Mvr	nt	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)		-		84	288	171
HCM Lane V/C Ratio		~	-	2.169	0.12	-1
HCM Control Delay (s)		-\$	644.2	19.2	-
HCM Lane LOS		- 6	-	F	С	-
HCM 95th %tile Q(veh	1)		-	16.4	0.4	-1
Notes						

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		†	1	٦	† †
Traffic Vol, veh/h	32	60	815	58	113	1764
Future Vol, veh/h	32	60	815	58	113	1764
Conflicting Peds, #/hr	0	Ő	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	1100	None
Storage Length	0	TONO	_	75	100	NUTIC
Veh in Median Storage			0	15	100	0
Grade, %	s,# 0		0			0
	-	-	-	-	-	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	67	906	64	126	1960
Major/Minor	Minor1	N	/lajor1		Major2	
Conflicting Flow All	2138	906	0	0	970	0
Stage 1	906			-	1.2	
Stage 2	1232	-	-		-	-
Critical Hdwy	6.63	6.23	-	1.1	4.13	-
Critical Hdwy Stg 1	5.43	0.20				
Critical Hdwy Stg 2	5.83				1	
Follow-up Hdwy	3.519				2.219	
Pot Cap-1 Maneuver	48	334			708	
	393				100	-
Stage 1				1	î.	
Stage 2	239	-		-	•	-
Platoon blocked, %				1		
Mov Cap-1 Maneuver	39	334	÷		708	
Mov Cap-2 Maneuver	135	-	1		-	
Stage 1	393	-				-
Stage 2	196	-				4
Approach	WB		NB		SB	
HCM Control Delay, s	34.6		0		0.7	
HCM LOS	54.0 D		0		0.7	
	U					
Minor Lane/Major Mvm	nt	NBT		WBLn1	SBL	SBT
Capacity (veh/h)		77		221	708	-
HCM Lane V/C Ratio		-				
HCM Control Delay (s)		-	- 2	34.6	11.2	-
HCM Lane LOS		-	4	D	В	~

4: E. Williams Street & Straywhite Ave**6oe**nbined (2026) AM - Full Buildout - with Improvements Horton Park - Apex, NC 07/01/2019

Intersection	10.0			_		_	
Int Delay, s/veh	19.3						
Movement		WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	1	•	*	۳	- 11	
Traffic Vol, veh/h	57	107	1773	15	31	447	
Future Vol, veh/h	57	107	1773	15	31	447	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	200	-	75	100	4	
Veh in Median Storage	e,# 0	1.5	0			0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	63	119	1970	17	34	497	
Major/Minor	Minor1	N	Major1		Major2		
Conflicting Flow All	2287	1970	0	0	1987	0	
Stage 1	1970	1970	-	0	1001	U	
Stage 2	317	- 6		1			
Critical Hdwy	6.63	6.23			4.13	1	
Critical Hdwy Stg 1	5.43	0.25		- 2	4.13	- 2	
Critical Hdwy Stg 2	5.83	- 2		- Q	- 2		
Follow-up Hdwy		3.319	-		2.219		
Pot Cap-1 Maneuver	~ 38	~ 78			288		
Stage 1	118	- 70		5	200		
Stage 2	712						
Platoon blocked, %	112	1				T.	
Mov Cap-1 Maneuver	~ 34	~ 78			288	2	
Mov Cap-1 Maneuver	~ 34 98	- 10			200		
Stage 1	118	-			1		
Stage 2	628	-		1			
Slaye Z	020	-					
Approach	WB		NB		SB		
HCM Control Delay, s	281.8		0		1.2		
HCM LOS	F						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBL n2	SBL	SBT
Capacity (veh/h)		-	TUDIO	98	78	288	001
HCM Lane V/C Ratio			-	0.646		0.12	2
HCM Control Delay (s	١				382.6	19.2	2
HCM Lane LOS	/	15	0	92.09 F	302.0 F	19.2 C	2
HCM 95th %tile Q(veh	4	1			я 9.7	0.4	
	7	15		3.2	9.1	0.4	8
Notes							

4: E. Williams Street & Straywhite Ave**6oe**nbined (2026) PM - Full Buildout - with Improvements Horton Park - Apex, NC 07/01/2019

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	T	1	1	1	11
Traffic Vol, veh/h	32	60	815	58	113	1764
Future Vol, veh/h	32	60	815	58	113	1764
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- 0100	None	-	None	1100	
Storage Length	0	200	-	75	100	-
Veh in Median Storage	-	-	0		-	0
Grade, %	0	-	ŏ	_	-	Ő
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	67	906	64	126	1960
	00	01	000	4	120	1000
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2138	906		0	970	0
Stage 1	906	900	U	U	910	U
Stage 2	1232	-			8	
Critical Hdwy	6.63	6.23		1	4.13	
Critical Hdwy Stg 1	5.43	0.25	1		ч. 13	
Critical Hdwy Stg 2	5.83	-			12	10.
Follow-up Hdwy		- 3.319		1	2.219	
Pot Cap-1 Maneuver	48	334			708	1.0
Stage 1	393	- 504			100	
Stage 2	239	-				
Platoon blocked, %	209	-				
Mov Cap-1 Maneuver	39	334			708	
Mov Cap-1 Maneuver	135	004			100	
Stage 1	393	-	Ţ			
Stage 1	393 196	-	-	1		
Slaye Z	190	-			-	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.7	_
HCM LOS	20.2 D		U		0.7	
	U					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V		SBL
Capacity (veh/h)		-	7	135	334	708
HCM Lane V/C Ratio		7		0.263		0.177
HCM Control Delay (s)	-	1	40.9	18.4	11.2
HCM Lane LOS HCM 95th %tile Q(veh		1	19	E	С	В
				1	0.7	0.6

APPENDIX J

CAPACITY ANALYSIS CALCULATIONS TEN-TEN ROAD

&

JESSIE DRIVE

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ.			ન	Y	
Traffic Vol, veh/h	541	3	4	1175	2	12
Future Vol, veh/h	541	3	4	1175	2	12
Conflicting Peds, #/hr		0	0	0	2	12
		•	-	-	-	-
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	•	None	-	None
Storage Length	-	-		-	0	+
Veh in Median Storag		÷.	÷.	0	0	
Grade, %	0	-	τ	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	601	3	4	1306	2	13
		-	•		-	
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	604	0	1917	603
Stage 1	U	U	004	v	603	- 005
Stage 2					1314	
	-	-	4 4 0	-		
Critical Hdwy	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1	-		2		5.42	
Critical Hdwy Stg 2		÷	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	974	-	74	499
Stage 1		-			546	~
Stage 2		4	1.12	-	251	-
Platoon blocked, %				5		
Mov Cap-1 Maneuver			974		73	499
Mov Cap-2 Maneuver			- 10	- 2	73	
Stage 1						-
-	- C	7		1.1	546	-
Stage 2	-				247	-
Approach						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		19	
HCM LOS					С	
Minor Lane/Major Mv	mt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		272		- 1	974	~
HCM Lane V/C Ratio		0.057			0.005	-
HCM Control Delay (s	5)	19			8.7	0
HCM Lane LOS	,	С			A	Ă
HCM 95th %tile Q(vel	n)	0.2			0	-
	7	0.2			U	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			ৰ	Y	NDI
Traffic Vol, veh/h	1221	12	8	~ 795	3	4
Future Vol, veh/h	1221	12	8	795	3	4
Conflicting Peds, #/hr	0	0	Õ	0	Ő	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	2		-	0	-
Veh in Median Storage	# 0	4		0	Ő	-
Grade, %	0		-	Ő	Ő	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1357	13	9	883	3	4
		. 5	0		Ŭ	
Major/Minor N	/lajor1	N	Major2		Minor1	
Conflicting Flow All	0		1370	0		1364
Stage 1	U	0	1370	-	1364	
Stage 2		2	1	(<u> </u>	901	1
Critical Hdwy			4.12	- [901 6.42	6.22
Critical Hdwy Stg 1	3		4.1Z		5.42	0.22
Critical Hdwy Stg 2				-	5.42 5.42	
Follow-up Hdwy	- 2		2.218	-		3.318
Pot Cap-1 Maneuver		-	2.218	-	3.518	3.318
			501	-	45 238	
Stage 1				-		
Stage 2					396	1
Platoon blocked, %	~	0	504	1	40	404
Mov Cap-1 Maneuver			501		43	181
Mov Cap-2 Maneuver	1	1	-		43	1
Stage 1		÷	-		238	14.1
Stage 2	*	+	-		382	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		57.7	
HCM LOS					F	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		76	- P.+		501	
HCM Lane V/C Ratio		0.102		-	0.018	-
HCM Control Delay (s)		57.7	÷		12.3	0
HCM Lane LOS		F	*	-	В	Α
HCM 95th %tile Q(veh)		0.3			0.1	

Intersection Int Delay, s/veh 1.7 Movement EBT EBR WBL WBT NBL NBR Lane Configurations <h> <h></h></h>
Lane Configurations +++ +
Traffic Vol, veh/h 623 46 47 1403 44 57 Future Vol, veh/h 623 46 47 1403 44 57 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - Grade, % 0 - - 0 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 463 Mimort Major1 Major2 Minort - 632 - - 692 - - 692 -<
Traffic Vol, veh/h 623 46 47 1403 44 57 Future Vol, veh/h 623 46 47 1403 44 57 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - Grade, % 0 - - 0 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 90 90 49 63 Mumt Flow 692 51 52 1559 49 63 - - 534 - 692 - - 692
Future Vol, veh/h 623 46 47 1403 44 57 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 Mymt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 -<
Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mwmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 534 - 629 7.14 Critical Hdwy - 5.34 -
Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mwmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 534 - 629 7.14 Critical Hdwy - - 5.34 - 6.29 7.14
RT Channelized - None - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 5.34 - 6.29 7.14 Critical Hdwy - 5.34 - 6.29 7.14 -
Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 5.34 - 6.29 7.14 Critical Hdwy - - 5.34 - 6.29 7.14
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 534 - 629 7.14 Critical Hdwy - 5.34 - 6.29 7.14 - - 6.64 -
Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mwmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - 534 - 629 - Critical Hdwy - 5.34 - 6.29 7.14 - - Critical Hdwy Stg 1 - - - 6.64 - -
Peak Hour Factor 90<
Heavy Vehicles, % 2 3
Mvmt Flow 692 51 52 1559 49 63 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - Stage 2 - - - 692 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - Stage 2 - - - 884 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - Stage 2 - - - 884 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Conflicting Flow All 0 0 743 0 1576 346 Stage 1 - - - 692 - Stage 2 - - - 884 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Stage 1 - - 692 - Stage 2 - - 884 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Stage 2 - - - 884 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 -
Critical Hdwy 5.34 - 6.29 7.14 Critical Hdwy Stg 1 6.64 -
Critical Hdwy Stg 1 6.64 -
Follow-up Hdwy 3.12 - 3.67 3.92
Pot Cap-1 Maneuver 520 - 126 555
Stage 1
Stage 2 355 -
Platoon blocked, %
Mov Cap-1 Maneuver - 520 - 113 555
Mov Cap-2 Maneuver 113 -
Stage 1
Stage 2
JZU -
Approach EB WB NB
HCM Control Delay, s 0 0.4 32.7
HCM LOS D
Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT
Capacity (veh/h) 113 555 520 -
HCM Lane V/C Ratio 0.433 0.114 - 0.1 -
HCM Control Delay (s) 59.2 12.3 - 12.7 -
HCM Lane LOS F B B -
HCM 95th %tile Q(veh) 1.9 0.4 - 0.3 -

Movement EBT EBR WBL NBL NBR Lane Configurations ↑↑ ↑	Intersection								
Lane Configurations ++++ 7' + +++ ++ + + + Traffic Vol, veh/h 1460 57 52 936 46 47 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 0 0 - Grade, % 0 0 0 - Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 Conflicting Flow All 0 16825 0 2258 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 16825 0 2258 Major/Minor Major1 Major2 All	Int Delay, s/veh	10.6							
Traffic Vol, veh/h 1460 57 52 936 46 47 Future Vol, veh/h 1460 57 52 936 46 47 Conflicting Pecks, #hr 0 0 0 0 0 0 Storage Length - 100 400 - None Storage Storage Length - 100 400 - 0 0 - Grade, % 0 - - 0 0 - - 0 - Peak Hour Factor 90	Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Traffic Vol, veh/h 1460 57 52 936 46 47 Future Vol, veh/h 1460 57 52 936 46 47 Conflicting Pecks, #hr 0 0 0 0 0 0 Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 Memore Tactor 1622 63 58 1040 51 52 Mont Flow 1622 63 58 1040 51 52 Conflicting Flow All 0 0 1682 22 - 534 6.64 - Chitcal Hdwy Stg 1 - -	Lane Configurations	†††	1	۲	^	1	1		
Conflicting Peds, #/hr 0 <td>Traffic Vol, veh/h</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Traffic Vol, veh/h								
Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 0 - Grade, % 0 - - 0 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 0 1040 51 52 Major/Minor Major Major2 Minor1 Conflicting Flow All 0 0 1855 0 2258 811 Stage 1 - - 6.64 - - Grade - Chitical Hdwy Stg 2 - - 5.34 - 6.29 7.14 - Chitical Hdwy Stg 1 - - 3.92 - - 6.64 - Follow-up Hdwy - 3.12 </td <td>Future Vol, veh/h</td> <td>1460</td> <td>57</td> <td>52</td> <td>936</td> <td>46</td> <td>47</td> <td></td> <td></td>	Future Vol, veh/h	1460	57	52	936	46	47		
Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length - 100 400 - 0 0 - Grade, % 0 - - 0 0 - - Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 90 90 Peak Hour Factor 90 0 1040 51 52 Major/Minor Major Major2 Minor1 Conflicting Flow All 0 0 1855 0 2258 811 Stage 1 - - 6.64 - - Grade - Chitical Hdwy Stg 2 - - 5.34 - 6.29 7.14 - Chitical Hdwy Stg 1 - - 3.92 - - 6.64 - Follow-up Hdwy - 3.12 </td <td>Conflicting Peds. #/hr</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Conflicting Peds. #/hr	0	0						
RT Channelized - None - None Storage Length - 100 400 - 0 200 Grade, % 0 - - 0 0 - - Grade, % 0 - 0 0 - - - 0 - Peak Hour Factor 90 90 90 90 90 90 90 90 Major/Minor Major1 Major2 Minor1 - - 622 - - 636 - <		Free	Free		Free	Stop	Stop		
Storage Length - 100 400 - 0 200 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mymt Flow 1622 63 58 1040 51 52 Minort Major1 Major2 Minort - - 636 Stage 1 - - - 636 - - Critical Hdwy - 5.34 6.29 7.14 - - Critical Hdwy Stg 1 - - 5.64 - - - Follow-up Hdwy - 3.12 3.67 3.92 - - 101 - Stage 1 - - - 405 - - 3.92 - - 3.92 - - 3.32 277									
Veh in Median Storage, # 0 - - 0 0		-				0			
Grade, % 0 - - 0 0 Peak Hour Factor 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Minort 1622 63 58 1040 51 52 Major/Minor Major1 Major2 Minort - - Conflicting Flow All 0 0 1685 0 2258 811 Stage 1 - - - 636 - - Critical Hdwy Stg 1 - - - 5.64 - Critical Hdwy Stg 2 - - - 5.64 - Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - 180 - - 3.92 Pot Cap-1 Maneuver - 180 - - 3.277 Mov Cap-2 Maneuver - - - - - 3.2 - Stage 1 - - - 3.	• •	• # 0			0				
Peak Hour Factor 90 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 Mymt Flow 1622 63 58 1040 51 52 Major/Minor Major1 Major2 Minor1 Example Exam									
Heavy Vehicles, % 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2									
Mvmt Flow 1622 63 58 1040 51 52 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 1685 0 2258 811 Stage 1 - - - 636 -									
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 1685 0 2258 811 Stage 1 - - - 1622 - Stage 2 - - - 636 - Critical Hdwy Stg 1 - - - 6.64 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - 180 - -49 277 Stage 1 - - - 101 - Stage 2 - - - 475 - Platoon blocked, % - - - - - Stage 1 - - 101 - - Stage 2 - - 322 - - Stage 2 - - 322 - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Conflicting Flow All 0 0 1685 0 2258 811 Stage 1 - - - 1622 - Stage 2 - - - 636 - Critical Hdwy Stg 1 - - - 6.64 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - - 400 - 49 277 Stage 1 - - - 401 - Stage 2 - - - 733 277 Mov Cap-1 Maneuver - 180 - - 33 277 Mov Cap-2 Maneuver - - - - 322 - Approach EB WB NB - - - 322 - Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT - - - 180 - - - -<		1022	03	00	1040	01	52		
Conflicting Flow All 0 0 1685 0 2258 811 Stage 1 - - - 1622 - Stage 2 - - - 636 - Critical Hdwy Stg 1 - - - 6.64 - Critical Hdwy Stg 2 - - - 6.64 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - 180 - -475 - Stage 1 - - - 475 - Platoon blocked, % - - - - - 33 277 Mov Cap-1 Maneuver - 180 - - 33 277 - - 322 - Mov Cap-1 Maneuver - - 322 - - - 322 - Mot Cap-1 Maneuver - - 322 - - - - <	Maian/Minan	M-1-4		M-1- 0					
Stage 1 - - 1622 - Stage 2 - - 636 - Critical Hdwy Stg 1 - - 6.64 - Critical Hdwy Stg 2 - - 5.84 - Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - 180 - - 49 277 Stage 1 - - - 101 - stage 2 - - 475 - Pot Cap-1 Maneuver - 180 - - 33 277 - - 30 - Stage 2 - - - - - 33 277 - - 322 - Mov Cap-2 Maneuver - - - 322 - - - 322 - Mov Cap-2 Maneuver - - 322 - - - 322 - Approach EB WB NB - - - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>011</td> <td></td> <td></td>							011		
Stage 2 - - - 636 - Critical Hdwy - - 5.34 - 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 - Critical Hdwy Stg 2 - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 3.67 3.92 Pot Cap-1 Maneuver - 180 - -49 277 Stage 1 - - - 101 - Stage 2 - - - 475 - Platoon blocked, % - - - - 33 277 Mov Cap-1 Maneuver - 180 - - 322 - Approach EB WB NB - - - 322 - Mior Lane/Major Mvmt NBLn1NBLn2 EBT EBR WB WBT - - - - Capacity (veh/h) 33 <t< td=""><td></td><td>U</td><td>U</td><td>1000</td><td></td><td></td><td></td><td></td><td></td></t<>		U	U	1000					
Critical Hdwy - - 5.34 = 6.29 7.14 Critical Hdwy Stg 1 - - - 6.64 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 3.67 3.92 Pot Cap-1 Maneuver - 180 - 49 277 Stage 1 - - - 475 - Platoon blocked, % - - - 33 277 Mov Cap-1 Maneuver - 180 - -33 277 Mov Cap-2 Maneuver - - - 33 - Stage 2 - - - 33 2 Stage 2 - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 2 - Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 -									
Critical Hdwy Stg 1 - - 6.64 - Critical Hdwy Stg 2 - - 5.84 - Follow-up Hdwy - 3.12 3.67 3.92 Pot Cap-1 Maneuver - 180 - ~49 277 Stage 1 - - - 101 - Stage 2 - - 475 - Platoon blocked, % - - - 733 277 Mov Cap-1 Maneuver - 180 - ~33 277 Mov Cap-2 Maneuver - - - 332 - Stage 1 - - - 33 - Stage 1 - - - 322 - Mov Cap-2 Maneuver - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 277.6 HCM Lane V/C Ratio 1.549 0.189 - 0.321 HCM Lane V/C Ratio 1.549 0.189 -			•	5.04					
Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy - 3.12 3.67 3.92 Pot Cap-1 Maneuver - 180 - - 9 Stage 1 - - - 101 - Stage 2 - - - 475 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - 180 - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - 180 - - - Stage 1 - - - - 3.22 - Approach EB WB NB - - 322 - HCM Control Delay, s 0 1.8 277.6 - - - - - - Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT - - - - - - - -		-	÷	5.34					
Follow-up Hdwy - 3.12 - 3.67 3.92 Pot Cap-1 Maneuver - 180 - ~49 277 Stage 1 - - 101 - Stage 2 - - 475 - Platoon blocked, % - - - - Mov Cap-1 Maneuver - 180 - - - Mov Cap-2 Maneuver - - - - - - Stage 1 - - - - - - - Stage 2 - - - - 33 - - Stage 2 - - - - 322 - - Approach EB WB NB - - - - - Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT - - - - - - - - - - - - - - - - -		~			1.1				
Pot Cap-1 Maneuver - 180 - -49 277 Stage 1 - - 101 - Stage 2 - - 475 - Platoon blocked, % - - - 33 277 Mov Cap-1 Maneuver - 180 - -33 277 Mov Cap-2 Maneuver - - - - - Stage 1 - - - - - Stage 2 - - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 277.6 Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Lane LOS F C - D - HCM S5th %tile Q(veh) 5.7 0.7 - 1.3 -		-	~ ~		-				
Stage 1 - - - 101 - Stage 2 - - - 475 - Platoon blocked, % - - - 33 277 Mov Cap-1 Maneuver - - - - - - Mov Cap-2 Maneuver - - - - - - - Stage 1 - - - - - - - - Stage 2 - - - - - - - - Approach EB WB NB - - - - - HCM Control Delay, s 0 1.8 277.6 - - - - - - Minor Lane/Major Mvmt NBLn1NBLn2 EBT EBR WBL WBT -					1.1				
Stage 2 - - - 475 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - 180 - - 33 277 Mov Cap-2 Maneuver - - - - - 33 - Stage 1 - - - 322 - - - 322 - Approach EB WB NB - - - 322 - HCM Control Delay, s 0 1.8 277.6 - - 180 - Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT - Capacity (veh/h) 33 277 - 180 - - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th % tile Q(veh) 5.7 0.7 -	•		2	180	1		277		
Platoon blocked, % - - - Mov Cap-1 Maneuver - 180 - 33 277 Mov Cap-2 Maneuver - - - 33 - Stage 1 - - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 277.6 HCM LOS F - - 180 Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th % tile Q(veh) 5.7 0.7 - 1.3 -		1.00	1		1				
Mov Cap-1 Maneuver - 180 - 33 277 Mov Cap-2 Maneuver - - - 33 - Stage 1 - - 101 - Stage 2 - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 277.6 HCM LOS F - - 180 Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th % tile Q(veh) 5.7 0.7 - 1.3 -						475			
Mov Cap-2 Maneuver -					-				
Stage 1 - - 101 - Stage 2 - - 322 - Approach EB WB NB HCM Control Delay, s 0 1.8 277.6 HCM LOS F Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -			-	180			277		
Stage 2 - - 322 - Approach EB WB NB - HCM Control Delay, s 0 1.8 277.6 HCM LOS F - - 18 277.6 Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th % tile Q(veh) 5.7 0.7 - 1.3 -		1.0		-		~ 33	-		
Approach EB WB NB HCM Control Delay, s 0 1.8 277.6 HCM LOS F Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th % tile Q(veh) 5.7 0.7 - 1.3 -	Stage 1	-		-		101	-		
HCM Control Delay, s 0 1.8 277.6 HCM LOS F Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -	Stage 2	-		÷	-	322	-		
HCM Control Delay, s 0 1.8 277.6 HCM LOS F Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -									
HCM LOS F Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -									
Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Capacity (veh/h) 33 277 - - 180 - HCM Lane V/C Ratio 1.549 0.189 - - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -		0		1.8					
Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -	HCM LOS					F			
Capacity (veh/h) 33 277 - 180 - HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -									
HCM Lane V/C Ratio 1.549 0.189 - 0.321 - HCM Control Delay (s) \$ 539.7 21 - 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -		nt l			EBT	EBR		WBT	
HCM Control Delay (s) \$ 539.7 21 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -					-	-		-	
HCM Control Delay (s) \$ 539.7 21 34.2 - HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -	HCM Lane V/C Ratio		1.549	0.189			0.321		
HCM Lane LOS F C - D - HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -	HCM Control Delay (s)	\$							
HCM 95th %tile Q(veh) 5.7 0.7 - 1.3 -		•			4	1.4			
)						141	
		,	•	•					

Intersection Int Delay, s/veh	108.5	_		-			
Movement	EBT	EBR	WBL	WBT	NBL	NBR	_
Lane Configurations		1	۲	.† †	٦	7	
Traffic Vol, veh/h	623	143	80	1403	260	97	
Future Vol, veh/h	623	143	80	1403	260	97	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	100	400	-	0	200	
Veh in Median Storag		1.5	-	0	0	-	
Grade, %	0		-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	692	159	89	1559	289	108	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	851	0	1650	346	
Stage 1					692	-	
Stage 2		-		-	958	-	
Critical Hdwy			5.34		6.29	7.14	
Critical Hdwy Stg 1		-		i i i i	6.64	-	
Critical Hdwy Stg 2	-	1.5	-	1.19	5.84	-	
Follow-up Hdwy		1.1.1	3.12		3.67	3.92	
Pot Cap-1 Maneuver		-	462	1	~ 113	555	
Stage 1	4	- 2		- 12	382	-	
Stage 2		1.15			325	-	
Platoon blocked, %		-					
Mov Cap-1 Maneuver	-	4	462		~ 91	555	
Mov Cap-2 Maneuver					~ 91	-	
Stage 1					382	-	
Stage 2		-	1.		~ 262	-	
U							
Approach	EB		WB		NB		
HCM Control Delay, s			0.8	¢	788.5		
HCM LOS	U		0.0	ψ	F		
					1		
Manal and Martanat				EDT		MO	WOT
Minor Lane/Major Mvi	nt	NBLn1		EBT	EBR	WBL	WBT
Capacity (veh/h)		91	555	2	•	462	•
HCM Lane V/C Ratio			0.194	1			7
HCM Control Delay (s) \$	1077.8	13	1	÷	14.6	-
HCM Lane LOS		F	В	2		В	•
HCM 95th %tile Q(vel	ו)	28.5	0.7	-	-	0.7	+
Notes							

Intersection										
Int Delay, s/veh	766.9					-				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	111	1	ľ	1	Ĭ	1				
Traffic Vol, veh/h	1460	281	95	936	202	90				
Future Vol, veh/h	1460	281	95	936	202	90				
Conflicting Peds, #/hr		0	0	0	0	0				
Sign Control	Free	Free	Free	Free	Stop	Stop				
RT Channelized	-	None	-	None	-	None				
Storage Length	_	100	400	-	0	200				
Veh in Median Storag	e,# 0	100	400	0	0	200				
Grade, %	e, # 0 0		-	0	0	-				
Peak Hour Factor	90	- 90	90	90	90	- 90				
Heavy Vehicles, %	2	90 2	2	90 2	90 2	90 2				
Mvmt Flow	1622	312	106	ے 1040	224	100				
	1022	512	100	1040	224	100				
Major/Minor	Major1		Major2		Minor1			 	_	
Conflicting Flow All	0	0	1934	0		811				
Stage 1	-	-	•	-	1622	-				
Stage 2		-		-	732					
Critical Hdwy		-	5.34	-	6.29	7.14				
Critical Hdwy Stg 1	-	-	- A	-	6.64	*				
Critical Hdwy Stg 2	-	-	-	-	5.84					
Follow-up Hdwy	-	-	3.12	-	3.67	3.92				
Pot Cap-1 Maneuver		1. H	135	-	~ 42	277				
Stage 1	-	-			~ 101					
Stage 2	-	-	-	-	425					
Platoon blocked, %	-			13						
Mov Cap-1 Maneuver		-	135	-	~ 9	277				
Mov Cap-2 Maneuver		-	÷	-	~ 9	-				
Stage 1	-		-	-	~ 101	-				
Stage 2	-		-	-	~ 91	-				
Approach	EB		WB		NB					
HCM Control Delay, s			8.4	\$ 8	8017.9					
HCM LOS	•			ΨŸ	F					
Minor Long/Maior Mar				FDT			MOT			
Minor Lane/Major Mvr	ΠL	NBLn11		EBT	EBR	WBL	WBT	 -		
Capacity (veh/h)		9	277		1	135	-			
HCM Lane V/C Ratio		24.938				0.782	-			
HCM Control Delay (s	5) \$	11579	25.2			91.2	-			
HCM Lane LOS		F	D	9	1.4	l F	~			
HCM 95th %tile Q(ver	ר)	29.8	1.6	1	-	4.7				
Notes										
~: Volume exceeds ca	nooih	¢. D.		ceeds 3	000	L. Cam	outation No	 		: All majo

Combined (2026) AM - Full Buildout - with Improvements 06/28/2019

		\mathbf{r}	4		-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	***	1	۲	11	٦	1
Traffic Volume (vph)	623	143	80	1403	260	97
Future Volume (vph)	623	143	80	1403	260	97
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	1000	100	400	1000	0	200
Storage Lanes		1	400		1	200
Taper Length (ft)		1	100		100	
Lane Util. Factor	0.91	1.00	1.00	0.95	1.00	1.00
Frt	0.91		1.00	0.95	1.00	
		0.850	0.050		0.050	0.850
Fit Protected	5005	4500	0.950	0500	0.950	4500
Satd. Flow (prot)	5085	1583	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	5085	1583	1770	3539	1770	1583
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	45			45	35	
Link Distance (ft)	1089			1511	1690	
Travel Time (s)	16.5			22.9	32.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	692	159	89	1559	289	108
Shared Lane Traffic (%)	002	100	00		200	100
Lane Group Flow (vph)	692	159	89	1559	289	108
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	
Median Width(ft)	16	Right	Leit			Right
				16	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Number of Detectors	2	1	1	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	Ō
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex			CI+Ex		CI+Ex
Detector 1 Channel	OI . EX	GI. EX		OL. LA		OF LA
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
.,	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)						
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0,0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	pm+ov	Prot	NA	Prot	pm+ov
		-	1	6	8	1
Protected Phases	2	8		0		

06/26/2019 RKA Synchro 10 Report Page 7

Combined (2026) AM - Full Buildout - with Improvements 06/28/2019

	-	\mathbf{r}	1	-	1	1			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Detector Phase	2	8	1	6	8	1			
Switch Phase									
Minimum Initial (s)	12.0	7.0	7.0	12.0	7.0	7.0			
Minimum Split (s)	19.0	14.0	14.0	19.0	14.0	14.0			
Total Split (s)	61.0	40.0	19.0	80.0	40.0	19.0			
Total Split (%)	50.8%	33.3%	15.8%	66.7%	33.3%	15.8%			
Maximum Green (s)	54.0	33.0	12.0	73.0	33.0	12.0			
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0			
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0			
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0			
_ead/Lag	Lag		Lead			Lead			
ead-Lag Optimize?	Yes		Yes			Yes			
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Recall Mode	Min	None	None	Min	None	None			
Act Effct Green (s)	31.2	58.4	12.0	48.6	21.9	39.3			
Actuated g/C Ratio	0.38	0.72	0.15	0.60	0.27	0.48			
/c Ratio	0.35	0.14	0.34	0.74	0.61	0.14			
Control Delay	18.2	3.5	41.6	14.4	34.4	15.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	18.2	3.5	41.6	14.4	34.4	15.0			
.OS	10.2 B	0.0 A	-1.0 D	B	с.+ С	13.0 B			
Approach Delay	15.4		0	15.9	29.1	5			
Approach LOS	10.4 B			10.9 B	23.1 C				
Queue Length 50th (ft)	84	19	39	253	121	27			
Queue Length 95th (ft)	145	37	117	467	277	83			
nternal Link Dist (ft)	1009	0,	117	1431	1610	50			
furn Bay Length (ft)	1000	100	400	1 101	1010	200			
Base Capacity (vph)	3716	1429	327	3134	818	823			
Starvation Cap Reductn	0,10	0	0	0	0	0			
Spillback Cap Reductn	Ő	Ő	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0			
Reduced v/c Ratio	0.19	0.11	0.27	0.50	0.35	0.13			
ntersection Summary									
vrea Type:	Other								
Cycle Length: 120									
ctuated Cycle Length: 81	.2								
latural Cycle: 50									
ontrol Type: Actuated-Un	coordinated	I							
/laximum v/c Ratio: 0.74									
ntersection Signal Delay:	17.6			Ir	ntersectio	n LOS: B			
ntersection Capacity Utiliz)				of Service B	4		
Analysis Period (min) 15									
Splits and Phases: 6: Je	ssie Drive	& Ten-Te	n Road						
							1	-	
101 -	02					-			

Combined (2026) PM - Full Buildout - with Improvements 06/28/2019

	-	\rightarrow	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	***	1	٦	† †	۲	1
Traffic Volume (vph)	1460	281	95	936	202	90
Future Volume (vph)	1460	281	95	936	202	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		100	400		0	200
Storage Lanes		1	1		1	1
Taper Length (ft)			100		100	-
Lane Util. Factor	0.91	1.00	1.00	0.95	1.00	1.00
Frt		0.850				0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	5085	1583	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	5085	1583	1770	3539	1770	1583
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	45			45	35	
Link Distance (ft)	1089			1511	1690	
Travel Time (s)	16.5			22.9	32.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1622	312	106	1040	224	100
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1622	312	106	1040	224	100
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	16			16	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Number of Detectors	2	1	1	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0_0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	OI LA			OT EX		
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	pm+ov	Prot	NA	Prot	pm+ov
Protected Phases	2	8	1	- 6	8	1
Permitted Phases	-	2		v	Ŭ	8
			_	_	_	

06/26/2019

RKA

Combined (2026) PM - Full Buildout - with Improvements

	-+	\mathbf{r}	-	+	1	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR		
Detector Phase	2	8	1	6	8	1		
Switch Phase								
Minimum Initial (s)	12.0	7.0	7.0	12.0	7.0	7.0		
Minimum Split (s)	19.0	14.0	14.0	19.0	14.0	14.0		
Total Split (s)	64.0	34.0	22.0	86.0	34.0	22.0		
Total Split (%)	53.3%	28.3%	18.3%	71.7%	28.3%	18.3%		
Maximum Green (s)	57.0	27.0	15.0	79.0	27.0	15.0		
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Lead/Lag	Lag		Lead			Lead		
Lead-Lag Optimize?	Yes		Yes			Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Recall Mode	Min	None	None	Min	None	None		
Act Effct Green (s)	43.0	67.9	13.1	61.4	19.6	37.9		
Actuated g/C Ratio	0.47	0.74	0.14	0.67	0.21	0.41		
v/c Ratio	0.68	0.27	0.42	0.44	0.59	0.15		
Control Delay	20.8	4.4	45.7	7.9	41.5	19.3		
Queue Delay	0.0 20.8	0.0 4.4	0.0 45.7	0.0	0.0	0.0		
Total Delay LOS	20.8 C	4.4 A	45.7 D	7.9 A	41.5 D	19.3 B		
Approach Delay	18.2	A	D	11.4	34.7	D		
Approach LOS	10.2 B			B	54.7 C			
Queue Length 50th (ft)	249	46	55	124	114	34		
Queue Length 95th (ft)	385	84	134	218	233	84		
Internal Link Dist (ft)	1009	40	104	1431	1610	04		
Turn Bay Length (ft)	1000	100	400	1401	1010	200		
Base Capacity (vph)	3433	1361	344	3087	587	737		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	Ō	Ő	0	Ō	Ő	Ō		
Storage Cap Reductn	0	Ő	Ō	Ō	Ő	Õ		
Reduced v/c Ratio	0.47	0.23	0.31	0.34	0.38	0.14		
Intersection Summary Area Type:	Other					_	_	
· · · · · · · · · · · · · · · · · · ·	Other							
Cycle Length: 120 Actuated Cycle Length: 91	4							
Natural Cycle: 60	.4							
Control Type: Actuated-Un	coordinated							
Maximum v/c Ratio: 0.68	coordinated							
Intersection Signal Delay:	17 5			1	ntersectio			
Intersection Capacity Utiliz						of Service	B	
Analysis Period (min) 15	.auon 07.770			1	JO LEVEI		50	
Splits and Phases: 6: Je	essie Drive	& Ten-Te	n Road		_			
101								
22 s	141							

APPENDIX K

CAPACITY ANALYSIS CALCULATIONS JESSIE DRIVE EXTENSION

&

NC 55

Background (2026) AM 06/28/2019

	۶		\mathbf{r}	1	-		1		1	1	↓ ·	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1				1		††	1			
Traffic Volume (vph)	0	42	0	0	0	84	0	2888	42	0	0	0
Future Volume (vph)	0	42	0	0	0	84	0	2888	42	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		150	0		0
Storage Lanes	0		0	0		1	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Frt						0.865			0.850			
Flt Protected												
Satd. Flow (prot)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Right Turn on Red	No		No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			45			25	
Link Distance (ft)		152			4482			770			465	
Travel Time (s)		3.0			87.3			11.7			12.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	47	0	0	0	93	0	3209	47	0	0	0
Shared Lane Traffic (%)	•		-	·	·		·	0200		•	·	Ū
Lane Group Flow (vph)	0	47	0	0	0	93	0	3209	47	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12		-0.0	12	. agin
Link Offset(ft)		Ő			Õ			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2				1		2	1			-
Detector Template		Thru				Right		Thru	Right			
Leading Detector (ft)		100				20		100	20			
Trailing Detector (ft)		0				0		0	0			
Detector 1 Position(ft)		0				0		Ő	Ő			
Detector 1 Size(ft)		6				20		6	20			
Detector 1 Type		CI+Ex				CI+Ex		CI+Ex	CI+Ex			
Detector 1 Channel		0. L A				01 2.4		0. 2/	01 2/			
Detector 1 Extend (s)		0.0				0.0		0.0	0.0			
Detector 1 Queue (s)		0.0				0.0		0.0	0.0			
Detector 1 Delay (s)		0.0				0.0		0.0	0.0			
Detector 2 Position(ft)		94				0.0		94	0.0			
Detector 2 Size(ft)		6						6				
Detector 2 Type		CI+Ex						CI+Ex				
Detector 2 Channel								Çi∙ ⊑∧				
Detector 2 Extend (s)		0.0						0.0				
Turn Type		NA				Perm		NA	Perm			
Protected Phases		4				i viiii		2	i onn			
Permitted Phases		т				8		2	2			
						0			۷	_		

06/26/2019

RKA

Background (2026) AM 06/28/2019

	≯	-	\mathbf{r}	-	-		1	†	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase		4				8		2	2			
Switch Phase												
Minimum Initial (s)		7.0				7.0		12.0	12.0			
Minimum Split (s)		14.0				14.0		19.0	19.0			
Total Split (s)		16.0				16.0		134.0	134.0			
Total Split (%)		10.7%				10.7%		89.3%	89.3%			
Maximum Green (s)		9.0				9.0		127.0	127.0			
Yellow Time (s)		5.0				5.0		5.0	5.0			
All-Red Time (s)		2.0				2.0		2.0	2.0			
Lost Time Adjust (s)		-2.0				-2.0		-2.0	-2.0			
Total Lost Time (s)		5.0				5.0		5.0	5.0			
Lead/Lag		0.0				0.0		0.0	0.0			
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0				3.0		3.0	3.0			
Recall Mode		None				None		Min	Min			
Act Effct Green (s)		10.6				11.0		129.0	129.0			
Actuated g/C Ratio		0.07				0.07		0.86	0.86			
v/c Ratio		0.36				0.79		1.05	0.03			
Control Delay		74.3				107.9		45.5	1.6			
Queue Delay		0.0				0.0		0.0	0.0			
Total Delay		74.3				107.9		45.5	1.6			
LOS		, 4.3 E				F			A			
Approach Delay		74.3			107.9	'		44.8	~			
Approach LOS		, 4.5 E			107.5 F			0 D				
Queue Length 50th (ft)		45				91		~1801	5			
Queue Length 95th (ft)		89				#193		#1897	10			
Internal Link Dist (ft)		72			4402	#100		690	10		385	
Turn Bay Length (ft)		12			1102			000	150		000	
Base Capacity (vph)		136				118		3043	1361			
Starvation Cap Reductn		0				0		0	0			
Spillback Cap Reductn		0				ő		0	Ő			
Storage Cap Reductn		0				0		0	0			
Reduced v/c Ratio		0.35				0.79		1.05	0.03			
Intersection Summary		0.00				0,10		1.00	0.00			
	Other											
Cycle Length: 150												
Actuated Cycle Length: 150)											
Natural Cycle: 150												
Control Type: Actuated-Unc	cordinated											
Maximum v/c Ratio: 1.05												
Intersection Signal Delay: 4	7.0			Ir	ntersectio	n LOS: D						
Intersection Capacity Utiliza		6				of Service	н					
Analysis Period (min) 15		-										
 Volume exceeds capaci 	tv. queue is	s theoretic	cally infini	ite								
Queue shown is maximu												
# 95th percentile volume e			ielle mav	he longe	r							
Queue shown is maximu			ieue muy	so longe								

Splits and Phases:	7: NC 55 & Jessie Drive Extension	
1 Ø2		
134 s		16 5
		08
		16.9

Background (2026) PM 06/28/2019

	۶	-	\mathbf{i}	-	-		1	1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†				1		††	1			
Traffic Volume (vph)	0	42	0	0	0	84	0	1854	42	0	0	0
Future Volume (vph)	0	42	0	0	0	84	0	1854	42	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		150	0		0
Storage Lanes	0		0	0		1	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Frt						0.865			0.850			
Flt Protected												
Satd. Flow (prot)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Right Turn on Red	No		No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			45			25	
Link Distance (ft)		152			4482			770			465	
Travel Time (s)		3.0			87.3			11.7			12.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0_90	0.90	0.90
Adj. Flow (vph)	0	47	0	0	0	93	0	2060	47	0	0	0
Shared Lane Traffic (%)	-		-	·	·		·			•	-	· ·
Lane Group Flow (vph)	0	47	0	0	0	93	0	2060	47	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	5		0	9		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2				1		2	1			
Detector Template		Thru				Right		Thru	Right			
Leading Detector (ft)		100				20		100	20			
Trailing Detector (ft)		0				0		0	0			
Detector 1 Position(ft)		0				0		0	0			
Detector 1 Size(ft)		6				20		6	20			
Detector 1 Type		CI+Ex				CI+Ex		CI+Ex	CI+Ex			
Detector 1 Channel												
Detector 1 Extend (s)		0.0				0.0		0.0	0.0			
Detector 1 Queue (s)		0.0				0.0		0.0	0.0			
Detector 1 Delay (s)		0.0				0,0		0.0	0.0			
Detector 2 Position(ft)		94						94				
Detector 2 Size(ft)		6						6				
Detector 2 Type		CI+Ex						CI+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0				
Turn Type		NA				Perm		NA	Perm			
Protected Phases		4						2				
Permitted Phases						8		-	2			

06/26/2019 RKA Synchro 10 Report Page 6

Background (2026) PM 06/28/2019

	- >	-	\mathbf{r}	*	-		•	†	1	1	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SB
Detector Phase		4				8		2	2			
Switch Phase												
Minimum Initial (s)		7.0				7.0		12.0	12.0			
Minimum Split (s)		14.0				14.0		19.0	19.0			
Total Split (s)		29.0				29.0		31.0	31.0			
Total Split (%)		48.3%				48.3%		51.7%	51.7%			
Maximum Green (s)		22.0				22.0		24.0	24.0			
Yellow Time (s)		5.0				5.0		5.0	5.0			
All-Red Time (s)		2.0				2.0		2.0	2.0			
Lost Time Adjust (s)		-2.0				-2.0		-2.0	-2.0			
Total Lost Time (s)		5.0				5.0		5.0	5.0			
Lead/Lag		0.0				0.0		0.0	0.0			
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0				3.0		3.0	3.0			
Recall Mode		None				None		Min	Min			
Act Effct Green (s)		10.2				10.3		34.2	34.2			
Actuated g/C Ratio		0.22				0.22		0.73	0.73			
v/c Ratio		0.22				0.22		0.73	0.73			
Control Delay		15.0				16.9		0.00 14.8	0.04 5.0			
Queue Delay		0.0				0.0		0.0	5.0 0.0			
Total Delay		15.0				16.9		14.8	0.0 5.0			
LOS		15.0 B				10.9 B		14.0 B	5.0 A			
Approach Delay		ь 15.0			16.9	D		ы 14.6	А			
Approach LOS		15.0 B			16.9 B			14.0 B				
Queue Length 50th (ft)		в 10			Б	21		в ~268	E			
		29				21 49			5 17			
Queue Length 95th (ft)		29 72			4400	49		#487	17		205	
Internal Link Dist (ft)		12			4402			690	150		385	
Turn Bay Length (ft)		057				007		0504	150			
Base Capacity (vph)		957				827		2584	1156			
Starvation Cap Reductn		0				0		0	0			
Spillback Cap Reductn		0				0		0	0			
Storage Cap Reductn		0				0		0	0			
Reduced v/c Ratio		0.05				0.11		0.80	0.04			
Intersection Summary					_	_	_	_				_
	Other											
Cycle Length: 60												
Actuated Cycle Length: 46.8												
Natural Cycle: 60												
Control Type: Actuated-Unco	pordinated											
Maximum v/c Ratio: 0.80	-											
Intersection Signal Delay: 14					tersectio							
Intersection Capacity Utilizat	ion 148.8%	1		IC	CU Level	of Service	Н					
Analysis Dariad (min) 15												
Analysis Period (min) 15			olly infini	ło.								
 Volume exceeds capacit 				ι σ .								
 Volume exceeds capacit Queue shown is maximut 	n after two	cycles.	-									
 Volume exceeds capacit 	n after two xceeds cap	cycles. acity, qu	-		r.							

Splits and Phases: 7: NC 55 & Jessie Drive Extensio	n
↑ø2	→ ∂4
315	29 s
	Ø8
	29 s

	۶	-+	\mathbf{r}	1	-			1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•				1		††	1			
Traffic Volume (vph)	0	58	0	0	0	122	0	2888	52	0	0	0
Future Volume (vph)	0	58	0	0	0	122	0	2888	52	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		150	0		0
Storage Lanes	0		0	0		1	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Frt						0.865			0.850			
Flt Protected												
Satd. Flow (prot)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Fit Permitted	-		·	•	•		·			-	•	•
Satd. Flow (perm)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Right Turn on Red	No		No	÷	-	No	-		No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			45			25	
Link Distance (ft)		152			3684			770			465	
Travel Time (s)		3.0			71.8			11.7			12.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	64	0.00	0.00	0.00	136	0.00	3209	58	0	0	0.00
Shared Lane Traffic (%)	Ŭ	•	Ū	v	· ·		· ·	0200		Ŭ	· ·	· ·
Lane Group Flow (vph)	0	64	0	0	0	136	0	3209	58	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	0		12	U		12	Ū		12	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2				1		2	1			
Detector Template		Thru				Right		Thru	Right			
Leading Detector (ft)		100				20		100	20			
Trailing Detector (ft)		0				0		0	0			
Detector 1 Position(ft)		0				0		0	0			
Detector 1 Size(ft)		6				20		6	20			
Detector 1 Type		CI+Ex				CI+Ex		Cl+Ex	CI+Ex			
Detector 1 Channel												
Detector 1 Extend (s)		0.0				0.0		0.0	0.0			
Detector 1 Queue (s)		0.0				0.0		0.0	0.0			
Detector 1 Delay (s)		0.0				0.0		0.0	0.0			
Detector 2 Position(ft)		94						94				
Detector 2 Size(ft)		6						6				
Detector 2 Type		CI+Ex						CI+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0				
Turn Type		NA				Perm		NA	Perm			
Protected Phases		4						2				
Permitted Phases						8		-	2			

06/26/2019

RKA

Synchro 10 Report Page 6

Combined (2026) AM - Full Buildout 06/28/2019

	_ الحر	-	\mathbf{r}	4	-		1	†	1	1	4	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase		4				8		2	2			
Switch Phase												
Minimum Initial (s)		7.0				7.0		12.0	12.0			
Minimum Split (s)		14.0				14.0		19.0	19.0			
Total Split (s)		17.0				17.0		133.0	133.0			
Total Split (%)		11.3%				11.3%		88.7%	88.7%			
Maximum Green (s)		10.0				10.0		126.0	126.0			
Yellow Time (s)		5.0				5.0		5.0	5.0			
All-Red Time (s)		2.0				2.0		2.0	2.0			
Lost Time Adjust (s)		-2.0				-2.0		-2.0	-2.0			
Total Lost Time (s)		5.0				5.0		5.0	5.0			
Lead/Lag		0.0				0.0		0.0	0.0			
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0				3.0		3.0	3.0			
Recall Mode		None				None		3.0 Min	Min			
Act Effct Green (s)		11.4				12.0		128.0	128.0			
		0.08				0.08		0.85	0.85			
Actuated g/C Ratio						0.08 1.06		1.06	0.05			
v/c Ratio		0.45							0.04 1.8			
Control Delay		76.6				160.2		49.3				
Queue Delay		0.0				0.0		0.0	0.0			
Total Delay		76.6				160.2		49.3	1.8			
LOS		E			400.0	F		D	А			
Approach Delay		76.6			160.2			48.4				
Approach LOS		E			F	445		D	7			
Queue Length 50th (ft)		61				~145		~1813	7			
Queue Length 95th (ft)		112				#289		#1910	13		005	
Internal Link Dist (ft)		72			3604			690	450		385	
Turn Bay Length (ft)									150			
Base Capacity (vph)		149				128		3019	1350			
Starvation Cap Reductn		0				0		0	0			
Spillback Cap Reductn		0				0		0	0			
Storage Cap Reductn		0				0		0	0			
Reduced v/c Ratio		0.43				1.06		1.06	0.04			
Intersection Summary					-		1				_	
	Other											
Cycle Length: 150												
Actuated Cycle Length: 150												
Natural Cycle: 150												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.06												
Intersection Signal Delay: 53	3.3			h	ntersectio	n LOS: D						
Intersection Capacity Utiliza		, D		10	CU Level	of Service	θH					
Analysis Period (min) 15				•								
 Volume exceeds capaci 	tv. aueue is	theoretic	cally infin	ite.								
Queue shown is maximu												
# 95th percentile volume e			ielle mav	be long	۶r							
Queue shown is maximu			suo indy	so longe								
QUEUC SHUWITIS HIGAIIIU		0,0103.										

plits and Phases:	7: NC 55 & Jessie Drive Extension	
1 ø2		
133 s		17:
		Ø8
		4.7 5

	>	-	\mathbf{r}	-	-		1	+	1	1	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		1				۲		††	1			
Traffic Volume (vph)	0	64	0	0	0	118	0	1854	61	0	0	(
Future Volume (vph)	0	64	0	0	0	118	0	1854	61	0	0	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		150	0		(
Storage Lanes	0		0	0		1	0		1	0		C
Taper Length (ft)	100		-	100		-	100		-	100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00
Frt						0.865			0.850			
Flt Protected									01000			
Satd. Flow (prot)	0	1863	0	0	0	1611	0	3539	1583	0	0	C
Flt Permitted	Ŭ	1000	Ū	Ŭ	v	1011	v	0000	1000	0	Ŭ	
Satd. Flow (perm)	0	1863	0	0	0	1611	0	3539	1583	0	0	0
Right Turn on Red	No	1000	No	v	v	No	v	0000	No	Ŭ	0	No
Satd. Flow (RTOR)	110		NO			110			110			
Link Speed (mph)		35			35			45			25	
Link Distance (ft)		152			3684			770			465	
Travel Time (s)		3.0			71.8			11.7			12.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.90	0. 5 0 71	0.90	0.90	0.90	131	0.90	2060	68	0,90	0.90	0.90
Shared Lane Traffic (%)	0	11	0	U	0	131	0	2000	00	0	U	U
Lane Group Flow (vph)	0	71	0	0	٥	131	0	2060	68	0	0	
Enter Blocked Intersection	No	No	No	No	0	No	0		No	No	0 No	C No
Lane Alignment	Left	Left		Left	No		No	No				
	Leit	12	Right	Leit	Left 12	Right	Left	Left	Right	Left	Left	Right
Median Width(ft) Link Offset(ft)		0						12 0			12	
Crosswalk Width(ft)		16			0 16			16			0 16	
.,		10			10			10			10	
Two way Left Turn Lane	1.00	1.00	1 00	1 00	1.00	1 00	1 00	1.00	1 00	1.00	1.00	1.00
Headway Factor	1.00 15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	2	9	15		9 1	15	2	9	15		ç
Number of Detectors		2 That						2 That	1			
Detector Template		Thru				Right		Thru	Right			
Leading Detector (ft)		100				20		100	20			
Trailing Detector (ft)		0				0		0	0			
Detector 1 Position(ft)		0				0		0	0			
Detector 1 Size(ft)		6				20		6	20			
Detector 1 Type		CI+Ex				CI+Ex		CI+Ex	CI+Ex			
Detector 1 Channel		0.0				0.0		0.0	0.0			
Detector 1 Extend (s)		0.0				0.0		0.0	0.0			
Detector 1 Queue (s)		0.0				0.0		0.0	0.0			
Detector 1 Delay (s)		0.0				0.0		0.0	0.0			
Detector 2 Position(ft)		94						94				
Detector 2 Size(ft)		6						6				
Detector 2 Type		CI+Ex						CI+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0				_		0.0				
Turn Type		NA				Perm		NA	Perm			
Protected Phases		4						2				
Permitted Phases						8			2			

06/26/2019 RKA Synchro 10 Report Page 6

Combined (2026) PM - Full Buildout 06/28/2019

	٦	-	7	1	-	*	1	1	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase		4				8		2	2			-
Switch Phase												
Minimum Initial (s)		7.0				7.0		12.0	12.0			
Minimum Split (s)		14.0				14.0		19.0	19.0			
Total Split (s)		29.0				29.0		31.0	31.0			
Total Split (%)		48.3%				48.3%		51.7%	51.7%			
Maximum Green (s)		22.0				22.0		24.0	24.0			
Yellow Time (s)		5.0				5.0		5.0	5.0			
All-Red Time (s)		2.0				2.0		2.0	2.0			
Lost Time Adjust (s)		-2.0				-2.0		-2.0	-2.0			
Total Lost Time (s)		5.0				5.0		5.0	5.0			
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0				3.0		3.0	3.0			
Recall Mode		None				None		Min	Min			
Act Effct Green (s)		11.2				11.3		30.2	30.2			
Actuated g/C Ratio		0.24				0.24		0.63	0.63			
v/c Ratio		0.16				0.34		0.92	0.07			
Control Delay		15.0				17.5		22.4	6.0			
Queue Delay		0.0				0.0		0.0	0.0			
Total Delay		15.0				17.5		22.4	6.0			
LOS		В				В		С	А			
Approach Delay		15.0			17.5			21.8				
Approach LOS		В			В			С				
Queue Length 50th (ft)		15				30		~340	7			
Queue Length 95th (ft)		39				65		#516	24			
Internal Link Dist (ft)		72			3604			690			385	
Turn Bay Length (ft)									150			
Base Capacity (vph)		941				813		2244	1003			
Starvation Cap Reductn		0				0		0	0			
Spillback Cap Reductn		0				0		0	0			
Storage Cap Reductn		0				0		0	0			
Reduced v/c Ratio		0.08				0.16		0.92	0.07			
Intersection Summary								_				
	Other											
Cycle Length: 60	0											
Actuated Cycle Length: 47.0	0											
Natural Cycle: 60	الرجار مراد م											
Control Type: Actuated-Unc Maximum v/c Ratio: 0.92	cordinated											
	4.4			I.		-100.0						
Intersection Signal Delay: 2		,				n LOS: C						
Intersection Capacity Utiliza	auon 150.6%	0		li li	U Level	of Service	эH					
Analysis Period (min) 15												
 Volume exceeds capaci 			cally infin	ite.								
Queue shown is maximu												
# 95th percentile volume			leue may	be longe	er.							
Queue shown is maximu	im after two	o cycles.										

Splits and Phases: 7: NC	Jessie Drive Extension
102	->04
31.5	29.5
	08
	211

APPENDIX L

CAPACITY ANALYSIS CALCULATIONS NORTHBOUND U-TURN

&

NC 55

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲					† †
Traffic Vol, veh/h	42	0	0	0	0	1369
Future Vol, veh/h	42	0	0	0	0	1369
Conflicting Peds, #/hr	42	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	NOHe	-	NULLE	-	NUIG
Veh in Median Storage,			- 16974	-	-	0
Grade, %	# 0 0			-	-	
Peak Hour Factor	90	-	0	-	-	0
		90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	0	0	0	0	1521
	inor1				Major2	
Conflicting Flow All	761					4
Stage 1	0	-			- G	
Stage 2	761				-	-
Critical Hdwy	6.84					
Critical Hdwy Stg 1	1.4				4	
	5.84					-
	3.52					
Pot Cap-1 Maneuver	342	0			0	-
Stage 1	-	Ő			Õ	-
Stage 2	422	Ő			Ő	
Platoon blocked, %	122	v			0	
Mov Cap-1 Maneuver	342					- 5
Mov Cap-1 Maneuver	342					
		-				
Stage 1	400	- 1			-	•
Stage 2	422	1				
Approach	WB				SB	
HCM Control Delay, s	17.2				0	
HCM LOS	С					
Minor Lane/Major Mvmt	v	VBLn1	SBT			
Capacity (veh/h)	-	342	-	_		
HCM Lane V/C Ratio		0.136				
HCM Control Delay (s)		17.2				
		17.2	-			
		0				
HCM Lane LOS HCM 95th %tile Q(veh)		C 0.5	-			

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ					† †
Traffic Vol, veh/h	42	0	0	0	0	3075
Future Vol, veh/h	42	0	0	0	0	3075
Conflicting Peds, #/hr	0	Ő	0	0	Ō	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	P	None	-	None	-	None
Storage Length	0	-			-	-
Veh in Median Storage,		-	16974		-	0
Grade, %	0	-	0	-	-	Ő
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	0	0	0	0	3417
	71	U	U	U	U	JH 17
Major/Minor M	1inor1			A	Major2	
Conflicting Flow All	1709	-	-		viajurz	
Stage 1	0					
Stage 2	1709					
Critical Hdwy	6.84				-	
		1			10	
Critical Hdwy Stg 1	- E 04					
Critical Hdwy Stg 2	5.84					
Follow-up Hdwy	3.52	-			-	-
Pot Cap-1 Maneuver	82	0			0	- 2
Stage 1	-	0			0	
Stage 2	132	0			0	-
Platoon blocked, %						-
Mov Cap-1 Maneuver	82	-			-	- E
Mov Cap-2 Maneuver	82	1.5				4
Stage 1	-	1.15				
Stage 2	132	1.5				
Approach	WB				SB	
HCM Control Delay, s	95.6				0	
HCM LOS	F					
Minor Lane/Major Mvmt	. V	VBLn1	SBT			
Capacity (veh/h)		82				
HCM Lane V/C Ratio		0.569				
HCM Control Delay (s)		95.6	- ÷			
HCM Lane LOS		50.0 F	1			
HCM 95th %tile Q(veh)		2.5				

Intersection Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦					† †
Traffic Vol, veh/h	60	0	0	0	0	1385
Future Vol, veh/h	60	0	0	0	0	1385
Conflicting Peds, #/hr	00	0	0	0	0	1365
	-					Free
Sign Control RT Channelized	Stop	Stop	Free	Free	Free	
	-	None	-	None	-	None
Storage Length	0	- 7	40074		1.1	-
Veh in Median Storage,			16974		-	0
Grade, %	0	-	0	13	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	67	0	0	0	0	1539
Major/Minor N	linor1			N	Aajor2	
Conflicting Flow All	770	4				
Stage 1	0	1.4				-
Stage 2	770	1.2			-	
Critical Hdwy	6.84				-	
Critical Hdwy Stg 1	-					1
Critical Hdwy Stg 2	5.84	1.4				-
Follow-up Hdwy	3.52					1.0
Pot Cap-1 Maneuver	337	0			0	1.0
Stage 1		0			0	
Stage 2	417	0			0	
	417	U			U	-
Platoon blocked, %	207					-
Mov Cap-1 Maneuver	337				10	-
Mov Cap-2 Maneuver	337	-			-	-
Stage 1		-			-	-
Stage 2	417				-	-
Approach	WB				SB	
HCM Control Delay, s	18.3				0	
HCM LOS	10.0 C				v	
	0					
Minor Lane/Major Mvm	t V	WBLn1	SBT			
Capacity (veh/h)		337	÷			
HCM Lane V/C Ratio		0.198				
HCM Control Delay (s)		18.3				
HCM Lane LOS		С				
		0.7				

Intersection	_					_
Int Delay, s/veh	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲					† †
Traffic Vol, veh/h	56	0	0	0	0	3097
Future Vol, veh/h	56	0	0	0	Ő	3097
Conflicting Peds, #/hr	0	0	Ő	Õ	Ō	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		-	1.00	
Veh in Median Storage			16974	1.1		0
Grade, %	, " 0		03/4		-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	62	2	2	2	0	2 3441
	02	U	U	U	U	J44 I
N A - 1						
	Minor1	-	_		Major2	
Conflicting Flow All	1721	- 2			ି ଶ୍ର	•
Stage 1	0	1.0				
Stage 2	1721	-			25	
Critical Hdwy	6.84	1				
Critical Hdwy Stg 1						÷.
Critical Hdwy Stg 2	5.84	-			-	÷.
Follow-up Hdwy	3.52	-			-	÷.
Pot Cap-1 Maneuver	80	0			0	÷.
Stage 1		0			0	
Stage 2	130	0			0	
Platoon blocked, %						-
Mov Cap-1 Maneuver	80	-				
Mov Cap-2 Maneuver	80	4				-
Stage 1	-	1.5			-	
Stage 2	130				1	
0						
Approach	WB				SB	
HCM Control Delay, s					0	
LIGHT CONTROL DUICH. 3	F				0	
HCM LOS						
HCM LOS Minor Lane/Major Mvn	nt V	WBLn1	SBT			
HCM LOS Minor Lane/Major Mvn Capacity (veh/h)	nt V	80	SBT -	_		
HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio		80 0.778				
HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		80	÷			
HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio		80 0.778	÷			

APPENDIX M

CAPACITY ANALYSIS CALCULATIONS JESSIE DRIVE

&

NORTH-SOUTH CONNECTOR

Intersection													
Int Delay, s/veh	4.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	ţ.		٩	ħ			4			4		
Traffic Vol, veh/h	14	90	6	32	101	54	18	4	105	12	1	3	
Future Vol, veh/h	14	90	6	32	101	54	18	4	105	12	1	3	
Conflicting Peds, #/hr	0	0	Ō	0	0	0	0	0	0	0	0	Ō	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	1		None			None			None	
Storage Length	75	-	-	75	-	-	-	-	- 2	1	1.2	E.	
Veh in Median Storage		0	-	-	0	-	-	0	- 2		0	-	
Grade, %	-	Ō	-	-	0	-	-	Ō		-	0		
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	16	100	7	36	112	60	20	4	117	13	1	3	
			-					,			•	-	
Major/Minor	Major1		1	Major2			Minor1			Minor2			
Conflicting Flow All	172	0	0	107	0	0	352	380	104	410	353	142	
Stage 1	-	-				-	136	136		214	214		
Stage 2	-	-			1.7	-	216	244		196	139	-	
Critical Hdwy	4.12	÷.,		4.12	- 4	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	1.1		-	6.12	5.52	1	6.12	5.52	-	
Critical Hdwy Stg 2	-	-			4	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	4	_	2.218	1.4	-		4.018	3.318			3.318	
Pot Cap-1 Maneuver	1405	-	-	1484		-	603	552	951	552	572	906	
Stage 1	-	1		1.1	1.2		867	784	2	788	725	191	
Stage 2	-	÷			•		786	704		806	782		
Platoon blocked, %		-			-	ب							
Mov Cap-1 Maneuver	1405			1484	2	1.	584	533	951	468	552	906	
Mov Cap-2 Maneuver	-						584	533	-	468	552	-	
Stage 1	-		-				857	775	-	779	708	-	
Stage 2	-			- 4	-	2	763	687	-	695	773	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	1			1.3			10			12.2			
HCM LOS							В			В			
Minor Long/Major Ma-	at 1			CDT					001-4				
Minor Lane/Major Mvn	III.	NBLn1	EBL	EBT	EBR		WBT	WRR	SBLn1			_	
Capacity (veh/h)		854	1405	-		1484		•	520				
HCM Lane V/C Ratio		0.165		- 7	*			•	0.034				
HCM Control Delay (s))	10	7.6			7.5	-		12.2				
HCM Lane LOS		В	Α	- 7	1.9	A	-	-	В				
HCM 95th %tile Q(veh	1	0.6	0		-	0.1		10 C 10 C	0.1				

Intersection													
Int Delay, s/veh	5.4								5				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	ţ,		1	4			4			4		
Traffic Vol, veh/h	5	102	18	106	94	20	10	<u>'</u> 1	62	54	.4	14	
Future Vol, veh/h	5	102	18	106	94	20	10	1	62	54	4	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	14	None			None			None	
Storage Length	75		1	75		-			1.2	1	-	1.1	
Veh in Median Storage		0		1	0	-		0		-	0	-	
Grade, %	-,	0		-	Ő		1	Ō			Ő		
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	6	113	20	118	104	22	11	1	69	60	4	16	
	J	. 10	20	110	104	~~	11	1	00	00	-+	10	
Major/Minor	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	126	0	0	133	0	0	496	497	123	521	496	115	
Stage 1	_	÷.,					135	135	-	351	351	-	
Stage 2	-	-	-	-			361	362	-	170	145	-	
Critical Hdwy	4.12		-	4.12			7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-			1	6.12	5.52		6.12	5.52	-	
Critical Hdwy Stg 2	-		- 2		1		6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	_	2.218	12	12	3.518	4.018		3.518		3.318	
Pot Cap-1 Maneuver	1460	-	_	1452	1		484	475	928	466	475	937	
Stage 1	-			1102	- 3	1	868	785		666	632		
Stage 2	_		1	÷ 6			657	625	-	832	777	_	
Platoon blocked, %			1				007	020	-	002	111	-	
Mov Cap-1 Maneuver	1460	-	1.10	1452			441	435	928	403	435	937	
Mov Cap-1 Maneuver	100	1	1	1402			441	435	920	403	435	551	
Stage 1	-	-	Ē.	1	1	1	865	782	-	663	435 581	-	
Stage 2	-			, S			589	574		766	774	-	
Olaye Z	-			-		-	209	574	-	100	(14	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.3			3.7			10			14.6			
HCM LOS	0.0			0.1			B			B			
							D			D			
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		795	1460	-		1452		1	455				
HCM Lane V/C Ratio			0.004	-	-	0.081	-		0.176				
HCM Control Delay (s))	10	7.5	-	4	7.7	- 12		14.6				
HCM Lane LOS	,	B	A	1	-	A		2	B				
HCM 95th %tile Q(veh		0.3				73			0				

APPENDIX N

CAPACITY ANALYSIS CALCULATIONS JESSIE DRIVE

&

SITE DRIVE #1

nt Delay, s/veh	3.3												
Vlovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	۲	4		۲	ħ			4			4		
Traffic Vol, veh/h	4	218	4	27	176	11	4	4	87	35	4	4	
Future Vol, veh/h	4	218	4	27	176	11	4	4	87	35	4	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None		i	None	-	· -	None	-	-	None	
Storage Length	50	-		75			1.2	1.2	÷				
Veh in Median Storage		0		-	0		10.12	0		1.1	0	1.1	
Grade, %	-,	Ő	1		Õ		-	Õ	-	-	Ő	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nvmt Flow	4	242	4	30	196	12	4	4	97	39	4	4	
	+	272	-+	00	100	12	+	+	51	55	4	+	
Major/Minor	Major1		ľ	Major2		1	Vinor1			Vinor2			
Conflicting Flow All	208	0	0	246	0	0	518	520	244	565	516	202	
Stage 1			-		-	-	252	252		262	262	-	
Stage 2		1				-	266	268	-	303	254		
Critical Hdwy	4.12			4.12			7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	1	7.12		- 12	6.12	5.52	0.22	6.12	5.52	0.22	
Critical Hdwy Stg 2			- C		1.1		6.12	5.52	- 0	6.12	5.52		
Follow-up Hdwy	2.218			2.218			3.518	4.018	2 210	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1363		-	1320			468	461	795	436	463	839	
Stage 1	1303	- 3		1520		1	752	698	195	743	691	- 009	
Stage 2	-	- 0			1.0		739	687	Ĵ.	743	697		
Platoon blocked, %	-			1			139	007		700	097	2	
	1000	10	-	1220		-	450	440	705	272	454	000	
Mov Cap-1 Maneuver	1363	1	-	1320			453	449	795	373	451	839	
Mov Cap-2 Maneuver	-		•	*		*	453	449	-	373	451	-	
Stage 1	-		•				750	696	-	741	675	-	
Stage 2	-	•			-		714	671	-	614	695	-	
Annenah	EB			WB			NB			SB			
ADDIOACH				1	-		10.6	-		15.2	-	-	
Approach HCM Control Delay, s	0.1												

Intersection													
Int Delay, s/veh	2.9							-					
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	ŧ,		٦	¢			4	-		4		
Traffic Vol, veh/h	4	210	4	88	228	35	4	4	52	21	4	4	
Future Vol, veh/h	4	210	4	88	228	35	4	4	52	21	4	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RŤ Channelized	-	-	None		-	None			None			None	
Storage Length	50	-	-	75	-	-	-	-	-	-	-	-	
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	Ō	-	-	Ō	-	-	Ő	_	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	233	4	98	253	39	4	4	58	23	4	4	
	,	200	1	00	200	00	-	7	00	20	Ŧ	-1	
Major/Minor	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	292	0	0	237	0	0	716	731	235	743	714	273	
Stage 1	-	-	14		-	-	243	243	-	469	469		
Stage 2	-		-	2	-	1	473	488	-	274	245	-	
Critical Hdwy	4.12			4.12			7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	1.1		12	-	1.2	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-		-				6.12	5.52	_	6.12	5.52	-	
Follow-up Hdwy	2.218	i.		2.218			3.518		3.318		4.018	3.318	
Pot Cap-1 Maneuver	1270	-	-	1330			345	349	804	331	357	766	
Stage 1	-					-	761	705	-00	575	561		
Stage 2	-						572	550	_	732	703	-	
Platoon blocked, %					10		012	500	-	102	100	-	
Nov Cap-1 Maneuver	1270			1330			319	322	804	286	330	766	
Mov Cap-2 Maneuver				1000			319	322	-00	286	330	100	
Stage 1	_		10				759	703	-	573	519	-	
Stage 2	-	3			1	l â	522	509	-	673	701	-	
Glago 2							522	003	-	010	101	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			2			11			17.5			
HCM LOS							В			C			
Minor Lane/Major Mvm	t N	IBLn1	EBL	EBT	EBR		WBT	WBR	SBLn1				
Capacity (veh/h)		669	1270	1		1330		-	319				
HCM Lane V/C Ratio		0.1	0.003			0.074		-	0.101				
HCM Control Delay (s)		11	7.8	÷		7.9		- 6a	17.5				
HCM Lane LOS		В	Α			A		-	С				
HCM 95th %tile Q(veh)		0.3	0			0.2			0.3				

APPENDIX O

CAPACITY ANALYSIS CALCULATIONS JESSIE DRIVE

&

SITE DRIVE #2

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4		۲	1	Y	
	201	6	6	170	17	17
Future Vol, veh/h	201	6	6	170	17	17
Conflicting Peds, #/hr	0	Ő	Õ	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	otop	None
Storage Length	-	. 10110	50	-	0	-
Veh in Median Storage, #		- 22	-	0	Õ	
Grade, %	0		_	Ő	Ő	
Peak Hour Factor	90	90	90	90	90	90
		30 2	2	2	2	2
Heavy Vehicles, %	2	Z 7	2 7		19	
Mvmt Flow	223	1	1	189	19	19
Major/Minor Ma	ajor1	ņ	Major2		Minor1	
Conflicting Flow All	0	0	230	0	430	227
Stage 1		2		-	227	-
Stage 2					203	÷.
Critical Hdwy		1.1	4.12	_	6.42	6.22
Critical Hdwy Stg 1	1	-	4.12	-	5.42	
	10	7	1	-	5.42 5.42	
Critical Hdwy Stg 2	-	-	0.040	-		0.040
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver			1338	•	582	812
Stage 1	-			-	811	
Stage 2	÷		+	-	831	-
Platoon blocked, %						
Mov Cap-1 Maneuver		-	1338	*	579	812
Mov Cap-2 Maneuver				- ÷	579	-
Stage 1			1.1		811	-
Stage 2	-	-	14	÷	827	÷
Approach	EB		WB		NB	_
HCM Control Delay, s	0		0.3		10.6	
HCM LOS					В	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	-	676		LDI	1338	VVD1
HCM Lane V/C Ratio		0.056	-	(T	0.005	
HCM Control Delay (s)		10.6		- 1	7.7	
HCM Lane LOS HCM 95th %tile Q(veh)		B 0.2	ĩ		A 0	

Intersection						
	0.8					
Movement E	BT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1+		٦	1	Y	
5	200	18	18	210	10	10
	200	18	18	210	10	10
Conflicting Peds, #/hr	200	0	0	210	0	0
	ree	Free	Free	Free	Stop	Stop
RT Channelized	iee	None	Fiee	None	Stop	None
Storage Length	-	NOTE	50	None	0	
	-	1				- 2
Veh in Median Storage, #		-	-	0	0	1.12
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	222	20	20	233	11	11
Major/Minor Maj	jor1	N	Major2		Minor1	
Conflicting Flow All	0	0	242	0	505	232
Stage 1		4		÷	232	-
Stage 2	+	-	-	÷	273	-
Critical Hdwy		-	4.12	4	6.42	6.22
Critical Hdwy Stg 1			-	i i	5.42	
Critical Hdwy Stg 2	-		-	-	5.42	-
Follow-up Hdwy			2.218		3.518	
Pot Cap-1 Maneuver		_	1324		527	807
Stage 1	2		1024		807	007
					773	-
Stage 2	-				113	-
Platoon blocked, %	•		4004		F 40	0.07
Mov Cap-1 Maneuver	1.61	-	1324		519	807
Mov Cap-2 Maneuver	-	-	-	-	519	-
Stage 1	-	-	-		807	-
Stage 2	-	-	-		761	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		10.9	
HCM LOS	-				B	
					2	
Minor Long/Mains Marine			CD7			
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR		WBT
Capacity (veh/h)		632	1	,	1324	
HCM Lane V/C Ratio		0.035	•		0.015	7
		40.0			70	
HCM Control Delay (s)		10.9			7.8	-
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		10.9 B 0.1	- i	1	7.0 A	

October 14, 2019 Planning Board Meeting

Report Requirements:

Per NCGS 160A-387, all proposed amendments to the zoning ordinance or zoning map shall have a written report provided from the Planning Board to the Town Council within 30 days of referral of the amendment to the Planning Board, or the Town Council may proceed in its consideration of the amendment without the Planning Board report. Furthermore, in no case is the Town Council bound by the recommendations, if any, of the Planning Board.

Per NCGS 160A-383, the Planning Board shall advise and comment on whether the proposed zoning amendment is consistent with all applicable officially adopted plans, and provide a written recommendation to the Town Council that addresses plan consistency and other matters as deemed appropriate by the Planning Board, but a comment by the Planning Board that a proposed amendment is inconsistent with the officially adopted plans shall not preclude consideration or approval of the proposed amendment by the Town Council.

PROJECT DESCRIPTION:

Acreage:	±146.9 acres
PINs:	0751421387, 0751310079, 0751319308, 0750390993, 0751400194, 0750398682,
	0750495371, 0750299342, 0750280998 (portion of), 0750270906, 0750274707,
	0750278677, 0750278925
Current Zoning:	Planned Unit Development-Conditional Zoning (PUD-CZ #18CZ04)
Proposed Zoning:	Planned Unit Development-Conditional Zoning (PUD-CZ) and
	Tech/Flex-Conditional Zoning (TF-CZ)
2045 Land Use Map:	Medium Density Residential, High Density Residential,
	High Density Residential/Office Employment, Office Employment/Industrial Employment
Town Limits:	ETJ

Applicable Officially Adopted Plans:

The Board must state whether the project is consistent or inconsistent with the following officially adopted plans, if applicable. Applicable plans have a check mark next to them.

Ø.	2045 Land Use Map 阗 Consistent		Inconsistent	Reason:	
	1				
Ŕ	Apex Transportation Plan		Inconsistent	Reason:	-
<u>ک</u>	Parks, Recreation, Open Space, 🗹 Consistent	and □	Greenways Plan Inconsistent	Reason:	

PE

Ζ

October 14, 2019 Planning Board Meeting

Legislative Considerations:

The applicant shall propose site-specific standards and conditions that take into account the following considerations, which are considerations that are relevant to the legislative determination of whether or not the proposed conditional zoning district rezoning request is in the public interest. These considerations do not exclude the legislative consideration of any other factor that is relevant to the public interest.

1. *Consistency with 2045 Land Use Plan*. The proposed Conditional Zoning (CZ) District use's appropriateness for its proposed location and consistency with the purposes, goals, objectives, and policies of the 2045 Land Use Plan.

	🕱 Consistent		Inconsistent	Reason:	
2.	Compatibility. The proposed location and compatibility with Consistent Market Construction Consistent	n the	character of sur	rounding land uses.	
3.	Zoning district supplemental s with Sec. 4.4 Supplemental Sta Z Consistent		ds, if applicable	- /	Z) District use's compliance
	· · · · · · · · · · · · · · · · · · ·		~		
4.	Design minimizes adverse im minimization of adverse effect avoidance of significant adver parking and loading, odors, no	cts, ir se im ise, g S	ncluding visual pacts on surro lare, and vibrati Inconsistent	impact of the proposed u unding lands regarding tra on and not create a nuisan Reason:	se on adjacent lands; and sh, traffic, service delivery, ce.
	traffic impact	t	and s	afety conce	rns related

- 5. *Design minimizes environmental impact.* The proposed Conditional Zoning District use's minimization of environmental impacts and protection from significant deterioration of water and air resources, wildlife habitat, scenic resources, and other natural resources.
 - 🖼 Consistent 🛛 Inconsistent Reason:

October 14, 2019 Planning Board Meeting

6. Impact on public facilities. The proposed Conditional Zoning (CZ) District use's avoidance of having adverse impacts on public facilities and services, including roads, potable water and wastewater facilities, parks, schools, police, fire and EMS facilities.

 Consistent

	□ Consistent	Inconsistent	Reason:
	Traffic impo	ect and s	afety concerns
	related To	r Dads.	
7.	Health, safety, and welfare. The pr or welfare of the residents of the T Consistent	·	ing (CZ) District use's effect on the health, safety, Reason:
	Traffic imp	act and	safety concerns
	repted to r	bads.	
8.	Detrimental to adjacent properties. detrimental to adjacent properties. X Consistent D		Conditional Zoning (CZ) District use is substantially
		Inconsistent	Reason:
	· · · · · · · · · · · · ·		

9. *Not constitute nuisance or hazard.* Whether the proposed Conditional Zoning (CZ) District use constitutes a nuisance or hazard due to traffic impact or noise, or because of the number of persons who will be using the Conditional Zoning (CZ) District use.

X	Consistent	Inconsistent	Reason:	

10. Other relevant standards of this Ordinance. Whether the proposed Conditional Zoning (CZ) District use complies with all standards imposed on it by all other applicable provisions of this Ordinance for use, layout, and general development characteristics.

🎏 Consistent

□ Inconsistent

Reason:

APE

Z

October 14, 2019 Planning Board Meeting

Planning Board Recommendation:

Introduced by Planning Board member: Seconded by Planning Board member:

Motion: Kecompae Regnald Kinner

- □ *Approval*: the project is consistent with all applicable officially adopted plans and the applicable legislative considerations listed above.
- Approval with conditions: the project is not consistent with all applicable officially adopted plans and/or the applicable legislative considerations as noted above, so the following conditions are recommended to be included in the project in order to make it fully consistent:

Denial: the project is not consistent with all applicable officially adopted plans and/or the applicable legislative considerations noted above.

With <u>5</u> Planning Board Member(s) voting "aye"

With <u>O</u> Planning Board Member(s) voting "no"

Reasons for dissenting votes:

This report reflects the recommendation of the Planning Board, this the

14th day of October 2019.

Attest:

Margo Sills

Margo Bills, Planning Board Chair

Dianne Khin, Planning Director

TOWN OF APEX

POST OFFICE BOX 250 APEX, NORTH CAROLINA 27502 PHONE 919-249-3426

PUBLIC NOTIFICATION OF PUBLIC HEARINGS

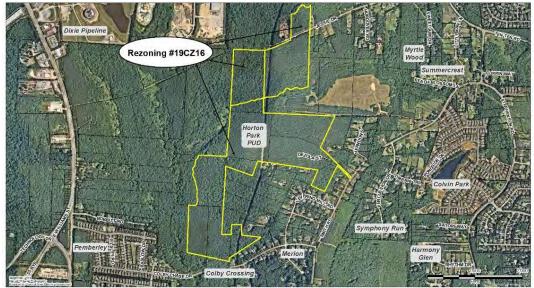
CONDITIONAL ZONING #19CZ16 Horton Park PUD Amendment & TF-CZ

Pursuant to the provisions of North Carolina Statutes Section 160A-364 and to the Town of Apex Unified Development Ordinance (UDO) Section 2.2.11, notice is hereby given of public hearings before the Planning Board and Town Council of the Town of Apex. The purpose of these hearings is to consider the following:

 Applicant: MFW Investments, LLC
 Authorized Agent: Jeff Roach, Peak Engineering & Design
 Property Addresses: 5100, 5101, & 5220 Jessie Drive; 0 Dezola Street; and 8140 (portion of), 8252, 8306 & 8308 Smith Road

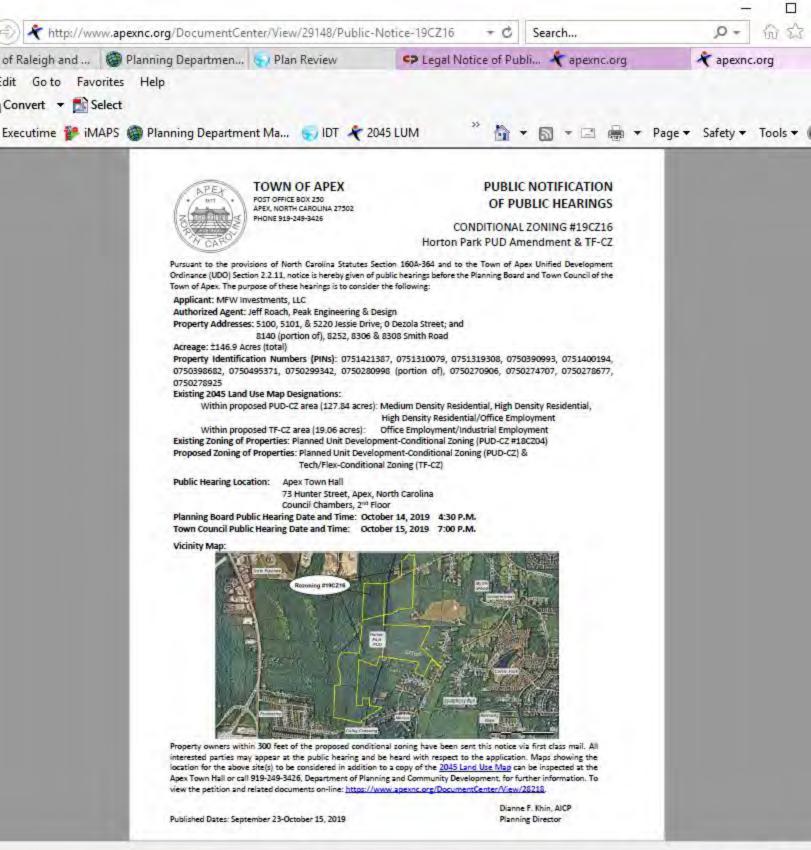
Acreage: ±146.9 Acres (total)

Property Identification Numbers (PINs): 0751421387, 0751310079, 0751319308, 0750390993, 0751400194, 0750398682, 0750495371, 0750299342, 0750280998 (portion of), 0750270906, 0750274707, 0750278677, 0750278925


Existing 2045 Land Use Map Designations:

Within proposed PUD-CZ area (127.84 acres): Medium Density Residential, High Density Residential, High Density Residential/Office Employment Within proposed TF-CZ area (19.06 acres): Office Employment/Industrial Employment Existing Zoning of Properties: Planned Unit Development-Conditional Zoning (PUD-CZ #18CZ04) Proposed Zoning of Properties: Planned Unit Development-Conditional Zoning (PUD-CZ) & Tech/Flex-Conditional Zoning (TF-CZ)

Public Hearing Location:Apex Town Hall73 Hunter Street, Apex, North CarolinaCouncil Chambers, 2nd Floor


Planning Board Public Hearing Date and Time:October 14, 20194:30 P.M.Town Council Public Hearing Date and Time:October 15, 20197:00 P.M.

Vicinity Map:

Property owners within 300 feet of the proposed conditional zoning have been sent this notice via first class mail. All interested parties may appear at the public hearing and be heard with respect to the application. Maps showing the location for the above site(s) to be considered in addition to a copy of the 2045 Land Use Map can be inspected at the Apex Town Hall or call 919-249-3426, Department of Planning and Community Development, for further information. To view the petition and related documents on-line: <u>https://www.apexnc.org/DocumentCenter/View/28218</u>.

Published Dates: September 23-October 15, 2019

×۵ ټ ۸ %

2:09 PM 9/23/2019

TOWN OF APEX

POST OFFICE BOX 250 APEX, NORTH CAROLINA 27502 PHONE 919-249-3426

PUBLIC NOTIFICATION OF PUBLIC HEARINGS

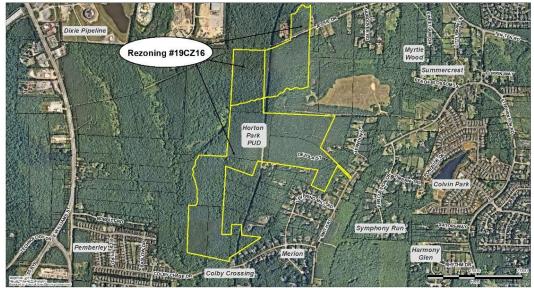
CONDITIONAL ZONING #19CZ16 Horton Park PUD Amendment & TF-CZ

Pursuant to the provisions of North Carolina Statutes Section 160A-364 and to the Town of Apex Unified Development Ordinance (UDO) Section 2.2.11, notice is hereby given of public hearings before the Planning Board and Town Council of the Town of Apex. The purpose of these hearings is to consider the following:

Applicant: MFW Investments, LLC Authorized Agent: Jeff Roach, Peak Engineering & Design Property Addresses: 5100, 5101, & 5220 Jessie Drive; 0 Dezola Street; and 8140 (portion of), 8252, 8306 & 8308 Smith Road

Acreage: ±146.9 Acres (total)

Property Identification Numbers (PINs): 0751421387, 0751310079, 0751319308, 0750390993, 0751400194, 0750398682, 0750495371, 0750299342, 0750280998 (portion of), 0750270906, 0750274707, 0750278677, 0750278925


Existing 2045 Land Use Map Designations:

Within proposed PUD-CZ area (127.84 acres): Medium Density Residential, High Density Residential, High Density Residential/Office Employment Within proposed TF-CZ area (19.06 acres): Office Employment/Industrial Employment Existing Zoning of Properties: Planned Unit Development-Conditional Zoning (PUD-CZ #18CZ04) Proposed Zoning of Properties: Planned Unit Development-Conditional Zoning (PUD-CZ) & Tech/Flex-Conditional Zoning (TF-CZ)

Public Hearing Location:Apex Town Hall73 Hunter Street, Apex, North CarolinaCouncil Chambers, 2nd Floor


Planning Board Public Hearing Date and Time: October 14, 2019 4:30 P.M. Town Council Public Hearing Date and Time: October 15, 2019 November 6, 2019 7:00 P.M.

Vicinity Map:

Property owners within 300 feet of the proposed conditional zoning have been sent this notice via first class mail. All interested parties may appear at the public hearing and be heard with respect to the application. Maps showing the location for the above site(s) to be considered in addition to a copy of the 2045 Land Use Map can be inspected at the Apex Town Hall or call 919-249-3426, Department of Planning and Community Development, for further information. To view the petition and related documents on-line: <u>https://www.apexnc.org/DocumentCenter/View/28218</u>.

Published Dates: September 23-October 15 November 6, 2019

4:21 PM 10/16/2019

TOWN OF APEX

POST OFFICE BOX 250 APEX, NORTH CAROLINA 27502 PHONE 919-249-3426

AFFIDAVIT CERTIFYING Public Notification – Written (Mailed) Notice

Section 2.2.11 Town of Apex Unified Development Ordinance

Project Number and/or Name:	Conditional Rezoning #19CZ16			
Project Location:	5100, 5101, & 5220 Jessie Drive; 0 Dezola Street; and 8140 (portion of), 8252, 8306 & 8308 Smith Road			
Applicant or Authorized Agent:	Jeff Roach			
Firm:	Peak Engineering & Design			

This is to certify that I as Planning Director, mailed or caused to have mailed by first class postage for the above mentioned project on September 23, 2019, a notice containing the time and place, location, nature and scope of the application, where additional information may be obtained, and the opportunity for interested parties to be heard, to the property owners within 300' of the land subject to notification. I further certify that I relied on information provided to me by the above-mentioned person as to accuracy and mailing addresses of property owners within 300' of the land subject to notification.

9/23/19

Planning Director

STATE OF NORTH CAROLINA COUNTY OF WAKE

Sworn and subscribed before me, Jeri Chastain Pederson

State and County, this the 23 day of September , 201 9.

JERI CHASTAIN PEDERSON Notary Public Wake County, North Carolina My Commission Expires March 10, 2024

Jeri Chastain Pederson Notary Public

My Commission Expires: 03/10/2024

, a Notary Public for the above